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-ABSTRACT

Volume I- of ‘this report is concerned with the architecture of a
fault tolerant digital computer for an advanced commercial aircraft S All
of the computations of the aircraft, including those presently carried out
by analogue techniques, are to be carried out in this digitai computer;
Among “the important Qualities of the computer are the following: (1) the
capacity iS'to be matched to the aircraft environment, (2) ‘the reliability

1s ‘to be selectively matched to the criticality and deadline requirements
. of each of the computations, (3) the system is to be readily expandable and
'contractible and (4) the design is to appropriate to post 1975 technology.

Three candidate architectures are discussed and assessed in terms of the

above qualities, Of the three candidates, a .newly conceived architecture,

_Software Implemented Faultholerance (SIFT) orovides'the best match to the

above‘qualitie»s° In addition SIFT is particularly simple and believable

The other candidates BuS~Checker System (BUCS), also newly conceived in-

this project and the Hopkins multiprocessor are'potentially more efficient
than SIFT in the use of redundancy, but otherwise are not as attractive,
Volume II of the report is concerned with a detailed description and catego-
rization of the computations and with a discussion of the technology available

for realizing the computer system.,
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! PREFACE

This report, issued in two volumes, summarizes the work of Stanford
Research Institute on Contract NAS1-10920. The goal of the contract was
to specify the design of a computer, destined for use as the central com-
puter in an advanced, high-perférmance commerical aircraft., Because of
the éritical nature of many of the computations, fault tolerance was the
primary design goal of the computer. Other important design goals of

the computer relate to

® The matching of the architecture to the aircraft computations
L4 Thé capability for expénsion or contraction to meet the
requirements of various missions '

¢ - The suitability to post 1975 technology.

Volume I is concerned with the architecture of fault tolerant com-
puters, that are matched to the aircraft environmeht. We selédted and
studied three candidéte architectures as part of Task I of the contract.

Two of these architectures, Software Implemented Fault Tolerance (SIFT)

éhd Bus Checker System (BUCS) are new and as such are described in detail.
The third candidafe architecture is a multiprocessor concept that 1is due

_to Al Hopkins of MIT-Draper Laboratories. We are aware of the extensive

work that has been devoted to fault tolerant techniques and-architectures

" over the past decade. However, a surve& of this work has pointed out
significant deficiencies in each architécture; for our particular constraints,
For the most well-known of these previously studied architectures we document

the deficiencies.

Volume II of the report 1s organized as two parts. Part 1 is concerned
with the computafional requirements of an aircraft, wherein it 1s assumed
that all of the computations scattered among special purpose analogue and
mechanical computeré would be carried out by a centralized digital computer,
In addition to the usual computations associated with a commercial aircraft,
e.g. navigation, stability augmentation, decrab, we also assume advanced
cockpit displays and fly—byLwire. These various computations are categorized

according to criticality, and for each computation we:derive such parameters

xiii
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as memory requirements, processor requirements, iteration rates, thé
tolerable down time and the amount of data that must be saved in thé

event of failure. These results are concisely tabulated,

Paft 2vof Volume II is concérned with the technology for realizing
the central computer, It is assumed that production would commence in
the late 1970;5. The two aspects of the realization that we consider are
concerned with logic and memory and with module interconnections. With
regard to logic and memory we assess the various technologies, MOS, .CMOS,
BIPOIAR, etc., as a function of requirements of speed, reliability, cost,
number of units. In addition we discuss suéh realizations as customized
large scale integrated (ILSI), medium scale intégratéd (MSI), programmable
logic in the liéht of .the above reduirements. With regard to inter-
connection technology the'primary goal,is:tO'prevent the propagation of
faults beydhd sdme predetefﬁined module boundlaries. Various approaches
toward achiéviﬁg this_faulfjconfinementvafé.assessed'1n terms of speed,

cost, reliabilityv

We would like to acknowledge the support of Nick Murray and his
colleagues at NASA-Langley-—Sal Bavuso, larry Sbencer, Biil Dove, and
Brian Lupton. They interacted with us on all phases of the project and
provided valuable guidance. On the computation aspects many aircraft
and avionic specialists prbvided us with detailed descriptions of algorithms
as well as experilence -on the conversion of analogue algorithms toJavdigital
represehtation. With regard to architectﬁre, we have had stimulating dis-
cussions with Al Hopkins, Al Avizienis,-Bili Carter, Bill Marfin,
Barry Borgerson and Jim Miller, Many of their ideas are reflected in

our candidate architectures.

xiv'



I INTRODUCTION

A, Purpose of the Study

The purpose of this study is to aid NASA in specifying the design of

a computer, destined for use as the central computer in an advanced, high-

performance commercial aircraft. This computer, or more realistically,

computer complex, is to

L

(2)

3)

4)

(5)

be responsible for all of the aircraft computations
currently being carried out by analogue, mechanical or

dedicated, special purpose digital_computers,

be capable of carrying out computations associated with
an édvanced-aircraft of the type similar to the proposed

Advanced Technology Transport (ATT),

exhibit sufficiently high reliability such that the

.probability of a cqmbuter failure adversely effecting

the flight is negligible as compared with other system
failﬁrés. In_particulér, the design goal i's.lo-8
failures/hour for the flight critical function. For
computations that are not fiightfqritidalnbigher

failure rafes can be tolerated.

be readily expandable and contractible so as to meet

the needs of various missions,

be matched to the post 1975 component technology. .

The present study is composed of three tasks, as follows:

Computational Requirements: The purpose of this'task is to

survey all of the computations being carried out in contem-

porary commercial aircraft (e.g. navigation, autopilot, auto-

land, control of cabin pressure) and in the projected ATT

(e.g. advanced stability augmehtation,Acollision avoidance).

The Survey~is to reveal aspects of these computations that

influence the architecture of the computer including, word

size, memory requirements, reliability, recovery time from

" a failure. Volume II of this report describes, in detail,

the algorithms for zach computation and extracts from these

1



that have been proposed and analyzed durlng the past 15 years.

~algorithms some of the crucial parameters for the individual.

computations. Chapter III of this volume summarizés the
information and presents a global view of the implications

of the computations on the computer aircraft.

Tecnnology; The purpose of this task is to survey the technology
associated with the various system blocks of the computer. If
this computer ls to be produced in large quantities, production
will commence in the late 1970's. Volume II of this report
dlscusses in detail the prognoses for the following technologies:
1oglc, main read-wrlte memory, read-only memory, buffer-type
memory, back-up memory, and interconnections. For each of these

technologies the report discusses speed, reliability and cost.

Architecture: The purpose of this task is to specify the

architeoture of three candidate compufers, each of which can

match the computational and reliability requirements, and the

" technology constraints revealed in the other two tasks. The

hardware and Software systems of the candidates are to be

specified to a level such that the overall reliability can be

- assessed. In essence then, each candidate is to be specified

in terms .of a concept, wherein detailed design and analysis is

to be avoided unless required for the reliability assessmenit.

For example, a detalled description is needed of the process: of
recoverlng from a suspected transient fault but a deta11ed

descrxpt1on of the ar1thmet1c unit is not needed unless 1t em-

‘bodies some particular fault tolerance scheme, ThlS volume

‘summarizes our work on the architecture task.

Organization of the: Report

Chapter 1I briefly reviews the reliability enhancement techniques

Our

review is purposely terse since most of these: technlques are, by now,

well-knownu The intent is to delineate a set of conceptS»that‘are

used in the three erchitecturesl .



Chapter III is concerned with the implications of the computational
requirements task, Here we summarize the results of the computation sur-
vey and convert the results into cbmputer parameters: e.g., word size,

1/0 bandwidth, fault recovery time, multiprogramming characteristics.

Chapter IV discusses constraints on the architecture as revealed by
the technoiogy fask. For examﬁle,'we discuss the impact of LSI technology
‘on .approaches toward applying redundancy and on thé desirability of using
islow meﬁoriés to'aid in system recovery. A primary feature of the tech-
nology task is a review of interconnection technology, at all system levels
(chip-chip, card-card, subsystem-subsystem), and the impact of various

abproaches to ihterconnectioh on. the problem of fault isolation.

Chapter V is a-"checklist" for the design of a fault-tolerant com-
puter, for the particular aircraft environment that we are confronted
with, We summarize here, for example, the fault types that must be

accounted fof, the various alternative approaches.to system design, the

components of the reliability ‘analysis, and in general the details to look

for in the design and analysis of the computer.

Perhaps the simplest architectural concept that can meet the relia-

bility requirements involves the use of three or more complete computers

[

operating in a locked-step manner. We call such an approach the multi-

channel cbncept (MCC). The bésic reliability technique-is trivial here--
a simpie voting or adaptive voting.sufficés. However, there are.still
imporfﬁnt design decisions required for the multi-channel concept, in
partiéular relating to the operating system procedures for transient’
fauit recovery, and to communication among the computer units. However,

.we decided not to-pursue this concept, for the following reasons

® NASA Langley is in the process of establishing a detailed -

design and implementation effort based on the MCC.

® Comparable reliapility performance can be achieved with.
a system that consumes less hardware redundancy. Such a
cheaper system takes advantage of the possibilities for
allocating sub-tasks to ihdependent processor units, and
the possipilities for using leés costly coding techniques

in memory.
3




® All of the interesting software problems attendant to the
MCC.are confronted in practically all types of fault

tolerant archifectures.

In the second half of Chapter V we survey existing architectures
that have been'suggested for various fault tolerant applications. It is

clear that NASA-Langley should pursue an existing concept provided it is

-matched to the aircraft requirements. The systems that we surveyed are

the following:

® Self-Testing and Repairing Computer (STAR) of JPL.

® All Application Digitel Computer (AADC) of the NaveliAir )

Systems Command.

e Experimeﬁtal Aerospaee Mul tiprocessor (EXAM) of NASA-Electronics

Research Center.

® Automatically Reconfigurable Modular Multiprocessor
System (ARMMS) of NASA- Marshall Space Fllght Center and
of Hughes.

® Modular Architecture for Reliable_Computer:Systems (MARCS)
of IBM-Yorktown. '

' ® A Fault-Tolerant Informatlon Proce551ng System for. Advanced
' Control Guidance and Nav1gat10n (Hopkins' Multlprocessor)

‘of MIT Draper Laboratory.

This chapter will present detailed inforﬁétion'onteach of these systems,
but for purposes of summary we feel that only the Hopkinsf Multiproeessor
should be considered as a candidate architecfure; although ektensive
design and analysis must be‘carried out to ensure that the concept is
suitable to our environment. To be fair todthe:architects of some. of

the other systems we should state that their concepts have not yet con-
fronted all of the rellablllty quest1ons. Hence most of the concepts

can be adapted to achleve fault tolerance although this des1gn process

would probably entail as much work as de veloping a new system from

"start, and may noﬁ-produce a better machine than one desigﬁed«eiplicitly

for the environment we have in mind. .



Chapter VI presénts-a discussion of the Software Implemented Fault
Tolerance Concept (SIFT), one of two candidate architectures that we de-
signed anew, We recommend that SiFT be selected for pursual in further
design phaseé since it meets;all of our reliability, computational, and
cost objectives, and, moreover, it is likely to be the least costly in
the construction of a prototype. This attractiveness_in cost is due to

- the following factors:

(1) The fault detection and recovery processes are carried
out by software (although firmware or special hardware

would also suffice).

(2)  All units could be simple "off—the*shelf" computers, or

be realized from existing designs.

(3) Very little ancillary hardware, (the only exception being

a bus structure) is required to implement the concept.

(4) The architecture is well-suited to varying reliability

requirements among the computations.

Hence, the SIFT concept could be experimentally evaluated by programming

special executive routines on 3 or 4 minicomputers.

Chapter VII pfesents a discussion of another, newly conceived can-
didate architecture, denoted as the Bus Checker System (BUCS). BUCS

was inspired by the architectures covered in our survey.

As in SIFT, processing units that are nearly conventional suffice

as the primary computing elements. However, the memories utilize coding .

- techniques to enhance reliability at a relatively low cost, and a "smart"
bus acts in concert with a software executive to detect faults and recon-

figure the system.

Chapter VIII summarizes the characteristics of the .three candidate

architectures and presents our conclusions and recommendations.

Appendix A describes the detailed design of an algorithm for SIFT
that allocates computational tasks to processors. Abpendix B presents
a detailed comparison of the SIFT architecture with the multi-channel

concept, in terms of reliability and_redundancy;

5




II REVIEW OF RELIABILITY TECHNIQUES

A. Introduction

In this chapter we re?iew the various redundancy techniques for im-
proving digital system reliability that have been proposed during the

past 15 years. Our review is intentionally brief since

!

(1) There have been no fundamental breakthroughs since our

last survey1 of the field six years égo;

(2) Most of the redundancy techniques that are theoretically
interesting are only applicable at the compqﬂent»levél.
The constraints imposed by the emerging LSI technology
(see Chapter IV) are such that redundancy should be
applied over-chip$, not within the components 6f chips.
Hence relatively few redundancy techniques remain relevant,
- and moreovér system architecture considerations are now of

primary interest.
(3) The underlying concepts are relatively simple.

We have concluded that architectural considerations are of primary
importance in the desigﬁ of a reliable digital computer, as compared'
with so-called low-level'rédundancy techniques. For example, workable
strategies formrecovering'from transient faults, or the protection of
programs and data in the event of a fault are less understood than

'abstract redundancy techniques. waevef, some of fhese redundancy
techniques, originélly intended for low-level épplication,,form the
basis for enhancing system reliability even when applied at a high

level.
The attainment of high reliability in a system requires that
- * . . :
(1) Faults be detected subsequent to their occurrence.

(2) Errors produced by these faults be masked or the faulty
unit should be diéconnected and be replaced by an

operational one.

The following terminology has become more or less standard in the re-
liability field. A fault is the actual malfunctioning of an element.
An error is the appearance of incorrect data, on some data 11ne, as
a result of a f t.

ault, . K NOT [‘m\xhl)
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Two techniques have been seriously proposed to accomplish fault

detection, namely:-

(1) The data lines of the system are encoded so that under
fault-free conditions the signals on the daté lines
form a code word in an error detecting/correcting code.
The occurrence of any fault, within a detectable class,
is to introduce an error such that.a non-code word
appears on the data lines. (Duplication is an instance

of a trivial error-detecting code.)

(2) All system blocks are subject to pe?ibdic diagnosis in
order to determine if a fault has occurred since the
last atteﬁpt at diagnosis. There are important system
questions cbncerned with such high—level diagnosis, ip

particular how to account for faul_ty~diagnosing»units.z’3

A third possible technidue involves the use of a checking program
that can carry out consistency checks on another program. This tech-
nique is not studied heré because it is clearly dependent on the

particular application programs.,

For our application the use of periodic diagnosis is not recommended

as the primary fault detection process since

(a) transient faults are not detected nor prévented from

causing data loss by periodic diagnosis,

(b) the effectiveness of diagnostic routines remains sus-

pect, given the present state of the art,

(c) the real-time nature of most of the computations pre-
‘cludes the possibility of buffering computed results

pending the results of a diagnostic test,

(d) diagnostic test schedules derived by contemporary
systematic approaches usually guarantee détection of
only single or double gate tybe failures. Howevef,
in LSI chips more complicated fault behavior seems to

- be possible including multiple gate faults, and shorts
in interconnections. -
8



The diagnostic approach to fault detection does have a role in certain
system functions. As we-demonstrate later a memory system can be effec-
tively diagnosed provided other auxiliary.error-detection techniques

are used. Moreover a form of dlagn051s is essentlal in initializing the
computer system, and in effectlng a recovery from a 'massive transient'

fault.

~ One notes that technique (1) incorporates only spatial redundancy
while technique (2) incorporates primarily temporal redundancy. That is
in the diagnosis approach certain time periods that otherwise would he
devoted to useful computation are set aside for purposes of detecting
faults. It might be frultful to explore approaches that combine the

,attractlve features of the spatial and temporal approaches.

ane'a fault has been detected, and pinpointed, it remains to apply
eome'form of corrective action. When error correcting codes are used,
thejdecoder can produce at its output the intended code word, thus cor-
~recting the effects oflthevfanlt.' Another approach is to utilize the
error detecting possibilities of the code to pointxto a faulty unit, in
which case the faulty unit is replaced by an operational unit. For the
dlagnOSIS approach the 1mpllcatlon is that the corrective actlon is
‘>un1t replacement. One. recogn1zes that there are important questlons
concerned with unit replacement, e.g., data recovery; and -establishing
.the proper state in the newly connected unxt. The solution of these
problems is a dominant theme of the later sect1ons of this report In
this chapter we concentrate on fault detection and fault correction

using coding approaches.

In Section B below wevoutline the aspects of coding theory perti-
nent to this discussion.. Section C briefly discusses the use of the
triVial duplication and triplication codes in fault detection and
masking. Section D discusses the disadvantage (apparent) of utilizing
more compiicated codes in the processor portion of the computer. Section
E demonstrates the'use of coding techniques in the memory'sections, in
particular involving techniques wherein a symbol in .a higher order
alphabet (greater than two) is associated with an LSI memory chip.
Section F presents some comparisons'among the techniques for memory systems,

and summarizes our views on redundancy techniques for this application.

9 :
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B. . Coding Techniques

The following is a véry brief background of the pertinent aspects of
coding theory. An (n, k;q) code contains qk code words of length n,
wherein each of the symbols is taken from the field GF(q). The number of
redundant digits is r = n - k. The Hamming distance of the éode d, is the
number of places in which a palr of code words contain differing symbols,
minimized over all pairs of code words. For a code of distance d, any com-
bination of t or fewer errors can be corrected, t < d/2, and any combination

of & or fewer errors beyond t can be detected when § =d - (2t-1). 1In a

. k :
linear code the q code words form a linear subspace,

For a systematic code, the encodihg pfocesses may:be thought of as
being applied to an n-digit codeword (X, Y) that consists of a k-digit
‘information portion X and an r-digit check portion Y. The task of the
'encoder is, of course,_the-calculation of the Y vector from the X vector,
assumed given, For anr X n parityvcheck matrix H in echelon candnical

form, namely
H = [Q 1,

the computation of Y may be expressed as Y = QX.

T x k. r Xr

The decoding prbcess when error correction is desired, involves con-
verting a "received" vector (X , v ), which may differ from the "transmitted"
vector’'because of errors, into the code word.which is closest in Hamming
distance to the received word; The decoding process might only involve error
detection in which case the decoding process merely indicates that a received
word is not equal to a code word. The decoding process might involve a com-
bination of error correction and detection, in which case, for exdmple, if.
the received word is within distance two of a code word that code word

emerges from the decoder, otherwise an error indication emerges.

The distance propefties of the code bear a simple relationship to the
columns of the H-matrix, The code has distance d iff (if and only if) all
cohbinatiqns of d -~ 1 or fewer columns of the H-matrix are linearly indé—
pendéht, and there exists a set of d columns that are linearly dependent.

For low distance codes, say d < 4, the decodiug process is easily carried

10 -



* *
out by reference to the H-matrix. The product QX is formed from X, and
’

. _ * *
then the reference to the H-matrix.. The product QX 1is formed from X

-and then the received digits are added to form the error syndrome
z=Q'x* -Y*,

where it is understood that all of the operations are carried out according

to the rules of the field GF(q). An error has occurred if and only if Z is

non-zero. For single-error correction, the digit position in error is iden-

‘tified by the corresponding column in H being a nonzero multiple (in GF(q))

of Z. For double error cérrectionAthe correspondence is between a linear

combination of a pair of columns in H and Z.

C. The Trivial Duplication and Triplication Codes

Rérhaps the simplest error detection scheme that can be visualized is
to use.two independent systems, each computing ostensibly the same result
and to compare theAresu;ts fér‘disagreement, If each system has a single
binary output line-then the code being utilized is a (2, 1; 2)”code, with
H-matrix H = [1 1]. If the systems contain more than one -output line theﬁ"
"“the entire system is duplicated, and the corresponding lines -in each
*replicate form the positions of distinct duplication codes. The underlying
aésumption is that a single fault only infroduces an error OR an output
line(s) in oné systém. Hengé, with knowledge of the probability of a fault
the effectiveness of the duplication approach can Bé‘assessed when incor-
porated in a system configuration. . There'are.several bossible system con-
figurations that use duplication as the basic. error detection mechanism,

These include

(1) _an‘ensemblé of~processor pairs wherein one pair is
active in computation at a given instant. The detection
of an error in this active pair, by virtue of a disagfeement,
precipitates the replacement of this pair.by anbther pair,
It is possible that no effort is expended to diagnose the
faulty pair to pinpoint thelpbssible single faulty system--
~a concept proposed'in the Hopkins candidate architecture - °

discussed in.Chapter V.

11




(2) The same cbnéept as above except that a diagnosis is carried
out to pinpoint the possibly fault-free unit in a failed pair,

and return it to service.
Section F discusses the reliability performance of a coded memory system,

The simpleét error correction scheme involving coding is to use
three independent systems to carry out a calculation, and to take a
méjority vote of the results. As in the duplication case above, if each
systemrcontains more than one output line, the vote is taken independently
.ior_eaqh output line trio. The code being utilized is a (3, 1;2) code.
withVH-matrix | i

_f1r10
H = [101

‘There are several extensions and system implications of this simple

triplication code as follows.

(1) An (ﬁ, 1}2) code can be utilized wherein any combination of
- " _
[(n-1)/2] or fewer failures are masked and one extra failure
-1s detected if n is.even. The decoder 1is a threshold-network

with n inputs and a threshold of [n/21.

(2)- A.(3,:1; 2) code is utilized to both correct a single erfor
and -to distinguish the system-block in error. Thus upon

the occurrence of an error some cdntrol external to the
biocks in question switéhes out the~dissenting block, 1if
‘it.is other than-a combinational nétwork, the inserted

block must be.iﬁitialized to the state of the other blocks.
Noté-that’in the candidate architectures to be described the
switchover is accomplished by an executive operatihg in part

with software and in éart with hardware,

* -
The notation |x] and r§7 signifies the largest integer less than or
equal to x, and the largest integer greater than or equal to x,
respectively.
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‘. i
(3) An (n, 1;2) code is utilized wherein n is varied as faults

occur and are corrected. This adaptive scheme, proposed by
Pierce,4 Colnberg,s-and undoubtedly others, operates as
follows. As in technique (1) above the decoder is initially
set at a threshold of In/2l, and thus the system can correct
any combination of [(n-1)/2] or fewer faults (permanent or
transient). When the first failure occurs, the malfunctioning
bldck is logically disconnected, whence the code is transferred
to a-(n’, 1; 2) code, where n’ = n - 1, The next failure
results in an additional decrementing to n” =n’ -1, and so
-on until the code length is reduced to three'or}possibly two,
Obviously, this approach (3) exhibits more fault tolerance than
technique (1), and is comparable in fault tolerance to. .tech-
nique (2) is generaliy to be preferred because it is compatible
withrgraceful degradation Technique (3) is.to'be preferred
only for those applications that cannot endure the switchover
time associated with (2), or for those applications that cannot
.attain multiple transient fault tolerance with technique (2).

D.. Use of less Trivial Codes for Enhancing Processor Reliability

Ener since the coding theorists have demonstrated the effectiveness

of error correcting codes in increasing the reliability of information
transmission .a search has been underway to uncover a similar concept for
computation. There have '‘been numerous noble attempts, but, in our opinion
there seems to be no coding technique for the processor portion of the
computer that is more effective than the trivial techniques of the previous
section. This is especially the case for the processors that are suitable
for our environment. since they are relatively small, being only about 2,000

gates or several LSI chips.

We divide this discussion into sections concerned with arbitrary

logic and arithmetic,

13



_I1I-1, where it is assumed that gy is an-arbitrary function of f £, £

1. Arbitrary Logic

By arbitrary logic we refer to the irregularly structured com-

“binational and sequential circuits in a processor respousible for timing,

control, condition sensing,‘fegister transferring, logic operations, etc.
For such circuits no preferred‘or canonical methods of realizatiou-have
emerged, and hence in attempting to apply redundancy techniques to such
circults it must be assumed that arbitrary.logic is utilized in the

*
realization.

" The goal of using coding techniques in association with arbitrary
logic is to detect: the occurrence of failures in a replaceable module
without incurring the excessive redundancy attendant to the use of repli-
cation codes. 1In communication.systems, wherein the main design consider-
ation is transmiseion rate, the redundancy associated with ?he«use of coding
is simply r/n,>the ratio of redundant bits to'codevlength.:'The situation
is>significant1y more iusidious in the Csse of coding techniques as applied
to arbitrary logic. ‘ -

To illustrate this point consider the circuit-depicted in Figure

‘2’ 73!

'and is generated in an ‘indivisible module. A- similar assumption applies

" to 8os g3,‘g4, hl’ h2, h3. The indivisibility property of the various

modules means that a module failure will cause an error in the cutput.
Winograd and Cowan6 (WC) have suggested a coding scheme to-providefault
tolerance in a circuit of the ‘type depicted,in Figure II-1. - The WC’ method
for this circuit is depicted in Figure 1I-2, The intention here is to
provide a mechanism so that an error due to failure at any leve} is coff

rected before it propagates to the next-level, To -achieve .this three extra

Microprogramming techniques for the ‘realization of control functions

can eliminate much of the arbitrary logic associated with:conventional
combinational and sequential realizations. Moreover, theé microprogram
memory can be made fault tolerant by the relatively inexpensive coding
techniques described in Section E ‘below,., For the aircraft environment

we have in mind the processor(s) constitute-a relatively :small proportion
of the total system and hence, unless a significantly larger computation
load is envisaged,' the trivial replication coding techniques will suffice.

14



FIGURE 1I-1 .

A NONREDUNDANT CIRCUIT
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g-modules-are included such that in the absence of failures the signalé
onvthe lines g)» ++» By correspond to a Hamming single error-correcting
(7, 4;2) code. (The number of information lines at a level, in this case
k=4, is ﬂetermined by the number of modules in the nonredundant circuit
at that level.) At the next level, namely the h-level, the modules pro-
duce signals corresponding to a single error-correcting (6, 3; 2) code.
(The H-matrices for these two codes are depicted'in Table II-l.) The
particular way in which this is to be carried out is to provide a set of
modules each of which exhibitsithree roles: (1) decodes the signéls
" appearing on the previous level to produce estimated error-free versions
of the signals needed by thg correspohding irredundant modulés, (2).
computeS‘the irredundant signﬁl, (3) encodes Ehe signal so as to produce

the corresponding signal in the code at the next level,

‘ This three stagé process is illustrated in Figure I1-2 for the
and h;. With regard to h

[
1 A : 1 : * k%
‘g{,’gé;""g;’ are passed through a decoder to generate estimates, 8y &y gs

computation of signals h the signals

.of the signals gys Byr Bge (If no failures or only a single failure occurred

in the_enéémble of g modules, then the estimates are indeed the desired

7
N l.
{ is simply the identity operation since.h1 cor-
responds to an information digit. On the other hand h; corresponds td a
- PR
= +
| ] .4 h1 , hz.
This exclusive OR operation is carried out in the encode portion of the h4

-sighals.)~ The signals gi, gz,"g3 are then combined to form the signal h

_ The encoding process for h
check digit, which by reference to Table II-1 is specified by h

module.

_ As we previously mentioned, the coded version, as shown, imple-
‘menting single error-correcting codes, can mask fallures, provided.no more
thén one module in a given level is afflicted. If one measures the redundancy
as the number of modules in the coded version, then the cost seems quite
favorable as compared with the use of the trivial replication codes. 'I: the
case illustrated single fault masking 1s achieved with less than twice the
number of moduies, waever, one 1ﬁmediately notes that the modules utilized
.are significantly more complex than those'appearing in the original vepsion.
This added complexity is both in the number of inputs to the modules and in

the functions realized in the modules.
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€ B B3 B, 85 B &
1110010.0
11.010 1 0
1011001
(7,-4; 2)
h.h h h h h
123 4 5 6
11010 0
1 010.10
01 100 1
' (6,3;2)
Table II-1

H-Matriées for (7, 4; 2) and (6, 3; 2) Codes
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In general it is not easy to measure the complexity of the
redundant as compared with the nonredundant case but a few general

observations can be made,

(1) Typically, the realization of modules as LSI chips
results in a pin limited design, rather than one
which is logic complexity limited. " Hence the WC
cost measure that relates to the number of modules

is not tenable.

(2) -In view of (1) the increase in complexity due to
the use of close packed codes, e.g.,, Hamming codes,
is greater than ‘the threefold increase in complexity

due  to the use of the tr1v1a1 (3, 1; 2) code,

(3) The use ofviowﬁdensity codes7 is likely to decrease
the module complexity, but at the cost of more modules.
Briefly, low density codes are codes wherein the H
matrix has a small proportion of 1's relative to O's
and hence the decoder portion of the module is likely

to require fewer 1nputs.

Several modifications of the WC approach are possible to reduce
‘the complekity, and possibly lead to more attractive coding implementations.,
ihstead.of supplying an encoder and decoder at each level in a multi-level
circuit, it isvpossible to achieve fault tolerance with a single encoder
af the'overall‘circuit inpdt and a decoder at tﬁe output. 1In this case the
errors are clearly not corrected at each ievel in the circuit, but at each
level sufficient redundant modules are provided to preserve the code. As
an example considef'the situation depicted in Figure 1I-3 wherein, in the
" nonredundant case, Figure II-3(a), the circuit is a row of ANﬁ gates, The
code in question is the (n, n-1; 2) code that corresponds to a single parity
check. As illustrated in Figure 1I-3 the input lines to the circuit level
- include the single parity check P, »The parity- check P’ at the output is to
Vbe such that if parity is not satisfied at the input, due to a failure at
some previous level, then psrity is to be satisfied at the P’ levels. Also
1f a failure occurs.in the set Cl’ and‘Cn, the parity is also set to be
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satisfied at P’, Thus the equation for P’ becomes

. ‘ ‘.
P'=1if a +b +a, +b,+...+a +b +P=1 then

+ + +
c1 c2 1 else c1 c2 .

It takes little observation'of this function to realize that the module
. computing P’ is at least as complicated as the initial row of AND gates.
Hence we. conclude that, for this type of coding scheme simple duplication
is no less attractive for single error detection than more complex coding

_schemes. A similaf'conclusion has been reached by Pierce.8

) For the processors we have in mind it appears that‘for the de-
tection and cor;ection of errors the simple duplication and triplication
codes'are the most attractive. We stress that this conclusion is:based
upon the present art of processor design and of applying codes.to arbitrary
logic. As we show later, coding techniques as applied to memory are -quite
attractive and Ieasible. It is also possible that codes will be useful for
Aportione of the bus‘systems._ Since the applieation of codes-fo_the system
is'dependent on the particular architecture, we defer discussion of this

o queStionftp fhose sections concerned with architecture.
2. Arithmetic

The case with regard to codes to detect and correct errors dee
te failures in the arithmetic unit 15 somewhat more promising, although
for our case the -duplication and triplication schemes seem optimal.
Hlstorically,9 }0 arithmetic codes were suggested to detect and/or correct
errors of a particulaf type'in an adder. A parallel adder is envisioned.
comprising n-stages, but not including any logic for fast carry propagation,
A single failure is assumed to affect only a single output in a single stage;'
Thus in a giveh stage either the sum or carry outputs could be in error.

The effect of such a failure in the i-th stage of an adder is to produce an

error in the sum. as follows:

+2 if the error is in the sum output

+1 : '
2i ~ if the error is in the carry output .

[+
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For the purposes of detecting the occurrence of such. error%h%x oifnn
ail numbers to be added can be multiplied by three; the code in question
is then an AN code with A-= 3. - Any single failure of the type described
' ' 3

- above introduces an error of the fom + 2Y and hence, the occurrence of
an error is ascertained by the sum not being a multiple of three. In

. this code two redundant bits are required.

For the purroses of’detecting.a larger class of errors the use
of a larger value of A, nofably 15, has. been suggested by Avizienis11 as
an approach toward detecting a. larger class of errors. VThis expanded. set
of errorS'includesl(a) simultaneous efrors in.the sum and carry outputs of
a single stage (b) -errors occurring in the multiple usage of the adder as
'in_multipllcation, (c)Aerrors.occurr;ng due to failures in a.faat-carry

'propagation circuit,

Avizienis has also ‘noted. some advantages in encoding and decoding
attendant to the use of A's of the form 2 - 1, For such A's if b is the

number to be encoded'then a check number c¢ is computed as C- = A = (Iblamod A).

If'the binary digits aredappended to the most significant ‘portion of b, then
the resultant-word is 1ddeed Ab., The deccding-process, which involves de-
'fefmining‘if the sum is a:multiple of 15, is accomplished by casting out A's,
_Avizienis;accomplishes‘this, Qithzlow»ccst,.usingva 4 bit adder (for A =°‘15),
and requires: one cycle in this decoder for each 4-bit byte in the sum, . The
total eqqipmenf required for an.arithmetic unit including encoder decoder
and extra bits'in the-adder itself, for Avizienis scheme is about 1% times

an ‘rredundant unit, dirrespective of any spares. This: redundancy 1s less

than the. greater than 100 percent associated with duplication.

~Despite the apparent attractiveness of the Avizienis scheme we
- do not recommend the use. of arithmetic codes for the combuter for the following

reasons:

(a) For.an arithmetic unit realized  with.LSI technology it
seems unlikely that a failure will be confined to a
‘'single: stage of the adder; hence,. a significant .proporticn
of the fallures will lead to undetected errors. (Note that
;he»detection of a failure is likely to be depeﬁdent:on'the‘
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. ‘input data to the adder; hence, the inability of the
code to detect the failure during a particuiar cyCle
of the adder might be rectified'durihg the next cycle
when different .inputs appear.j‘

(b) 1In the STAR épmpﬁter the information to/from the
arithmetic unit is transferred byte serial., Thus
there is nolappreciable'delay introduced by the byte-
orientéd encoder and decoder, For a'system wherein
the transferlis to be accomplished‘in'pafallel; the
encbding/aeCSding delay would;be significant. More-
over, it is not clear thaf a duplicated byte serial
adder would be less preferable then a coded parallel

~adder for é;byte—oriented machine..

(é) The arithmetic unit is a relatively small part of a
pfocéssof, comprising about 20 percent of the total
-numbef;of gates, Hencé; without comparable coding
 téchniques for' the remainder of the. processor it appears
that little is to be gainéd by the use of coding in the

; . . *
arithmetic unit.

Recent work by Raol,2 and Neumann13 has shown that logic operations

can be performed within an arithmetic unit provided the carry lines

are available as outputs. More significantly, the same error detecting
codes used for arithmetic can also serve to detect failures when a

logic dperation is being carried out provided n cycles through the adder
are allowed for, say, the logical DRing of two n-bit vectors, -
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E. Use of Codes for Memory

1. . Memory Szetem Organization

The s1tuat1on with regard to codes for main memory -is far more
promLSLng than for logic or ar1thmet1c Intuitively the primary reasons

Vfor this optimism'are based upon the organization to be described:
A - .

A memory_cah be very easilyldeéigned such fhat any failure within
an independént mnit results in only an -error within a byte. What we have
in mind is a semlconductor memory organlzed as in Figure II-4. The memory
) .con51sts of f P chlps organized in p- blocks and f-frames. Each cﬁip con~

talns 1ts own decoder, read amp11f1ers, and read/wrlte control circuitry,

- be51des the storage flip-filops. There is consxderable latitude in or-

ganlzing.the;separate memory--chips, but several typical choices for a

4096 bit chip are the.following:
1 (bit wide) X 4096 (words), 2 X 2048, 4 X 1024, 8 X 512.

}By reduﬂdantly,inciuding the decoders in each chip, a'single fault within
a chip affects only.the byte associated with that chip. (We will.assume
;that a chip fallure can be catastroph1c to the ch1p 1n questlon to the
'poxnt wherein all bits in. the ch1p byte are suspect.) . ' Hence an error-
' correct1ng code can be‘effect1ve1y utilized here, provfded:tﬁe code can
correct. all errors within a frame (byte) width, correspondingrto the . »
width of’ the chxp " Thus with this organiiation there is ne need to
con51der dlStlnCt protectlon strategles for the memory decoders, Sense

amplifiers; nead/wrlte‘control c1rcu1try, and' so forth.

Coding schemes for arithmetie and. arbitrary logic. suffer in
that the encoder/decoder are JUSt about as complex as the logic performpng
.the real computatlon Fortunately, such is not the case for memory coding
’schemes © As.wwe will shortly demonstrate, a relatlvely small memory of 4K
29 bit words (1nclud1ng redundant bits for coding) consumeS'about 30-cths

while an encoder/decoder can be 1mp1emented with one or two chips.

There are several generallzatlons and embelllshments of the ;
simple scheme of F1gure II- -4, mostly related to the use of stch a memory, .

within a complete system. Among these aspects are the foIioWing:
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(a) - Provldlné spare frames in each block for purposes of
additional fault tolerance. Such spares, presumably
"addresable" by the encoder/decoder, would be used “to
replace a failed chip as:revealed by the correction’

process.

(b) Providing for fault tolerance in the encoder/decoder
and MARV(Memory Address Register) This coding scheme
as’ ut111zed in the Bus Checker archltecture embodies the
- use of a palr of encoder/decoders and MAR s as part of
a dual or tr1plex processor system. Thus the processor
.1s protected by the trivial codes while tne 1nherently
costl1er memory system is- protected by more eff1c1ent
'codes. It is also possible tc distribute portions of
the,encoder/decoder~among the var1ousvmemory chips-="
an tissue that should be explored in later studies.
Hence processors which are primarily constituted of'memOry blocks, can

be effectlvely protected almost 1n toto with coding techniques. In such

5; processors,”control, e.g. 1nstruct10n proceSSLng, could be achleVed
‘with microprogramming, and log1c operat1ons e.g., vector AND-s and
:OR's . by comblnat1ons of loglc in memory, table-lookup, and associative

memorles. The memories associated with these functions could be pro-

tected by codlng There will be residual arbitrary loglc, but for
such aumemory-orrented'proCesSor this logic will be minimal and protected

by the replication cOdes Since the arbitrary“logic is minimal only a

‘small 1ncremental 1ncrease 1n system cost is incurred.

Acdordin"ly, in- the sectlons below we dLSCUSS bounds on the

redundancy of the ‘memory codes, propert1es of the Hammlng and othér codes

that achlevetor almost achleve the bounds implementation of the encoder/.

‘decoder as a programmable cellular array-on a single Chlp, and performance

of these -codes within a system.

2. Bounds on Code Redundancy
As inferred'in the above section we are interested in codes
that can'correct:all singlefbyte'(or‘equivalently-single-frame)’errors..
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That is, for a 32-bit word, a a assuming a 4-bit frame size,

1, 2,..., 332,
the following errors (among many others, of course,) should be correctable

by the code:

e.e_e ; e e_e_e€

€1’ ©1%2° ©1%3%;° ©1%2%3%4° ©197%20

The following errors need not be correctable:

e1é395 (error pattern spahs two bytes)

€185, (double byte errors).

The situation of interest to us is depicted in Figure II-5

f — FRAMES

g — BITS : oo

SA-1406-6

FIGURE II-56 . FRAMES OF A BLOCK-CODE WORD
From obsgrvapion of this illustration, one notes that a code 6f length:
n = fg over GF(2) is desired or possibly a code of length f over GF(2g).
ToAdescribe a completely general situation we will seek bounds wherein

the burstvtOTbe corrected by the code is b, where b > g. It is emphasiied

 that the case of most interest is b = g.

A burst of length (ut most) b is a pattern of errors (not
necessarily solid) coﬁfined to b consecutive digit positions; for example,
the patterns 1, 11, 101, 111 are buréts of 1ength thrée, 1, 11, 101, 111,
1001, ldll; 1101,A1111 of length_four. There are clearly 2b_1 bursts of
length b, beginning in a given position. A cyclic‘bufst is one which
aésumes the last digit and the first digit of a code word are contiguous.

The length is similarly defined. A framed burst is a burst error that

occurs solely within one frame. Its length b is therefore at most g.

Analysis of codes for correcting a single burst of various
—types is made based on the number of syndromes required. The base-two.
logarithm of thisAnumber is a lower bound on the number of redundant digits
required. A cyélié-burst-correcting binary code which corrects any single

burst of length b must have (ét least)
' b-1 .
SC(n,b) = n2 + 1 ’ (1)
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. b-1 o
distinct syndromes, one for each of the 2 bursts beginning in each of

the n digit positionss(plus,one:for the case of no errors).

Now consider the situation wherein the code is to correet only

noncyclic bursts, i.e., the last digit of the word is not considered to

~contiguous with the first.

Let N(b) be~thefnumben of bursts of length b which are omitted.
from a’cyclic-burstecorrectingmcode'in-going,to a'noncyclic—burst*conreeting}

code, i.e.,
s (n,b) = 5 (n,b) + N(b)

'The number NCb) is 93511y cbtainable as
N(b) e s e 1
i=1 : - '
wﬁich leads ;mmedietely to thevbouﬁd,'for'b > 2,
'sN(n,b)_= (n-br2)2®"t | N £
Finally,'considef the situation of a code which only'correctse

"single framed bursts of length b within a frame of length g. The.number °

of such bursts w1th1n a frame. of 1ength g is

g2t - N(b) (22”1, b

IN

e . @)y

Conseduently,-using.(s) for each of the f frames, plus one for the error-

‘free syndrome ylelds the desired.number of syndromeb
spmb) = fgn22® T o fa 1, be @

the thatﬁfor g=>b thexabove~bound reduces. to

S p.1 ., , " (5)

| ' ' S s'(n,b) = £2
i Equatlon (5) is identical to the Hamming. bound for a code of 1ength £

‘over 2g that~corrects any single. Zg errors, which-is equ1va1ent to any

of the 2 -1 possible error. patterns within a frame.

| _ . Hong and,PateLls.have~shown how to construct minimum redundancy
framed-burét codes.. These codes come very close to achieving.the- redundancy
implied by (5), namely 1og2 P

It is desirablevtoiexamine the -saving that can be. obtained. by -
using framed bursts. This is done first by examiding the ratie of the .
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numbers of syndromes, then by examining the number of redundant digits

which can be saved.

Consider the saving of framed bursts over arbitrary cyclic
bursts of length b. The ratio of (1) to (4) gives the factor by which

the"number.of syndromes may be potentially reduced :

b-1 ,
n2 + 1 . g
- ~ : > b >
Scr = T2y 2T - f 71 c- b+ 2 orezbzz
. _ | |
= 5 for b = 2, ) (6)
=1 for b = 1.

This ratio is indepéndentiéf n. For a given b (or for a giQen g), (6) is
maximized when b = g, in which case the numbef of syndromes required is

" reduced by 5 factor of about b/2 for b.> 2.  (Note that the.ratio (6) drops
éff sharply és g-b increases.): This_maximum fof_b =_g'éorresponds to a
potential saving<on the_order of 1og2vb -1 check digits for COdes cor-
recting only framed bursts instead of cyclic bursts. Note however that

for small b there is comparatively little saving in gding from (1) to (4)

(br even to (2)5.'

Incidentally, any code cbrrecting cyclic burst errors of_some
length b is capablé of correcting noncyclic bursts of the same length,
while a code correcting noﬁéyclic bursts of that length is capable of
correcting framed errors of the same length. Thus one could aIWays résort
to a édde correcting cyclic bursts, especially if éncoding and decoding

for.framed bursts_are'inordinately complicated.

Table II-2 presents the lower bounds for the number of redundant
digits r, required for the cases b= g=1, b=g=2, b= g = 4. The
Hamming codes for b = 1 and the Hong-Patel codes for b = 2 and 4 achieve

the redundancy implied by SF in all cases shown.



# check digits r

k b = g‘=x1 ‘ -‘b‘= g = 2 b=g=4
Sc Sp Sc Sy
4 3 5 4 7 6
8 4’ 5 5 7 6
12 5 6 5 8 7
16 5 6 6 8 7
24 5 6 6 9 7 .
28 | 6 7 6 9 8
56 6 7 7 .10 8
60 6 .8 7 10 8
64 7 8 7 10 9
___________ S RN S
128 S8 {9 8 | 1 10
256 9 |10 o |12 . 10
512 10 11 10 | 13 - 11’
1024 a1 | 12 11 | 14 12

'TABLE I1T1-2 ~REDUNDANCY FOR®CORRECTING CYCLIC AND
L ~ FRAMED 'BURSTS |

'3.-';Specific Codes~for'Correcting"Fnamed Burst

 From “the standpoint of minimum redundancy theyoptimal;codes,
for the special case of b = g,-are the;generalrzed‘ﬂammingrdodeé ~ over
‘GF(Zg).*“for rf nédundant‘ffames, i.e.; ng redundant bits, the rF'X f
Hrmatrix is given as .follows. <The columns-of :the Hjmatrix consist.of
distinct-rr—tuples,~with components in'GF(Zg) with theAadditionalwprd-
vision~thét-n6 pairs'of4coLumnSrare.multipleé,of each other. Thus ‘for a
given'vaLue of r the~maximum~number of-columns in the H-matrix-is-given
by'(2 F=-'1)/(2g-1). ~Table II-3idepicts the H-matrix for ‘the case g =.2,
f = 15, rF-;»3,wcorrespohding-to‘a code to handle 24 information bits, 2
-bits -per frame; 6 check bits. We have also -included, in Table II-3(b)
_‘the multiplication table for 'GF(4). It is recognized that.bits-of a
. frame are suitably -interpreted as:elements of the field GF(ég). ‘Inrorder

to augment. this code to prbvide for single frame-error correction, .
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double frame-error detection, .an additional row and column are added to

the H-matrix as shown in Table I1I1-4.

Besides the generalized Hamming code, the Abramson code14 is
also a possibility for g = b = 2. For the Abramson code the number of
redundant digits is typically one more than for the>Hamming single error-
correcting code over GF(2). This code although, of course, offering no
redundancy advantages aS«compared with Hamming codes does offer slight
advantages in decoding,'particnlarly if nortions of the decoding can be
done in parallel. o .

‘For the case b = g = 4 Table 1I-5 gives the smallest known
. value of r for the case of single frame- error correction.. The best
‘ codes for correctlng cyclic bursts are based on Reference 15 most are
truncatxons of cyclxc codes (and therefore not cycllc) For our app11ca-
tion cycllc1ty is not cruc1a1 since the decoding will most 11ke1y be ac-
compllshed in parallel it may however imply greater structure to enhance
parallel implementation. A cyclic code (21, 12) e#ists, as does (trinialiy)
a cyclic code (12, 4) the iatter being effectively triple-modular redundancy.
The latter code can also be achieved by interlacing two Abramson codes '
(6,2)J’in'addicion to interlacing four Hamming codes (3;1). Best codes
with r = 8 which correct framed bursfs (b = 4) with k from 12 to 60 are
'obtainable as base 16'Hamming codes.. The code (68,60) is perfect. Besf
: codes for k = 4, 8 and 12 for these framed bursts ofvlength 4 can be de-
r1ved from the cycllc Gilbert code (20,12) (which has the advantage that
it is systematic)--see Reference 16. Although thlS code corrects cycllc
nbursts with b = 2, it'corrects framed bursts with length 4. Decoding for
the Gilbert codes is very simple in the given framework, although these

‘codes become noncompetitive in terms of r as k increases.

4. Implementation of Framed Burst Correction Codes

Ih order not fo incur any time delay in the encoding and de-
coding of the codes, it will p”Obablj be necessary to carry out a parallel
implementation. Moreover, the decoding can in part be accomplished in
parallel with computation. That is the results of the computat1on are-
held in abeyance unt11 the syndrome calculation determxnes 1f an error
is present in the word. Although such an rmplementat}on requlres
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02 3 111111100100
1 1.1 02 3 1111010 10

1 1.11 110 2 3110001

(a)
1 2 3
0 0 0
1 2 3
2 3 1
3 1. 2
(b)

Table II-3 H-Matrix for (15, 12; 4) Code

o ©

Table II-4 H-Matrix for (16, 12; 4 ) Code
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- [ F
4 8 8

R 9 8
12 9 8
16 10 8
24 10 8
. *

28 10, - 8
: . * S
56 10 8
* *
60 10 8
64 11 9
128 12 12
: %
256 12 12
*

512 13 12
: * *
1024 14 12

 TABLE II-5 REDUNDANCY FOR BEST KNOWN CODES FOR SINGLE-FRAME
CORRECTION, b = g = 4
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significantly more gates than a serial implemehtation for, say, a cyclic
Hamming code or Abramson code, the cost will still not be excessive. In
fact, for the implementations to be described a single LSI chip realiza-

tion is possible for a combined encoder/decoder.

a. Cellular array for single error correcting binary code

In~Referehcg 17 we presented several approaches to the
parallel realization of éncoders»and decoders, with the stress placed on
cellular arra& realizatioﬁg that are well-suited to the LSI technology.
The following_discussidn, absfraéfed froﬁ Reference 17, indicates the
method‘by’whiéh.a single'ceilular array can serve both.as an'enéoder

and decoder for a single error correcting code over GF(Z).

As a simple illustration of how- encoding and deéoding
arrays might be efficiently fealized in cellular form, first consider
the encoding and decoding for a singlererror-correcting plus.muitiple-

error-detecting linear binary code.

'This array is shown in Figure II-6, along with the logical
circuifry of a typical cell of fhe-ar?ay. Tﬁe cells.(stages) of fhe |
‘fihput register X‘aﬁd the output register Z.are also depicted in Figure 1I-
6. Each array cell is seen to'consistvof.é_single flip—flop-with-binafy |
contents q, bluswavsmall amount of cascade 1ogié (a’ total -of about 13

élementary'NOR gateg, as illustrated in Figure II-7.

For a-systematic code, the encoding and decoding processes‘
may be thodghtFOf-as being«applied to an n-digit codeword (X, Y).that.con-
sists of a k—digit inforﬁation portion X.and an (r = ﬁ - k)-digit check
portion Y. The task of the encoder is, ofAcourse,_the calculation of
‘the 'Y vécfor from the X vector, assumed giveh. ~for a parity check ﬁatrix
H in echelon éanoniéaljform, némely' '

I

i - Qi ¢ Trxr

‘the . computation of Y may be expressed as
Y= QX ,

where all vectors are treated as column. vectors.
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For encoding, then, the array and its two associated
registers operate as follows. For a given code, each digit qij of the
Q portion of the matrix H is placed in the flip-flop in row i, column
J of the cellular array (by a setup’process to be described subsequently).
'The block of k information digits of a particular codeword is placed in
the k digit register X, and the r check digits are computed combinationally
by the array and inserted in the'r—digit check register Z in a single
clock time. This computation proceeds through the chain of exclusive OR
.gates along each row, independently of the other rows, on the basis of

the x digits that are bussed vertically down each column. Each x digit

- xj contributes to the sum in a particular row i if and only if the corre-

-Sponding digit qij of the Q matrix equals 1. Thus, after the clock has
been applied to the Z register, this register contains the block of check,
digits that are to be associated with the given block'ofvinformation

digits.

In general decoding of a received possibly erroneous
' *

_ codeword (X , Y ) may be carried out. by first recomputing the check digits
-t * . *

QX from X and adding them to the received ‘check diglts Y , to obtain the

i error syndrome ]
e x *
Z=Y @)X .

An'error‘has«occurred if and only if Z is nonzero. ‘For single-error cor-
rection the digit position 1n error is identified by the corresponding
column in H that is identical to Z; that is, by the corresponding column

of Q (stage of the X resister) if the error is in the information portion
of the codeword and the corresponding column of I (stage of the Z register)
if the error is in the check portion. As soon as the digit in_error is.

identified, it may be corrected by complementing it.

Eor decoding, then, let the data bortion X* and - the check
portion Yf of'the received codeword be entered into.the X and .Z registers,
_respectitely._ When-clock c] 1s applied, exactly the same operation is -
carried out. as in encoding, except that the calculated check digits QX#
are added (digitwise) to the received check digits Y*, thereby<1eaving
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the syhdrome Z 1nlthe Z register. The digits of this syndrome are now
passed back along the rows of the'array on the z busses, for digitwise
comparisoh with the flip-flop contents (columns of the Q matrix) in each
column of the array. When clock cy is applied, any column in which exact
coincidence is found causes a l-signal to be applied to the corresponding
column of the X register, thereby complementing it. If no such column
generates such a. coincidence signal, then either there was no error, or
the error occurred in the check portion Y of the received codeword and

not in the data portion X'I

. it is triQially noted that error detection may be provided
by attaching a simple OR gate gating r inputs onto the Z register, as
indicated in Figure II—S. A l-output froﬁ this gate following the
application of clock °1 during decoding then 1ndicates the presence of

one 01’ more errors.

[ . .
( vFor loading the_flip-flops of the main array, essume first
that the_f11p4flobs are all reset initially., To load a 1 into the flip-
flop in row i and eolumn J, inject'l's into registers Z and X in this row
. and column, and apply clock c3)(i =.1,2, ...,n -k, =1,2,...,k). The

- contents of these flip-flops are not chenged durihg the eneoding and
decoding operations.

b. Cellular array for codes with frame width, g > 1,

The cellular array 2s discussed above can be easily modi-
fied to handle frame widths.of any arbitrary size. For the g = 1 case
above the syndrome is formed on the z~lines and passed left-wise through
the array until a match is found with a gq-column vector stored in the
main array. In the case of a frame size of g = 2 the. decoding situation

is easily illustrated with an example.

Assume that the code in question is the (5,3;4) code with
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H-matrix

Qyz | laxz
|
i 1 1 !l
1 2 3 O
l .
|

0
1

wherein the compoﬁents are in GF(4). As ‘in the GF(2) case above the Q
portion is stored in flip-flops in .the main array. Here 2 flip-flops are
required<pef;ce11 to store a GF(4) component. The encoding. process is to

form the .product -QX. This process requires the inclusion in each-cell .of

-a GF(4) multiplier and adder, each of -which are simple four -variable

functions. Thus, for example, if»thevinformation on vector X is {1 1 1)
then the check vector 1s~computeduas (l' 1) + (1 2) + (1- 3) =-(1. 0).
Thé‘decodingﬂprocess is to first form .the syndrome Z = QX* .- Y¥, This

-syndrome is .then reflected back through the .array, but instead of- searching

for a stored q-column that identically matches .the syndrome, the :search .is

for a g-column that is a GF(4) multiple of the syndrome. - For example, as
indicated above .(1 1 1 1~ 0) is a code word in the code,in.queétion.
(Note .that lO~bin§ry digits are involved .in representing this: code word in.
main mémOry..,Thus"fhe word as stored in main'menory could .be (0 .1 0 1

0 1 1 0 0 0) Assume that the-GF(4) version of the. word presentgd:té

Athe decoder 4s (2 1 1 1 0) corresponding to the first frame-being.log
instead of 01. The syndrome is thus (& 3), which is noted to be 3 times

column 1. :Theverror is thus identified .as 1ﬁ4 the first frame and the

”mégqitude-at,the-error is .the ratio of the syndrome to the- "matched"
~column, which in this casé is 3. The data bit in érror is corrected .by

- *
computing X - ‘ernror .pattern .

. We have not carried out a complete locigal deéign‘of this
modified decoder, but for the case .of g = 2 the cell complexity is about
twige that of thé~single encoder/decoder for GF(2) case. 1In a siﬁilar
manner. the encodef/decoder for g = 4 incurs .a .cell complexity about 16.'°

times that for the g = 1 case.

_Table II.6 summarizes the memory configurations and decoder
complexities for a memOry,wordlsize‘of 24 bits, and 4,096 words.of .memory.
We assume a‘memory'chip-siie of 4096 bits, which can be cohfigured in-.any -
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of the following médes: a (1 bit wide 'x 4096), (2 x 2048), (4 x 1024),

(8 x 512). 1In each case wé assume a Hamming single error correcting code.
The table indicates a strong preference to g = 2 with yegard to decoding
complexity. Note that the'£otal*number of memory chips for the g = 4 case
can be reduéed by 1 as follows. Seven check bits are sufficient to imple-
ment the code, so one of the check frames can be 3 bits wide, instead of 4,
providing for 1% check frames. Assuming 4 blocks the total number of
check chips is 4 x 1% = 7. A similar reduction is poséible for the

case g = 8,

Memory # of # of # of # of

chip -"check" frames chips decoder
Configuration frames , (total) total gates
1 x 4096 5. 29 - 29 _ 1560
2 x 2048 3 15 - 30 936
" 14 x 1024 -2 8 32 2496
8 x 512 2 5 - . 40 - 19968
Table 11-6

Summary of Decoder Complexities for
Cellular Decoding of Generalized
Hamming Codes
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F. Summary of System Aspects of Redundancy

For the attainment of fault tolerance in the cpu we recommend the
use of the duplication or triplication codes. In'general the duplication

approach wifh spares will be used when

® an ultra-reliable mechanism is available for the analysis of
disagreement indicators and for the insertion of an operative

processor pair

® gufficient time is available for the various processes

associated With_duplication.

Otherwise the triplication approach will be required, In one of the can-
didaté'architectures SIFT, the basis for selecting duplication or trip-
lication is the criticality of the application program.. The executive

that accomplishes error control will always be run in a triplicated mode.

In another candidate BUCS, the mechanism for processor switchover is
‘sufficiently fast to permit the use or duplication for processors. However,
the approach requires a modest size hardware executive that must be trip-

licated.

In the case of memory the use of coding techniques 1s rccommended.
The main reason for this is the economy in redundancy as compared with the
duplication and triplication approaches. In particular, we recommend the
'use-of the framed.burst»codes described in Section E. -As a minimum, the
codes should be capable af correcting all single-frame errors, and in
applications-where-back—up_iS'possib}e, the codes should be augmented to
. provide doubie-frame error detection."On the basis of‘encoding/decoding

cost the optimum frame width, g, is 2.

Another organizational factor that relates to the choice of frame
width is the following.- Assume a memory organization as depicted in
'Figure '1I.4 with spare blocks included to handle the function of failed
blocks, We assume’ that a single -frame error correcting code is utilized
throughout, and that subsequent to the detection of an error the offensive
block 1s diacarded in favor of a spare block. On one hand the number of

redundant chips per block is directLy'related-to frame width, g. However,
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the smaller the value of g, the larger the block of memory that is dis-
carded'subseguent to an error, A problem of concern then is, for a given
number of memory words required, W, and a given probability of not having

W words available at time t, what is the frame width that leads to a min-
imum number of spare cﬁipé; A partial analysis of this problem has been
carried out el‘sewhere,'19 wherein the results indicate that g = 4 is optimal.,
However, the optimal point is not'sharp enough to override the decoding

advantage of the g = 2 caée._
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III IMPLICATIONS OF COMPUTATIONAL REQUIREMENTS

Our purposé in this chapter is to abstract from Volume ‘II the
aspects of the aircraft computations that strongly influence the design
of the computer. It should be emphasized that the loading requirements
are quite tentative, and are possiblylinexact by as much as 50 percent.
ﬁowever, they do provide a well considered estimate of the computer com-
plexity required, and together with the results. of the tasks on architec-
ture and technology indicate that a computer can be specified to meet the

computational and reliability requirements.

Table III.1 summarizes the computing requirements. The most critical
phése of the flight from a computationél standpoiht is during an instrument
landing. Those applications that are involved in that phase are indicated
with an "ﬁﬁ. Small tasks that are not required during that phase do not
influence fhe design of the computer system and therefore have not been

‘estimated to the same accuracy as the more important tasks.

The coiumn headings of Table III.l are defined as follows:

Task ---------------- TheAname given to the application program,
Criticality Class-~- 1. Immediate safety of flight impact.

2. Eventual safety of flight impact.
3. Significant change-of-mission impact.
4, Operation impact.

5. Economic impact.

Iteration Rate/Sec—- The number of times per second that the calcu-

lation must be carried out. When two figures
are quoted, they represent two calculations within

the same functional task.

~ Equivalent MIPS—----- The millions of instructions per second to carry

dﬁt the calculations.

Memory Required----- The number of words of memory required for instruc-

tions and data.

. Missed Iteration=--- The maximum number or consecutive iterations that

can be missed before the application is jeopardized.
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‘Table III.1 Computing Requirements, Applications

Criticality " Equivalent ’ o
_ . Class » ++Mbssed
“Task __Iteration Rate/Sec MIPS - Memory Required  -Iteration
APPLICATIONS . _ Inst. | Data
Al |Attitude Control 1 5;20 1 .023 | 1845 230 -2-3
A2 |Flutter Control 1 ‘250 .069 70 22 . 2-3
A3 |Load Control 3,5] * 240 .014 45 :15 . -2-3
A4 | Autoland, Horiz. * 20
A5 |Autoland, Vert. 1} * : ©160 .055 |. 750 275 - - 2-3
A6 |Autoland, Throttle * .33 o
A7 |Autopilot al - 5 2 150 100 4-5
A8_|Elec. Att. Comtrol 1| * . . 80  ['.077 | 790 | %20 _} 7
Bl |Supervisor 4 ? ? 75 15 ?
-B2 | Inertial 2| * 1=25 .034 | 2100 156 0-4
B3 | VOR/DME 4 5 .004 250 50 4-5
B4 | DME, '‘OMEGA 4 5 ? 400 105 - 4=5
B5 | Air Data 4 ? ? 110 25 4-5
B6 | Kalman Filter a4l 1/5 ,001 | 250 65 . -2-3
- B7 | Flight Data ' 4 5 1 .028 1450 100 - 2-3
B8 |Airspeed, Altitude 4| * 8,16 <009 360 70 2-3
B9 | Graphic Display a} * 1,8 .032 | -890 5360 "2-3
B10| Text:Display _______ 4l . .0 019 | ‘60 18700 . __%7°
Cl |Collision Avoidance 4} 1/3,670 .021 550 1850 : 1-2
C2 |Data Comm, A/C N ‘various . 006 210 . 400 0
C3_|Data Comm, Ground _ 4 *_ ______ oS4 1001 ) aso o omz Lo 2.
D1 | AIDS 5| * 1/4-to 4 {002 | . 650 650 . . 4-5
D2 | Inst, Monit. 4} * 5 2014 | 800 100 - 2-3
D3 |Syst. Monit. 1-4f * 1/2 <001 | - 900 50 2-3
D4 |Life Support — 1-4 * . <'1/2 “3001 | - g9g 50 3-4
DS_Engine Control __1=2| * 33 | .119 J1300 | 200 ' | 12

* . : ' ' ' A
Tasks to beYrun -during most critiecal -phase.. A o
- ?Ifidicates that task-exerts a negligible load for the.parameter in question.
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For purposes of interpreting the table and discussing its implica=-
tions on the computer architecture we briefly discuss the following
aspects: reliability, roll-back delay, main memory requirements, processor

speed, processing variations within a mission, and data rates.

Reliabilitz-hWe have assumed that the probability of not successfully carrying
out the most critical computation should be less than 10-'8 per mission. These
computations, cofresponding to criticality classes 1 and 2, could cause an
aircraft crash if not carried out or if carried out with gross errors. With
this assumed computation reliability, for a fleet of 1000 aircraft flying 4
daily missions, each of 5 hours without repair between flights within a day,

- about one crash due to a computer failure would occur in 100 years. For the
.other cr1t1ca11ty classes the assumed re11ab111ty is not as stringent--typical
failure probab111t1es are 1044-—51nce the failure to carry out these computa-
tioos only results in a.mission change or an economic loss. In an actual ‘sys-
tem design it would be beneficial to-allocate redundancy'such that each task
is carried out with the indicated reliability. For our pufposes in specifying
an architecture we will assume that all of the computations are to be carried
oot with the more étringentlreliability——an assumption that is reasonable
51nce those computations in crltlcallty classes 1 and 2 constitute a maJorlty

of the memory and processor requirements,

Roll-backf-An important parameter of a fault-tolerant computer is the maximum
pimé interval that the computer can be in a rollback/reconfiguration mode in
'responding to a failure. - During this interval certainly some processing of’
~certain computationé ceases, and newly appeariﬁg~data might be lost. The
missed iterations coluﬁn of Table III.1 indicates the number of iterations
that can be ;gnored in a given computation without adversely affecting the
aircraft. In the worst case (collision avoidance) the system must be

"down" for no more than 1.5 msec. Several other critical computations—;
flutter control, load control, autoland--require reconfiguration times nearly
as low. For these computations, dependiog uponAthe archifecture it might

be necessary to reload programs, which indicates that the computer might be
required to be totally engaged in reconfiguration following a failure.
Fortunately, the computations with large amouats of data, e.g., display, can

tolerate a down time of approximately.0.5 sec.,'thus allowing ample time
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for the possible reloading of data interleaved with the more critical

computations.

Memory Requirements--The application programs for the critical phase re-

quire 19.247K words.. This figure is undoubtedly low for the following
reasons:
® the difficulty of estimating accurately -

® the need for memory‘space for the executive routines.,

Hence we assume a memory. reqﬁirement of 24K words. Note that this is a
nonrédundant'requirement; the demand for fault éolerance ﬁill increase this
figure. For architectureé'relying totally on the triplication codes this

' storage requirement must be tripled to 72K. For architectures utilizing
-only single ~frame correction in memory (plus possibly a few extra frames
for double frame detection and sparing) the figufe'islabout one~third in

excess of 24K or about 32K.

Processor Speed-ﬂforfthe critical phase the épplication taské require

.386 MIPS'(millioﬁs-of inétructions_per seéond); Once again we must regard
this figure as,being low in bart due to inaccuracies, but mostly due to

. "wasted" ppu'power in multiprogramming and the processing of executive
;foptines.l For these reasons we assume a processor load of 0.5 MIPS. An
importapt‘attribute of the computations iS‘their relative indebendence.
That is, the sharing of functions and data among the computations does not
sﬁbstantiaily reduce the'overall.mémory or processor requirements. Each

. cbmputation'requifes access to the state ofAthe aircraft, but all other
data can be considered to Be.iocalo Hence it is quite simple to impose a
multiprocessdr disCipiine on the compﬁtations, with almost an arbitrary

number of processors.

AUnder.cerfain allocation of tasks to processors it is not necessary
ﬁo dq any task interruption within a processor. That is, a task dan be
allowed to run through completion before initiating another task. Five -
processors each of 0.1 MIPS would enable such an allocation. However,
near the end of the useful life of the cdmputer, say if just one or. two
unfailed'processors remain, it is possible that a high rate task :(flutter
control) might be allocated to the same processor as a low rate but long
task (graphic display). If such 2 joint allocation is unavoidable, thén‘

interruption of the longer task will be essential.
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Processing Variations Within a Mission--All applications denoted with an

"x" are required during an instrument landing. This represents about 60

percent of the total cpu rgquirement and about 50 percent of the memory
requirement. Hence some graceful degradation is possible as during the
mission, tasks will be naturally deallocated as they are no longer needed

as part of the flight. Hence, when a task is no longer needed, its memory
area can be allocated to another task, or conversely, a failure in a memory
module is automatically handled by a reduced memory .requirement. However,
we note that the degrédation'with respect to memory is not uniform, assuming
that all programs and constén?s are retained in main memory.f For example,
in mid-flight, althpugh ndt ail tasks are being processed, all programs

muét be stored reliably in main memory. Hence the graceful degradation with .
regard to main memory is not exploitable until the last minutes pf the

flight, and hence is of questionable utility to the architecture.

Data Ratés--An‘impOrtant-measure of computer power reqhifed is the load
On‘the bus structuré for transfer of instructions and data. With.a computing
load of 0.5 MIPS we assume that an instruction will, on average, require 24
bité.* .Different instructions requife varying amounts of data including .
,thé following cases:
0 bits for register to register operations
158 bitsﬁfor byte operations, e.g. text display
iG_vbits for integer}operatibns

32 bits for floating point operations.

Making an estimate that fhe average data required is 16 bits; the
-total flow between memory and CPU is 20 M bits/sec. In some architectures
‘ke.gg, STAR) the bus would have to be capable of maintaining this rate.
"(Hence the expansion of the STAR system to accommodate a larger computa-
tion burden will require a significant modification in bus design.) In

the case of the Hopkins scheme or BUCS, a significant reduction would be

fThe issue of back-up memory in an aircraft environment is yet to be com-
pletely resolved. - Rugged discs can be obtaired but their cost/bit is not
significantly less than that for LSI main memories.

¥In a 16vbit computér this implies equal number of single and double length
instructions. '

49



achie?ed by the use of ‘the local CACHE on the processors., An -additional
reduction is achieved by providing a multi—bué structure orlglldWing’multi-
parts intoﬁméin memory. In the SIFT system most of the bus load would be
'in‘inquiddhl modules, with only an estimated one percent between modules.

All of these .issues are discussed in Chapters V, VI, and VII,

ra
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IV  IMPLICATIONS OF TECHNOLOGY

Task 3 of this study (reported in Volume II of this report reviewed
the 1ike1y technologies that would be appropriate for a fault-tolerant
computer in the period 1975-1980. This section of the report examines

the implications of that task on the architecture of the computer.

The most important advance in technology will be the continued ad-
vance of LSI. -The‘cost of LSI circuiﬁs will continue to drop-throughout
the 1970's, and will result in processor and memory costs that are low
enough so that extensive redundancy of units is practiqal'from a cost
viewpoint, This redﬁndancy can be either by replication or by coding,
the latter beihg more apﬁlicable to memofies.» It is expected that the
cost of a computer system to carry out all computation within an.aircraft
Will be comparable with the present cost of existing single function

avionic units (e.g., inertial navigation).

A second advantage in the use -of LSI is the sﬁall size 6f such units,
making it possible to achieve far more efficient shieldingvfrom both elec-
tric and magnetic fields, thereby reducing the probability of noise and
crosstalk. It is expected that fault modes Qf this type, which are mani-
'festéd as daté-dependent transientvfaults will be insignificant within the
_central units. However suchvfaults may still exist in connections to ex-

ternal sensors and actuators.,

With the use of LSI most of the conneétions at the device and gate
level take place within a chip, rather than on a board or through a
connecfor as in the use of discrete circuits. The reduction in soldered
and wrapped joints is estimated to be at leaét an order of magnitude
lower than that associated with, say, integrated circuits, with a

consequent reduction of faults in the connection system.

LEI circuits, though relatively cheap in high. volume production,
have a high development cost. This implies that an efficient design’
would contain as small a nuﬁber of different chip types as possible._
This affects architecturél decisions at two levels, ‘At the unit level
(memory, bus, arithmetic unit, control, etc.), there will be strong ad-

vantage in using replication of identical units rather than units
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designed specifically for particular functions. At the logic level, the

high development cost of customized units makes it more attractive to

‘transfer arbitrary logic to a form of memory as in the use of micro-

programming.

Replacement and maintenance strategies in a reconfigurable computer

"are also influenced by LSI. The large number of gates per chip, together

with the tendency for a chip fault‘to affect many gates, imply that small

- units such as registers should not be replaced, but rather that groups of

registers, all on the same chip should be.

The choicé of LSI technologies is between the lower speed, lower cost
MOS'ana the highér.speed and cost bipolér technologies. The total computing
power required among the elements of the several candidate architectures
is such that MOS will be sufficiently fast for memories, busses and arith-
metic units. 'In addition, the use of a multiprocessor organization permits
the attalnment of hlgh computatlon capacity with sloWer processors.' The

higher speed of bipolar circuits may still be necessary in the control

-sections where the microprogram cycle time will tYpically be an order of
-magnitude faster'than the instruction cycle time, Récent advances in

' technology have tended to bring the two types cioser in both speed and

cost.

We note, fhat the éhoice between different LSI technologies, discussed.

above, was on the basis of speed and cost. The lower cost alternative of

-MOS is possibie‘because of the higher dehsity within the chip, thereby

‘enabling the use of fewer chips. This will have the desirable effect of

increasing the inherent réiiability due to the reduction in number of.
chips. LSI memory sysfems appear to be potentially more reliable.than
core or plated wire because of the reduced numbers of discrete semi-~
conductor devicesland interconnections. The use of batteries is deemed .

to be a fully adequate assurance of non-volatility.

The MIBF for-LSI circuits is estimated to be between 106 and.lo7
hours. The lower number is factored into the reliability estimates for
the architectures considered. The requirement to achieve a MIBF of 108
hours for the whole system can Le shown to be achievzble by several
architectures. ’ '
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The use of optical coupling between units can provide great pro-
tection against damage propagation through several units. The architec-
ture must therefore be more éoncérned with fault propagation through
erroneous data, than by damaging electrical phenomena. The added cost
for such protection is substantial, though not prohibitive, so careful

evaluation of reliability value will be needed.

The availability of mass memory (disk, drum, etc.) of a sufficiently
high reliability is not crucial to the application, as the toial data
required to be stored is such that only a small cost pénalty will be in-
volved by using LSI techniques for all memory. Advanced bulk-memory
schemes will be useful in later systems, but are deemed not ready (as

well as not essential) for the time period of interest.

_ To achieve an estimate of total cdmputing system cost we assume that.
the cost of memory dominates that for processors, busses, etc. The un-
replicated memory reqﬁirement of 24K words of 16 bits.ez 400K bits)

yields a total OEM chip cost of $2K. If we assume threefold replicatipn
with éome sparing,'this figure becomes approximately $8K. Allowing an
‘additional 25 percent for the other (non-memory) units a-chip cost of $10K
is reached. We use,'és a ‘rough rule, a factor of 3 to account for wiring,
boards, frames, power supplies, installation, etc. The gross estimate of
the computer cost is thereiore $30K. This figure should not be regarded
as firm, owing to the significant design choices still to be made in '

_further study.
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A% A CHECKLIST-AND A SURVEY OF FAULT TOLERANT ARCHITECTURES

A. Introduction

The purpose of this chapter is to survey some of the existing computer

systéms that‘have fault_tolerance as one of the design goals. The systems
that are surveyed here are the STAR computer of JPL, the EXAM computer of
NASA-ERC, the ARMMS computer jointly of NASA-Marshall and Hughes, the MARCS
concept of IBM-Yorktown; the AADC of Naval Air Systems~Command; and the
prkins'Schemé (HS) of MIT-Draper Labs. The STAR exists as ah advanced
breadboard ahd the HS as a preliminary breadboard. Undgr present plans the
I1SI chips for the AADC should exist within a few years. The future of the

other three systems is undetermined.

For reasons which should later pe'apparent, of the above systems only
the HS is a candidate architecture for our application. However, even in
the case of HS some-key details of error detectibn, executive operation,
and hardware design are currently unspecified, e.g., multiprogramming for
the diverse avionic qomputations. 'éome additional design work is thus
required before we can be assured of the suitability of HS. We should
also emphasize that the other five mentioned systems could be modified to
better match our environment. However, in modifying these systems we are
likely to produce a variant of the three candidates--HS, SIFT, BUCS--with
the.ad&ition of some techniques found useful for the environment of parti-
cular.systemé. Among such techniques are the special associative memory
used for scheduling in EXAM or the arithmetic codes of STAR., Thus it _
seemed appropriate to us to desigh the candidates from scratch, borrowing

particular concepts of existing systems,

It should also be mentioned that numerous other architectures that
'embody fault tolerance have been proposed. Among these are the MECRAI,
the PRIMEZ system of UniQersity of California, Berkeley, the Three-Fault
Tolerant System3 of North American, ESS4 of Bell Telephone Lzboratories,
the Burrbughs Multiprocessor5 and systems currently being pursued by

Raytheon and Uitra-Systems. We do not survey these systems here for one
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or more of the following reasons: (1) insufficient documentation is cur-
rently available, (2) fault tolerance is an incidental design goal, or
-achieved in only limited degree, (3) the probability of further design
work being done by the architect is low, (4) the design goals are quite
different from ours. In another SRI report6 these and other systems are

.surveyed and classified.

Before embarking on a detailed description of the six architectures
to be surveyed, we present a checklist for the design of a fault-tolefant
architecture. In essence, this checklist is a summéry‘of the constraints
- imposed By our énvironmént, as measured by the computational requirements

and technology.
B. Checklist

Most of the items below pertain to the qualities that are expected
from a fault tolerant computer system for commercial aircraft.' We have
also included some items that enable the reader to.evaluate the surveyed

architectures and the candidate architectures.

Computational Environment -- As abstracted from Chapter III the air-

craft computations as presently envisioned have the following

" characteristics:
. Independence -- the 26 computations are essentizlly independent
with respect to'shafed data, shared programs and shared effectors.,
,Almoét all of the computations need access to the state of the
qifcraft which is a relatively small amount of data
. Total processor load -- 0.5 MIPS

. Total memory load -- 24K, exclusive of executive

. - Maximum processor load per computation -- .12 MIPS
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. Maximum memory load per computation -- 9K words, although this can
probably be reduced to 4K words needed for any iteration. Most

computations require less than 2K words of memory.

. System down-time -- no more than 10 msec for certain critical
computations. Fortunately, the memory requirements for these com-
putations are relatively small, Other computations have less

stringent down-time requirements.

) Technology _',It is expected that LSI chips will be employed throughout
the system. One Qould expect that at least several hundfed airplanes would
bé equipped.ﬁith the cohputer and if each computer incorporates ét.least
five chips of each type -- a figure easily satisfied for each candidate --
then sufficient chips would be utilized fo warrant the per-chip set-up
costs., As indibated in Chapter V, uniQersal'acceptance of ISI'memory
should appear around 1975 despite the volafility.aspect. In éddition, main
memofy will be used éxcLusively_for-all programs - and data except possibly
for the'storing>of’alternative ruﬁway information. The failure rate of an
LSI chip is taken as-lo-g/hr. with the major failure mechanism being inter-
connectioné. ’Howeyer; to a firét approximation it is assumed that any chip
failure causes all éhip oufputs to be suspect.' In designing the system for
an LSI implementation if is desirable to -utilize as few chip tybes as pos;
sible,.aﬁd it is'necessﬁry to minimize the number of pins/chips -- 40 1is

an absolute maximum,
Faults =-- the following faults are expected

o« Permanent -- An LSI chip can fail according to the rate mentioned

above., Failures are assumed to be independent among the chipé.

o - Faiiure prapagation -- Failures are assumed not to propagate from
chip to chip, i.e., a chip A in failing will not cause a contiguous
chip B to fail, (Of course 1f an outﬁut of A is an input tolB then
an output of B can certainly be in error.) As discussed in Chapter

IV the prevention of fallire propagation for certain failure modes
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(e.g. supply vbltége épplied to a signal line) may require ‘that
the chips be isolatéd by using light coupling or special driver-

receiver combinations as the interface mechanism;*

. Tranéienﬁ ~-- We are assuming here that at some moment a chip
produces an -erroneous output, but when the chip is presented with
the same data a short time later it will produce the correct result.
A transient fault can be caused by a local electrical disturbance, or
a design error coupled with a unique data dependency, It 1is expec- .
ted that .a trahslent would dissipate itself in 10 msec, or when
the timing of the signals is changed SIightly. The systém,‘however,

should embody some policy to handle larger duration trahsients;**

. Massive transient -- We ére assuming here a transient failure that
causes every modifiable element in the'system to be suspect, Such
an efféct couldvbe caused by lighfning, by a static discharge when
the aircraft passes through a cioud, or even by an;aécidentél.power
outage; At present there is scant information on the.probability

" of maséive-transients or their duration or scope. As we note later
a key difficulty in responding to a massive transient is that the'
. tables of operative and failed reéourées are subject -to corruption

-albng with ‘all other modifiable information, A tape cassette or

*There may be contiguous chips wherein the mutual propagation-of faults can
‘be tolerated. For such chip pairs, of which several schemes, -- and SIFT
to a high’degree -- have many, the:careful isolation is not required,

**As'mentioned'previously certain critical . computations cannot be unserviced
for more than 10 msec, Hence in responding to a transient fault the system
cannot -“‘perfofm retries for a longer period than 10 msec, but must (at least
temporarily) assume that the fault is permanent and connect a spare .
resoutrce to service the critical function, SIFT, BUCS, HS, .and STAR have
good transient-response characteristics. SIFT is, perhaps, the-best of
these, since it always jevforms a-voting of 3 results and thus.can.continue
in operation despite a long«~duration, local transient,
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.other slow, reliable back-up memory can be used to restart the
system, It seems clear that a system might not recover in less
than 10 msec from a massive transient of much longer duration.
One policy is to have the critical computations be capable of
being executed in practically all processors yith little inter-
vention on the part of the fallure-prone executive. SIFT
permits such a policy in that some of the critical programs, e,g.
flutter control, tend to be small and hence can be permanently
resident in all processors so that unless all processors are
disabled by the massive transient there is a possibility that the
‘function can be serviced. Some careful design of the effectors

might permit a longer MISS time than We‘are‘assuming°

Reliability -- For the critical computations the probability of
delivering a wrong answer. should not exceed 10 + For less critical
computations the reliability requirements are not as stringent -
typically being around 10, 4, Actually, ‘these . reliability figures
should be weighted according to the inaccuracy of the result, but

throughout this study we are,. pessimistically, -assuming that a chip
fallure disables all of the chip outputs . *

*0f course this does not preclude a single chip failure causing only (for
example) the least significant digit of a computation to be in error,
However, we expect that the entire arithmetic unit will be realized on
one or two chips and hence a chip failure here coulq indeed corrupt the

entire computation.
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Avallability -- At any time during a mission sufficient resources must

. bé ‘available to handle the critical computations. Once aga;n the probability
| offthé'system being unavailable for the critical computations must not

exceed 10-8. There are two aspects to availability., Firstly, after thé
ﬁetection of a failure the system should be unavailable for no more than

) a~MISSjtime that is dependent on the computation, For the critical compu~-
tations the MISS time is about 10.msec. Secondly, at the end of the

mission only about half of the rescurces are required to effect :a landing,

80 that a graCefully.degraded system can échieve the availability require-
ments., In Chapter III, however, we showed that graceful degradation is

'not‘as exploitable as one would hope for,

" Primary Fault-Tolerance Mechanism -- It seems clear that multiprocessing

‘should be utilized as the primary fault-tolerance mechanism. The computa-
tidns,'beiné reiatively independent and individually requiring low processor
.and memory loads, are easily implemented with a multiprocessor, The multi-
‘proqessér"concept can be exploited to provide relatively cheap fault

. tolerance -- the fault tolerance gro&s linegrly.with the number of processors

4—fvénd to accommodate tc the limited graceful degrazdation possibilities,

'-"Secondary.Fault-Tolerancé Mechanisms -- Here the issue is not quite as

cléar. The system comes close to being memory dominated; 24K words of main.
memory for.a 0,5 MIP processor load is somewhat high by contemporary
stanards; -Hence the use of error correcting codes fbr memory tendé to be
cost effective as compared with triplication. Similarly, for é memory
dominated system the use of expensive duplication or triplication techniqiues
for-arithmeficélogic procéssors does not imply an excéssive system cpst.

Ve émphasize,.howeeer, tkat -the issue is not completely clear, and we do

‘not rule out an architecture because it utilizes arithmetic codes

Redundancy Estimation -- The particular measure. that we are ‘looking for

here 1is the ratio of equipment in the redundant sysfem to equipmént in a
non-redundant version.. The comparison is compounded since there is no

" canonical realization of the non-redundant version, but we might assume that
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a minimum system contains 24K words of memory and 0,5 MIPS processing power.
Hence -in computing the cost of the redundant system the following cost
factors must all be included: spare processors and memory blocks, check
bits for codes, main memory words required to store error control pro-
cedures, spare busses, extra equipment required to effect a multiprocessing

~discipline, extra power supplies, and extra 1/0 controllers,

ﬁeliability/Availability Modeling -- The problem here is to'verify
-that the probability of a wrong answer and the probability of equipment
being unavailable do not exceed the desired figure of merit -- as a function
of the compdtation. For a pﬁrely‘static system, e,g;, one that employs
only voting, the reliabilify calculation is trivial, For dynamic systems
1ike thé caﬂdidate architectures the situation is more insidious. Among
the facfors that must be included are: the occurrence of a second fault
while the system 1is responding to a first fault, failures in unflexed
equipment, i.e., components that are not dtilized until an error occurs,
the frequency of diagﬁosis, and the scope of a transient faiiure that can
disable the system, Previous work on dynamic system mddeling has always
relied on a static model of the situation, Based on our study of the
several_architéctures, it is our feeling that the results produced by
this modeling tend to be pessimistic. For some architectures, this means
that a given reliability figure of ﬁerit may be attainable with less
redundancy than indicated by the model,

Transparency to User -- The application programmer should not have to

be concerned with the fault tolerance procedures in the composition of his
programs., This is similar to general ignorance of an application program- -
mer of the executive functions of any large computer installati on. Again

we would expect that sound executive system design would attain this goal,

Expandability -- It is desirable that the candidate architectures be

expandable to handle a larger computational load., What this means is that
for a given system configurétion, extra main-frame equipment programs and

I/0 devices are easily added to produce a larger system, It is not‘entirely
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clear what range of system power will be ultimately desired, but for
commercial aircraft over the next 15 years a computational range of 0.2
MIPS - 2 MIPS and a memory range of 10K - 100K seem reasonable, Systems
of less capability than the smallest configuration are too small to worry
about, and it does not seem possible that there would be enough computa-
tions in any conceivable commércial aircraft fogoccupy a system larger
than the largest configuration, It is clear that a system is readily
expandable if processors and memory blocks are easily connected without
requiring a major modification of the bus system,.or without requiring
modificatiohs,to the execugive other than the setting up of tables for
the new equipment and programs. The reader is warned that there are
insidious factors involved in designing an expandable system, For
example, the executive 6verhead_m1ght grow excessively as procesors are
gdded, or in-a‘minimal system the executive, in an attempt to make it
general, might overwhelm the system -- the problém with running 0S/360

:.on“the low line 560 machines,

Prototype Development -- Although the cost and performance of the

ultimate production system are of primary,importance,it is of some interest
to estimate thé cost of developing a prototype unit since most of the
syétemé présently exist onlyvon ﬁaper. The major factors of interest here
are: o A - |
. the feasibility of using off-the-shelf processors and memories
-« the amqunt ofjspécial-purpdse logic that must be designed and:
A impiemented | | '
. the pdssibility of using microprogramming techniques instead of
‘ cosfly hardware for fault tolerance functions ) -
. the scope of a system that must be prototyped in order to

‘demonstrate the concept.
In the next sections we attempt to discuss the various architectures

relative to the items in this checklist. Chapters VI and VII discuss thé
SIFT and BﬁCS architectures also relative to the checklist,
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C. STAR

System Organization

Essentially, the STAR is a single processor decomposed into separate |
functional units éach of thch is repiicated two or more times, With the
éxception of the memory moduies needed for critical functions, the TARP and
the logic processor, only ohe functional unit of each type is normally
operatihg. Faulty functional units are replaced by power switching. Com- i
munication between units is via two 8-bit byte—éerial busses to which units
are'paSSiver connected (no éwitches on bus lines), Two forms of error
detecting code are employed in information transfer béfween units, Every
transmitted:word'is_examined for error syndrome by hardware contained

within a critical "hérd;coreﬁ test and repair processor. called the TARP,

- Design Goals

Extremely long meantime to failure, low weight;‘low power consump-

tion, low computation rate, relatively rapid recovery from transient faults, s

‘Technology

Discrete transistorS'énd small IC packages. Magnetic-core R/W

memories, a ''rope-core" fixed memory, magnetié amplifier type power switches,

Faults -
Intended to recover from all single permanent or transient failures

confined to an IC Package. Massive transients and program failures can,

at present, not be tolerated,

Reliability Assessment

Survival for 100,000 hours with .95 probability. Recovery from

transient féults in less than 50 ms, See reference 7.
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Expandability

STAR is not particularly well suited to expandability because of
the limited band-width of the communication busses, which must transmit
each. word as eight serial bytes of four bits each, Current memory address
Vspace is also limited to 216 wcrds. A two-processor version of STAR might
be based on a duplication of the'TARP (test and repair processor) and bus
system with the sharing of normally unpewered spare functional units between
the two systems. This plan would lead to less than a doubling of the
original hardware but would require additional "hard-core" control struc-
ture to handle multi-programming and memory sharing. The STAR is not
' easily‘contractible unless the error detecting code. features are abandoned,

in which-case- the principal means of fault detection would be lost.

Reliebility Mechanism

&

The principal mechanisms employed in STAR to produce over-all
system reliability are:

1. The use of redundant coding to detect errors in trénsmission

3% .. of data or instructions from one functional unit to another,

2, Hardware for internal consistency checking within functional

‘J. v ,:.v'units that.detects sqme types of malfunction,_ Fcf example,ia
ﬂwerd placed on’a bus by a unit not agreeing with what actualiy

appears on the bus, causes the unit to report such an occur-

rence v1a a status-bus to che TARP

co - 3. A TARP with at least 3 identical versions powered up at all
times (with voting) plus spare units to be switched on line
to replace disagreeing members. This is the "hard core' of

the system,

4, A highly reliable magnetic switch mechanism for disconnecting
' malfunctioning units from ac‘ive status and powering up

replacement units,
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Recovery from Failures

The TARP contains a mechanism for re-executing instructions when
some indication of failure has occurred, If a fault occurs because of
a short transient, normal operétion may be resumed by attempting the last
previous instruction. On a repeated failure the TARP may then attempt to
resume computation at a designated "roll-back™ point, which it 1is the
responsibility of the programmer to provide. Otherwise (on repeated
failure) the unit indicating a défective status or transmitting an

1mproper code is,swifChed off and replaced.v

The claim is made that fault detection énd unit replacement can be
handled in 50 ms. However, this does not imply that at most a 50 ms
delay in program execution would result, since some error circumstances

might require roll-back to a previously established program check point.

With regard to programming errors, STAR has no explicit-meané for
coping-with this variety of fault, althdugh machine instructions are rep-
resented in an érror detecting code, since an aésembly—language program
could easily be faulty (i.e., in a tight loop) without causing. any error
report.  Recovery from such blunders would have to be a strictly software
implemented function, and at present STAR does not have a program- interrupt

feature 1n the TARP.

Measure of Redundancy

.In the STAR origanrzation redundancy depends upon the number of
spare units provided. Where memory space is not.a vital consideration
(so that memory units can be lost withcut replacement) a reliable con-
figuration containing at»least one extra replacement for each functional
unit would appear to require somewhere between 1.5 and 2.5 times the
hardware for a minimum organization with no spare units. As a rough
estimate, a minimnm configuration STAR would probzbly contain at least 3
times the hardware of a computer of the same computational capacity, but

without special reliability features,
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Transparency to User

In the current implementation the user must insert roll-back points
in his program and save the status himself, We would expect that in a

later version a compiler and executive routine could handle this chore,

Current Status

‘The STAR has been implemented and tested in '"bread-board" form at
- JPL and‘continues to be an experimental prototype of on-board computers

for unmanned deep-spéce exploration. -

" General Conclusione

) While~the STAR computer organization has many novel -features
uniqnely'suited-to its mission it does'not match well with our gi&en :
‘mission objectives. In particular, the weilght, size and power require-
ments are irrelevant, the STAR's‘rate of computation is far too low to »
~handle the several more critical tasks of stability augmentation, inertial
navigation etc., STAR is not well suited to expansion, "and lastly, the
STAR is inefficient in the sense that a large amount of hardware remains

gcompletely idle unless a rea1 maixunction actually occurs, -
D, . EXAM

System Organization

The EXAM system8 is a very homogeneous multiprocessor, multi-memory
configuration in which any processor can.have access to any memory through
what amounts to a huge cross-bar switch., Each processor can- find itself

in one of three states:

1. A problem state in which 1t .is working on'some'applications

program .

2, The executive state in which it is doing the usual system—'

monitor fu tions,
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3. An idle state in which it attempts to seize executive control.

Hardware interlock features-aré provided to prevent more than one processor
from securing executive status. An associative ﬁemory, accessible to any
processor, is provided to handle some of the executive control processes.
Memory ‘access by more than cne processor to the sameAmembry unit is handled

by a 'round-robin' priority scheme,

“Design Goals

Principél motivations for the EXAM architecture were: high per-
formance (as measured by executed instructions per second){ the possibility
of a highly repetitive ISI qonstruction, and very flexible ekpéndability

- to many-processor organizations
Technology -

The ultimate ﬁse of ISI is assumed as the only reasonable technology
ifor the cross-poinf array. This array connects processors to ﬁemoriesiin
a fully pafallel set of 36-bit communication paths; Othérwise, processor
and memory technologiés ére'optional although the associateive memory

required for executiveAfunctions‘wodid imply semi-conductor implementation.
Faults

The documentation is not clear on this point, although processor
failures and memory bank failures should be handled by a simple switchover
processor, The system seems very vulnerable to massive transients and

permanent fallures,

Reliability Assessment

No estimates are aviélable. The possitilities for producing a
reliable machine would seem to depend on software augnented identification
of faulty processors;and/or memory modules, followed by mcdificatdon of
the executive program to deny communication to or from these units. A
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particularly dangerous feature of‘the EXAM organization from the reli-
abiblity standpoint is that each processor can write in every memory
(éxcept :perhaps the executive associative table). Thus there is no
mechanism to prevent a faulty processor from destroying data in any

"memory- unit,

Also very critical to the reliability of the EXAM organization
is the integrity of the ISI crosspoint switches. A switch failure might,
for example, prevent access by a processor to several memoryAunits, or

render some memory unit unavailable to any processor,

Reliability Mechanisms

7#" The EXAM ~organization contains no explicit plan for ensuring
reliable operation.~ Assuming that the cross-bar switch connecting
proéessors,with-memories could be made "hard-core" reliable by TMR®

. techniques, then survival of some of the initially available.proceSSOrs-
and memories may be assdmed° In thisvcase a continuing but degraded:
~ performance of the system:would be feasible, but only if sophisticated
'software»diagnostic methos were employed to reschedule tasks, The.most
- vilnerable . area is the possibility of a runaway processor destroying

information in an unprotected memory.

.Recovery from Fallures

i .Here again no particular recovery-means have been supplied by the
SyStem'architeCts._ One may_visualize schemes~in which several processors
take part in one task, comparing results, On discovery»of-a disagreement

the offending processor might be denied merory accesses by dropping it
‘from the. round-robin memory queue. Here, recovery times could be as short
. as one.instruction cycle or as long as the execution time between programmer-
,assigned~check points;n The whole.strategy is vague and it is not at all
clear what’ might be expe ted to occur on a transment that affected some

processors but not: others.
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Measure of ‘Redundancy

The EXAM architecture has no redundancy in One sense because some

‘programs could employ all processors and memories in useful computation,
To construct a ''reliable' version of EXAM would require at least a TMR
realization of the cross-bar switch plus consideréble internal redundancy
in the processors, memories and in memory access circuitry, and coding in

memories, This might amount to a factor of 3 over a non-redundant version.

Expandability

The EXAM conéept 1$ certainly very flexible with regard to coﬁputa-
tional péwer-since almost any number of proéessors and memories can be
accbmmodated by the same genéfal organization, HoweVer, qomputafional
power 1is not proportional to the number of proceésors employed since
conflicts,qn memory access can lock out.severallproceésors desiring to
iook at the same memory module, 'Efficient use of thg EXAM configuration
”'requires-careful paftitioningvof taské into 1lndependent program modules --
an'elabbrate scheduling algorithm that must be confronfed for any.multi;

processor organization.

Prototype:Dévelopment

Prototype development should not be . overly involvéd because the
jprocessors,_memory banks and associative memory are quite standard. The
cross~bar switch will require special design but this should not be
difficult to realize since itslstructure is uniform, and since some design

_.work on it is complete,

“General Conclusions

The EXAM computer has the merits of structural simplicity through
the use of many similar or identical modular units. It also offers a high
degree of utilization of available computational power. From the reliability

standpoint, however, there seem to b2z no intrinsic features to recommend it
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over other multiprocessor organizations that have a less elaboratesinter-
connection.structure.~ In particular, the vulnerability of memory to any
faulty processor and the necessity of faultless operation of the elaborate

cross-bar switch seem tq be two good reasons to reject this design concept.

E. Hopkins Scheme (HS)

General Organization

_ The HS, Ref. 9, is a muitiprocessor reasonably well suited for:the
aircraft environment. Each processor is in reality a processor-pair, PP,
with a small triplicated'scratchbad~memory, TSM., A 1arg¢~main memory, MM,
is alsb,preSent. The TSM holdé therstatus’of the PP -- presumably an allas
exists in TSM for all registers, flip-flops in PP, An error in a PP, as
revealed by a comparator, or in the TSM causes the~TSM'to gé;n control of
a bus to MM, ih,which'gase the contents of TSM are dumped to a preset area
ip MM;MvAnAexecutiQe then retries the computation on the samé PP-TSM
combination or on another PP-TSM combination. As preseﬂtly concelved,
the prbcessors in the PP must operate in locked sfep° The bus is in reality
a triplicated:bus wherein theuoptputs of a TSM are voted upon prior to:
their insertion on the bus, »Thé main memory organization is at‘presenta
.nét clear butapresumably it is amenable to thé same - coding technilques
N utilized in BUCS, All of the.executive-prqcessing is_accompliéhedain a
:_particular PP-TSM until it fails whence another’acts as the.executﬂve. A
major drawback of the present versionlto access the bus at each instruc-
"tion. Tpé use of the TSM as a cache would improve the situation, but at

ﬁhe'expehse,of incréasing the- cost of the TSM. -~ a.discardable unit.

Computational Environment.

HS seems well suited to our environment as discussed above. The System
is intended for use on a manned spacecraft that exerts a computational.

load similar to that of the aircraft.

Technology -

Probably ISI throughout.
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Faults

HS should pgndle single permanent or transient faults confined to
primitive processor unit within a PP, a single scratchpad memory within
TSM, or a single bus. Since the memory organization is not specified the
issue is not clear here. Multiple PP-TSM failures can be handled provided
they do not occur within a recovery interval, There is no policy specified
for massive transients, and at present it seems that a processor can write
anywhgre in main memory, thus leading to a vulnerability to programming

failures,

Reliability Assessment

No goal has been specified but with a few spare PP-TSM's and, say
coding in MM; our reliability goal is attainable. HS fentatively specifies
" a procedure_for hahdling the diagnosis of the PP comparators, otherwise

these would be unflexed hardware,

~ Availability

In résponding to a fault the system effects a recovery by dumping the
TSM contents and reloading these contents in another TSM. As presently:
envisioned the TSM is probably no more than a few hundred Words, thus

enabling a restart in 1 msec.
Redundancyl

If MM is replicated, say by a factor of three, the redundancy ratio
is at least 3, For the use of a coding scheme in MM Similar to that used
for BUCS the ratio is probébly about 2. As we will note in Chapter ViI.
this ratio isvvery sensitive to the size of the TSM.

Reliability Model

No reliability model has been conceived, but a rough estimate of relia-

bility-and availability is attainable as the prcduct of the following
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factors: the probability of PP-TSM failures in a misSion, the probability
of a bus failure in a mission, and the probability of a second failure '

“within a recovery interval, The unflexed situation is not included.

L7 Transparency to User

i The application programmer is not involved in the error control pro-
“cedures' the executive handles all aspects of recovery, The application
. programmer might wish to partition his program so that 1t runs efficiently

in the cache environment.,

Expandability

The degree of expandability is limited by the traffic that the bus
can-carr§, Without a.cache and with a single TMR protecfed bus, and with
a single port'memory, the maximum processor load is probably no more than
0.5 MIPS,;- With the use of a cache with each processor, or the use-of 5
“more complex bus and a multi-port memory, the processor load can be pushed
to 2 MIPS. The bus would have to be: designed initially to handle the

insertion or deletion of processors.

F. ' ARMMS

Sd T

" General Organization

4 Ty -

The Automatically Reconfigurable Modular Multiprocessing System (ARMMS)
‘was conceived at NASA‘MARSHALL and is‘currently being pursued at Hughes
‘Ground Systems Group. .We emphasize that much of the design work remaihs
fo be'aone,'as of July 1372, so that there are gaps in the concept . 'The'
'ARMMS system 1s intenaed for a spaceborne environmeht, wherein the
7reliahllit&'goa1 is long 1life and wherein a varying computational load 1s
'anticipated‘throughout a mission. The system consists of-eight processors,'
capable' of being configured in a variety of modes. (At present, it is not

clear at what rate the configuration cah be modified.) Up to three tasks



can be processed simultaneously on three processors. These three processors
presumably operate in a near locked step TMR mode, . Thus up to five pro-
cessors can be simultaneously active; the remaindef of operative processors
are spares, Each processor confains a local memory of, say, 128 words with
the main memory serving as a back-up to this local memory. We would guess
that special logic within the processor controls the transfer of blocks of
words between the local memory and main memory. The main memory is organ-
ized as 32 banks although no complete error detection or error correction
procedures have been specified for it. There are hardware voters on the
processor to memory links so that when the processors are operating in a
TMR mode any processor errors are corrected before the errors propagate to
memory. Most of the system control is contained within a specialized
executive unit called BOSS. BOSS performs all of the executive funcfions
associated with scheduling, allocation of resources to tasks error
'_reconfiguration,vl/o control, Internal redundancy is used to make BOSS

reliable, 1;e.,vonly one distinguishable BOSS'unit,exists°
Mission

-vA general spaceborne computer 1s sought that is responsive to a variety
. of missions. In this regard the system embodies variable redundancy -- a
multiprocessed simplex opefation for low criticality tasks, a'duplex mode
-for moderately ecritical tasks, and a TMR mode for high criticality tasks.
In the multiprocessed simplex mode the computation capacity 1s to be

2 MIPS, spread over three processors., The reliability goal iS‘ the sur-
vival of at least one pfocessor, and a suitable portion of memory, with

probability 0.99 after 5 years.
Technology

It is»not immediately clear if special purpose ISI chips are planned,
A processor called Space Ultrareliable Modular Computer (SUMC) has been
designed as the basic processor, Some effort is being devoted to par-
titioning SUMC into modules, There appear to be n0'speciél constraints on
the processor operation, so that an cff-the-shelf high performance LSI

processor should suffice,
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Faults

Certainly in the TMR mode any fault that disables a single processor
can be tolerated. A duplex mode is also possible in which single processor
faults are detected. There seems to be no fault tolerance in the simplex
mode, Maskingvof memory faults with error correcting codes 1s planned for
the future. BOSS will probably be protécted with TMR applied at the module
level, Thé design has’hot proceeded to the point where the response to

massive transients or permanent faults can be assessed,

Reliability

For our aircraft environment only the TMR mode of ARMMS can satisfy

the 10“8 reliability reqdirement.

Availability’

ARMMS can be equipped with sufficient resources to meet our avalla-~

bility requirement,

Redundancy

"It is difficult to measure fhe redundancy in ARMMS since the design
is still in its conceﬁfual;stagé, in particular with regard to memory and
'BOSS, It is our guess that the redundancy ratio for -a TMR mode will exceed

three.

Transparency fo User
The user is not involved in fault tolerance procedures except poséibly
to specify the criticality of his task, which in turn determines the mode

in which ARMMS will process tne task,

Expandability

Memory is to be expandable to 512 K words. The BOSS design does not
seem to allow for the addition of more than 8 processcrs, although it

" should be noted that each processor is quite powerful -- 0,5-1 MIPS.
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Prototype Development

-The prototype development is likely to be quite costly, mostly because
of BOSS. It seems that BOSS is to be realized as a special purpose processor.
A portion of BOSS can be a simple but high-speed, general-purpose computer
since many of BOSS' functions require little more thar table look-up or
simple processing. Howevér, much of the high-speed communication links

between BOSS and the other system blocks will require special attention.
Conclusions

Perhaps the most novel feature of ARMMS is the concept of variable
fault tolerance. This is potentially attractive for our environment because
of the varying reliability aﬁong criticality classes. However, as presently
conceived the simplex mode of ARMMS does not provide any fault tolerance --
a situation that cannot be endured even for the least critical functions.

If this mode could be modified to provide a probability of error detection
of 6.99 per hour then the ARMMS concept would deserve a more critical study.
Ahother disadvantage of ARMMS is the spécialized BOSS ‘unit. It is our
>feeling that the»redundancy of the system would be significantly reduced

by incorporatihg mosﬁ, if not all, of the execufive function within a

processor, as in HS, SIFT, and BUCS.

G.  AADC

The Advanced Avionics Digital Computer10 (AADC); now called the All
Applications Digital Computer, is currently being developed by the Naval
Air Systems Command with technical sdpporf from the Naval Research
Laboratory and several industrial organizatiorns. The AADC is intended to
satisfy the majority of the Navy's computing requirements in the 1975-1985
time period. Our discussion here 1s brief since the error control features
of the AADC remain to be specified. The tack currently being pursued is
to design and build the hardware components,'and to later incorporate

fault tolerance procedures in specialized hardware and software executlves.

75



The system consists of a set of processor elements (PE's), an-associative

processor (AP), a large random access main memory (RAMM), a bulk storage, and

a bus ctructure interconnecting the above units. For our purposes:here the

PE is of most-interest. A PE consists of a processor and a task memory,
wherein a program requiring service is loaded into a task memory for execution.
Significant design effort is being devoted to the PE design in.an attempt to
realize the,entire PE as a small number of wafers, If this is achieved, then
the basic PE is certainly a candidate as the.proéessor in SIFT, HS or BUCS.

(HS and BUCS might require special interface logic to effect.comparisons
"between a pair.bf processors.) Presumably a Pﬁ will be a discardable element.

in any fault-tolerance .scheme.

It is impossible td assess the reliability aspects of AADC since they
are yet to be.conceived. It seems clear that the system will -be highly
redundant -- bﬁt perhaps this is not of much concern if the PE's cost is
nominal, However, it is our feeling .that fault-tolerance must be incorpor-
éted into the system at initial design phaseslin order to produce a .truly
reliable, efficient system, Invarlably special interface logic or.speclal
‘processor instrucfions are -required, for example, to prevent error ‘propaga-
j'tibn, to permit the use of. error correéting codes in main memot&, to permit
the récovery-fromnmassive ?ransieﬁts,'or to-protect main memory.ac¢ess from

‘a faulty processor.

H. MARCS

General Qrganizatioﬁ

The Modular Architecture for Reliable Computer'Systemslz’(MARCS) is
_currently being~pﬁrsued at IBM - Yorktown. At the time of writing;this
'feport MARCS is not a cleafly defined system but a concept.embodying’some«
. very sound.faultholerant“principles. In essence the concept haé been a

testbed for the study of coding technigues and circuit diagnosis algorithms.

The concept .involves ar interconnection of primitive subunits to form

a uniprocessor. The subunits are: arithmetic logic unit, scrétchpad memory
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and program control unit; bus control unit, I/0O processors, recovery control
unit, and main storage. The main storage incorporates frame coding, as
discussed in Chapter II, with the inclusion of spare frames. When the system
is operating in a unipfoceSsor configuration sparg subunits are provided
(except for main storage), where the computer is ;perational if at least one
subunit of each type is operative. An interesting logic coding scheme is
utilized such that a single gate fault in any subunit eventually produces an
error signal at the subunit's output. In principle, this circumvents the
unflexed hardware problem, atAleast for units that perform comparison or

decoding of an error correcting code. A multiprocessor mode is also possible,

It is impossible to evaluate MARCS as a potential candidate since much
of the computer is unspecified. We have been strongly influenced by the
coding techniques both for logic and memory, and by the diagnosis techniques,
particularly those of Roth's, that in essence have set the stage for most of

the current work on diagnosis.
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VI’ SOFTWARE IMPLEMENTED FAULT TOLERANCE (SIFT)

. This section describes a proposed design of a computer system in which
fault tolerance is achieved using software techniques, to remove the need
for special fault-tolerance hardware units. The computer resembles a
multiprocessor with a restriction that each processor may not write into
the memory associated with other procesSors. The executive system and the
application programs are protected by idenfical fault tolerance procedures.
The computer design gives the system programmer the ability to vary the
degree of fault tolerance by changing the extent to which a program is

replicated among the processors.

The fault folerance procedures to be described may be implemented
by combinationsAof4program, micro-program and hardware elements. The
present discussion emphasizes programming. The fault tolerance features
can be made completely transparent to fhe application programmer, but it
is also possible to allow the application programmer to prescribe fault

tolerance procedures that are specially appropriate to a given computation.

Also included in this section are anélyses of the reliability and
fault tolerance to be expected from the design, The size and speed of
the individual units (processors, memories, buses, étc.) are based'upon
the computational power requirements as outlined in Chapter III, and as
described in detail in the Volume II report of the project. Included in
this section are estimates of the storage and computing requirements for

the executive of the system. Some alternative design optioﬁs are discussed.

A, System Design Overview

The system (Figure VI-1) consists of a number of modules, each com-

posed cf a memory and processing unit.

The individual processing units within the modules are connected to
the corresponding memory units with wide-bandwidth busses. The inter-module

*
bus organization (Bl’ B BB) is-designed to allow a processor to read

27
from any memory but not to write into other memcry units. This is a novel

and central feature of the system, and serves to prevent fault propagation.

*
The bus logic envisioned does not use voting. The number three is chosen.
for convenience of discussion. ’

31
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The inter-module bus is'expected to have a much lower bandwidth than an

intra-module bus.

The input/output (1/0) system, discussed in a later section, is

9 B3. The input/output (I/0)

~system shown in Figure VI-1 is all the non-computing units, e.g., trans-

assumed to be connected to the busses Bl’ B

ducers, actuators, sensors, That part of the total input/output which is
carried out by program, e.g., formatting or code conversion, is handled
in the same manner as any other task, i.e., is replicated in several

processors.

The system is viewed as being regular'in that no module is given
special facilities or is, a priori; assigned a special role. All computa-
tions that fequire high reliability are carried out in several modules.

We assume for the purpose of this description that critical tasks.are

processed in three units.

The computations which must be carried out are broken into a number
of tasks in such a way that no task requires more computing power than
can be supplied by ohe'processor5 The tasks are given the designafions,
A, B, C...; the processors are numbered 1, 2, 3... . Each processor is
capable of being mﬁltiprogrammed over a number -of tasks, as illustrated

in Figure VI-2,

The coﬁtrol of the computing system is carried out by an executive
system that can be segmented by function into two parts:
(1) LOCAL EXECUTIVE: Functions that apply to each processor
(e.g., dispatching, reporting errors, loading new .task .

programs).

(2) SYSTEM EXECUTIVE: Functions that are global to the system

. (e.g., allocation and scheduling of work 1load, reconfiguring).

A complete set of the software functions of Class (1) is present in
each processor (possibly in microprogram); those in Class (2) are carried
out in a sufficient number of processors to provide the degree of faglt
tolerance required. The functions are reaiized by programs that have

the same task structure as all other programs.
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The normal operafing mode for a processor carrying out a task 1is
to follow the flow of control shown in Figure VI-3. Data required for
the task are assumed to have been computed by several processors (including
possibly the same one carrying out the task). A check is made to see if
~the data are available in all processors. If not, the fact is noted in
the memory of the module and the dispatcher program within the module is
entered to determine which task is next to be processed. The next
prdcessing is the reading of input data from the several processors where
copies of thaf éxist. A validation is now carried out, typically (but not
necessarily) by a two-out-of-three vote. If any of the copies of the input
data are fouﬁd'not to égree, then this fact is noted for later processing
by the executive.  If all the éopies are different; the fact is noted and
control moves to the dispafcher program. The computation of the task is
nowvcarried_out,_thé results 1eft in the'membry of the module, énd note is

made (in the module) of the fact that the task is computed.
Certain‘important principles are obeyed in the above scheme:

® No processor writes into the memory of another module.
e Inpuf‘data in a module are not desffoyed during the compu-
tafion; If the computation is repetitive, the results of
'.oné cycle that may be used as input for the next cyle are
" placed in a different location in memory. Similarly, because
‘the input data within one module may be needed later by another
processor carrying out the same task, the input data must not
be destroyed until all cooperating processors have read,VQal-
idated, and used the data. This may -require that the data
have to be préserved over several iterafions if they are
used by another task which.is delayed behind the first.
-6 A1l conditicns (e.g., errors, task complete) are left as
notes to be read 1atef by the system e*ecutive.
@ The dispatcher brogram, which exists in eachlmodule, main-
“tains a queue of:tasks to be computed. The data for this

queue are read from memcries of the modules that are running

* ) _ : B
Dispatching is thc executive function that initiates a new task at the
completion of the previous one. :
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the executiQe. The flow. of control of the dispatcher is

itself similar to that shown in Figure VI-3, except at the

end, when the control is transferred to the task that is at

the head of the queue.

The dispatcher in each processor checks from time to time to

see if the system executive has changed the queue of tésk for
that processor. A single bit (per processor) is set in the
system executive tables to indicate a change of the queue.

If this bit is not set, the dispatcher waits some time (e.g.,

1 msec.) before querying it again, thereby preventing continuous

interrogation and consequent heavy inter-module bus traffic.

The above scheme achieves a high degree of fault tolerance without special

hardware requirements. In particular, an erroneous calculation carried

out by a module does not destroy the validity of the total system, because

results are rejected by the next calculation.

B. Major Characteristics of SIFT

The system described above has many properties which, in total, dis-

tinguish it from other fault-tolerant systems.

Repliéated units do not operate in lock-step mode, but are
only loosely synchronized. The communication between CPUs
is asynchronous, thereby removing the need for an ultfa—'
reliable system clock. A
Agreement between replicated units is verified only at the
compietion of program segments (tasks). ‘

Faulty units are not neéessarily removed but can either be
ignored or assigned to tasks having no overall effect.
Transient faults do ﬁot necessarily cause permanent removal

of the faulty units., Furthermore, the looseness of synchro-

‘nization among sets of tasks makes it possible to enhance

immunity from transients by providing that redundant versions
of a computation may be done at different moments in time.
The degree of fault tolerance can be different for different
tasks being performed, and/or can be different at different

times for the saﬁe task.
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© No special hardware is used to carry out fault detection or
correction,

'® Communication between CPUs is minimized so that low-bandwidth
busses can be used, thereby facilitating physical separation
of modules in environments where physical Qaﬁage is a hazard.

-® “The design concept‘is independent of the way in which the

“units are built, i.e., no specialization of CPU or memory
design is required for fault tolerance, thereby allowing the
choice to be based on other properties, e.g., Speed, or
availability.

® The totai computing power of the system can be varied by

"~ using units of different speeéd or by changing the number of

units.

C. Input/Output

The input/output subsystem must be designed and operated with the
vsame fault toierance as the central.processing complex. Different modes
of operation are possible, depending on the various devices that are con-
nected. to and controlled by the system. The favored principle is.td use
replication wherever possible. Varying capabilities of fault tolerance
in the central computing system can be achieved by using varying replica-
tion and by voting at all times when valid data are required (e.g., at
" the start of a task). The results of a calculation will exist in several
(ﬁsually fhrée) copies and e?entually a vote must be taken. The vote that
is reqﬁired-to allow another task calcﬁlation is carried out in multiple
modules; however, if the voté is for output, then the output system or

outpuf unit must conduct the final vote.

There are circumstances where the nature of the inpu;/outpdt unit

assists fault tolerance through replication, as in the following cases:

9 Cértaiﬁ inpuf systems (sensors) can be replicated; each
sensor is then individually read (and voted on) by all
modules requiring tne input.

° Cerfain‘output devices can be built in a way that employs

| a "natural’ kind of voting process in the final dutput medium.
For example, a CRT display could be refreshed with each fraﬁe
" derived from a different module. Data on which all modules

agreed would be displayed arightly; othef,data would be more
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faint. Assuming that faults persist only for short periods,
this would result in a temporary flicker for a few frames
before the executive removed the malfunctioning module from
the calculation. In the application to which the design is
aimed, there are other output devices, e.g., flap controls

' "o
possessing similar 'natural‘ voting capabilities.

In the event that the device is not in one of the above classes, another
"final voter' must be designed that inherently possesses the required
reliability. This'considération is independent of the architecture chosen

for the central computing system.

We note that the architecture described here can operate in a mode
whereby the replicated versions of output data (or the replicated data
from input sensors) can be processed by any of the processing modules;

hence, no modules need be specially desigﬁed for this function.,

D. Bus Design

The bus system (Bl, B B Figure VI-1) used for communication be-

2° ’
tween modules must be designedsto'be fault tolerant. We remind readers
‘fhat the bus system is used only to allow the processor of one module to
read from the memory of a different module. The design need not be such
that all bus traffic is checked (as in most other fault-tolerant archi-

tectures); however, it should allow a processor the choice of different

busses in the event that a bus has failed.

A structure based on a four-port meméry module is shown in Figure
VI-1. In this structure, each module would have connection between its
units (processor and memory). The bus structure, By, Bg, Bz, would

enable a processor to choose different paths in reading data from the
memory units of different moduleé. Tt would be appropriate to connect

the I/0 system to this bus structure. In the‘event-that a four-port
memory unit such as shown in Figure VI-1 is not available (or not suitable
from other standpoints), then the structure can be achieved by attaching

a single—-port memory to all busses using conventional techniques,

A processor that needs to read rrom tine nemory of a different module

must seize control of a bus. Logic associated with a bus must ensure
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that only one processor has control of a bus at any time. In addition,
the bus must be allocated to a processor for only a finite time, ﬁhereby
preventing a faulty processor from seizing a bus permanently. . An internal
clock associated with each bus can control the period for which the
processor-in question dominates a bus. A fgilure in this control logic
causes the loss of that bus. It remains to bé shown that no situations
can occur where the failure of one unit cah cause incorrect action -of
several other units, i.e. we require a designAso‘that faults remain

localized.

In summary, the following sequence of action is carried out in reading.

data word (w) from memory {(m) to processor (p) via bus (b).

I Processor p places b, m, and w in regisfers and éignals all

busses with a DATA REQUEST.

2. All non-busy busses scan all processor DATA REQUEST lines
(continuoﬁle).

3. If a data request line is on, and b equals the bus number,
the bus goes into BUSY state.and stops scanning the processors. .
The requested bus has now'beeﬁ selected by the processor.

4. The.selected bus transmits.m, w, and DATA REQUEST from the
‘pchessor registers to all memory modules.

5;A Each non-busy memory module continuously scans. all busses for
a DATA REQUEST line that is on, and then compares the m on that
bbustith its own number. ' '

'6, If a match is found, the memory goes into BUSY state .and ceaéeé
scanning the bﬁsses. The w on the bus is placed in the memory
.addreSS register and a read request iésued to the memory. The
memory is now selected. _

7. Whén“ﬁhe Word is read by the memory, it is placed on the data
lines‘of the bus and a DATA READY line is-turned-on.

8. The DATA READY and data are transmitted to the requesting,
processor, When the data has been received-by the
proceésor; fhe DATA REQUEST line from that processor is turned

off.,



9. Action 8 will cause the BUSY states (actions 3 and 6) to be
dropped and the bus and memory resume scanning for other

requests.

In the above sequence each unit that requests action of another unit
makes a request (e.g. DATA REQUEST). The granting of the request is made
by the requestee. This arrangement will, for example, prevent a processor
from requesting all the busses simultaneously, since the busses will respond
only if the bus request (b) agrees with their bus number. It would, therefore,

require failure of all of the busses to completely disable the bus structure.

In addition to the above,-it is assumed that each unit has logic
associated witﬁ it that prevents it being seized indefinitely. This logic,
in effect, says "If I have been BUSY for greater than a time interval DELTA,
then the pérticular connection will be broken and scanning resumed for other
units requiring acfion." It-is possible to incorporate in this logic the
capability to ignore requests from the offending requestor, in the future
thereby removing that uﬁit from affecting further system operation. The
time interval DELTA mentioned above will'be chosen to be just greater than

the greatest time of any correct action request.

The scanner in either the bus or the memory that is examining either
the processors or the bussés can be implemented so as to scan in any se-
quence -that is convenient (to the detail logic designer), i.e. it is not
necessary to scan in numeric order. In ﬁhe event that the scanner has
more states than the number of units scanned (e.g. a 4 stage counter
scanning 9 units), the spare positions can be stepped over by sqitable

design, or alternatively can be left OPEN,

The word address (w) that is transmitted to the memory module can be
subject to any transformation that is convenient in the design of the
processor or memory, i.e., we can use indirect addressing, indexing, base
registers, paging or any convenient combination of these. In addition,
it is possible to incorporate a cache (in the 360/85 sense) in the

processor design.

The scheme outlined above obviates the need to provide a BURST MODE
type of transmission as each word that is transferred can follow the
sequence given., In the event that several words are required, the pro-
cessor successively requests each word and the bus is seized and the

word is delivered. If other processors require the use of the bus during
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the period of the multiple word transfer, a form of cycle stealing will
take placé as the bus scans the other units and honors the request before

resuming scanning.

A suitable structure for the processor/bus/memory connection is shown

in Figure VI-4.

E. Program Structure

Within the computing system as described ébove there exists a program
structure, that contains program segments and their .interconnections. We
distinguish’thosé program segments that must be present in all processor
memoriés from those that éxist only in the memory of the proéessors that
are carrying out the function df system executive, We can divide the program

functions as. follows.

All Processors - . " Executive Processors
1Application Tasks Allocation

Loader Scheduling

Dispatcher Fault location

Fault detection E Fault correction

Fault avoidance Reconfiguration

Fault location ' '

Fault reporting

.Thebdebendence of one program segment upon another is illustrated in
Figure VI-5a, in which four examples of applications processing, and three
of éxecutive processing are shown. (It must be remembered that sepérate
'processqrs are not necessary for each task or for the executive. Each
procéssor is multiprogrammed and may at different’ times be computing an
application program or the executive.) Figure VI-5a shows the inter-
conpection among program segments for one éxecufive and one application
processing example. Multiple connectivity is éssumed and is illustrated
in Figure VI-SB. The several functions shown in Figure VI-5a are des-
cribed below., We assume for the purposes of the description that three-
fold and fourfold replication is used respectively both for the executive
and each application task, Greater or lesser replication is possible 1if

the requirements for fault tolerance are more or less stringent.
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1. System Executive

Allocation and Scheduling

The executive carries out allocation of processors to tasks and sched~-
uling (deciding when task programs should be run). These two functions
will be described together, in Appendix A, in terams of the data structures

and the way in which they are manipulated.

The task matrix is a Boolean matrix indicatiﬁg the results of the
allocation process. A mark in any element signifies that a processor has
been assigned to carry out a particular task., The task matrix will re-
main unchanged for long periods and will be changed only under two circum-

stances’:

@ Change of flight phase (takeoff, cruise, etc.).

® Reconfiguration after a fadlt condition.

There are three options -available in carrying out the allocation
function:
(a) Compute new allocations, when needed, in real time.
(b) Pre-compute (i.e., before mission) a set of ailocations
A for each flight phase and forlall possible configuration
changes. ‘
(c) Pre-compute a set of allocations for.different flight
phasés, and carry dut perturbations of’ these, in real
time, upon»reconfigﬁration in the event of a fault.

condition.

It is expected that alternative (c) above will be used in an aircraft

environment.

Reconfiguration

Reconfiguration in the SIFT concept consists of changing the allocation

of tasks to processors. This will occur under two circumstances

® Fault conditions that occur, and require the removal
of some units from active processing.
® Change of flight phase, e.g., from take-off to climb,

to cruise.
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No .special hardware is required to carry out the reconfiguration,
and the software routines are identical to those described above :for

allocation.

Task Timing

Certain application tasks require action at regular intervals, for
exampieuthe flutter alleviation calculations must be processed every 4
msecs. For this .task, it is necessary to ensure that all the cooperating
processors‘are synchronized with respeét to a 4 msec period. The basic
rulé of synchronization is that no processor should compute iteration
(n + 1), nor deétroy the data from iteration (n - 1) until all proéessors

have carried out iteration n.

The idea of using a singie system-wide clock is rejected as ‘this
unit would need to be built with excéptional feliability and would repre-

sent-a'"hardcore" in which no faults could be tolerated.

The preferred hardware would be to use a number of replicated clocks
whidh éould be treated as input units;'whose data. could be read in the

same way as any other units,

Using replicated clocks as. input units, it then becomes necessary to
ensure that all processors read the clocks at sufficiently frequent inter-

vals (e.g., 1 msec.). . This can be achieved by an interrupt system in each

,moduie, that is driven by another clock (of higher frequency) local to the

module. These .interrupt systems would be independent from each other, and

‘failpre,of.one of them would be.no different from any'other failure in a

processor,

Fault Location

Fault location in the SIFT concept consists of determining

(i) Which unit is at fault.

(ii) Whether the fault condition is permanent or transient.

Each processing module, when reading data from other modules, carries
out a vote as. described in Section VI-E-2. In the event that the vote
does not yield unanimity,‘a single "error flag” is set and details of the

erroneous transaction are placad in the module's memory. The executive
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reads the error fiags from time to time, and if all are off, correct operation

is assumed. If all error flags are not off we must consider two cases.

Case 1 Single Error Flag On

This indicates that a fault exists that is related to that processor,
or to the particular connections that were used in the particular data
read, i.e. from processor to a particular bus, or from that bus to the par-
ticular memory. Thelanalysis of this condition cannot be carried out on
the basis of the single instance of the fault. The data must be remembered
and further inétances of errors correlated with them to determine the faulty
unit that must be removed from ﬁse by reconfiguration. If no further instances
of errors occur in a short period, the assumption may be made that a transient

fault condition occurred.

Note that an executive could'fead an error flag and determine that
it is on due to a fault in the processor that is running that executive,
or die to a fault in the data path used to read that error flag. The execu-
tive would attempt, erroneously, to diagnose an error that did not exist.
This will not produce faulty operation of the total system because the
other versions of the executive will effectively override the faulty

executive.,

Case 2 Multiple Error Flags On

Multiple error flags on indicate that several pfocessors have detected
an error. The details of the error will be read from the several processors
and by correlating the data; the executive may determine which unit is

faulty.

2. Local Executive

Input Communication and Fault Detection, Location, Avoidance and Recording

The first step in the computation of any task is to read.the data re-
quired to carry out the task. This déta will exist in the memory -of three
computing modules. We will use the phrase "Inpgt Data Set" (IDS) to denote
the set of words required to carry out the calculation of a task. We en-
visage fhat all tasks that require data will obtain it by calling a single

program or microprogram subroutine. This subroutine is the only code
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(outside the executive) that is concerned with detecting errors, correcting
them in some cases, and in all cases reporting errors to the executive. By
the use of a éingle subroqtine for error detection, avoidance and reporting,
thé application programmer is relieved of the concern for this aspect of
the system. This routine GETDATA is shown in flow chart form in Figure

VI-6. Its functional specification is:

Input Parameters

IDS Number.' (The identification of which input
_ data set is to be input.)
- IDS Size : (The number 6f words to be input.)

Buffer ' (The address of the buffer in which
. the words are to be placed.)

Proc List (The address of a list of processor
' .numbers from which to input.)

Output Parameters

Failure Flag ‘ (A Boolean output variable, set = 1
if the input could not be accomplished.)

Error Flag . (A Boolean output variable, set = 1
: if input was successful but an error
was detected.)

Error Vector - (The specification of the IDS, word
position, bus and memory involved in
an erroneous input.)

Action .

Read an input data set (IDS Number) consisting of IDS size words from
the processor memories specified by "Proc List." If all versions of each
word obtained from the different processor memories agree, the data is placed
in the mémory at address "Buffer," the error and failure flag will be set

to 0 and a return is made to the calling program.

If all versions of a word do not agree but a majority agreement exists,
the data is placed in the buffer, the error flag is set to 1 and the details
of the (présumed) erroneous input are placed in memory to be read later by

the executive.

If no agreement can be found, the error and failure flags are set to

1, the data is not placed in the'buffer and a return is made,
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If no action can be aécomplished (e.g. because of a faulty bus system),

the units that are faulty are noted, and a return is made.

The subroutine will attempt to use different busses for each word
transferred. If no response is obtained from an input request, the sub-

routine steps to the next higher bus.

Analysis of the time required for carrying out the GETDATA routine
showé that when no errors occur, 75 percent of the time is used in functions
B, C, D, and E, and 15 percent in functions F, G; and H. This assumes that
the CPU has no special operations to facilitate these operations. The use
" of microprogrammable CPUs with special operation codes will significantly
reduce the total time to execute this routine. Such special operation

codes are discussed in Sectién VI-H-2.
Disgatchér:

The dispatcher carries out the rfunction of initiating the computing
of tasks. The'dispatcher_wili always be entered at the end of each task

plus being entered regularly on an interrupt basis, probably every i msec.

Upon entry, the dispatcher will first query the executive tables to
see if the'queue of_taské.for it has beeh’changed. If so, it reads the
queue into ité local store. If the item-at the head of the dueue-is the
same as a:task which has just been interrupted, a return is made to that
_ task program-to continue the task calculation. If the task at the head
- of the queue;is_different than the task just interrupted, the dispatcher

-knows that a change of task is required. This may be of two types:

(a) A change of allocation wherein the previous task is

no longer required.

() A requirement to interrupt the previous task temporarily

(for a more urgent task) and resume it when required.

These two cases are distinguished by the dispatcher by the contents
“of the queue. There éxists a task present in all CPUs (the terﬁinator)
whose function is to terminate tasks. If case (2) above exists, the
quéﬁe will contain an entry calling for‘the TERMINATOR to be run; thereby

removing the intefrupted task.
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The above discussion centered around the actions of the dispatcher
in the event that it interrupted a task. When the dispatcher is entered
" at task completion it does not need to resume an interrupted task, but

simply transfers control to that task at the head of the queue.

When the dispatcher is entered at the completion of a task it is
possible for it to be interrupted. The interrupt should be ignored except

to update the internal software clock within the CPU.

All communication between ‘the dispatcher and the system executive is

through the GETDATA routine.

Loader

All processors need to be able to load new programs whenever a
reallocation of tasks is made. Two versions of the loader can beé con-
sidered, a simple version that loads programs from the memories of other
modules, and a versicn that can also 1oad”programs from a backup store

(e.g. drum) in the event that such a unit is available.

We zssume that programs are in absolute binary form, i.e., no
assembling, linking or editing is required. We also assume that the
CPU/memory hardware enables programs to be relocatablé. With these
assumptions the loader only has to read a program from the feplicated
copies gnd place it in memory. In effect this will be a single call on
the GETDATA routine for the versioﬁ that reads from other memories, For
a version that reads from a béckup store, a modified,vefsion of the GETDATA

routine would be required..

3. Application Programs

The application programs carry out such tasks as integrating
differential control and navigation equations, formatting'graphic displays,
and so forth. Each of the programs handle certain functions in a uniform
'way. These functions include: data communication, error or failure reporting,
and connection to the dispatcher and executive. Each application program
will be embedded into the SIFT software structure in a uniform way. The

typical structure for this embedding is shown in Figure VI-7.
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The function carried out by each applicgtion program, and the
computing and memory resources required are detailed in.the report on

Task II of this project.

F. Computing Load Within SIFT R

Within SIFT, the computing and memory load are summarized in
Tables VI.3a and VI.3b for application and executive tasks, respectively.
(Table VI.3a is a repetition of Table IIi,l, included here for the con-

venience of the reader.)

The total combuter load is as shown below,'for.the most critical flight
phase (instrument landing).’ ,
' CPU (MIPs) - MEMORY (KW)

Application Tasks . 0.5 . : 24
Local Executive 0.04 ' 1
System Executive 0.1 . 2

The above table does not include either CPU or memory requirements

required for fault tolerance procedures.

G. Reliability and Fault Tolerance

This section discusses procedures for achieving fault tolerance with
a sufficient reliability. In addition, a specific céée is analyzed to deter-
mine the expected performance of the SIFT concept under a set of assumptions
concerning such mattérs as: number of LSI chips in_systeﬁ, reliability per

‘chip, length of flight, and so forth.

-The reliability analyses are carried out for different. numbers of

processing modules,

.The system architecture can, by suitable design of the executive,
. support different fault tolerance procedures appropriate to different re-
quirements. - The assumed fault detection method is by bpmparison of
multiplevcopies of data. This comparisor is carried out by software em-

bedded in a system routine, a copy of which is present in all processors.

Fault detection by software voting is compatible wiﬁh,hardware
techniques such as parity schemes. Such hardware, if it exists in memories,

busses, or processors caa be used to assist detection and diagnosis of
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Table VI.la Computing Requirements, Applications

Al

104.

Task Iteration Rate/Sec. Equivalent MIPS Store Required
, : (1)
APPLICATIONS Inst. Data
Attitude Control 5,20 . .023 1845 230
A2 |Flutter Control 250 .069 70 22
A3 |Load Control * 240 014 45 15
A4 JAutoland, Horizontal * 20 .
A5 |Autoland, Vertical * 160 } .055 750 275
A6 |Autoland, Throttle * 33 )
A7 {Autopilot 5 ? 150 100
‘AB_lAttitude Indicator | ~* 30 ____ SN DL N 90 520
Bl |Supervisor ? ? 75 15
B2 |Inertial * 1-25 .034 2100 150
B3 |VOR/DME 5 .004 250 50
B4 |DME, OMEGA 5 ? 400 105
B5 |Air Data ? ? 110 25
B6 [Kalman Filter 1/5 .001 250 65
B7 |Flight Data 5 .028 450 100
‘B8 |Airspeed, Altitude * 8,16 .009 360 70
B9 |Graphic Display * 1,8 .032 890 5360
BlO|Text Display | . o ol o | 640 | 8700
Cl |Collision Avoidance * 1/3,670 .021 550 600
C2 |Data Comm, A/C Various (8) .006 210 400
c3 Data Comm, Ground * < 4 A .001 450 112
D1 | AIDS ‘ * 1/4 to 4 ¥ .002 650 650
D2 | Instrument Monitor * 5 .014 800 100
D3 |System Monitor * 1/2 .001 900 50
D4 |Life Support " * < 1/2 .001 900 50
D5_|Engime Control .~ | * 3 e - S 1300 | ___ 200



Task

Table VI.1b Computing Requirements, SIFT lLxccutive

When Activated

. Number of Operations

per Activation

Store Required

STEM EXECUTIVE

Allocation
Scheduling
Timing

Fault Location

CAL EXECUTIVE

Input Comm.
Error Detection
Dispatcher
Interrupt
Newtask

Loader

BROUTINES

GETDATA
Math Routines
(Sin, Cos etc.)

Reconfiguration
* 506

On Error

: (9
* Task Start ®

* On Error

* Task End (9)

* 500 (5)
Change of Task

Reconfiguration

f By Call
* By Call

50,000
100

5,000

20 + 6w 4

25
45
23
. 56 :
20 + 6p (6)

12 + 6w (9
- (7) :

Data

Inst.
(2)
300 (P + 20)x(T + 10)
40 (3)
30 70
10 20
50 50
40 40
40 30 )
10 Uses F3 space
10 20+ space of loaded
program
50 20
© 200 200

105




*

(1)

(2)
(3)
(4)

(5)

(6)

(7)

(8)

(9)

Tasks required to be run during most critical fllght phase (auto landing

Task names are abbreviated. Tables 2 and 3 of the: reporti on task 2
gives- full names.

P = number of processors, T = number of tasks.

Data space for scheduling and timing is included in allocation task.

W = number of words transferred.

Flgures for 1nterrupt handling, are for the increase in. the dispatcher
to handle interrupts.

P = number of instructions in program to be loaded:

Operation counts for math routines are included in figures for those

tasks which call them.

Data communlcaticn A/C represents the 1nput/output load?of the computer
system. Assuming that simultaneous I/0 is possible. No increase in
MIPS is required.

To compute load. due to task start and stop, the total number of tasks
run per second is computed for the most.critical phase yielding-a
figure of 1259 tasks per second. The average data input (W) is
‘assumed: to be 10 per task. The MIPS for'task.start and stop is
therefore 1259 (65+60) = .15 MIPS. '

Task exerts insignificant load.
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faults. The primary advantage of incorporation of hardware checking is to
allow faster checking in the event that an application requires faster

correction of fault conditibns than can be achieved by software.

An important benefit in using software techniques for fault detection
and tolerance is that freedom is retained to change the degree of fault
tolerance, either because experience gives data on which better methods
'canvbe based, or because the different applications require different

degrees of fault tolerance, i.e. some are more critical than others.

If threefold replication is used throughout the system a single
faulty unit wiil result in one of the replicated processes computing é
wrong result. The use of the wrong result in subsequent calculations will
be avoided by the fact that other (correct) copies of the data will exist
in other modules and when used will, by voting, enable a processor to dis-

tinguish the correct data from that which is erroneous.

A further interesting possibility would be to use non-identical but
computationally equivalent algorithms for the several replicated processes.
The computétion of a variable can also be carried out using different
scaling factors, for example, compute 10x, x, and x/10. This will reduce

the possibility of error due to bit pattern-sensitive faults.

Consider now the case of double faults existing simultaneously. We
must distinguish two cases, uncorrelated and correlated faults. By cor-
related faults we mean two faults that causé the computation of two equal
but incorrect results., Ciearly two correlated faults cannot be tolerated
if the fault‘tolerance procedure consists merely of yoting among three
versions of all results. The probability of such correlated faults will
be very low and for most applications is acceptable. We can, however, in
the system as described, achieve greater reliability in the event that the
application is so critical that this low probability is still unacceptable.

Two such strategies are:

' ® Use threefold replication for all critical applications,
and in the event of any disagreement, do not use the
results until yet further processors have carried out a
repetition of the caliculation, for example use two more
processors (making a total cf five) and only act if

three or invre agree.
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: *
® Use fivefold (or greater) replication of tasks for all

critical applications."

Both of the above strategies will ﬁrevent double correlated-errors
from causing the use of a wrong result in subsequent programs or output.
The cost penalty involved in the above strategies implies that they will
only be used for extremely critical applications, where the cost of extra
computing equipment is small compared with the penalty for failure, e.g.

in aircraft and space missions.

In the case of double uncorrelated faults we need only consider the
case of simultaneous faults. Double faults that occur separated by a time
suff1c1ent for the executive to have carried out corrective action after
the first fault do not need to be regarded as dlfferent than two instances

of 51ng1e faults, which can be tolerated.

Two simultaneous but uncorrelated faults will have - the possible effect
of producing-twe different incorrect resulfs from a calculation. These
two results will be coﬁpared with the one correct result produced by the
nonfaulty unit in a threefold replication scheme. Before the result is
used in any subsequent calculatlon (or -output), the presence of three
differing results will be: detected and the executive w111 initiate greater
replication in other processors until sufficient agreement can be found to

‘distinguish the correct from the incorrect result,

The exeeutiye of the system must itself be fault tolerant. This is
achieved‘by the same techniques,as for application programs. Each of the
replicated copies of the exeeutive will use data from itself and the other
cobies. In the event of errors in one of the executives, the other copies
will not use the data computed by it, thereby keeping their results valid.
The correcfly functioning copies will initiate a new copy of the executive
in another.processor (which may inyolve copying the program to that pro-
cessor) and will signal the malfunetioning processor to discontinue pro-

cessing the. executive. In addition, all processors will, upon inspection

ThlS requires availability of a suff1c1ent number of the varlous units
. (processors, memories, busses).
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of the data in the correct copies of the executive, cease referencing the
data in the ' incorrect copy, thereby preventing a system breakdown in the
event that the malfunctioning processor continues processing the executive

even though requested to discontinue.

The fault tolerant procedures outlined above can be summarized as

follows:

® (Given at least triple replication, all single faults can be

tolerated, and ail uncorrelated double faults detected.

® Given greater resources (memories, busses and processors),

multiple uncorrelated or correlated faults .can be tolerated.

It is expected that, in the event of a permanent fault detected, a

unit will be relieved of any active part in subsequent calculation. The
capacity of the system will therefore be reduced, but until a large fraction
of the system is faulty, the fault tolerance procedures can be continued
without jeopardy. The removal of faulty units will be accomplished by al-
locating them fd null tasks in the case of processors, and not referencing
them in the case of memoriés.. The overall effect of these strategies is to
achieve a graceful degradation either of computer capacity or fault toler-

ance whichever'is desired in the'ﬁarticular application.

The forégoing has been concerned with the possible fault tolerant
strategies that can be employed within the general SIFT concept. We now
examine the specific case where threefold replication is used, and where
the computing syétem is to handle-the aﬁplication‘tasks and the executive

tasks summarized in Section VI-F.

1. Reliability Estimates

A full reliability analysis of a SIFT system will be possible only
when the design has been4carried to sufficieht detail to enable basic re-
liability parameters to be estimated. These parameters would include a
count of number of chips in each module type. In addition, knowledge df
the pdssible failure mode for each unit type is required. The following
analysis makes certain simplifying assumptions (yielding what we believe to

be a conservative reliability estimate), in order to show that the SIFT
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architecture can achieve thé required reliability. We do not, for example,
incorporate the beneficialreffects of using‘error correcting codes in. mem-
ories, or the possible substantiai reduction in memory capacity required
through the use of secondary stored or the use of ingenioué encoding schémes'

for:memory data.

In deriving an estimate of reliability we make certain assumptions
concerning such factors as the probability of chip failure, number of chips
required, etc. These assumptions are listed below, together with defini-

tions of the terms and symbols used.

R = degree of repiicatioﬁ employed (usually 3)

= number of .processor/memory modules
H = length of computer service required (assume 10 houfs)
PR = probability of system function failure after H time
PF = probability of no fault tolerance after H tiﬁe.

The last two terms above distinguish between two ways of expressing
the probability of the computef continuing to perform in.a satisfactory
manner. PR, the probability qf system function failure, éxpresses the
chance that an incorrectly performed computer function is carried out
during é flight. PF expressesvthe probability that the system: will de-
grade durihg the length qf a flight to the point where it can:no longer

tolerate any fault in-the remaining operational computing-equipment.
We assume a lbad'on the computer system as below

~CPU (MIPS) - MEMORY (KW)

Application Tasks 0.5 R 24 R
Acoon Local executive . 0.04 N I N
System exécutive 0.1 R ‘2R

In order to estimate the probability of fault in any. module (CpU,

memory, bus) we start with the following assumptiohs.

B...Probability of chip failure = 10-6 per hour

C...in tﬁe CPU it requires 30 chips to achieve 1 MIP (compare. the
'DEC,‘PDP-ll which would take 10 chips and yields 0.3 MIPS-and
the INTEL microcomputer with 2 chips for 0.05 MIPS)
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C...Each LSI storage chip provides 0.1 KW of memory.
From the following assumptions we can state

Total memory (KW) =26 R+ N
0.6 R + 0.04-N MIPS

TotavaPU

Total chips 10(26 R + N) + 30(0.6 R + 0.04 N)
278 R + 11.2 N

1 + 26 R/N

Memory per module

MIPS per module

0.04 + 0.6 R/N
11.2 + 278 R/N.

Chips per module

The operating philosophy of SIFT assumes that each processor and each
memory be capable of handling any task. The heaviest CPU load of any task ~
is .08 MIPS and the largest memory requirement is 6.3 KW, With the necessity
to be able to_computé the locgl executive we-have capacities of 0.12 MIPS
and 7.3 KW as the minimum capacity of a CPU memdry module in a uniform
arrangement. This yields a lower bound on the size of each module, and
for an economic deéign (i.e., one that does not have excessive initial spare

capacity) it implies a bound on the number of modules.

We now consider the svecific case of R = 3 which is expected to be the

most common mode of operation. From the assumptions above .

memory/module = 1 + 78/N KW
MIPS/module = 0.04 + 1.8/N
chips/module = 11.2 + 834/N.

We neglect the éhips required for the busses as it is estimated that they

represent a negligible (:1%) of the total circuits.

Using R = 3, all single faults are tolerated, plﬁs all double faults
that are separated by a time greater than the reconfiguration time. Assume
the latter to be 1 sec. The probability of two faults occurring in any 1

second interval during a 10 hour flight

{(11.2N + 834) 10'5}{(11.2N + 834) 16'6/3600}'

(11.2N + 834)? 1071 /3600

2 -
(0.19N + 13.9) 10 11.
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The above double fault only causes errors in the event that the two faults
occur in a pair of modules that are calculating the same task. If calcu-
lating different task sets the fault can be tolerated. For this reason, the
{igures below represent a conservative estimate of non-tolerated fault
condition.. Table VI.2 shoWs the probability of non-tolerated double faults

for different values of N.

N Probability’
3 2.1 X 1072
6 2.3 x 1072
10 2.5 x 1072
20 . 3.1 X 1070

Table VI-2 Probability of Non-Tolerated Double Fault

Consider now the question of having sufficient capacity during a

10 hour flight.

Probability of a siﬁgle error = (11.2N + 834) - 10.-5 = P, Multiple

errbrs may disable several modules or may effect only one module. The prob-

. . -
ability of losing different numbers of modules is given by Table VI.3.

Number - e
disabled Probability
0 ’ l -P.
1 P
2 PU(N - 1)/N
3 PPN - )N - 2)/8
- ' 4 - ‘ 3
4 P (N - 1(N-2)Y(N-3)N

Table VI-3 Probability of ¥Failure of Different Number of Modules

Second order terms are ignored.b The error involved is < 1 percent.
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Table VI.4 gives the probability of different numbers of computing

modules having failed as a function of the number initially in the system.

Number of Failed Modules

Number of . .
Modules 0 1 2 3 4
Initially '

9.91E-01 8.68E-03

3 5.02E-05 1.45E-07 0.00E-00
4 9.91E-01 8.79E-03 5,79E-05 2 .55E-07 5.59E-10
5 9.91E-01 8.90E-03 6.34E-05 3 .38E-07 1.20E-09
6 9.91E-01 9.01E-03 6.77E-05 "~ 4.07E-07 1.83E-09
10 9.91E-01 9.46E-03 8.05E-05 6.10E-07 4,04E-09
15 9.90E-01 1.00E~-02 9.37E-05 8.14E-07 6 .52E-09
20 9.89E-01 1.06E-02 1.06E-04 1.01E-06 9.11E-09

Table VI 4 Probability of Losing N Modules

Figure VI-8 shows graphically the probability of different per-
centages of computing power still remaining after 10 houré as a function of

the initial number of modules.

Making the assumption that 50 percent computing power must exist
at the end of the flight, the shaded region indicated the acceptable opera-
ting range,'i}é., it indicates that N 2 8 for probabilities < 10_8 of system

failure.

The foregoing analysis is conservative in several ways, which are

discussed below.

An imblied assumption is that a chip failure will result in er-
roneous calculation within that module and a consequent reduiremént to remove
that module from service. There are several chip failures that will not
cause the above effects. A failure of a chip in the memory will, in general,
only invalidate the data -that are stored in that part of the memory. The
number of chips in the memory exceeds that of the processor byAat least 10
to 1 and therefore represents the most probable place of chip failure.

Even in fhe processor some failures will not cause removal of the module
from service, for example the loss of floating point capabilities will not
prevent the module from being used for the executive and other functions

which do not fequire floating point capability. The design of the executive
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to take advantage of partial failure of a processor may unnecessarily com-
plicate it, but it remains an option that is available after experience
shows the most'common failure modes. This type of flexibility distinguishes
the SIFT architecture from others where the'reéonfiguration capability is

designed into the hardware.

Greater reliability can be achieved by different memory structures,
for example by the use of back-up memory and by the use of coding techniques.
The availability of a back-gp memory such as disc, drum, or cassette with
its low cost per bit would enable ‘extensive replication of programs in back-
up memory and allow the main processing memories tq be'reduced in size there-
by requiring fewer chips which will result in a lower probability of faults
occurring. Coding:techniques can also be used in the mémory both for érror
detection and for cdrrection, thereby improving the reliability of the mem-

ories which account for greater than 90 percent of the equipment.

If one assumes fhat faults in the computer are random, then there
will be a significant proportion where the losé of computing power will
have occurred before the aircraft flight phase that requires highest com-
puter power. This is during a blind landing and particulariy in the last
minute before touchdown., Failures that occur before this time, and which
are sufficiently massive as to significantly reduce computing power, will

* : .
only require change vaflight.plan rather than endangering the aircraft.

The reasons given above lead to the conclusion that with reason-
able chip failure rates, more than adequate reliability can be achieved for

the intended application.

H. Processor and Memory

This section discusses some characteristics of the prdcessor and memory
units. Full specification (i.e., detailed design) of these units is out-
side the scope of .the present study. Certain desirable features can, how-

ever, be distinguished at this time. Questions of speed and capacity have

For example, to change airports to one in which a blind landing is
not required. ’ ’
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been considered in Section VI-F. This section is concerned with struc-

tural aspects,

< 1., Word Lengthiand Addressing

. Some application (e.g., Inertial Navigation) tasks require high
éccuracy of numeric data over a large range. The use of floating point
arithmetic is therefore assumed with a minimum of 32 bits (8 bit exponent,
24 bit mantissa)'giving a range:

7 :
2V 1.6 x 10%8
7 ' o
272 ~ 3.1 x 10739,

n

. maximum positive number

minimum positive number

Some reduction of word length could be allowed, It is, however,
more economic to keep fhé word length as a multiple of 8 bits, and a re-
duction to 24 bits for a fldating point number yields insﬁfficient range

and accuracy.

In addition to floating point numbers, many data words can be of
16 bits, and character strings cén_be implemented with 8-bit bytes. We
therefore snvisage a'structure in which data can be either 8, 16 or 32

bits.

With the different'data modes, as discussed above, we must con-
sider the possibility of distinguishing between those modes either by
' labéling the words by extra descriptor bits or alternatively by information
carried within-the instruction. The lattéer method implies, for example,
that theré will be mpre'than one add instruction - in the machine to handle
the cases of floating point, fixed point, and'possibly even single byte
addition. Both approaches are possible and acceptable for the application.
However, thé form in which the distinction is made within the 1hstruction
is more common in the computer field and will, therefore, be more available

if a choice is made'to-use already éxisting designs of processor and memory.

Owing to the requirement to be able to address character strings
for such application tasks as display formatting, it is necessary for the
instructions to be cépable of addressihg at the byte level as in the IBM
360 series. Thié in'tufn‘imbiies'a larger number of address bits than if

the addressing were only poésible at the word level. If one presupposes
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that a practical word size for the instructions is 16 bits, which would
organize well with the various éizes of data words, then we must find a
mechanism for incorporating the address bits within an instruction word.

_ Several alternatives are possible and are discussed below.

Alternative A--Conventional mechine

In the conventional approach, a number of bits of an instruction
word would be allocated to the operation code. A likely number would be
6 bits with the remaining 10 bits for addressing. In ﬁost machines that
use this structure, the 10 bits can be 1nterpreted to address special parts
of memory. For example, the lowest 1024 words, or words in the range
+ 512 words from the current instruction. In addition, the use of indirect
addressing enables one fo address data through a Base sector of memory that
can contain words which are interpreted as 16 bit addresses, thereby enabllng
addre551ng up to 64K bytes or words. An add1tlona1 alternative is to use a
structure as in the IBM 360 with base registers whose contents are added to
the address field of the instruction before executlon. This adds a small

penalty in t1me, but gives freedom to address a larger space.

In other machines using the conventional approach, the option
exists of using double length instructions whereby the second word contains

a 16-bit address, thereby enabling the addressing of a larger memory.

In SIFT, the preferred afrangement among the foregoing choices
would be to use base registers for addressing data. The primary reason for
this is that a protection mechanism can easily be implemented so that the
base register itself can only be set by privileged instructions within the
local executive, thereby preventing any application task from inadvertently

addressing data to which it was not aufhorized.

Alternative B--Stack-oriented machine

In a stack-oriented machine, addresses for data can be placed on
the stack before an operation such as fetch, or store, or jump is executed.
Thus only one instruction is required that can contain an address. (This
unique instruction can be labeled by a single bit.) Successive words can

fetch, store, or whatever, and since these words do not need an address,
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most of the operation codes can be impleménted wiﬁhin 8 bits. The option
therefore exists of allowing two operations per word whenever it is not
necessary to place another address on the stack. ~For example, see

Table VI,5’where the evaluation of an‘éssignment statement is shown coded
in 16-bit words. | |

) : . 2 2
Mathematical form ~ o r=Vx +y
High level language : - R =SQRT (X * X + Y * V)
Assembly language Load Address R
' _ : Load Address X
' o o - 'Load Address X
o Multiply
Load Address - Y
Load Address =~ Y
Multiply . '
Add L
Load Address SQRT Routine
Enter Subroutine’
Store
Machine Code Form ‘ bit
1 2 4 v 4 e s e o e 4 e e . 16
1l R
1 X
1 X
0 *
1 Y
1 Y
0 *
0 +
1 SQRT
0 -JUMP-
0 STORE

Table VI.5. Stack Organized Computer Organiiation‘
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In a stack machine, indirect addressing and indexing can be carried
out and in the latter case, the value of the index is itself placed on the
stack. In effect, the indexing operation becomes identical to the normal
éﬁd operation for data. Namely,.the index is placed on the stack, followed
" . by the address. An addition then takes place followed by, for exémple, a
fetch from store. The effect of the addition is to add the value of the
index to the address which accomplishes the desired result. Indirect ad-
dressing is achieved by simply using the instruction sequence that will
cause an address to be placed on the stack followéd by an arbitrary number
of fetch instructions, each of which puts a word at the top of the stack.
If that word is to be interpreted not as‘data, bﬁt as an dddregs, an addi-
tional fetéh instruction will yield the contents that are pointed at by
that word. R .

The stack organization has great advantages in_that addressing of
32K words in a. 16-bit machine can be achieved simply. It has certain dis-
advantages, however, primarily due to the fact théf it is a less accepted
form of machine organizatioﬁ ahd~is not easily'available in existing com-

puters.

The choice between the two alternatives above does not change
the basic concepts of the system organization which can be implemented using
either structure of nachine. Other considerations, such as the availability
of miqroprogramming'facilities and with it the ability to create special
dperational codes; far outweigh the differences between the two alternatives

in terms of the choice that must be hade;

The above'diséussion shows that acceptable designs can be produced
in whiéh small computers (i.e., 16-bit word computers) can be designed that

have a capability to address a sufficiently large memory.

2. Special Operation Codes

Given the availability of a microprogramming capability in the
computer, we can implement special operation codes.that facilitate either

the application tasks or the executive. We are particularly concerned
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with fhe efficient implementation of those operation codes that transfer
data betwgen modules ‘and carry out checking of that data. For example, in
a general-register machine we would require an operation that could take
three versions of some data that should be the same and carry out in one
operation a check to see if this is indeed so, with certain control flip-
flops set to indicate whether complete agreement exists or partial (i.e.,
two out of three) agreement exists. In addition, operation codes could be
implemented to enable flexible control of the input/output function when
several versions of data have to be gathered from different memories using
different busses. ' In effect, we are looking for a more sophisticated
channel for this control bf 1/0. However, for'émall maéhines, such chan-
nels frequentiy are controlled directly from the instruction stream within

the processor.

¥Within the application'tasks; the on;yioperation code requirements
thét'are different from normal could be‘for'fhe programs that manipulate the
graphic and textual displays. These two applicatioﬁ tasks both require
large programs and also large amounts of data. Questions of speéial opera-

tion codes to make this more efficient should be éonsidered.

. The use of special arithmetic operafion codes (e.g., for square-
root, sin, cos) has been studied, but for the application being considered
none of these functions require sufficient CPU or memory capacity to justify

their inclusion unless this can be achieved with trivial cost.

I Alternative Design Options

Iﬁ<Section VI.8 we discussed some of the réquiremehts on the structure
of the proéessor and its connection to memory. In this section we éonsider
some of the Ways in which fhe structure of SIFT béuld be changed?while not
invalidating the bﬁsic concepts., We first reiterate one of the fundamental
features of: the SIFT organization, namely that in order to prevent fault
propagatiqn; a processor can only write into its own memory.  We have

suggested:implementing this by a bus structure that contains only one-way
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paths from memories to other processors. There are other possible imple-
“mentations. For example, a single monolithic memory could be used and the
protection needed could be carried out by constraining the address space

of each processor so that only a small segment of memory can be addressed

for writing.

_ Another way of looking at this type of memory structure is to view it
as one in which each processor has a larger address_space for reading than
writing and the writing spaces of processors are non-overlapping. This can
be implemented by an instruction set that has a smaller number of bits in
the address field for instructions that write than for those that read from
memory. The advantage of such a memory structure is that in the event that
a processor becomes faulty and has to be removed by the executive from the
system, the memory associated with that processor could be reused at least
in the reading form by other processors, thereby preventing the need for
transfer of programs from one module to another in the event of a processor

failure.

As discussed in Section VI.6, the minimum size 6f store in any pro-
cessing module is largely determined by the size of the largest task to be
carried out, plus the size of the local executive. The largest jobs in the
application task set that we consider are for graphics and textual display.
Most of the storage space uéed for these applications is concerned with the
retention of information that isrinfrequentiy used, i.e., we must remember
the configuration, not ohlyiOf the airfield to which the plane is'flying,
but also to back-up airfields. We must similarly remember the configura-
tion of the various ruhways of that field, even‘though eventually a choice
is made for a landing on a particular runway and these are the only data
that are eventually used. Choices of different airfields or different run-
ways are human choices and the time response to be able to change the dis-
play for a different airfield or runway is very long in computer terms.
Certainly, thqre_appeafs no strong necessity to keep thesé data in storage
with access time of the order of microseconds. The availability of back-up
stores that could possibly be of a rotatiné magnetic medium type, such as

drum or disk, wodld enable much smaller processors to be used in the system.
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This would mean that a larger number of smaller processors would be used
that would provide'a-more reliable and fault-tolerant system. Further in-
vestigation should be carrled out to determine the practlcallty of using

some back-up store for 1nformation of this .type.

An additional problem is the size of the program required to carry out
the formatting of dynamic displays and the computational time required for
these programs, A design option would be to significantly enhance the dis-
play hardware itself so that it was .capable of carrying out more automatic
generatien of display An example of this more automatlc operation might
be an ability to interpolate between two dlsplays so that the computer need
only transmit updated views from time to time, (e.g., every second) and the
hardware would carry out an interpolation so that the transition from one
to the other Was carried out smoethly, simulating more clearly the actual

operation of the plane.

We note that considerations of this type regarding the display hard-
ware are independent of the architecture of the computer and whichever
central computlng system is chosen will beneflt from the ability to have

either a back-up store for data or a more sophisticated dlsplay system,

In the context of architectural alternatives, we note again that there
are 31gn1flcant alternatives among fault-tolerance procedures. While the
most common:mode will probably be tnree—fold replication, a higher degree
of réplication may be appropriate for some tasks In addition, we can carry
different error correction procedures, For oxample, in the event of an
error being detected, 1nstead of taking the maJor1ty vote remaining, we can
repeat the calculation-by the same or a different group of processes. It
is felt that th1s is a useful procedure dur1ng the critical phase of a

flight,

A large eompenent of computing capacity is needed for automatic land-
ing; Only & -very small propertion of flights will occur where both auto-
matic landiﬁgeis needed and faults have reduced the computing equipment to
the minimum necessary to carry out that operation. For those cases Where
the faults have not occurred, it would seem natural to use the spare ca-
pacity to provide extra fault tolerence.' ;n the event that the spare ca-

pacity is not aveilable, we can opt to change the mission, i.e., to land
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at an alternative destination. Such options as these within the SIFT archi-
tecture make it differehf from architectures whereby the fault-tolerant pro-
cedures are designed into the hardware and are not changeable dynamically

at run time.

J. Conclusions

The SIFT system architecture as presented achieves great flexibility
in fault-tolerance procedures. The salient .points of the design objectives

that are achieved are:

® Fault tolerance can be varied so that for some tasks it can be
arbitrarily high, using suitable replication and reconfiguration

strategies, and for other tasks the fault tolerance can be less,

® No special design requirements are placed upon the processing
units or memories, theréby enabling different designs to achieve

different computer powér.

® Fault-tolerance procedures can be implemented by software, micro-

programs or hardware.

® Fault detection, avoidance, and correction functions are achieved
by procedures'that can be transparent to the application pro-

grammer.,

® The reliaﬁilityvrequireq can be achieved by assuming reasonably

reliabie LSI circuits and three-fold replication.
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VII 'BUS CHECKER SYSTEM

-Introduction

This chapter describes a third candidate architecture, the Bus Checker

System (BUCS). We start by summarizing the implications of the aircraft

environment on the required fault tolerance and performance:

1.

1

The appiication computations are largely indebendent of each
other with respect to »

the order in which they are to be éxecuted

the sharing of‘data and common subroutines

periphefal devices (generally eaéh task ié associatedi

with private sensors and effectors.)

For the critical computations it is essential_thét the computer
not deliver wrong results; it is preferable that no result be

delivered rather than a wrong result.

For certain high iteration rate computations (flutter control,
automatic landing, collision avoidance) it is essential that the
system not be down for more tﬁan 10 mséé'(a few iterations).
Generally, for these computations the pertinent program and data

base (~ 4K words), a down-time of 100 msec or more can be tolerated.

Some gra@eful degradation is possible. During landing about 50
percent of the computations (measured in terms of processor load
and memory requirements) need not be considered. Hence the plane
can land according to mission plans with only half of the computer
rescurces available. However, the only positive ramification of
this is that ifia back-up memory is available to hold the landing
programs during the non-landing portions of the flight, then these
landing programs can overlay other programs at the time of landing.

PRECEDING PAGE BLANK HOT Fi.iikd
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The

The relative independence of the computations leads naturally to

a multiprocessor system -- a good approach to follow, in ahy event,
to .achieve fault tolerance. As such, each processor can be of low
power (say, 0.1 MIPS), which in turn implies that each processor
can be realized wifh few (say 3) LSI chips. Implementation in a
few LSI chips implies that redundancy and error checking should

be applied over a processor rather than within it. Assuming that
failures are independent among chips, the frame .coding approach for
memory seems natural, As will become clear, the independence
criterion is not as important for processors-wherein'many failures

that disable several chips can still be tolerated,
BUCS sysfem embodies the following qualities:

The main memory is centralized to allow the full benefits of frame
coding Iﬁ addition program and data sharing and relocation are

easily attained within the concept.,

The processor load is divided among a set (five to ten) of smalil
local processors (LP), which are duplexed or triplexed for error

detection/correction purposes.

Each LP contains a small (2 - 4K word) local memory. This memory

is large enough to hold all of the program and data associated with
any ‘task (except display) so that the ‘common bus traffic is low,
The memory is loaded from main memory w1th the appropriate program

just prior to each task execution

A‘smail (about 3 chips) unit called the bus checker (BC) coor-

‘dlrates the flow of control between the major blocks., It also

does in1t1al processing of error signals. The BC is triplicated,

: and its outputs are fault masked by voters distributed at

appropriate locatlons
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5. A disaster restart mechanism is provided within the BC sub-
system, This mechahiém permits a relatively simple recovery from

a massive transient that may corrupt the executive tables.

6. Diagnoses of main memofy and of certain unflexed processor
functions (e.g., comparators) are carried out periodically,
Spare blocks, or possibly mémory frames, can be utilized if the

diagnostic routines reveal faults.

7. A two-level executive is postulated. The first (higher rate)
level controls task sequencing and érror_checking. The second
(slower rate) level controls modifiéationé in task sequencing

and periodic diagnosis,

8. it.is envisioned that the executive will pe;manéntly reside in
one of the LP's until the LP fails, after which another LP will

take on the executive role.

The reader will observe'that the BUCS system as summarized above
incorporates>some features of the surveyed systems. The concept of local
duplexed'progessors and centralized memory are parts of the Hopkins'
multiprocessor séheme. Coding as the primary protection for memory is parf
of the JPL-STAR and IBM-MARCS. A special bus checking block is part of the
NASAAMarshdll—HughesvARMMS~sysfém. The loéding of task programs into local

processors from. a central store is a property of the Navy AADC system,

In the sections below we present the over-all view of the architecture,
a_scenario for each maJor system function, tentative design features of the
major system blocks, a prgliminary,reliability analysis, a brief review of
possible extensions to the BUCS systém. Chapter VIII presents a detailed

comparison of BUCS with the other two candidates.
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B. High-lLevel Description of Architecture

1. Hardware Components

" As shown in Figure ViI-l, the BUCS system consists of the following
major system blocks: a set of local processors (LP's) (five to ten, 0.1
MIPS each, for this applicat1on), a centralized main memory (MM), a set of

I/O units, a bus checker (BC), and possibly a back—up memory (BAM),

The BC is aesumed to consist of three identical independent units-
operating inAnear locked—step.* As shown in Figure VII.1l, each independent
unit delivering information te the BC has a separétejSet of input ports to
the BC, and each of the three independent BC's can deliver signals simul-
taneously to all units on a single triplicated bus. The separate units
will generally. contain their own address decoders to recognize BC signals

~and their own voters to correct any single BC errors.

_ The MM is realized as a twokdimeneional array of frames and blocks
(see Chapter II) wherein frame_COBing is used. A spare block under the
addressing control of the executive is also included to provide additional
required_reliabiiity. A set of IP's are included to erniable the simul-

taneous 'processing of several programs, and also to provide spares.

» Within an LP are two independent locked-step processors (P) with
a deplexed comparator. The cbmparators, which,‘physically can be part of
) tne processors, broadcastnany processor disagreement to the BC. The local
memory (LM’ within each LP is relatively small, since 4K words are completely
adequate to handle the executive and any of the individual compntations
except display (which can be easily decomposed into subtasks). Most of the
tasks can be handled with 2K words, so it is likely that a 2K IM will suffice
with the larger tasks using the MM és_a backup memory to the IM. Single

*As we show later the BC can be realized with 3 LSI chips. Since this block
is so small a reliability analysis will show that triplication with voting
yields sufficient rellability
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.frame-error correcting, double frame-error detecting codes are utilized to
increase the reliability of the IM. One notes that the IM comprises about
80 percent of the LSI chips of the LP. '

An IP will fail when (1) é-second frame within the IM fails, or_(2)
one of the two P's fails, as determined by a comparator disagreement, or
(3) a comparator fails, as determined by a disagreement between the com-
parators or by a diagnosis. ‘The failure of an LP will induce its replacement
with a spare LP, At first glance it might appear extravagant to discard an
entire IP even though most of its memory and at least one P are still oper-
ative. However, as the reliability analysis will show, only one spare LP
is necessary, and moreover a single LP can be as little as ld percent of

the entire system.

The issue with respect to I1/0 is not as clear-cut. It is certain that
multiple I/0 controllers will be present so that a giveh sensor or effector
has access to the bus checker through mere than one controller, With three
controllefs, wvhich seems reasonable, there can be a distinct controller
communicating with each BC. (The I/0 controllers can be viewed as merely
extensione of fhe BC's.) 1If there is triplication of the sensors then
independent sampling of the sensors can easily be-accomplished.* Similarly,
if there can be three independent effectors for a given aircraft fuhction,
each such effector can receive an independent signal -- the "voting" in
this case is acéompliéhed by fhe alrcraft frame., If only one effector is
possible, then the voting of the three 1/0 controller outputs is accom-
plished at the effector -- clearly the last bossible point for the vote.

We have not given much attention to the characteristics of the back-up

memory (BAM). Our present,view is that there is not a clear role for a BAM

* There is a problem with carrying out a vote of independent sensor readings.
It is unlikely that the three sensors will supply exactly the same value,
and hence the vote, if done in a bit by bit manner, will fail, The solution
is to supply the three readings to the pertinent LP's and have the vote
taken in software, thus allowing for a disagreement precision warranted by
the sensor in question.
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in our system. The storage requirements do not imply a need for mass
storage, except possibly (1) for the logging of flight information, (2) for
the storing of runway parameters for all possible landing sites, or (3) for
the storing of programs and status information in anticipation of a massive
transient. The technology survey has not shown a clear reliability advantage
or substantial cost advantage for, say, discs, as.compared with MOS memory,
If it is needed, a reasonable approach for the storage of critical'informa—
tion is to use two independent'ﬁAMfs, each with error detection, and each

communicating with the set of BC's.

We have not yet decided on the width of the communication-paths between
units, As mignt be expected, the bus checker (BC) is pin limited. A narrow
bus 1s thus preferable as it leads to a smallervBC unit (fewer chips). The
_ total data rate to and from (mostly from) the MM to the BC for the aircraft
computations 1s: estimated as 2M bits/sec. This is a factor of 10 less than
required by a version of the Hopkins scheme that does not incorporate a
cache, The reduction is due to the fact that the bus in BUCS is mainly used
for loadingvtheeLMfs with programs and constants, while in Hopkins, the bus
is used for program execution. Assuming 16 bit words and, say, a transfer
width of 8 bits, the bit rate on the bus'is 250K bits/sec. (Note that the
1/0 bit rate through the BC 1is negligible.) With any reasonable interconnec-
tion technology an order of magnitude scaling upward in computation load can

be tolerated without taxing the bus.

2. Global Description of System Operation
' The following 1s a brief overview of the system operation. A
detailed description of each of the executive functions appears in Section D

below

As in the SIFT system, computation tasks are assigned to LP's
However, in BUCS the program, constants and data are retained in MM until
the task is initialized The pertinent information is then transferred to
- the IM, by means of a mapping provided by the executive, That is, the

executive in 1nitiating a task supplies an absolute MM address and a word
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cbunt for the program and data or the task in questibn, which are then
loaded into the IM under control of the BC. Tasks should be allocated to
LP's.so as to preclude the need fdr multiprogramming within an LP. This
may be accomplished by assigning to a given LP either all short, high
iteration rate tasks or all long, low iteration rate tasks. As in the
Hopkins-séheme (but different from SiFT) a task ié assighed only to a
single LP. . '

If an LP fails pefmanently, all of its application tasks are
assigned to a spare LP. -As the flight progresses'and the task sequencing
chénges, the executive will reassign tasks to ILP. It is likely that all
of the assignments needed for a. flignt caﬁ be programmed in advance so
that the executive function for a reallocation of tasks is merely a table

look-up.

The exécutive is initially resident in one of the LP's, and it
will probably not share the LP with application tasks. A replica of the
e#ecutive program and tables is fetained in MM'so as to permit the re-
assignment of the executive to another LP upon failure. The BC retains
knowledge of the identity of the executive LP iﬁ addition to the absolute
MM location of the exécutive program, A failure of this LP is counter-
acted by the BC assigniﬁg another LP to take on the executive role. The
.occurrence qf a massive transient could prevent the ''normal" error response
as indicated above. For example, the register that holds the identity of
the executive LP could be corrupted in tWo‘BC's} If this undesired state
change as well as others werevto occur, then it is likely that several LP
comparators would issue disagreements, but the executive would not'be.called
to respond to these possible errors. The BC, if a succession of errors are
reported to it, responds with a hard—wired:rOUtine that selects a new exéc—

utive and attempts a dead-start recovery.
A summary of this global view of the BUCS operation is depicted

in the flow chart of Figure VII-2. The details of each of these operations

and of the executive appears below in Section D.
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C. Description of Major Blocks

In this section we’ present some design details of the maJor system
blocks. The designs have been carried out only to the point where we are

convinced of the viab111ty of the entire approach.

o

1. Local Processor

- -

The tentative details of the LP are d1splayed in Figure Vi1.3.
As indicated, it consists of two replicas each of a processor (P), encoder/
~ decoder, and comparators and a single repliea of a-LM. It is anticipated
that each encoder/decoder would be realized as a single chip. Each pro-
cessor, together with its comparators would probably consist of two to three
chips. The [M which will probably require no more than 4K words--of 16 bits
plus six check bits--should consist of no more than 22 chips. The optlmum
" coding for'the IM is frame coding, with frame-width £ = 2, and ‘with a Hamming
single frame error correcting, double frame error detecting code. We recall
that the words in ‘Main Memory (MM) are also encoded as a Hamming frame-error
correcting code., Hence the encoder/decoder within an LP can suffice for the
code conversion between the LP ahd MM. That is, words being transferred
between ehe LP and IM always pass through the LP encoder/decoder. Thus an
error in either the LP or IM is immediately identified, corrected, and pin-
pointed. Another possibilify, albeit not .as attractive, is to use the IM
as the interface between the LP and MM. . In this case, .the words passing between

the two units will be encoded properly by definition.

We recall that single frame errors within the .IM are masked, re-
quiring no additional feconfiguration ection. The eqcurrence of a double
frame error causes each encoder/decoder to send an error indication to the
BC, signifying the failure'of the LP. Similarly, a disagreement between two

processors also is an indication of LP failure.

In Figure VII-3 we have shown exclusive-OR gates to indicate the need
for a test for disagreement between the Pl, and P2 units. However, this some-
what begs the issue. We believe the best solution is to effect a comparison

whenever a signal leaves either Pl or P2, We clearly do not need to compare
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at each cycle of P since roll-back is not achieved as a single instruction
restart but as a task initiation restart. Hence, the comparisons could be
doﬁe on the completion lines or on the address lines going from Pl and P2
to the BC's. Siﬁilarly; a compafison could be effected on the words from

Pl and P2 to be written into IM.

As mentioned previously the control signals from the BC are trip-
licated--one for each BC--and hence within the P's there is an error-correcting
voting mechanism. Excebt fof coded data words, signals emerging from the LP
destined for the BC are duplicated--one version for each P--and hence there is
a comparison mechanism within‘the'BC that will signal a possible failure if

1

there is a disagreement.
The two P units are synchronized but only loosely. We envision a
clock control line between the units that is activated only when a comparison
is called for, say when a completion signal is to bevseptvto BC. Thus, a
reliable clock is not needed. 1If, say Pl (or P2) fails to receive a control
signal from P2 (or Pl) within a certain tolerance then it signals an error
condition to BC. The inter-unit control signal could also resynchronize the
clocks within each P so that the clocks do not drift appréciably apart.
Similarly the communication between an LP and BC is done asynchronously. Thus

a reliable system clock is not needed.

2. Main Memory Organization

An appropriate main memory (MM) organization is depicted in Figure VII.4,
We have also shown the form of the interconnection between the MM and other system
units., Briefly, the addfess lines and clock control lines are derived from the
bus checker (BC). We assume, as shown, that a separate voter is provided to supply
address data fpr each frame of memory within MM, and the voter is driven by the
three BC's. The voted address lines are passed to all chips in the MM since each
such chip contains an internal address decoder. Note that a single failnre such
as one chip "'shorting-out" (at its input) a voted address line will disable only
one frame of the MM. Consequently the coding of the MM words will handle this
fault. However, there are double faults that can disable the MM. For example,

the failure of two frame address voters will potentially corrupt two frames of
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MMs and as such is not éorrectable. We believe that such double failures
represent a small percentage of the possible double failure patterns, but

they will be included in the reliability ‘andlysis..

‘In one approach for the transfer of data from an LP to a MM the MM
"data input lines are derived frdm the IM's. Thus the same error correcting
code is conveniently used in both the IM's and'MM. It seems possible to
wire together the corresponding bit outputs oflthe IM's destined for the MM,
Because of the error-correcting coding a chip failure anywhere that shorts
out an entire frame for all IM's is not fatal. Simultgneous with trans-
Terring words from an IM to an MM the decoders ass&ciated with LP's could

check the validity of theAtrahsferred words to pinpdint a possible IM failule.

The MM output words are destined for decoding in one of the decoders
associated with an IP. Hence it seems reasonable again to wireltOgether all
of the corresponding decoder inputs and MM frameloutputs. Once again, a
single chip failure can only:disable a frame in all decoders or in éll blocks

of MM and, hence, the failure is correctable by the code.

It is assumed_that the MM is organized as a two-dimensional'array of
B blocks and f frameé{ At each block-frame intersection, there is an LsI
chip containing 4096 bits of memory. Aé in the case of iM's, the apparently
optimum organization of thg chip is 2 bits wide by 2048 words. Thus for a
MM of 32K wordsf~reasogable for this application--16 blocks will be required.

As mentioned above it seems prudent to incorporate the same code
within the MM as in the IM's, namely a single frame-error correcting, double
ffame error detecting code. In the case of the MM, our reliability analysis
will show that single error correction i£ not quite adequate to achieve the
stringent reliability requirements, for the reason that the MM has too many
failure-proné chips within it. However, the portection against all doukle
failures appears adequate. There are several approaéhes-toward achieving

double fault tolerance; among which are:
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(a) the use of a double error correcting code for all words
(b) the use of a spare frame within each block

(c) the use of a single spare block.

We ‘have ruled-out (a) as being too costly, both in terms of the extra
redundant bits and the decoding costs, .Approach (b) adds very little to
the cost of the MM-—approximately 5 percent--but it introduces the need

for extra switching to provide a route around the faulty frame,

. It appears that the spare block»approach (c).is the most éttractive.
The extra cost‘ié certainly moderate--6 pércent«fdr an original 16 block
memory. The routing around a bad block is relatively simple, involving merely-
an address translafion. In addition, a separate power supply could be pro-

vided for each block, thus providing a tolerance to single power supply failures.

There are two approaches toward identifying a faulty block of MM,
As the MM words are decoded by the decoders in the LP's, single errors in MM
will be revealed, but also'éorrected. Secondly, our intention is to peri-
odically diagnose MM, mostly to ensure that the rarely used programs retain
their integrity throughout the flight. As we show later a low rate of diagnosis--
once every 10 seconds--is quite adequate. )
We emphasize that the MM provides for single-frame fault‘masking with
" block switchover to yield a system that is essentially double fault tolerant.
There are, howevér, certain double failures that can disable the entire MM.
Since the MM‘data inputs and outputs corresponding to a framé_are wired together,
two failures that each short out frames would not be correctable. Although we
- do not have sufficient informafion to assess this possibility, we suspéct it is

unlikely.

3. Bus Checker Organization

- The organization of each of the three bus checkers (BC) is displayed
in Figure VII.5. ' For convenience of description we have shown the BC as com-
posed of sevén distinct sections. This particular decomposition may not hold

in practice. A brief discussion of these sections follows,
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(a) Address Translation.

‘As indicated previously, addresses emanating from the LP's
are used relative to a base address'that is computed by the éxeéﬁtivé. "The
address'traﬂslation'process, which is merely forming the sum of -the base
address and-relative addre$S'to compute the true,MM~addfess, is carried out

by the.BC.

(b) Signaling of Units

The BC is assigned the'role of signaling the:LP, MM, I/O, and
Back-up Memory (BAM) units. “Such signaling-generally.signifies that. a word

of data is beihg.sent to-the unit in question.

(c) Ihter BC Synchronization

It is recalled that three BC's are;provided so.as to afford a
.tolerance to single BC failures. The voting of the BC oﬁtputs is' not accom-
plished within the.BC's but by voters at the inputs to the units--LP's,.MM,
I/O's, andyBAM's. Bowever,'there is a need to synchronize the operation.of
each of the BC's. ‘As with the duplexed LP's the three BC's :need ‘not .operate
in lockedFstep, but must be coordinated .upon delivering a signal :to. another
unit, This coordination is attained by ‘having-each'BC deiiver a isynchro-
nization sigﬁal.fo the ‘other:BC's when 1t:is‘r¢ady'to;deliver a;signal,to a
LP, MM, etc, fThe appearance.of two synchronization signals,‘inchuding a
sélfegeneréted one, is sufficient to enable the transmission. . Synchronization
signals appearing at times.other than transmission times are .ignored,:thus.
preventing a'faulty BC from- corrupting the other two BC's by:emitting:random

synchronization signals.

(d)* Error Processing

Ail'disagreementisignals:from a .duplexed processor- pair or
error signals from.an LP decoder are .directed. towards the BC. For "normal"
error processing, i.e. the response to single unit .permanent failures or non-
massive transient failures, the BC merely records the identity of‘the unit

reporting the failure and -signals 'the executive, It is likely that'the various
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.IP's will be sampled on a round robin basis to prevént a permanently
"disagreeing LP from seizing permanent control oi the BC. It would also
be desirable for the BC to ignore a permanently diéagreeihg LP so as not
to céntinuously bother the execgt}ve. 4

Ay

(e) Completion Processing

When an LP completes a task it alerts the BC. Once again,
‘the BC merely records the fact and signals the executive. A round robin

sampling of the LP outputs is ‘again in order here.

() Executive Signaling and Restart

This section of the BC is responsible for signaling the exec-
utive upon the complétion of an application task or an error condition.
Accordingly, the BC knows the address of the executive LP. The sighal is
sent to all LP's but only the executive should respond, There is a possi-
bility that a nonexecutive LP could fail (in both - P's) such that it thought

it was the execﬁtive, buf this requires twoc cortelated failures,

This section of the BC is also responsible for processing
failures in the executive LP, aﬁd as such is the final arbiter. If the
error siénal emanates from the executive IP, the BC initiates the recovery
by first trying to restart the executive LP, and then, if that attempt is
unsucessful, finally switching in a spare LP to function as the executive.
As such the BC must retain the following information: (1) identity of the
executive, (2) absoiute location in MM of a program that will restart the
executive and load in last input data, and (3) identity of all spare LP's.

(g) Disaster Restart

We mentioned previously that it is desiravle for the BUCS
system to be able to-fespond to a massive transient that causes severe state
changes. Under such a traﬁsient, for example, the registers in the BC that
store the address of the executi&e LP could be corrupted. The Disaster
section is intended to combat such a transient by restarting the system.

In carrying out this role the BC perfomms global consistency checks on the
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reét of the_system'by executing a small program stored in an internal ROM,
For example, if continuous érrors are reported by many of the LP's or if
the executive fails to respond to sigpals, then the BC restarts the system,
We presume-thét it has access to a BAM that holds‘the program and possibly-
a last status dump. It is presumed that the identity of failed LP's and
failed MM blocks is also lost during the transient, so that the BC must
proceed slowly in a bootstrap approach toward activating the system. It
selects an executive LP and, after determining that it is oﬁeratiQé, lets

the executive continue with the reconfiguration,

‘We believe that the design of the BC according to the above
specifications is relatively straightforWard. One possible difficulty con-
qerns\the number of BC terminals. The control signal lines are not a probiem
here bécauSe only a few arevaésociated with each unit. However, the address
input lines from the LP's could pose some difficulty since about 12 such
lines ‘will emanate from eéch P unit, corresponding to 24 from each LP,
Clearly, they cannot be wired together since there is no error correcting
coding of these iines. . One approach is to have these address inputs trans-
ferred byte serially. Address requests to the,BC should occur infrequently

enough to warrant this serialization.

The BC as described above is a special purpose controller.
The BC could be realized as a small microprogrammed pfocessor with about
100 words of memory. It would also require a multiplexer to coordinate the

communication with the LP's, MM's, etc,

D. Executive Opefation

i This section briefly summarizes the functioning of the executive in the

BUCS'system, First we will distinguish the main rdles of the executive,

l.A.ApplicationATaSk Scheduling

We recall that tasks are loaded into a LP when they are to be serviced.

The executive'supplies a MM address, and a word count to the BC in order to
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initiate the loading process. Since the computation load can be predicted
.for all flight contingencies during preflight planning, the task load and
task sequenéing for each LP can be prestored in the executive tables. 1In
this case the executive merely cycles through a task schedule* associated
with each LP. The scheduler could be driven by a clock whose frequency is
about the same as the highest iteration rate aésociated with a task--250
Hertz in our environment. At each clock occurrencé, the executive determines
if any task that should have completed its execution has failed to do so. It
could also schedule any tasks that require service at that time, including

performing of an I/0 operation for a task.

2. Background Executive Processing

There are several executiQe functions that require periodic but
infrequent service. Among these functions are the'diagnosing of "unflexed"
hardware anq the changing of the.application task schedules due to a possible
mission change. A relatively slow ciock, say 0.1 Hertz could drive this portion
of the executive., It is envisioned that these functibns would be carried out

in the executive LP.

With regard to diagnosis there is a need to periodically check
portions of the system that are "unflexed," i.e. very rarely stimulated, Such
portions include pfograms that are needed only for landihg, executive programs
that control reconfiguration,.unused portions of MM, and the comparators assoc-
jated with LP's, The particular problem of cbncern here is that two failures
could hossibly occur in a hardware section that is not exercised during normal
computer usage. Hence when the particular hardware section is needed, say a
memory block holding a reconfiguration progfam, it would not be operative.- The
solution is to diagnose such sections. With regardvto'rarely ﬁsed programs the

solution is simple--merely read through the storage holding the programs and

This simple cyclic scheduling process also requires that no preemptibn of
tasks is required prior to their completion. If it turns out that inter-
ruption is required to effect the multiprogramming, then some swapping of

IM memory space will be called for, without introducing any fundamental
difficulties.
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check for the appearance of any errors that are handled hy the decoder.
The effect of an error is handled by the executive transferring the infor-

mation in the offending MM block to another MM block.

For nultiple failures in the comparators and other error indicators,
the solution is also quite simple. Within the LP's let there be a: few routines
that introduce errors. Corresponding. to such routines provide a few words
in IM that purposely contain one or two errors. The reading. out of these
words should induce a properly functioning decoder to emit an error signal.

The comparators associated with P units are checked by-comparing the'valueSu‘
stored in two registers that are purposely set to be different These- types
of dlagnoses by the executive should improve the situation, but clearly do-

not solve the problem completely.

For examnle, with regard to a’program-intended-to carry out a recon-
figuration, is 1t Sufficient to merely check'the 1ntegrity of the stored
version of the program? The possibility, aibeit‘unlikely, exlists that a par-
ticular portion of a'register' used- only for this program, could fail in each:
of the P units, Under this event the- reconfiguration program would not function
properly, although no comparator would emit an error signal, With the basic
architecture<of BUCS (or a three- voting SIFT or Hopkins scheme), it is un-
likely that the system can be made- totally tolerant to all double faults. The
- design problem we have addressed is the reduction of the fraction of all double

faults--say to one percent--that can. result in system failure.

3. Single Error Processing.

If an error is detected as a disagreement among: P units, as a -single
error indication in an MM block, or as a double error indication in an IM,
the executive is signaled. Since<the failure might only be transient the exec-
‘utive should reinitiate the computation.with the initial data and allow the
computation to be retried. If a failure occurs several times in succession,

another LP or. another MM block should be:-initiated with the same initial data.
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A question arises concerning the response to a second error that
occurs in the executive LP during the retry reconfiguration process, The
probability of the second error arisiné from a second permanent failure is
indeed femote, since we do not expect more than two faults in a mission.
However, a second transiept fault is possible and shouid be handled by the
system. The process is as follows: the pertinent'error data--identy of
possibly failed LP, and the number of retries effected so far--is stored in
the executive tables as part of the initial executive program data; (The
sécond failure dccurring during this brief time it takes to store the initial
data would possibly be untolerated.) Hence, if the exécutive fails, the bus
checker can ébtivate another executive to effect-a retry and possible recon-
figuration of the first executive. A faiiure in the second executive would
result in a similar procedure, involving the activation of a third executive,
etc. The process operates as a pushdown stack of executive status, although
the system's resources are likely to be depleted before the stack . gets very

deep.

4., Executive Load

The executive routines as described above should requife no more
than 4K words of storage, including data, and hence the entire executive should
fit into'a LM. The task scheduling routines, including the prbcess of loading
- programs into IM's, should consume no more than 0.1 MIPS, and as such repre-
sents apout a 20 percent overhead, compared with the application tasks., The
background executive processing should consume about 100 msec every seér'or
equivalently 0.01 MIPS--a negligible overhead. Note that the MM diagnosis
portion of the executive will by necessity be multiprogrammed with other ex-
ecutive functions. The decomposition, involving the diagnosis of a block of

MM in a given computational interval, is'easily'aéhieved.

Our analysis has shown that an executive that is centralized and is
normally operat;ve in a particular LP (except when that LP fails) is adequate
for controlling the presently conceived system, If it becomes desirable in
the future to incorporate the BUCS concept within a much larger system--say

containing 25 LP's--some modifications are called for. 1In this case, the
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task schedﬁling and background task part of the executive could be dis--
tributed. among the processors, és ih SIFT. if the scheduling routine can
be made émall-enough, a copy could be permanently resident in each of the
IM's. In addition, if it becoﬁes feasible (op the basis of application pro-
gram size) to uée a 2K IM instead of 4K then the scheduling portion of the
executive will be -permanently resident in an LP. The femainder of the ex-
ecutive will be treafed as an application task fo be loaded into an LP, when

needed, under control of the scheduler.

"E. Reliability and Performance

This section presents a simple analysis of the reliability‘of the
BUCS system as described in the previous sectionms. Although the analysis
is éimpie, we believe that it.is conservative, i.e., the actual reliability
is expecfed to be better than described here, Our intention is to show that
with rather low reduvdancy——less than 40 percent——the reliability goal of 10

for a 5 hour mission is attained.
Our assumptions on the failure mechanisms are as follows:

(1) - Failures from chinto—chip are assumed to be indepehdent,'and
failures do not propagate from chip to'chip.

(2) The failureArate is 10“6 failures/hour/chip.

(3) The failure rate is independent of time--a goodvassumption for

short missions.

(4)A The probability of4failure_of'the total system is derived as
the sum of the failure.probabiiities of the individual subsystems--
a good assumption for the low probabilities that we are dealing
with. - | ' |

(5) Only ﬁermanent failures are included in the model.

The BUCS'architecture exhiblts the folloﬁing failure states fdrAeach of

the major subsystemé.
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1)

)

" and 6 duplex P units required for a non-redundant system (5 for

3)

4)

(5)

Bus Checker (BC)-fThe failure of two of three BC's leads to a

system failure. Each BC is assumed'tq contain 3 chips;

Processor (P) portion of LP's-~-we assume one spare duplex P unit,

the application tasks and 1 for the executive). Hence the failure
of two P-pairs leads. to system failure. Each P pair consists of

6 chips. '

Local memory (UW) portion of LP's--we assume one spare IM and

6 required for a non-redundant'system. Hence the féilure of

two IM's leads to system failure. Each IM is protected by a

' single frame-error correcting code, 1.e. two frame failures within

an IM lead ‘to an LM .failure. Each IM contains no more than 22

chips.(arranged as 2 blocks of 11 frames1each).

Main memory (MM)--Each block.of MM is protected by a single

_ frame-error correcting code, with a switchover to a spare block

- whenever a failure occurs, Hence, it takeé three block failures

to'cause a system failure. The MM contains 176 chips arranged

as 16 blocks of 11 frames each, (Thisvallows for sufficient memory
to hold all.applicétion programs, executive programs, plus a single
spare block.) We pessimistically assume that three chip failures

anywhere lead to system failure,

Second failure within reconfiguration interval--a second failure

- occurring while the system 1sfresponding to the first failure will

" lead to system failure. We assume that the reconfiguration interval

is 10 seconds--clearly a pessimistic guess for the response to a.
failure, but reasonable as an interval between diagnoses of the MM,
Given the first fallure in MM, the second failure would have to
occur in the same block of MM as the first failure to bring the
system down., On the other hand, given the first failure in a LP,
the second failure would have to 6ccur in the spare LP taking over
the tasks of the first LP to bring the system down. The net effect
is to reduce the fréction of equipment that is vulnerable to about
1/10 of the total equipment. The total sySteﬁ'contains about 400
chips. 4
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. (8)  Fatal double failures--because of -the ﬁunflexed"'compqnents
'(Sectien D-2) certain double failure patterns lead.tOrsystem
failure regardless of when they occur during the flight. A
rough analysis of the double fault patterns Andicates that less
than 1 percent of the double fault patterns will lead to system

'~Ia11ure.

We are now in a position to evaluate-the contribution of :each of -the

above failure.mechanisms to-the total system failure probability.

For failure mechanism i, i= 1 5 6, assumlng the parameters . given

in the opening of this section, the failure. probabillty P is: |

£,
p. =3 . 3.167%%. 5 = 1.35.107°
f 2 :
1 -
7 -6.2 _ -9
P. = () . (6.10 )°.5 = 3,78.10
f 2
2 . .
p. = ()P ..1071%2 . 5 = negligible
3
p. =78 . 10718, 5 = negligible
Of 3 : :
4 . :
- -6, 10 | o00.167%y . & . - . -9
?fs = 400 10 (G555 ~ 399710 .) 5 (1/10) 22 * 10
_ 400, - 1 -2 =9
P, = 5 - (590 710 -5 =410
6 . :
o 6 9 S | 8
Forming the .sum Y, Pf =~ 8 X-10 ; ‘which iS'within the goal of .10 ~ -for
i=1 i : : B

the five hour mission.

Clearly, the two.most significant factors are Pf and Pf « The former
_ o ' o 2 76
can be reduced to a negligibleAquantity'bywmerely providing one :additional

zspareALP}(fer_two spares) total, atveniadditional-reduhdancy cost :of 15 percent.
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On the other hand, Pf can be reduced only by carrying out more diagnoses
" to reduce the quantitg of unflexed hardware or by good engineering design

(e.g., locate sensitive. gates onvopposite ends of a chip).

We emphasize that these figures are tentative, .although probably
pessimistic. The redundancy is quite low, being about 30 to 50 percent in
tdtal.éxtra chips required for the fault tolerance (dependent upon IM size)

.plus about 10 percent extra chips required to 1mp1ement’the.executi§e.

A few comments are in order with regard to BUCS performance measure-
ments other than failure probability. One important parameter of the system
~is the "down-time'" following a transient or permanent failure. Several of
the crucial computations (flutter control, load control, collisionvavoidance)
cannot be unserviced.for more than a few milliseconds. We will now demon-

strate that no such discontinuity need ocbﬁr in BUCS. ' , .

Typically, when a failuréjindication is broadcast to the BC, the BC
will initiate a retry. The_maiﬂ delay in effecting this retry is the time
in reloading the'program into the IM from the MM, However, the critical
programs never require mére than 1K words of storage, so it seems reasonable
to accomplish this reloading in a few hilliseconds. If the executive LP
fails, the entire 4K word executive must be reloaded, an operation that could
take 10 msec, There might be some tasks that cannot wait for‘this transfer
to be completed. The solution is to reload first that portion of the exec-
utive concerned with scheduling--a portion that should not require more than
a few hundred wbrds. Then the reloading of the rést.of the executive can be
multiprocessed with the critical tasks, encumbering no further delay. However,
if a second failure occurs in an application task LP, the system might come to
a temporary halt, However, as We>demonstrated above, fhe probability of a

second failure is remote.
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F. Embellishments and Discussions

The BUCS system is ao attrective architecture for fault tolerance
because of its relétively low redundancy. In our application the redun-
dancy is low because the system is memory dominated permitting the use
of coding protection for much of the hardware, and because the applica- .
tion program mix permits a fine decomposition of'processing-power into

relatively small processors.

The three main deficiencies of the BUCS approach as described

above -are thes following:

9 "High speed operation will preclude'fhe byte transfer of
information between LP's and the BC. Thus_ah extremely

large number of'pins‘willsbe required for the BC.

e The expandability of BUCS is limited by the capac1ty of
the BC This speed 11m1tat1on is common_to‘all slngle

. bus multlproceSsors.

¢ The redundancy, although low as compared wifh.most féuit
tolerant architectures 'is sfill needlessly_doﬁinated by
fhe LM's associated with each LP. These LM's were ihf'
'serted to. reduce the bus traffic, and represent 80 percent

of the LP hardware.

One .way to circumvent these difficulties is to incorporate a multi-
bus structure--a concept suggested by Jim Miller of Intermetrics. They
‘main memory system as described would be replaced by a system composed
of numerous modules With such an embellishment the LM's can be dis-
carded in favor of 31mo1taneoos communication among several LP-MM
“modules. A single bus checker unit'(triplicated), almost identical to
the. one describeo_}n this Chepter; would‘establish the communicatioo
_lipks, respond'to error signals and coordinate ail calls on ‘the executive.
It is envisioned that a communication link between an LP and a MM
module would remain establxshed for the duratlon of a computational task
If the process1ng requ1red temporary access to another MM module, say,
for a particular data set, the BC would be SLgnalea The signaling process

would correspond closely to a page fault in a contemporary paged machlne

150



The type of multiprocessing as conceived here is grealy enhanced by pre-

dictable computational demands. Thus the programs do not require any

dynamic linking except subsequent to a permanent fault. However, even

in this case the relinking inVolVes.only a simple address translation.
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VIII  SUMMARY AND CONCLUSIONS
A. Summary

In tpisistudy we have attempted to identify the architectural features of
a digital éompnter fhat are well-matched to the reliability and computational
requirements of an advanced commercial aircraft. The intention is to have a
central computer complek cafry out the computations: presently distributed
among small digital systems, analog computers and mechanical computers. As
part of the study we investigated three candidate architectufes that could
meet the spe01f1c requlrements. One of the candidates is a multiprocessor due
to Hopk1ns, the other two candldates were conce1ved durlng this present study--
SIFT and BUCS. Before embarking on a detailed de51gn effort on these systems
we surveyed- the numerous fault- tolerant arch1tectura1 concepts that have been
developed over the past decade. One of these concepts (JPL STAR) has been pur-

sued to the breadboard stage, but the rest have remained paper designs.

We do not feel that any of the surveyed systems is suitable for NASA-
Langley, mostly because the desxgns have not been carried to the necessary -
detail such thet'the fault-tolerant procedures conld be evaluated. The one
notable exception is the STAR, in which all fault-tolerant’procedures have
been specified, and in eome cases'impiemented. It is clear that'the STAR
can tolerate any single‘fault that disables one of the independent units that
comprise the system. This fault tolerance is achieved with a relatively low
cost and less than 100 percent redundancy, assuming sufficient spares for
single fault tolerance. ‘Transient faults that have the same effect can also
be tolerated. However, the following def101enc1es of STAR have 1nduced us to

pursue the three aforementloned candidates.

® STAR is not readily expandable/contréctible to accommodate
large variations (say, an order of magnitude) in computational

load.

© STAR was not designed with an LSI environment in mind. It
contains more»modnle types than need be, and the arithmetic
codes may not be useful for the massive failures expected

. of an LSI implemented arithmetic unit.
PRUCEDING PAGE BL.‘U‘ o NO’" FILMED
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® The design does not take advantage of the independence of the
computations That is, the aircraft environment almost 1mp11es
that the fault tolerance and graceful degxadation should be

carried out by a multiprocessor

_The three candidate designs in addition to STAR, can be contrasted
in their mechanisms for carrying out the various fault tolerant procedures.
Table VIII. 1 indicates the comparisons for these four systems In the

table we have included. the following functions:

Fault detection The detection of’ error conditions in memories

buses and processing units

Fault masking The»remOVal of errors, within a particular unit,‘for
' example by error-correcting codes within-a memory so

that they are not aparent to other units.

Fault correction The procedures that are used to initiate a recovery

procedure after an error has occurred.

Roll-back The ability to re-run part-of a program either for
error detection or correction purposes (sometimes

vcalled check.p01nt/restart.).

Fault location The ab111ty to determine" ‘the unit that 1s faulty,

when an error occurs.

Reconfiguration The ability to change the units that are used for

a calculation.

Periodic‘diagnosis The flexing at variocus system blocks or function,

in'background, to'determine if any permanent failures

_are present.

The following abbreviations are used

_ H ... hardware
M ... microcode
S | system'routine
E ... executive. ' _
A | application program.

Multiple entfies in Table VIII. 1 indicate that design options still exist.
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JPL STAR 3 HOPKINS BUS-CHECKER SIFT
Fault detection H H H, s H,M,S
Fault_masging H(l) H(4) H (2)
Fault correction H(i) H | 'S M,S
Roll-back H ' H S S‘,E
Fault location | Hl H é E
Reconfiguration H E E E
Periodic Diggnosis E g & S,E(7)

‘Table VIII.1  Comparison of Fault-Tolerant Procedures

(L)
(2)

(3)

(4)
(5)
(6)
(7)

Within the TARP (Test and Repair Processor).

Within SIFT the memory could use hardware fault masking;

otherwise no fault masking is requiredQ

Assuming that the bus checker units are implementing system

functions.

By voting on the buses and possibly by codidg within. the memory.

Of'the memory system.

Of the hardware voters.

Of the software voters and reconfiguration programs.
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Table VIIi. 2 compares.the three candidates according to the check-
list categories of Chapter V. Table VIII.3 compares the candidates in

terms of performance.

o SIFT HS ~ BUCS
COMPUTATIONAL ENVIRONMENT : E :
®  MULTIPROGRAMMING '  Yes .~ No. . "Yes"
TECHNOLOGY _ ' 4
' ©°  NUMBER OF CHIP TYPES . ~ Low Medium  Medium
° SPECIAL ‘FAULT. ISOLATION .

'HARDWARE NEEDED o Low ~ Moderate - High
REDUNDANCY : " High ' High . . Low
RELIABILITY MODELING -

©  CREDIBILITY OF MODEL Very High High - Moderate
EXPANDABILITY ' _ Y Very High Low ' Moderate
PROTOTYPE DEVELOPMENT EFFORT . Low  High . Moderate

Téble-VIII. 2 Candidate Comparisons by Chééklist_Categories

o o SIFT - HS BUCS _
TIME TO DETECT MOST . - . .100 usec - 10 msec 2 pusec . 2 psec - 10 msec
FAILURES :
. ERROR CORRECTION TIME 0 a ‘< 1 msec 5 msec
RECOVERY ‘TIME > 10 msec ) 2 msec . 10 .msec
BUS DATA. RATE 200 kb . 20mb T 2mb

‘REDUNDANCY ; >3 . >3 >1.5

Table VIII.3 TPérformance-Comparisbn of Candidates
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D, COULIC L ud A uiid
sttt disitad

We conclude that a fault tolerant computer can be built for.comhercial

aircraft at this time. A number of factors have led to this conclusion:

® Component costs continue to drop to the point where the
hardware costs of a triplicated'(quadruplicated, etc.)
compﬁter system are an insignificant fraction of the total

~aircraft cost (less than 1 percent).

‘_-5 The aipcraft computations do not exert a large compﬁtational

load, relative to the capacity of contemporary computers.

e An\understanding has been écquired,of ihe fault tolerant
procedures.to thé point where almost any}desired reliability
can be convihcingly demohstrated. »Included'herein is a
tole:ance to permanent faults fhat disable a chip, and to
transient'féuits,that do not'cbmpletely deétroy critical_

memory. functions.

Of the three candidatefarchitectufés investigated we recommend that
SIFT be pursued fdr future deveiopmént. ’This»recommendatioﬂ is made
recognizing that all of the architectures exhibit sufficient feliability
and fault toleranCe; and SIFT incurs the largest cost in terms of compo-

nent ccunt. The primary reasons for selectihg SIFT over the others are:

© It should incur the lowest development costs and perhaps
development costs are more crucial than ultimate‘component

costs.

°© It accommodates»vérying'reliability requirements among
computations.

© The redundancy can be reduced by utilizing a central memory-

that is protected by coding techniques.

©. It is easy to modify since the fault tolerance is implemented

in software or microcode. -

® The concept cén be édequétely demonstrated with off-the-
shelf procéssofs and memories; only the bus must be

specially designed.
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© @ Although the concépt requires softwére_for error detectioh,
- etec., . it does n¢t require special software for enforcing
protéétion-disciplines. sﬁch protéctiod.is inherent in the

désign;
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Appenaix A

ALLOCATIdN ANﬁvSCHEDULING SYSTEM ROUTINE

These twb_functions are described in terms of the data structures

used, and

.the way in which they are manipulated.

The major data structures are shown in Figure A-1. The six vectors

T, DTf ﬁT, CT, CI, MR contain, for each task, the data required to calculate

the task matrix.

T

DT:

CT:

CI:

The

fThe

The information contained is:

‘iteration period for the task

permissiblé_variation of T, i,e.,‘a task will ﬁormally be

carried out between T - DT and-T + DT after the previous

,1terati§n :

The

iMiss Time' which is the maximum time that can be tol-.

erated without the task ‘being carried out,

The
the

The

The

combuter time required to carry out one iteration of

task.
current iteration being comput;d forvthe task

memory requirement for the task.

The flight phase matrix contains the priorify number for each task

for different>flight phases. 1In our application, approximately ten flighf

phaées are assumed. These will include normél phases such as thkeoff

climb, cruise,

etc., and also potential abnormal phases (e.g., when an

engine 1is inoperative). A priority of 0 indicates that a particular task

is not carried out during this phase. It is assumed that transitions from

one phase to another is initiated by aircfew_acfion.'.
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The vectors TT énd TM hold, respectively, the total comﬁuter time -

required and the total memory feQuiréd for each phase of the fligh;.

The queue matrix represents the output of the schédhling task within
the executive, -Fér each brocessor a queue is_maintained as to which tasks
are to be computed next. It is assumed that each processor will examine
the queue and sfore_a local copy.from time to time, thereby reducing the
number of accessés required to be made into the queue matrix. If the
scheduler has to change é queue, a bit is setAin the change flag vector
indicating th#t the processors' local copy of the queue must be discarded
and a change made. This will normally occur when the flight phase changes,
and aiSO in the event of reconfiguration folloQing a fault condifion. It
is expecfed that the vectors within the queue matrix will be maintained
~as circular buffers, théreby preventing any requirement to change  the numbers
except to place‘new items on the queue (change a 0 to the taskAnumber) or to

remove tasks that have been completed (change a task number to a 0).

In addition to the data structures described above, the allocation task-
will store a note asAtoAWhich flight phase is currenf, and also it will keep
a note of the resources currently available, normally those processors, busses

and memory modules that are operative,.

~The allocation functioh conSists of deciding wﬁich tasks are computed
in each processor. Two possible algorithms'afe described -- the first
algorithm attempts to find a solution, the éecond aléorithm adjusts the
result of the first to remove c§ses where necessary constraints have been

disobeyed.
The allocation problem can be stated as follows:

Let P be the number of processing modules having the same computing
power and associated memory capacity. Let N be the number of'tasks..
for the Jth task (J = 1, ...N), A

cs'= fraction of computing power required

mJ'= fraction of memory capacity required
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r = replication required for the task

J
Determine an allpcafibn matrix AiJ: i-= l,..,,P; J=1,...,N
where o . '
Aij =0orl " (No fraétionai allocation) (1)
TAij E rJ"‘ | ~ (Correct rep 1catio§) | 2)
'?Aijmj‘s N S (Memory coPstraint) :‘ ' (3).
inJCJ <1 ‘ | (Computing constraint) (4)

Note that we are only concerned with finding an allocation matrix
and not with any defined optimum, It may be desirable to define an optimum
solution as one which leaves all spare capacity (both qomputing and memory)
uniformly distributed among prbcessdrs; however, a contrary case can be made
to leave spare capacityvcoﬂcenfrated in-one processor -in order to aid the
'reconfiguratipn and re-aliocation in the event of a processor failure. The

algorithms below were not. intended to find such an optimum, however defined.

Replication of tasks can be,bpth active and passive. By active, we
.mean_that the tasks will run in those processors., By paséive,,we mean that
suffiéienf capacity is available to-allow them to run in the event of failure
of one of the active allocated proceésors. Passive allocation would only be
used for those tasks where the task must be carried out in a fime interval

that is too small to a;low loading it'to a new processor upon reconfiguration,
Algorithm 1

The gehéral.scheme of the algorithm is to allocate tasks one by one
starting with that task which has the greatest demand upoh a resource (i.e,
maiimum cj or‘mj) and "progressing down to the last task which has the
easiest constraint. The allocation is made to those processors.that have
the maximum availablé_bf the most demanded resource. Ties aré decided

arbitrarily,‘in our example, by allocating to the lowest numbered processor.
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In the event that mJ = cj, the tie is broken by deciding on the basis of the
resource which is most critical (memory in our example). The algorithm is

'shown in flow-chart form in Figure A-2.
Algorithm 2

Algorithm 2 is applied after algorithm 1 and is applied repetitively
(1ncluding possibly zero times) until constraints 3 and 4 are satisfied. The
algorithm cohsists of finding that constraint 3 or 4 which is disobeyed to
the'greatest extent, and moving a task to that processor which has the maximum
available of that resource. The movement is subject to the consfraint that a
single task may not e%ist twice in the same processor (i.e.; AIJ = 0 or 1).
The task that is moved is that which most tends to equalize the constraints.

A more sophisticated version of the algorithm is to re-allocate (using algo-

rithm 1) all the tasks'previously'allocated to the two processors.
Example

Table A—l shows the values of.fj, mJ; and ¢ . for a real example,

Table A-2 shows the application of algorithms 1 for this example. As
can be seen, algorithm 2 does need to be applied as all constraints are
satisfied. To illustrate the use of algorithm 2 consider the artificial.

example set of 3 tasks, with P = 2,

Task mJ cJ _ rJ
-1 .8 ‘ .1 1
2 1. .8 1
3 7 7 1

The result of algorithm 1 will yield an allocation matrix

Tasks
. 1 0 1
Processors
0 1 0



Computing Requirement
for Task j

Memory Requirement
for Task j

Computing Load- Already
Allocated to Module i
Memory -Load Already
Allocated to Module i

'

INITIALIZE

Y

FIND MAXIMUM

. cmj=c,m

)

Y

FIND MAXIMUM
cm

!

FIND MINIMUM
c, M,

'

ALLOCATE TASK J

TO MODULE i

3

'REMOVE TASK j
FROM LIST

Algorithm 2

Exit
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Table A-1

'Example Data For,Allocatioh Function

‘

-Task No. mJ A cJ rJ
1 .02 .04 3
"2 | .62 .33 s
3 - 10 | 12 4
4 03 02 3
5 - .23 .14 4
6 .63 : .01 .3
7 .43 .25 3
8 .12 .09 3
9 .20 06 3
10 .10 .01 3.
11 .10 .01 3
12 .12 .12 4
13 | 15 .01 3
14 | .10 20 4



Table A-2

Application of Algorithm 1 for Data in Table ! and P = 6

PROCESSORS
1 2 3 4 5 6
Task Jjust aliocated T Zé Im| Zc| Im gc| Tm| Scli=m! Sl Tm | e
7 a3 | 25 43| 25]| 43| 25
2 45 | 58 2| 33)| 2| 33} 2|33
5 66 39 25| 47|/ 25| 47| 25| 47
9 45| 53|/ 45| 53| 45| 53
14 76| 59 53| 45 55| 73|/ 55| 73
13 - ',' 60 | 59 68| 46 | || 60| 54
3 70 | 71 || 86| 71 78| 58 70 | 66
8 82 | 80 67| 82|| 67| 82
12 ' o éo 70 79| 94|| 79| 94 .82 78
0 92 | 81 : | 89| o5 8| 95
n ‘ 96| 72 99| 96 92| 79
1 98| 76| 92| 74 94| 83
4 95 | 83 95| 76 92| 97
6 98 | 84 95| o8| 97| 84
Totals . o8 | 84 08| 76| 95| 76| 99| 96|| 95| 98| 97| sa

*Capacity is expressed as a percentage, unchanged values not entered.




with

TA.m.=1.5 , TA_m = .1
135 23

TA. c. = .8 YA, .c., = .8
1375 ‘ 2373

Algorithm 2 calls for movement of a task from processor 1 to processor 2,

based upon balancing the systems: as far as possible.

The changed matrix would become

This allocation matrix satisfies the constraints,



Appendix B
COMPARISON OF THE SIFT SYSTEM_AND A MULTI-CHANNEL SYSTEM

INTRODUCTION

In this appendix we compare the SIFT architecture with the multi-
channel concept. The multi—channelAconcept uses n independént computers,
each capable of performing all tasks, and a highly reliable voter at the

outpuf to compare all data before it is transmitted to an effector.
. Variation on both the SIFT and the multi-channel concept are discussed.

. Lo -6
In all cases we assume a chip failure probability of 10 per hour.
We use the notation that P[event] = probability of the event occurring per

hour.

REQUIREMENTS

We distinguish between tasks of most criticality (MC):where‘error*
probébilities should be,be,l_ow,lO—8 per hour apd those less critical (LC)
tasks where errors should be beloe 10—4-per hour (approximately).‘ We also
distinguish those tasks requifed for automatic_'blind' landing and other
tasks. The landing phase is the most demanding in terms of computing load.
Based on the eﬁtries of'Tables 2 and 3 of Volume II, we summarize in
Table B~1 a representative set of requirements, where M = memory.requi;e—

ments in K words and P = processor requirements in MIPs,

Table B-1
Computation and Memory Requirements

Landing Other

M.C. P= .29 | P= .09

M= 8.7 M= 2.2
= .9 P= .05
L.C. M= 6.8 M=5.5

* . .
In this analysis, we do not distinguish between erroneous outputs to
actuators and null outputs. A more comprehensive analysis would need
to make this distinction. : ’
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Note that no allowance has yet been made for an executive to.carry out

such functions as multiprogramming, voting, etc.

We assume that wofds.contain, on the average, 24 information bits. We
further assume.that a memory chip contains 4K bits, and that it requires 30

chips/MIP to realize the CPU.

Case 1 Multi-channel

We assume 10 perdent extra memory anq processor requirement to handle
" the multiprogramming and other executive requirements (interrupt handling,
etc.). Thé multi-éhannel concept requires enough memory in each channel to
hold all tasks (= 23.2K + 10 percent % 26k); and the CPU must handle the
heaviest task load (= .38 + 10 percent-% .42 MIPs). Therefore for each

channel we have

26K words
10,42 MIPs_

156 chips

} = 170 chips .

ofle

13 chips

" Assume that the chips in the voter (sufficiently replicated for reli-
ability) are negligibie and consider the probabili;y of error for 3, 4. and

5 channel configurations. The results are'displayed in Table B.2,.



-Table B-2

Reliability Estimates for Multi-channel System-

3 Channel
Total chips = 540
P{1 fault] = .51 X 10—3,"... voting masks error, discard faulty
. chappel,
P[2 faults] = .17 X 10l6, ... system failure
"4 Channel A .
Total chips = 680
P[l fault] . = .68 X 10-3, ....voter'removes faulty cﬁannél
P[2 fauits] ’ = ,34 X 10-6; ;..'voter masks second fault, discard fauity
- ) _ channel
P[3 faults] =1.2 x10 %0, ... system failure
5 Channel
Total chips = 850
P[1l fault] = .85 X 10-3, ... voter removes faulty channel
P[2 faults] = .58 X 10—6, ... voter removes faulty channel
P[3 fahlts] = .3 X 10—9, ... voter masks fault, discard faulty channel
P4 faults] . = 1 X 10 3,... sys tem failre '

1

Case 2 SIFT With Fault Tolerance Achieved by Uniform Replication

For this case, the strategy is to triplicate all tasks, and when faults
occur to reduce the LC tasks to duplicate, then single processors, finally
removing them éntirely in the event that resources are drastically reduced,

We assume 20 percent overhead for executive plus voting routines.

The memory anq processor requirements are a$ in Table B-3. The re-
liability results are displayed in Tables B-4, B-5 and B-6, for a SIFT sys-

tem decomposed into 4, 6 and 10 modules, respectively.




Table B-3

SIFT Processor and Memory Requirements

Landing Other

‘P = .35 P= .11
M.C. ‘

M= 10.4 M= 2.6

P = .11 P= ,06.
L.C. _ _

M= 8.2 M= 6.6,

Total memory requirement = 27.8 = 28K
Maximum CPU requirment = .46 MIPs

‘Table B-4

Reliability Estimates for a 4-Module SIFT

(28 X 3)/4 = 21K = 126 chips
(0.46 X 3)/4 = 0.35 10 chips

Each memory

} 136 chips-
Each CPU- ’

Total chips = 544
We denote MC . during landing as MC/L etc.

P[1 fault] =.54'X 10 °

, M= 63K, P=1.05
Dufing,Landing: Remqve.LC, MC survive

During Other: MC survive, all LC to SIMPLEX, future removal LC/L

i S e :
|P[2 faults] = ,22 X 10 , M= 42K, P = 0.70
During Landing: MC/L only survive in DUPLEX

During Other: All MC to DUPLEX in memory, all LC to SIMPLEX, future re-
moval of LC/L . ' : . '

P[3 faults] = .6 x 10 10, System Failure




Table B-5
Reliability Estimates for a 6-Module SIFT

(28 X 3)/6 = 14K = 84 chips

Each memory = - | } '91 chips
Each CPU = (0.46 X-3)/6 =0.23 = 7 chips
Total chips = 546 ' ‘

P[1 fault] = .55 X 1073, M= 70k, P = 1.15

During Landing(l):-Fault masked, LC to SIMPLEX

During Other: Fault masked, future LC/L to S IMPLEX

. ’ -6 )
P[2 faults] = .25 X 10 , M = 56K, P = 0.92

During Landing: Fault masked, MC, LC to DUPLEX
During Other: LC failure, MC fault masked

P[3 faults] = .91 X 10729 M= 42k, P = 0.69

During Landing: System failure

During Other: LC failure, MC fault masked

o _1
P[4 faults] = .16 X 10 4

All: System failure

(1) Assumes slight increase of CPU to .24 MIPs



Table B-6 -
Reliability Estimates for a 10-Module SIFT

Each memory

(28 X 3)/10 = 8.4K = 51 chips } 55 chips

(0.46 X 3)/10 = 0.14 = chips

Each CPU
Total chips = 550 chips

P[1 fault] = .55 x 10 >, M= 175.6, P=1.26

During Landing: Fault masked, LC to DUPLEX
Dufing Other: Fault masked, LC/0 to DUPLEX, Future LC/L to DUPLEX

- -6 ‘
P[2 faults] = .27 X 10 , M= 67.2, P = 1.12
During Landing: MC fault masked, LC failed
During Other: Fault masked, Future LC/L fail

P[3 faults] = .19 X 10 0, M = 48.8, P = 0.98

During Landing: MC fault masked, MC/L to DUPLEX
During Other: Fault masked, Future LC/L fail

P[4 faults] = .73 X 10'3, M= 40.4, P = .84
Durlng Landlng P0551b111ty of system fallure

During Other: Pos51b111ty of LC failure, future MC/L in DUPLEX

Case 3. SIFT with Coding in Memory

-‘The majority of chips for SIFT in Case 2 are used in the memory.
We can add protection by using an error detectihg/correcting code, The
analysis displayed in Tables 3-7 and B-8 is for a single. error correcting,
double error detecting codé with an assumption of 25 percent increase in
memory:cost. A module failure requires failure of one chip in the CPU or
two chiﬁs in-the memory. The reconfiguration strategy is as shown in
Figure B-1, for most.critical tasks. Low criticality tésks are run in

SIMPLEX mode.



‘Reliability Estimates for a 3-Module SIFT With Coding in Memory

Memory per module (13 X 2 + 15)/3 + 25 per cent % 17K = 102 chips};
) : 110

CPU per module = (.35 X 2 + .11)/3 = .27 = 8 chips
Total chips = 330 chips '

P(CPU fault] = .8 X 10 >/per module
1072
Pldouble memory fault] = 10 o

5

P(single memory fault]

P[LC task failure] = .8 X 10

Plreconfiguration for MC] = .3 X 10 °

4 5] 9

X .8 x10 ° = 2.4 x10 ",
system failure

P[ second module failure (undiagnosable)] = 3 X 10

" RUN TASK

- IN DUPLEX -
DOUBLE : o SINGLE
. MEMORY MEMORY FAULT CPU FAULT*

FAULT | - (MASKED)

!

REPEAT TASK

!

RECONFIGURE

!

DIAGNOSE WHICH

IN NEW e TO GOOD CPU FAULTY
MODULE MODULE BY REPEATING
- IN ANOTHER
MODULE
' SA-1406-25

" FIGURE B-1 SIFT WITH CODING, RECONFIGURATION STRATEGY
' FOR MOST CRITICAL TASKS

*CPU fault is any disagreement between the cooperating pair of modules,‘
without indication of memory fault. It therefore includes the case

of multiple non-correctable or.detectable faults in the memory of the
module, which is far less probable than a CPU fault.



( Table B 8

Rellablllty Estinlates for 4- and 6-Modu1e SIFT
With Coding in Memory

. iR
4 Module 1
13K = 78 chips

: | =
Memory per module (13 < 2 + 15)/4 + 25%

= v < }_ 84 chips

CPU per module = (.35 X 2 + .11)/4 = .2 = 6 chips

Total chips = 332
P[CPU fault] = .6 X 10 °/per module
P[single memory fault] = .8 x 10+
>P[double memory faﬁlt] = .6 X 10—8
P[LC task failure] = .6 X 10 °
P[reconfiguration] = .3 X 10_3

-7

P[second module fail] = .8 X 10

P{MC task fail] = 1.3 x 10 11

6 Module

Total chips = 348
P[LC fail] = .4 X 10 °
P{MC fail] = 2 x 10 1!

Note that in';he SIFT architecture, either with or without coding the
occurrence of faults reduces the availab1e~CPU powef preventing the MC/L
tasks from being carried out. The CPU is only approximately 8 percent of
the total., If the CPU were. to be designed with double the capacity (in
-MIPs) the cost would rise by 8 percent but the probablllty of system failure

would for some systems, be improved 1mmense1y. The results for the different
configuratlons are displayed in Table B 9 and in Figure B~ 2
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~Table B-9

Summary of Size and Reliability of‘Alternative Architectures‘

"PINC fail]

System " No. of Chips . P[LC fail]
REQUIREMENTS 0.0 Y 1078
SIMPLEX 170 2 x 10°*
MULT I~CHANNEL
3 MODULE 510 1.7 X 107
4 " 680 1.2 x 10 10
" . '13

5 -850 1.0 x 10
SIFT , -
4 MODULE 544 s5.4x10? 6 x10 "
s " 546 2.5 x,10.° 9 x 10

. o -7 -4 -
10 " 550 2.7 X 10 7.3 x 10 °
SIFT + CODING ° :
3  MODULE 330 . 8x10® 2.4 x 1072
a " 332 | 6 x 10 ° 1.3 x 101
6 " 348 n ax10°° 2 x 10711
SIFT (DOUBLE CPU MIPs) }
4 MODULE 584 20X 107 ~ (10"t
6 " 588 'N'(1o'l°) ~ (10718
10 " 590 - -
SIFT.+ CODING +
DOUBLE CPU MIPs _
3 MODULE " ' .. . 354 1.6 x 10°° 9 x10°
. " 356 1.2x 1070 . Lo %

B=<10-
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