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DYNAMICS OF FLEXIBLE SPINNING SATELLITES
WITH RADIAL WIRE ANTENNAS

Abstract

A dynamic analysis is presented for a spin stabilized spacecraft employing
four radial wire antennas with tip masses, a configuration first employed in the
IMP-J spacecraft. The use of wires in place of the usual booms represents the
ultimate in weight reduction at the expense of flexibility. The satellite is modelled
as a 14 degree of freedom system, and the linearized equations of motion are
found. The lowest order vibrational modes and natural frequencies of the gyro-
scopically coupled system are then determined. Because the satellite spin rate
is decreased by antenna deployment, a spin-up maneuver is needed. The response
of the time varying mode equatiors during spin-up is found, for the planar modes,
in terms of Bessel functions and a Struve function of order -1/4. Because tables
of the latter are not readily available, the particular solution is expressed in
various forms including an infinite series of Bessel functions and a particularly
useful asymptotic expansion. An error formula for the latter is derived showing
that it gives good accuracy. Also, a simple approximation to the complementary
function is obtained using the WKB method, and the phase error in the a;oroxi-
mation is shown to be small.




DYNAMICS OF FLEXIBLE SPINNING SATELLITES
WITH RADIAL WIRE ANTENNAS

Introduction

A dynamic analysis is presented for a spin stabilized spacecraft employing
four radial wire antennas with tip masses. Most satellite designs use booms
which are made as rigid as possible within weight and storage limitations. The
design analyzed here represents a logical extreme of weight reduction, in which
the booms are replaced by wires; and correspondingly it represents an extreme
in flexibility since the wires have essentially no bending stiffness. An effective
bending stiffness is supplied by the spin of the spacecraft.

Among the advantages of the wires over the boom configuration are that the
wires are lighter, and the deployment devices simpler. In a spin stabilized
spacecraft the deployment decreases the rotation rate. Hence, a spin-up
maneuver is required. Here again the wires have advantages. Less fuel is
needed in the spin-up, creating an additional savings in weight, and there are
no problems of buckling at the root during the maneuver. Prior to planning of
the IMP-J spacecraft (see Figure 1) for which this study was made, probably the
major deterrent to the use of the radial wire configuration was the apparent
complication in predicting dynamic behavior, together with a fear of the effects
of extreme flexibility on spacecraft behavior and stability. These difficulties
are more apparent than real for a space vehicle with high spin rate. As is
evident from the present analysis, the radial wire problem is an order of mag-
nitude more tractable than the problem with nonzero bending stiffness.

For purposes of the analysis, the satellite is modelled as a symmetric rigid
body with four radial spherical physical pendulums. Thus, the model predicts
the behavior of only the lowest order vibrational modes in which the wires be-
have as rigid bodies hinged at their attachment points. These modes definitely
predominate at high spin rates, as in the case of the IMP-J. This vehicle is
designed to spin at least at 23 rpm at all times. The wires when fully extended
are 200 ft. long, and weigh 1/2 gram per foot with small 3 gram tip masses at
their ends. Note that the distributed mass of the wire is much more important
than the trip masses, so that a simple pendulum model cannot be substituted for
the present physical pendulum model with distributed centrifugal loading.

The quadratic approximation to the Langrangian is obtained, ind from it the
linearized equations of motion for the 14 degree of freedom systen.. A



transformation of variables gives these equations in a form where the vibrational
mode shapes and their natural frequencies can be recognized. The presence of
gyroscopic coupling complicates this process, and produces an eighth order
characteristic equation which must be factored to get some of the system natural
{requencies. This problem is then reduced to one of finding roots of a cubic
equation, and an approximate method based on root locus techniques from control
theory is used to obtain the roots in the case of the IMP-J. Implicit in this solu-
tion for the mode shapes and mode frequencies, is the general solution of the
differential equations of motion ot the satellite for any given initial conditions.

The spin-up maneuver needed in antenna deployment is a planar operation.
In order to analyze the behavior of the wires during spin-up, the differential
equations for the planar mode variables are obtained, linearized about the rigid
body spin-up solution. Although these equations are linear, they have time
varying coefticients, and thus present some difficulties in obtaining their general
solutions. By a transformation into the complex plane, the gyroscopically coupled
modes, as well as the other planar modes, are all shown to be governed by one
fundamental equation. By proper transformations of both the dependent and
independent variables the analytic solution of this equation is obtained in terms
of Bessel functions of order +1/4 and a Struve function of order -1/4.

Because tables for the needed Struve function are not readily available, ap-
proximate solutions are obtained which give additional insight into the satellite
behavior. The complementary function can be approximated using the WKB
method, and the phase error is shown to remain small. The Struve function can
be approximated using a Taylor series, but convergence is very slow. Some-
what faster convergence is obtained by deriving an expansion in terms of an in-
finite series of Bessel functions. However, it is shown that the most useful
expression for the particular solution is in the form of an infinite asymptotic
expansion which diverges for all finite time, but nevertheless gives very good
accuracy when a small number of terms are used. An error formula is derived
which expresses the error present in this approximation, and also gives a lower
bound on the number of terms which can be included before the error begins to
increase. Combining these approximate solutions gives the general solution for
the planar response of the sysiem under a spin-up torque.

Quadratic Approximation to the Lagrangian

We vi h to obtain the equations of motion linearized about a steady rigid
body spit. for the modal analysis, and linearized about a rigid body spin-up
cor-espo '+ to a constant applied torque for the spin up analysis. The formu-
lation uscd will obtain both sets of linearized equations simultaneously. It
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suffices to use the quadratic approximation to the Lagrangian in order to obtain
linearized equations of motion using Lagrange's equations. Since there is no
potential energy we need only the quadratic approximation to the kinetic
energy, T.

Figure 2 shows an inertially fixed coordinate system XYZ and coordinates
xyz fixed in the symmetric hub of the spacecraft and centered at its center of
mass. Let R, be the vector from the center of the inertially fixed coordinates
to an arbitrary volume element dV of the spacecraft, and let R, and R, be as
shown. Then the velocity of the element dV relative to inertial space is
dR,y/dt! ;, the time derivative in inertial (I) axes. The spacecraft kinetic

energy can be written
(3] 3o 1 I ] o

Z : dRoy
n, | ——
t\ dt I

TipMasses
where ¢ is the density and m_ is the mass of a tip mass.

dR,
dt
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The angular velocity « of the hub axes relative to inertial space expressed
in hub coordinates will be needed. It can be written as

(v s ‘OS¢ - g(‘ +4 i
’l 1 COS 2(0. 3 (2Sln(3

« » -8 c s in (" o)
@, (l cos 1,su‘l 3t 2cost3

w. r; 5 1 ] 9
_"3_J L 15'“'2")3 J

where ', , 7., and ¢, are 1, 2, 3 type Euler angles, i.e. a rotation through
angle 7, ina right handed sense about X, followed by a rotation ¢, about the
resulting Y axis, and then a rotation # 3 about the resulting Z axis gives a set
of axes parallel to the hub xyz coordinate system.

To perform the linecarization we can write

! )
'3—Wo(t)+0(3
) ) 56
O Y(t) + o,

where °, and -'""3 are assumed small quantities. For the modal analysis we
linearize about the steady rotation of a rigid body, so thai w, (t) = «, a constant
angular velocity about the spin axis, and  (t) = «, t. For the spin-up analysis we
need to linearize about the values of ¢, and ¢, corresponding to a constant
torque Q applied about the spin axis, assuming the satellite to be rigid and to
have moment of inertia I, about that axis. Thus, we let

wo(t) = C‘o + (Q 113) t
(t) = @, t 1 '1.) t?
¥ Bt 5 (Q 3)

where . is the initial spin rate before spin-up.

The quadratic approximation to the angular velocity can now be written
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Here and elsewhere the three dots indicate terms of higher order than quadratic.
The other angles , and ¢/, are expanded about zero nominal values.

The true generalized coordinates for the center of mass of the hub will be
the components X, Y, Z of R, in inertial space. Their derivatives X, Y, 2
represent the components in coordinate system I of the inertial derivative
dR,,/dt| . 1t will be convenient to define %, y,, Z, as the components of this
vector in the hub H coordinate system (not to be confused with components of
the derivative of R, as seen in H coordinates, dR,, /dt| ).

The first term in Eq. (1) represents the kinetic energy of the hub, and can
be written as the sum of the translational kinetic energy of the center of mass
and the rotational kinetic energy about the enter of mass:

1 w292, 52, ) 2, .2y, 1 2
3 WXy + Yyt 2y) + Iy (0f + @)+ 5 Ty

where m is the mass of the hub, and I,;,, I,;,, I,;; are the principle moments
of inertia about x, y, and z axes respectively. T"2 z axis is the axis of sym-
metry. The quadratic approximation for this is obtained by substituting the
above quadratic appreximation to «.

In order to calculate the second and third terms of Eq. (1) we must de-
termine the irertial velocity dR,,/dt', of a volume element of the wire or the
tip mass. Using Coriolis law we can write

dRyy

dRgy

dRyy

dRo"

dR,,

dt

dt

dt

dt

™

dt

tox By



The term dB"V/dtl,, represents the rate of change of R,, as seen in H
coordinates. :

Figure 3 shows a volume element dV of the i'" wire. The variables a, and
b, are the in-plane and out-of-plane angles specifying the deviation of the wire
from the nominal position. The ¢, represent the angle from the x hub axis to
the i'" nominal wire position, and ¢, is taken as zero. From the figure, the
X,¥,z components of the volume element position are easily written. Then the
quadratic approximations to the matrix | R,/ . of components of 3“ " in H
coordinates can be written

[cos ¢, ] - a, sinc, (cos c]
Ryyly @+ 1) |sinc [+q| a cosc, -%Q(bi2+ai2) sinc,| + ...
|0 b P&

U, +Ul +Up + ...
2
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|
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Figure 3. Variables Specifying Position
of Wire Clement



Similarly, the matrix [dR,,/dt|,] of derivatives of x, y, z components is

- éi sinc, cos ¢,
[dR,y 'dt|"]" - q él cosc,| - q(bif)i 4 ﬂlﬁi) sine, 4 ...
b, 0
G+ b ...

Cumbining these results, the matrix [dR,, /dt|, J, of components in H coordinates
can be written

[dRgy/dt], 1y = [k W2, )T + 00y + 05, + (W) + W, + W,) (U, +U, +U) 4 ...

where superscript T indicates transpose, and the tilde indicates the matrix
equivalent of a cross product (if the components of W are w, , then the i, k
component of the square matrix W, is given by

3
; -
Z kY where € k= _2.(1 -3) () =k) (k=-1)).

=3
The quadratic approximation to the kinetic energy, per unit mass, of the
volume element is obtained by calcu!lating the dot product

1

2 [dRyy /d‘lx]: [dR,y /dt| ]

I"H

and retainiug only terms through second order. Multiniication by m and
substituting 7 for q (see Fig. 2) gives the kinetic energy of tie i*" tip mass.
Mu)**plication by the density per unit length of the wire, o, and integrating q
from 0 to < gives the kinetic energy of the i*" wire. Adding these results for
each wire and tip mass tn the kinetic energy of the hub gives the

quadratic approximation of the total kinetic energy
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I, = by ¢ 4(mt +:_13m) -L'2+8(mt+%m) ri + 4(m, + m) r€|

m) {2+4(mt+%m) r{+2(m‘+m) l‘{l

I,,L,and I, are the three principle moments of inertia of the entire spacecraft
about the center of mass assuming it is rigid; Iy,, L,, I3 are the correspond-
ing inertias for the hub; r and ¥ are defined in Figure 2; m is the mass of a
wire, m, that of a tip mass, and m, that of the hub.

The Linearized Differential Equations

The linearized differential equations are obtained by applying Lagranges
equations to the above kinetic energy for each of the 14 generalized coordinates
X, Y 2,0,,7,¢%,,a;,b;. Note that X, Y, Z are cyclic so that the equations
reduce to 3T/3X = C,, 3T/3Y = C,, 3T/3 Z = C;, C, all constant. Further-
more, we can chose the I axes so that there is no momentum of the spacecraft
relative to I at time t = 0. Assuming this has been done, the constant generalized
momenta are zero, C, = C, = C; = 0.

Direct application of Lagranges equations yields linear differential equations
with var.iabl.e coefficients. Some of this difficulty can be circumvented by keep-
ing the x, y,, and z, coordinates. We recognize that to a linear approximation

3T _ 3T X , 2T ai{+ar 3z
ok, 3K ok, Y ok, 3Z Ok,

:ﬂcos¢—£sin¢+

oX oY

or 3T/a%, = 0, and similarly for y, and z,.
9



The linearized equations of motion are then

4
Mx, - M, (8, sinc; + wy(t) a, cosc;) =0 (2a)
i=]
4
M9H+Mzz(éi cos c; - w(t) a sinc;) =0 (2b)
it1
4
Mz, + M, b, =0 (2¢)
151
.. ‘
I!RI + I3 [“'o(t)ez +‘.Vo(t)92] +MIZ[(Bi +‘"gbi) sin(‘l"” ci) "\‘Vobi Cos(¢'+ cii :q2d)
=1
11.532 = 13“'0(t)¢3, -M,Z[(B.l +w2b,) cos(y + c;) +wb, sin(Y+c;)] =0 (2e)
=1
L
13593 5 Ml Lai = (21)
=1

M.."eii +M, b'c53 4 rMQWga.l +M, [(-32H t woir“) sinc, + (');H + woiﬂ) cosc;] = 'Ml""o (2g)
M,b, + M7, + Mw2b, + M, [(B, + 2w,6)) sin(y+ ;) + (-8, +2w 6y cos(y+ ) =0 (2h)

where i =1, 2, 3, 4.

10




Mode Shapes and Natural Frequencies

We wish to find a change of variables which will uncouple the equations of
motion, and thus determine the normal modes of vibration and their natural
frequencies. Because of the spin of the spacecraft, we cannot actually expect
complete decoupling. Certain modes will be gyroscopically coupled. It might be
possible to determine the needed mode variables mathematically, but it is much
easier to appeal to physical intuition to guide us. Figure 4 presents eight ways
in which one would expect the system to oscillate. Associated with each mode
shape is a mode variable which should behave sinusoidally

A N [ \
>)<'/ \X)

Figure 4. Vibrational Mode Shapes
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1
a, = Z(::1 +a,+a,+a,) B, %(b +b, + by +by)
=1(a B, =L -b,+b, - b
az‘z(x'az‘“as'aﬁ g = g0y~ Py &5y = a)

a l(a +a, -a, -a,) Bl = —(b +b, -b; -b,)

3 Z 2 374
a 1 a +a a a ,B 1 b b b b
4 z( + 2+ 3 ) z( + 4 b )

Note that a_ and B8, should be comp.etely independent of other mode variables.
Also, a, and /J’l equations will couple with the rotation and translation equations,
but will be independent of other mode variables. However, we expect a, and

a, to be gyroscopically coupled, and By B, to be coupled with the precession
and nutation of the hub.

Setting w, = wy, ¥ = wot, ¢; = (1 = 1)7/2, and using mode variables, Egs.
(2a-c) and (2f) become

’.5{ (2M/M) [(a, + (.1‘) + (o, = a,)]

- (2My/M) [(35 - &) - @o(ay + ay)]

e
=
"

N*
I

- (4M,/M) 5,

o
Y o}
I

= (4Ml /IS) .dl

Adding Eqgs. (2g) for i=1, 2, 3, 4 and using the above 5% 3 and similarly adding
Egs. (2h) and using z gives

(M, (4M2’I)]a+era-0

2 071

M, - (4M2/M)] B, + Myw2B, = 0

12



Therefore, the natural frequencies associated with these modes, normalized by
the rotation rate «,, are

- / y 1/2
Qg = {rM,/[My - (4M2/1,)]}
Qg, = M,/ [M, - (4M2/M)] 1} 2

Similarly, taking the linear combinations of Eqs. (2g) and (2h) indicated by the
definitions of a, and 5, give

N _ 1/2
Q,, = {rMy/M;}

= , 1/2

and
a,+ 0% w82, = 0, ?2 + Q3 w36, = 0.
Adding Egs. (2g) as indicated by o and a and using )'(H, 3"“ , gives two
equations

I
o

[M3 - (2M§*”M}] 'da + [4M§,’M] o.'0&4 4 [l’M2 + (2M§/M)] wga3

1
o

My - (2M3/M)] G, - [4M2/M w,a, + [rM, + (2M2/M)] wla,

with skew-symmetric gyroscopic coupling of the first derivatives. The normal-
ized frequencies associated with the roots of the characteristic equation for

this system are

13




where

= 2 2
B = 4M2/(MM, - 2M2)

C = (rMM, + 2M2)/(MM, - 2M2)

To uncouple the equations for B, and By obtained using Eqgs. (2h), from
the remaining equations we must use Eqgs. (2d) and (2e). Setting w, = «,
Y=t =(1- 1)7/2, and using 3, and 3, to eliminate the b, , the latter
equations still contain time varying coefficients which complicate the elimination
of ¥, and ¢, from Eqgs. (2h). However, we note that when w;, = «, these two
angles are cyclic coordinates. We then define a rotation of the derivative
variables which will eliminate the explicit time dependence. Let

M, = 6 cos(yt) + 6, sin(ut)

M, == 652 sin(wot) + 652 cos(u, t)

and Eqgs. (2d) and (2e) become
Ly + (Ty = 1)) @gmy + 2M, [By + By) + @3By + B] = 0

1,7, = (I, - 1)) wgn, - 2M,[(B, - B,) + w2(B, =B = 0

(Note that these same equations might have been obtained more directly by
using quasicoordinates w, w,, w, from the beginning.) The equations for ﬂ'
and °, from Egs. (2h) in terms of 7, and m, are

14
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. ’ 1 ; .
M55 + MwdBy + EMn[(Th' ) + @g(ny + 1)) =0

‘A n 1 . :
M5, + Myw2B, + 2 M, [(7y + 7)) = «p(ny =my)] =0

The nawral frequencies associated with /5, and 5, must be determined from the
characteristic equation of the above system of four simultaneous equations:

{(s? + Pw2) (s + Kw?) - 2PN(s? + w?) (s? + Kw?)}?

+ {.'Z}’Naos(s2 4 a‘g) (K -1))? =

where

’I,, and K= (I3 - Il)/Il-

It would appear that we must solve for the roots of an eighth order polynomial.
The normalized frequencies (1, 3,54 2T€ the positive roots (I of this equation
when we set s = i« (. However, we note that the equation is then of the form
x?2-y2=(x-y) (x +y) so we can reduce the problem to finding the roots of two
fourth order equations

(22 - P) (02 - K?) - 2PN(Q2 - 1) (N2 - K)

£+ 2PNO(O2 - 1) (K=-1) =0

However, from the form of these equations, if (0* is a root of one, then - (* is a
root of the other. Therefore, we need only solve for the four roots of one of the
quartics and take their absolute values. We can still do better if we observe that
the precession frequency (or its negative), (L = |K|, is a root of the quartic. We
conclude that the four frequencies (., ., associated with 5, and 5, mode
variables are

15



Qﬁs.m = |Is - Ill/li

and the absolute values of the three roots of

(2 - 1) [Q- (K - 2PN)/(1 - 2PN)] - k(2 +K) = 0

where k = (P = 1)/(1 - 2PN). Approximate values for these three roots can be
obtained easily using root locus techniques as shown below.

Application of Results to IMP-J Spacecraft

The parameters of the IMP-J spacecraft are: M, = 3 gms, m = 100 gms,
{ =200 ft, r = 2 ft, M = 19.37 slugs, I,,, = 117 slug ft? (hard booms deployed),
and the transverse inertias are approximated by L, =16 slug ft2. Observe that

ol

and is near unity (actually 1.01459) because of the ratio (r/1). The factor k is
then small (0.0539). The above cubic equation can be written as

’ k(Q + K)
(2-1)@Q-0)

where G = (K = 2PN)/(1 = 2PN). It is thus in the form needed for a root locus
plot; there is one zero at -K, and three poles at +1, and G, and we are
interested in the roots for a small negative gain (-k). For the IMP-J K = 0.875,
G = 0.540, and the root locus plot is shown in Figure 5. An approximate value
for each root can be obtained by calculating the root sensitivity at k = 0, i.e.
finding the rate of change of the root location with k at k = 0, and extrapolating
along the tangent:

n d
(k) = Q (0) 4 [E (0):| k

i6
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Figure 5. Root Locus Plot

where

do 04K
dk 302 _2G6n-1-k

As a check on the result, the value of k corresponding to the approximate root
can be calculated by substitution in the root locus equation after solving it for
k. If the value is not as close as desired, iterating by making a small change
in () and recalculating k quickly gives the needed result.

Using this method to obtain the frequencies for {!;, ;, and the formulas of
the previous sect. :n for the other modes gives the following natural frequencies
normalized by the spin rate o :

Q,,

H

0.2563

!

Q 0.1208

a2 ~

Q3 a4 = 0.1236 and 0.1225
= 1.007819

1,, =1.007267

0,5 pq = 0.8754, 1.002215, 1.09185, and 0.4499.

17



For a spin of 23 rpm the neriod for the a, mode is roughly 10 sec., while the

Ay 3 and 2, modes all give approximately 21 sec. The out of plane modes give
periods between 2 and 3 sec. with one exception of 5.8 sec. associated with one of
the /3. 4 frequencies.

Fundamental Spin-Up Equation: Analytic Solution

We now turn our attention to the dynamic behavior of the satellite during
the spin-up operation. From physical considerations it is clear that the mode
1, is the most directly affected by the spin-up torque. We therefore examine
this mode first.

The differential equation for a, is obtained by taking one fourth the sum of
the four Eqgs. (2g) and eliminating 5¢ , using Eq. (2f). The w, (t) is taken as
w, +(Q/1,)t. The result is

o 2 2 2 - / 2
ay + S)q‘ wy (14 €t) a, -E(u,oMl /I'Mz) ‘Qal

where « = Q/(I,» ). The spin-up torque for the IMP-J is 0.96 ft. lbs., which is
small compared to the total vehicle inertia I,, and therefore ¢ is a small
number. The (!, is the natural frequency normalized by the spin rate before
the start of the spin-up, «,. The differential equation can be written in an alter-
nate form by defining a new time variable 7 and letting prime indicate differ-
entiation with respect to

T=14 €t
a'} + 00y, 7 Thay = —e M/ (0o rMp)]) 0,2 (3)
where ), - (), «, ¢ (we will use analogous definitions for all other modes).

Despite the simple appearance of this equation, it is difficult to obtain the solu-
tion in a form which is easily applied.

Using the change of variables froma,, 7 to J, £ where
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JE) = ()12 a, (1)
the differential equation is transformed to

. d2J dJ l ) : )
2 o B Vo S = w€ | =} 5/4 (M./(w.rM £y 3/4
T [ 16]J <2 "') M/ (o tM ) ()

The complementary function for this equation is a linear combination of Bessel
functions of order +1/4, and hence the complementary function for «, is

By, =€y VT Y5 (% 2, ,2> AL (%ﬁ‘ 72> (4)

(c, and c, arbitrary constants). Bessel function tables for these fractional
orders can be found in (1].

To obtain the particular solution, note that the Struve function of order .,
H (¢), is a particular solution of

2
fzg—‘:+fﬂ+(§2-—
d#

(see [2]). By making the appropriate adjustment of constants the particular
solution for », can be written as

- P - _— l -
typ = =€ (/4% |:m I1(%)"’1/(“’0 "MZ)] Sl RV (7 oy 72) (5)
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Tables of Struve functions of the needed order are not readily available. One
can obtain an expression for H_ , interms of a product of a fractional power of
- times an infinite series in © by using the method of Froebenius on the differen-
tial equation for H., , ,|2]. The resulting particular solution for « is

(3] - f —

1P
w, M 4 : 3N\ 5
02 u-o'(k*i)'(k*z)

which represents an entire function.

ol 1= ,\*
.'nl(—M‘ 2 ke (—l)k(—“ﬂ T2)
4 (‘ ‘%.7) 3 M (6)

Note that {,, is a large-number, and that the values of 7 of interest are
greater than 1. Hence, although the above series coverges for all 7, the number
of terms needed to calculate a good approximation to a . is quite large. A
series with improved convergence properties can be formed using a Bessel
function expansion. For any value of « not equal to a negative integer or zero
(2]

1.V _ (1 + 2k) M(u + k) P
[ pISENTTR R
k=0

Then the driving term to the Bessel equation form of our differential equation
can be rewritten giving

3 3
® k+=)MNk +=
72(——12'}§ ‘ﬂq [fz-LJJ:-c(ﬁ l)S." Ml (2 +4) ( +4)
: 16 @ Z

- — ) (¢
d:=2 d: 2y T™ k! aa+2x(5)

2 | k=0

Substitute a solution of the formJ = > a J . (), and observe that the
left hand side of the equation equals (1.2 - 1/16]°J , when J,, is substituted for
J. The coefficients a_ are obtained immediately by equating coefficients of
Bessel functions of like orders
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G M, 3 4) - 1 -
“ip - T AL =0 72 (7
D 2 kil o
/2uy T, k=ok![(i.2k)-_
9 16

This expression represents the exact solution and has better convergence prop-
erties than the power series solution. However, we will find that for most pur-
poses an approximate solution in the form of an asymptotic expansion is most
useful.

WXB Approximation

The complementary fun_don «, found above appears not cnly in the o
mode, but in other modes as well. Yor purposes of making rapid calculations,
as well as to give a somewhat better intuitive feel for the mode response, an
approximate solutiun is generated by the WKB method [ 3],

The WKB functions
w9(7) = l.f('r)]-l"‘ exp ti l[ V’f—(’;) d]
1
are easily shown to be exact solutions to

Wi+ (F(7) + BR(7HW, =0

and therefore approximate solutions to a‘l’ + f(7) o, & 0 provided g(7) is small
compared to f(7). For the present problem we can take

0 2
'\’an]

W, = (1//7) cxp[ti

1O | -
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and the complementary function can then be written as

8,7+ 9 ®)

| -

@, (7) = (A /1) cos(

wnere A and © are zlrbitrary constants. The function g(7) = -3/(472) is small
compared to f(7) = (2 72 because of the presence of a factor 1/¢ in{] .

Applying the well known asymptotic form (for large r) of the Bessel iunc-
tions would give the same result, and therefore accuracy is good for prcperly
chosen © when 7 is large. The error in this WKB solution when it is cerried
in to small values of 7 can be investigated by writting

ay. = C(T) W(T) + C.(T) W(T)

lc

where the variation of the constants C, = (A/2)e*'’ accounts for the difference
between the true solution and the WKB approximation. The rate of change of C,
with - is given by (3]

dc : =
e 3 & _3' {C, + G exp[Fill, 74}
d 8Q, 73

al

If the C, do not change much, we can calculate the change AC, by integrating

o

ac, f $31AC” (14 exp(3ifl, 72 7 2i8)) dr
1601, 73

treating as a constant. The second term in the brackets is bounded by one
in magiitu e, so that we obtain an approximate expression

|acy/C,y < 3/(8D,,) = 3€/(Buyfly,)
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showing that the relative error is small even for ~ as small as 7 = 1., Thus, no
significant phase error in © accumulates in our approximate solution even after
an arbitrarily large number of wavelengths.

Asymptotic Expansion Solution

An approximation to the particular solution a,;, can be obtained in the form
of an asymptotic expansion. We formally substitute

into the differential equation and solve for the coefficients ¢ . By the ratio test,
the resulting series is seen to diverge for all finite 7. However, for properly
chosen N, the series truncated to N terms forms an asymptotic expansion which
will be shown to give good accuracy

n-1

D" TT (ak + 2) (4k + 3)

N |

n=1 Qg';T“"

Denote the right hand side of this equation by 2,,, and determine the differential
equation for which it is a particular solution by calculating a;’N + ﬁg F 2al, -
It is seen that the forcing function differs from the desired forcing function’\)y
the addition of a term depending on 7~*("*1) | Then the differential equation
satisfied by the error, Aa =a , = a,, is found by subtracting the equation for
a,y from Eq. (3)

N
| l (4k + 2) (4k + 3)
Aan " ﬁngzaa - (_ l)N<eMl k=0

"*oer ‘ﬁﬂ,mu

The error in the asymptotic expansion is that particular solution Ao satisfying
La = Aa' =0 at 7 =1. Denote the driving function in the above equation by F(7).
Then the desired particular solution is found by variation of parameters to be
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Ba = f [£,(5) 2, (T) = By(T) S {F(E)/W(&) dé
1

where ¢, and ¢, are the two linearly independent solutions to the homogeneous
equation

. 1 ) -
¢, =Y71y/4 (5 “a{rz) ¢, = /?J-lu (5 anTz)

and W is the Wronskian. Then ¢ + a2 7% =0, and ¢, + ﬁ:{r?cpz =0;
multiplying the first by Pys the second i)y ¢, » and subtracting gives an expres-
sion which when integrated shows that the Wronskian is constant. Let

1/2 02 72 =1, and use the fact that the Wronskian of J  (z), J_, (z) is -2 sin
(“7)/(" z) from (2], to determine the constant

_— | = - —
W - Q.u"z l:‘""" (5 Qalv'&’> T 174 (% Qalﬂ) = J;“ (% QalT'*‘) | A (% Qa17'2)]
) 2(1‘ 14(1) ‘I:l./4(1) —~ J;‘/4(1) J-I’/‘(l)]

- 23'2 o7

The Bessel functions are bounded by [2]

1T, s 1 IT_y,4 O] s 1/['%,(

“r(3)

Therefore, the error in the asymptotic expansion solution is bounded by
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1

T 1 0O = 1=

Jl TS l:'Jl.w (5 “ax‘daHJ—xl (5‘%172)
1= 1= .

I"” (?“«u”) ~'—v~(5 Qan")

N
62N+l.l'5,,Ml | | (4k e 2) (4k + 3)

p k=0 1 [1_ 1 ]
NT 12 o.28 3 N 25 ,
2w3N* 1.25 1y, QN ¢ 2sr<T) TAN+2.5

IA

+

] [IF&)| /W dé

Because ¢ is quite small in the present application it is found that using
three terms in the asymptotic expansion gives very good accuracy.

Planar Mode Response to Spin-Up

Because the spin-up maneuver is a planar one, we now obtain the dynamic

response of the remaining planar modes under the spin-up torque. Taking the
appropriate linear combination of Eqgs. (2g), letting w, (t) =<, + (Q/1 )t and
changing from t to 7 as the independent variable gives

" —2 2
(12 - Qa2T "12 =0

and the corresponding solution is

_ O l‘f, 2 Y g l_
a, = C3s T J""(E La27) + C4v T J-l/4 (5 Qaz'r'*)



where 0., = Q,,@,/€ « The differential equations for the coupled modes a, and
a, are found by taking the appropriate linear combinations of Eqs. (2g), using
Egs. (2a) and (2b) with ¢, = (i - 1)7/2 and the above w(t), and changing from
tto 7

" Al 1
a; + BTO." + (,72a3 + EBa‘ -0
a, - Brag + C72a4 - %Ba.3 =0
where
B - 4M§“’o

e(MM3 - 2M§)

o - “o(TMM, + 2M)

€2(MM, - 2M2)

Note that this time there is not only gyroscopic coupling of the first derivatives,
but coupling in the undifferentiated terms as well. In order to obtain an analytic
solution to this system of equations, use a complex valued change of variables
to write the system as a single equation

a" - iBra’' + {C'r2 = % iB} a=0

where a = a, + ia " A second change of variables a(7) = v( 7)p(7), where

p(7) = exp [% iB'r’]

is chosen to eliminate the first derivative term in the differential equation,
gives

v (T) + {% B2 + C} 2v(1) = 0
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which is the fundamental equation which has already been solved. Then the solu-
tions for a, and a,, in terms of real valued arbitrary constants, are both of the
form

10)

where A, A,, 6 , and ¢
conditions.

, are arbitrary constants determined by initial

Although this section is concerned with the planar modes, it is interesting
to note that two of the out of plane modes are governed by the same fundamental
spin-up equation. By a derivation closely paralleling the deviation of the mode
frequencies for 5 and £, » the spin-up equations are found to be

ﬁ; - ﬁ%z"'z/;z =0

with the corresponding solutions
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1= 1=
By = cn‘/T_Jlu (§ Qﬁzﬂ) * cl2'/? J-1/a (5 Qmﬂ)
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