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COMPUTED LATERAL POWER SPECTRAL DENSITY RESPONSE
OF CONVENTIONAL AND STOL AIRPLANES TO
RANDOM ATMOSPHERIC TURBULENCE

By Jacob H. Lichtenstein
Langley Research Center

SUMMARY

A method of computing the power spectral densities of the lateral response of air-
planes to random atmospheric turbulence has been adapted to an electronic digital com-
puter., By use of this program, the power spectral densities of the lateral roll, yaw, and
sideslip angular displacement of several conventional and STOL airplanes were computed.
The results showed that for the conventional airplanes, the roll response was more prom-
inent than that for yaw or sideslip response. For the STOL airplanes, on the other hand,
the yaw and sideslip responses were larger than the roll response. The response frequency
of the STOL airplanes generally was higher than that for the conventional airplanes. This
combination of gréater sensitivity of the STOL airplanes in yaw and sideslip and the fre-
quency at which they occur could be a factor causing the poor riding qualities of this class
of airplanes.

INTRODUCTION

Air transportation between the centers of major metropolitan areas has been
severely threatened in both adequacy and convenience by the rapidly increasing urban
population growth. The growth is seen both in the total population as well as in the
sprawl into the outlying suburban areas. As a result, alrport facilities for the large
commercial jet transports, already overloaded by a constantly increasing traffic den-
sity, can only be expanded in regions far from the inner city. These developments have
sharpened the air transportation industries' interest in Short take-off and landing vehi-
cles (STOL). These aircraft could utilize new airports with greatly reduced runway
lengths located closer to the population centers. Consequently, short-haul air transpor-
tation could be made more convenient while, at the same time, congestion at airports
designed primarily for the large long-haul transport airplanes could be alleviated.

One of the requirements for a STOL operation to date has been that of a relatively
light wing loading for the vehicle at least during the landing phases of the flight. Unfor-
tunately, the response of an airplane to atmospheric turbulence is inversely related to its
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wing loading. Thus, the large response of an airplane with light wing loading could result
in poor riding qualities. An evaluations test report (ref. 1) on the suitability of an air-
plane, which is typical of the STOL type of aircraft, for airline operation discusses its
unsatisfactory riding qualities in rough air, particularly in the lateral-directional mode.

The subject of riding qualities of aircraft has been investigated and a synopsis of
the current knowledge of the subject can be found in reference 2. At present, there are
few generally accepted criteria for defining good or acceptable riding qualities. More-
over, the specific aireraft characteristics which contribute to good riding qualities are
not clearly understood. It is apparent, however, that the motion of the airplane in
response to atmospheric turbulence is one of the contributing factors.

Since atmospheric turbulence is most appropriately treated analytically as a ran-
dom quantity, predicted aircraft motion resulting from turbulence excitation will also be
random and can only be described in a statistical manner. An overall discussion of the
dynamic response of airplanes to atmospheric turbulence is given in reference 3. Three
measures of the response are the response power spectrum, the response root-mean-
square (rms) value, and the expected number of exceedances of a given response level,
Of these, the output power spectrum will yield information most directly related to con-
figuration differences. A correlation of the frequencies at which maximum response
occurs with those that cause the most discomfort in airplane passengers may indicate
areas in which the airplane behavior should be altered. In the present paper, the lateral-
directional power spectral response of a group of twelve airplanes, of various configura-
tions including potential STOL vehicles, has been computed by use of the method presented
in reference 4. The power spectra are presented both for use in future studies relating
to ride qualities and as a basis for the ocbservations made herein.

SYMBOLS

Values are given in both SI and U.S. Customary Units. The measurements and cal-
culations were made in U.S. Customary Units.

A aspect ratio

b wing span, m  (ft)

Cp,o drag coefficient at zero lift

CL lift coefficient, %‘i

C; rolling-moment coefficient, Rolling moment

qSb



Yawing moment

yawing-moment coefficient,

qSb
side-force coefficient, S_idquor ce
nondimensional operator b d
* Udt

matrix containing stability derivatives relating airplane moments and forces
to gust velocities

altitude, m  (ft)

height of center of pressure of vertical tail above X-axis, m (ft)
nondimensional radius of gyration about X-axis, ky /b
nondimensional radius of gyration about Z-axis, kz/b
nondimensional product of inertia, kygz /bz

radii of gyration, m (ft)

product of gyration, m2 (ft2)

integral scale of turbulence, m (ft)

tail length measured from center of gravity to center of pressure of vertical
tail, m (ft)

rolling velocity, ¢, rad/sec

dynamic pressure, %pUz, N/m2 (Ib/ft2)
yawing velocity, i, rad/sec

wing area, m2 (ft2)

profile height (refer to sketch (a)), m (it}

time, sec



U relative velocity between airplane and general air mass, m/sec (ft/sec)

u velocity along X-axis (U on figures), m/sec (ft/sec)
v velocity along Y-axis (V on figures), m/sec {ft/sec)
w mass of airplane, kg (1b)
w velocity along Z-axis (W on figures), m/sec (ft/sec)
XY, 2 three orthogonal axes of airplane
X,¥,Z coordinates with reference to X-, Y-, and Z-axes, m (ft)
g trim (steady-state) angle of attack, deg (rad)
B angle of sideslip, rad
r dihedral angle, deg
Y flight-path angle, rad
A matrix of airplane equations of motion in still air (see ref. 1)
£ damping ratio between actual damping and critical damping
v relative density factor, Mass
pSh
o density of atmosphere, kg/m3 (slugs/ft3)
o) sidewash angle, rad

Gc,b’ct,b’gﬁ root-mean-square value of roll, yaw, and sideslip angle per unit root-mean-
square gust velocity, rad/(m/sec) (rad/(ft/sec))

P power spectral density of function f
¢ angle of roll, rad
v angle of yaw, rad



w circular frequency, rad/sec

Wy undamped natural frequency, rad/sec

I | absolute value of a quantity (determinant of a matrix)
I: ] rectangular matrix

{} column matrix

Stability derivatives of airplane are indicated by subscript notation; for example,

aC 9 aC
.Clr=a£ Cnp = ;:1 CYBLa(T_XB

| (ZU) E’(ﬁ) U
Subscripts:
F fuselage .
g gust
T vertical tail
W wing
0 initial conditions

A bar over a quantity denotes a mean value.
PROCEDURE

Power Spectra of Airplane Response

The airplanes considered in this investigation are assumed to be rigid bodies with
fixed control surfaces in straight and level flight. Quasi-steady aerodynamic forces are
employed. The gust input consists of three orthogonal velocity components which are
uncorrelated and each represented with a one-dimensional power spectrum. Spanwise
variations in gust velocity are assumed to be negligible. The airplane is executing small
motions in sideslip, yaw, and roll described by the linear equations of motion normally
employed in stability analyses. The governing equations are developed in detail in ref-
erence 4. Expressions for the response power spectra which have been numerically
evaluated for the various airplane configurations given in this paper are described in
cutline form in the following discussion.



The lateral-directional equations of motion as given in reference 4 are

D¢y Do,
[akkDyy ) = [6){Dy, §)
By Py

where the terms dq: Voo and By are with respect to the general air mass and the
matrix [A] is the familiar "still air" rigid airframe characteristic equation and the
matrix [G] gives the relationship between the aerodynamic moments and forces result-
ing from the gust velocities encountered. Linear and angular velocity components of
the airplane relative to the still air and the gust constitute the elements of the vectors
Dq;o and qug, respectively. A solution in the frequency domain w, that is, the fre-
quency response function, is defined by

Bolw) Do ()
Wolw) » = [alw)] [Glw]] Dyg{w) (2)
Bo(w) Bg(w)

The frequency dependent forms of the [A:I and [G] matrices are

2 2 ]
-2pK 2b_ 2 -1¢ iw) +2p K b w2l iw -C )
( * oy 27 Y2t 2k ( L
I:A(w):l =|{2LK Iﬁ w?-1c iw -ZuKzz hg— w? - lC iw -C
XZ Uz ) l'lp Uz 2 n, ( HB)
1 : 1 . .
<-§ CYplw - CL) [(2;1 -3 CYr)lw - Cy, tan 7] (2,LL1w - CYB)

and

(% Czp)w (% Clr)w [Czﬁ(w):] W

[G(wﬂ ) (% cnp)w (% C“r)w [Cnﬁ(wﬂFT

0 0 E:Y B(wﬂ o




The frequency-dependent expressions for Clﬁ(w), CnB(w)’ and CYS(w) are given in
appendix C of reference 4. The s and x dimensions given in table T and used in
obtaining these derivatives are illustrated in sketch (a).

1
4

=

e X~

X0 ol — X9 — g

Sketch (a)

For linear second-order systems, the output power spectrum is equal to the prod-
uct of the square of the amplitude of the frequency-response function and the input power
spectrum, An analogous expression is derived for the three-degree-of-freedom lateral-
directional motion in reference 4 in which it is assumed that any cross power between the
gust-velocity components is negligible. The following relationships for the gust spectra
and gust velocities:

_ _02a
By gl = by () = V28 ()
ug? = ng = ;e?

which result from the assumptions of homogeneous isotropic turbulence permit the gust
inputs to be specified in terms of a single quantity, the side gust spectrum ¢ By The
final equations are given by &

— ~
) ’__?i_z Lo [ ¢ | IIP2e i
& qug Dy Bg Rg
2
q, g= y |? v |? v [PKK[P¥e >q> (3)
ﬁ v D¢y Dyg Bel 11| Bg Py
2
ol 12l LA el .
N B/ Dq)g . D;,&g Bgl |~ /




All numerical results presented in a later section were obtained through application of
equation (3) together with the appropriate form for the input gust spectra ‘I’B discussed
in the next section. g

Gust Velocity Power Spectrum

Numerous analytical representations of atmospheriec turbulence spectra have been
proposed. Of these, the two which have won greatest acceptance are the Dryden (used for
fitting wind-tunnel turbulence data) and the von Karman (based on the theory of isotropic
turbulence). A comprehensive discussion of the relative merits of the two spectra is
given in reference 3 wherein it is concluded that the von Karman spectrum is more repre-
sentative of atmospheric turbulence. Nevertheless, the Dryden spectrum is more amena-
ble to theoretical studies because certain integrals encountered in the analysis may be
% 2 % 2

Pg Bg
that is, the ratio of the rolling gust spectrum and yawing gust spectrum to the side gust
spectrum, as given in reference 4, are both based on the Dryden spectrum. Therefore,
for the purposes of this paper, the accuracy required does not warrant incorporating the
von Karman spectrum.

readily evaluated in closed form. The quantities in equation (3), and

’

A theoretical treatise on turbulence (ref. 5) and flight measurements (ref. 6} have
shown that for the turbulence in the atmosphere spanning the frequency range that affects
the airplane dynamic response, the power spectra can be expressed as

'I)Vg ‘I)Wg

L 1+3(k)2
w2 o9 10 2
Vgo Vg (1 + (k')z)

for the lateral components, and for the longitudinal components

b2

éu
s 1 ©
ug? gk )

h ) Y
where Lk 5

In addition, the data in reference 5 indicate that the scale length of the turbulence
L should be on the order of 304.8 m (1000 ft) to 609.6 m (2000 ft), but closer to 304.8 m
(1000 ft). Consequently, for this paper, a value of 335.3 m (1100 ft) and a root-mean-
square gust velocity of 1.8288 m/sec (6 ft/sec) were used.



PRESENTATION OF RESULTS

The power spectral densities of the lateral angular response (¢, ¥, and B), given
by equation (3), have been computed for 12 airplanes. A listing of the aircraft, pertinent
geometric and aerodynamic characteristics, and flight conditions is given in table I.

The airplanes are grouped together in the following manner: the three conventional
airplanes are called C-A, C-B, and C-C; the five airplanes classified as large STOL air-
planes are called LS-A, LS-B, LS-C, L8-D, and LS-E; and the four relatively small STOL
airplanes are called SS-A, 8S-B, S8-C, and SS-D.

In addition to the data presented, computations also were made for airplanes A, B,
and C of reference 4. Agreement of the results was good, as would be expected, the dif-
ference being mainly due to the mechanics of computation. The results, therefore, are
not repeated in the present paper.

The first group of data presented consists of sets of data for the conventional air-
planes. The data for the first airplane (C-A) are for the stability derivatives obtained by
using the method presented in reference 7; the second set of data (C-B) are for the same
airplane but for the stability derivatives generally obtained by the Datcom method pre-
sented in reference 8, the wing-alone derivatives being obtained by the method presented
in reference 9; the third set (C-C) is for an enlarged version of the same airplane, the
derivatives generally being obtained by the Datcom method. These resulis are presented
in figures 1 to 3.

The next group consists of airplanes currently representative of large STOL vehi-
cles. There are two versions of the first airplane designated LS-A and LS-B. The first
was represented with stability derivatives obtained in a manner similar to the conventional
airplane; the second used aerodynamic derivatives obtained during a riding qualities inves-
tigation conducted on an NASA moving-base simulation of the airplane. The derivatives
were developed by modifying the initial derivatives used in the simulator until the pilots
judged that the flight characteristics of the simulator closely matched those of the actual
airplane. The derivatives are used in the present paper in order to compare the responses
of the same airplane described with data obtained by two alternate procedures. The
results are presented in figures 4 and 5. The results for L3-C, LS-D, and L5-E {(both
the Mach 0.36 and Mach 0.'75 results) presented in figures 6, 7, and 8, respectively, were
obtained by using the derivatives developed generally by the Datcom procedures with the
wing-alone derivatives being computed by the method given in reference 9.

The last group eonsists of small STOL airplanes. Three sets of data for the first
airplane are shown. The aerodynamic derivatives were the same and were obtained by
the Datcom method. Two versions (original and modified inertias) differed only in their
moments of inertia; the third set was computed for a different flight altitude which was



comparable with most of the other airplanes. These results are shown in figures 9, 10,
and 11. The results for the other airplane (LS-D) are presented in figure 12 and the aero-
dynamic derivatives were obtained from reference 10.

The data presented in figures 13, 14, and 15 are comparisons of the airplanes
arranged in three convenient groups (conventional, large STOL, and small STOL). These
data are for the square root of the dimensional power spectral density which is indicative
of the magnitude of the angular displacement.

One airplane representative of each of the groups of airplanes in figures 13, 14, and
15 is presented together in figure 16 for comparison.

The root-mean-square values of the various roll, yaw, and sideslip angles per unit
root-mean-square gust velocity are presented on the initial figure of the set for each air-
plane. These values were obtained by integrating the response power spectral densities
over the frequency range from 0.01 rad/sec to 60 rad/sec.

DISCUSSION

The power spectral densities developed in this investigation did not reveal a major
reason for the fact that the STOL-type airplanes had poor riding qualities compared with
a conventional airplane. However, there were several minor differences which, when
taken together, could point up some conditions that lead to the different riding qualities.

Conventional Airplanes

The power spectral densities of the conventional airplanes were computed as repre-
sentative of typical contemporary transports. The pattern of the results for all three
airplanes (figs. 1 to 3) is nearly the same and their magnitudes are quite close. They
exhibit a peak in the response at a frequency that corresponds to that for the Dutch roll.
The main differences between the various power spectral densities for the airplanes are
that the Datcom versions peak at a slightly higher frequency (see table in next section)
and their magnitude is smaller.

The frequency difference is due to the larger value of Cn, of the Datcom version
(~0.17 as compared with -0.14). The magnitude difference is due to the somewhat greater
damping (Cnr =-0.30 compared with Cnp = -0.23) of the Datcom version. In all three
cases the roll angle seemed to be the most sensitive in that its power spectral density
wag about one-half an order of magnitude larger than the yaw or sideslip angle.

The roll response of the airplane to the various gust components is very dependent
upon the values of the stability derivatives. For instance, if figures 1(b) and 2(b) are
compared, it can be seen that for the C-A, the vertical (w) gust component is the most
effective in inducing the roll response; however, for the Datcom version (C-B), both the

10



vertical (w) and side (v) components are nearly equally effective. A comparison of fig-
ures 1(c) and 1(d) for the yaw response shows a similar result. The longitudinal gust
component (u) shows relatively little effect on any of the responses.

This effect of the various components on yaw response is due mainly to the different
values in the derivatives Cp and Cp,. [See preceding discussion, table I, and the
values used for the tail parameters (CY a1 By ete ) This result illustrates the

H

importance of using the best possible methods of estimating the stability derivatives in
order to insure the most representative response picture.

STOL Airplanes

The power spectral density data for the STOL-type airplanes as a group (figs. 4 to
12) except for the blown-flap configurations (LS-D and LS-E} exhibit a different pattern
from the previously discussed conventional airplanes. These STOL airplanes do not
exhibit the sharp peak in power spectral density at the Dutch roll frequency and, in addi-
tion, the yaw and sideslip response is generally greater in this region than the roll
response. The response of the larger STOL airplanes (LS-A, etc.) is slightly larger
than that for the conventional aircraft, as can be seen from the values of cq), o, ,and
o, (8S-A, etc.); however, for the small STOL airplanes, the response is considerably
larger. (Compare figs. 9 to 12 with figs. 1 to 3.) The magnitude of the response, in
general, could be expected to be related to the airplane wing loading and, since the larger
STOL airplanes and the conventional airplanes are about the same, their responses also
are similar in magnitude. For the small STOL airplanes, the wing loading was much
lower and the response appreciably larger.

Looking at two versions of the same airplane, the LS-A and the LS-B simulator,
shows that the simulator version (LS-B) has a somewhat higher peak in the response
(near the natural frequency) and at a slightly lower frequency than the regular version.
(Compare figs. 4 and 5.) The difference in response is entirely due to the difference in
aerodynamic data. The simulator version has smaller damping in yaw (C“r of -0.48
compared with -0.58), which permits larger magnitudes of the perturbations, and a lower
Cnﬁ (Cnf3 of 0.27 compared with 0.46) which results in a lower freguency,

The effect of velocity changes is shown in the data for the LS-D and LS-E airplanes.
(See figs. 7 and 8.) Here the velocity has been changed by a factor of 2 and the dynamic
pressure consequently by a factor of 4. It can be seen by comparing figures 7(e) and 8(e)
that the magnitude of the peak response is inversely proportional to the velocity, and the
frequency at which the peak response occurs is proportional to the velocity.

The data for the various versions of the same airplane (SS-A to SS-C) show only
minor changes in either pattern or magnitude even though the inertias have changed about
100 percent from the Datcom version to the modified inertia version. This result indi-
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cates that changes in the magnitude of the moment of inertia on the order of 2 do not have
a significant effect on the overall power spectral response of the airplane. The effect of
the relatively small change in altitude (2591 m to 1524 m or 8500 ft to 5000 ft) was nearly
undetectable.

Comparison of the STOL and Conventional Airplanes

An interesting fact is that for these STOL airplanes, even the roll response generally
is influenced mainly by the lateral gusts rather than by the vertical gusts as for the con-
ventional airplanes. Thus, the full effects of turbulence can influence the airplane
response even at low altitudes during a landing approach where the proximity of the
ground seriously restricts the vertical gust components. This result may be a part of
the explanation for this class of airplanes being described as having very poor riding
qualities during the landing-approach phase of a flight.

The data in the following table show that although the STOL airplanes generally have
higher damping, their natural frequency is also higher and approaches 0.5 Hz. This fre-
quency may put the airplane response into the frequency range where it would be annoying
to the passengers.

. Computed natural frequency, Damping ratio,
Airplane wp, rad/sec
Conventional airplane
A 1.57 0.110
B 1.81 112
C 1.79 073
Large STOL airplane
A 3.24 237
B 2.49 221
C 1.09 .547
D 2.26 .052
E 4.50 107
Small STOL airplane
A 2.29 .30
B 2.68 .256
C 2.67 .258
D 3.04 257
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The information of figure 16 comparing the various types of airplanes shows that
the light wing-loaded STOL (SS-A) has considerably larger responses for all three lateral
angles than the other airplanes. Except for the peak at the Dutch roll frequency (airplane
C-A) the roll response is similar for both the LS-B and C-A. However, the yaw and side-
slip responses are generally larger for the LS-B (again except for the peak) than for the
C-A. (See fig. (15).) This combination of larger sideslip and yaw would result in larger
lateral accelerations. Since people exhibit a lower acceptance level for the lateral accel-
eration than in the other directions, this condition may be a source of passenger
discomfort.

CONCLUDING REMAREKS

A method of computing the power spectral densities of the lateral angular response
of airplanes to random atmospheric turbulence has been adapted to an electronic digital
computer. By use of this program, the power spectral densities of the lateral angular
displacemen_t of several conventional and STOL airplanes were computed. The results
of the computations showed that the conventional airplanes had a sharp peak in the
response at the Dutch roll frequency, the roll response being more prominent than the
yaw or sideslip response. The STOL type of airplanes, on the other hand, generally did
not have much of a peak at the Dutch roll frequency, but the yaw and sideslip response
was larger than the roll response.

The large STOL airplanes which sizewise were comparable to the conventional air-
plane generally had somewhat larger response and at a higher frequency which put their
behavior closer to the region of possible passenger discomfort. A more definitive rea-
son for the poorer ride qualities was not apparent from the present calculations.

Langley Research C enter,

National Aeronautics and Space Administration,
Hampton, Va., December 12, 1973.
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TABIE I.- FLIGHT COND1TIONS, PHYSICAL DIMENSIONS, AND STABILITY DERIVATIVES OF THE AIRPLANES CONS

IDERED 1IN THE INVESTIGATION

Conventional Lerge STOL Small STOL
Quantity
* A B c A B c ] B A B o o
Flight conditicns
h, m 1524 1 52k T 620 1 52k 1 s2h 1 52i 1 52b 1 52k 2 531 2 591 1 524 1 52k
(£t) (5 000} | (5 0oo) | {25 pooY| (5 0oo) | (5 ooo) [ (5 000) [(5 ooe} | (5 ceo) |(6 500} |(8 s0¢) |(5 000} (5 ooe)
1, m/sec 13%.78 | 13y.78 | 24i.u0| 120.70| 120.70 | 121.52 | 121.92 | 250.85 73.76 73.76 73.75 77.16
{ft/sec) (bh2.2) | {Lbe.2) (192) | (396) (396) | (%o00) {Loo) (823) (2h2)y | (2u2) | (eke) [(253.2)
W, kg 27 751 | er 751 | 3@ o020 | 22 pes | o0 Wiz 16 982 | 2k 993 | 2k 993 [ 1 sk 1315] 1315 | 5 216
(1w} (61 180)| (61 1803| (32 asoy| {ug oooy| (35 oo0)| (37 k393l (55 100)| (55 100} (3 boo)| (2 goo)} (2 goo)| (11 500)
W/S, k.g/m22 319.7 319.7 Log. b 2£G.1 243.6 342.0 319,2 31%.2 1.9 61.3 61.3 133.7
(1o/£62) | (65.48) | (B5.4B) [{Bz.au) | (ua.31) | (u2.68) | (70.02) |(65.36) |(65.36) {{14.72) [{12.5%) |(22.55) (27.38)
n 11,163 | 11.143 26,2 10.99 9.59 15,746 | 12,721 | 12.72 6. 47T 5.50 L 88 6.397
c, .33 .33 251 L343 L33 429 N .09k6 2765 L2765 2765 BT
tan ¥ a o] 0 o 0 0 0 0 0 0 s} ]
@,, rad .031 L0318 .0310 |-.03ke |-.03k9 1.1lCd 086 Ko 061k L0814 L0514 L0227
Dimensions
b, o 27.13 | 27.13 | 28.47 | 23.20 23.16 20,57 23.77 23.77 { 11.8¢ 11.83 11,89 | 19.81
(rt) (89} {69) {53.%) {(76.1) |(76.0) [{67.5) (18} (78) (39} (39} {35) (653
B, m, 86.80 | 86.80 | 92.90 8z2.59 | B83.80 Lo 65 78.31 78.31 21.48 21,46 | 21.46 39,02
(rt°) (93,3} [ (93%.3) [{1,000) | (889) (goe} | (53b.b) | (843} | {8L3) (23:1) {231) (231) {k4z0)
B pr m22 18,09 19.56 19.48 20.35 20,35 12.08 16,62 16.62 2,40 2.40 2.4p g.20
{£4°) (194.7) | (210.5) [{209.5) | {a19) (216) |(130.0) |{178.9) |(a78.9) | (25.8} | (25.8) | (25.8) (99}
A 8.25 8.25 8.72 6.52 6.52 B.53 T.75% 7.75 6.58 6.58 6.58 10
T, deg 3 3 3 Y L -2.12 -3.5 -3.5 0 o o 3
b, m 3.712 3.712 | Lk.2bk3 3.000 3.000 2.590 3.575 3.575 2.179 2.179 2,179 1.829
(£t) (12.18) | (12.18) {t13.92) | {9.8uy | (o.8u) | (5.81) [(1i.73) [(22.73} | (7.15) | (7.15} | (7.15) | (6.1)
g W 11.08 11.08 | 15.00 | 11.29 11.29 6.52 T.78 7.78 5.79 5.79 5.79 7.96
(rt) {36.3L) | (36.34) |(4g.20) |(37.05) |(37.05) | (21.h0)-|(25.53) [{25.53) (19) {1 (19) |(26.1)
Koy T 1h, 18 1h,48 17.53 7.39 T1.39 6.72 11.04 11.0k 2.33 2.33 2.33 5.94
{rt} (47.50) | (57.50) | (57.50) |(24.26) | (2b.28) | (22.0L) |(36.23) | (36.23) | (7.63) | (7.€3) | (7.63) |(13.5}
X, m 8.36 8.36 11.92 ¢.u8 g.L8 4,97 5,42 5.2 5,19 5.19 5.19 6.71
{rt) (27.43) F(27.43) | (39.20) [ (31.09) | (31.09) | (26.31) |(27.77} [(27.77) f{17.oh} |(17.04) |(17.08) |{22.0}
Xy It 15.9k4 15.9% 18,36 1L.81 14,81 8.69 g.61 9.6 6.72 6.72 6.72 9.97
(re) (52.30) |(52.30) | (60.25} | (48.59) | (uB.59) | (28.52) | (31.53) |(31.53) {22.06) |(22.06) [(22.068) [(32.7)
8gs I 1.82 1.82 2.7 1.50 1.50 1.88 1,22 i.ee 0.63 0.63 0.63 1.22
(£e) (5.96) | (5.96) | (8.10) | (b.g2) [ (bog2) | (6.18) 1 (w.o1) | (h.o1) | (2.07) § (2.07) | (2,07} (k)
5q, 1 5.63 5.63 6.39 €.22 6.22 .50 6.11 .11 2.86 2.8 2.B6 k.11
(£1) (28.57) | (18.57) |(20.95) |(20.52) | (20.42) | (21.33) |(20.06) |{20.06) | (9.39) | (9.39) | (9.39) ](13.5)
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TABLE I.- FLICHT CONDITIONS, PHYETCAL DIMENSIONS, AND STABILITY DERIVATIVES OF THE AIRPLAMES CONSTDERED IN THE INVESTIGATION — Concluded

Conventional Large STUL Smell STOL
Quantity N 5 . N . c o R A B c D
Stability derivetives for airplanc
Ki 0.00Ff | ©.0157 | 0.0028 |0.0325 §0.0315 | 0.03287 | 0.0250 | €.0234 | 0.0075( o.0:75 | c.o175| o.010%
Ki L0656 . 0656 LOTO0 L0578 Relte] .050k L0hb3 .okh3 L0156 L0328 .0328 .02k7
L3 00468 | . ookGE L0043 { -.o0h | .o0022 -DOBS | 00195 | .00195] -.00103 | .0ozk1l | .oo2b1| .o00BS
" -.l783 | -.388 | —.u783 | - W3 |-k | —.73 | -.438 -.5t | -, UBT5 | -.4875 | —.4BT5 | .5k
Czr 1623 .168 L1623 (1965 | -.0671 .20 .1h3g .10 2103k L1034 .lo3k 107
Clg -.1klg | -.1k89 | -.1b1g | -.1397 | -.0952 | -.175 | -.2443 -.20 -.0651 | -.0651 | -.0651 | -.1223
i Cnp .00322 | -.058k [ .Q0322 | -.0733 |-.1519 .o50 | -.o002 ~.05 | -.0209 | -.0209 | -.0205 | .o132
Cnr -.227T | -.2973 -.328 | -.5833 -.456 -.713 -, 203 -.20 -.1h9 -.1h9 -.1bg | - 1Bo7
Cnﬁ 1383 L1109 L1657 RN 267 06D 200 .20 L 0605 0605 L0605 | 1okt
Crp 0568 | 039 | o568 |-.0t9 | —o1a | seo | Lowy 10 | -.0637 | -.0637 | —.0837| @
Cyr L5365 JT06 5365 1.17 1.17 400 .70 .70 2549 .25hy .2549 s
CYE -.899 -1.18 | -1.081 |[-1.488 |-1.3% -1.65 | -1,1k6 1.1k | -.k460 -.hég -.46o | -.BLs7
cLa, perfrad 5.872 5.872 5.872 | .55 6.55 | 3.896 L.&8 4.é8 4,5 4.5 4.5 5.79
Stability derivatives for wing or tail
c%w 4676 | - h6T6 | -.bET8 -.k2 -.be | -.5185 | -.ks2 -. 524 -.123 -.123 -.123 | -.548
Czrw 437 e 0605 .0803| L0827 | .o67 0235 | .oie | Lobig | Lowg | 107
CEBW -.o5§ =078 -, 056 -.0703 | -.0703 |-.0165 | -.0166 |-.0086 | -.0077 - 0177 |-.0177 | -.0441
Cnp =80 ) -ho|o-cho fe.0382 | -.0382 [-.0553 |-.oskh | -,0129 | -.0368 |-.0368 |-.0368 | .0132
W
Cnr 023 .023 .023 -.0061 | -.0061 |~.007k |-.co7h |-.ock36 | -.02k0 |-.cot0 [-.o2b0 | -.106
cD:: .018 .0052 -018 [ .00656 | .00656 | L0071 .01 .01 L0073 L0073 | .0073 .01
ay rad . D31 .0318 .0310 [-.03%9 |[-.0340 | 1101 .01 .01 L0B1L L06Lh .061% | o227
CYBT =607 | -.8512 | -.607 |-1.185 |-1.185 | -.647 |-.597 ~.537 =575 | =575 | -.575 |-.6921
/By .2 . 332 .2 .hBg 46g L0068 | .3455 L3455 ~.2hl -.2n -.2h1 1 _o8ug
Source reference T 8 4 8 {a) 8 8 8 a 3 8 10

Bperodynemic ccefficients medified for use on a NASA moving base simulator in order to give realistic handling gualities.
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{(a) Normalized total power spectral density response for each
of the lateral displacements.

Figure 1.- Response of "conventional A" airplane to random gusts for an
assumed scale length of 335.28 m (1100 ft).
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(b) Normalized total and individual component power spectral density response
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Figure 1.- Continued.
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Figure 1.- Continued.
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Figure 1.- Continued.
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Figure 2.- Continued.
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" Figure 15.- Concluded.
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(a) Square root of roll angle power spectral density.
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Figure 16.- Comparison of the square root of the power spectral density for a
representative airplane from each of the groups.
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(b) Square root of yaw angle power spectral density.

Figure 16.- Continued.
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(c) Square root of sideslip angle power spectral density.

ﬁﬁgur—'e 16.- Concluded.
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