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SENSITIVITY ANALYSIS OF TORSIONAL1 VIBRATION
CHARACTERISTICS OF HELICOPTER ROTOR BLADES

PART I - STRUCTURAL DYNAMICS ANALYSIS

By Theodore Bratanow* and Akin Ecer**
University of Wisconsin-Milwaukee

SUMMARY

A theoretical investigation of structural vibration characteristics of
rotor blades was carried out. Coupled equations of motion for flapwise bend-
ing and torsion were formulated for rotor blades with non-collinear elastic
and mass axes. The finite element method was applied for a detailed repre-
sentation of blade structural properties. Coupled structural mass and stiff-
ness coefficients were evaluated. The range of validity of a set of coupled
equations of motion linearized with respect to eccentricity between elastic
and mass axes was. investigated. The sensitivity of blade vibration charac-
teristics to torsion were evaluated by varying blade geometric properties,
boundary conditions, and eccentricities between mass and elastic axes.

INTRODUCTION

A complete analysis of the dynamic response of helicopter rotor blades
under actual flight conditions is difficult because of the three-dimensional
nature of both blade deformations and unsteady flow around the blades. High-
er operational forward speed and maneuverability requirements for modern hel-
icopters have further increased the complexity of the problem. As indicated
by theoretical and experimental studies, at higher tip-speed ratios the
blade dynamic response characteristics become increasingly sensitive to tor-
sional oscillation.

The objective of the conducted investigation was to evaluate the effect
of torsional oscillations on blade dynamic response characteristics and to
analyze the sensitivity of torsional oscillations to blade aerodynamic,
structural, and geometric properties. In the first part of the analysis,
the coupled equations of torsional and bending motion of a rotating blade
with non-collinear elastic and mass axes were developed in finite element
form considering only structural parameters. The results from this formu-
lation were compared with results from a system of differential equations
of motion derived by Houbolt and Brooks for the same problem [1]. The im-
portance of the second order terms in eccentricity between mass and elastic
axes was established. The obtained overall results were also compared with
results obtained by Isakson and Eisley [2].

Professor, ** Assistant Professor, Department of Mechanics, College of
Engineering and Applied Science.



SYMBOLS

a. a scalar
i

V V Cij-

D., E., H. generalized coupled mass and stiffness terms
J J J (see Eq. (A13))

b. a scalar

e. a scalari
2

El bending stiffness of a blade, N-m

f. a scalari

h vertical displacement of a blade at the elastic
center, m.

h_ column vector representing bending displacements

hr vertical displacement of a blade at the center of
mass, m.

h_. eigenvector of Eq. (B3)

h. eigenfunction corresponding to the bending displacement
component of p_. , m.

2
IQ torsional inertia of the rotor blade, N-sec.w

_!_ identity matrix

2
JG torsional stiffness of a blade, N-m

j( total stiffness matrix

K. total stiffness matrix of an element—i

K stiffness matrix in bending
-̂o

](_ coupled stiffness matrix

JC stiffness matrix in torsion

JC, stiffness matrix in torsion for a blade element
i



£ length of blade element, m.

2 2
m mass of the blade per unit length, N-sec. /m

M total mass matrix

M. total mass matrix of an element
—i

M.. mass matrix in bending

M_ coupled mass matrix

M_ mass matrix in torsion

M mass matrix in torsion for a blade element
i

P a scalar (see Eq. (A21))

P_ column vector defining nodal forces in bending

q a scalar (see Eq. (A21))

R rotor radius, m.

2
S non-dimensional eccentricity, S = xfi ni/Ip.

S.. non-dimensional eccentricity (see Eq. (A21))

S? non-dimensional eccentricity (see Eq. (A21))

S, . generalized coupled bending damping in torsion,
N-sec./rad

t time variable

T centrifugal force along the longitudinal axis of a
rotating blade, N

U total energy for coupled bending and torsion, N-m

UD total energy in bending, N-m
D

UT total energy in torsion, N-m

x distance on the longitudinal axis of cantilever blade
from the fixed end, m.

xfl eccentricity between the elastic and mass center, m.



Y a scalar

6 column vector representing bending and torsional
~~ displacements of a blade

£ non-dimensionalized abscissa of a point on a blade element

6 pitch change due to blade torsion, rad

0_ column vector representing torsional rotations

0. torsional rotation of a blade at the i mode, rad

X square of the ratio of lowest torsional frequency to
lowest bending frequency

n ratio of torsional rotations to bending displacements in
the vibration mode corresponding to the lowest frequency,
rad/m.

£_ column vector representing bending displacements

a) coupled frequency of the blade, rad/sec.

ft angular velocity of a rotating blade, rad/sec.

w natural frequency of a blade in bending, rad/sec.
B

to lowest coupled frequency corresponding to a predominantly
i bending mode, rad/sec.

a) natural frequency of a blade in torsion, rad/sec.
i

oj lowest coupled frequency corresponding to a predominantly
i torsional mode, rad/sec.

Superscript

t transpose



THE ANALYSIS OF STRUCTURAL VIBRATION CHARACTERISTICS
OF ROTOR BLADES

Method of Solution

The energy method was applied in formulating the coupled equations of
motion for helicopter rotor blades in flapwise bending and torsion. The
formulation is similar to the one used by Garland [3] for analyzing non-
rotating beams. The details of the mathematical analysis are given in Ap-
pendix A.

The coupled vibration characteristics of a rotating blade can be anal-
yzed by first calculating the generalized coupled mass, damping, and stiff-
ness coefficients in Eq. (A13) and then solving Eqs. (All) and (A12). A
coupled set of equations of motion, (Bl) , was formulated as shown in Appen- .
dix B. A discretized set of mass and stiffness matrices was developed in
finite element form. The derivation of each of the matrices in the set of
matrix differential equations is given in Appendix C.

A numerical method was applied for the solution in Eqs. (All) and
CA12). The following characteristics were established:

• coupled structural vibration characteristics of rotor blades
in bending and torsion

• stability characteristics of the equations of Houbolt and Brooks.

Variation of Coupled Vibration Characteristics with
Eccentricity between Elastic and Mass Axes

The variation of blade frequencies with increasing eccentricity between
elastic and mass axes can be analysed from Eq. (A21). This analysis is de-
scribed in Appendix A. The variation of the frequencies of the sample blade
for a two-degree-of-freedom system is illustrated in figure 1. As can be
seen, when the non-dimensionalized eccentricity parameter S increases, the
lower of the two frequencies corresponding to a predominantly bending mode
decreases slightly, while the torsional frequency increases.

A further consideration of figure 1 indicates the main features of the
coupled structural behavior of a rotating blade, which can be summarized as
follows:

a) for values of the eccentricity xfl equal to zero (S = 0) un-

coupled bending and torsional frequencies correspond to q = 1
and q = X, respectively. As the coupling increases, the fre-
quency corresponding to a predominantly bending mode decreases,
while the torsional frequency increases. As can be seen from
the left portion of the curve, the bending frequencies are
bound between



2 2 2
4 > <•> > «
B

(1)

b) the left portion of the curve can be approximated by a
straight line as follows:

q ^ 1 - yS

The ratio of torsional rotations to bending displacements can be calculated
from Eqs. (A18) and (A19) as

2n =

Observing also that

2 2
co - to
Bl m_

aiel | w? u>2 + S(ft2-u2) T6
1

2 2
)T » u)
1

(4)

and

the ratio of coupling between torsional and bending modes is

mo,

(5)

(6)

Considering the left portion of the curve in figure 1, one can deduce from
Eq. (6) that the coupling effect increases linearly with increasing eccen-
tricity.

Stability of the Set of Linearized Coupled
Equations of Motion of Rotor Blades

A set of equations of motion describing the vibrational behavior of a
rotor blade has been developed by Houbolt and Brooks [1] in the following
form:



( it \ ii / i \ i / 2 '\ ' /" " \
Elh - Th -[mxfl x.9 + m h + x.9 = 0

/ \ / \ e ) \ e /

JG6 1 ' + mxn2xQh' + £22T 6 + 16 + mx.h = 0
O O O O

(7)

(8)

Eqs. (7) and (8) have been used by several investigators for calculating
dynamic response of rotor blades [2,4]. These equations represent a linear-
ized form of Eqs. (All) and (A12) with respect to x • only the first order

terms of x being considered. The second order terms E. and H. correspond9 3 J
to the change in moment of inertia of the blade and change in the position
of the axial force due to x , respectively.

In this portion of the work the effect of linearization of Eqs. (7)
and (8) was investigated in two steps:

a) stability of the system of linearized Eqs. (7) and (8)

b) comparative evaluation of approximations in Eqs. (All) and (A12).

The sensitivity of frequencies to eccentricity between elastic and mass axes
was calculated from Eqs. (7) and (8). Neglecting the higher order terms of
x in Eqs. (A18) and (A19), these equations can be written in matrix form as

follows:

v 1

Ie
x _£.

6 m

1

J

al6l

b1£1

= 0 (9)

The dynamic system represented by Eq. (9) can be defined in terms of mass
and stiffness matrices as

[K. - u M] 6^ = [0] (10)

The stability of the system represented by Eq. (10) can be determined
by ascertaining whether the mass and stiffness matrices are positive defin-
ite. For Eq. (1) one can show that

2
xQm

xn0
:e

<• ,

m
< i

2 2
T D
Tl Bl

det [M] > 0 (H)

det [K] > 0 (12)



Since - > 1, U3)
n

the rotor blade vibrations become unstable in the respective first torsion-
al and bending modes, if

x m
/- > 1. (14)
0

The eigenvalues of Eq. (10) can be calculated from the following equation:

det T M-1K - u>2 l]= i [(.X-q) (1-q) - S (q-p)2 1 = 0 (15)
[_ — — — j J.-&2 L ^ J

The non-dimensionalized eccentricity between mass and elastic axes
related to the non-dimensionalized coupled frequency is shown in figure 2.
Several conclusions about the coupled behavior can be derived from the
curve shown in figure 2. From a comparison of Eq. (A.21) and Eq. (15) it
follows that

S - (1-qKX-q) and s _ (X-q) (1-q)
S - ^ S -l - (p-q) (p-1) 2 - (p-q) (p-q)

From Eq. (16) one can derive the relation

C17)

Thus, one can conclude that the solution of Eq. (15) is satisfactory for the
left portion of the curve in figure 2. However, there is an important dif-
ference for the right portion of the curve, since S /S- is not close to
unity.

The following conclusions can be deduced from the above results:

a) the values of the lower coupled frequencies obtained from
the Houbolt and Brooks equations would be satisfactory

b) Eqs. (7) and (8) become unstable when there is a small
increase in eccentricity between the mass and elastic axes.

Such results are significant for the numerical integration of the equa-
tions of motion. Instability of these equations leads to large torsional
displacements and thus to the conclusion that the actual system is unstable.



Coupled. Vibration Analysis of a Sample Rotor Blade

A sample rotor blade was chosen to illustrate the coupled vibration
behavior. The finite element method, described in Appendices B and C, was
applied for the numerical analysis. The structural properties of the sam-
ple blade are listed in table 1. The uncoupled frequencies shown in table 2,
were calculated using the numerical procedure summarized in Appendices B and
C. The mode shapes for uncoupled vibrations are illustrated in figure 3.
The coupled torsional behavior of the sample blade was then analyzed.

Stability of the Houbolt and Brooks equations for the sample blade -
The analysis described in Appendix B was applied for determining the stabil-
ity of the Houbolt and Brooks equations; checking where the torsional modes
become unstable. Considering only two-degrees-of-freedom for the sample
blade, one can evaluate the critical eccentricity from

2 Al°l
X = -—• , X = 0.089 (18)

For a four-degree-of-freedom system (two in bending and two in torsion), a
quadratic expression was derived from the determinant of Eq. (Bll) for de-
termining the critical eccentricity. The quadratic equation is

A1A2D1D2 - X6 [ VC22D1 + C?2D2> + VC11D2 + C21D1} ]

r r - r rLir22 L2ri2

From Eq. (19) the value of the critical eccentricity is obtained as

XQ = 0.057 (20)w
The variation of coupled frequencies with increasing eccentricity was

computed from the procedure described in Appendices B and C. The obtained
numerical results for a two-degree-of-freedom system are shown in figures 4
and 5 and listed in table 3. The variation of frequency with increasing ec-
centricity agrees with the results predicted by Eqs. (16) and (17). Al-
though the bending frequencies are quite accurate, the torsional frequencies
can show considerable deviation. The instability of the torsional mode, as
indicated in figure 5, agrees with the results from Eq. (18). For a multi-
degree-of-freedom system the critical eccentricity that causes instability
was found to be in the range of

0.050 < XQ < 0.061 (21)w



These results agree with the results obtained from the two-degree-of-freedom
system in Eq. (19). Thus, for the sample blade the equations of Houbolt and
Brooks may become unstable for moderate eccentricities. One has to be care-
ful when using such equations as a numerical integration basis for the de-
termination of the response of rotor blades. On the other hand, if desired,
the second order terms in x can be included quite conveniently in the anal-

9
ysis by using the finite element formulation.

Effect of blade support conditions - The sample blade was analyzed
with an assumed hinged support, which allows flapwise rotations. The cal-
culated frequencies for the lowest modes and for various blade rotational
speeds are presented in figure 6. The sample blade was also analyzed for
a fixed-end boundary condition, in flapwise bending. The vibration fre-
quencies for this case are presented in figure 7 and compared with the fre-
quencies of a hinged blade as shown in figure 8.

The coupled mode shapes of both hinged and fixed blades are shown in
figures 10 and 11. As the end-fixity of the blade against bending rotation
is increased, the bending stiffness increases; thus, the frequencies become
correspondingly higher. The torsional component of the lowest coupled mode
is also increased.

Effect of eccentricity between mass and elastic centers - As shown in
figure 7, the.lowest coupled frequency is affected by increasing the eccen-
tricity between mass and elastic axes for the fixed blade; however, this
frequency is less affected for the hinged blade. Frequencies corresponding
to bending and torsional modes are compared for different eccentricities as
shown in figure 12. Such results agree with the previously described re-
sults on the variation of frequencies with increasing eccentricity. The
torsional component of the lowest coupled mode is plotted for different ec-
centricities in figure 12. The results also show the linear relationship
between eccentricity and the degree of coupling observed in Eq. (6).

Effect of rotational speed - The variation of frequency with increas-
ing blade rotational speed for different boundary conditions and varying ec-
centricities is shown in figures 6, 7, 8, and 12. As can be seen from these
figures, the square of the coupled frequency term is linearly proportional
to the square of the rotational velocity.

The torsional rotation at the blade tip is plotted in figure 9 for
various eccentricities at different rotational speeds. From the plotted
curves one can observe that the torsional coupled motion increases linearly
with eccentricity. For constant eccentricities this motion is also propor-
tional to the square of the blade rotational speed.

Effect of blade structural properties on coupled torsional behavior -
It was shown that an approximate relationship, Eq. (20), existed for the
coupled motion of rotor blades in bending and torsion. The validity of this
relationship was examined by varying each of the parameters in the equation.
The sensitivity of the torsional coupling parameter n with respect to each
of the parameters was also checked for a multi-degree-of-freedom system.

10



When the distribution of the blade weight was uniformly increased by
30%, it was found that the bending and torsional frequencies decreased; the
first bending frequency by 1.5% and the first torsional frequency by 2.3%.
In accordance with Eq. (A20), the increase of the m/I ratio resulted in an

o
increased coupling of the response. As shown in figure 13 the torsional
displacements increased by 30%. It appears then that the torsional coupling
is quite sensitive to weight changes.

Increasing the torsional inertia by 30% resulted in no change in the
lowest bending frequency; however, the torsional frequency decreased as
shown in figure 15. As shown in figure 14, there was also an increase in
coupled torsional rotation in the second mode; however, there was no effect
on the first mode. Such results can also be obtained from Eq. (A20). The
increased torsional inertia and the resulting decrease in torsional frequen-
cy has a balancing effect; producing no increase in coupling. The effect of
decreasing torsional frequency is significant for the modes above the first
bending mode and causes a net increase as shown in figure 14.

The effect of an increase in the torsional rigidity on the frequencies
and the mode shapes is presented in figures 16 and 17. Increasing the tor-
sional rigidity by 30% led to a 25% reduction of the maximum torsional ro-
tation in the first coupled mode. The lower coupled frequency was not af-
fected, although the predominantly torsional frequencies increased. The
plotted results correspond to Eq. (A20); showing an increase in torsional
frequency and a decrease in the torsional component of the lowest coupled
mode.

Increasing the bending inertia by 30% resulted in no significant
change in the bending and torsional frequencies or in the respective mode
shapes. The results confirm again the validity of Eq. (A20), since coupling
is not affected by a variation of the bending inertia.

Concluding Remarks

The presented analysis extends the application of the equations of
motion of Houbolt and Brooks for consideration of larger eccentricities be-
tween rotor blade elastic and mass axes. The presented results indicate the
significance of individual structural parameters in determining the sen-
sitivity of coupled bending and torsional vibration characteristics.

The results obtained for the sample blade show that for a rigorous
analysis of vibration response characteristics, one should consider that:

the blade boundary conditions are important when determining
the coupling ratio of torsional to bending displacements

. the degree of coupling is linearly proportional to the square
of the eccentricity between the elastic and mass axes

11



a more accurate representation of mass and stiffness properties
is required for the coupled analysis of bending and torsion.

When a detailed representation of the significant parameters is available,
the blade sensitivity analysis can be used as a means of improving blade
vibration and stability characteristics.

12



APPENDIX A

DERIVATION OF THE EQUATIONS OF MOTION OF A ROTATING
BLADE IN FLAPWISE BENDING AND TORSION

The total energy of the blade, when coupling is not considered, con-
sists of

fR1 I " 2 9 9 '9
UD = i (Elh - u£ mh + Th ) dx (Al)
D / I D

J 0

for bending motion and

fRUT = \ (Jce'2 - co2 iQe
2 + fi2 iee

2) dx (A2)
Jo

for torsional motion.

For the coupled motion of the blade the displacements at the center of
mass of the blade can be defined as

hr = h f xfi (A3)
0 D

whereby Eq. (A3) is valid only for small values of 6.

The potential energy for the coupled motion can be expressed as

" 9 9 9 ' 9 ' 9 9 9 9 2
U = 4 (Elh - co mlv + Thr + JG8 Z - u 1.6 + n I0O dx (A4)1 ' u u y D

Substituting Eqs. (Al), (A2), and (A3) in Eq. (A4), one can obtain:

-R
f f

 2 2-» i2 f
 2 ^ T 0

2 2 02 2 2 . .(COD - co ) mh + (co™ - co ) I.Q - co m6 x. - co m6xQh
D I D D O

+ TxV2 + 2Tx.e'h' dx + U_ + UT (A5)
O D D i

For the bending and torsional displacements one can assume the fol-
lowing functions:

13



h = a.h.i i (A6)

6 = b.j
(A7)

where the displacement functions h. and 0. represent eigenvectors of the

uncoupled Eqs. (Al) and (.A2). One can also write

Elh.i
"7 2 2

T + Th.B i i
'2

dx (A8)

and apply the principle of minimum energy to obtain

3a.i
= 0

For torsional motion one can similarly write

8U,
= 0

(A9)

(AID)

Substituting Eqs. (A6) and (A7) in Eq. (A5), and considering the re-
sults of Eqs. (A9) and (A10), according to the principle of minimum energy

Ai - X6bj . . .. = 0 (All)

2 2b. (uu - u) ) D. - x.a.j T. J 6 i

where

Ej H. = 0 (A12)

A. = I mh. dx,
i i '

T0.h. dx,
J J

14 -s



mh.e. dx, D. = I.62 dx,
i j 3 '

R

E. = I me2 dx, H. = ~ I T9.'2 dx (A13)
2

It is now possible to calculate the generalized coefficients (A. , B. .,
C.., D., E., H.) and to investigate the effects of the coupling. 1 -*

An approximate investigation can be carried out when one considers the
first bending mode and the first torsional mode of a rotating blade; i.e.,
for i = 1 and j = 1, Eqs. (All) and (A12) become

a^ - a,2) AI - xebl :..]•'11 *" *"<1 1 I " (.AJ-TV

D. - x a Q\ - u Cn - to x"E. + ftx^ = 0 (A15)
1 0 1 1 1 o l 0 1

The lowest uncoupled modes in bending and torsion, respectively, of a
rotating blade of uniform cross section can be approximated as

(A16)

For a rotor blade of uniform cross section and uniform eccentricity
along the blade, Eqs. (A14) and (A15) become

(ui2 - io2) ma.e. + (ft2 - to2) mxj^f. = 0 (A18)
D I 1 1 o i l

(ft2 - o>2) mxaa,e, + < (oo2 - a)2) T -H mx
2 (ft2 - a)2) > b.f, = 0 (A19)

o i l j l ^ D D 1 1

From Eqs. (A18) and (A19) we can now write

15



2x m
(A20)

JT
2

\ Bl
The expression (A20) can be represented as

S = (q-1) (q-A)
bl Cp-q) (P-D
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APPENDIX B

FINITE ELEMENT FORMULATION OF THE LINEARIZED EQUATIONS OF
HOUBOLT AND BROOKS

A general solution to the equations of Houbolt and Brooks can be ob-
tained by formulating the equations in matrix form and then applying the
finite element theory. These equations can be written in general form as
follows:

< - vf - 0 (Bl)

The formulation of the matrices in Eq. (Bl) is given in Appendix C.
energy of the blade can be expressed in matrix form as follows:

Total

u = - a) + x.eVh +
o -- -L — -- -L —

1
* 2

_
B— H— —v,—

(B2)

For the displacement vectors h and Q_ one can assume expressions of the
following form:

- = [0] h = a.h.
— 1—1

9 = b.6.- J-J

(B3)

(B4)

Eq. (B2) can then be written as

U = - 1 a)2 a2 A. + 2x a .b .C. . + b
2 [ 1 1 6 1 3 i j

h K T h . -•• 2x Q a .b .B. .i-i-T-i e i i

2D.l
3 J J

CB5)

where

B.. = e . K _ h . ,
ij -j-C-i'

C. . = 9.M,,h. ,
ij -j-C-i'

CB6)

CB7)"

17



An application of the principle of minimum potential energy on Eq. (B5) to-
gether with Eqs. (B3) and (B4) leads now to the following system of equa-
tions:

[••,
2

V
. 3

2

2
- U)

_

aiAi + X0bj

b . D . + xea.

B.. - u C.. = 0

B. . - to C. • = 0
ij 13

(B8)

(B9)

Eqs. (B8) and (B9) can be written in matrix form as follows:

2 2
> -a) )

2 2
(to -oj )A

B2 2

al

a2

•

am

bl

b2

•

•b
n

0

0

•

•

0

0

•

(BIO)

The terms o>R , (»)„ , A., B. ., G. ., and D. in Eq. (BIO) can be evaluated for
i j 1 1J XJ J

an uncoupled system of equations. Eq. (BIO) can then be solved to obtain
coupled frequencies.

The stability of Eqs. (B8) and (B9) can be tested by determining
whether or not the mass matrix is positive definite. In matrix notation
this can be shown as

18



xecn Xeci2

Xec2i

det = 0 (BH)

xecn Xec2i

X8C12
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APPENDIX C

FINITE ELEMENT FORMULATION OF MASS AND STIFFNESS MATRICES
FOR THE COUPLED EQUATIONS OF MOTION

The finite element method was used for a discretized representation of
the mass and stiffness properties of the rotor blade. The coupled equations
of motion (Eqs. (7) and (8)) were written as a system of matrix differential
equations. To analyze the torsional vibrations, a constant strain element
was used which requires a linear variation of displacement over the element,
while for bending vibrations a quadratic displacement function was employed.

Formulation of Mass and Stiffness Matrices for Torsional Vibrations

A consistent mass matrix was used for the discretized representation of
the inertia term in the equation of motion (Al). The derivation of the mass
matrix for torsional vibrations will now be summarized. For the blade ele-
ment in figure 18, with nodal torsional rotations 6 and 6^, the rotation
at any point can be expressed as

e = [1-5 5] (Cl)

The torsional acceleration at any point can then be written as

dt'

d2e,

dt

The equivalent inertia forces at the nodes of a blade finite element can
be defined as a vector T using the principle of virtual work as follows:

CC2)

T = 1-5

5

[1-5 5] (C3)

or

20



T =
2

1

'dV
dt' (C4)

dt

The elemental torsional mass matrix can be written as

(C5)

The elemental stiffness matrix can be analyzed in two parts. The first
part is the elastic stiffness matrix, while the second part is the matrix
representing the effect of the centrifugal forces along the blade axis. For
a linear variation of torsional displacements over a finite element, using
an approach similar to the derivation of the mass matrix, the effect of the
centrifugal forces can be represented by a geometric stiffness matrix. The
torsional stiffness nratrix for a rotating blade element can then be written
as

1 -1

-1 1

I- £ 2 1

1 2
(C6)

Formulation of the Mass and Stiffness Matrices for Bending Vibrations

After defining the nodal force vector P_ and the nodal displacement vec-
tor p_, as shown in figure 18, the vertical displacement, h, at any point
can be expressed in terms of the nodal displacements as follows:

h = (3C2 -

(C7)

A consistent mass matrix can also be derived for the bending vibrations of
the finite element using the approach applied for torsional vibrations.
Neglecting the effect of the shear deformations, the mass matrix in bending
can be written as

21



m £
420

156

22£

54

-m

4£

134

-3£2

Symmetric

156

-22£ 44'

(C8)

In the case of a rotating blade the bending stiffness can also be analyzed
in two parts as elastic stiffness and geometric stiffness due to the axial
forces in the blade. The representation of the elastic stiffness of a blade
element is well known [5], The effect of rotation of the blade can be eval-
uated by making use of a geometric stiffness matrix; which has already been
used for solving stability problems [5].

From Eq. (Al), the following relationship can be written for the finite
element to represent the virtual work by axial forces:

h' Th' dx (C9)

Substituting Eq. (C7) into Eq. (C9), the bending stiffness of the blade ele-
ment due to axial forces can be calculated. The total stiffness matrix in
bending can then be written as

6EI

£2

6EI

4EI
£

Symmetric

2EI
£

-6EI 4EI

+ T
£

6
5

£

-6
5

£
10

2

-£
10

-£2

30

* (•*> r. j. •Y?r TT— Symmetric

6_
5

-£ 2£
To is"

(CIO)

The displacement functions were defined fora blade element in bending,
Eq. (C7), and for torsion, Eq, (Cl). Using the principle of virtual work,
the coupling terms in Eqs. (7) and (8) can be derived for the defined dis-
placement functions.
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Derivation of the Coupled Mass Term (mx 6)

The virtual work due to the coupled mass term can be expressed as

P'P- h m x,6 dx (Cll)

..Substituting Eqs. (C2) and (C7) into Eq. (Cll) one can obtain Eq. (C12).

P =
m XQ H

60
21

31

9

-21

9

21

21

-34

6'l

LV

' . 2 'Derivation of the Coupled Stiffness Term (£2 mr x.)
a

The virtual work due to this term can be formulated as

(C12)

P'P-
2 '
mr x. 6h dx

o (C13)

Assuming that the length of the finite element is small in comparison to r,
Eqs. (Cl), (C7), and (C13) yield the following expression:

P =
ft mr x9

12
-

"

-6

a

6

-SL

-6

-a

6

I

91

K. (C14)

Determination of the Coupled Mass and Stiffness Matrices

Mass and stiffness matrices in bending and torsion can be combined to
obtain a single mass-stiffness representation of the finite element for
describing the coupled behavior. Combining the mass and stiffness matrices
from Eqs. (C5), (C6), (C8), (CIO), (C12), and (C14), and defining the
force and displacement vectors for the element as
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p = V
P2

Tl

P3

P4

. V

£. = " p i~

P2

01

P3

P4

_ V

(CIS)

the coupled mass and stiffness matrices for the element can be written as

156

Symmetric

M.
m£
420

147xe 2l£xe 140(IQ/m+xe)

54 13£ 63xrt 156

-13A -3A -14Axe -22£ 4£

63x .70(I0/m+xe) 147xQ -21£xQ

(C16)
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tô
~
vO

Oi

00
o
LO

t —vO
CM

LO

to
f-_

00
rH
rH

VO

CTi
CM
01

00

00
0
LO

r-~ r-
vO vO
CM CN

LO LO

LO tO

f- t->

LO 00
IO rH
0 rH

vO vO

to 01
»* CM
vO Ol

CTi 00

OO OO
0 0
LO LO

t*-̂

VO
CM

LO

•̂ -

[V,

LO
to
o
vO

VO
00
CN

01

00
0
LO

CN
LO
00

LO

a>
LO

01
o
CT>

vO

to
~̂
rH

1-̂

00
o
LO

r"-* t — •
IO CN
•̂ t CN

vO 1*̂

vO CN

to r-~
CN

o oo
O CN
r*̂  »H
t̂ ^ vO

i— i
i— i

o to
LO LO
CM O

vo -n-

00 00
0 0
LO LO

•* o
t̂ - to
CM VO
IO Tf

1— 1

f-~ vO

vO tO
VO LO

"*

VO LO
r--- oo
LO Oi

VO CN
oo to

to

Tt LO
CN VO
r-- rH

0 I-
\O LO
rH tO

to ĵ-
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TABLE 2. Uncoupled Frequencies of CH-34 Blade in Bending and Torsion:

Mode No.

1
2
3
4

Bending (rad/sec.)

25.2
72.4

136.2
210.8

Torsion (rad/sec.)

173.6
532.1
934.9

1350.0

TABLE 3. The Frequencies Corresponding to the Coupled Modes, Consisting
Mainly of First Mode in Bending and First Mode in Torsion.

(m)

0.0
0.020

.041

.050

.060

.069

.077

.083

.104

.124

.145

.187

2 2 2
D (rad /sec. )
D

635.0
632.8
626.2
622.4
616.3
611.0
604.9
600.5
581.9
559.6
539.0
473.7

2 2 2u>T (rad /sec. )

30,137
31,959
38,499
47,284
59,349
83,710

146,223
289,632
-71,923
-31,572
-18,779

-9,520
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Fig. 3 Uncoupled Natural Vibration Modes of CH-34 Blade,
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Fig. 11 Torsional Component of First Coupled Mode for CH-34 and
Fixed End CH-34.
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Fig. 13 Variation of First Coupled Modes with 30% Increase in
Weight Distribution (W), (CH-34).
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Fig. 14 Variation of Second Coupled Mode with 30% Increase
in Torsional Inertia (CH-34).
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Fig. 16 Variation of First Coupled Mode with 30% Increase in
Torsional Rigidity (CH-34).
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Fig. 17 Variation of Torsional Frequencies with 30% Increase in
Torsional Rigidity (CH-34)

41



T2 6ll I 1C

Force

x (5 = x/A)

Displacement
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