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PREFACE

The work described in this report was performed by the Project

Engineering Division of the Jet Propulsion Laboratory.
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FOREWORD

In recent years the Jet Propulsion Laboratory has been encouraged by its

sponsoring agency, the National Aeronautics and Space Administration, to apply

a portion of its knowledge and abilities to important civil problems. In such

efforts, JPL works closely with members of relevant professions, representa-

tives of the public agencies, and, under special circumstances, industrial

organizations affected by the problems. When a feasible solution has been

demonstrated, the transfer of technology from the research and development

setting to the commercial marketplace is encouraged.

The development effort described herein exemplifies this approach. In

the medical field, it has been known for some time that certain devices used in

patient care are not sterilizable in all cases and that their use consequently

entails a hazard of infection. One such piece of equipment is the intermittent

positive pressure breathing (IPPB) ventilator. In the effort described in the

present document, JPL, utilizing specialized materials and techniques developed

for spacecraft sterilization, modified the design and materials of construction

of a widely used model of the IPPB so as to render it 100% heat sterilizable.

The manufacturer, the Bird Corporation, cooperated with JPL throughout the

effort, providing essential information, equipment, and services. The Bird

Corporation has now adopted dry heat sterilization as a major design criterion
for all its products wherever feasible. JPL, pursuant to its obligation to make

information concerning this technology generally available to manufacturers of
medical equipment, has prepared this document.
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SUMMARY AND CONCLUSIONS

Hospital-associated infections rank as a major cause of illness in the

United States. Over 3. 5 million patients, it is reported, are afflicted annually.

The overall economic cost approaches 10. 5 billion dollars per year.

JPL has conducted an investigation under NASA Applications Technology

Office sponsorship into hospital-acquired infections and the possibility of redu-

cing the number of such infections and the consequent cost by the application of

NASA-developed materials, design, sterilization, and environmental control

techniques. The study revealed that a major contribution to the dissemination

of infectious organisms was being made by inhalation therapy equipment which

could not be reliably sterilized. This type of equipment, because of its design

and materials of construction, could not be sterilized by heat but instead had to

be decontaminated by less efficient methods which utilized chemical or gaseous

disinfectant or decontaminating agents.

As a result of the initial phase of this study, it was decided by JPL and

NASA to attempt to develop a completely heat-sterilizable intermittent positive

pressure breathing (IPPB) ventilator in an effort to reduce the number of hos-

pital-acquired infections.

The task of developing and producing a heat-sterilizable IPPB machine

employed a coordinated team effort approach. To maintain maximal technical

support in all desired areas, a working triad was formed to define the medical,

manufacturing, material, and design problems involved in producing such a

ventilator. The teams consisted of medical doctors who specialize in inhalation

therapy; design and engineering personnel from a manufacturer of inhalation

therapy equipment; and JPL sterilization, materials, and design personnel.

After appropriate changes in materials and design were made, six proto-

type units were fabricated and were successfully field tested in local hospitals.

Most components of the modified ventilators are compatible with existing

machines. In all but a few instances, such as installation of bacteria-retentive

filters and a modified venturi, the changeover from non-heat-sterilizable to

sterilizable units was accomplished by replacement of heat-labile materials with

heat-stable materials.
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The results of this project have shown that, by the use of alternative

materials and concomitant modification of design, it is possible to convert an

important non-heat-sterilizable medical device to one that is completely heat

sterilizable, thus permitting elimination of a potential source of hospital infec-

tions. Information gained from this study indicates that application of the same

technologies successfully used to produce a heat-sterilizable IPPB unit could

permit the development and fabrication of other heat-sterilizable medical equip-

ment to replace heat-labile apparatus now in use.

As a direct consequence of this task and the practical application of rele-

vant NASA-developed spacecraft sterilization technologies to the medical device

field, the Bird Corporation, manufacturer of the patient ventilators chosen for

study and redesign, has been thoroughly convinced* that the dry heat method

of sterilization is far superior to any other method or methods currently avail-

able and in use for their equipment. Consequently, the Bird Corporation intends

to incorporate dry heat sterilization capability as a major design criterion in all

of its products wherever possible. Because of the enthusiasm generated by

JPL for the heat sterilization concept, the Bird Corporation has initiated a

parallel project. This consisted of converting a smaller, less complex (Mark I)

ventilator design to heat sterilizable materials. It is planned to produce several

hundred of these smaller units and to introduce them to the medical field on a

large scale for evaluation. Bird has expressed confidence in dry heat sterili-

zation as the most efficient and effective method for sterilization of not only

inhalation devices but most other hospital equipment as well.

*See letter, Appendix A.
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ABSTRACT

More than 3. 5 million patients in the United States are

reported to be afflicted with hospital-associated infections each

year, resulting in an overall cost approaching 10. 5 billion dollars

per year. A considerable amount of medical apparatus, because

of its incompatibility with reliable sterilization methods, is impli-

cated in the transmission of disease-producing microorganisms.

One such device, an intermittent positive pressure breathing

(IPPB) apparatus, was modified in conjunction with a manufac-

turer to demonstrate the feasibility of converting an existing

apparatus to one which is compatible with dry heat sterilization.

This sterilization method has been proven to be capable of highly

efficient, consistent, reliable, total destruction of all bacterial

and viral forms of life.

NASA-developed material, design, and sterilization

technologies were utilized to effect the appropriate modifications

to this apparatus. Prototype units produced are capable of with-

standing repeated sterilization cycles at 1250C. The results of

hospital field testing substantiated the effectiveness of this effort.
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SECTION I

STATEMENT OF THE PROBLEM

It has been reported that more than 3.5 million patients in the United

States are afflicted with hospital-associated infections each year, resulting in

an overall cost approaching 10.5 billion dollars per year (Ref. 1).

Constant awareness of the modes of dissemination and transmission of

disease-producing organisms in health care facilities, and a continuing search

for methods to prevent their spread, are prerequisite to reducing this infection

rate and planning a defense against the spread of infectious agents from one

person to another within these facilities.

Prior to the work reported here, studies had been conducted to investigate

the newest concepts of medical-facility-induced infections and the relationship

between infection rate and microbial contamination in the environment (Ref. 2).

These studies revealed the existence of a major factor in the dissemination and

transmission of infectious organisms. This factor is non-heat-sterilizable

medical equipment, and is of great concern to medical personnel. In many types

of induced infections, it has been implicated as the primary transmitter of infec-

tious organisms. Such equipment, which is rendered non-heat-sterilizable by

virtue of materials of construction or design of the equipment, must be decon-

taminated by chemical agents. Chemical agents cannot always be relied upon

to sterilize because of such things as physical complexity of the equipment

(which may prevent decontamination of all parts), the types and numbers of

microorganisms present, or other conditions which may exist at the time of

sterilization is attempted. Medical apparatus which have been implicated in the

spread of infectious organisms include respiratory, inhalation therapy, and

anesthesia equipment (including the ancillary humidifying apparatus); incubators;

nebulization equipment; and mist therapy units. Cystoscopes, suction equipment,

and air compressors have also been implicated but not to such a high degree.

A definitive examination of the medical literature pertaining to non-heat-

sterilizable, infection-implicated instruments revealed that the most culpable
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class of instruments was inhalation therapy and anesthesia equipment and within

this class, more specifically, Intermittent Positive Pressure Breathing (IPPB)

apparatus (Refs. 3-7). It was also determined that a large proportion of the

medical professionals knowledgeable in inhalation therapy consider nonsterile

IPPB apparatus to be a major contributor to, and source of, infection. Many of

these experts believe that this apparatus is involved primarily because it is

incompatible with reliable sterilization processes and this incompability prevents

complete removal or inactivation of infectious microorganisms associated with

the equipment (Tables 1 and 2). Evidence derived from microbiological studies

also indicates that the remaining viable organisms can multiply rapidly in a high

humidity environment such as that present in the machine (Ref. 8).

Intermittent positive pressure breathing devices are used to treat asthma,

emphysema, obstructive pulmonary disease, and some cases of respiratory

failure. They can breathe for a patient or be used to introduce oxygen, air, or
medication into the lungs. They are required in many cases to ventilate critically

ill patients with an indwelling endotracheal tube or tracheostomy, or postoperative

patients with respiratory problems.

These devices can be adjusted to assist or control the rate and depth of

pulmonary ventilation. Both the inspiratory and expiratory phases of spontaneous

respiration can be mechanically assisted by this device to increase the gas volume

during inspiration and enhance the outward flow of gases from the lungs during

expiration. When a spontaneous respiratory pattern ceases to exist the patient

may have both the rate and depth of pulmonary ventilation controlled mechanically

by the unit. The difference between normal respiration and that produced by the
machine can be seen in Fig. 1.

The ventilator is actuated by differential gas pressure and needs no other

power source; therefore, it is safe to use in the presence of anesthetic gases.
The pattern of gas flow which actuates the machine can be seen in Figs. 2 and 3.
A detailed functional diagram appears in Fig. 4.
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H Table 1. Methods used by cooperating hospitals to clean and decontaminate IPPB apparatus

Hospital Number of Types of Types of Disinfectant Used Was Ethylene Oxide Used to
S Hospital Number pts Procedures Equipment Equipment Basic Cleaning Procedure fdnSterilize After How qipmen Was

Number Per Month Used Sampled Decontamination?

1 30 7000 Bird Bennett Disassemble equipment Cidex No No packaging
Bennett and soak in Cidex 10-15

min. Wash in detergent,
rinse and drip dry.

2 9 1600 Bennett Bennett Soak and wash in Micro- Micro-Quat Yes No packaging
Quat. Soak in Cidex and Cidex
rinse in cold running water.

L3 2 Therapists 1600 Bird Bird Soak in detergent and Cidex (Data missing) Yes Plastic bags

8 Technicians Bennett and wash manually. Put
O equipment in dishwasher,

add Cascade detergent, and
O Iwash full cycle at 60

° 
C.

Air dry with compressed
air. Place in bags.

4 3 475 Bird Bird 3 Tub Cleaning Procedure: Chlorine No Plastic bags
Bennett Ist Tub - Soak 10 min in Zepheran

15% CI z , rinse in HZO for
15 min; 2nd Tub - Soak for
2 mrin in15% C1 2 and rinse;

3rd Tub - Rinse in 1:1000
Zepheran and air dry.

5 z12 425 Bird Bird Wash in hot Dreft solution, Dreft Yes Plastic heat-
Bennett rinse in tap water, force sealed bags and

air dry and steam or gas Tupperware boxes
sterilize.

6 (Data missing) (Data Bird Bird Manual prewash; (Data missing) Yes Polyethelene bags
missing) Bennett mechanical wash and

rinse.

These data on IPPB apparatus were the result of studies conducted by the
American Public Health Association in conjunction with the United States
Public Health Service.
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Table 1. (Contd)

Hospital Number of Number of Types of Types of Disinfectant Used Was' Ethylene Oxide Used to How Equipment Was
Code oProcedures Equipment Equipment Basic Cleaning Procedure to Decontaminate Sterilize Afterfor Storage

Number Per Month Used Sampled Decontamination?

7 14 1400 Bennett II Bennett Soak 24 hours in Cidex, Instra-San No Plastic bags
Bird 10 min. in Instra-San, Cidex
Emerson scrub, rinse in H 0,

soak in Cidex 10-20 min.,
soak in Instra-San 10 min.,
rinse in HZO, and dry by
hot air.

8 12 1800 Bennett Bennett Wash in ultrasonic cleaner Cidex Yes Plastic bags and
Bird for 7 min, soak in Cidex Morcept plastic boxes
Air Shields 60 min., rinse, and
Ohio air dry.

9 (Data missing) 240 Bennett Bennett Soak 30 min. in Micro- Micro-Quat Yes Plastic wrapped
Quat, brush, rinse in
hot H 2 0, and air dry.
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-3 Table 2. Types of organisms isolated from IPPB units after cleaning and decontaminating
0

Types of Part Assayed and Results

Main Line Tubing Nebulizers Manifold
O % of Number of % of Number of % of Number of

Hosp. Number Parts Org. Per Number Parts Org. Per Number Parts Org. Per Types ofOrganisms Isolated
No. Tested Positive Sample* Tested Positive Sample* Tested Positive Sample*

1 23 52 0-200 23 48 0-100 23 26 0-125 Staphylococcus epidermidis, Bacillus
Actinomyces, Microccus, and
Alcaligenes species

2 20 50 0-7350 14 50 0-50,000 20 80 0-25 Klebsiella-Enterobacter group, E.
Wcoli, Staph. aureus, Bacillus,

Gaffkya, and Pseudomonas species
and diphtheroids-J

o 3 25 16 0-1000 25 32 0-2600 25 40 0-500 Staph. epidermidis, Klebsiella-
Aerobacter group, Bacillus,
Corynebacterium, Streptococcus,
and Pseudomonas species

4 (Data not reported as requested)

5 (Data not reported as requested)

6 21 (Data 0-10 (Data (Data 0-500 (Data (Data 0 Staph. albus, Klebsiellagroup,
missing) missing) missing) missing) missing) Bacillus, and Enterobacter species

7 19 53 0-14, 080 20 50 0-60, 000 20 55 0-14,400 Staph. epidermidis, Alcaligenes
fecalis, Enterobacter cloacae, and
Bacillus species

8 27 4 1400 27 40 0-100 27 22 0-40 Strep. viridans, Gaffkya tetragna,

Bacillus megaterium, Coryne-
bacterium Hoffmannii, Staph. albus,
Pseudomonas, and Flavobacterium
species

9 10 10 0-680 (Data (Data Staphylococcus species
missing) missing)

_ I I I I

This is not to be construed as total present per part tested.

UT
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NORMAL RESPIRATION IPPB

During use of IPPB the pressure within the chest's airways is positive during both
inhalation and exhalation.

During normal respiration a negative pressure within the airways of the chest is
normal during inhalation, becoming positive during exhalation.

Fig. 1. Normal respiration vs. IPPB pressure cycles
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PRESSURIZED GAS FILTER
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Fig. 4. Detailed diagram of modified unit showing
ambient filter, pressurized filter, and

modified (sealed) venturi



SECTION II

TASK OBJECTIVE AND APPROACH

A. OBJECTIVE

The objective of this task was to design and produce a completely heat-

sterilizable IPPB apparatus made up of NASA-proven dry-heat-sterilizable

materials.

B. OVERALL TASK APPROACH

To meet this objective, it was deemed necessary to examine existing

ventilators in order to identify those parts which were not compatible with either

steam under pressure or dry heat; to determine the reasons for incompatibility;

to propose changes in materials and design as required; to complete a prelimi-

nary design incorporating the proposed changes; and, finally, to build and field

test a prototype unit incorporating all the suggested changes. An additional

step was to define and prove out a heat-sterilization time and temperature that

would not damage the apparatus and would produce rapid, consistent steriliza-

tion.

For the task of developing and producing a heat-sterilizable IPPB machine,

a coordinated team effort approach was employed. To maintain maximal tech-

nical support in all desired areas, a working triad was formed to define the

medical, manufacturing, material, and design problems involved in producing

such a ventilator. The teams consisted of medical doctors who specialize in

inhalation therapy; design and engineering personnel from a manufacturer of

inhalation therapy equipment; and JPL sterilization, materials, and design

personnel. JPL has had extensive experience in developing sterilization methods

and requirements, as well as in determining materials compatibility (Refs. 9,

10). This, combined with a knowledge of the design requirements of complex

sterilizable space hardware, provided the background of information and exper-

ience required to make a definitive study of such a complex equipment as an IPPB

apparatus and to determine the feasibility of making it heat sterilizable.

JPL Technical Memorandum 33-620 11
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A review of the design of the apparatus by JPL materials and design per-

sonnel indicated that the device could probably be made dry heat sterilizable by

certain design changes and the use of existing materials, proven by JPL's

Materials Section to be capable of withstanding sterilization temperatures for

long periods without degradation or production of toxic by-products.

The manufacturer of the equipment used in this study furnished all the

machines, parts, and technical assistance required, on a no-cost to JPL basis,

and agreed to build prototype units based on JPL's suggested modifications. He

also made a positive commitment to explore the commercial feasibility of using

the concepts and approaches developed by the team and to permit the develop-

ment reports to appear in the open literature so that other manufacturers of this

type of equipment could benefit from the study. In addition, the manufacturer

provided a complete set of drawings of his equipment, and gave the reasons for

his choices of materials and his design rationale.

C. OVERALL TASK DISCUSSION

1. Task Structure

This task was structured to include and give consideration to the following

actions:

1) Enlist the aid of medical personnal and gain their support.

2) Gain the support of medical equipment manufacturers.

3) Form working groups of medical, industrial, and JPL personnel.

4) Identify the major elements of work to be performed.

5) Determine and designate the responsibilities of the working teams

and team members.

2. Medical Team Personnel and Responsibilities

After it was established that the medical equipment to be worked with

would be an IPPB apparatus, it was necessary to contact inhalation therapy per-
sonnel at various hospitals to enlist their aid in defining their needs and require-

ments. Four inhalation therapy departments of hospitals in the Los Angeles

12 JPL Technical Memorandum 33-670



area were visited and discussions were held with inhalation therapists, as well

as directors of the departments. A team composed of the directors of inhalation

therapy from each of the four hospitals was formed and they agreed to assume

the following responsibilities:

1) Render technical assistance to the JPL team by demonstrating how

the machines are used, disassembled, cleaned, decontaminated,

reassembled, and put back into use.

2) Indicate the most acute problem areas in terms of contamination

levels within the machine, difficulty in cleaning, and prevention

of contamination of "clean" machines by patients and personnel.

3) Point out areas of most intimate contact between patient and machine

that appear to present the greatest potential hazard for recontami-

nation of the apparatus.

4) Make equipment available to the JPL team as required for non-

destructive examination and experimentation.

5) Give professional advice and guidance as required.

6) Render judgment as to the usefulness and applicability of new

materials and designs as developed.

3. Considerations Involved in Determining Manufacturers' Acceptability

Based on discussions with the above and other medical personnel about the

type of equipment used in their facilities, a list of IPPB apparatus manufacturers

was prepared.

Before the manufacturers of this type of ventilating equipment were

approached, criteria were developed to determine which companies would be

most acceptable to JPL and the medical team. The criteria used to establish

preference were as follows:

1) Medical team's experience with company and equipment.

a) Performance of equipment under conditions of use, i. e.,

whether the device adequately and easily does what it is sup-

posed to do.

JPL Technical Memorandum 33-670 13



b) Reliability of apparatus and company.

c) Impressions of company personnel (capabilities and coopera-

tiveness).

d) Personal contacts - ease of working with company personnel

and satisfaction with their response to hospital and medical

personnel demands.

2) Geographical location of manufacturing facility (proximity to JPL).
3) Ease of demonstration (device easy to work with - not complex).
4) Percent of market (number of machines in use).

5) Degree of commitment of manufacturer - willingness to cooperate

in new developments, as determined from prior activities.

On the basis of the above criteria, four companies were considered and
contacted; however, it was subsequently decided to work with only one company.
The decision to choose only one manufacturer was based on the following ration-
ale:

1) IPPB devices made by different manufacturers are not made of the
same materials and are of different designs, thus making it complex
and costly to work with more than one manufacturer's apparatus.

2) JPL manpower and travel costs would be prohibitive if several com-
panies, widely separated geographically, were involved in the study.

Two manufacturers of IPPB apparatus are located in California.

Both were contacted. One agreed to the JPL terms and conditions;
the other was not interested in cooperating in the study under the
terms and conditions stipulated by JPL.

3) The "triad concept, " in which JPL, doctors, and manufacturers'

personnel teams would work closely together, would be almost
impossible to attain because of the scheduling difficulties that would
arise when attempting to conduct meetings and seminars to be
attended by team members from several companies located in widely
scattered geographical areas.

4) A manufacturer could not be expected to expend large sums of money

and time traveling from widely separated geographical areas to
Southern California to attend the all-important meetings of the work-

14 ing group. JPL Technical Memorandum 33-670



5) If too many individuals with vested interests were involved, the

spirit of cooperation and team rapport might be severely diluted.

On the basis of the above criteria and rationale the Bird Corporation,

Palm Springs, California, was chosen.

4. Why Bird Corporation?

1) Our survey indicated that the majority of IPPB apparatus used in

health care facilities and teaching institutions in the Los Angeles

area is manufactured by this one company. Thus, it follows that

the greatest number of patients would benefit from this task if this

company's apparatus was studied and made heat sterilizable. By

working with this one organization, a completely successful program

could mean the greatest potential for reduction in infections caused

by contaminated IPPB apparatus. It was concluded that the maximum

technology transfer impact per dollar would be realized by this

working arrangement.

2) The manufacturer is located in Southern California in close proximity

to JPL and members of the medical team, thus simplifying working

arrangements.

3) A minimum of time and money would be required for travel and trans-

portation of equipment to and from JPL.

4) All members of the medical team or their staffs involved in this

study are fully acquainted with the construction and function of this

equipment and most are able to disassemble, repair, and reassemble

the equipment as required, thus aiding in the evaluation of proposed

changes in the apparatus in relation to probable effects on patient

response.

5) A firm commitment was received from Bird Corporation to work

under the following terms and conditions stipulated by JPL.

The manufacturer agreed to work with JPL on a no-cost-to-JPL basis and:

1) Furnish all the required IPPB apparatus free of charge for JPL use.
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2) Give a positive commitment to explore the commercial feasibility

of using the concepts and approaches developed by the JPL team

and to issue a product development report.

3) Furnish a complete set of working drawings.

4) Give reasons for choice of materials.

5) Give the design rationale.

6) Permit unlimited consultation with the company's designers.

7) Furnish information on cost analysis and marketing methods if and

as required.

8) Permit public information release of any new technology developed

as a result of the study.

In addition to the above, the following specific responsibilities of the man-

ufacturer's team were developed during meetings between JPL and their engin-

eering, design and fabrication personnel. They agreed:

1) To render technical assistance to the JPL team by furnishing equip-

ment needed for experimentation and engineering assistance as and

when required by JPL material and design personnel.

2) To furnish information on the physical and chemical properties of

the materials used in present as well as future or proposed designs

if not of a proprietary nature and if release of such information did

not constitute a patent infringement.

3) To render opinions as to the usefulness, applicability, and impact

on cost of proposed materials and designs.

The JPL team consisted of one materials engineer, one design engineer,

and one life science engineer (microbiologist) serving as overall task manager.

The team's responsibilities were to

1) Examine existing equipment and, with the aid of the other team,

identify those parts which were not heat sterilizable and the reasons

for sterilization incompatibility.

2) Identify the changes necessary to make those parts heat sterilizable.
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3) Determine alteration feasibility and identify materials which

are heat sterilizable and which could be substituted for existing

heat-labile materials.

4) Suggest changes in design which are necessary to produce a heat-

sterilizable machine.

5) Define new material and fabrication approaches.

6) Establish a dry heat sterilization cycle capable of achieving consis-

tent sterility of the equipment.

7) Generate a list of heat-sterilizable components which were not

previously heat sterilizable.

8) Present all recommendations, materials, and methods to the

medical profession and manufacturing teams for their use.

As a result of this team effort, it was established that the medical pro-

fession and the manufacturers of IPPB devices would be receiving the benefit

of JPL's experience in the development of heat-sterilizable materials, the

design of heat-sterilizable spacecraft, and the development of improved sterili-

zation methods. In addition, they would have access to the large amount of

information already in existence at JPL on polymeric materials in common use

in the aerospace industry that have been tested and found to be able to withstand

thousands of hours at the suggested sterilization temperature without alteration

of physical properties.
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SECTION III

MICROBIOLOGICAL PROCEDURES AND RESULTS

The temperature needed to achieve consistent sterilization of any equip-

ment, especially within a reasonable period of time, directly affects its material

and design requirements. Therefore, to determine the equipment requirements,

it was necessary to first define the approximate sterilization cycle. Initial

determinations of the times and temperatures required to sterilize IPPB appar-

atus were based on the death rates of organisms isolated from "patient used",

contaminated current-model breathing head assemblies obtained from one of

the hospitals cooperating in the study.

The death rate or D value of an organism is the time in minutes at a con-

stant temperature necessary to destroy 90% of the organisms present. On

semilog paper, the number of organisms is plotted on the logarithmic scale

against time in minutes on the linear scale, and the best straight line is drawn

through them. The D value is the time in minutes required for this curve to

traverse one logarithmic cycle. A subscript denotes the temperature to which

D relates. For example, D 1 0 0 refers to the death rate at 100*C, while D 1 2 5

refers to the death rate at 125 0C.

A. PROCEDURES USED FOR MICROBIOLOGICAL ASSAY OF INTERMITTENT
POSITIVE PRESSURE BREATHING APPARATUS

Ten current-model units, with the configuration shown in Fig. 5, were

obtained from a local hospital. The units were picked up from the ward where

they had been used, placed in sterile plastic bags, and sealed to prevent further

contamination. The units were then transported to JPL for microbiological

assay.

Once in the laboratory, the bags were opened aseptically and the units

were disassembled into their component parts. Each individual part which was

to be sampled was placed in a thin-walled beaker and immersed in a sterile

phosphate buffer solution. The buffer solution consisted of distilled water,
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TRACH TUBE ADAPTER

EXHALATION VALVE AND "T"

SMALL TUBE OFF MICRONEBULIZER -

ELBOW
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CLOUDY CLEAR

500 CC IN-LINE NEBULIZER

LARGE TUBE

MICRONEBULIZER

PREMOUTH TUBING

MOUTHPIECE

Fig. 5. Intermittent positive pressure breathing apparatus
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potassium dihydrogen phosphate, and 0.02%/ v/v Tween 80. The pH was adjusted

to 7.2 ± 0.1 through the use of sodium hydroxide.

The beakers containing the parts and buffer solution were then insonated

at 25 kHz in a tank containing an aqueous solution of 0. 3% v/v Tween 80. The

sonicated fluid from the beakers was then passed through a 0.45-micron cellulose

filter after which the filters were plated on Eugon agar and incubated for 72 hours

at 37"C.

The burden for each part is shown in Table 3. The note for each unit

reflects the number and duration of sonications which each part underwent.

The units were processed in sets of five. It was noted in assaying the first five

units that most of the samples had extremely high counts in the mouthpiece,

trach-tube adapter, and premouth tubing parts. Therefore, it was decided to do

a 10-fold serial dilution on the fluid obtained from these parts in order to be

able to more accurately count the colony centers on the filters. Samples desig-

nated with three asterisks (***) have had their burden derived from these

dilutions. The double asterisk (**) indicates that an extrapolation factor was

incorporated in the total burden determination on that part. For each type of

tubing a 3-inch (76.2-mm) section was sampled and the burden was extrapolated

to the total length of tubing. One hundred milliliters of liquid was taken from

each 500 ml inline nebulizer and filtered. The burden was then extrapolated to

reflect the total volume of the nebulizer at the time it was sampled.

B. PROCEDURES FOR THE SELECTION, PURIFICATION, AND DRY
HEAT TESTING OF IPPB ISOLATES

Three isolates were recovered from each of the 10 apparatus tested and,

where possible, from different parts on the apparatus. Isolates were picked

on the basis of their gross colonial morphology and ease of recovering a pure

colony.

The isolates were recovered from the filters using a sterile loop. The

selected isolates were purified on prepoured Eugon agar plates using the

quadrant streak method and then incubated at 37°C for 48 hours.

JPL Technical Memorandum 33-670 21



Table 3. Total bacterial burden on individual parts*

Small
Mouth Tracheal Pre- Exhalation Micro- Micro- Tube Small Large Nebulizer

Unit Piece Tube Mouth Valve Neb. Neb. Elbow Off Tube Tube** Fluid**
Adapter Tubing** and "T" (Clear) (Cloudy) Micro- (Gas)**

Neb. "

la TNTC NS 6000 900 7 619 400 6 NS 312 NS

2
b  

NS NS 1920 750 216 178 12 NS NS 51,600 24

3
c  

NS TNTC TNTC TNTC TNTC TNTC TNTC 5400 NS TNTC 4

4
c  

NS NS TNTC 34 99 960 103 228 NS 6072 NS

5
c  

NS TNTC TNTC 15 TNTC 26 NS NS NS 1464 8

6 c NS NS 1020 3 22 11 1400 138 NS 1896 0

7
c  

NS NS 77 2 144 15 1 72 NS 1800 0

8
c  

18, 000*** NS 1920 1 TNTC 32 TNTC NS 720 1296 14

9
c  

102, 000*** NS 3120* 0 33 52 NS 234 NS 1392 0

10
c  

37, 500** NS 864 14 TNTC TNTC 5 3120 NS 1680 0

Average 52,500 --- 2131 215 86 236 320 1314 720 7501 6

Notes:

aThree 
2

-minute sonications at 25 kHz. *See Fig. 5 for parts identification.
Sbone 2-minute sonication at 25 kHz. **Total burden determined by extrapolation.

SCOne 12-minute sonication at 25 kHz. ***Count determined by dilution plate.
NS = not sampled.
TNTC = too numerous to count.

0

0

I
(A

0,



After purification, a final streak was made for the purpose of taking notes

on the gross colonial morphology. The material for streaking was obtained

from a broth culture which had been incubated at 370 C for 24 hours. Then 0.2 ml

of the broth suspension was transferred to sterile Eugon agar slants, incubated

at 37°C for 48 hours, and stored at 4 0 C for later use.

When needed for dry-heat testing, the isolates were washed off the slants

with Eugon broth. Lawns were made on prepoured Eugon agar plates. The 48-

hour lawns were harvested on the day of the test. The isolates were washed off

the plates with 20 ml of cold sterile distilled water. The resulting suspension

was centrifuged for 10 minutes at 9750 relative centrifugal force. The washing-

centrifugation procedure was performed four times.

The bacterial concentration of the suspension was obtained by spectro-

photometric means, utilizing the Spectronic 20. A sample of the washed suspen-

sion was added to a cuvette containing 4 ml of distilled water to obtain an absorb-

ance value of 0. 50. This produced a titer of between 10 and 107 organisms/ml.

An Eppendorf pipet was used to deposit approximately 105 organisms on sterile

25 x 50 mm stainless steel coupons. The inoculated coupons were allowed to

air dry for approximately 30 minutes before being placed in a dry heat oven

which was set at 100'C. Pull times were zero time (non-heat-treated), 5, 8,

12, and 16 minutes, respectively. After being removed from the oven the

coupons were placed in flasks containing 20 ml of a 10/ peptone solution and

sonicated for 2 minutes. Following sonication, appropriate 10-fold serial

dilutions were made and plated out with Eugon agar. After incubating the plates

at 37 0 C for 48 hours, colony-forming units were counted.

Linear regression analysis was performed with the results shown on

Table 4. The results show that most IPPB cocci tested were rendered non-

viable within the first 10 minutes at 100*C. Some sporeforming and nonspore-

forming rods were also tested. For three of the sporeformers the D100OC
values are not shown in Table 4 because, at the time of testing, they were

mostly in the spore state as a result of the culturing techniques used; it was

thought that on the apparatus itself the conditions required for sporulation would

probably not be present. In the two cases where nonsporeforming rods were

tested, they died off in less than 5 minutes at 100 0 C, as shown in Table 4.
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Table 4. D 000 C values of selected IPPB isolates

Apparatus/
Organism Part Code* Type Gram Stain D 1 0 0 0 C(min)

1 1-MP** Yeast + 5

2 1 -MP Rod - 5

4 2 -NF Yeast + 7

6 Z-LT Coccus 6

7 2-LT Rod - Not tested

8 3-TTA Rod - <5

9 4-E Rod - Not tested

10 6-STM Coccus + 6

11 6-STM Coccus ± 5

12 6-STM Rod + Not tested

13 8-MP(1) Coccus + 7

14 8-PMT Coccus + 11

15 8-STG Coccus + 8

16 9-MP Coccus 8

17 9-MP Coccus + 5

18 10-MP(1) Coccus + 24

19 10-PMT Coccus + 5

*Numbers in front of letters code correspond to apparatus numbers

**The letter codes are as follows: E - elbow, LT- large tube,
MP - mouthpiece, NF - nebulizer fluid, PMT - premouth tube,
STM - small tube micronebulizer, STG - small tube (gas),
TTA - tracheal tube adapter.

"(1)" indicates first dilution.
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An attempt was made to establish D values for the isolates at 110 0 C as well as

1.25°C, but the organisms died off too rapidly to permit a determination at the

higher temperature.

In any event, the primary purpose of establishing the D values of the

isolates was to initially define the approximate dry-heat cycle which would have

to be used to sterilize IPPB apparatus. It was decided that the actual steriliza-

tion cycle would have to be determined by exposing naturally occurring organisms,

found on patient-used apparatus, directly to the predicted sterilization cycle. It

was further decided that, even though the likelihood of spores being present was

rather remote, they too would be included, in the form of spore strips, and

exposed to the sterilization cycle along with patient-contaminated assemblies.

C. DETERMINATION OF THE DRY-HEAT-STERILIZATION CYCLE

FOR IPPB APPARATUS

An evaluation of the data on the types of organisms isolated from conven-

tional apparatus and their dry-heat resistance indicated that the most heat-

resistant organism had a D 1 0 0 value of less than 30 minutes. D values at higher

temperatures could not be determined due to the heat sensitivity of the organisms.

The number of organisms obtained from the individual parts assayed was then

extrapolated to a complete unit in order to determine the total number of organ-

isms present. In the"worst case" condition the number of organisms on a com-

plete unit was 1 x 107

On the basis of a D value of 30 minutes at 100°C, the number of organisms

present on each unit, and the time required for the. most slow-heating part of the

unit to reach oven temperature, it was estimated that a total cycle time of

6 hours at 1250 C should be more than adequate to sterilize the units.

Studies were then initiated utilizing the new dry-heat-sterilizable units.

Since naturally occurring microorganisms are generally more difficult to kill

than cultured organisms, it was decided to expose patient-contaminated heat-

compatible breathing head assemblies (the most contaminated part of the unit)

to the proposed sterilization cycles and then culture the entire assemblies to

check for sterility.
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Six prototype control units and 36 breathing circuits, which included all

tubing and breathing-head components, were fabricated by Bird Corporation

according to JPL's suggested materials and design modifications.

These units were initially sterilized for 8 hours at 1250 C in a forced-
circulation dry-heat oven using a drive temperature of 127C. The units were
sterilized in sealed bags and delivered to the cooperating hospitals. Each of
2 hospitals received 3 units and 18 breathing heads. Once a week the control
units and breathing-circuit components were brought back to JPL for processing
as follows:

1) The control units were examined for defects in construction or
function and adjustments made if required.

2) The control units were sealed in bags and sterilized at 1250C for
6 hours and returned to the hospitals along with sterile breathing

heads.

3) The contaminated breathing head assemblies were placed in bags
and sealed. They were then exposed to a sterilization cycle of
either 2, 4, or 6 hours at 125 0 C.

4) After exposure to the above cycles the heads were disassembled
without opening the bags, then the parts were removed from the
bags aseptically, in a laminar flow hood, and placed in half-gallon
screw-cap bottles containing Trypticase Soy Broth (TSB).

5) The parts were incubated at 37 0 C for 5 days and examined for growth.
6) After 5 days the parts and broth were autoclaved for at least 1/2

hour at 121 0 C before removal of the parts and subsequent washing.
7) After washing and drying, the parts were assembled and the

breathing head assemblies were bagged, sterilized for 6 hours, and
returned to the hospitals.

8) Some contaminated units were placed directly into the broth to be
used as positive controls to check the culture medium.

9) Some units which had not been sent to the hospitals but had been
sterilized in the same manner as contaminated units, were used as
controls to verify the techniques being used to make sure that the
manipulations were not introducing contamination.
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10) In addition to the above component controls, commercially available

spore strips were placed in the oven along with the contaminated

parts, to determine if the cycle was adequate to kill spores, which

are much more difficult to destroy than the vegetative cells that

make up the greater proportion of the bacterial population found on

the ventilators.

The above process was repeated for the duration of the testing period of

2 months with exception of the 2-hour cycle, which was deleted because it

failed to sterilize.

The results of these studies (Table 5) indicate that a 4-hour cycle at

125 0 C is adequate to sterilize the modified IPPB units; however, to increase

the probability of sterility and to take care of the "unusual" case, it is recom-

mended that the sterilization cycle be 6 hours at 125°C. In JPL's oven, fully

loaded with 6 complete units and 16 extra breathing-head assemblies, all

individually sealed in plastic bags, it took 1 hour for the coldest part of the units

to reach temperature. Thus, the total length of time in the oven was 7 hours.

D. AMBIENT AIR AND PRESSURIZED GAS FILTRATION REQUIREMENTS

To prevent contamination of the sterilization unit and the patient by

microorganisms contained in the ambient air or in the pressurized gases used

to operate the ventilator, a bacteria-retentive filter system (Fig. 3) was

installed.

The operating characteristics of the IPPB unit demanded a high efficiency,

high flow rate, low resistance filter in the ambient air stream. For the pres-

surized gas filter, the primary requirement was high efficiency filtration; flow

rate and resistance requirements were of secondary importance.

Extensive research by JPL in the microbiological evaluation of high-

efficiency filters for liquids and gases (Refs. 11, 12) and a thorough literature

search in this area, furnished information on which to base the fabrication of a

dry-heat-sterilizable filter having the needed characteristics.
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Table 5. Time required to sterilize patient-contaminated respirator
breathing-head assemblies using dry heat at 1250C

Hours Spore Strip Controls*

Test Exposure Number Number Percent Number Number Percent
No. at 125*C Exposed Sterile Sterile Exposed Sterile Sterile

0 -- 2 0 0
2 2 0 0
4 2 2 100
6 2 2 100

0 2 0 0
2 2 0 0
4 2 2 100
6 2 2 100

0 2 0 0 2 0 0
32

4 8 8 100 2 2 100
6 9 9 100 2 2 100

0 2 0 0
4 4 9 9 100 6 6 100

6 9 9 100 6 6 100

0
5 4 9 9 100

6 9 9 100

0 2 1 50
6 4 9 9 100 2 2 100

6 9 9 100 2 2 100

0 4 0 0
7 4 9 9 100 6 6 100

6 9 9 100 4 4 100

0 6 0 0 10 1 10
2 4 0 0

Totals
4 48 48 100 16 16 100
6 49 49 100 14 14 100

*Spore strip controls used: Bacillus subtilis, Bacillus stearothermophilus.
**Time 0 exposed assemblies and spore strips were positive controls.

* -Two-hour exposure was deleted at this point because of previously
determined inability to sterilize.

Both the ambient and pressurized gas filters are compound filters made up

of layers of urethane foam and fiberglass filter material. The type of fiberglass

filter material used has had extensive use as an air filter medium for germ-free

animal isolators (Ref. 13) and for the removal of bacteria from oxygen used
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clinically (Ref. 14). The urethane prefilter is used to prevent premature plug-

ging of the fiberglass filter medium; the post filter is used to prevent any possible

migration of filter particles into the ventilator.

After fabrication the filters were tested under the same conditions of

differential pressure and gas flow volume as would be encountered in actual use.

The gases were permitted to flow through the filters for several hours in an

attempt to collect any particles of fiberglass which were present; 0.45-micron

black, gridded membrane filters were used. The counting was done with a

microscope at 150 power. The results obtained from counting six ambient and

six pressure filters indicated that no particles of fiberglass were present on any

of the membrane filters.

The filters were not challenged with bacterial aerosols because the data

available in the literature indicates that the fiberglass filter material used in

this application - and used in this same or similar configuration - is indeed an

absolute filter, capable of removing 100% of the bacteria which may be present

in an air or gas stream (Refs. 13, 14).
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SECTION IV

MATERIALS

A. DEFINITION OF REQUIREMENTS, PROBLEMS, AND APPROACHES

An initial assessment of the various functional requirements for operation

of Bird Mark 7 IPPB units at the manufacturing and at the user level was con-

ducted. This assessment aided initial identification of potential problem areas

and also provided a preliminary definition of constraints under which design

and material modifications could be made.

1. Hospital Visits

Inhalation therapy departments at several Los Angeles University-affiliated

hospitals were visited to discuss and observe the hospitals' operating and hand-

ling of IPPB ventilators and thus obtain information on the operational conditions

to be met. The sterilization techniques currently in use were discussed in detail

in order to permit assessment of the impact of heat sterilization on hospital

operations. It does not appear that implementation of dry-heat sterilization will

create major problems except, in some instances, where there may be a short-

age of suitable dry-heat-sterilization equipment. This is a situation that can be

easily and cheaply rectified. The operational advantages of dry-heat sterilization,

compared to currently employed chemical-decontamination and gas-sterilization

methods, are many. Heat sterilization will permit a reduction in the man-hours

necessary to sterilize the units. In addition, as compared to gas sterilization,

it will reduce equipment "downtime", since no time will be needed for toxic gas

to leach out of the equipment. Various operating modes were identified, the

particular mode used to be dependent upon the type of accessory equipment used.

Hospital personnel emphasized the need for operational flexibility and ease of

adjustment of the units. The requirement to sterilize both ambient incoming air

and pressurized gas had been identified in Phase 0 of the program but was re-

emphasized during hospital visits.
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2. Manufacturer Visits

The Bird Corporation in Palm Springs was visited to discuss design

rationale of the equipment and its component parts. These discussions were

essential to the development of an understanding of the functional requirements

and economics of manufacturing, i. e., the factors which led the manufacturer

to his selection of materials as well as the configuration and fabrication of the

equipment for the Mark 7 design. Although material and fabrication costs were

not a prime criteria for the prototype heat-sterilizable units, it was essential

that, for the program to be of practical value, the ultimate manufacturing costs

of a redesigned unit be considered. The functional requirements of the major

elements of the assembly and the experience of the manufacturer in design evolu-

tion were discussed in detail. These discussions continued throughout the program

in order to make maximum use of the manufacturer's experience and expertise.

3. Data Review

Available information from prior JPL equipment-sterilization programs

was reviewed as an initial step in identification of potential problem areas, ap-

proaches, and fabrication materials which might be applicable to a modified de-

sign. A file of sterilization reports and of related materials technical data, app-

licable to dry-heat sterilization, was established for use throughout the program.

B. PRELIMINARY STERILIZATION COMPATIBILITY ASSESSMENT

Drawings and materials lists received from the manufacturer were reviewed

simultaneously with disassembly and examination of units. A principal product

of this assessment was identification of materials in the design which, based on

previous experience, were not expected to be suitable for heat sterilization.

The materials and assemblies in the unit were categorized as (1) problems,

(2) possible problems,' (3) probably acceptable, and (4) unknown. One or more

candidate replacement materials was identified for each material and/or part

which was expected to require replacement or modification.
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The physical, chemical, mechanical, and thermal properties of the existing

and proposed candidate materials were evaluated to determine their sterilization

compatibility. The prime consideration during this initial assessment was the

determination of thermal stability of these fabrication materials. The factors

that affect thermal stability are

1) Tensile stress (Fig. 6).

2) Tensile yield (Fig. 7).

3) Flexural modulus (Fig. 8).

4) Heat aging effects (Fig. 9).

5) Comparative creep behavior (Fig. 10).

6) Comparative heat deflection temperatures (Fig. 11).

In order to determine the suitability of a material for thermal applications,

it must first be determined whether the material will retain its initial properties

during continuous or long-term intermittent exposure to temperatures equal to,

or exceeding, those required. In addition, the thermal coefficient of linear

expansion and thermal conductivity must be analyzed to calculate the thermal

stresses which may develop. These stresses, which are usually incurred as a

result of differential thermal expansion, may, and usually do, occur under

transient conditions, where interacting parts are changing at different rates.

Another equally important consideration was the strength of the materials at

process temperatures. The possibility of oxidation, chemical reaction, and

vapor release had to be considered in light of possible toxicity problems and

interference with equipment function. Frequently, the above problem areas can

be readily and economically identified and verified by simple tests. Such tests

have advantages in addition to economy; one of the advantages is that the inadequacy

of materials can be demonstrated in a way that no amount of properties data can

approach, and unanticipated problems can be readily identified. An iterative

series of analyses, tests, and materials replacement or substitution was

utilized in achieving the ultimate sterilizable design in this program.

C. PRELIMINARY VERIFICATION TESTS

One of the Bird Mark 7 ventilators of the then-current design was evaluated

in two preliminary thermal tests. These tests were intended tb verify the identified
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materials problems, examine some of the potential problem areas, and to

identify unexpected problems. The first test consisted of 8 hours at 125'C with

the unit completely disassembled to evaluate the materials independent of inter-

action. The second test was for 24 hours at 1250 C with the unit completely

assembled. This second test resulted in additional thermal stability informa-

tion and preliminary interaction data.

As was expected, a number of parts sustained damage:

1) The polyvinyl chloride (PVC) breathing circuit hose softened during

the initial test and was torn by its own weight at attachment points

during the second (Fig. 12).

2) The acrylonitrile-butadiene-styrene (ABS) air mix control knob was

distorted and had to be removed prior to the second test.

3) Minor dimensional changes occurred in the polypropylene, polycar-

bonate, and nylon parts as a result of the first test.

4) The exhalation valve tee (polypropylene) was distorted along the

injection mold seam; thermal expansion differences caused an inter-

ference fit, preventing separation.

5) The end compartments (polycarbonate) showed extensive crazing,

cracking and dimensional distortion as a result of the second test

(Fig. 13).

6) Other polypropylene and nylon parts were distorted in varying

degrees.

7) The end compartment "0" rings changed dimension.

In addition to the above, the following conditions were observed as a

result of the tests:

1) The PVC tubing interconnecting control parts showed substantial

discoloration.

2) The pressure gauge needle indicated a permanent offset from the

zero point during each test.

3) The mask and test lung exhibited catastrophic failure with the mat-

erials softening beyond use. This result was completely unexpected
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since they were shown as neoprene rubber in the materials list.

They were obviously a combination of alternative materials. Replace-

ment with heat-sterilizable materials was considered feasible;

therefore, the materials which had caused the unexpected failure

were not investigated further.

The "case history" of the pressure gauge in the unit is significant to the

problem of heat sterilization of complex equipment. The gauge is a purchased

item and thus was listed on the parts/materials list without any details as to

design or materials of construction. It was identified as an unknown and thus

a potential problem area. The decision was made to evaluate it by testing

rather than by obtaining detailed data from the manufacturer and analyzing

the design.

During the initial tests it was observed that the zero-offset in the pressure

gauge was small and decreased with each cycle. Examination of the internal

construction of the gauge indicated the effect to be a minor relief of fabrication

stresses and not significant to the function of the gauge. This indication was

verified by subsequent extensive thermal cycle testing. The gauge then became

an item in the unit which would require a thermal-anneal cycle and reset of the

zero point and was no longer considered a potential problem area. Late in the

program, when units were being prepared for hospital field testing, assemblies

received from Bird included gauges which were nominally the same but which
failed during sterilization cycles. Disassembly of the gauge revealed that the

brass backing plate holding the gauge mechanism had been replaced with some
unidentified polymeric material. For most applications thid change would

not affect the function of the gauge, but for heat-sterilizable equipment the

gauge was no longer suitable. For equipment which is subject to heat-sterili-

zation temperatures, it is necessary to verify the suitability of the materials

and design and to assure that no changes are made which are critical to
sterilization compatibility.

D. MATERIALS REPLACEMENT

Following the initial tests, candidate replacement materials were selecte'd

for those which had failed or indicated probable long-term problems. The
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selection was based not only on fabrication processes which were applicable to

large-scale production but also on the functional requirements previously dis-

cussed with the hospitals and the manufacturer, as well as the inherent thermal

stability of the candidate materials. The unsatisfactory materials and their

candidate replacements are shown in Table 6.

Table 6. Presently used materials and replacement candidates*

Present Material Replacement Material

Polyvinyl chloride (PVC) Silastic rubber

Polypropylene (tenite or noryl) Polysulfone, Tefzel, Tenite-6PRO

Polycarbonate Polysulfone

Acrylonitrile-butadiene- styrene (ABS) Metal

Nylon (Zytel) Polysulfone

Acetal (Delrin) Polysulfone

*See Appendix B for identification of materials manufacturers.

Manufacturer's facilities in Palm Springs and Berkeley were visited to

discuss the replacement materials and fabrication problems that might be

associated with the use of these materials. The corporation agreed to provide

the suggested heat-sterilizable replacement parts as rapidly as possible. Owing

to the nature and cost of die installation in their injection-molding equipment,

considerable time elapsed before all replacement parts could be obtained. In

addition to parts fabricated from JPL-recommended materials, parts made of

other heat-sterilizable materials were also supplied for our evaluation.

In some cases mold-shrinkage differences between the original materials

and the replacement polysulfone resulted in dimensional mismatch of parts.

Design changes (see Section V) made it possible to compensate for these

differences in final dimensions without the requirement (and cost) for new or

modified molding dies.
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E. STERILIZATION SIMULATION TESTS

An existing Bird Mark 7 ventilator was retrofitted with all of the available

sterilizable replacement parts and a series of thermal cycles was initiated

duplicating the anticipated sterilization time and temperature parameters. The

experimental conditions consisted of 24 hour periods at 125OC, after which the

unit was physically examined and functionally tested at frequent intervals through-

out the investigation.

The test configuration included molded polysulfone replacement parts for

the polycarbonate ambient and pressure compartment covers, as well as poly-

propylene exhalation valve and tubing ties. Some of polypropylene micronebulizer

parts were replaced with polysulfone parts and others with Valox. All tubing

was changed to silicone rubber.

After the third cycle - i.e., 72 hours at 125 0 C - the unit was functionally

tested for 12 hours using a nitrogen gas source. No malfunctions were noted.

At the same time, a smoke test was performed to examine the possibility of

backflow of air through the head assembly and to study the flow of incoming ambient

air. The test indicated that there was no apparent backflow through the breathing

circuit. The smoke test also indicated that ambient air entered the ambient

compartment approximately equally through the existing micromesh filter and

through other openings in the compartment. The micromesh filter, recognized

to be ineffective in filtering out bacteria, was furthermore filtering only approxi-

mately half of the incoming air. JPL modifications eliminated this filter (and

the need for sealing the existing ambient compartment leaks - see Section VI).

F. INITIAL THERMAL EFFECTS

Inspection and test after the 10th cycle (240 hours at 125'C) indicated

operational malfunction. The unit was completely disassembled and examined

in detail for material degradation and dimensional changes. The following

conditions were observed during this test series:

1) Surface crazing was observed at the tapered fitting joint between

the micronebulizer and the exhalation valve' after 5 cycles
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(120 hours at 125°C). Cracking was noted after 168 hours at temper-

ature; this degradation was the result of excessive stress during the

thermal cycle. Subsequently, parts were satisfactorily sterilized

with this joint separated. The joint was reconnected after sterilization,

while still bagged.

2) Pink discoloration of the silicone tubing was noted after 216 hours

at temperature (9 cycles); this was considered to be caused by

deposition of outgassing products from the lubricant and/or neoprene

parts. Both were subsequently changed.

3) After the 10th cycle the air mix control rod ceased to function

properly, and the ceramic valve was constrained in the inspiratory

position by the diaphragm assembly. The neoprene 0-rings on the

control rod had hardened and deformed and the lubricant had evap-

orated. The neoprene diaphragm had distorted and hardened, con-

straining the ceramic valve. To correct the problems, the control

rod 0-rings and diaphragm were replaced with silicone rubber and

silicone oil was substituted for the original lubricant.

4) Neoprene centerbody 0-rings degraded, hardened, changed dimensions

and shape, and took a permanent set. Samples were tested and it was

found that, after the 10th cycle, tensile strength had decreased 10%;

elongation decreased by 50%; and hardness had increased by 10%.

All neoprene 0-rings were replaced with silicone rubber.

5) The polysulfone pressure compartment cover evidenced some distor-

tion, crazing, and cracking as a result of excessive thermal stresses

during the tests. Modification of the compartment attachment and

seal designs was required.

G. ADDITIONAL CHANGES AND REPLACEMENTS

Following the test series described above, thermal cycling was suspended

to permit incorporation of the necessary design changes and fabrication of

additional sterilizable parts. Three units were retrofitted with replacement parts

for continuation of thermal testing. In these units all 0-rings and the diaphragm

were replaced with silicone rubber and all lubrication was done with silicone

oil. Most of the molded parts were replaced with polysulfone. A few of the parts
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in the exhalation valve and micronebulizer were available only in Tefzel and

Valox because of molding problems associated with polysulfone; the small size

and shape of these parts; and the use of original dies which could not compensate

for the difference in thermal expansion of the polysulfone material.

The three units also differed in the configuration of the 0-ring seal for the

end compartments; two had new 0-ring designs and the third used essentially the

existing design.

The first two cycles on these three units were run at 125 0 C for 24 hours

to evaluate the effects of possible temperature override in the oven during

sterilization. After these two cycles, the units with the new 0-ring configuration

(see Section V, Design Modification) developed stress cracks and crazing in the

areas where the "0" exerted excessive pressure. The original 0-ring groove

configuration did not show the same effect in this test. The configuration of the

0-ring groove in the compartment and the 0-ring were modified to reduce the

thermal stresses in these areas for the new design.

Subsequent to this change, the three units were subjected to 20 cycles of

24 hours at 125°C (a total of 528 hours at temperature) without additional

failures except for some minor crazing of the polysulfone parts. This crazing

only occurred in the threaded areas where the magnetic controllers are attached

to the compartment and in the threaded area of the exhalation valve. Correction

of this problem was achieved by relieving the threaded areas (increased

tolerances).

H. BAGGING MATERIALS

To assure unit sterility for patient use, a reliable system was needed that

would preclude exposure of the assembly to microbial contamination during

handling and storage between sterilization and patient use. It was decided that

the required protection could be achieved by sealing the entire assembly in a

disposable bag after cleaning and prior to heat sterilization and by maintaining

the seal throught sterilization and storage. It was recognized that, in routine

hospital use, some sort of a reusable "zip lock" bag might be advisable rather
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than the heat-sealed bags used in this study. However, development and evalua-

tion of such an approach was not deemed essential to achievement of demonstra-

ted heat sterilizability and was accordingly considered beyond the scope of this

investigation.

With incorporation of proposed design changes, particularly in the area

of filtration of both pressurized gases and ambient air, it is only necessary to

preserve sterility of those parts and surfaces which are not protected by the

filtration system, such as the external portions of the breathing head, by clo-

sures over the ports where bacterial entry might possibly occur.

Materials for bagging were evaluated on the basis of a requirement for

heat-sealable, single-use bags which would not produce toxic byproducts, would

withstand the sterilization cycle, and would assure maintenance of sterility. No

attemptwas made to optimize selection with respect to cost, ease of fabrication,

and possible reuse. Capran, a nylon film available in adequate size in roll form,

and heat sealable with available heat sealing equipment, was found to meet the

requirements of this program and was used for bagging of all test units prior to

sterilization.

I. BACTERIA-RETENTIVE FILTERS

Commercially available filters were reviewed for air flow resistance,

particle migration, outgassing, thermal stability, size, cost, ventilator com-

patibility, and suitability for absolute filtration of incoming ambient air and pres-

surized gases. No commercial filters could be found which would meet all of

these requirements; therefore, it was decided to design and fabricate a filter

system which would be compatible with the modified unit (see Section VI).

J. FIELD TESTS OF PROTOTYPE UNITS

Sterilizable ventilators, fabricated with replacement materials and incor-

porating design changes developed during previous phases of the program, were

prepared for hospital field test. The equipment consisted of six control units

fabricated to the new design by Bird Corporation and equipped with air and pres-

sure gas filters fabricated by JPL. In addition, 36 sterilizable head assemblies

were assembled by Bird Corporation. The large number of head assemblies
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permitted more effective utilization of the field units in obtaining statistical

data on the efficacy of the various sterilization cycles. The extra head assem-

blies permitted exposure to patient contamination after sterilization, without

the undue delay that would result from the turnaround time of the control assem-

blies.

The primary objective of the field test was to develop data on the sterili-

zation reliability of various cycles. These results are discussed in Section III

of this report. In addition, the field test sterilization cycles provided an oppor-

tunity for verification of the materials and design of the heat-sterilizable assem-

bly. Some minor problems were encountered as a result of this test. The fail-

ure of the pressure gauge has been described earlier. Two units were described

by inhalation therapy personnel as exhibiting "erratic performance" during

operation. Subsequent disassembly failed to reveal any mechanical malfunction,

except an offset in the pressure gauge. It was shown that the erratic behavior

was the result of improperly indicated pressure which led to improper adjust-

ment of the units. Correction of the gauge deficiency is accomplished by use

of an interior metal "backing plate, " as described above (Section IV-C).

K. THERMAL ANALYSIS AND TEST

As discussed in Section III, the probability of achieving sterility by the use

of a given heat-sterilization process is dependent on temperature and time. For

a device such as the IPPB ventilator, the thermal cycle must be defined to assure

that the element of the assembly with the slowest thermal response is held at the

required temperature for the length of time necessary to attain sterility. Pre-

liminary assessment indicated that, although the thermal lag could be analyzed,

an experimental approach would not only be more practical but more reliable.

The assembly was therefore examined in view of identifying the extremes of

thermal lag time and the appropriate location of thermocouples for subsequent

thermal testing.

One of the partially retrofitted IPPB units was instrumented with thermo-

couples in selected locations. Data were recorded on a multipoint recorder

and subsequently analyzed for maximum and minimum thermal lag time. As
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expected, the control assembly centerbody, with its large thermal capacity and

limited conduction path, showed the maximum thermal lag. Other instrumented

parts of the control assembly had thermal response times almost identical to

those of the centerbody. A comparison of the thermal test data with oven temper-

ature readings demonstrated that leaving the units in an oven for a specified

time at the temperature indicated by the oven thermometer does not give a true

indication of the "time at temperature" of the units. Thermocouples or some

other temperature-sensing device should be attached to the centerbody of the

most centrally located unit in the oven to determine when the units reach the

sterilizing temperature selected. If the load consists of plastic parts only, the

thermocouple should be attached to the part nearest the center of the load. If a

direct temperature indicating device is not available, the sterilization time must

be extended to increase the probability that the units were subjected to the re-

quired "time at temperature. " The time required to reach temperature is a

function of load, load distribution, oven characteristics, and restrictions to

effective heat transfer from the oven to the coldest unit and must be established

for the load and the oven.

During sterilization of the hospital field test units, one of the units was

instrumented to determine the thermal lag and thus establish the total time

during each cycle that the coldest parts of the units were at 125 C. An oven,

0. 68 cu m (24 cu ft), utilizing a blower to circulate heated air, was used in

these tests. Six control heads and 16 complete breathing circuits, including

all tubing and fittings, were bagged separately and sealed. A thermocouple

was attached to a bagged control centerbody which had been shown to have the

greatest thermal lag. This bagged unit was placed in the center of the oven

and surrounded by the remaining bagged units. Repeated tests indicated that

it required a maximum of 1 hour for the instrumented centerbody to reach 125 C .
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SECTION V

DESIGN MODIFICATIONS

To achieve a heat-sterilizable breathing apparatus, a number of design

revisions were found to be necessary. These alterations resulted from required

material changes and stresses encountered during thermal cycling of a com-

pletely assembled unit.

The major design revisions were made in the pressure compartment end

cover of the control unit. These changes, which involved new sealing and attach-

ment techniques, are described below.

A. SEALING TECHNIQUES

Functioning of the device requires that the pressure compartment maintain

a continuous seal under varying pressures during operation. Changes in the

seal between the aluminum centerbody and the end cover were required to pre-

vent undue stresses, with resultant material failure, during heat sterilization

and subsequent operation of the unit. The existing design for the pressure com-

partment cover is shown in Fig. 14. The revised design shown in Fig. 15 per-

mitted heat sterilization and also permitted direct replacement of the present

heat-sensitive plastic covers with polysulfone covers having the same configura-

tion, thus eliminating the expense and delay which would have been associated

with fabricating new dies. The design modifications involved changing the posi-

tion and shape of the O-ring groove and installing an O-ring with a smaller cross

section.

B. ATTACHMENT TECHNIQUES

In the original design, the molded pressure compartment cover was

counterbored to a thin (2.160 mm) section at the attachment points. Assembly

stress loads, as well as thermal stress loads, caused cover failure at this

point. In addition, installation of the mounting screw imposed excessive com-

pression loads on this thin section. The revised design is accomplished without
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The compartment applied compression loads against the O-ring for sealing.

Crazing occurred at the corners of the compartment where the O-ring loading was

highest when the unit was heat cycled.
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The recess for the mounting studs rendered the compartment too thin to hold the O-ring

in compression, thereby producing excessive stress around the mounting points.

Fig. 14. Existing centerbody and pressure compartment
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Resolution of the Problems:

The O-ring, groove size, and groove location were changed to permit the O-ring to
seal by pressing against the side walls of the compartment rather than the bottom edge.

A gap was maintained between the bottom edge of the compartment and the centerbody
to eliminate compression loads on the compartment.

The fastening technique was also revised as shown in the above figure.

Fig. 15. Centerbody and pressure compartment modification



new or modified tooling. Instead, it is achieved by changing fabrication from

a counterbore to a through bore, and adding a shoulder washer and O-ring to

eliminate high installation stress and thermal stress failures in the attachment

area. Compression loads are now eliminated by means of the shoulder washer,

and compartment sealing is accomplished by means of the O-ring which also

seals arnunrl the mounting screws.

It was also necessary to modify the stud length in order to accommodate

the new attachment mode and to guarantee clearance between the cover and

centerbody.

In the original design, the cover/centerbody seal is achieved by compart-

ment pressure on the centerbody O-ring, applied by tightening the mounting

screw. This scheme puts unacceptable loads on the cover in the area of the 0-

ring, and in the thin section of the cover in contact with the stud. These loads

were responsible for cracking observed in the first thermal cycling of the origi-

nal polycarbonate covers and for less dramatic cracking observed in the replace-

ment polysulfone covers when using the original configuration. The original

design produced excessive loads in these two areas, even without heat steriliza-

tion. Pressure compartment covers had a very high frequency of replacement

in the original design.

The final revised configuration, with the significant changes at the O-ring

seal and method of attachment, is shown in Fig. 15. Details of the attachment

point configuration can be seen in Fig. 16. Note that the cover is now free to

slide over the centerbody O-ring, and there is no possibility of load on the

compartment as a result of physical contact with the centerbody. The loads

exerted on the cover from the centerbody, transmitted through the O-ring, are

now controllable by the relative dimensions of the cover, the O-ring, and the

O-ring groove. The differential expansion between the polysulfone cover and

the aluminum centerbody now tend to relax, rather than increase the loads on

the cover and on the O-ring at elevated temperatures during sterilization. In-

correct dimensional relationship was responsible for cracking of the cover in

the first prototype revised configuration. In the final configuration the cracking

was completely eliminated by the reduction in O-ring diameter and correction
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when torque is applied to the screw.

The O-ring is used to seal around the holes and to position the cover.
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Fig. 16. Compartment mounting detail
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of the O-ring groove dimension. The O-ring in the new configuration, resting

in a conventional O-ring groove, also facilitates assembly and disassembly.

The new seal configuration required no new or modified tooling for the

cover or centerbody to accommodate the improved design. Some additional

changes in the cover configuration would have been desirable, but were not essen-

tial to demonstrate a capability for reliable heat sterilization. Comparison of

the O-ring installation in the centerbody in Figs. 12 and 13 show the difference

in original and final configuration. The centerbody consists of a complex casting

and represents a major cost element of the total assembly. The new configura-

tion was designed to permit fabrication of the centerbody from existing tooling

with changes only in the final machining (to preclude the delay and cost associa-

ted with retooling). The units for hospital field tests were machined to this

configuration by the Bird Corporation from centerbody castings made with the

same tooling used for the existing design. Although it is not possible, without

some filling, to remachine centerbodies of existing units in the field to this con-

figuration, there are slightly modified designs which can be used for the O-ring

and groove which will permit retrofit of existing units.

The Bird Corporation manufactures a number of accessory items used in
various combinations with the basic Mark 7 ventilator. These accessories are
used in various configurations. The system configuration used for most of the

heat-cycle testing, and all of the hospital testing, is that identified by Bird as
the "Q Circle System. " Conceptual designs for reliable heat sterilization and
maintenance of sterility were developed for the "parallel inspiratory system"
and the "oxygen blender system. " There are configurational and hardware
availability problems associated with these latter two configurations, but they
have been shown to be at least conceptually feasible. Demonstration of these
other configurations was considered beyond the scope of the program and there-
fore they were not investigated.
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SECTION VI

FILTRATION OF AMBIENT AIR AND PRESSURIZED GASES

A. METHODS

The cover of the ambient-pressure side of the unit is not sealed in either

the original or new design, and an O-:ring is not used in either case. A change

similar to that used for the positive-pressure side would have been required to

maintain sterility of the machine and prevent contamination of the air stream

from the surrounding atmosphere, if it were not for a new filter attachment con-

figuration. In the new design, air from the ambient filter feeds directly into a

sealed venturi, as does the pressurized "drive" gas (Fig. 4). Thus, in the new

design the ambient compartment housing is essentially only a dust cover.

To attain the essential filtration efficiency as described in Section III and

to meet the gas flow requirements of the Mark 7 ventilator, it was necessary to

design and produce a new filter system.

The ambient air filters for hospital tests were fabricated by JPL, using a

polysulfone 500 cc nebulizer supplied by Bird Corporation as the filter material

container or housing. This particular .container was used for expediency, since

it was approximately the correct size, volume-wise, and the existing fittings

were adaptable to the unit (see Fig. 17).

The pressurized gas filters were fabricated using a housing machined by

Bird and based on a design and prototype originally built at JPL (Fig. 18).

The filters have the following characteristics:

1) They can withstand hundreds of hours of sterilization at 125 C.

2) They are capable of absolute microbial filtration.

3) They retain their high flow characteristics for long periods of time.

4) They do not produce toxic products during sterilization or use.

5) They are not subject to injury from normal handling or processing.

JPL Technical Memorandum 33-670 55



FIBERGLASS FILTER MEDIUM

URETHANE FILTER MEDIUM

RING ASSEMBLY WIRE
MESH BONDED TO RING

DOWEL PIN SPACERS

URETHANE FILTER
MEDIUM

Fig. 17. Ambient filter
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URETHANE FILTER MEDIUM

FIBERGLASS FILTER MEDIUM

Fig. 18. Pressure (gas) filter
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6) They are protected from "packing" by built-in spacers.

7) The pre- and post-filters of urethane foam prevent premature plug-

ging from dust particles and migration of the bacteria-retentive

filter medium.

B. MATERIALS

The compound filter materials used in both configurations were as follows:

1) Bacteria-retentive filter medium: FM-004 Pyrex fiberglas wool

filter material.

2) Dust and Media Migration Filter: Scott Filter Foam.
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APPENDIX A

LETTER FROM BIRD CORPORATION
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bird MARK 7 palm springs california 922s2

telegraph cable address markfour palm springs

telephone 4I aa=7 si

27 December 1972

Mr. Alex S. Irons
Jet Propulsion Laboratories
California Institute of Tech.
4800 Oakgrove Drive
Bldg. 233, Room 206
Pasadena, Calif. 91103

Dear Mr. Irons:

We at bird Corporation are very gratified at the progress
being made by your group in suggesting materials, designs
and procedures which will permit us to convert one or more
of our respirator designs to materials and construction
able to withstand repeated dry heat sterilization. We are
thoroughly convinced that the dry heat method of steriliza-
tion is far superior to other methods of sterilization cur-
rently available and in use for this type of equipment.

Consequently, we intend to incorporate dry heat steriliza-
tion capability as a major design criterion in all bird
products wherever it is technologically and economically
feasible. Because of the enthusiasm generated for the
hea.t sterilization concept through our work with your group
on the MARK 7@ design we have also undertaken a parallel
project, that of converting the MARK 1® design to heat
sterilizable materials. This is a simpler task than the
MARK 7@ conversion since it is a much smaller and simpler
device and, as you know, we are just about ready to pro-
duce several hundred of these units and introduce them to
the field on a fairly large scale for evaluation.

We are confident the results will confirm our confidence in
dry heat sterilization as the most efficient and effective
method for inhalation therapy and most other hospital equip-
ment.

Sincerely,

bird Corporation Precedig page blank

W. C. Bentinck
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APPENDIX B

MATERIALS MANUFACTURERS

1. Polysuffone

Union Carbide Corporation
Plastics Division
270 Park Avenue
New York, New York 10017

2. Silicone Silastic Rubber - Dow-Corning

The Fluorocarbon Co., Cole Rubber and Plastics
1032 Morse Avenue
Sunnyvale, California 94088

3. Tefzel

DuPont Corporation
Wilmington, Delaware

4. Tenite - 6PRO (Polyterephthalate)

Eastman Chemical Products, Inc.
Subsidiary of Eastman Kodak
Kingsport, Tennessee

5. Polypropylene

Amoco Chemicals Corp.
Chicago, Illinois

6. Capran - Nylon - 6 Film

Allied Chemical Co.
Plastics Division
Morristown, New Jersey

7. FM-004 Pyrex fiberglas wool filter material

Owens-Corning Fiberglas Corporation
Toledo, Ohio

8. Scott filter foam

Industrial Sales Department
Foam Division
Scott Co.
1500 East Second Street
Chester, Pa. 19013
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