
N74-17909

DESIGN OF A FAULT TOLERANT AIRBORNE
DIGITAL COMPUTER, VOLUME I -
ARCHITECTURE

J. H. Wensley, et al

Stanford Research Institute
Menlo Park, California

U	 October 1973
1-
1-

0
U

17 APR1975
M CDCN1,LL D'UG;.;

RESEARCII & £NGINEERH LA '(
T. LOUIS

DISTRIBUTED BY:

5am

National Technical Information Service
U. S. DEPARTMENT OF COMMERCE
5285 Port Royal Road, Springfield Va. 22151

LM123822E
	

MIS-/2723

Final Report

DESIGN OF A FAULT TOLERANT
AIRBORNE DIGITAL COMPUTER

Volume I - Architecture

By: J. H. WENSLEY, K; N. LEVITT, M. W. GREEN, J. GOLDBERG. and P. G. NEUMANN

Prepared for:

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
LANGLEY RESEARCH CENTER
HAMPTON, VIRGINIA 23365

NICHOLAS MURRAY - CONTRACT MONITOR

CONTRACT NAS1 -10920	 PRICES SUBJECT TO CHN(

flASA-CR-132252)ESIUN OF A FA(JL	 N74-17909

TOLERANT A.IDECRUE .iGITAL CO!IrFJTEIh
VOLUME 1: ARCHITECTURE Final E€port
(Stanford Research Inst.)

	

	 Unclas

CCL 96 133/08 16207

\ STANFORD RESEARCH INSTITUTE
Menlo Park, California 94025 • U.S.A.

Reproduced by

NATIONAL TECHNICAL
INFORMATION SERVICE

US Department of Commerce
Springfield, VA. 22151

p.'

SIR
STANFORD RESEARCH INSTITUTE
MENLO PARK CALIFORNIA 94025
(415)326-6200

ERRATA

December 10, 1973

To: Distribution

Reference: Final Report

"Design of A Fault Tolerant Airborne Digital CoMputer VolUme I

• Architecture"

"Design of a Fault Tolerant Airborne Digital Computer Volume II

Computational Requirements and TechiiolOgy"

SRI Project Number 106

Prepared for: National Aeronautics and Space Administration

Langley Research Center

Hampton, Virginia 23365

Eclosed is errata labal to add to your cover of volumes one and
two of Final Report.

Volume I: 132252

4

you,	 Volume II: 132253

co^
Sr. Clerical Asistant

eec
Ends.
1406

Final. Report

	

	
October 1973

U

DESIGN OF A FAULT TOLERANT
AIRBORNE DIGITAL COMPUTER

Volume I • —.:Ahitecture

By: J. H. WENSLEY, K. N. LEVITT, M. W. GREEN, J. GOLDBERG, and P. G. NEUMANN

Prepared for:

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
LANGLEY RESEARCH CENTER
HAMPTON, VIRGINIA 23365

NICHOLAS MURRAY - CONTRACT MONITOR

CONTRACT NAS1-10920

SRI Project 1406

Approved by:

D. R. BROWN, Director
Information Science Laboratory

BONNAR COX, Executive Director
Information Science and Engineering Division

9

ABSTRACT

Volume I of this report is concerned with the architecture of a

fault tolerant digital computer for an advanced commercial aircraft. All

of the computations of the aircraft, including those presently carried out

by analogue techniques, are to be carried out in this digital computer.

Among the important qualities of the computer are the following: (1) the

capacity is to be matched to the aircraft environment, (2) the reliability

is to be selectively matched to the criticality and deadline requirements

of each of the computations, (3) the system is to be readily expandable and

contractible and (4) the design is to appropriate to post 1975 technology.

Three candidate architectures are discussed and assessed 'in terms of the

above qualities. Of the three •candidates, a.newly conceived architecture,

Software Implemented Fault Tolerance (SIFT), provides the best match to the

above qualities. In addition SIFT is particularly simple and believable.

The other candidates, Bus Checker System (BUCS), also newly conceived in

this project, and the Hopkins multiprocessor arepotentially more efficient

than SIFT in the use of redundancy, but otherwise are not as attractive.

Volume II of the report is concerned with a detailed description and catego-

rization of the computations and with a discussion of the technology available

for realizing the-computer-system.

PRECEDING PAGE BLAN LI)T F'D

iii

TABLE OF CONTENTS

ABSTRACT .

LIST OF	 ILLUSTRATIONS	 ix
LIST OF TABLES	 xi
PREFACE.	 xiii

I INTRODUCTION	 1

A.	 Purpose	 of	 the	 Study	 1

B.	 Organization	 of	 the	 Report	 2

II REVIEW OF RELIABILITY TECHNIQUES

A.	 Introduction	 7

B.	 Coding Techniques	 10

C.	 The Trivial Duplication and Triplication Codes 11

D.	 Use of Less Trivial Codes for Enhancing
Processor Reliability	 13

1.	 Arbitrary	 Logic	 14
2.	 Arithmetic	 21

E.	 Use	 of	 Codes	 for Memory	 24

1.	 Memory System Organization 	 24
2.	 Bounds on Code •Redundancy	 26
3.	 Specific Codes for Correcting Framed Burst 	 30
4.	 Implementation of Framed Burst Correction Codes .	 . .	 31

F.	 Summary of System Aspects of Redundancy 	 40

REFERENCES	 - CHAPTER	 II	 43

III IMPLICATIONS OF COMPUTATIONAL REQUIREMENTS 45

IV IMPLICATIONS OF TECHNOLOGY 51

ttiij	 4itJ	 jj.A

V

V	 A CHECKI.IST AND A SURVEY OF FAULT TOtERANT ARCHII ''CTURES . •. •	 -.	 55

-A. Introductibn		 •	 -•	•	 •	 55

B. Check1it'	 •.	 •	 56

C. STAR.	 63

D. EXAM	 66

E. Hopkins -Scheme	 (HS)	 -.	 • .. 10

F. ARMMS	 .. 72

G. AADC	 ,.. 75

H. MARC	 .. '76

REFERENCES CHAPTER	 V	,•	 '	• .	 79

VI	 SOFThARE IMPLEMENTED FAULT 'TOLERANCE 	 (SI'F.T)	,.. 81

A. System	 Design . Overview	- .	 .

B. Major Characte'rlstics of SIFT	 •	 .	 -.	 •	 •.	 •. • .	 87

C. Input/Output		 '88

D. Bus	 bes-j'gn	 89

E. ProgFam	 Structure	 ..	 •	 -.	 ..	 •	-. •.	 92

1.	 Sy.s'tem'. 'Executive	 .	 ..	 •	 •	 ••	 •	 ••		 ' .	 .95
2.	 Local	 Executive	•	 ••	 - .•	 97
3.	 Application Programs	 ,.,	 .	 •.	•	 ,

,
•	 •.rOi

F-. Computing' Load Within SIFT 	'.	 .	 .'.	103

G. Reliabil'ity Arid Ful't Tolerance 		 '	 ... -1O3
1.	 .	 Re'1iabi1i'ty	 Estimate's	 1:09

H. ProcessOr, and	 'Memory,	•.	115
1.	 Wor	 ;Longt'h 'andAdd'ies-ig		 •	 .	 ••		 1-16
2.	 'Spec-iai . Operat.ion Cdies	 .	 •.	 ..	 -.........'.	 . .	 -.	 -11:9

I. Alternat4ve :Design Options	 '.	 •	 •.	 .	 •	 .	 •.	 .	 •	 .	 .	 .	 '•		 •.	 1:20

J. Conclusions.	 .	 '.	-•	 '.	 123

'vi

VII	 BUS CHECKER SYSTEM 125

A. Introduction	 125

B. High-Level Description of Architecture	 128

1.	 Hardware	 Components	 128
2.	 Global Description of System Operation 	 130

C. Description of Major Blocks	 133

1.	 Local	 Processor.
	
...........	 133

2.	 Main Memory Organization 	 135
3.	 Bus	 Checker Organization	 138

D. Executive	 Operation	 142

1.	 Application Task Scheduling 	 142
2.	 Background Executive Processing 	 143
3.	 Single	 Error Processing	 144
4.	 Executive	 Load	 145

E. Reliability	 and	 Performance	 146

F. Embellishments	 and	 Discussions	 150

VIII	 SUMMARY AND CONCLUSIONS 	 153

A. Summary	 153

B. Conclusions	 157

APPENDICES

A. ALLOCATION AND SCHEDULING SYSTEM ROUTINEA-1

B. COMPARISON OF THE SIFT SYSTEM AND A MULTI-CHANNEL SYSTEM . . B-i

vii

LIST OF 'ILLUSTRATIONS

Figure II-1 A	 Nonredundant	 Circuit	 15

Figure 11-2 Coded Version of Circuit Using Winograd-Cowan Concept.	 . 16

Figure 11-3 Illustration of Coding Applied to Logic Without
Encoder and Decoder at Each Level 	 20

Figure 11-4 Coding Scheme	 for Memory	 25

Figure 11-5 Frames of	 a Block-Code Word	 27

Figure 11-6 Array for Encoding and for Decoding Single-Error-
Correcting	 Codes	 35

Figure 11-7 NOR-Gate Realization of Main-Array Cell 	 35

Figure VI-1 SIFT	 System Configuration	 82

Figure VI-2 An Example of Task/Processor Allocation 	 84

Figure VI-3 Typical	 Task	 Flow	 86

Figure VI-4 Processor/Bus/Memory Connection	 93

Figure VI-5a Application and Executive Structure	 94

Figure VI-5b Application and Executive Connectivity 	 94

Figure VI-6 The	 Getdata	 Subroutine	 99

Figure VI-7 Typical Application Task 102

Figure VI-8 Probability (Q) of Differing Percentage Capacity
Remaining, as a Function of the Initial Number
of	 Modules	 114

Figure VII-I High. Level	 View of BUCS	 128a

Figure VII-2 High	 Level View of BUCS Operation 	 132

Figure VII-3 Details	 of	 Local Processor	 134

Figure VII-4 Main Memory Organization 	 136

Figure VII-5 Bus Checker Organization 	 139

Figure A-1 Allocation and Scheduling Data Structures 	 A-2

Figure A-2 Allocation Algorithm	 1	 A-6

Figure B-i SIFT with Coding, Reconfiguration Strategy
for Most	 Critical Tasks	 B-7

Figure B-2 Summary Comparison of SIFT and Multi-Channel 	 B-9

1'Li,*,i
EGED1NG PAGE BL'

Ix

LIST OF TABLES

Table 11-1 H-Matrices for	 (7,	 4;	 2)	 and	 (6,	 3;	 2) Codes	 18

Table 11-2 Redundancy for Correcting Cyclic and Framed Bursts . 30

Table 11-3 H-Matrix for	 (15,	 12;	 4)	 Code	 32

Table 11-4 Matrix	 for	 (16,12;	 4)	 Code	 32

Table 11-5 Redundancy for Best Known Codes for Single-Frame
Correction,	 b	 =	 g	 =	 4	 33

Table 11-6 Summary of Decoder Complexities for Hamming Codes 39

Table 111-1 Computing Requirements,	 Applications	 46

Table VI-la Computing Requirements, Applications 	 104

Table VI-lb Computing Requirements, SIFT Executive 	 105

Table VI-2 Probablllty.of Non-Tolerated Double Fault	 112

Table VI-3 Probability of Failure of Different Number
of	 Modules	 112

Table VI-4 Probability of Losing N Modules	 113

Table VI-5 Stack Organized Computer Organization 	 118

Table VIII-1 Comparison of Fault-Tolerant Procedures 	 155

Table VIII-2 Candidate Comparisons by Checklist Categories 	 .	 . 156

Table VIII-3 Performance Comparison of Candidates 	 156

Table A-i Example Data for Allocation Function 	 A-7

Table A-2 Application of Algorithm 1 for Data in
Table	 1	 and	 P	 =	 6	 A-8

Table B-i Computation and Memory Requirements 	 B-1

Table B-2 Reliability Estimates for Multi-Channel System. 	 . B-3

Table B-3 SIFT. Processor and Memory Requirements	 8-4

Table B-4. Reliability Estimates for a 4-Module SIFT 	 B-4

Table B-5 Reliability Estimates for a 6-Module SIFT 	 B-5

Table B-6 Reliability Estimates for a 10-Module SIFT 	 B-6

Table B-7 ..Reliability Estimates for a 3-Module SIFT
with	 Coding	 in	 Memory	 B-7

Table B-8 Reliability Estimates for 4- and 6-Module SIFT
with Coding	 in	 Memory		 B-8

Table B-9 Summary of Size and Reliability of Alternative
Architectures	 B-b

PCET ING pA c17 rnA'JT NOT F1T1iI)

xi

PREFACE

This report, issued in two volumes, summarizes the work of Stanford

Research Institute on Contract NAS1-10920. The goal of the contract was

to specify the design of a computer, destined for use as the central com-

puter in an advanced, high-performance commerical aircraft. Because of

the critical nature of many of the computations, fault tolerance was the

primary design goal of the computer. Other important design goals of

the computer relate to

• The matching of the architecture to the aircraft computations

• The capability for expansion or contraction to meet the

requirements of various missions

• The suitability to post 1975 technology.

Volume I is concerned with the architecture of fault tolerant com-

puters, that are matched to the, aircraft 'environment. We selected and

studied three candidate architectures as part of Task I of the contract.

Two of these architectures,, Software Implemented Fault Tolerance (SIFT)

and Bus Checker System (BUCS) are new and as such are described In detail.

The third candidate architecture is a multiprocessor ' concept that is due

to Al Hopkins of MIT-Draper Laboratories. We are aware of the extensive

work that has been devoted to fault tolerant techniques and architectures

over the past decade. However, a survey of this work has pointed out

significant deficiencies In each architecture, for our particular constraints.

For the most well-known of these previously studied architectures we document

the deficiencies.

Volume II of the report is organized as two parts. Part 1 Is concerned

with the computational requirements of an aircraft, wherein it is assumed

that all of the computations scattered among special purpose analogue and

mechanical computers would be carried out by a centralized digital computer.

In addition to the usual computations associated with a commercial aircraft,

e.g. navigation, stability augmentation, decrab, we also assume advanced

cockpit displays and fly-by-wire. These various computations are categorized

according to criticality, and for each computation we derive such parameters

xiii

CiThTG PAC	
NCT FTTID

as memory requirements, processor requirements, iteration rates, the

tolerable down time and the amount of data that must be saved in the

event of failure. These results are concisely tabulated.

Part 2 of Volume II is concerned with the technology for realizing

the central computer. It is assumed that production would commence in

the late 1970's. The two aspects of the realization that we consider are

concerned with logic and memory and with module interconnections. With

regard to logic and memory we assess the various technologies, MOS,.CMOS,

BIPOLAR, etc., as a function of requirements of speed, reliability, cost,

number of units. In addition we discuss such realizations as customized

large scale integrated (LSI), medium scale integrated (MSI), programmable

logic in the light of the above requirements. With regard to inter-

connection technology the primary goal .-is to prevent the propagation of

faults beyond some predetermined module boundaries. Various approaches

toward achieving this fault confinement .are assessed in terms of speed,

cost, reliability.

We would like to acknowledge the support of Nick Murray and his

colleagues at NASA-Langley--Sal Bavuso, Larry Spencer, Bill Dove, and

Brian Lupton. They interacted with us on all phases of .the project and

provided valuable guidance. On the computation aspects many aircraft

and avionic specialists provided us with detailed descriptions of algorithms

as well as experience on the conversion of analogue algorithms to adigital

representation. With regard to architecture, we have had stimulating dis-

cussions with Al Hopkins, Al Avizienis, Bill Carter, Bill Martin,.

Barry Borgerson and Jim Miller. Many of their ideas are reflected in

our candidate architectures. 	

xlv

I	 INTRODUCTION

A.	 Purpose of the Study

The purpose of this study is to aid NASA in specifying the design of

a computer, destined for use as the central computer in an advanced, high-

performance commercial aircraft. This computer, or more realistically,

computer complex, is to

(1) be responsible for all of the aircraft computations

currently being carried out by analogue, mechanical or

dedicated, special purpose digital computers,

(2) be capable of carrying out computations associated with

an advanced aircraft of the type similar to the proposed

Advanced Technology Transport (ATr),

(3) exhibit sufficiently high reliability such that the

probability of a computer failure adversely effecting

the fligh.t is negligible as compared with other system

failures. In particular, the design goal is 10 -8

failures/hour for the flight critical function. For

computations that are not flight critical higher

failure rates can be tolerated.

(4) be readily expandable and contractible so as to meet

the needs of various missions,

(5) be matched to the post 1975 component technology.

The present study is composed of three tasks, as follows:

Computational Requirements: . The purpose of this task is to

survey all of the computations being carried out in contem-

porary commercial aircraft . (e.g. navigation, autopilot, auto-

land, control of cabin pressure) and in the projected ATT

(e.g. advanced stability augmentation, collision avoidance).

The survey is to reveal aspects of these computations that

influence the architecture of the computer including, word

size, memory requirements, reliability, recovery time from

a failure. Volume II of this report describes, in detail,

the algorithms for 3ach computation and extracts from these

1

algorithms some of the crucial parameters for the individual.

computations. Chapter III of this volume summarizes the

information and presents a global view of the implications

of the computations on the computer aircraft.

Technology: The purpose of this task is to survey the technology

associated with the various system blocks of the computer. If

this computer is to be produced in large quantities, production

will commence in the late 1970's. Volume II of this report

discusses in detail the prognoses for the following technologies:

logiá, main read-write memory, read-only memory, buffer-type

memory, back-up memory, and interconnections. For each of these

technologies the report discusses speed, reliability and cost.

Architecture: The purpose of this task is to specify the

architecture of three candidate computers, each of which can

match the computational and reliability requirements, and the

technology constraints revealed in the other two tasks. The

hardware and software systems of the candidates are to be

specified to a level such that the overall reliability can be

assessed. In essence then, each candidate is to be specified

in terms of a concept, wherein detailed design and analysis is

to be avoided unless required for the reliability assessment.

For example, a detailed description is needed of the process of

recovering from a suspected transient fault, but a detailed

description of the arithmetic unit is not needed unless it em-

bodies some particular fault tolerance scheme. This volume

summarizes our work on the architecture task.

B.	 Organization of the.-Report

Chapter II briefly reviews the reliability enhancement techniques

that have been proposed and analyzed during the past 15 years. Our

review is purposely terse since most of these techniques are, by now,

well-known. The intent is to delineate, a set of concepts that are

used in the three architectures.

Chapter III is concerned with the implications of the computational

requirements task. Here we summarize the results of the computation sur-

vey and convert the results into computer parameters: e.g., word size,

I/O bandwidth, fault recovery time, multiprogramming characteristics.

Chapter IV discusses constraints on the architecture as revealed by

the technology task. For example, we discuss the impact of LSI technology

on approaches toward applying redundancy and on the desirability of using

slow memories to aid in system recovery. A primary feature of the tech-

nology task is a review of interconnection technology, at all system levels

(chip-chip, card-card, subsystem-subsystem), and the impact of various

approaches to interconnection on. the problem of fault isolation.

Chapter V is a "checklist" for the design of a fault-tolerant com-

puter, for the particular aircraft environment that we are confronted

with. We summarize here, for example, the fault types that must be

accounted for, the various alternative approaches.to system design, the

components of the reliability analysis, and in general the details to look

for in the design and analysis of the computer.

Perhaps the simplest architectural concept that can meet the relia-

bility requirements involves the use of three or more complete computers

operating in a locked-step manner. We call such an approach the multi-

channel concept (MCC). The basic reliability technique is trivial here--

a simple voting or adaptive voting suffices. However, there are still

important design decisions required for the multi-channel concept, in

particular relating to the operating system procedures for transient

fault recovery, and to communication among the computer units. However,

we decided not to pursue this concept, for the following reasons

• NASA Langley is in the process of establishing a detailed

design and implementation effort based on the MCC.

• Comparable reliability performance can be achieved with

a system that consumes less hardware redundancy. Such a

cheaper system takes advantage of the possibilities for

allocating sub-tasks to independent processor units, and

the possibilities for using less costly coding techniques

in memory.

3

• All of the interesting software problems attendant to the

MCC are confronted in practically all types of fault

tolerant architectures.

In the second half of Chapter V we survey existing architectures

that have been suggested for various fault tolerant applications. It is

clear that NASA-Langley should pursue an existing concept provided it is

matched to the . aircraft requirements. The systems that we surveyed are

the following:

0 Self-Testing and Repairing Computer, (STAR) of JPL.

• All Application Digital Computer (AADC) of the Naval Air

Systems Command.

• Experimental Aerospace Multiprocessor (EXAM) of NASA-Electronics

Research Center.

• Automatically Reconfigurable Modular Multiprocessor

System (ARMMS) of NASA-Marshall Space , Flight Center and

of Hughes.

• Modular Architecture for Reliable Computer Systems (MARCS)

of IBM-Yorktown.

.• A Fault-Tolerant Information Processing System for. Advanced

Control Guidance and Navigation (Hopkins' Multiprocessor)'

'of MIT Draper Laboratory.

This chapter will present detailed information on each of these systems,

but for purposes of summary we feel that only the Hopkins' Multiprocessor

should be considered as a candidate architecture, although extensive

design and analysis must be carried out to ensure that the concept is

suitable to our environment. To-be fair to the architects of some. of

the other systems we should state that their concepts have not yet con-

fronted all of the reliability questions. Hence most of the concepts

can be adapted to achieve fault tolerance although this design process

would probably entail 'as much work as dcieloping a new system from

start, and may not produce a better machine than one designed explicitly

for the environment-we have in mind..'	 .

4

Chapter VI presents a discussion of the Software Implemented Fault

Tolerance ConcepL (SIFT), one of two candidate architectures that we de-

signed anew. We recommend that SIFT be selected for pursual in further

design phases since it meets all of our reliability, computational, and

cost objectives, and, moreover, it is likely to be the least costly in

the construction of a prototype. This attractiveness in cost is due to

the following factors:

(I) The fault detection and recovery processes are carried

out by software (although firmware or special hardware

would also suffice).

(2) All units could be simple "off-the--shelf" computers, or

be realized from existing designs.

(3) Very little ancillary hardware, (the only exception being

a bus structure) is required to implement the concept.

(4) The architecture is well-suited to varying reliability

requirements among the computations.

Hence, the SIFT concept could be experimentally evaluated by programming

special executive routines on 3 or 4 minicomputers.

Chapter VII presents a discussion of another, newly conceived can-

didate architecture, denoted as the Bus Checker System (BUCS). BUCS

was inspired by the architectures covered in our survey.

As in SIFT, processing units that are nearly conventional suffice

as the primary computing elements. However, the memories utilize coding

techniques to enhance reliability at a relatively low cost, and a "smart"

.bus acts in concert with a software executive to detect faults and recon-

figure the system.	 .

Chapter VIII summarizes the characteristics of the three candidate

architectures and presents our conclusions and recommendations.

Appendix A describes the detailed design of an algorithm for SIFT

that allocates computational tasks to processors. Appendix B presents

a detailed comparison of the SIFT architecture with the multi-channel

concept, in terms of reliability and redundancy.

5

II REVIEW OF RELIABILITY TECHNIQUES

A.	 Introduction

In this chapter we review the various redundancy techniques for im-

proving digital system reliability that have been proposed during the

past 15 years. Our review is intentionally brief since

(1) There have been no fundamental breakthroughs since our

last survey of the field six years 'ago.

(2) Most of the redundancy techniques that . are theoretically

interesting are only applicable at the component level.

The constraints imposed by the emerging LSI technology

(see Chapter IV) are such that redundancy should be

applied over chip, not within the components of chips.

Hence relatively few redundancy techniques remain relevant,

and moreover system architecture considerations are now of

primary interest.

(3) The underlying concepts are relatively simple.

We have concluded that architectural considerations are of primary

importance in the design of . a reliable digital computer, as compared

with so-called low-level redundancy techniques. For example, workable

strategies for. recovering from transient faults, or the protection of

programs and data in the event of a fault are less understood than

abstract redundancy techniques. However, some of these redundancy

techniques, originally intended for low-level application, form the

basis for enhancing system reliability even when applied at a high

level.

The attainment of high reliability in a system requires that

*
(1) Faults be detected subsequent to their occurrence.

(2) Errors produced by these faults be masked or the faulty

unit should be disconnected and be replaced by an

operational one.

The following terminology has become more or less standard in the re-
liability field. A fault is the actual malfunctioning of an element.
An error is the appearance of incorrect data, on some data line, as
a result of a fault. NOT

	

kAUL	 7	 .

Two techniques have been seriously proposed to accomplish fault

detection, namely:

(1) The data lines of the system are encoded so that under

fault-free conditions the signals on the data lines

form a code word in an error detecting/correcting code.

The occurrence of any fault, within a detectable class,

is to introduce an error such that a non-code word

appears on the data lines. (Duplication is an instance

of a trivial error-detecting code.)

(2) All system blocks are subject to periodic diagnosis in

order to determine if a fault has occurred since the

last attempt at diagnosis. There are important system

questions concerned with such high-level diagnosis, in

particular how to account for faulty diagnosing units.2'3

A third possible technique involves the use of a checking program

that can carry out consistency checks on another program. This tech-

nique is not studied here because it is clearly dependent on the

particular application programs.

For our application the use of periodic diagnosis is not recommended

as the primary fault detection process since

(a) transient faults are not detected nor prevented from

causing data loss by periodic diagnosis,

(b) the effectiveness of diagnostic routines remains sus-

pect, given the present state of the art,

(c) the real-time nature of most of the computations pre-

cludes the possibility of buffering computed results

pending the results of a diagnostic test,

(ci) diagnostic test schedules derived by contemporary

systematic approaches usually guarantee detection of

only single or double gate type failures. However,

in LSI chips more complicated fault behavior seems to

be possible including multiple gate faults, and shorts

in interconnections.

8

The diagnostic approach to fault detection does have a role in certain

system functions. As we, demonstrate later a memory system can be effec-

tively diagnosed provided other auxiliary.error-detection techniques

are used'. Moreover a form, of diagnosis is essential in initializing the

computer system., and in effecting a recovery from a "massive transient"

fault.

One notes that technique (1) incorporates only spatial redundancy

while technique (2) incorporates primarily temporal redundancy. That is

in the diagnosis approach certain time periods that otherwise would be

devoted to useful computation are set aside for purposes of detecting

faults. It 'might be fruitful to explore approaches that combine the

attractive features of the spatial and temporal approaches.

Once a fault has been detected, and pinpointed, it remains to apply

some form of corrective action. When error correcting codes'are used,

the decoder can produce at its output the intended code word, thus cor-

'recting the effects of the fault. Another approach is to utilize the

error detecting possibilities of the code to point to a faulty unit, in

which case the' faulty unit is replaced , by an operational unit. For the

diagnosis approach the implication is that the corrective action is

unit replacement. One recognizes that there are important questions

concerned with uhit replacement, e.g., data recovery, and 'establishing

the proper state in the newly connected unit. The solution of these

problems is a dominant theme of 'the later sections of this report. In

this chapter we concentrate on fault detection and fault correction

using coding approaches,

In Section B below we outline the, aspects of coding theory perti-

nent to this discussion. Section C briefly discusses the use of the

trivial duplication and triplication codes in fault detection and

masking. Section D discusses the disadvantage (apparent) of utilizing

more complicated codes in the processor portion of the computer. Section

E demonstrates the use of coding techniques in the memory sections, in

particular involving techniques wherein a symbol in .a higher order

alphabet (greater than two) is associated' with an LSI memory chip.

Section F presents some comparisons ' among the techniques for memory systems,

and summarizes our views on redundancy techniques for this application.

9

B.	 Coding Techniques

The following is a very brief background of the pertinent aspects of

coding theory. An (n, k;q) code contains q code words of length n,

wherein each of the symbols is taken from the field GF(q). The number of

redundant digits is r 	 n - k. The Hamming distance of the code, d, is the

number of places in which a pair Of code words contain differing symbols,

minimized over all pairs of code words. For a code of distance d, any com-

bination of t or fewer errors can be corrected, t < d/2, and any combination

of 6 or fewer errors beyond t can be detected when 6 = d - (2t-1). In a

linear code the
q

code words form a linear subspace.

For a systematic code, the encoding processes may:be thought of as

being applied to an n-digit codeword (X, Y) that consists of a k-digit

information portion X and an r-digit check portion Y. The task of the

encoder is, of course, the calculation of the Y vector from the X vector,

assumed given. For an r X n parity check matrix H in echelon canonical

form, namely

H
= 9r x k. r X r1

the computation of Y may be expressed as Y ='QX.

•	 The decoding process, when error correction is desired, involves con-.

vertirig .a "received" vector (X*, y*) which may differ from the "transmitted"

vectorbecause of errors, into the code word which is closest in }tamming

distance to the received word. The decoding process might only Involve error

detection in which case the decoding process merely indicates that a received

word is not equal to a code word. The decoding process might Involve a com-

bination of error correction and detection, in which case, for example, if.

the received word is within distance two of a code word that code word

emerges from the decoder, otherwise an error - indication emerges.

The distance properties-of the code bear a simple relationship to the

columns of the H-matrix. The code has distance d iff (if and only if) all

combinations of d - 1 or fewer columns of the H-matrix are linearly inde-

pendent, and there exists a set of d columns that are linearly.dependent.

For low distance codes, say d < 4, the decodig process is easily carried

10

*	 *
out by reference to the H-matrix. The product QX is formed from X, and

*	 *
then the reference to the H-matrix.. The product QX is formed from X

and then the received digits are added to form the error syndrome

	

.*	 *
Z = QX -Y,

where it is understood that all of the operations are carried out according

to the rules of the field GF(q). An error has occurred if and only if Z is

non-zero. For single-error correction, the digit position in error is iden-

tified by the corresponding column in H being a nonzero multiple (in GF(q))

of Z. For double error correction, the correspondence is between a linear

combination of a pair of columns In H and Z.

C.	 The Trivial Duplication and Triplication Codes

Perhaps the simplest error detection scheme that can be visualized Is

to use two independent systems, each computing ostensibly the same result

and to compare the results for disagreement. If each system has a single

binary output line then the code being utilized is a (2, 1; 2) code, with

H-matrix H = [1 i]. If the systems contain more than one output line then

the entire system is duplicated, and the corresponding lines in each

replicate form the positions of distinct duplication codes. The underlying

assumption is that a single fault only introduces an error On an output

line(s) in one system. Hence, with knowledge of the probability of a fault

the effectiveness of the duplication approach can be 'assessed when incor-

porated in a system configuration. There are several possible system con-

figurations that use duplication as the basic. error detection mechanism.

These include	 .

(1) an, ensemble of processor pairs wherein one pair is

active In computation at a given Instant. The detection

of an error In this active pair, by virtue of a disagreement,

precipitates the replacement of this pair by another pair.

It is possible that no effort Is expended to diagnose the

faulty pair to pinpoint the possible single faulty system--

a concept proposed in the' Hopkins candidate architecture .

	

discussed in Chapter V. 	 .	 .	 .

(2) The same concept as above except that a diagnosis is carried

out to pinpoint the possibly fault-free unit in a failed pair,

and return it to service.

Section F discusses the reliability performance of a coded memory system.

The simplest error correction scheme involving coding is to use

three independent systems to carry out a calculation, and to take a

majority vote of the results. As in the duplication case above, If each

system contains more than one output line, the vote is taken independently

• for each output line trio. The code being utilized is a (3, 1;2) code

with H-matrix

1' 1 0
H- 1101

There are several extensions and system implications of this simple

triplication code as follows.

(1) An (n, 1;2) code can be utilized wherein any combination of

L(n-l)/2J or fewer* failures are masked and one extra failure

Is detected if n Iseven. The decoder Is a threshold network

with n Inputs and a threshold of In/21

(2) A.(3, 1; 2) code is utilized to both correct a single error

and to distinguish the systemblock In error. Thus upon

the occurrence of an error-some control external to the

blocks in question switches out the-dissenting block, If

it is other thana combinational network, the Inserted

block must be initialized to the state of the other blocks.

Note that in the candidate architectures to be described the

switchover Is accomplished by an executive operating in part

with software and in part with hardware.

* The notation LxJ and rxl signifies the largest Integer less than or
equal to x, and the largest integer greater than or equal to x,
respectively.

12	 •.

(3) An (n, 1;2) code is utilized whereiji n is varied as faults

occur and are corrected. This adaptive scheme, proposed by

Pierce, 4 Goldberg., 5 and undoubtedly others, operates as

follows. As in technique (1) above the decoder is initially

set at a threshold .of [n/21 , and thus the system can correct

any combination of [(n-l)/2J or fewer faults (permanent or

transient). When the first failure occurs, the malfunctioning

blOck is logically disconnected, whence the code is transferred

to a(n.', 1; 2) code, where n' = n - 1. The next failure

results in an additional decrementing to n
II
= n

/
 - 1, and so

on until the code length is reduced to three or possibly two.

Obviously, this approach (3) exhibits more fault tolerance than

technique (1), and is comparable in fault tolerance to.-tech-

nique (2) is generally to be preferred because it is compatible

with graceful degradation. Technique (3) is to be preferred

only for those applications that cannot endure the switchover

time associated with (2), or for those applications that cannot

attain multiple transient fault tolerance with technique (2).

D.. Use of Less Trivial Codes for Enhancing Processor Reliability

Ever since the coding theorists have demonstrated the effectiveness

of error correcting codes in increasing the reliability of information

transmission, .a search has been underway to uncover a similar concept for

computation. There have 'been numerous noble attempts, but, in our opinion

there seems to be no coding technique for the processor portion of the

computer that is more effective than the trivial techniques of the previous

section. This is especially, the case for the processors that are suitable

for our environment, since they are relatively small, being only about 2,000

gates or several LSI Chips.

We divide this discussion into sections concerned with arbitrary

logic and arithmetic.

13

I .	 Arbitrary Logic

By arbitrary logic we refer to the irregularly structured corn-

binational and sequential circuits in a processor responsible for timing,

control, condition sensing, register transferring, logic operations, etc.

For such circuits no preferred or canonical methods of realizationhave

emerged, and hence in attempting to apply redundancy techniques to such

circuits it must be assumed that arbitrarylogic is utilized in the
*

realization.

The goal of using coding techniques in association with arbitrary

logic is to detect the occurrence of failures in a replaceable module,

without incurring the excessive redundancy attendant to the use of repli-

cation codes. In communicationsystems, wherein the main design consider-

ation is transmission rate, the redundancy associated with theuse of coding

is - simply nfl, the ratio of redundant bits tocode length. The situation
Is significantly more insidious in the case of coding techniques as applied

to arbitrary logic.

To illustrate this point consider the circuit depicted in Figure

11-1, where it is assumed that g 1 is an arbitrary function of f1,

and is generated in an indivisible module. A-similar assumption applies

to g2, 931941 h 1 , h2 , h3 . The indivisibility property of the various

modules means that a module failure will cause an error in the Output.

Winograd and Cowan 6 (WC) have suggested a coding scheme to-providefault

tolerance in a circuit of the type depicted in Figure 11-1. The WC method

for this circuit is depicted in Figure 11-2. The intention here is to	 -

provide a mechanism so that an error due to failure at any level is cor-

rected before it propagates to the next level. To-aChieve -thisthree extra

* Microprogramming techniques for the realization of control functions
can eliminate much of the arbitrary logic associated with conventional
combinational and sequential realizations. Moreover, the microprogram
memory can be made fault tolerant by the relatively inexpensive coding
techniques described in Section Ebelow. For-the aircraft environment
we have in mind the processor(s)constitutea relatively 'small proportion
of the total system and hence, unless a significantly larger computation
load is envisaged, the trivial replication coding techniques *ill suffice.

14

f	 f	 f	 f	 f	 f	 f	 f	 f	 fo

h2	 h3

SA-1406--2

FIGURE 11-1 :A NONREDUNDANT- CIRCUIT -

15

f f 2f 3	 f 4 f	 f6	 f7	 f8 f9 f 1	 f
3 4	

f	 f
f3 '4 f5

f f f3f 6
f
7 f

$

5
h	 h6	 h

1	 g7•

• DECODER	 DECODER

I	 I	 I
COMPUTE	 COMPUTE

I h i l	
h21

hi	
ENCODE

SA-1406-3

FIGURE 11-2 CODED. VERSION OF CIRCUIT USING WINOGRAD-COWAN CONCEPT

16

g-modules are included such that in the absence of failures the signals

on the lines g1 ,
	

g correspond to a Hamming single error-correcting

(7, 4;2) code. (The; number of information lines at a level, in this case

k = 4, is determined by the number of modules in the nonredundant circuit

at that level.) At the next level, namely the h-level, the modules pro-

duce signals corresponding to a single error-correcting (6, 3; 2) code.

(The H-matrices for these two codes are depicted in Table 11-1.) The

particular way in which this is to be carried out is to provide a set of

modules each of which exhibits three roles 	 (1) decodes the signals

appearing on the previous level, to produce estimated error-free versions

of the signals needed by the corresponding irredundant modules, (2)

computes' the irredundant signal, (3) encodes the signal so as to produce

the corresponding signal in the code at the next level.

This three stage process is illustrated in Figure 11-2 for the

computation of signals h and h. With regard to h 1 the signals

91 , g,...,g, are passed through a decoder to generate estimates, g, g,

of the signals g1 , 922 9
3 . (If no failures or only a single failure occurred

in the, ensemble of g modules, then the estimates are indeed the desired

signals.)' The signals g 1 , 92 , 93 are then combined to form the signal h.

The encoding process for h is simply the identity operation since. h 1 cor-

responds to an information digit. On the other , hand h corresponds to a

check . digit, which by reference to Table 11-1 Is specified by h 	 h + h.

This exclusive OR operation is carried out in the encode portion of the 114

module.

As we previously mentioned, the'cod'ed version, as shown, imple-

menting single error-correcting codes, can mask failures, provided no more

than one module in a given level is afflicted'. If one measures the redundancy

as the number of modules in the coded version, then the cost seems quite

favorable as compared with the use of the trivial replication codes. In the

case illustrated single fault masking is achieved with less than twice the

number of modules. However, one immediately notes that the modules utilized

are significantly more complex than those appearing in the original version.

This added' complexity is both in the number of inputs to the modules and in

the functions realized in the-modules. 	 .	 .	 .

17	 "

9193949596g7

11010.0	 .

1:1 1 0 1 0 1 0

L.. i 0 1 1 0 0 1

(7, 4; 2)

h h h h h.h
123456

[110100 .	
. Ii. 0	 1 • 0	 1 . O•

1 1 0 0 1.

(6,3;2)

Table 11-1

H-Matrices for (7, 4; 2) and (6, 3; 2) Codes

18

In general it is not easy to measure the complexity of the

redundant, as compared with the nonredundant case but a few general

observations can be made.

(1) Typically, the realization of modules as [SI chips

results in a pin limited design, rather than one

which is logic complexity limited. Hence the-WC

cost measure that relates to the number of modules

is not tenable.

(2) In view of (1) the increase in complexity due to

the use of close packed codes, e.g., Hamming codes,

is greater than the threefold increase in complexity

due to the use of the trivial (3, 1; 2) code.

(3) The use of low-density codes7 Is likely to decrease

the module complexity, but at the cost of more modules.

Briefly, low density codes ar ? codes wherein the H

matrix has a small proportion of l's relative to 0's

and hence the decoder portion of the module is likely

to require fewer inputs.

Several modifications of the WC approach are possible to reduce

the complexity, and possibly lead to more attractive coding implementations.

Instead of supplying an encoder and decoder at each level in a multi-level

circuit, it is possible to achieve fault tolerance with a single encoder

at the overall circuit Input and a decoder at the output. In this case the

errors are clearly not corrected at each level in the circuit, but at each

level sufficient redundant modules are provided to preserve the code. As

an example consider the situation depicted in Figure 11-3 wherein, In the

nonredundant case, Figure 11-3(a), the circuit is a row of AND gates. The

code in question is the (n, n-l; 2) code that corresponds to a single parity

check. As illustrated in Figure 11-3 the input lines to the circuit level

include the single parity check P. The parity check P' at the output is to

be such that If parity is not satisfied at the input, due to a failure at

some previous level, then parity Is to be satisfied at 'the P' levels. Also

If a failure occurs in the set Cl, and en , the parity is also set to be

19

a	 bia	 b 	 am	 bm

q l	 C2	 cm

(a) NONREDUNDANT CASE

a	 b	 a	 b	 am	 b 	 a l b	 pa	 b 12 rn 1 mm

(b) CODED CASE
SA-1406-4

FIGURE 11-3 ILLUSTRATION OF CODING APPLIED TO LOGIC WITHOUT

ENCODER AND. DECODER AT EACH LEVEL

20

satisfied at P'. Thus the equation for P' becomes

P'=ifa +b +a +b +... +	 +	 + Plthen
—1	 .1	 2	 2	 n	 n

C 1 + c 2 + 1 else c 1 + c2

It takes little observation of this function to realize that the module

computing P' is at least as complicated as the initial row of AND gates.

Hence we. conclude that, for this type of coding scheme simple duplication

is no less attractive for single error detection than more complex coding

schemes. A similar conclusion has been reached by Pierce.8

-	 For the processors we have in mind It appears that for the de-

tection and correction of errors the simple. duplication and triplication

codes are the most attractive. We stress that this conclusion is-based

upon the present art of processor design and of applying codes.to arbitrary

logic. As we show later, coding techniques as applied to memory are-quite

attractive and feasible. It is also possible that codes will be useful for

portions of the bus systems. Since the application of codes to the system

is dependent on the particular architecture, we defer discussion of this

question to those sections concerned with architecture.	 -

2.	 Arithmetic

The case with regard to codes to detect and correct errors due

to failures in the arithmetic unit is somewhat more promising, although

for our case the duplication and triplication schemes seem optimal.
9,10

Historically,	 arithmetic codes were suggested to detect and/or correct

errors of a particular type in an adder. A parallel adder is envisioned.

comprising n-stages, but not including any logic for fast carry propagation.

A single failure is assumed to affect only a single output in a single stage.

Thus in a given stage either the sum or carry outputs could be in error.

The effect of such a failure in the i-th stage of an adder is to produce an

error in the sum. as follows:

-f 2	 if the error Is in the sum output

+ 2
1+1

ifthe error Is in the carry output

21

For the purposes. of detecting the occurrence of such.errors
'	 s r

,
,iiz'

all numbers to be added can be multiplied by three; the code in question

is then an AN code with A 3. Any single failure of the type described

above introduces an error of the form + 2 and hence, the occurrence of

an error is ascertained by the sum not being a multiple of three. In

this code two redundant bits are required.

For the purposes of detecting. a larger class of errors the use

of a larger value of A, notably 15, has. been suggested by Avizienis
11

 as

an approach toward detecting a. larger class of errors. This expanded. set

of errors includes (a) simultaneous errors in the sum and carry outputs of

a single stage (b) errors occurring in the multiple usage of the adder as

in multiplication, (c) errorsoccurring dueto failures in a fast' carry

propagation circuit.

Avizienis has also noted some advantages in encoding and decoding

attendant to the use of A's of the form 2 - 1. For such A's if b is the

number to be encoded'then a check number c is computed as C A - (I b i mod A).

If the binary digits are appended to the most significant -portion of b, then

:	 the resultant' word is indeed Ab. The decoding process, which involves de-

termining if the sum is a multiple of 15, is accomplished by casting out A's.

.Avizienis. accomplishes this, with low cost,.using a 4 bit-adder ('for A =15),

and requires; one cycle In this decoder for each-4-bit byte in the. sum. The

total equipment required for anarithmetic unit, including encoder, decoder

and extra bits in the adder itself, for Avizienis scheme is about.li times

an fr-redundant unit, -Irrespective of any spares. This redundancy. is less

than the. greater than 100 percent associated with duplication.

-Despite the apparent attractiveness of the Avizienis scheme we

do not recommend the .use. of arithmetic codes for the computer for the following

reasons:

(a) For an arithmetic unit realized with. LSI technology it

seems unlikely that a failure will be confined to a

single: stage of the adder; hence.. a significant proport.ion

of the failures will lead to undetected errors. (Note that

the detection of a failure is likely to be dependent on the

22

input data to the adder; hence, the inability of the

code to detect the failure during a particular cycle

of the adder might be rectified during the next cycle

whendifferentinputs appear.)

(b) In the STAR computer the information to/from the

arithmetic unit is transferred byte serial. Thus

there is no-appreciable delay introduced by the byte-

oriented encoder and decoder. For a system wherein

the transfer is to be accomplished in parallel, the

encoding/decoding delay would be significant. More-

over, it is not clear that a duplicated byte serial

adder would be less preferable then a coded parallel

adder for abyte-oriented machine.

(c) The arithmetic unit is a relatively small part of a

processor, comprising about 20 percent of the total

number of gates. Hence, without comparable coding

techniques for the remainder of the processor it appears

that little is to be gained by the use of coding in the

arithmetic unit.

Recent work by Rao 1.2 and Neumann
13

has shown that logic operations
can be performed within an arithmetic unit provided the carry lines
are available as outputs. More significantly, the same error detecting
codes used for arithmetic can also serve to detect failures when a
logic operation is being carried out provided n cycles . through the adder
are allowed for, say, the logical ORing of two n-bit vectors.

23	 .

E.	 Use of Codes for Memor

1.	 Memory System Organization

The situation with regard to codes for main memory-is far more

promising than for logic or arithmetic. Intuitively the primary reasons

for this optimism' are based, upon the organization to be described

'A memory can be very easily designed such that any failure within

an independent unit results in only an -error within a byte. What we have

in. mind is a semiconductor memory organized as in Figure 11-4. The memory

- consists of f O p- chips organized in p-blocks and f-frames. Each chip con-

tains its own- decoder, read amplifiers, and read/write control circuitry,

- besides the storage flip-flops. There is considerable latitude in or-

ganizing. the-;. separate memory chips, but several typical choices for a

4096 bit chip are the-, following:

I (bit wid-e) X 4096 (words), 2 X 2048_4 X 1024, .8 X 512.

By redu-tidantly . including the decoders in each chip, a single fault within

a chip affects only the byte associated- with that chip. (We will-assume-

that a chip failure can be catastrophic to the chip in question, to the

point wherein all bits in-the chip-byte are suspect.) Hence an error-

correcting code can be' effectively utilized. here, provided th'e code can -

correct, all errors within a frame (byte) width, corresponding to the

width of thechip. Thus with this organization there is no need to

consider distinct protection strategies for the memory decoders, 'sense

amplifielTs;, read/write' control circuitry, and so forth.

Coding schemes fo-r, arithmetic and 'arbitrary logic- suffer in

that the encoder/decoder are just about as complex as the logic- perform-in-g

the real computation. Fortunately, such is not the case- for memof'y coding

schemes. As.we will shortly demonstrate, a relatively small memory of-4K

29 bit words (including redundant bits for coding) consumes-about 30-chips

while an encoder/decoder can be implemented with one or two chips.

There are several generalizations and embellishments of the

simple scheme ofFigure-II-4, mostly related-'to the use of such amemory.

within a complete system. Among these aspects are the foIloin'g:

.24

BL

BI

•	 FRAMES

r.

•	 •	 SA-1406-5

FIGURE 11-4 CODING SCHEME FOR MEMORY

25

(a) Providing spare frames in each block for purposes of

additional fault tolerance. Such spares, presumably

"addresable" by the encoder/decoder, would be used to

replace a failed chip as revealed by the correction

process.

(b) Providing for fault tolerance in the encoder/decoder

and MAR (Memory Address Register). This coding scheme

as utilized in the Bus Checker architecture embodies the

use of a pair of encoder/decoders and MAR's as part of

a dual or triplex processor system. Thus the processor

is protected by the trivial codes while the inherently

coStlier memory system is protected by more efficient

codes. It is also. possible to distribute portions of

the endoder/decodcr among the various memory chips

anissue that should be explored in later studies.

Hence processors which are primarily constituted of memory blocks, can

be effectively protected almost in toto with coding techniques. In such

processors, control, e.g., instruction processing, could be achieved

with microprogramming, and logic operations, e.g., vector AND's and

OR's-by combicnations of logic in memory, table-lookup, and associative

memories. The memories associated with these functions could be pro-

tected by coding. There will be residual arbitrary logic, but for

such a memory-oriented processor this logic will be minimal and protected

by the replication codes. Since the arbitrary logic is minimal only a

•	 small incremental increase in system cost is incurred. .

.Accordingly, in the sections below we discuss bounds on the

redundancy of the memory codes, properties of -the Hamming and other codes

that achieve or almost achieve the bounds, implementation of the encoder/

decoder as -aprogrãmmable cellular array ona single chip, and performance

of these codes within a system. 	 .	 •.	 .	 . . -

2.	 BOunds on Code Redundancy

As inferred in the above section We -are. interested in cod-..s

that can correct all single byte (or equivalently single-frame) errors

26	 .

That is, for a 32-bit word, all a 2 ,..., a32 , assuming a 4-bit frame size,

the following errors (among many others, of course,) should be correctable

by the code:

e1; e 1 e 2 ; e
1

e
3

e 4 ; e 1 e 2e3 e4 ; e19,e20

The following errors need not be correctable:

e1 è3 e 5
	

(error pattern spans two bytes)

e 1 e24	 (double byte errors)..

The situation of interest to us is depicted in Figure 11-5

f-FRAMES

g - BITS	 1	 =	 •.•	 .1
SA-1406--6

FIGURE 11-5. FRAMES OF A.BLOCK-CODE WORD

From observation of this illustration, one notes that a code of length

n = fg over GF(2) is desired or possibly a code of length f over

To describe a completely general situation we will seek bounds wherein

the burst tobe corrected by the code is b, where b> g. It is emphasized

that the case of most interest is b = g.

A burst of length (t most) b is a pattern of errors (not

necessarily solid) confined to b consecutive digit positions; for example,

the patterns 1, 11, 101, Ill are bursts of length three, 1, 11, 101, lii,

1001, 1011, 1101, liii of length four. There are clearly
2b1

bursts of

length b, beginning in a given position. A cyclic burst is one which

assumes the last digit and the first digit of a code word are contiguous.

The length is similarly, defined. A framed burst is a burst error that

occurs solely within one frame. Its length b is therefore at most g.

Analysis of codes for correcting a single burst of various

types is made based on the number of syndromes required. The base-two

logarithm of this number is a lower bound on the number of redundant digits

required. A cyclic-burst-correcting binary code which corrects any single

burst of length b must have (at least)

S(n,b) = n2 b-1 + I 	 '	 (1)

27

distinct syndromes, one for each of the 2b1 bursts beginning in each of

the n digit positions (plus, one. for the case of no errors).

Now consider the situation wherei-n the code is to correct only

noncyci.ic bursts, i.e., the last digit of the word is not considered to

contiguous with the first.

Let N(b) be' the number. of bursts of length .b which are omitted

from a	 in -gotng to a noncyclic-burst-cor.recting

code, i.e.,	 .

S_(n,b)	 N(b) + N(b

The number N(b) is easily obtainable as
b-i

N(b) ' =	 21_i = (b)2bl +

which leads immediately to the bound, for b > 29

SN(n,b) = (n-b+2)2 1	 (2

Finally, consider the situation of a code which only corrects

single framed bursts of length b within a frame of length . g. Thenumber

of such .bursts within a frame of length g is	 .

g2 b-1 - N(b) = (g_b+2)2bl - 1, b < g

Consequently, using. (3) for each of the f frames, pius one for thç error-.

free syndrome yields the: desired.number of syndromes

SF(n,b) = f(gb+2)2b1_ f + I t b > •g.	 (4)

Not.e that-,-..for g = b the above bound reduces. to

S(n,b) = f29	 f + 1	 , (5)

Equation(5) is identical to the Hamming.bound for a code of length f

over 2 9 that corrects	 errors, wh-ichis equivalent to any,

• . of the
2g_1

possible error-,patterns within a frame.

•

	

	 Hong and Patei 8 'have, shown how to construct minimum redundancy

framed burst codes.. These codes come very close to achiev.ingthe redundanc.y'

implied by (5), namely log S.

It is desirable to examine the-saving that can be. obtained, by

using framed bursts. This isdonefirst by examining the ratio of the

28	 '	 •

numbers of syndromes, then by examining the number of redundant digits

which can be saved.

Consider the saving of framed bursts over arbitrary cyclic

bursts of length b. The ratio of (1) to (4) gives the factor by which

the number of syndromes may be potentially reduced:

n21 +l	 g
SCF = f(g_))+2)2b	 -f + 1	

g - b +2 for g > b > 2,

=	 for b = 2,	 (6)

= 1 for b	 1.

This ratio is independentof n. For a given b (or for a given g), (6) is

maximized when b= g, in which case the number of syndromes required is

	

reduced by a factor of about b/2 for h> 2. 	 (Note that theratio (6) drops

off sharply as g-b increases.) This maximum for b = g corresponds to a

potential saving on the order of log 2 b - I check digits for codes cor-

recting only framed bursts instead of cyclic bursts. Note however that

for small b there is comparatively little saving in going from (1) to (4)

(or even to (2)).

Incidentally, any code correcting cyclic burst errors of some

length b is capable of correcting noncyclic bursts of the same length,

while a code correcting noncyclic bursts of that length is capable of

correcting framed errors of the same length. Thusone could always resort

to a code correcting cyclic bursts, especially if encoding and decoding

for framed bursts are inordinately complicated.

Table 11-2 presnts the lower bounds for the number of redundant

digits r, required for the cases b = g = 1, b = g = 2, b = g = 4. The

Hamming codes for b = I and the Hong-Patel codes for b = 2 and 4 achieve

the redundancy implied by SF in all cases shown.

29

check digits r

•	 k b 	 =1

S

•b'=g=2

S,

b=g=4

S	 SF

4 .	 3 .	 5 4 7 6

8 4 .5 5 7 6

..12 5 6 5 8 7

16 5 6 6 8 7

24 5 6 6 9 7

.28 . 6 7 6 9 8

56 6 7 7 10 8

6 '.8 7 10 8

64' 7 8 7 10 '	 9

.128 8 9 8 11 '10

'256 9	 . '10 9 12 10

512 10 11 10

,

13 11

1024' .	 .11 12 11 14 12

TABLE 11-2	 T REDUNDANCY FOR" CORRECTING 'CYCLIC AND

FRAMED ,BURSTS

3..	 Specific codes •for Correcting'Framed 13u'rst

From the standpoint of' minimum redundancy theopt,ima1codes,

for the special case of b =.g, rare the',gene'ralizedHamming dode 4 over

:"..For rF Eedundant frames, i.e., gr	 redundant ,bits, the rF X f

H-matrix is given as.foliows. ;The colurnns'of the H-matrix consist-of

distinct r-tup1es, 'with components 	 the additionalpro-

visionthat 'no pairs-of-columns' are multiples of each other. Thusfor a

given value of'r the-maximum-number of-columns in the H-matrix: is,given
gr	 F

by '(2	 1)/(2g_1), 'Table II-3depicts 'the H-matrix for the caseg =,.,2,

f = 15, r
F7

3,-corresponding to a code to handle 24 information bits,2

bits per frame; 6 check bits. We have also 'included, in Table' 11-3(b)

the multiplication table for'GF(4). It is recognized tha'tbits-of a

'frame are suitably'interpreted as'elements of the field	 Inorder

to augment. this code to provide for single frame-error correction,

30

double frame-error detection, an additional row and column are added to

the ' H-matrix as shown in Table 11-4.

Besides the generalized Hamming code, the Abramson code 14 is

also a possibility for g = b = 2. For the Abramson code the number of

redundant digits is typically one more than for the Hamming single error-

correcting code over GF(2). This code although, of course, offering no

redundancy advantages as compared with Hamming codes does offer slight

advantages in decoding, particularly if portions of the decoding can be

done in parallel.

For the case b = g- = 4 Table 11-5 gives the smallest known

value of •r for the case of single frame-error correction. The best

codes for-correcting cyclic bursts are based on Reference 15; most are

truncations of cyclic codes (and therefore not cyclic). For our-applica-

tion cyclic ity is not crucial since the decoding will most likely be ac-

complished in parallel; it may however imply greater structure to enhance

parallel implementation. A cyclic code (-21, 12) exists, as does (trivially)

a cyclic áode (12, 4) the latter being effectively triple-modular redundancy.

The latter code can also be achieved by interlacing two Abramson codes '

(6,2-), in addition to interlacing four Hamming codes (3,1). Best codes.

with r = 8-which correct framed bursts (b = 4) with k from 12 to 60 are -

obtainable as base 16 Hamming codes. The-code (68,60) is perfect. Best

codes for k = 4, 8 and 12 for these framed bursts of length 4 can be de-

rived from the cyclic Gilbert code (20,12) (which has the advantage that

At is systematic)--seé Reference 16. Although this-code corrects cyclic -.

bursts with 'b = 2, it corrects framed bursts with length 4. Decoding for

the Gilbert codes is very simple in -the given framework, although these

codes become noncompetitive in terms of r as k increases.	 -

4.	 Implementation of Framed Burst Co:rection Codes

In order not to incur any time delay in the encoding and de-

coding of the codes, it will probably be necessary to carry out a parallel

implementation. Moreover, the decoding can in part be accomplished in

parallel with computation. That-is the results of the computation are- 	 -

held in abeyance until the syndrome calculation determines if an error

is present in the word. Although such an implementation requires 	 -	 -

-	 -	 -	 31	 -	 -	 -	 --- -.	 -

H = IQ I Ir
LF

x F rf
x

f

.023111111100100

H = .111023111101010

11.1111023110001

(a)

pl 2 3.

0 0 0 0 .0

.1.0' 1 2 3

20 2 3 1

303 1.2 .

(b)

Table 11-3 H-Matrix for	 (15,12; 4) Code

0023111111 1:0 100

011102311110010
H =

.011111102311001

• 1 , 11 111 111111111

Table 11-4 H-Matrix for (16, 12; 4) Code

32

K
	

S S
c	 F

4

H

12

16

24

28

56

60

64

128

256

512

1024

8 8

9 8

9 8

10 8

10 8
*

10 . 	 : 8
* *

10 8
* *

10 8

11 9

12 12
*

12 12
*

13 12
* *

14 12

TABLE 11-5 REDUNDANCY FOR BEST KNOWN CODES FOR SINGLE-FRAME
CORRECTION, b .= g z 4

33

significantly more gates than a serial implementation for, say, a cyclic

Hamming code or Abramson code, the cost will still not be excessive. In

fact, for the implementations to be described a single LSI chip realiza-

tion is possible for a combined encoder/decoder.

a.	 Cellular array for single error correcting binary code

In-Reference 17 we presented several approaches to the

parallel realization of encodersand decoders, with the stress placed on

cellular array realizations that are well-suited to the LSI technology.

The following discussion, abstracted from Reference 17, indicates the

method by which .a single cellular array can serve both. as an encoder

and decoder for a- single error correcting code over GF(2).

As a simple illustration of how-encoding and decoding

arrays might be efficiently realized in cellular form, firs.t consider.

the encoding and decoding for a single-error-correcting plus multiple-

error-detecting linear binary code. 	 -

This array is shown in Figure 11-6, along with the logical

circuitry of a typical cell of the array. The cells (stages) of the

input register X and the output register Z are also depicted in Figure II-

6.	 Each array cell is seen to consist of. a single flip-flop with binary

contents q, plus-a small amount of cascade logic (a total-of about .13

elementary NOR gate, as illustrated in Figure 11-7.

Fora-systematic code, the encoding and decoding processes

may be thought of as being-applied to an n-digit codeword (X, Y)-that con-

sists of a k-digit information portion X.andan (r = n - k)-digit check

portion Y The task of the encoder is, of course, the calculation of

the Y vector from the X vector, assumed given. For a parity check matrix

H in echelon canonical-form, namely

= 1	 ' rXk	 rXr'

the computation of Y may be expressed as -

Y = QX

where all vectors are treated as column vectors.

34

iLJ
I ()C2I

L__
YPICAL STAGE OF X-REGISTER

:

ERROR

Z-REGISTER

H = II 0)

(INFO. DIGITS)

0

•	 0

0

U

V
V

x	 u•

CELL EQUATIONS.	 I EXCLUSIVE-OR	 -	 - -
AND	 GATE	 C1

TRIGGER

*$	
cLEAH ;

	 JA

FLFLOP

TYPICAL CELL OF ARRAY: 	 TYPICAL Z-REGISTER STAGE:
SA-1406-7

FIGURE 11-6 ARRAY FOR ENCODING AND FOR DECODING

SINGLE-ERROR-CORRECT!NG CODES

i 110-
	 I	 I

•	 ul
SA-1406-8

FIGURE 11-7 NOR-GATE REALIZATION OF MAIN-ARRAY CELL'

• •	 35	 -

For encoding, then, the array and its two associated

registers operate as follows. For a given code, each digit q. j of the

Q portion of the matrix H is placed in the flip-flop in row i, column

j of the cellular array (by a setup process to be described subsequently).

The block of k information digits of a particular codeword is placed in

the k digit register X, and the r check digits are computed combinationally

by the array and inserted in the r-digit check register Z in a single

clock time. This computation proceeds through the chain of exclusive OR

•	 gates along each row, independently of the other rows, on the basis of

the x digits that are bussed vertically down each column. Each x digit

•	 x. contributes to the sum in a particular row i if and only if the corre-

sponding digit q. j of the Q matrix equals I. Thus, after the clock has

been applied to the Z register, this register contains the block of check,

digits that are to be associated with the given block of information

digits.

In general, decoding of a received, possibly erroneous
* 	 * 	 S

codeword (X , Y) may be carried out .byfirst recomputing the check digits
*	 •*

QX from X and adding. them to the received check digits Y , to obtain the

error syndrome

S	 * 	 * 	 S

Z=Y®QX.

An error has occurred if and only if Z is nonzero. For single-error cor-

rection, the digit position in error is identified by the corresponding

column j H that is identical to Z; that is, by the corresponding column

of Q (stage of the X resister) if the error is in the information portion

of the codeword, and the corresponding column of I (stage of the Z register.)

if the error is in the check portion. As soon as the digit in .error is -

identified, it may be corrected by complementing it.

*
For decoding, then, let the data portion X and the check

*	 -
portion V. of the received codeword be entered intothe X and.Z reisters,.

respectively. When clock c 1 is applied, exactly the same operation is
•	 *

carried out as In encoding, except that the calculated check d .1gitsj QX.
*

are added (digitwise) to the received check digits V , thereby- leaving

-.	 -	
36	

-	 S

the syndrome Z in the Z register. The digits of this syndrome are now

passed back along the rows of the array on the z busses, for digitwise

comparison with the flip-flop contents (columns of the Q matrix) in each

column of the array. When clock c2 is applied, any column in which exact

coincidence is found causes a 1-signal to be applied to the corresponding

column of the X register, thereby complementing it. If no such column

generates such a- coincidence signal, then either there was no error, or
*

the error occurred in the check portion Y of the received codeword and

not In the data portion X.

It is trivially noted that error detection may be provided

by attaching a simple OR gate gating r inputs onto the Z register, as

indicated in Figure 11-6. A 1-output from this gate following the

application of clock c 1 during decoding then Indicates the-presence of

one or more errors.

For loading the flip-flops of the main array, assume first

that the flip--flops are all reset initially. To load a 1 Into the flip-

flop in row 1 and column j, inject l's into registers Z and X in this row

and column, and apply clock C 3) (i =1,2, ...,n - k,j = 1,2,...,k). The

contents of.these flip-flops are not changed during the encoding and

decoding operations.

b.	 Cellular array for codes with frame width, .g > 1.

The cellular array as discussed above can be easily modi-

fied to handle frame widths-of any arbitrary size. For the g = 1 case

above the syndrome is formed on the z-lines and passed left-wise through

the array until a match is found with a q-cólumn vector stored in the

main array. In the case of a frame size of g 	 2 the. decoding situat4on

is easily illustrated with an example.

Assume that the code in question is the (5,3;4) code with

37

H-matrix

2X3	 '2X2

=	 {? H	
]

wherein the components are in GF(4). As in the GF(2) case above the .Q

portion is stored in flip-flops in the main array. Here 2 fiip-flops'are

required per cell to store a GF(4) component.. The encoding'. process is to

form the pro'ductQX. This process requires the inclusion theachcellof

•	 a GF(4) multiplier and adder, each of .'which are simple four varia1e

functions. Thus, for example, if 'the information on vector .X is (l 1 1)

then the check vector is, computed .as ('1 1) + (1 2) + (1 3) =. (1 , 0).

The decoding' process is to first form the syndrome Z = QX* - 	 This

syndrome is then reflected back through the array, but, 'instead of- searching

for a stored' q-co.lumn that identically matches •the syndrome, the search ,is

for a q-column that is a GF(4) multiple of the syndrome.' For example, as

indicated above (1 1 1 1 0) is a code word in the code in question.

(Note thát .10 binary digits are involved in- representing this code word in.

main memory.. Thus the word as stored in main inenor .y could be (0 1 0 1

0 1 1 0 0 0)	 Assume that theGF(4) version of the word presented tó

the decoder is (2 1 1 1 0) corresponding to the first 'frame being .10

instead of 01. The syndrome is thus (3 3), which is noted to be 3 times

column 1. . The , error is thus identified .as in the first frame and the

magnitude at the error is the ratio of the syndrome to the' "matched"

column, which in this case is 3. The data bit In error is corrected by

computing X ' - error' pattern

We have not carried out a complete locigal design 'of this

modified decoder, .but for the case .of'g = 2 the cell complexity is about

twice that of the-single encoder/decoder for GF(2) case. In-a similar

manner. the encoder/decoder for g = 4 incurs •a cell complexity about 16.

tims :that for the g = 1 case.

Table 11.6 .summar-izes ,the memory configurations and decoder

complexities for a memory ,word. size .of 24 bits, and 4,096words.of•memory..

We assume a'memor.y chip .-size of 4096 bits, which can be configured in-any

38

of the following modes: a (1 bit widex 4096), (2 x 2048), (4 x 1024),

(8 x 512). In each case we assume a Hamming single error correcting code.

The table indicates a strong preference to g = 2 with regard to decoding

complexity. Note that the total number of memory chips for the g = 4 case

can be reduced by 1 as follows. Seven check bits are sufficient to imple-

ment the code, so one of . the check frames can be 3 bits wide, instead of 4,

providing for 1 check frames. Assuming 4 blocks the total number of

check chips is 4 x 1	 7.	 A similar reduction is possible for the

case g = 8.	 .

Memory
chip

Configuration

of
"check"
frames

of
frames
(total)

of
chips
total

of
decoder
gates

1	 x 4096	 •. . 5. 29 29 .	 1560

•	 .	 2 x 2048	 • .	 3	 .. 15 30 936
-	

4 x 1624 2	 •	 . 8	 • 32	 • 2496

8 x 512 2 5	 • .	 40	 • 19968

Table 11-6

Summary of Decoder Complexities for

Cellular Decoding of Generalized

Hamming Codes

39

F. Summary of System Aspects of Redundancy

For the attainment of fault tolerance in the cpu we recommend the

use of the duplication or triplication codes. In general the duplication

approach with spares will be used when

• an ultra-reliable mechanism is available for the analysis of

disagreement indicators and for the insertion of an operative

processor pair

• sufficient time is available for the various processes

associated with duplication.

Otherwise the triplication approach will be required. In one of the can-

didaté architectures, SIFT, the basis for selecting duplication or trip-

lication is the criticality of the application program. The executive

that accomplishes error control will always be run in a triplicated mode.

In another candidate, BUCS, the mechanism for processor switchover is

sufficiently fast to permit the use of duplication for processors. However,

the approach requires a modest size hardware executive that must be trip-

heated.

•	 In the case of memory the use of coding techniques is recommended.

The main reason for this is the economy in redundancy as compared with the

duplication and triplication approaches. In particular, we recommend the

• use of the framed burst codes described in Section E. As a minimum, the

•	 codes should be capable at correcting all single-frame errors, and in

applications' where back-up Is possible, the codes should be augmented to

provide double-frame error detection. On the basis of encoding/decoding

cost the 'optimum frame width, g, is 2.

Another organizational factor that relates to the choice of frame

width is the' following. Assume a memory organization as depicted in

Figure 11.4 with spare blocks included to handle the function of failed

blocks. We assume that a single-frame error correcting code is utilized

throughout, and that subsequent to the detection of an error the offensive

block is discarded in favor of a spare block. On one hand the number of

redundant chips per block is directly related to frame width, g. However,

40

the smaller the value of g, the larger the block of memory that is dis-

carded subsequent to an error. A problem of concern then is, for a given

number of memory words required, W, and a given probability of not having

W words available at time t,' what is the frame width that leads to a min-

imum number of spare chips.- A partial analysis of this problem has been

carried out elsewhere, 19 wherein the results indicate that g = 4 is optimal.

However, the optimal point is not sharp enough to override the decoding

advantage of the g = 2 case.

41

REFERENCES-CHAPTER II

1. J. Goldberg, K. N. Levitt, and R. A. Short, "Techniques for the
Realization of Ultra - Reliable Spaceborne Computers," Final Report -
Phase 1, Contract NAS12-33, SRI Project 5580, Stanford Research
Institute, Menlo Park, California (September 1966).

2. F. P. Preparata, et al "Onthe Connection AssignmentProblem of
Diagnosable Systems," IEEE Trans. Vol. EC-16, pp. 848-854
(December 1967).

3. R. P. Vancura and C. R. Kime, "On Numerical Bounds in Diagnosable
Systems," Digest of 1972 IEEE Internation Symposium on Fault - Tolerant
Computing, IEEE Publication 72CH 0623-9C, pp . 148-153 (June 1972).

4. W. H. Pierce, "Adaptive Vote-Takers Improve the Use of Redundancy,"
in Redundancy Techniques for Computing Systems, pp. 229-250, (Spartan

Books, Washington, D. C. 1962).

5. J. Goldberg, "Network Schemes for Combined Fault Masking and Replace-

ment, " Working paper presented at the Workshop on the Organization of
Reliable Automata, Pacific Palisades, California (2-4 February 1966).

6. S. Winograd and J. D. Cowan,"Reliable Computation in the Presence of'
Noise," (MIT Press, Cambridge, Mass., 1963).

7. R. G. Gallager, ,, 1w Density Parity - Check Codes, IRE Trans.. Vol.

IT78 No'. 1, pp . 21-28 (January 1962).

8. W. H. Pierce, Fault - Tolerant Computer Design (Academic Press, New
York, 1965).

9. W. W. Peterson, "On Checking an Adder," IBM J. Res. Dev., Vol. 2,

No. 2, pp . 166-168 (April 1958).

10. D. T. Brown, "Error Detecting and Correcting Binary Codes for Arith-
metic Operations," IRE Trans., Vol. EC-9, No. 3, pp . 333-337

(September 1960).

11. A. Avizienis, et al., "The STAR (self-testing and repairing) Computer:
An Investigation of the Theory and Practice of Fault - Tolerant
Computer Design," IEEE Trans., Vol. C-20, No. 11, pp. 1312-1321

(November 1971).

12. P. Montèiro and T. R. N. Rao, "A Residue Checker for Arithmetic and
Logical Operations," Digest of the 1972 IEEE International Symposium

• on Fault - Tolerant Computing, IEEE Publication 72CH 0623-9C, pp 8-13

(June 1972).	 .	 .

13. P. G. Neumann, private communication.

43	
Preceding page blank

REFERENCES - CHAPTER II (Contd)

14. W. W. Peterson, Error CorrectingCodes (John Wileyand Sons and
MIT Press, New York, N. Y. 1961).

15. B..Elspas, "Design and Instrumentation of Error - Correcting Codes,"
Final Report under Contract AF 30(602)-2327, SRI Project 3318,
Stanford .Research Institute, Menlo Park, California (October 1962).

16. P. G. Neumann, "On Gilbert Burst Correcting Codes," IEEE Trans.,
• Vol. IT-11, pp. 377-384 (July 1965).

	

17,	 K. N. Levitt and W. H. Kautz, "Cellular Arrays for the Parallel
Implementation of Binary Error Correcting Codes," IEEE Trans.,
Vol. IT-15, No. 5, pp. 597-607 (September 1969).

18. S. J. Hong and A Patel, "A General Class of Maciival Codes for
Computer Applications," IEEE Trans., Vol. C-21, pp. 1322-1331,
(December 1973).

19. P. •G. Neumann, K. N. Levitt, J. Goldberg, J. H. Wensley, "A Study
of Fault-Tolerant Computing," Final Report, Stanford Research

	

•	 Institute,. Project 1693, Contract N0014-72-C-0254, Menlo Park,
• California (July 1973).

•	 44

III IMPLICATIONS OF COMPUTATIONAL REQUIREMENTS

Our purpose in this chapter is to abstract from Volume II the

aspects of the aircraft computations that strongly influence the design

of the computer. It should be emphasized that the loading requirements

are quite tentative, and are possibly inexact by as much as 50 percent.

However, they do provide a well considered estimate of the computer com-

plexity required, and together with the results. of the tasks on architec-

ture and technology indicate that a computer can be specified to meet the

computational and reliability requirements.

Table 111.1 summarizes the computing requirements. The most critical

phase of the flight from a computational standpoint is during an instrument

landing. Those applications that are involved in that phase are indicated

with an "*"• Small tasks that are not required during that phase do not

influence the design of the computer system and therefore have not been

estimated to the same accuracy as the more important tasks.

The column headings of Table 111.1 are defined as follows:

Task----------------The name given to the application program.

Criticality Class--- 1. Immediate safety of flight impact.

2. Eventual safety of flight impact.

3. Significant change-of-mission impact.

4. Operation impact.

5. EconOmic impact.

Iteration Rate/Sec-- The number of times per second that the calcu-

lation must be carried out. When two figures

are quoted they represent two calculations within

the same functional task.

Equivalent MIPS-----The millions of instructions per second to carry

out the calculations.

Memory Required-----The number of words of memory required for instruc-

tions and data.

Missed Iteration"---.The maximum number of consecutive iterations that

can be missed before the application is jeopardized.

45

Table 111.1	 Computing Requirements, Applications

Criticality
Class

.'r1r	 Iteration Rate/Sec

Equivalent
'Missed

MIPS Memory Required	 "Iteration

APPLICATIONS

Attitude Control	 1 5,20 .023

Inst.

1845

Data

230 2-3 Al
A2 Flutter Control	 1 250 .069 70 22 2-3

A3 Load Control	 3,5 *	 '240 .014 '45 15 '2-3

A4 Autoland, Horiz. *	 20
A5 Autoland, Vert. 	 1 *	 'l60 .055 750 275 2-3

A6 Autoland, Throttle *	 .33
A7 Autopilot	 4 5 150 '100 4-5

A8 Elec. Att. Control 	 1 *	 30 .077 790 520 ?

Bl Supervisor	 4 ? ? 75 15

B2 Inertial	 2 *	 125 .034 2100 .150 0-4

B3 VOR/DME	 4 5 .004 250 :50 4-5

B4 DME, OMEGA	 4 5 ? 400 105 ' 4-5

B5 Air 'Data	 . 4 ? 110 -25 4-5

B6 Kalman Filter	 4 1/5 .001 250 65

B7 Flight Data	 4 5 .028 450 100 2-3

B8 Airspeed, Altitude	 4 *	 8,16 '.009 360 '70 2-3

B9 Graphic Display	 4 *	 1,8 .032 .890 5360 '2-3

B10 Text-Displ2y

0 ---019 640 8700
, -----45

Cl Collision Avoidance 4 *	 1/3,670 .021 550 •650	 , 1-2
C2 Data Comm, A/C	 ' *	 various .006 210 '	 400	 . ?
C3_ .

.
,------22L .. ------

Dl AIDS '	 '	 5 . *	 .	 .	 1/4	 to 4 002 ._650 650, 4-5
D2 Inst. Monit.	 . 4 *	 5 '.014 '800 '100	 ' 2-3
D3 Syst. Monit.	 1-4 *	 1/2 .001 900 .•50 .2-3
D4 Life'Suort	 1-4 *	 <1/2	 , 001 '900 50 3-4
p L g c22 ----------*	 --'33 ---.119 ----200	 ----

*
Tasks-to be''run during most criticalphase..
?It'idicates'that 'taskexerts a' negligible load for the.parameter in question.

46

For purposes of interpreting the table and discussing its implica-

tions on the computer architecture we briefly discuss the following

aspects: reliability, roll-back delay, main memory requirements, processor

speed, processing variations within a mission, and data rates.

Reliability--We have assumed that the probability of not successfully carrying

out the most critical computation should be less than 10 -8 per mission. These

computations, corresponding to criticality classes 1 and 2, could cause an

aircraft crash if not carried out, or if carried out with gross errors. With

this assumed computation reliability, for a fleet of 1000 aircraft flying 4

daily missions, each of 5 hours without repair between flights within a day,

about one crash due to a computer failure would occur in 100 years. For the

other criticality classes the assumed reliability is not as stringent--typical

failure probabilities are 10 4--since the failure to carry out these computa-

tions only results in a mission change or an economic loss. In an, actual sys-

tem design it would be beneficial to' allocate redundancy such that each task

is carried out:with the indicated reliability. For our purposes in specifying

an architecture we will assume that all of the computations are to be carried

out with the more stringent-reliability--an assumption that is reasonable

since those computations in criticality classes 1 and 2 constitute a majority.

of . the memory and processor requirements.

Roll-back--An important parameter of a fault-tolerant computer is the maximum

time interval that the computer can be in a rollback/reconfiguration mode in

responding to a failure.. During this interval certainly some processing of

certain computations ceases, and newly appearing data might be lost. The

missed iterations column of Table 111.1 indicates the number of iterations

that can be ignored in a given computation without adversely affecting the

aircraft. In the worst case (collision avoidance) the system must be

"down" for no more than 1.5 msec. Several other critical computations--

flutter control,, load control, autoland--require reconfiguration times nearly

as low. For these computations, depending upon the architecture it might

be necessary to reload programs, which indicates that the computer might be

required to be totally engaged in reconfiguration following a failure.

Fortunately, the computations with large amounts of data, e.g., display, can

tolerate a down time of approximately-0.5 sec., thus allowing ample' time

47

for the possible reloading of data interleaved with the more critical

computations.

Memory Requirements--The aplication programs for the critical phase re-

quire 19247K words.. This figure is undoubtedly low for the following

reasons:

• the difficulty of estimating accurately

• the need for memory space for the executive routines.

Hence we assume a memory requirement of 24K words. Note that this is a

nonredundant requirement; the demand for fault tolerance will increase this

figure. For architectures relying totally on the triplication codes this

storage requirement must be tripled to 72K. For architectures utilizing

only single-frame correction in memory (plus possibly a few extra frames

for double frame detection and sparing) the figure is about one-third in

excess of 24K or about 32K.

Processor Speed--For the critical phase the application tasks require

.386 MIPS (millions of instructions per second). Once again we must regard

this figure as being low in part due to inaccuracies, but mostly due to

"wasted" cpu power in multiprogrammingand the processing of executive

.routines. For these reasons we assume a processor load of 0.5 MIPS. An

important attribute of the computations is their relative independence.

That is, the sharing of functions and data among the computations does not

substantially reduce the overall memory or processor requirements. Each

computationrequires access to the state of the aircraft, but all other

data can be considered to be loca1 Hence it is quite simple to impose a

multiprocessor discipline on the computations, with almost an arbitrary

number of processors.

Under certain allocation of tasks to processors it is not necessary

to do any task interruption within a processor. That is, a task can be

allowed to run through completion before initiating another task. Five

processors each of 0.1 MIPS would enable such an allocation. However,

near the end of the useful life of the computer, say if just one or two

unfailed processors remain, it is possible that a high rate task (flutter

control) might be allocated to the same processor as a low rate but long

task (graphic display). If such a joint allocation is unavoidable, then

interruption of the longer task will be essential.

48

Processing Variations Within a Mission--All applications denoted with an

are required during an instrument landing. This represents about 60

percent of the total Cpu requirement and about 50 percent of the memory

requirement. Hence some graceful degradation is possible as during the

mission, tasks will be naturally deallocated as they are no longer needed

as part of the flight. Hence, when a task is no longer needed, its memory

area can be allocated to another task, or conversely, a failure in a memory

module is automatically handled by a reduced memory.requirement. However,

we note that the degradation with respect to memory is not uniform, assuming

that all programs and constants are retained in main memory.t For example,

in mid-flight, although not all tasks are being processed, all programs

must be stored reliably in main memory. Hence the graceful degradation with

regard to main memory is not exploitable until the last minutes of the

flight, and hence is of questionable utility to the architecture.

Data Rates--An important measure of computer power required is the load

on the bus structure for transfer of instructions and data. With .a computing

load of 0.5 MIPS we assume that an instruction will, on average, require 24

bits.4 Different instructioTis require varying amounts of data including

the fo1loing cases:

0 bits for register to register operations

8 bits for byte operations, e.g. text display

• 16 bits for integer operations

32 bits for floating point operations.

Making an estimate that the average data required is 16 bits, the

t 6tal flow between memory and CPU is 20 M bits/sec. In some architectures

(e.g.., STAR) the bus would have to be capable of maintaining this rate.

(Hence the expansion of the STAR system to accommodate a larger computa-

tion burden will require a significant modification in bus design.) In

the case of theHopkins scheme or BUCS, a significant reduction would be

tThe issue of back-up memory in an aircraft environment is yet to be com-
pletely resolved. • Rugged discs can be obtaired but their cost/bit is not
significantly less than that for LSI main memories.

*In a 16 bit computer this implies equal number of single and double length

instructions.	 •	 •

49	 -

achieved by the use of the local CACHE on the processors. An additional

reduction is achieved by providing a multi-bus structure or allowing multi-

parts into rmain memory. In the SIFT system most of the bus lOad would be

in individual modules, with-only an estimated one percent between modules.

All ofthese issues are discussed in Chapters V, VI, and VII.

IV IMPLICATIONS OF TECHNOLOGY

Task 3 of this study (reported in Volume II of this report reviewed

the likely technologies that would be appropriate for a fault-tolerant

computer inthe period 1975-1980. This section of the report examines

the implications of that task on the architecture of the computer.

The most important advance in technology will be the continued ad-

vance of LSI. The cost of LSI circuits will continue to drop-throughout

the 1970's, and will result in processor and memory costs that are low

enough so that extensive redundancy of units is practical' from a cost

viewpoint. This redundancy can be either by replication or by coding,

the latter being more applicable to memories. It is expected that the

cost of a computer system to carry out all computation within an aircraft

will be comparable with the present cost of existing single function

avionic units (e.g., inertial navigation).

A second advantage in the use of LSI is the small size of such units,

making it possible to achieve far more efficient shielding from both elec-

tric and magnetic fields, thereby reducing the probability of noise and

crosstalk. It is expected that fault modes of this type, which are mani-

fested as data-dependent transient faults will be insignificant wi-thin the

central units. However such faults may still exist in connections to ex-

ternal sensors and actuators.

With the use of LSI most of the connections at the device and gate

level take place within a chip, rather than on a board or through a

connector as in the use of discrete circuits. The reduction in soldered

and wrapped joints is estimated to be at least an order of magnitude

lower than that associated with, say, integrated circuits, with a

consequent reduction of faults in the connection system.

LSI circuits, , though relatively cheap in high. volume production,

have a high development cost. This implies that an efficient design'

would contain as small a number of different chip types as possible.

This affects architectural decisions at two levels. 'At the unit level

(memory, bus, arithmetic unit, control, etc.), there will be strong ad-

vantage in using replication of identical units rather than units 	 -

51

designed specifically for particular functions. At the logic level, the

high development cost of customized units makes it more attractive to

transfer arbitrary logic to a form of memory as in the use of micro-

programming.

Replacement and maintenance strategies in a reconfigurable computer

are also influenced by LSI. The large number of gates per chip, together

with the tendency for a chip fault to 'affect many gates, imply that small

units such as registers should not be replaced, but rather that groups of

registers, all on the same chip should be.

The choice of LSI technologies is between the lower speed, lower cost

MOS and the higher speed and cost bipolar technologies. The total computing

power required among the elements of the several candidate architectures

is such that MOS will be suffiôien'tly fast for memories, busses and arith-

metic units. In addition, the use of a multiprocessor organization permits

the attainment of high computation capacity with slower processors. The

higher speed of bipolar circuits may still be necessary in the control

sections where the microprogram cycle time will typically be an order of

magnitude faster than the instruction cycle time. Recent advances in

technology have tended to bring the two types closer in both speed and

cost.

We note, that the choice between different LSI technologies, discussed

above, was on the basis of speed and cost. The lower cost alternative of

MOS is possible because of the higher density within the chip,, thereby

enabling the use of fewer chips. This will have the desirable effect of

increasing the inherent reliability due to the reduction in number of

chips. LSI memory systems appear to be potentially more reliable.than

core or plated wire because of the reduced numbers of discrete semi-

conductor devices and interconnections. The use of batteries is deemed

to be a fully adequate assurance of non-volatility.

The MI'BF for LSI circuits is estimated to be between 10 and lOw,

hours. The lower number is factored into the reliability estimates for

the architectures considered. The requirement 'to achieve a MTBF of 108

hours for the whole system can be shown - to be achievzble by several

architectures.

52

The use of optical coupling between units can provide great pro-

tection against damage propagation through several units. The architec-

ture must therefore be more concerned with fault propagation through

erroneous data, than by damaging electrical phenomena. The added cost

for such protection is substantial, though not prohibitive, so careful

evaluation of reliability value will be needed.

The availability of mass memory (disk, drum, etc.) of a sufficiently

high reliability is not crucial to the application, as the total data

required to be stored is such that only a small cost penalty will be in-

volved by using LSI techniques for all memory. Advanced bulk-memory

schemes will be useful in later systems, but are deemed not ready (as

well as not essential) for the time period of interest.

To achieve an estimate of total computing system cost we assume that

the cost of memory dominates that for processors, busses, etc. The un-

replicated memory requirement of 24K words of 16 bits (400K bits)

yields a total OEM chip cost of $2K. If we assume threefold replication

with some sparing, this figure becomes approximately $8K. Allowing an

additional 25 percent. for the other (non-memory) units a chip cost of $10K

is reached. We use, as a)rough rule, a factor of 3 to account for .wiring,

boards, frames, power supplies, installation, etc. The gross estimate of

the computer cost is therefore $30K. This figure should not be regarded

as firm, owing to the significant design choices still to be made in

further. study.

53

V	 A CHECKLIST . AND A SURVEY OF FAULT TOLERANT ARCHITECTURES

A.	 Introduction

The purpose of this chapter is to survey some of the existing computer

systems that have fault tolerance as one of the design goals. The systems

that are surveyed here are the STAR computer of JPL, the EXAM computer of

NASA-ERC, the ARMMS computer jointly of NASA-Marshall and Hughes, the MARCS

concept of IBM-Yorktown, the AADC of Naval Air Systems Command, and the

Hopkins Scheme (HS) of MIT-Draper Labs. The STAR exists as an advanced

breadboard and the HS as a preliminary breadboard. Under present plans the

LSI chips for the AADC should exist within a few years. The future of the

other three systems is undetermined.

For reasons which should later be apparent, of the above systems only

the HS is a candidate architecture for our application. However, even in

the case of HS some key details of error detection, executive operation,

and hardware design are currently unspecified, e.g., multiprogramming for

the diverse avionic computations. Some additional design work is thus

required before we can be assured of the suitability of HS. We should

also emphasize , that the other five mentioned systems could be modified to

better match our environment. However, in modifying these systems we are

likely to produce a variant of the three candidates--HS, SIFT, BUCS--with

the addition of some techniques found useful for the environment of parti-

cular-systems. Among such techniques are the special associative memory

used for scheduling in EXAM or the arithmetic codes of STAR. Thus it

seemed appropriate to us to design the candidates from scratch, borrowing

particular concepts of existing systems.

It should also be mentioned that numerous other architectures that

embody fault tolerance have been proposed. Anong these are the MECRA1,

the PRIME 2 system of University of California, Berkeley, the Three-Fault
4

Tolerant System 3 of North American, ESS of Bell Telephone Laboratories,

the Burroughs Multiprocessor5 and systems currently being pursued by

Raytheon and Ultra-Systems. We do not survey these systems here for one'

55

PR10EDING PAGE BLANK NOT FILMED

or more of the following reasons: (1) insufficient documentation is cur-

rently available, (2) fault tolerance is an incidental design goal, or

achieved in only limited degree, (3) the probability of further design

work being done by the architect is low, (4) the design goals are quite

different from ours. In another SRI report these and other systems are

surveyed and classified.

Before embarking on a detailed description of the six architectures

to be surveyed, we present a checklist for the design of a fault-tolerant

architecture. In essence, this checklist Is a summary . of the constraints

Imposed by our environment, as measured by the computational requirements

and technology.

B.	 Checklist

Most of the Items below pertain to the qualities that are expected

from a fault tolerant computer system for commercial aircraft. We have

also included some items that enable the reader to evaluate the surveyed

architectures and the candidate architectures.

Computational Environment -- As abstracted from Chapter III the air-

craft computations as presently envisioned have the following

characteristics:

• Independence -- the 26 computations are essentially independent

• with respect to shared data, shared programs and shared effectors.

Almost all of the computations need access to the state of the

aIrcraft which. is a relatively small amount of data

• Total processor load -- 0.5 MIPS

Total memory load -- 24K, exclusive of executive

Maximum processor load per computation -- .12 MIPS

56

• Maximum memory load per computation -- 9K words, although this can

probably be reduced to 4K words needed for any iteration. Most

computations require less than 2K words of memory.

• System down-time -- no more than 10 msec for certain critical

computations. Fortunately, the memory requirements for these com-

putations are relatively small. Other computations have less

stringent down-time requirements.

Technology -- It is expected that LSI chips will be employed throughout

the system. One would expect,that at least several hundred airplanes would

be equipped with the computer and if each computer incorporates at least

five chips of each type -- a figure easily satisfied for each candidate --

then sufficient chips would be utilized to warrant the per-chip set-up

costs. As indicated in Chapter V, universal acceptance of LSI memory

should appear around 1975 despite the volatility aspect. In addition, main

memory will be used exclusively for all programsand data except possibly

for the storing of alternative runway information. The failure rate of an

ISI chip is taken as10 6/hr. with the major failure mechanism being inter-

connections. However, to a first approximation it Is assumed that any chip

failure causes all chip outputs to be suspect. In designing the system for

an LSI implementation it is desirable to utilize as few chip types as pos-

sible, and it isnecessary to minimize the number of pins/chips -- 40 is

an absOlute maximum,

Faults -- the following faults are expected

Permanent -- An LSI chip can fail according to the 'rate mentioned

above. Failures are assumed to be independent among the chips.

Failure prpaatloti -- Failures are assumed not to propagate from

chip to chip, i.e., a chip A' in failing will not cause a contiguous

chip 3 to fail. (0 0 course if an output of A ts an input to B then

an output of B can certainly be in error.) As discussed in Chapter

IV the prevention of failure propagatioi for certain failure modes

57

(e.g. supply voltage applied to a signal line) may require *that

the chips be isolated by using light coupling or special driver-

receiver combinations as the interface mechanism,*

Transient -- We are assuming here that at some moment a chip

produces an erroneous output, but when-the chip is presented with

the same data a short time later it will produce the correct result.

A transient fault can be caused by a local electrical disturbance, or

a design error coupled with a unique data dependency. It is expec-

ted that .a transient would dissipate itself in 10 msec, or when

the timing of the signals is changed slightly. The system,'however,

should embody some policy tohañdle larger duration transieñts0**

Massive transient	 We are assuming here a transient failure that

causes every modifiable element in the system to be suspect. Such

an effect could be •caused by lightning, by a static discharge when

the aircraft passes through a cloud, or even by an accidental power

outage. At present there Is scant information on the probability

of massive-transients or their duration or scope. As we note later

a key difficulty in responding to a massive transient is that the

tables of operative and failed resources are subject to corruption

along with all other modifiable information. A tape cassette or

*There may be contiguous chips wherein the mutual propagation-of faults can
be tolerated. For such chip pairs, of which several schemes, -- and SIFT
to a high degree -- have many, the careful isolation is not required.

**As mentioned previously certain critical-computations cannot-be unserviced
for more than 10 insec. Hence in responding to a transient fault the system
cannot -perform retries for . a. longer period than 10 mse-c, but must (at least
temporarily) assume that the fault is permanent and connect a spare
resource to service the critical function. SIFT, BUCS, HS, and -S'FARhave
good transient-response characteristics. SIFT is, perhaps, the-best-of
these, since it always :.'forms-avoting of 3 results and thus-can-continue
in operation despite a long-duration, local transient,	 - -

58

other slow, reliable back-up memory can be used to restart the

system. It seems clear that a system night not recover in less

than 10 msec from a massive transient of much longer duration.

One policy is to have the critical computations be capable of

being executed in practically all processors with little inter-

vention on the part of the failure-prone executive. SIFT

permits such a policy in that some of the critical programs, e.g.

flutter control, tend to be small and hence can be permanently

resident in all processors so that unless all processors are

disabled by the massive transient there is a possibility that the

function can be serviced. Some careful design of the effectors

might permit a longer MISS time than we are'assuining.

Reliability -- For the critical computations the probability of

delivering a wrong answer should not exceed 10 -8. For less critical

computations the reliability requirements are not as stringent --

typically being •around 10T4 . Actually, these reliability figures

should be weighted according to the inaccuracy of the result, but

throughout this study we are,, pessimistically, assuming' that a chip

failure disables all of the chip outputs.*

*Of course this. does not preclude a single chip failure causing only (for

exainpie)the least significant digit of a computation to be in errors

However, we expect that the entire arithmetic unit will be realized on

one or two chips and hence a chip failure here could indeed corrupt the

entire computation.

59

Availability -- At any time during a mission sufficient resources must

beàvajlable to handle the critical computations. Once again the probability

of the system being unavailable for the critical computations must not

exceed 108. There are two aspects to availability. Firstly, after the

detection of a failure the system should be unavailable for no more than

aMISS time that is dependent on the computation. For the critical compu-

tations the MISS time is about 10 msec. Secondly, at the end of the

mission only about half of the resources are required to effect a landing,

so that a gracefully degraded system can achieve the availability require-

ments, In Chapter III, however, we showed that graceful degradation is

not as exploitable as one would hope for.

Primary Fault-Tolerance Mechanism . -- It seems clear that multiprocessing

should be utilized as the primary fault-tolerance mechanism. The computa-

tions, being relatively independent and individually requiring low processor

and memory loads, are easily implemented with a multiprocessor. The multi-

processor concept can be exploited to provide relatively .cheap fault

tolerance -- the fault tolerance grows linearly with the number of processors

-- and to accommodate to the limited graceful degradation possibilities,

- Secondary Fault-Tolerance Mechanisms -- Here the issue is not quite as

clear. The system comes close to being memory dominated; 24K words of main.

memory fora 0.5 MIP processor load is somewhat high by contemporary

stanards. Hence the use of error correcting codes for memory tends to be

cost effective as compared with triplication. Similarly, for a memory

dominated system the use of expensive duplication or triplication techniques

for arithmetic-logic processors does not imply an excessive system cost.

We emphasize, .however, that the issue is not completely clear, and we do

not rule out an architecture because it utilizes arithmetic codes

Redundancy Estimation --.The particular measure. that we are 'looking- for

here is the ratio of equipment in the redundant system to equipment in a

non-redundant version.' The comparison is compounded since there is no

canonical realization of the non-redundant version, but we might assume that

60

a minimum system contains 24K words of memory and 0,5 MIPS processing power.

Hence in computing the cost of the redundant system the following cost

factors must all be included: spare processors and memory blocks, check

bits for codes, main memory words required to store error control pro-

cedures, spare busses, extra equipment required to effect a multiprocessing

discipline, extra power supplies, and extra I/O controllers.

Reliability/Availability Modeling -- The problem here is to verify

that the probability of a wrong answer and the probability of equipment

being unavailable do not exceed the desired figure of merit -- as a function

of the computation. For a purely static system, e.g., one that employs

only voting, the reliability calculation is trivial. For dynamic systems

like the candidate architectures the situation is more insidious. Among

the factors that must be included are: the occurrence of a second fault

while the system is responding to a first fault, failures in unflexed

equipment, i.e., components, that are not utilized until an error occurs,

the frequency of diagnosis, and the scope of a transient failure that can

disable the system. Previous work on dynamic system modeling has always

relied on a static model of the situation. Based on our study of the

several architectures, it is our feeling that the results produced by

this modeling tend to be pessimistic. For some architectures, this means

that a given reliability figure of merit may be attainable with less

redundancy than indicated by the model.

Transparency to User -- The application programmer should not have to

be concerned with the fault tolerance procedures In the composition of his

programs. This is similar to general ignorance of an application program-

mer of the executive, functions of any large computer installation. Again

we would expect that sound executive system design would attain this goal.

Expandability -- It is desirable that the candidate architectures be

expandable to handle a larger computational load. What this means is that

for a given system configuration s extra main-frame equipment programs and

I/O devices are easily added to produce a larger system. It is not entirely

61

clear what range of system power will be ultimately desired, but for

commercial aircraft over the next 15 years a computational range of 0.2

MIPS - 2 MIPS and a memory range of 10K - lOOK seem reasonable. Systems

of less capability than the smallest configuration are too small to worry

about, and it does not seem possible that there would be enough computa-

tions in any conceivable commercial aircraft to occupy a system larger

than the largest configuration. It is clear that a system is readily

expandable if prdcessors and memory blocks are easily connected without

requiring a major modification of the bus system, or without requiring

modifications to the executive other than the setting up of tables for

the new equipment and programs. The reader is warned that there are

Insidious factors involved in designing an expandable system. For

example, the executive overhead might grow excessively as procesors are

added, or In aniinimal system the executive, In an attempt to make It

general, might overwhelm the system -- the problem with running OS/360

on the low line 360 machines.

Prototype Development -- Although the cost and performance ofthe

ultimate production system are of primary .iinportance,it is of some Interest

to estimate the cost of developing a prototype unit since most of the

systems presently exist only on paper. The major factors of interest here

are:

• the feasibility of using off-the-shelf processors and memories

• the amount of special-purpose logic that must be designed and

implemented

• the possibility of using microprogcamming techniques Instead of

costly hardware for fault tolerance functions

• the scope of a system that must beprototyped in order to

demonstrate the concept.

In the next sec t4 	 we attempt to discuss the various architectures

relative to the Items In thls'checklist. Chapters VI and VII discuss the

SIFT and BUCS architectures also relative to the checklist.

62

C.	 STAR

System Organization

Essentially, the STAR is a single processor decomposed into separate

functional units each of which is replicated two or more times. With the

exception of the memory modules needed for critical functions, the TARP and

the logic processor, only one functional unit of each type is normally

operating. Faulty functional units are replaced by power switching. Com-

munication between units is via two 8-bit byte-serial busses to which units

are passively connected (no switches on bus lines). Two forms of error

detecting code are employed in information transfer between units. Every

transmitted word is examined for error syndrome by hardware contained

within a critical "hard-core" test and repair processor called the TARP.

Design Goals

Extremely long meantime to failure, low weight', low power consump-

tion, low computation rate, relatively rapid recovery from transient faults,

Technology

Discrete transistors and small IC packages. Magnetic-core R/W

memories, a "rope-core" fixed memory, magnetic amplifier type power switches,

Faults

Intended to recover from all single permanent or transient 'failures

confined to an IC Package, Massive transients and program failures can,

at present, not be tolerated.

Reliability. Assessment

Survival for 100,000 hours with .95 probability, Recovery from

transient faults in less than 50 ms, See. 'reference 7,

63

Expandability

STAR is not particularly well suited to expandability because of

the limited band-width, of the communication busses, which must transmit

each word as eight serial bytes of four bits each. Current memory address

space is also limited to 216 words. A two-processor version of STAR might

be based-on a duplication of the TARP (test and repair processor) and bus

system with the sharing of normally unpowered spare functional units between

the two systems. This plan would lead to less than a doubling of the

original hardware but would require additional "hard-core" control Btruc-

ture to handle multi-programming and memory sharing. The STAR is not

easily contractible unless the error detecting code. features are abandoned,

in which case' the principal means of fault detection would be lost.

Reliability Mechanism

The principal mechanisms employed in STAR to produce over-all

systemreliability 'are:

1. The use of redundant coding to detect errors in transmission

of data or instructions from one functional unit to another.

2. Hardware for internal consistency checking within functional

units that detects some types of malfunction, For example, ,a

word placed on a bus by a unit not agreeing with what actually

appears on the bus, causes the unit to report such an occur-

rence via a status-bus to the TARP.

3. A TARP with at least 3 identical versions powered up at all

times (with voting) plus spare 'unitsto be switched on line

to replace disagreeing members. This is the "hard core" of

the system,

4. A highly reliable magnetic switch mechanism for disconnecting

malfunctioning units from active status and powering up

replacement units,

64	 '	 '

Recovery from Failures

The TARP contains a mechanism for re-executing instructions when

some indication of failure has occurred. If a fault occurs because of

a short transient, normal operation may be resumed by attempting the last

previous instruction. On a repeated failure the TARP may then attempt to

resume computation at a designated "roll-back" point, which It is the

responsibility of the prOgrammer to provide. Otherwise (on repeated

failure) the unit indicating a defective status or transmitting an

improper code is . switched off and replaced.

The claim is made that fault detection and unit replacement can be

handled In 50 ms. However, this does not Imply that at most a 50 ms

delay in program execution would result, since some error circumstances

might require roll-back to a previously established program check point.

With regard to programming errors, STAR has no explicit means for

coping with this variety of fault, although machine Instructions are rep-

resented In an error detecting code, since an assembly-language program

could easily be faulty (i.e., In a tight loop) without causing any error

report. Recovery from such blunders would have to be a strictly software

implemented function, and at present STAR does not have a program-interrupt

feature in the TARP.

Measure of Redundancy

In the STAR origanizat ion redundancy depends upon the number of

spare units provided. Where memory space is not a vital consideration

(so that memory units can be lost without replacement) a reliable con-

figuration containing at least one extra replacement for each functional

unit would appear to require somewhere between 1.5 and 2.5 times the

hardware for a minimum organization with no spare units. As a rough

estimate, a minimum configuration STAR would probably contain at least 3

times the hardware of a computer of the same computational capacity, but

without special reliability features.

65

Transparency to User

In the current implementation the user must insert roll-back points

in his program and save the status himself. We would expect that in

later version a compiler and executive routine could handle this chore.

Current Status

The STAR has been implemented and tested in "bread-board" form at

JPL and continues to be an experimental prototype of on-board computers

for unmanned deep-space exploration.

General Conclusions

While the STAR computer organization has many novel features

uniquely suited to its mission it does not match well with our given

mission objectives. In particular, the weight, size and power require-

ments are irrelevant, the STAR's rate of computation is far too low to

handle the several more critical tasks of . stability augmentation, inertial

navigation, etc., STAR is not well suited to expansion, and lastly, the

STAR is infficient in the sense that a large amount of hardware remains

completely idle unless a real malfunction actually occurs.

EXAM

System Organization

The EXAM system is a very homogeneous multiprocessor, multi-memory

configuration In which any processor can-have access -to any memory through

what amounts to a huge cross-bar switch. Each processor can-find Itself -

in one of three states:

1. A problem state in which it.is working on some applications

program.

2. The executive state in which it Is doing the usual system- -

monitor functions.	 .	 .

3. An idle state in which it attempts to seize executive control.

Hardware interlock features are provided to prevent more than one processor

from securing executive status. An associative memory, accessible to any

processor, is provided to handle some of the executive control processes.

Memory access by more than one processor to the same memory unit is handled

by a "round-robin" priority scheme.

Design Goals

Principal motivations for the EXAM architecture were: high per-

formance (as measured by executed instructions per second), the possibility

of a highly repetitive LSI construction, and very flexible expandability

to many-processor organizations

Technology

Theiiltimate use of LSI is assumed as the only reasonable technology

for the cross-point array. This array connects processors to memories in

a fully parallel set of 36-bit communication paths. Otherwise, processor

and memory technologies are optional although the associateive memory

required for executivefunctions would imply sémi-conductor implementation.

Faults

The documentation is not clear on this point, although processor

failures and memory bank failures should be handled by a simple switchover

processor.. The system seems very vulnerable to massive transients and

permanent failures.

Reliability Assessment

No estimates are avialab].e. The possibilities for producing a

reliable machine would seem to depend on software augmented identification

of faulty processors, and/or memory modules, followed by mcdificatiion of

the executive program to deny communication to or from these units. A

67	 ''

particularly dangerous feature of the EXAM organization from the reli-

abi"l.i.ty standpoint is that each processor can write in every memory

(excent perhaps the executive associative table). Thus there is no

mechanism to prevent a faulty processor from destroying data In any

memory-unit.

Also very critical to the reliability of the EXAM organization

Is the Integrity of the [SI crosspoint switches. A switch failure might,

for example, prevent access by a processor to several memory units, or

fender some memory unit unavailable to any processor.

Reliability Mechanisms

The EXAM organization contains no explicit plan for ensuring

reliable operation; Assuming that the cross-bar switch connecting

proàessors . with-xnemorles could be made "hard-core" reliable by TMR

téchñiques, then survival of some of the initially available -processors

and ñemories may be assumed. In this case a continuing but degraded

performance of the system would be feasible, but only if sophisticated

software-diagnostic methos were employed to reschedule tasks. Themost

vulnerable area is the possibility of a runaway processor destroying

Iifórmation in an unprotected memory.

Récovery.from Failures

Here again no particular recovery means have been supplied by the

èytern architects. One nay visualize schemes-in which several processors

take part In one task, comparing results. On discovery of a disagreement

the offending processor might be denied menory accesses by dropping it -

from the round-robin memory queue. Here, recovery times could be as short

as one -instruction cycle or as long as the execution time between programmer-

assigned-check -points. - The whole strategy is vague and it Is not at all

clear what might be expected to occur on a transient that affected some

processors but not others.

68	 - -

Measure of Redundancy

The EXAM architecture has no redundancy in one sense because some

programs could employ all processors and memories In useful computation.

To construct a "reliable" version of EXAM would require at least a TMR

realization of the cross-bar switch plus considerable internal redundancy

in the processors, memories and in memory access circuitry, and coding in

memories. This might amount to a factor of 3 over a non-redundant version.

Expandability

The EXAM concept is certainly very flexible with regard to computa-

tional power since almost any number of processors and memories can be

accommodated by the same general organization. However, computational

power is not proportional to the. number of processors employed since

conflicts on memory access can lock out several processors desiring to

look at the same memory module. Efficient use of the EXAM configuration

requires careful partitioning of tasks Into independent program modules --

an elaborate scheduling algorithm that must be confronted for any multi-

processor organization.

Prototype Development

Prototype development should not be overly involved because the

processors, memory banks and associative memory are quite standard. The

cross-bar switch will require special design but this should not be

difficult to realize since its structure is uniform, and since some design

work on it is complete,

General Conclusions

The EXAM computer has the merits of structural simplicity through

the use of many similar or identical modular units. It also offers a high

degree of utilization of available computational power. From the reliability

standpoint, however, there seem to be no intrinsic features to recommend it

69

over other multiprocessor organizations that have a less elaborate . inter-

connection structure. In particular, the vulnerability of memory to any

faulty processor and the necessity of faultless operation of the elaborate

cross-bar switch seem tq be two good reasons to reject this design concept.

E. Hopkins Scheme (HS)

General Organization

The HS, Ref. 9, is a multiprocessor reasonably well suited for-the

aircraft environment. Each processor is in reality a processor-pair, PP,

with a small triplicated scratchpad . memory, TSM. A large main memory, MM,

is also present. The TSM holds the. status of thePP -- presumably an alias

exists in TSM for all registers . , flip-flops in PP. An-error-in a PP, as

revealed.by a comparator, or in the TSM causes the TSM'to gain control of

a bus toMM, in which case the contents of TSMare dumped to preset area

in MM. An executive then retries the computation on the same PP-TSM

combination or on another PP-TSM combination. As presently conceived,

the processors in the PP . must operate in locked step, The bus is in reality

a triplicated bus wherein the outputs of a TSM. are voted upon prio.r to

their insertion on the bus. The main memory organization is at present

not clear butipresuinably it is amenable to the same-coding techniques

utilized in BUCS. All of the executiv• processing is accomplishedt in a

particular PP-TSM until it fails whence another acts as the executLve. A

major drawback of the present version to access the bus at each instruc-

tion. The use of the. TSM as a cache would improve the situation, but at

the expense of increasing the-cost of the TSM.-- a discardable unit.

Computational Environment,.

HS seems well suited to our environment as discussed above. The system

is intended for use. on a manned spacecraft that exerts a computational.

load similar to that of the aircraft. 	 .

Technology-

Probably LSI throughout.

70

Faults

HS should handle single permanent or transient faults confined to

primitive processor unit within a PP, a single scratchpad memory within

TSM, or a single bus. Since the memory organization is not specified the

issue is not clear here. Multiple PP-TSM failures can be handled provided

they do not occur within a recovery interval. There is no policy specified

for massive transients, and at present it seems that a processor can write

anywhere in main memory, thus leading to a vulnerability to programming

failures,	 .	 .

Reliability Assessment

No goal has'been specified but with a few spare PP-TSM's and, say

coding In MM, our reliability goal Is attainable, HS tentatively specifies

a procedure for handling the diagnosis of the pp comparators, otherwise

these would be unflexed hardware.

Availability

In responding to a fault the system effects a recovery by dumping the

TSM contents and reloading these contents in another TSM. As presently

envisioned the TSM is probably no more than a few hundred words, thus

enabling a restart in 1. msec.

Redundancy

If MM is replicated, say by factor of three, the redundancy ratio

Is at least 3. For the use of a coding scheme in MM Similar to that used

for BUCS the ratio is probably about 2. As we will note in Chapter VII.

this ratio is very sensitive to the size of the TSM.

Reliability Model

No reliability model has been conceIved, but a rough estimate of relia-

billty . and availability is attainable as the product of the following

71

factors: the probability of PP-TSM failures in a mission, the probability

of a bus failure in a mission, and the probability of a second failure

wt 'hin a recovery interval. The unflexed situation Is not Included.

:(r: Transparency to User

- The application programmer Is not involved in the error control pro-

cedures; the executive handles all aspects of recovery. The application

programmer might wish to partition his program so that It runs efficiently

in the cache environment.

Expandability

The degree of expandability Is limited by the traffic that the bus

can carry. Without a cache and with a single TMR protected bus, and with

a single port memory, the maximum processor load is probably no more than

0.5MIPS. With the use of a cache with each processor, or the use of a

more complex bus and a multi-port memory, the processor load can be pushed

to 2 MIPS. The bus would have to be designed Initially to handle the

insertion or deletion, of processors.

F. ARIvIMS

General Organization

The Automatically Reconfigurable Modular Multiprocessing System (ARMMS)

was conceived at NASA-MARSHALL and is currently being pursued at Hughes

Ground Syslems Group, We emphasize that much of the design work remains

to be done, 'as of July 1972, so that there are gaps in the concept. The

ARMMS sytemis intended for a spaceborne environment, wherein the

reliability goal is long 'life and wherein a varying computational load Is

anticipated throughout a mission. The system consists of eight processors,

capable of being configured In a variety of modes. (At present, It Is not

clear at what rate the configuration can be modified.) Up to three tasks

72

can be processed simultaneously on three processors. These three processors

presumably operate in a near locked step TMR mode.. Thus up to five pro-

cessors can be simultaneously active; the remainder of operative processors

are spares. Each processor contains a local memory of, say, 128 words with

the main memory serving as a back-up to this local memory. We would guess

that special logic within the processor controls the transfer of blocks of

words between the local memory and main memory. The main memory is organ-

ized as 32 banks although no complete error detection or error correction

procedures have been specified for it. There are hardware voters on the

processor to memory links so that when the processors are operating in a

TMR mode any processor errors are corrected before the errors propagate to

memory. Most of the system control is contained within a specialized

executive unit called BOSS. BOSS performs all of the executive functions

associated with scheduling, allocation of resources to tasks, error

reconfigurition, 1/0 control. Internal redundancy is used to make BOSS

reliable, i.e., only one distinguishable BOSS unitexists,

Mission

A general spaceborne computer is sought that is responsive to a variety

of missions. In this regard the system embodies variable redundancy -- a

multiprocessed simplex operation for low criticality tasks, a duplex mode

for moderately critical tasks, and a TMR mode for high criticality tasks.

In the multiprocessed simplex mode the computation capacity Is to be

2 MIPS, spread over three processors. The reliability goal is the sur-

vival of at least one processor, and a suitable portion of memory, with

probability 0.99 after 5 years.

Technology

It is not immediately clear if special purpose LSI chips are planned.

A processor called Space Ultrareliable Modular Computer (SUMC) has been

designed as the basic processor. Some effort is being devoted to par-

titioning SUMC into modules. There appear to be no special constraints on

the processor operation, so that an off-the-shelf high performance LSI

processor should suffice.

73

Faults

Certainly in the TMR mode any fault that disables a single processor

can be tolerated. A duplex mode is also possible in which single processor

faults are detected. There seems to be no fault tolerance in the simplex

mode. Masking of memory faults with error correcting codes is planned for

the future. BOSS will probably be protected with TMR applied at the module

level. The design has not proceeded to the point where the response to

massive transients or permanent faults can be assessed.

Reliability

For our aircraft environment only the TMR mode of ARMMS can satisfy

the 108 reliability requirement.

Availability

AR?VU1S can be equipped with sufficient resources to meet our avai'la-

bility requirement.

Redundancy

It is difficult to measure the redundancy in ARMMS since the design

is still in its conceptual stage, in particular with regard to memory and

BOSS. It is our guess that the redundancy ratio for a TMR mode will exceed

three.

Transparency to User

The user is not involved in fault tolerance procedures except possibly

to specify the criticality of his task, which in turn determines the mode

	

in which ARIvUVIS will process the task, 	 .

Expandability

Memory is to be expandable to 512 K words. The BOSS design does not

seem to allow for the addition of more than 8 processors, although it

should be noted that each processor is quite powerful -- 0.5-1 MIPS..

	

74	 . .	 .

Prototype Development

The prototype development is likely to be quite costly, mostly because

of BOSS. It seems that BOSS is to be realized as a special purpose processor.

A portion of BOSS can be a simple but high-speed, general-purpose computer

since many of BOSS' functions require little more than table look-up or

simple processing. However, much of the high-speed communication links

between BOSS and the other system blocks will require special attention.

,icl rtn

Perhaps the most novel feature of ARMMS is the concept of variable

fault tolerance. This is potentially attractive for our environment because

of the varying reliability among criticality classes. However, as presently

conceived the simplex mode of ARMMS does not provide any fault tolerance --

a situation that cannot be endured even for the least critical functions.

If this mode could be modified to provide a probability of error detection

of 0.99 per hour then the ARMMS concept would deserve a more critical study.

Another disadvantage of ARMMS is the specialized BOSS unit. It is our

feeling that the redundancy of the system would be significantly reduced

by incorporating most, if not all, of the executive function within a

processor, as in HS, SIFT, and BUCS.

G.	 AADC

The Advanced Avionics Digital Computer
10

(AADC), now called the All

Applications Digital Computer, is currently being developed by the Naval

Air Systems Command with technical support from the Naval Research

Laboratory and several industrial organizations. The AADC is intended to

satisfy the majority of the Navy's computing requirements in the 1975-1985

time period. Our discussion here is brief since the error control features

of the AADC remain to be specified. The tack currently being pursued is

to design and build the hardware components, and to later incorporate

fault tolerance -procedures in specialized hardware and software executives.

75

The system consists of a set of processor elements (PE's), an-associative

processor (AP), a large random access main memory (RAMM), a bulk storage, and

a bus :tructure interconnecting the above units. For our purposeshere the

PE is of inostinterest. A PE consists of a processor and a task memory,

wherein a program requiring service is loaded into a task memory for execution.

Significant design effort Is being devoted to the PE design inan attempt to

realize the entire PE as a small number of wafers. If this is achieved, then

the basic PE is certainly a candidate as the processor in SIFT, HS or BUCS.

(HS and BUCS might require special interface logic to effect.comparisons

between a pair of processors.) Presumably a PE will be a discardable element.

in any fault-tolerance scheme.

It Is impossible to assess the reliability aspects of AADC since they

are yet to be conceived. It seems clear that .the system will be highly

redundant	 but perhaps this is not of much concern if the PE's cost is

nominal. However, it is our feeling.that fault-tolerance must be incorpor-

ated into the system at initial design phases in order to produce a.truly

reliable, efficient system. Invariably special interface logic or.special

processor instructions arerequired, for example, to prevent error-propaga-

tion, to permit, the use of error correcting codes in main memory, to permit

the recovery'frommassive transients, or to-protect main memory.access from

a faulty processor.

H.	 MARCS

General Organization

The Modular Architecture for Reliable

currently being pursued at IBM Yorktown.

report MARCS is not a clearly defined syst

very sound fault-tolerant principles. IL

testbed for the study of coding techniques

Computer Systems 12 (MARCS) is

At the time of writing .this

m but a concept embodying , some.

essence the concept has been a

and circuit diagnosis algorithms.

The concept involves an Interconnection of primitive subunits to form

a uniprocessor. The subunits are: arithmetic logic unit, scratchpad memory

and program control unit, bus control unit, I/O processors, recovery control

unit, and main storage. The main storage incorporates frame coding, as

discussed in Chapter II, with the inclusion of spare frames. When the system

is operating in a uniprocessor configuration sparQ subunits are provided

(except for main storage), where the computer is operational if at least one

subunit of each type is operative. An interesting logic coding scheme is

utilized such that a single gate fault in any subunit eventually produces an

error signal at the subunit's output. In principle, this circumvents the

unflexed hardware problem, at least for units that perform comparison or

decoding of an error correcting code. A multiprocessor mode is also possible.

It is imposs:.ble to evaluate MARCS as a potential candidate since much

of the computer is unspecified. We have been strongly influenced by the

coding techniques both for logic and memory, and by the diagnosis techniques,

particularly those of Roth's, that in essence have set the stage for most of

the current work on diagnosis.

77

REFERENCES - CHAPTER V

1. F. P. Maison, "The MECRA: A Self Reconfigurable Computer for Highly
Reliable Process," IEEE Trans., Vol. C-20, No. 11, PP. 1382-1388
'(November 1971).

2. B. R. Borgerson, "A Fail Softly System for Time Sharing Use," Digest
of the 1972 IEEE International Symposium on Fault-Tolerant Computing,

pp . 89-93 (June 1972).

3. L. J. Koczela, "A Three-Failure Tolerant Computer System," IEEE Trans.,
Vol. C-20, No. 11, pp. 1389-1390 (November 1971).

4. H. J. Beuscher et al.,. "Administration and Maintenance Plan of No. 2
ESS, " Bell System Technical Journal, Vol. 48, pp. 2765-2815
(October 1969).

5. J. D: McGonagle and R. L Davis, "Advanced Multiprocessor," Technical
Report AFAL-TR-69-308, Burroughs Corp., Paoli, Pa. (June 1970).

6. P.. G.. NeumanO, J. Goldberg, K. N. Levitt, and J.. H. Wensley, " A Study
of Fault-Tolerant Computing," Final report Report under Contract
N00014-70-C-0254, Stanford Research Institute, Menlo Park, California,
AD 766974 (July 1973).

7. A Avizienis, G. C. Gilley, F. P. Mathur, D. A. Rennels, J. A. Rohr,
and D. K. Rubin, "The STAR (self testing and repairing) computer: An
Investigation of the Theory and . -Practice of Fault-Tolerant Computer
Design," IEEE Trans., Vol. C-20, No. 11, pp. .1312-1321 (November 1971).

8. G. Y. Wang, "System Design of a Multiprocessor Organization," Memorandum
RC-T-079, NASA Electronics Research Center, Cambridge, Mass. (1969).

9. A. L. Hopkins, Jr., "A Fault-Tolerant Information Processing Concept for
Space Vehicles," IEEE Trans., Vol. C-20, No. 11, pp. 1394-1403
(November 1971).

10. "Design of a Modular Digital Computer System," Phase I Report under
Contract NAS8-27926, Hughes Aircraft Company, Fullerton, California
(April 1972).

11. R. S. Entner, "Presentation of Advanced Avionic Digital Computer
Baseline Definition, ' Naval Air Systems Command, Washington, D. C.
(September 1969).

12. W. C. Carter et al., "Logic Design for Dynamic and Interactive Recovery,"
Proceedings of Symposium on Fault Tolerant Computing, Pasadena,
California (March '1971).

PRECEDING PAGE BLA.Nl. NOT FiLkI)

79

VI . SOFTWARE IMPLEMENTED FAULT TOLERANCE (SIFT)

This section describes a proposed design of a computer system in which

fault tolerance is achieved using software techniques, to remove the need

for special fault-tolerance hardware units. The computer resembles a

multiprocessor with a restriction that each processor may not write into

the memory associated with other processors. The executive system and the

application programs are protected by identical fault tolerance procedures.

The computer design gives the system programmer the ability to vary the

degree of fault tolerance by changing the extent to which a program is

replicated among the processors.

The fault tolerance procedures to be described may be implemented

by combinations of program, micro-program and hardware elements. The

present discussion emphasizes programming. The fault tolerance features

can be made completely transparent to the application programmer, but it

is also possible to allow the application programmer to prescribe fault

tolerance procedures that are specially appropriate to a given computation.

Also included in this section are analyses of the reliability and

fault tolerance to be expected from the design. The size and speed of

the individual units (processors, memories, buses, etc.) are based upon

the computational power requirements as outlined in Chapter III, and as

described in detail 1n the Volume II report of the project. Included in

this section are estimates of the storage and computing requirements for

the executive of the system. Some alternative design options are discussed.

A.	 System Design Overview

The system (Figure VI-l) consists of a number of modules, each com-

posed cf a memory and processing unit.

The individual processing units within the modules are connected to

the corresponding memory units with wide-bandwidth busses. The inter-module

bus organization (B1 , B2 , B3) is designed to allow a processor to read

from any memory but not to write into .other memory units. This is a novel

and central feature of the system, and serves to prevent fault propagation.

*
The bus logic envisioned does not use voting. The number three is chosen.
for convenience of discussion.

31

PRECEDING PAGE BLANK NOT FILMED

I

M 1	 P1	 .M2	 P2	 MN

-	 ' :M 1	 'Memory

	

P.	 Processor

	

B 1	 Bus

TA-7 1 0522-220R

FIGURE VI-1 SIFT SYSTEM CONFIGURATION

82

The inter-module bus is expected to have a much lower bandwidth than an

intra-module bus.

The input/output (I/O) system, discussed in a later section, is

assumed to be connected to the busses B1 , B2 , B3 . The input/output (I/O)

system shown in Figure yr-i is all the non-computing units, e.g., trans-

ducers, actuators, sensors. That part of the total input/output which is

carried out by program, e.g., formatting or code conversion, is handled

in the same manner as any other task, i.e., is replicated in several	 *

processors.

The system is viewed as being regular in that no module is given

special facilities or is, a priori, assigned a special role. All computa-

tions that require high reliability are carried out in several modules.

We assume for -the purpose of this description that critical tasks.are

processed in three units.

The computations which must be carried out are broken into a number

of tasks in such a way that no task requires more computing power than

can be supplied by one processor. The tasks are given the designations,

A, B, C...; the processors are numbered 1, 2, 3... . Each processor is

capable of being multiprogrammed over a number of tasks, as illustrated

in Figure VI-2.

- The control of the computing system is carried out by an executive

system that can be segmented by function into two parts:

(1) LOCAL EXECUTIVE: 	 Functions that apply to each processor

(e.g., dispatching, reporting errors, loading new task

programs).

(2) SYSTEM EXECUTIVE: 	 Functions that are global to the system

(e.g., allocation and scheduling of work load, reconfiguring).

A complete set of the software functions of Class (1) is present in

each processor (possibly in microprogram); those in Class (2) are carried

out in a sufficient number of processors to provide the degree of fault

tolerance required. The functions are realized by programs that have

the same task structure as all other programs.

83

PROCESSORS

1	 2	 3.	 4	 5	 6	 ...n

TASKS
•___ __

IN

TA-710522-221 A

FIGURE VI-2 AN EXAMPLE OF TASK/PROCESSOR ALLOCATION

84

The normal operating mode for a processor carrying out a task is

to follow the flow of control shown in Figure VI-3. Data required for

the task are assumed to have been computed by several processors (including

possibly the same one carrying out the task). A check is made to see if

the data are available in all processors. If not, the fact is noted in

the memory of the module and the dispatcher program within the module is

entered to determine which task is next to be processed. The next

processing is the reading of input data from the several processors where

copies of that exist. A validation is now carried out, typically (but not

necessarily) by a two-out-of-three vote. If any of the copies of the input

data are found not to agree, then this fact is noted for later processing

by the executive. If all the copies are different, the fact is noted and

control moves to the dispatcher program. The computation of the task is

now carried out, the results left in the memory of the module, and note is

made (in the module) of the fact that the task is computed.

Certain important principles are obeyed in the above scheme:

0 No processor writes into the memory of another module.

0 Input data in a module are not destroyed during the compu-

tation • If the computation is repetitive, the results of

one cycle that may be used as input for the next cyle are

placed in a different location in memory. Similarly, because

the input data within one module may be needed later by another

processor carrying out the same task, the input data must not

be destroyed until all cooperating processors have read, val-

idated, and used the data. This may require that the data

have to be preserved over several iterations if they are

used by another task which is delayed behind the first.

o All conditions (e.g., errors, task complete) are left as

notes to be read later by the system executive.

The dispatcher program, which exists in each module, main-

tains a queue of tasks to be computed. The data for this

queue are read from memories of the modules that are running

*Dispatching is thc executive function that initiates a new task at the

completion of the previous one.

85

Dispatcher

DATA ^N

AVAILABLE	 NOTE NOW,

?	 AVAILABILITY

Yes

GATHERINPUT

DATA

Not

Not Vali • DATA
NOTE	 • H Dispatcher.

Valid

COMPUTE

PLACE	 MARK TASK AS
RESULTS 61^ OMPLETED

TA-710522-222R

FIGURE V1-3 TYPICAL TASK. FLOW

36

the executive. The flow, of control of the dispatcher is

itself similar to that shown in Figure VI-3, except at the

end, when the control is transferred to the task that is at

the head of the queue.

• The dispatcher in each processor checks from time to time to

see if the system executive has changed the queue of task for

that processor. A single bit (per processor) is set in the

system executive tables to indicate a change of the queue.

If this bit is not set, the dispatcher waits some time (e.g.,

1 msec.) before querying it again, thereby preventing continuous

interrogation and consequent heavy inter-module bus traffic.

The above scheme achieves a high degree of fault tolerance without special

hardware requirements. In particular, an erroneous calculation carried

out by a module does not destroy the validity of the total system, because

results are rejected by the next calculation.

	

B.	 Major Characteristics of SIFT

The system described above has many properties which, .in total, dis-

tinguish it from other fault-tolerant systems.

• Replicated units do not operate in lock-step mode, but are

	

-	 only loosely synchronized. The communication between CPUS

is asynchronous, thereby removing the need for an ultra-

reliable system clock.

• Agreement between replicated units is verified only at the

completion of program segments (tasks).

0 Faulty units are not necessarily removed but can either be

ignored or assigned to tasks having no overall effect.

• Transient faults do not necessarily cause permanent removal

of the faulty units. Furthermore, the looseness of synchro-

nization among sets of tasks makes it possible to enhance

immunity from transients by providing that redundant versions

of a computation may be done at different moments in time.

The degree of fault tolerance can be different for different

tasks being performed, and/or can be different at different

times for the same task.

87

0 No special hardware is used to carry out fault detection or

correction.

0 Communication between CPUs is minimized so that low-bandwidth

busses can be used, thereby facilitating physical separation

of modules in environments where physical damage is a hazard.

0 'The design concept is independent of the way in which the

units are built, i.e., no specialization of CPU or memory

design is required for fault tolerance, thereby allowing the

choice to be based on other properties, e.g., speed, or

availability.

• The total computing power of the system can be varied by

using units of different speed Or by changing the number of

units.

C.	 Input/OutDut

•	 The input/output subsystem must be designed and operated with the

same fault tolerance as the central processing complex. Different modes

of operation are possible, depending on the various devices that are con-

nected, to and controlled by the system. The favored principle is to use

replication wherever possible. Varying capabilities of fault tolerance

in the central computing system can be achieved by using varying replica-

tion and by voting at all times when valid data are required (e.g., at

the start of a task). The results of a calculation will exist in-several

(usually three) copies and eventually a vote must be taken. The vote that

is required to allow another task calculation is carried out in multiple

modules; however, if the vote is for output, then the output system or

output unit must conduct the final vote.

There are circumstances where the nature of the input/output unit

assists fault tolerance through replication, as in the following cases:

G Certain input systems (sensors) can be replicated; each

sensor is then individually read (and voted on) by all

modules requiring the input.

O Certain'output devices can be built in a way that employs

a "natural" kind of voting process in the final output medium.

For example, a CRT display could be refreshed with each frame

• derived from a different module. Data on which all modules

agreed would be displayed brightly; other,data would be more

88	 •

faint. Assuming that faults persist only for short periods,

this would result in a temporary flicker for a few frames

before the executive removed the malfunctioning module from

the calculation. In the application to which the design is

aimed, there are other output devices, e.g., flap controls

possessing similar "natural" voting capabilities.

In the event that the device is not in one of the above classes, another

"final voter" must be designed that inherently possesses the required

reliability. This consideration is independent of the architecture chosen

for the central computing system.

We note that the architecture described here can operate in a mode

whereby the replicated versions of output data (or the replicated data

from input sensors) can be processed by any of the processing modules;

hence, no modules need be specially designed for this function.

D.	 Bus Design

The bus system (B1 , B2 , B3 , Figure VI-l) used for communication be-

tween modules must be designed to be fault tolerant. We remind readers

that the bus system is used only to allow the processor of one module to

read from the memory of a different module. The design need not be such

that all bus traffic is checked (as in most other fault-tolerant archi-

tectures); however, it should allow a processor the choice of different

busses in the event that a bus has failed.

A structure based on a four-port memory module is shown in Figure

VI-l. In this structure, each module would have connection between its

units (processor and memory). The bus structure, B 1 , B2 , B3, would

enable a processor to choose different paths in reading data from the

memory units of different modules. It would be appropriate to connect

the I/O system to this bus structure. In the event that a four-port

memory unit such as shown in Figure VI-1 is not available (or not suitable

from other standpoints), then the structure can be achieved by attaching

a single-port memory to all busses using conventional techniques.

A processor that needs to read from the memory of a different module

must seize control of a bus. Logic associated with a bus must ensure

89

that only one processor has control of a bus at any time. In addition,

the bus must be allocated to a processor for only a finite time, thereby

preventing a faulty processor from seizing a bus permanently. An internal

clock associated with each bus can control the period for which the

processor in question dominates a bus. A failure in this control logic

causes the loss of that bus. It remains to be shown that no situations

can occur where. the failure of one unit can cause incorrect action of

several other units, i.e.-we require a design so that faults remain

localized.

In summary, the following sequence of action is carried out in reading.

data word (w) from memory (m) to processor (p) via bus (b).

1. Processor p places b, in, and w in registers and signals all

busses with a DATA REQUEST.

2. All non-busy busses scan all processor DATA REQUEST lines

(continuously).

3. If a data request line is on, and b equals the bus number,

the bus goes into BUSY state-and stops scanning the processors.

The requested bus has now been selected by the processor.

4. The.selected bus transmits m, w, and DATA REQUEST from the

processor registers to all memory modules.

5	 Each-non-busy memory module continuously scans. all busses for

a DATA REQUEST line, that is on, and then compares the m on that

bus with its own number.

6. If a match is found, the memory goes into BUSY state and ceases

scanning the busses. The . w on the bus is placed in the memory

address register and a read request issued to the memory. The

memory is now selected

7. When--the word is read by the memory, it is placed on the data

lines of the bus and a DATA READY line is-turned-on.

8. The DATA READY and data are transmitted to the requesting.

processor. When the data has been received by the

processor, the DATA REQUEST line from that processor is turned

off.

90..

9.	 Action 8 will cause the BUSY states (actions 3 and 6) to be

dropped and the bus and memory resume scanning for other

requests.

In the above sequence each unit that requests action of another unit

makes a request (e.g. DATA REQUEST). The granting of the request is made

by the requestee. This arrangement will, for example, prevent a processor

from requesting all the busses simultaneously, since the busses will respond

only if the bus request (b) agrees with their bus number. It would, therefore,

require failure of all of the busses to completely disable the bus structure.

In addition to the above, it is assumed that each unit has logic

associated with it that prevents it being seized indefinitely. This logic,

in effect, says "f I have been BUSY for greater than a time interval DELTA,

then the particular connection will be broken and scanning resumed for other

units requiring action." It is possible to incorporate in this logic the

capability to ignore requests from the offending requestor, in the future

thereby removing that unit from affecting further system operation. The

time interval DELTA mentioned above will be chosen to be just greater than

the greatest time of any correct action request.

The scanner in either the bus or the memory that is examining either

the processors or the busses can be implemented so as to scan in any se-

quence-that is convenient (to the detail logic designer), i.e. it is not

necessary to scan in numeric order. In the event that the scanner has

more states than the number of units scanned (e.g. a 4 stage counter

scanning 9 units), the spare positions can be stepped over by suitable

design, or alternatively can be left OPEN.

The word address (w) that is transmitted to the memory module can be

subject to any transformation that is convenient in the design of the

processor or memory, i.e., we can use indirect addressing, indexing, base

registers, paging or any convenient combination of these. In addition,

it is possible to incorporate a cache (in the 360/85 sense) in the

processor design.

The scheme outlined above obviates the need to provide a BURST MODE

type of ttansmission as each word that is transferred can follow the

sequence given. In the event that several words are required, the pro-

cessor successively requests each word and the bus is seized and the

word is delivered. If other processors require the use of the bus during

91

the period of the multiple word transfer, a form of cycle stealing will

take place as the bus scans the other units and honors the request before

resuming scanning.

A suitable structure for the processor/bus/memory connection is shown

in Figure VI-4.

E.	 Program Structure

Within the computing system as described above there exists a program

structure, that contains program segments and their interconnections. We

distinguish those program segments that must be present in all processor

memories from those that exist only in the memory of the processors that

are carrying out the function of system executive. We can divide the program

functions as follows.

All Processors Executive Processors

Application Tasks Allocation
Loader Scheduling
Dispatcher Fault location
Fault detection Fault correction
Fault avoidance Reconfiguration
Fault location
Fault reporting

The dependence of one program segment upon another is illustrated in

Figure VI-5a, in which four examples of applications processing, and three

of executive processing are shown. (It must be remembered that separate

processors are not necessary for each task or for the executive. Each

processor is multiprogrammed and may at different times be computing an

application program or the executive.) . Figure VI-5a shows the inter-

connection among program segments for one executive and one application

processing example. Multiple connectivity is assumed and is illustrated

in Figure VI-5b. The several functions shown in Figure VI-5a are des-

cribed below. We assume for the purposes of the description that three-

fold and fourfold replication is used respectively both for the executive

and each application task. Greater or lesser replication is possible if

the requirements for fault tolerance are more or less stringent.

MEMORY UNIT 2

MEMORY UNIT I

Other Memory Unit,

H
MEMORY	 I
ADDRESS •
	 i

SCANNER	 MATCH

BUS 1

I
SCANNER

BUSY

F
MATCH

3t1iE PROCESSOR 1	 DATA	 .ir
R EGUEST

Bus
NUMBER

B U	 U

MEMORY	 Ll M
ADDRESS

WORD
ADDRESS

Other
Busses

PROCESSOR 2	

Ii	 I	 I!	 II	
J

Other Processors
TA-7 105,2-223

FIGURE V1-4 PROCESSOR/BUS/MEMORY CONNECTION

93

INPUT	 H FAULT
COMM	 DETECT

FAULT
LOCATE

FAULT
AVOID

FAULT
REPORT

APPLICA-
TION A

T--1 I r-
ILOADER

DISPATCH ER

(a) APPLICATION PROCESSING (4 COPIES) 	 (b) EXECUTIVE PROCESSINC (3 COPIES)
SA-1406-12a

FIGURE VI-5a APPLICATION AND EXECUTIVE STRUCTURE

APPLICATION

EXECUTIVE

APPLICATION

EXECUTIVE

APPLICATION

EXECUTIVE

APPLICATION

SA-4O6-12b

FIGURE V(-5b APPLICATION AND EXECUTIVE CONNECTIVITY

94 .	 .

1.	 System Executive

Allocation and Scheduling

The executive carries out allocation of processors to tasks and sched-

uling (deciding when task programs should be run). These two functions

will be described together, in Appendix A, in terns of the data structures

and the way in which they are manipulated.

The task matrix is a Boolean matrix indicating the results of the

allocation process. A mark in any element signifies that a processor has

been assigned to carry out a particular task. The task matrix will re-

main unchanged for long periods and will be changed only under two circum-

stances:

0 Change of flight phase (takeoff, cruise, etc.).

0 Reconfiguration after a fault condition.

There are three options available in carrying out the allocation

function:

(a) Compute new allocations, when needed, in real time.

(b) Pre-compute (i.e., before mission) a set of allocations

for each flight phase and for all possible configuration

changes.

(c) Pre-compute a set of' allocations for different flight

phases, and carry out perturbations of these, in real

time, upon reconfiguration in the' event of a fault.

condition.

It is expected that alternative (c) above will be used in an aircraft

- environment.

Reconfiguration

Reconfiguration in the SIFT concept consists of changing the allocation

of tasks to processors. This will occur under two circumstances

Fault conditions that occur, and require the removal

of some units from active processing.

• Change of flight phase, e.g., from take-off to climb,

to cruise.

11

No special hardware is required to carry out the reconfigura.tion,

and the software routines are identical to those described above for

allocation.

Task Timing

Certain application tasks require action at regular intervals, for

example the flutter alleviation 'calculations must be processed every 4

msecs. For this task, it is necessary to ensure'that all the cooperating

processors are synchronized with respect to a 4 msec period. The basic

rule of synchronization is that no processor should compute iteration

(n + 1), nor destroy the data from iteration (n - 1) until all processors

have carried out iteration n.

The idea of using a single system-wide clock is rejected as 'this

unit would need to be built with exceptional reliability and would repre-

sent a "hardcore" in which no faults could be tolerated.

The preferred hardware would be to use a number of replicated clocks

which could be treated as input units, whose data could be read in the

same way as any other units.

Using replicated' clocks as-input units, it then becomes ' necessary to

ensure that all processors read the clocks at 'sufficiently frequent inter-

vals (e.g., 1 msec.). , This can be achieved by an interrupt system in each

module, that is driven by another clock (of higher frequency) local to the

module. These interrupt systems would be independent from each other, and

.failu-re.of,one of them would be no different from any other failure in a

processor.

Fault Location

Fault location in the SIFT concept consists of determining

(i) Which unit is at fault.

(ii) Whether the fault condition is permanent or transient.

Each processing module, when reading data from other modules, carries

out a vote as, described in Section VI-E'-2. In the event that the vote

does not yield unanimity, a single "error flag" is set and details of the

erroneous transaction are placed in the module's memory. The executive

96

reads the error flags from time to time, and if all are off, correct operation

is assumed. If all error flags are not off we must consider two cases.

Case 1 Single Error Flag On

This indicates that a fault exists that is related to that processor,

or to the particular connections that were used in the particular data

read, i.e. from processor to a particular bus, or from that bus to the par-

ticular memory. The analysis of this condition cannot be carried out on

the basis of the single instance of the fault. The data must be remembered

and further instances of errors correlated with them to determine the faulty

unit that must be removed from use by reconfiguration. If no further instances

of errors occur in a short period, the assumption may be made that a transient

fault condition occurred.

Note that an executive could read an error flag and determine that

it is on due to a fault in the processor that is running that executive,

or due to a fault in the data path used to read that error flag. The execu-

tive would attempt, erroneously, to diagnose an error that did not exist.

This will not produce faulty operation of the total system because the

other versions of the executive will effectively override the faulty

executive.

Case 2 Multiple Error Flags On

Multiple error flags on indicate that several processors have detected

an error. The details of the error will be read from the several processors

and by correlating the data, the executive may determine which unit is

faulty.

2.	 Local Executive

Input Communication and Fault Detection, Location, Avoidance and Recording

The first step in the computation of any task is to read the data re-

quired to carry out the task. This data will exist in the memory-of three

computing modules. We will use the phrase "Input Data Set" (IDS) to denote

the set of words required to carry out the calculation of a task. We en-

visage that all tasks that require data will obtain it by calling a single

program or microprogram subroutine. This subroutine is the only code

97

(outside the executive) that is concerned with detecting errors, correcting

them in some cases, and in all cases reporting errors to the executive. By

the use of a single subroutine for error detection, avoidance and reporting,

the application programmer is relieved of the concern for this aspect of

the system. This routine GETDATA is shown in flow chart form in Figure

VI-6. Its functional specification is:

Input Parameters

IDS Number	 (The identification of which input
data set is to be input.)

IDS Size	 (The number of words to be input.)

Buffer	 (The address of the buffer in which
the words are to be placed.)

Proc List	 (The address of a list of processor
numbers from which to input.)

Output Parameters

Failure Flag	 (A Boolean output variable, set = 1
if the input could not be accomplished.)

Error Flag	 (A Boolean output variable, set = 1
if input was successful but an error
was detected.)

Error Vector	 (The specification of the IDS, word
position, bus and memory involved in
an erroneous input.)

Action

Read an input data set (IDS Number) consisting of IDS size words from

the processor memories specified by "Proc List." If all versions of each

word obtained from the different processor memories agree, the data is placed

in the memory at address "Buffer," the error and failure flag will be set

to 0 and a return is made to the calling program.

If all versions of a word do not agree but a majority agreement exists,

the data is placed in the buffer, the error flag is set to 1 and the details

of the (presumed) erroneous input are placed in memory to be read later by

the executive.

If no agreement can be found, the error and failure flags are set to

1, the data is not placed in the buffer and a return is made,,

98

ALL	
K N

BUSSES
TRIED

Yes	 M

NO BUS CAN READ

THIS WORD
ASSUME MEMORY

FAIL
SET DATA = 0

L

STEP TO NEXT
BUS

INITIALIZE TO
FIRST WORD FIRST I

PROC

B

READ WORD

	

SUCCE	
No	

SET.ERROR

	

Yes	 D	

MEMORY USED
NOTE P ROC. BUS,

PLACE DATA IN

LOCAL STORE
STEP TO NEXT PROC

	

ALL	 E
o	 PROCESSES

DONE

	

Yes	 F

VALIDATE DATA

ALL	 G No

AGREE

Yes

PLACE DATA IN
BUFFER STEP

TO NEXT WORD I

 SET FAILURE FLAG EXISTS

P

NOTE ERROR	 Exit
DETAILS

SET ERROR FLAG

READ

Exit Yes

	

SA-1406-13

FIGURE VI-6 THE GETDATA SUBROUTINE

99

If no action can be accomplished (e.g. because of a faulty bus system),

the units that are faulty are noted, and a return is made.

The subroutine will attempt to use different busses for each word

transferred. If no response is obtained from an input request, the sub-

routine steps to the next higher bus.

Analysis of the time required for carrying out the GETDATA routine

shows that when no errors occur, 75 percent of the time is used in functions

B, .C, D, and E, and 15 'percent in functions F, G, and H. This assumes that

the CPU has no special operations to facilitate these operations. The use

of microprogrammable CPUs with special operation codes will significantly

reduce the total time to execute this routine. Such special operation

codes are discussed in Section VI-H-2.

Dispatcher

The dispatcher carries out the function of initiating the computing

of tasks. The dispatcher will always be entered at the end of each task

plus being entered regularly on an interrupt basis, probably every I msec.

Upon entry, the dispatcher will first query the executive tables to

see if the'queue of tasks, for it has been changed. If so, it reads the

queue into its local store. If the item at the head of the queue is the

same as a task which has just been interrupted, a return is made to that

task program'to continue the task calculation. If the task at the head

of the queue is different than the task just interrupted, the dispatcher

.knows that a change of task is required. This may be of two types:

(a) A change of allocatiOn wherein the previous task is

no longer , required.

(b) A requirement to interrupt the previous task temporarily

(for a more urgent task) and resume it when , required.

These two cases are distinguished by the dispatcher by the contents

of the queue. There exists a task present in all CPUs (the terminator)

whose function is to terminate tasks. If case (a) above exists, the

queue will contain an entry calling for the TERMINATOR to be run, thereby

removing the interrupted task.

100•

The above discussion centered around the actions of the dispatcher

in the event that it interrupted a task. When the dispatcher is entered

at task completion it does not need to resume an interrupted task, but

simply transfers control to that task at the head of the queue.

When the dispatcher is entered at the completion of a task it is

possible for it to be interrupted. The interrupt should be ignored except

to update the internal software clock within the CPU.

All communication between 'the dispatcher and the system executive is

through the GETDATA routine

Loader

All processors need to be able to load new programs whenever a

reallocation of tasks is made. Two versions of the loader can be con-

sidered, a simple version that loads programs from the memories of other

modules, and a version that can also load programs from a backup store

(e.g. drum) in the event that such a unit is available.

We assume that programs are in absolute binary form, i.e., no

assembling, linking or editing is required. We also assume that the

CPU/memory hardware enables programs to be relocatable. With these

assumptions the loader only has to read a program from the replicated

copies and place it in memory. In effect this will be a single call on

the GETDATA routine for the version that reads from other memories. For

a version that reads from a backup store, a modified version of the GETDATA

routine would be required.

3.	 Application Programs

The application programs carry out such tasks as integrating

differential control and navigation equations, formatting graphic displays,

and so forth. Each of the programs handle certain functions in a uniform

way. These functions include: data communication, error or failure reporting,

and connection to the dispatcher and executive. Each application program

will be embedded into the SIFT software structure in a uniform way. The

typical structure for this embedding is shown in Figure VI-7.

101

	

READ DATA	 GET-DATA

-	 FAIL	 Yes	 SET FAIL-
Duspatci-er

No

4

 PP	

TI 0

APPLICATION

MARK -TASK
COMPLETE

Dispatcher	 -
SA-1406-14

FIGURE VI-7 TYPICAL,APPLICATION TASK

102

giv

The function carried out by each application program, and the

computing and memory resources required are detailed in the report on

Task II of this project.

F.	 Computing Load Within SIFT

Within SIFT, the computing and memory load are summarized in

Tables VI.3a and VI.3b for application and executive tasks, respectively.

(Table VI.3a is a repetition of Table 111.1, included here for the con-

venience of the reader.)

The total computer load is as shown below, for the most critical flight

phase (instrument landing).

CPU (MIPs)	 MEMORY (1(W)

Application Tasks	 0.5	 24

Local Executive	 0.04	 1

System Executive	 0.1	 2

The above table does not include either CPU. or memory requirements

required for fault tolerance procedures.

G.	 Reliability and Fault Tolerance

This section discusses procedures for achieving fault tolerance with

a sufficient reliability. In addition, a specific case is analyzed to deter-

mine the expected performance of the SIFT concept under a set of assumptions

concerning such matters as: number of LSI chips in system, reliability per

chip, length of flight, and so forth.

The reliability analyses are carried out for different numbers of

processing modules.

The system architecture can, by suitable design of the executive,

support different fault tolerance procedures appropriate to different re-

quirements. The assumed fault detection method is by comparison of

multiple copies of data. This comparison is carried out by software em-

bedded in a system routine, a copy of which is present in all processors.

Fault detection by software voting is compatible with hardware

techniques such as parity schemes. Such hardware : if it exists in memories,

busses, or processors eaki be used to assist detection and diagnosis of

103

Table VI .la Computing Requirements, Applications

Task	 - Iteration Rate/Sec . Equivalent MIPS Store Required

• APPLICATIONS Inst. Data

Al Attitude Control 5,20 .023 1845 230
A2 Flutter Control 250 .069 70 22
A3 Load Control * 240 .014 45 15
A4 Autoland,' Horizontal * 20	 1
A5 Autoland., Vertical * 160	 , .055 750 275
A6 Autoland, Throttle * 33	 J
A7 Autopilot 5	 ' 150 100
•A8 Attitude Indicator * 30	 •, .077 790 520

BI Supervisor	 • 75 15
B2 Inertial * 1-25 .034 2100 150
B3 VOR/DME 5 .004 250 50
B4 DME, OMEGA ' 5	 • 400 105
85 Air Data ' • 110 25
B6 Kalman Filter 1/5	 •	 ' .001 250 65
B7 Flight Data	 ' 5	 ' •	 .028 450 100
B8 Airspeed, Altitude	 , * 8,16 .009 360 70
B9 Graphic Display * •	 1,8	 ' .032 890 5360
B101Text io	 - --- --

Cl
Display--------------------

Collision Avoidance * 1/3,670 .021 550 600
C2 Data Comm, A/C * Various(8)	 • .006 210 400
C3 Data Comm, Ground *	 • 4

.001 450 112

Dl AIDS	 '	 ' * 1/4 to '	 .002 650 650
D2 Instrument Monitor * 5	 • .014 800 100
D3 ' System Monitor * 1/2 .001 900 50
D4 Life Support '	 ' * S 1/2	 • .001, 900 50
D5 Engine Control * 33	 . .119 1300 200

Table VI.lb Computing Requirements, snr 1xecutivc

When Activated	 Number of Operations

Task	 - 	 perActivation	 StoreRequired

STEM EXECUTIVE Inst. Data

300
(2)

(P + 20)x(T + 10) Allocation Reconfiguration 50,000

Scheduling *	 500 100 40 (3)
Timing
Fault Location On Error 5,000 30 70

[!AL EXECUTIVE

10
50
40
40
10
10

Input Comm.
Error Detection
Dispatcher
Interrupt
Newtask
Loader

• Task Start (9)
• On Error
• Task End (9)
*	 500 (5)
Change of Task

Reconfiguration

20 + 6W (4)
25
45
23
56

20 + 6? (6)

20
50
40

30
Uses F3 space

20+ space of loaded
program

BROUTINES

GETD.TA
	

* By Call
	

12 + 6W (4)
	

50
	

20

Math Routines	 * By Call
	

(7)
	

200
	

200
(Sin, Cos etc.)

105

Notes for tables VI.la and VI.lb

*	 Tasks required to be run during most critical flight phase (auto land in

(I) Task names are abbreviated. Tables 2 and 3 of the report on task 2
gives full names.

(2) p = number of processors, T = number of tasks.
(3) Data space for scheduling and timing is included in allocation task.
(4) W = number of words transferred.
(5) Figures for interrupt handling, are for the increase in the dispatcher

to handle interrupts.
(6) P = number of instructions in program to be loaded.
(7) Operation counts for math routines are included in figures for those

tasks which call them.
(8) Data communicat•jcL, A/C represents the input/output loadof the computer

system. Assuming that simultaneous I/o is possible. No increase in
MIPS is required.

(9) To compute load, due to task start and stop, the total number of tasks

run per second is computed for the most critical phase yieldinga
figurc of 1259 tasks per second. The average data input (W) is

assumed to be 10 per task. The MIPS for task.start and stop is
therefore 1259 (65+60) 	 .15 MIPS.

?	 Task exerts. insignificant load.

106

faults. The primary advantage of incorporation of hardware checking is to

allow faster checking in the event that an application requires faster

correction of fault conditions than can be achieved by software.

An important benefit in using software techniques for fault detection

and tolerance is that freedom is retained to change the degree of fault

tolerance, either because experience gives data on which better methods

can be based, or because the different applications require different

degrees of fault tolerance, i.e. some are more critical than others.

If threefold replication is used throughout the system a single

faulty unit will result in one of the replicated processes computing a

wrong result. The use of the wrong result in subsequent' calculations will

be avoided by the fact that other (correct) copies of the data will exist

in other modules and when used will, by voting, enable a processor to dis-

tinguish the correct data from that which is erroneous.

A further interesting possibility would be to use non-identical but

computationally equivalent algorithms for the several replicated processes.

The computation of a variable can also be carried out using different

scaling factors, for example, compute lOx, x, and x/lO. This will reduce

the possibility of error due to bit pattern-sensitive faults.

Consider now the case of double faults existing simultaneously. We

must distinguish two cases, uncorrelated and correlated faults. By cor-

related faults we mean two faults that cause the computation of two equal

but incorrect results. Clearly two correlated faults cannot be tolerated

if the fault tolerance procedure consists merely of voting among three

versions of all results. The probability of such correlated faults will

be very low and for most applications is acceptable. We can, however, in

the system as described, achieve greater reliability in the event that the

application is so critical that this low-probability is still unacceptable.

Two such strategies are:

• Use threefold replication for all critical applications,

and in the event of any disagreement, do not use the

results until yet further processors have carried out a

repetition of the calculation, for example use two more

processors (making a total of five) and only act if

three or inure agree.

107

*
• Use fivefold (or greater) replication of tasks for all

critical applications.

Both of the above strategies will prevent double correlated-errors

from causing the use of a wrong result in subsequent programs oroutput.

The cost penalty involved in the above strategies implies that they will

only be used for extremely critical applications, where the cost of extra

computing equipment is small compared with the penalty for failure, e.g.

in aircraft and space missions.

In the case of double uncorrelated faults we need only consider the

case of simultaneous faults. Double faults that occur separated by a time

sufficient for the executive to have carried out corrective action after

the first fault do not need to be regarded as different than two instances

of single faults, which can be tolerated.

Two simultaneous but uncorrelated faults will have: the possible effect

of producing two different incorrect results from a calculation. These

two results will be compared with the one correct result produced by the

nonfaulty unit in a threefold replication scheme. Before the result is

used in any subsequent calculation (or-output), the presence of three

differing results will be-detected and the executive will initiate greater

replication in other processors until sufficient agreement can be found to

distinguish' the correct from the incorrect result,

The executive of the system must itself be fault tolerant. This is

achieved by the same techniques as for application programs. Each of the

replicated copies of the executive will use data from itself and the.other

copies. In the event of errors in one of the executives, the other copies

will not use the data computed by it, thereby keeping their results valid.

The correctly functioning copies will initiate a new copy of the executive

in another processor (which may in 	 copying the program to that pro-

cessor) and will signal the malfunctioning processor to discontinue pro-

cessing the executive. In addition, all processors will, upon inspection

*This requires availability of a sufficient number of the various units

(processors, memories, busses).

108

of the data in the correct copies of the executive, cease referencing the

data in the incorrect copy, thereby preventing a system breakdown in the

event that the malfunctioning processor continues processing the executive

even though requested to discontinue.

The fault tolerant procedures outlined above can be summarized as

follows:

• Given at least triple replication, all single faults can be

tolerated, and all uncorrelated double faults detected.

• Given greater resources (memories, busses and processors),

multiple uncorrelated or correlated faults .can be tolerated.

It is expected that, in the event of a permanent fault detected, a

unit will be relieved of any active part in subsequent calculation. The

capacity of the system will therefore be reduced, but until a large fraction

of the system is faulty, the fault tolerance procedures can be continued

without jeopardy. The removal of faulty units will be accomplished by al-

locating them to null tasks in the case of processors, and not referencing

them in the case of memories. The overall effect of these strategies is to

achieve a graceful degradation either of computer capacity or fault toler-

ance whichever is desired in the particular application.

The foregoing has been concerned with the possible fault tolerant

strategies that can be employed within the general SIFT concept. We now

examine the specific case where threefold replication is used, and where

the computing system is to handle the application tasks and the executive

tasks summarized in Section VI-F.

1.	 Reliability Estimates

A full reliability analysis of a SIFT system will be possible only

when the design has been. carried to sufficient detail to enable basic re-

liability parameters to be estimated. These parameters would include a

count of number of chips in each module type. In addition, knowledge of

the possible failure mode for each unit type is required. The following

analysis makes certain simplifying assumptions (yielding what we believe to

be a conservative reliability estimate), in order to show that the SIFT

109

architecture can achieve the required reliability. We do not, for example,

incorporate the beneficial effects of using error correcting codes in mem-

ories, or the possible substantial reduction in memory capacity required

through the use of secondary stored or the use of ingenious encoding schemes

for memory data.

In deriving an estimate of reliability we make certain assumptions

concerning such factors as the probability of chip failure, number of chips

required, etc. These assumptions are listed below, together with defini-

tions of the terms andsymbols used.

R = degree of replication employed (usually 3)

N = number of.processor/memory modules

H = length of computer service required (assume 10 •hours)

PR	 probability of system function failure after H time

PF = probability of no fault tolerance after H time.

The last two terms above distinguish between two ways of expressing

the probability of the computer continuing to perform in.a satisfactory

manner. PR, the probability of system function failure, expresses the

chance that an incorrectly performed computer function is carried out

during a flight. PF expresses the probability that the system will de-

grade during the length of a flight to the point where it can no longer

tolerate any fault in the remaining operational computingequipment.

We assume a load on the computer system as-below

CPU (MIPS)	 MEMORY (KW)

Application Tasks	 0.5 R	 24' R

A....	 Local executive	 0.04 N]! N

System executive	 0.1 R	 2,'R

In order to estimate the probability of fault in any. module (CPU,

memory', bus) we start with the following assumptions.

-6
B. -Probability .Probability of chip failure = 10 per hour

C. . . In the CPU it requires 30 chips to achieve 1 MIP (compare. the

DEC, 'PDP-ll which would take 10 chips and yields 0.3;MIPS and

the INTEL microcomputer with 2 chips for 0.05 MIPS)

110 '	 '

C.. .Each LSI storage chip provides 0.1 KW of memory.

From the following assumptions we can state

Total memory (KW)

Total CPU

Total chips

Memory per module

MIPS per module

Chips per module

26 R + N

0.6 R + 0.04-N MIPS

10(26 R + N) + 30(0.6 R + 0.04 N)

278 R + 11.2 N

1 + 26 R/N

0.04 + 0.6 R/N

11.2 + 278 R/N.

The operating philosophy of SIFT assumes that each processor and each

memory be capable of handling any task. The heaviest CPU load of any task

is .08 MIPS and the largest memory requirement is 6.3 KW. With the necessity

to be able to compute the local executive we have capacities of 0.12 MIPS

and 7.3 KW as the minimum capacity of a CPU memory module in a uniform

arrangement. This yields a lower bound on the size of each module, and

for an economic design (i.e., one that does not have excessive initial spare

capacity) it implies a bound on the number of modules.

We now consider the steciuic case of R = 3 which is expected to be the

most common mode of operation. From the assumptions above

memory/module = 1 + 78/N KW

MIPS/module = 0.04 + 1.8/N

chips/module = 11.2 + 834/N.

We neglect the chips required for the busses as it is estimated that they

represent a negligible (176) of the total circuits.

Using.R = 3, all single faults are tolerated, plus all double faults

that are separated by a time greater than the reconfiguration time. Assume

the latter to be 1 sec. The probability of two faults occurring in any 1

second interval during a 10 hour flight

= [(11.2N + 834) 10 5 1{(11. 2N +834) 106/3600).

= (11.2N + 834) 2 10 11/3600	 .

= (0. 19N + 13.9)2 io'.

ill

The above double fault only causes errors in the event that the two faults

occur in a pair of modules that are calculating the same task. If calcu-

lating different task sets the fault can be tolerated. For this reason, the

iigures below represent a conservative estimate of non-tolerated fault

condition. Table VI.2 shows the probability of non-tolerated double faults

for different values of N.

N Probability

3 2.1 X

6 2.3X109

10 2.5 X 10

20 3.1 X lO

Table VI-2 Probability of Non-Tolerated Double Fault

Consider now the question of having, sufficient capacity during a

10 hour flight.

Probability of a single error = (11.2N + 834)	 lO	 = P. Multiple

errors may disable several modules or may effect only one module. The prob-

ability of losing different numbers of modules is given by Table VI.3.

Number
disabled

Probability

0	 ' 1-P.

1 P

2 P2(N - 1)/N

3 P3(N - l)(N - 2)/N2

4 P4(N - l)(N - 2)(N - 3)/N3

Table VI-3 Probability of Failure of Different Number of Modules

*
Second order terms are ignored. The error involved is < 1 percent.

112 ' .

Table VI.4 gives the probability of different numbers of computing

modules having failed as a function of the number initially in the system.

Number of Failed Modules

Number of
Modules	 0	 1	 2	 3	 4

Initially

3 9.91E-01 8.68E-03 5.02E-05 1.45E-07 0.00E-00
4 9.91E-01 8.79-03 5.79E-05 2.55E-07 5.59E-10

5 9.91E-01 8.90E-03 6.34E-05 3.38E-07 1.20E-09

6 9.91E-01 9.01E-03 6.77E-05 4.07E-07 1.83E-09
10 9.91E-01 9.46E-03 8.05E-05 6.10E-07 4.04E-09
15 9.90E-01 1.00-02 9.37E-05 8.14E-07 6.52E-09
20 9.89E-01 1.06E-02 1.06E-04 1.01E-06 9.11E-09

Table VIA Probability of Losing N Modules

Figure VI-8 shows graphically the probability of different per-

centages of computing power still remaining after 10 hours as a function of

the initial number of modules.

Making the assumption that 50 percent computing power must exist

at the end of the flight, the shaded region indicated the acceptable opera-

ting range, i.e., it indicates that N ^! 8 for probabilities :910
-8

of system

failure.

The foregoing analysis is conservative in several ways, which are

discussed below.

An implied assumption is that a chip failure will result in er-

roneous calculation within that module and a consequent requirement to remove

that module from service. There are several chip failures that will not

cause the above effects. A failure of a chip in the memory will, in general,

only invalidate the data that are stored in that part of the memory. The

number of chips in the memory exceeds that of the processor by at least 10

to 1 and therefore represents the most probable place of chip failure.

Even in the processor some failures will not cause removal of the module

from service, for example the loss of floating point capabilities will not

prevent the module from being used for the executive and other functions

which do not require floating point capability. The design of the executive

113

2	 4	 6	 8	 10	 12
INITIAL NUMBEAOF MODULES	

sA1406-15

FIGURE VI-8 PROBABILITY (Q) OF DIFFERING

PERCENTAGE CAPACITY REMAINING, AS

A FUNCTION OF THE INITIAL NUMBER

OF MODULES

100

0
Z 80
z

Ui
cc
>. 60

C-)

0.

0
40

0
I-
2
Ui
0

20.
CL

0
0

114

to take advantage of partial failure of a processor may unnecessarily com-

plicate it, but it remains an option that is available after experience

shows the most common failure modes. This type of flexibility distinguishes

the SIFT architecture from others where the reconfiguration capability is

designed into the hardware.

Greater reliability can be achieved by different memory structures,

for example by the use of back-up memory and by the use of coding techniques.

The availability-of a back-up memory such as disc, drum, or cassette with

its low cost per bit would enable extensive replication of programs in back-

up memory and allow the main processing memories to be reduced in size there-

by requiring fewer chips which will result in a lower probability of faults

occurring. Coding techniques can also be used in the memory both for error

detection and for correction, thereby improving the reliability of the mem-

ories which account for greater than 90 percent of the equipment.

If one assumes that faults in the computer are random, then there

will be a significant proportion where the loss of computing power will

have occurred before the aircraft flight phase that requires highest com-

puter power. This is during a blind landing and particularly in the last

minute before touchdown. Failures that occur before this time, and which

are sufficiently massive as to significantly reduce computing power, will
*

only require change of flight plan rather than endangering the aircraft.

The reasons given above lead to the conclusion that with reason-

able chip failure rates, more than adequate reliability can be achieved for

the intended application.

H. Processor and Memory

This section discusses some characteristics of the processor and memory

units. Full specification (i.e., detailed design) of these units is out-

side the scope of the present study. Certain desirable features can, how-

ever, be distinguished at this time. Questions of speed and capacity have

* For example, to change airports to one in which a blind landing is
not required.

115

been considered in Section VI-F. This section is concerned with struc-

tural aspects.

	

.1.	 Word Length and Addressing

Some application (e.g., Inertial Navigation) tasks require high

accuracy of numeric data over a large range. The use of floating point

arithmetic is therefore assumed with a minimum of 32 bits (8 bit exponent,

24 bit mantissa) giving a range:

	

•	 maximum positive number = 2(:1) 	 1.6 X 103:

minimum positive number = 2 	 3.1 X 10

Some reduction of word length could be allowed. It Is, however,

more economic to keep the word length as a multiple of 8 bits, and a re-

duction to 24 bits for a floating point number yields insufficient range

and accuracy.

In addition to floating point numbers, many data words can be of

16 bits, and character strings can be implemented with 8-bit bytes. We

therefore envisage a structure in which data can be either 8, 16 or 32

bits.

With the different data modes, as discussed above, we must con-

sider the possibility of distinguishing between those modes either by

labeling the words by extra descriptor bits or alternatively by information

carried within the instruction. The latter method implies, for example,

that there will be more than one add instruction in the machine to handle

the cases of floating point, fixed point, and possibly even single byte

addition. Both approaches are possible and acceptable for the application.

However, the form in which the distinction is made within the instruction

is more common in the computer field and will, therefore, be more available

if a choice is made to use already existing designs of processor and memory.

Owing to the requirement to be able to address character strings

for such application, tasks as display formatting, it is necessary for the

instructions to be capable of addressing at the byte level as in the IBM

360 series. This in turn implies a larger number of address bits than if

the addressing were only possible at the word level. If one presupposes

1.16

that a practical word size for the instructions is 16 bits, which would

organize well with the various sizes of data words, then we must find a

mechanism for incorporating the address bits within an instruction word.

Several alternatives are possible and are discussed below.

Alternative A--Conventional machine

In the conventional approach, a number of bits of an instruction

word would be allocated to the operation code. A likely number would be

6-bits with the remaining 10 bits for addressing. In most machines that

use this structure, the 10 bits can be interpreted to address special parts

of memory. For example, the lowest 1024 words, or words in the range

± 512 words from the current instruction. In addition, the use of indirect

addressing enables one to address data through a base sector of memory that

can contain words which are interpreted as 16 bit addresses, thereby enabling

addressing up to 64K bytes or words. An additional alternative is to use a

structure as in the IBM 360 with base registers whose contents are added to

the address field of the instruction before execution. This adds a small

penalty in time, but gives freedom to address a larger space.

In other machines using the conventional approach, the option

exists of using double length instructions whereby the second word contains

a 16-bit address, thereby enabling the addressing of a larger memory.

In SIFT, the preferred arrangement among the foregoing choices

would be to use base registers for addressing data. The primary reason for

this is that a protection mechanism can easily be implemented so that the

base register itself can only be set by privileged instructions within the

local executive, thereby preventing any application task from inadvertently

addressing data to which it was not authorized.

Alternative B--Stack-oriented machine

In a stack-oriented machine, addresses for data can be planed on

the stack before an operation such as fetch, or store, or jump is executed.

Thus only one instruction is required that can contain an address. (This

unique instruction can be labeled by a single bit.) Successive words can

fetch, store, or whatever, and since these words do not need an address,

117

most of the operation codes can be implemented within 8 bits. The option

therefore exists of allowing two operations per word whenever it is not

rcessary to place another address on the stack. For example, see

Table VI .5 where the evaluation of an assignment statement is shown coded

in 16-bit words.

/22
Mathematical form r =Vx	 ^ y

High level language R = SQRT (X * X + Y * Y)

Assembly language Load Address R
Load Address X
Load Address X
Multiply
Load Address Y
Load Address Y

• Multiply
Add
Load Address SQRT Routine
Enter Subroutine

• Store

Machine Code Form bit
12 16
1 R
1 X

. 1 x
0 *

•]_. Y
1 Y
0	 • *
0 +
1 SQRT •

0 JUMP
• 	

•

0 STORE

Table VI .5 Stack Organized Computer Organization

118

In a stack machine, indirect addressing and indexing can be carried

out and in the latter case, the value of the index is itself placed on the

stack. In effect, the indexing operation becomes identical to the normal

add operation for data. Namely, the index is placed on the stack, followed

by the address. An addition then takes place followed by, for example, a

fetch from store. The effect of the addition is to add the value of the

index to the address which accomplishes the desired result. Indirect ad-

dressing is achieved by simply using the instruction sequence that will

cause an address to be placed on the stack followed by an arbitrary number

of fetch instructions, each of which puts a word at the top of the stack.

If that word is to be interpreted not as data, but as an address, an addi-

tional fetch instruction will yield the contents that are pointed at by

that word.

The stack organization has great advantages in that addressing of

32K words in a.16-bit machine can be achieved simply. It has certain dis-

advantages, however, primarily due to the fact that it is a less accepted

form of machine organization and is not easily available in existing com-

puters.

The choice between the two alternatives above does not change

the basic concepts of the system organization which can be implemented using

either structure of machine. Other considerations, such as the availability

of microprogramming facilities and with it the ability to create special

operational codes, far outweigh the differences between the two alternatives

in terms of the choice that must be made.

The above discussion shows that acceptable designs can be produced

in which small computers (i.e., 16-bit word computers) can be designed that

have, a capability to address a sufficiently large memory.

2.	 Special Operation Codes

Given the availability of a microprogramming capability in the

computer, we can implement special operation codes that facilitate either

the application tasks or the executive. We are particularly concerned

119

with the efficient implementation of those operation codes that transfer

data between modules and carry out checking of that data. For example, in

a general-register machine we would require an operation that could take

three versions of some data that should be the same and carry out in one

operation a check to see if this is indeed so, with certain control flip-

flops set to indicate whether complete agreement exists or partial (i.e.,

two out of three) agreement exists. In addition, operation codes could be

implemented to enable flexible control of the input/output function when

several versions of data have to be gathered from different memories using

different busses. In effect, we are looking for a more sophisticated

channel for this control of I/O. However, for small machines, such chan-

nels frequently are controlled directly from the instruction stream within

the processor.

Within the application tasks, the only . operation code requirements

that are different from normal could be for the programs that manipulate the

graphic and textual displays. These two application tasks both require

large programs and also large amounts of data. Questions of special opera-

tion codes to make this more efficient should be considered.

The use of special arithmetic operation codes (e.g., for square-

root, sin, cos) has been studied, but for the application being considered

none of these functions require sufficient CPU or memory capacity to justify

their inclusion unless this can be achieved with trivial cost.

I	 Alternative Design Options

In . Section VI.8 we discussed some of the requirements on the structure

of the processor and its connection to memory. In this section we consider

some of the ways in which the structure of SIFT could be changed while not

invalidating the basic concepts. We first reiterate one of the fundamental

features of: the SIFT organization, namely that in order to prevent fault

propagation, a processor can only write into its own memory. We have

suggested implementing this by a bus structure that contains only one-way

120

paths from memories to other processors. There are other possible imple-

mentations. For example, a single monolithic memory could be used and the

protection needed could be carried out by constraining the address space

of each processor so that only a small segment of memory can be addressed

for writing.

Another way of looking at this type of memory structure is to view it

as one in which each processor has a larger address space for reading than

writing and the writing spaces of processors are non-overlapping. This can

be implemented by an instruction set that has a smaller number of bits in

the address field for instructions that write than for those that read from

memory. The advantage of such a memory structure is that in the event that

a processor becomes faulty and has to be removed by the executive from the

system, the memory associated with that processor could be reused at least

in the reading form by other processors, thereby preventing the need for

transfer of programs from one module to another in the event of a processor

failure.

As discussed in'Section VI.6, the minimum size of store in any pro-

cessing module is largely determined by the size of the largest task to be

carried out, plus the size of the local executive. The largest jobs in the

application task set that we consider are for graphics and textual display.

Most of the storage space used for these applications is concerned with the

retention of information that is infrequently used, i.e., we must remember

the configuration, not onlyof the airfield to which the plane is flying,

but also to back-up airfields. We must similarly remember the configura-

tion of the various runways of that field, even though eventually a choice

is made for a landing on a particular runway and these are the only data

that are eventually used. Choices of different airfields or different run-

ways are human choices and the time response to be able to change the dis-

play for a different airfield or runway is very long in computer terms.

Certainly, there appears no strong necessity to keep these data in storage

with access time of the order of microseconds. The availability of back-up

stores that could possibly be of a rotating magnetic medium type, such as

drum or disk, would enable much smaller processors to be used in the system.

II

121

This would mean that a larger number of smaller processors would be used

that would provide a• more reliable and fault-tolerant system. Further in-

vestigation should be carried out to determine the practicality of using

some back-up store for information of this .type.

An additional problem is the size of the program required to carry out

the formatting of dynamic displays and the computational time required for

these programs, A design option would be to significantly enhance the dis-

play hardware itself so that it was capable of carrying out more automatic

generation of display. An example of this more automatic operation might

be an ability to interpolate between two displays so that the computer need

only transmit updated views from time to time, (e.g., every second) and the

hardware would. carry out an interpolation so that the transition from one

to the other was carried out smoothly, simulating more clearly the actual

operation of the plane.

We note that considerations of this type regarding the display hard-

ware are independent of the architecture of the computer and whichever

central computing system is chosen will benefit from the ability to have

either a back-up store for data or a more sophisticated display system.

In the context of architectural alternatives, we note again that there

are significant alternatives among fault-tolerance procedures. While the

most common-mode will probably be three-fold replication, a higher degree

of replication may be appropriate for some tasks. In addition, we can carry

different error correction procedures. For example, in the event of an

error being detected, instead of taking the majority vote remaining, we can

repeat the calculation by the same or a different group of processes. It

is felt that this is a useful procedure during the critical phase of a

flight.

A large component of computing capacity is needed for automatic land-

ing. Only a. ! very small proportion of flights will occur where both auto-

matic landing. is needed and. faults have reduced the computing equipment to

the minimum necessary to carry out that operation. For those cases where

the faults have not occurred, it would seem natural to use the spare ca-

pacity to provide extra fault tolerance. In the event that the spare ca-

pacity is not available, we can opt to change the mission, i.e., to land

122

at an alternative destination. Such options as these within the SIFT archi-

tecture make it different from architectures whereby the fault-tolerant pro-

cedures are designed into the hardware and are not changeable dynamically

at run time.

J.	 Conclusions

The SIFT system architecture as presented achieves great flexibility

in fault-tolerance procedures. The salient points of the design objectives

that are achieved are:

•	 Fault tolerance can be varied so that for some tasks it can be

arbitrarily high, using suitable replication and reconfiguration

strategies, and for other tasks the fault tolerance can be less.

• No special design requirements are placed upon the processing

units or memories, thereby enabling different designs to achieve

different computer power.

• Fault-tolerance procedures can be implemented by software, micro-

programs or hardware.

• Fault detection,, avoidance, and correction functions are achieved

by procedures that can be transparent to the application pro-

grammer.	 •

• The reliability 'required can be achieved by assuming reasonably

reliable LSI circuits and three-fold replication.

123

VII	 BUS CHECKER SYSTEM

A.	 Introduction

This chapter describes a third candidate architecture, the Bus Checker

System (BUCS). We start by summarizing the implications of the aircraft

environment on the required fault tolerance and performance:

1. The application computations are largely independent of each

other with respect to

• the order in which they are to be executed

• the sharing of data and common subroutines

• peripheral devices (generally each task is associated

with private sensors and effectors.)

2. For the critical computations it is essential, that the computer

not deliver wrong results; it is preferable that no result be

delivered rather than a wrong result.

3. For certain high iteration rate computations (flutter control,

automatic landing, collision avoidance) it is essential that the

system not be down for more than 10 msec' (a few iterations).

Generally, for these computations the pertinent program and data

base (4K words), a down-time of 100 msec or more can be tolerated.

4. Some graceful degradation is possible. During landing about 50

percent of the computations (measured in terms of processor load

and memory requirements) need not be considered. Hence the plane

can land according to mission plans with only half of the computer

resources available. However, the only positive ramification of

this is that if a back-up memory is available to hold the landing

programs during the non-landing portions of the flight, then thc9e

landing programs can overlay other programs at the time of landing.

PR10EDJNG PAGE BLANK NOT FJ.1f'iliI

125

5.. The relative independence of the computations leads naturally to

a multiprocessor system -- a good approach to follow, in any event,

to achieve fault tolerance. As such, each processor can be of low

power (say, 0.1 MIPS), which in turn implies that each processor

can be realized with few (say 3) LSI chips. Implementation in a

few LSI chips implies that redundancy and error checking should

be applied over a processor rather than within it. Assuming that

failures are Independent among chips, the frame coding approach for

memory seems natural. As will become clear, the independence

criterion is not as important for processors wherein many failures

that disable several chips can still be tolerated.

The BUCS system embodies the following qualities:

1. The main memory Is centralized to allow the full benefits of frame

coding. In addition, program and data sharing and relocation are

easily attained within the concept.

2. The processor load Is divided among a set (five to ten) of small

local processors (12), which are duplexed or tripiexed for error

detection/correction purposes.

Each LP contains a small (2 - 4K word) local memory. This memory

is large enough to hold all of the program and data associated with

any task (except display) so that the common bus traffic is low.

The memory is loaded from main memory with the appropriate program

just prior to each task execution.

4. A small (about 3 chips) unit, called the bus checker (BC) coor-

dinates the flow of control between the major blocks. It also

does initial processing of error signals. The BC is triplicated,

and its outputs are fault masked by voters distributed at

appropriate locations.

126

5. A disaster restart mechanism is provided within the BC sub-

system. This mechanism permits a relatively simple recovery from

a massive transient that may corrupt the executive tables.

6. Diagnoses of main memory and of certain unflexed processor

functions (e.g., comparators) are carried out periodically.

Spare blocks, or possibly memory frames, can be utilized if the

diagnostic routines reveal faults.

7. A two-level executive is postulated. The first (higher rate)

level controls task sequencing and error checking. The second

(slower rate) level controls modifications in task sequencing

and periodic diagnosis.

8. It is envisioned that the executive will permanently reside in

one of the LP's until the LP. fails, after which another LP will

take on the executive role.

The reader will observe that the BUCS system as summarized above

Incorporates some features of the surveyed systems. The concept of local

duplexed processors and centralized memory are parts of the Hopkins'

multiprocessor scheme. Coding asthe primary protection for memory is part

of the JPL-STAR and IBM-MARCS. A special bus checking block Is part of the

NASA-Marshall-Hughes ARMMS. system. The loading of task programs into local

processors from.a central store is a property of the Navy AADC system.

In the sections below we present the over-all view of the architecture,

a scenario for each major system function, tentative design features of the

major system blocks, a preliminary reliability analysis, a brief review of

possible extensions to the BUCS system. Chapter VIII presents a detailed

comparison-of BUCS with the other two candidates.

127

B.	 High-Level Description of Architecture

1. Hardware Components

As shown in Figure VII-1, the BUCS system consists of the following

major system blocks: a set of local processors (LP's) (five to ten, 0.1

MIPS each, for this application), a centralized main memory (MM), a set of

I/O units, a bus checker (BC), and possibly a back-up memory (BAM).

The BC is assumed to consist of three identical independent units

operating in near locked-step.* As shown in Figure VII.l, each independent

unit delivering information to the BC has a separate set of input ports to

the BC, and each of the three independent BC's can deliver signals simul-

taneously to all units, on a single triplicated bus. The separate units

will generally contain their own address decoders to recognize BC signals

and their own voters to correct any single BC errors.

The MM is realized as a two-dimensional array of frames and blocks

(see Chapter II) wherein frame coding is used. A spare block under the

addressing control of the executive is also included to provide additional

required reliability. A set of LP's are included to enable the simul-

taneousprócessing of several programs, and also to provide spares.

Within an LP are two independent locked-step processors (P) with

a deplexed comparator. The comparators, which, physically can be part of

the processors, broadcast any processor disagreement to the BC. The local

memory (LM) within each LP is relatively small, since 4K words are completely

adequate to handle the executive and any of the individual computations

except display (which can be easily decomposed into subtasks). Most of the

tasks can be handled with 2K words, so it is likely that a 2K LM will suffice

with the larger tasks using the MM as .a backup memory to the I.M. Single

*As we show later the BC can be realized with 3 LSI chips. Since this block
is so small a reliability analysis will show, that triplication with voting
yields sufficient reliability.'	 .

128

Control/Addresses

(a) BASIC ORGANIZATION SA-1406-16a

FIGURE VII-1	 HIGH LEVEL VIEW OF BUCS

128a

	

Data to	 •.
MM, I/O, 6AM

LOCAL MEMORY

(LM)

	

Control/Address	 :	 PROCESSOR	 DUAL	 PROCESSOR	 Control/ Address

	

Lines to BC 	 (P)	 COMPARATOR	 (P)	 t	 Lines to BC

..

I To BC
Data from

	

MM, I/O, 8AM	 .:

(b) LOCAL PROCESSOR ORGANIZATION -	 .	 -	 SA-1406-16b

FIGURE Vu-i	 HIGH LEVEL VIEW OF BUCS (Concluded)

128 b

frame-error correcting, double frame-error detecting codes are utilized to

increase the reliability of the LM. One notes that the UA comprises about

80 percent of the LSI chips of the 12.

An 12 will fail when (1) a second frame within the UvI fails, or (2)

one of the two P's fails, as determined by a comparator disagreement, or

(3) a comparator fails, as determined by a disagreement between the com-

parators or by a diagnosis. The failure of an 12 will induce its replacement

with a spare 12. At first glance it might appear extravagant to discard an

entire LP even though most of its memory and at least one P are still oper-

ative. However, as the reliability analysis will show, only one spare 12

is necessary, and moreover a single 12 can be as little as 10 percent of

the entire system.

The issue with respect to I/O is not as clear-cut. It is certain that

multiple I/O controllers will be present so that a given sensor or effector

has access to the bus checker through more than one controller. With three

controllers, which seems reasonable, there can be a distinct controller

communicating with each BC. (The I/O controllers can be viewed as merely

extensions of the BC's.) If there is triplication of the sensors then

independent sampling of the sensors can easily be accomplished.* Similarly,

if there can be three independent effectors for a given aircraft function,

each such effector can receive an independent signal -- the "voting" in

this case is accomplished by the aircraft frame. If only one effector is

possible, then the voting of the three I/O controller outputs is accom-

plished at the effector -- clearly the last possible point for the vote.

We have not given much attention to the characteristics of the back-up

memory (BAM). Our present view is that there is not a clear role for a BAM

* There is a problem with carrying out a vote of independent sensor readings.
It is unlikely that the three sensors will supply-exactly the same value,
and hence the vote, if done in a bit by bit manner, will fail. The solution
Is to supply the three readings to the pertinent 12's and have the vote
taken in software, thus allowing for a disagreement precision warranted by
the sensor in question.

129

in our system. The storage requirements do not imply a need for mass

storage, except possibly (1) for the logging of flight information, (2) for

the storing of runway parameters for all possible landing sites, or (3) for

the storing of programs and status information in anticipation of a massive

transient. The technology survey has not shown a clear reliability advantage

or substantial cost advantage for, say, discs, as compared with MOS memory.

If it is needed, a reasonable approach for the storage of critical informa-

tion is to use two independent BAM's, each with error detection, and each

communicating with the set of BC's.

We have not yet decided on the width of the communication paths between

units. As might be expected, the bus checker (BC) is pin limited. A narrow

bus is thus preferable as it leads to a smaller BC unit (fewer chips). The

total data rate to and from (mostly from) the MM to the BC, for the aircraft

computations, isestimated as 2M bits/sec. This is •a factor of 10 less than

required by a version of the Hopkins scheme that does not incorporate a

cache. The reduction is due to the fact that the bus in BUCS is mainly used

for loading the LM'S with programs and constants, while in Hopkins, the bus

is used for program execution. Assuming16 bit words and, say, a transfer

width of 8 bits, the bit rate on the bus is 250K bits/sec. (Note that the

I/O bit rate through the BC is negligible.) With any reasonable interconnec-

tion technology an order of magnitude scaling upward in computation load can

be tolerated without taxing the bus.

2. Global Description of System Operation

The following is a brief overview of the system operation. A

detailed description of each of the executive functions appears in Section D

below.

As in the SIFT system, computation tasks are assigned to LP's.

However, In BUCS the program, constants and data are retained in MM until

the task is initialized. The pertinent information is then transferred to

the IM, by means of a mapping provided by the executive.. That is, the

executive in initiating a task supplies an absolute MM address and a word

130

count for the program and data of the task in question, which are then

loaded into the LM under control of the BC. Tasks should be allocated to

12's so as to preclude the need for multiprogramming within an 12. This

may be accomplished by assigning to a given LP either all short, high

iteration rate tasks or all long, low iteration rate tasks. As in the

Hopkins scheme (but different from SIFT) a task is assigned only to a

single 12.

If an LP fails permanently, all of its application tasks are

assigned to a spare LP. As the flight progresses and the task sequencing

changes, the executive will reassign tasks to 12. It is likely that all

of the assignments needed for a.flignt can be programmed in advance so

that the executive function for a reallocation of tasks is merely a table

look-up.

The executive is initially resident in one of the 12's, and it

will probably not share the 12 with application tasks. A replica of the

executive program and tables is retained in MM so as to permit the re-

assignment of the executive to another 12 upon failure. The BC retains

knowledge of the identity of the executive .LP in addition to the absolute

MM location of the executive prpgram. A failure of this 12 is counter-

acted by the BC assigning another LP to take on the executive role. The

occurrence of a massive transient could prevent the "normal" error response

as indicated above. For example, the register that holds the identity of

the executive 12 could be corrupted in two BC's. If this undesired state

change as well as others were to occur, then it is likely that several 12

comparators would issue disagreements, but the executive would not be called

to respond to these possible errors. The BC, if a succession of errors are

reported to it, responds with a hard-wired-routine that selects a new exec-

utive and attempts a dead-start recovery.

A summary of this global view of the BUCS operation is depicted

in the flow chart of Figure VII-2. The details of each of these operations

and of the executive appears below in Section D.

131.

Task Processing

DATA	 No
READY	 GET DATA

Yes

READ PROGRAM AND
DATA INTO LP;

SAVE JNPUT DATA
IN EXECUTIVE

TABLES

.ERROR	 SECOND

0 0
	

ERROR IN	 INITIATE -ANOTHER

ADIN TIME READIN

?	 PERIOD

No

PERFORM	 Yes	
EXECUTIVE FOR

	

COMPUTATION	 RECONFIGURATION

DURING

N Vo
COMPLETE COMPUTATION;

SIGNAL BC;
WRITE RESULTS IN

MM USING
-	 EXECUTIVE MAP

SA-1406-17

FIGURE V11-2 HIGH LEVEL VIEW OF BUCS OPERATION

132

C.	 Description of Major Blocks

In this section we present some design details of the major system

blocks. The designs have been carried out only to the point where we are

convinced of the viability of the entire approach.

1. Local Processor

The tentative details of the LP are displayed in Figure VII.3.

As indicated, it consists of two replicas each of a processor (P), encoder/

decoder, and comparators and a single replica of a LM. It is anticipated

that each encoder/decoder would be realized as a single chip. Each pro-

cessor, together with its comparators would probably consist of two to three

chips. The LM, which will probably require no more than 4K words--of 16 bits

plus six check bits--should consist of no more than 22 chips. The optimum

coding for the U'1 is frame coding, with frame-width f 	 2, and with a Hamming

single frame error correcting, double frame error detecting code. We recall

that the words in Main Memory (MM) are also encoded as a Hamming frame-error

correcting code., Hence the encoder/decoder within an LP can suffice for the

code conversion between the LP and MM. That is, words being transferred

between the 12 and Livi always pass through the LP encoder/decoder. Thus an

error in either the LP or LZ,I is immediately identified, corrected, and pin-

pointed. Another possibility, albeit not as attractive, is to use the U'1

as the interface between the LP and MM. In this case, the words passing between

the two units will be encoded properly by definition.

We recall that single frame errors within the LM are masked, re-

quiring no additional reconfiguration action. The occurrence of a double

frame error causes each encoder/decoder to send an error indication to the

BC, signifying the failure of the U'. Similarly, a disagreement between two

processors also is an indication of LP failure.

In Figure VII-3 we have shown exclusive-OR gates to indicate the need

for a test for disagreement between the P1, and P2 units. However, this some-

what begs the issue. We believe the best solution is to effect a comparison

whenever a signal leaves either P1 or P2. We clearly do not need to compare

133

Address Lines

to BC

Completion

to BC

Address Lines
to BC

Control from BC

Disagreement
Signals to BC

SA-1406-18

FIGURE VII-3 DETAILS OF LOAD PROCESSOR

134

at each cycle of P since roll-back is not achieved as a single instruction

restart but as a task initiation restart. Hence, the comparisons could be

done on the completion lines or on the address lines going from P1 and P2

to the BC's. Similarly, a comparison could be effected on the words from

P1 and P2 to be written into 11V1.

As mentioned previously the control signals from the BC are trip-

licated--one for each BC--and hence within the P's there is an error-correcting

voting mechanism. Except for coded data words, signals emerging from the LP

destined for the BC are duplicated--one version for each P--and hence there is

a comparison mechanism within the BC that will signal a possible failure if

there is a disagreement.

The two P units are synchronized but only loosely. We envision a

clock control line between the units that is activated only when a comparison

is called for, say when a completion signal is to be sent to BC. Thus, a

reliable clock is not needed. If, say P1 (or P2) fails to receive a control

signal from P2 (or P1) within a certain tolerance then it signals an error

condition to BC. The inter-unit control signal could also resynchronize the

clocks within each P so that the clocks do not drift appreciably apart.

Similarly the communication between an 12 and BC is done asynchronously. Thus

a reliable system clock is not needed.

2. Main Memory Organization

An appropriate main memory (MM) organization is depicted in Figure VII.4.

We have also shown the form of the interconnection between the MM and other system

units. Briefly, the address lines and clockcontrol lines are derived from the

bus checker (BC). We assume, as shown, that a separate voter is provided to supply

address data for each frame of memory within MM, and the voter is driven by the

three BC's. The voted address lines are passed to all chips in the MM since each

such chip contains an internal address decoder .. Note that a single failure such

as one chip "shorting-out" (at its input) a voted address line will disable only

one frame of the MM. Consequently the coding of the MM words will handle this

fault. However, there are, double faults that can disable the MM. For example,

the failure of two frame address voters will potentially corrupt two frames of

135

ADDRESS
LINES

From
BC 1

BC2

8C3

CONTROL
LINES

From
BC1

BC2

BC3 -

Ii	 Ii	 •

- MAIN MEMORY (MM
	 1

MEM
CHIP r"1	 II

Frame
iI4
	 Frame 2J	 - Frame

:°

Data
From
Other

LP's

JFRAME	 FRAME	 FRAME I 	

= 1 E_
L

A LOCAL MEMORY	 J	 [A DOD PR FOR AN

SA-1406-19

FIGURE V11-4 MAIN MEMORY ORGANIZATION

136

MMs and as such is not correctable. We believe that such double failures

represent a small percentage of the possible double failure patterns, but

they will be included in the. reliability analysis..

In one approach for the transfer of data from an U' to a MM the MM

data input lines are derived from the LM's. Thus the same error correcting

code is conveniently used in both the U4's and MM. It seems possible to

wire together the corresponding bit outputs of the 1)11's destined for the MM.

Because of the error-correcting coding a chip failure anywhere that shorts

out an entire frame for all UI's is not fatal. Simultaneous with trans-

ferring words from an UI to an MM the decoders associated with 12's could

cneck the validity of thetransferred words to pinpoint a possible Ui! failure.

The MM output words are destined for decoding in one of the decoders

associated with an 12. Hence it seems reasonable again to wire together all

of the corresponding decoder inputs and MM frame outputs. Once again, a

single chip failure can onlydisable a frame in all decoders or in all blocks

of MM and, hence, the failure is correctable by the code.

It is assumed that the MM is organized as a two-dimensional array of

B blocks and f frames. At each-block-frame intersection, there is an LSI

chip containing 4096 bits of memory. As in the case of IM's, the apparently

optimum organization of the chip is 2 bits wide by 2048 words. Thus for a

MM of 32K words--reasonable for this application--16 blocks will be required.

As mentioned above it seems prudent to incorporate the same code

within the MM as in the IM's, namely a single-frame-error correcting, double

frame error detecting code. In the case of the MM, our reliability analysis

will show that single error correction is not quite adequate to achieve the

stringent reliability requirements, for the reason that the MM has too many

failure-prone chips within it. However, the portection against all double

failures appears adequate. There are several approaches toward achieving

double fault tolerance, among which are:

137

(a) the use of a'double error correcting code for all words

(b) the use of a spare frame within each block

(c) the use of a single spare block.

We -have ruled-out (a) as being too costly, both in terms of the extra

redundant bits and the decoding costs. Approach (b) adds very little to

the cost of the MM--approximately 5 percent--but it introduces the need

for extra switching to provide a route around the faulty frame.

It appears that the spare block approach (c) is the most attractive.

The extra cost is certainly moderate--6 percent for an original 16 block

memory. The routing arotnd •a bad block is relatively simple, involving merely

an address translation. In addition, a separate power supply could be pro-

vided for each block, thus providing a tolerance to single power supply failures.

There are two approaches toward identifying a faulty block of MM.

As the MM words are decoded by the decoders in the LP's, single errors in MM

will be revealed, but also corrected. Secondly, our intention is to peri-

odically diagnose MM, mostly to ensure that the rarely used programs retain

their integrity throughout the flight. As we show later a low , rate of diagnosis--

once every 10 seconds--is quite adequate.

We emphasize that the MM provides for single-frame fault masking with

block switchover to yield a system that is essentially double fault tolerant.

There are, however, certain double failure's that can disable the entire MM.

Since the MM data inputs and outputs corresponding to a frame are wired together,

two failures that each short out frames would not be. correctable. Although we

do nothave sufficient information to assess this possibility, we suspect it is

unlikely.

3. Bus Checker Organization

'The organization of each of the three bus checkers '(BC) is displayed

in Figure VII.5. ' For convenience of description we have shown the BC as com-

posed of seven distinct sections. This particular decomposition may not hold

in practice. A brief discussion of these sections follows.

138

Address
Lines from

LP's

SIGNALLING
ADDRESS INTER BC

TRANSLATION AND I/O's SYNCHRONIZATION

EXECUTIVE
ERROR SIGNALLING, COMPUTATION DISASTER

PROCESSING EXECUTIVE PROCESSING RESTART
RESTART

1
Executive	 LP Completion
Signalling	 Signals

Synchronization
Signals Signals
to/from
Other BC's

SA-1406-20

.I
Disagreement
Signals from

LP Comparators
and Error
Indicators

from LP Decoders

Absolute Address
	

Control Lines
Lines to MM, I/O
	

to LP,
BAM
	

MM, I/O, BAM

1••• t

FIGURE V11-5 BUS CHECKER ORGANIZATION

139

(a) Address Translation.

As indicated previously, addresses emanating from the LP's

are used relative to a base addressthat is computed by the éxecütive. The

address translation process, which is-merely forming the sum of ..the base

address and-relative address to compute the true.?vllI . address, is carried out

by the. BC.

(b) Signaling of Units

The BC is assigned therole of signaling the LP, I/O, and

Back-up Memory (BAM) units. -Such signaling . generally.signifies that-a word

of data is being-sent to the unit in question.

(c) Inter BC Synchronization

It is recalledthat three BC's areprovided so-as to afford a

tolerance to single BC failures. The voting of the BC outputs is. not accom-

plished within the.BC's but by voters at the inputs to the units--LP's,-MM,

I/O's, and BAM's. However, there is a need to synchronize the operation;of

each of the BC's. As with the duplexed LP's-the three BC's neednot -operate

in locked-step, but must be coordinated.upon delivering a signal .to. another.

unit. This coordination is attained by having-eachiBC deliver a ;synchro-

nization signal -to the otherBC's when it--is - ready' to.deliver asignal to a

12, MM, etc. The appearance-of two synchronization signals, inc]ud.ing a

self-generated one, is sufficient to enable the transmission. .Snchronizat.ion

signals appearing at times other than transmission times are ..ignored,-thus.

preventing afaulty.BC from.corrupting the other two BC's by:emittingrandom

synchronization -signals.

(d)' Error Processing

All disagreement .signals :from a duplexed processor-pair or

error signals from-an LP decoder are-directed-towards theBC. For "normal"

error processing, i.e. the response-to single unit-permanent failures or non-

massive transient failures, the BC merely records the identity ofthe unit

reporting the failure .and signals the executive.. It is likely that'the various

.140

LP's will be sampled on a round robin basis to prevent a permanently

disagreeing LP from seizing permanent control of the BC. It would also

be desirable for the BC to ignore a permanently disagreeing LP so as not

to continuously bother the executive.

(e) Completion Processing

When an LP completes a task it alerts the BC. Once again,

the BC merely records the fact and signals the executive. Around robin

sampling of the 12 outputs is again In order here.

(f) Executive Signaling and Restart

This section of the BC is responsible. for signaling the exec-

utive upon the completion of an application task or an error condition.

Accordingly, the BC knows the address of the executive 12. The signal is

sent to all 12's but only the executive should respond. There is a possi-

bility that a nonexecutive 12 could fail (in both P's) such that it thought

it was the executive, but this requires two correlated failures.

This section of the BC is also responsible for processing

failures in the executive 12, and as such is the final arbiter. If the

error signal emanates from the executive 12, the BC initiates the recovery

by first trying to restart the executive 12, and then, if that attempt is

unsucessful, finally switching in a spare LP to function as the executive.

As such the BC must retain the following information: (1) identity of the

executive, (2) absolute location in MM of a program that will restart the

executive and load in last input data, and (3) identity of all spare LP's.

(g) Disaster Restart

We mentioned previously that It is desirable for the BUCS

system to be able to respond to a massive transient that causes severe state

changes. Under such a transient, for example, the registers in the BC that

store the address of the executive LP could be corrupted. The Disaster

section is intended to combat such a transient by restarting the system.

In carrying out this role the BC performs global consistency checks on the

141

rest of the, system by executing a small program stored in an internal ROM.

For, example, if continuous errors are reported by many of the LP's or if

the executive fails to respond to signals, then the BC restarts the system.

We presume that it has access to a BAM that holds the program and possibly

a last'status dump. It is presumed that the identity of failed IP's and

failed MM blocks is also lost during the transient, so that the BC must

proceed slowly in a bootstrap approach toward activating the system. It

selects an executive LP and, a fte r determining that it is operative, lets

the executive continue with the reconfiguration.

We believe that the design of the BC according to the above

specifications is relatively straightforward. One possible difficulty con-

cerns the number of BC terminals. The control, signal lines are not a problem

here because only a few are associated with each unit. However, the address

input lines from the 12's could pose some difficulty since about 12 such

lines.will emanate from each P unit, corresponding to 24 from each 12.

Clearly, they cannot be wired together since there is no error correcting

coding of these lines. One approach is to have these address inputs trans-

ferred byte serially. Address requests to the. BC should occur infrequently

enough to warrant this serialization.

The BC as described above is a special purpose controller.

The BC could be realized as a small microprogrammed processor with about

100 words of memory. It would also require a multiplexer to coordinate the

communication with the LP's, MM's, etc..

D.	 Executive Operation

This section briefly summarizes the functioning of the executive in the

BUCS system. First we will distinguish the main roles of the executive.

1. .Applic'ation.Task Scheduling

We recall that tasks are loaded into a LP when they are to be serviced.

The executive supplies a MM address, and a word count to the BC in order to

142

initiate the loading process. Since the computation load can be predicted

for all flight contingencies during preflight planning, the task load and

task sequencing for each LP can be prestored in the executive tables. In
*

this case the executive merely cycles through a task schedule associated

with each LP. The scheduler could be driven by a clock whose frequency is

about the same as the highest iteration rate associated with a task--250

Hertz in our environment. At each clock occurrence, the executive determines

if any task that should have completed its execution has failed to do so. It

could also schedule any tasks that require service at that time, Including

performing of an I/O operationfor a task.

2. Background Executive Processing

There are several executive functions that require periodic but

infrequent service. Among these functions are the diagnosing of "unflexed"

hardware and the changing of the application task schedules due to a possible

mission change. A relatively slow clock, say 0.1 Hertz could drive this portion

of the executive. It is envisioned that these functions would be carried out

in the executive 12.

With regard to diagnosis there is a need to periodically check

portions of the system that are "unflexed," i.e. very rarely stlmulated. Such

portions include programs that are needed only for landing, executive programs

that control reconfiguration, unused portions of MM, and the comparators assoc-

iated with 12's. The particular problem of concern here is that two failures

could possibly occur in a hardware section that is not exercised during normal

computer usage. Hence when the particular hardware section is needed, say a

memory block holding a reconfiguration program, it would not be operative. The

solution is to diagnose such sections. With regard to rarely used programs the

solution is simple--merely read through the storage holding the programs and

* This simple cyclic scheduling process also requires that no preemption of
tasks is requizd prior to their completion. If It turns out that inter-
ruption is required to effect the multiprogramming, then some swapping of
LJVI memory space will be called for, without introducing any fundamental
difficulties.

143

check for the appearance of any errors that are handled by the decoder.

The effect of an error Is handled by the executive transferring the infor-

mation in the offending MM block to another MM block.

For multiple failures in the comparators and other error indicators,

the solution Is also quite simple. Within the LP's let there be a few routines

that Introduce errors. Corresponding . to such routines provide a few words

in LZ4 that purposely contain one or two errors. The reading. out of these

words should. induce a properly functioning decoder to emit an error signal.

The comparators associated with P units are checked by comparing the-values-

store . d in two; registers that are purposely set to be different. These types

of diagnoses by the executive should Improve the situation, but clearly do.

not solve the problem completely.

For example, with regard to a program intended, to carry out a recon-

figuration, is It sufficient to merely check the integrity of the stored

version of the program? The possibility, albeit unlikely, exists that a par-

ticular portion of a register, used only for this program, could fall in each

of the P units. Under this event the. reconfiguration program would not function

properly, , although no comparator would emit an error signal. With the basic

architecture-of BUCS (or a three voting SIFT or Hopkins' scheme), it is un-

likely that the system 'canbe'mads-totally tolerant to all double faults. The

design problem we have addressed Is the reduction of the fraction of al-1--double

faults--say to one percent--that can. result in system failure.

3. Single Error Processing.

If . an error is detected as a.disagreement among. P units, as a 'single

error indicatton in an MM block, or as a. double error Indication in an LM,

the executive is signaled. Since the failure might only, be transient the exec-

utive should reinitiate the computation, with the initial data and allow the

computation to be retried. IfI a failure' occurs several times in successIon,

another LP or another MM block should be-initiated with the same initial data.

144

A question arises concerning the response to a second error that

occurs in the executive LP during the retry reconfiguration process. The

probability of the'. second error arising from a second permanent failure is

indeed remote, since we do not expect more than two faults in a mission.

However, a second transient fault is possible and should be handled by the

system. The process is as follows: the pertinent error data--identy of

possibly failed 12, and the number of retries effected so far--is stored in

the executive tables as part of the initial executive program data. (The

second failure occurring during this brief time it takes to store the initial

data would possibly be untolerated.) Hence, if the executive fails, the bus

checker can activate another executive to effect a retry and possible recon-

figuration of the first executive. A failure in the second executive would

result in a similarprocedure, involving the activation of a third executive,

etc. The process operates as a pushdown stack of executive status, although

the system's resources are likely to be depletedbefore the stack gets very

deep.

4. Executive Load

The executive routines as described above should require no more

than 4K words of storage, including data, and hence the entire executive should

fit into a LM. The task scheduling routines, including the process of loading

programs into LM's, should consume no more than 0.1 MIPS, and as such repre-

sents about a 20 percent overhead, compared with the application tasks. The

background executive processing should consume about 100 msec every sec, or

equivalently 0.01 MIPS--a negligible overhead. Note that the MM diagnosis

portion of the executive will by necessity be multiprogrammed with other ex-

ecutiv.e functions. The decomposition, involving the diagnosis of a block of

MM in a given computational interval, is easily achieved.

Our analysis has shown that an executive that is centralized and is

normally operative in a particular 12 (except when that U' fails) is adequate

for controlling the presently conceived system. If it becomes desirable in

the future to incorporate the BUCS concept within a much larger system--say

containing 25 LP's--some modifications arecalled for. In this case, the

145

task scheduling and background task part of the executive could be dis-

t.ributed among the processors, as in SIFT, If the scheduling routine can

be made small enough, a copy could be permanently resident in each of the

LZvI's. In addition, if it becomes feasible (on the basis of application pro-

gram size) to use a 2K UVI instead of 4K then the scheduling 'portion of the

executive will be permanently resident in an LP. The remainder of the ex-

ecutive will be treated as an application task to be loaded into an LP, when

needed, under control of the scheduler.

E.	 Reliabilit y and Performance

This section presents a simple analysis of the reliability of the

BUCS system as described in the previous sections. Although the analysis

is simple, we believe that it is conservative, i.e. the actual reliability

is expected to be better than described here. Our intention, is to show that
-8

with rather low redundancy--less than 40 percent--the reliability goal of 10

for a 5 'hour mission is attained.

Our assumptions on the failure mechanisms are as follows:

(1) Failures from chip-to-chip are assumed to be independent, and

failures do not -propagate from chip to chip.

(2) The failure rate is 10- 6 failures/hour/chip.

(3) The failure rate is independent of time--a good assumption for

short missions.

(4) The probability of failure of the total system is derived as

the sum of the failure probabilities of the individual subsystems--

a good assumption for the low probabilities that we are dealing

with.,'

(5) Only permanent failures are included in the model.'

The BUCS architecture exhibits 'the following failure states for each of

the major subsystems.

146

(1) Bus Checker (BC)--The failure of two of three BC's leads to a

system failure. Each BC is assumed to contain 3 chips.

(2) Processor (P) portion of LP's--we assume one spare duplex P unit,

and 6 duplex P units required for a non-redundant system (5 for

the application tasks and 1 for the executive),. Hence the failure

of two P-pairs leads. to system failure. Each P pair consists of

6 chips.

(3) Local memory (LM) portion of LP's--we assume one spare UvI and

6 required for a non-redundant system. Hence the failure of

two LMs leads to system failure. Each LM is protected by a

single frame-error correcting code, i.e. two frame failures within

an LM lead to an IN .failure. Each LM contains no more than 22

chips (arranged as 2 blocks of 11 frames each).

(4) Main memory (MM)--Each block, of MM is protected by a single

frame-error, correcting code, with a switchover to a spare block

whenever a failure occurs. Hence, it takes three bloCk failures

to cause a system failure. The MM contains 176 chips arranged

as 16 blocks of 11 frames each. (This allows for sufficient memory

to hold all application programs, executive programs, plus a single

spare block.) We pessimistically assume that three chip failures

anywhere lead to system failure.

(5) Second failure within reconfiguration interval--a second failure

occurring while the system is responding to the first failure will

lead to system failure. We assume that the reconfiguration interval

is 10 seconds--clearly a pessimistic guess for the response to a,

failure, but reasonable as an interval between diagnoses of the MM.

Given the first failure in MM, the second failure would have to

occur in the same block of MM as the first failure to bring the

system down. On the other hand, given the first failure in a LP,

the second failure would have to occur in the spare LP taking over

the tasks of the first LP to bring the system down. The net effect

is to reduce the fraction of equipment that is vulnerable to about

1/10 of the total equipment. The total system' contains about 400

chips.

147

(6) Fatal double failures--because of the "unflexed" components

(Section D-2) certain double failure patterns lead.tosystem

failure regardless of when they occur during the flight. A

rough analysis of the double fault patterns indicates . that less

than 1 percent of thedouble fault patterns will lead to system

failure.

We are now in a position to evaluate-the-contribution of each of the

above failureniëchanisnis to-the total system failure probability.

For failure mechanism i, i = 1, . . , 6, assuming the parameters given

in the opening of this section, the failure probability P f is:
i

Pf = () • (3 . lO:6)2 . 5	 :1.35.1010

Pf	 () • (6.106)2.5	 3.78.10
2

= () [(2?) . 10
12j2	

5

= (176)	
lo8. 5	 negligible

4

Pf	 400.106	 3600 • 399lô 6)	 .5	 (1/10) = .22	 lO

Pf = (40)	 1012	 = 4 10

Foxing the sum	 P, =	 8 X-l0 , which is within -the goal of.1Forming for
.1=1	 i

the five hour mission.

Clearly, the two most significant factors are P.. and Pf . The former
2	 6

can be reduced to a negligible quantity bymere1y providing one :additional

spare LP;(for two spares) total, at an. additional redundancy cost of 15 percent.

J148

On the other hand, P_ can be rduced only by carrying out more diagnoses

to reduce the quantit of unflexed hardware or by good engineering design

(e.g., locate sensitive , gates on opposite ends of a chip).

We emphasize that these figures are tentative, although probably

pessimistic. The redundancy is quite low, being about 30 to 50 percent in

total extra chips required for the fault tolerance (dependent upon LZvl size)

plus about 10 percent extra chips required to implement theexecutive.

A few comments are in order with regard to BUCS performance measure-

ments other than failure probability. One Important parameter of the system

is the down-time following a transient or permanent failure. Several of

the crucial computations (flutter control, load control, collision avoidance)

cannot be unserviced.for more than a few milliseconds. We will now demon-

strate that no such discontinuity need occur in.BUCS.

Typically, when a failure Indication is broadcast to the BC, the BC

will initiate a retry. The main delay in effecting this retry is the time

in reloading the program into the LM from the MM. However, the critical

programs never require more than 1K words of storage, so it seems reasonable

to accomplish this reloading in a few milliseconds. If the executive LP

fails, the entire 4K word executive must be reloaded, an operation that could

take 10 msec. There might be some tasks that cannot wait for this transfer

to be completed. The solution is to reload first that portion of the exec-

utive concerned with scheduling--a portion that should not require more than

a few hundred words. Then the reloading of the rest of the executive can be

multiprocesSed with the critical tasks, encumbering no further delay. However,

If a second failure occurs' In an application task LP, the system might come to

a temporary halt. However, as we demonstrated above, the probability of a

second failure Is remote.

149

F.	 Embellishments and Discussions

The BUCS system is an attractive architecture for fault tolerance

because of its relatively low redundancy. In our application the redun-

dancr is low because the system is memory dominated permitting the use

of coding protection for much of the hardware, and because the applica-

tion program mix permits a fine decomposition of processing power into

relatively small processors.

The three main deficiencies of the BUCS approach as described

above are thei following:

High speed operation will preclude the byte transfer of

information between LP's and the BC. Thus an extremely

large number of pins will be required for the BC.

• The expandability of BUCS is limited by the capacity of

the BC. This speed limitation is common to all single

bus multiprocessors.

The redindancy, although low as compared with most fault

tolerant architectures is still needlessly dominated by

the LM's associated with each LP. These LM's were in-

serted to. reduce the bus traffic, and represent 80 percent

of the LP hardware.

One way to circumvent these difficulties is to incorporate a multi-

bus structu.re--a concept suggested by Jim Miller of Intermetrics. The

main memory system as described would be replaced by a system composed

of numerous modules. With such an embellishment the LM's can be dis-

carded in favor of simultaneous communication among several LP-MM

modules. A single bus checker unit (triplicated), almost identical to

the one described in this chapter, would establish the communication

links, respond to error signals and coordinate all calls on the executive.

It is envisioned that a communication link between an LP and a MM

module would remain established for the duration of a computational task.

If the processing required temporary access to another MM module, say,

for a particular data set, the BC would be signaled. The signaling process

would correspond closely to a page fault in a contemporary paged machine.

150

The type of multiprocessing as conceived here is grealy enhanced by pre-

dictable computational demands. Thus the programs do not require any

dynamic linking except subsequent to a permanent fault. However, even

in this case the relinking involves.only a simple address translation.

151

VIII SUMMARY AND CONCLUSIONS

A.	 Summary

In this study we have attempted to identify the architectural features of

a digital computer that are well-matched to the reliability and computational

requirements of an advanced commercial aircraft. The intention is to have a

central computer complex carry out the computations presently distributed

among small digital systems, analog computers and mechanical computers. As

part of the study we investigated three candidate architectures that could

meet the specific requirements. One of the candidates is a multiprocessor due

to Hopkins; the other two candidates were conceived during this present study--

SIFT and BUCS. Before embarking on a detailed design effort on these systems

we surveyed the numerous fault-tolerant architectural concepts that have been

developed over the past decade. One of these concepts (JPL-STAR) has been pur-

sued to the breadboard stage, but the rest have remained "paper" designs.

We do not feel that any of the surveyed systems is suitable for NASA-

Langley, mostly because the designs have not been carried to the necessary

detail such that the fault-tolerant procedures could be evaluated. The one

notable exception is the STAR, in which all fault-tolerant procedures have

been specified, and in some cases implemented. It is clear that the STAR

can tolerate any single fault that disables one of the independent units that

comprise the system. This fault tolerance is achieved with a relatively low

cost and less than 100 percent redundancy, assuming sufficient spares for

single fault tolerance. Transient faults that have the same effect can also

be tolerated. However, the following deficiencies of STAR have induced us to

pursue the three aforementioned candidates.

• STAR is not readily expandable/contractible to accommodate

large variations (say, an order of magnitude) in computational

load.

© STAR was not designed with an LSI environment in mind. It

contains more module types than need be, and the arithmetic

codes may not be useful for the massive failures expected

of an LSI implemented arithmetic unit.

•R'JC	 G PAGE iL.&NK NOT FILMED

153

The design does not take advantage of the independence of the

computations. That is, the aircraft environment almost implies

that the fault tolerance' and graceful degradation should be

carried out by a multiprocessor.

The three candidate designs, in addition to STAR, can be contrasted

in their mechanisms for carrying out the various fault tolerant procedures.

Table VIIJ.l indicates the comparisons for these four systems. In the

table we have included the following functions:

Fault detection The detection of error conditions in memories,

buses and processing units.

Fault masking Theremoval of errors, within a particular unit, for

example by error-correcting codes within a memory so

that they are not aparent to other units.

Fault correction The procedures that are used to initiate a recovery

procedure after an error has occurred.

Roll-back	 The ability to re-run part-of a program either for

error detection or correction purposes (sometimes

called "check .point/réstart').

Fault location	 The ability to determinethe'unit that is faulty,

when an error occurs.

Reconfiguration The ability to change the units that are used for

a calculation.

Periodic' diagnosis The flexing at various system blocks or function,

in background, to determine if any permanent failures

are present.

The' following abbre.'iations are used

H .'.. hardware

M ... microcode

S ... system' routine

E ... executive

A ... application program.

Multiple entries in Table viii. 1 indicate that design options still exist.

154

JPL STAR HOPKINS BUS-CHECKER SIFT

Fault detection H H H,	 S, H,M,S

Fault.masking H1 H4 H' (2)

Fault correction 11(1) H S M'S

Roll-back H H S S,E

Fault location H H S E

Reconfiguration H E .	 E E

Periodic Diagnosis E E5 E6 S,E7

Table VIII.l	 Comparison of Fault-Tolerant Procedures

(l) Within the TARP (Test and Repair Processor).

(2) Within SIFT the memory could use hardware fault masking.;

otherwise no fault masking is required.

(3) Assuming that the bus checker units are implementing system

functions.

(4) By voting on the buses and possibly by coding within, the memory.

(5) Of the hardware voters.

(6) Of the memory system.

(7) Of the software voters and reconfiguration programs.

155

Table VIII. 2 compares the three candidates according to the check-

list categories of Chapter V. Table VIII.3 compares the candidates in

terms of perfOrmance.

SIFT HS BUCS
COMPUTATIONAL ENVIRONMENT

MULTIPROGRAMMING Yes No "Yes"

TECHNOLOGY

•	 NUMBER OF CHIP TYPES Low Medium Medium
o	 SPECIAL FAULT. •ISOLJTION

HARDWARE NEEDED Low Moderate -	 High

REDUNDANCY	 . High High Low

RELIABILITY MODELING

o	 CREDIBILITY OF MODEL Very High High Moderate

EXPANDABILITY Very High Low Moderate

PROTOTYPE DEVELOPMENT EFFORT Low High	 . Moderate

Table . VIII.	 2	 Candidate Comparisons by Checklist Categories

SIFT . HS .BUCS
TIME TO DETECT MOST	 100 Psec - 10 msec 2sec 2 .Lsec - lOmsec

FAILURES	 -

ERROR CORRECTION TIME	 . 0	 . < 1 msec 5 msec

REcOVERYTIME	 -	 >.lOmsec . 2 rnsec	 . 10-msec

BUS DATA. RATE	 200 kb 20 mb 2 mb

REDUNDANCY.	 > 3	 . .. > 3 > 1.5

rTableVIII.3	 Performance Comparison of Candidates

156

D •	 I._,UL1(.. LUZ LUtl zl

We conclude that a fault tolerant computer can be built for commercial

aircraft at this time. A number of factors have led to this conclusion;

Component costs continue to drop to the point where the

hardware costs of a triplicated (quadruplicated, etc.)

computer system are an insignificant fraction of the total

aircraft cost (less than 1 percent).

0 The aircraft computations do not exert a large computational

load, relative to the capacity of contemporary computers.

o An understanding has been acquired of the fault tolerant

procedures to the point where almost any desired reliability

can be convincingly demonstrated. Included herein is a

tolerance to permanent faults that disable a chip, and to

transient faults, that do not completely destroy critical

memory functions.

Of the three candidate-architectures investigated we recommend that

SIFT be pursued for future development. This recommendation is made

recognizing that all of the architectures exhibit sufficient reliability

and fault tolerance, and SIFT incurs the largest cost in terms of compo-

nent ccunt. The primary reasons for selecting SIFT over the others are:

0 it should incur the lowest development costs and perhaps

- development costs are more crucial than ultimate component

costs.

° It accommodates varying reliability requirements among

computations.	 -	 -

The redundancy can be reduced by utilizing a central memory

that is protected by coding techniques.

C. It is easy to modify since the fault tolerance is implemented

in software or microcode..

The concept can be adequately demonstrated with off-the-

shelf processors and memories; only the bus must be

specially designed.

-	 157

Although the concept requires software , for error detection,

etc., it does not require special software for enforcing

protection disciplines. Such protection is inherent in the

design..

158

Appenuix P.

ALLOCATION AND SCHEDULING SYSTEM ROUTINE

These two functions are desôribed in terms of the data structures

used, and the way in which they are manipulated;

The major. data structures are shown in Figure A-i. The six vectors

T, DT, MT, CT, CI, MR contain, for each task., the data required to calculate

the task matrix. The information contained is:

	

T	 The 'iteration period for the task

	

DT:	 The permissible, variation of T, i.e., a task will normally be

carried out between T : - DT andT + DT after the previous

iteration

	

MT:	 The 'Miss Time' which is the maximum time that can be tol-

eratedwithout the task being carried out.

	

CT:	 The computer time required to carry out one iteration of

the task.

	

CI:	 The current iteration being computed for the task

	

MR:	 The memory requirement for the task.

The flight phase 'matrix contains the priority number for each task

for different flight phases. In our application, approximately ten flight

phases are assumed. These will include normal phases such as takeoff,

climb, cruise, etc., and also potential abnormal phases (e.g., when an

engine is inoperative). A priority of 0 indicates that a particular task

is not carried out during this phase. It is assumed that' transitions from

one phase to another is initiated by aircrew action.'

A-1

PROCESSORS

TASKS QUEUES

r -'\ CHANGE
TA	 T	 T

B	 C T' M FLAG

T TA 0 0

TC 0 •

P3 x x TA 0 1

P4 T0 0 0

TASK MATRIX I	 • 1 QUEUE MATRIX

PNLE .11 I	 • I	 .1 JH

T

DT

MT

	

CT	 TASK PARAMETER MATRIX

	

CI	 •

MR

TT TM

	

F1	 1	 4	 2	 2

	

FLIGI1tF2
	 1	 • 0	 2	 2	 •	 • •

PHASES	 •

FLIGHT PHASE MATRIX

tF R !	 i. I.!T	 i r i
SA-1406-21

FIGURE A-i ALLOCATION AND SCHEDULING DATA STRUCTURES

A-2

The vectors TT and TM hold, respectively, the total computer time

required' and the total memory required for each phase of the , flight.

The queue matrix represents the output of the scheduling task within

the executive. For each processor a queue is maintained as to which tasks 	
V

are to be computed next. It is assumed that each processor will examine

the queue and store a local copy from time to time, thereby reducing the

number of accesses required to be made into the queue matrix. If the

scheduler has to change a queue, a bit is set in the change flag vector

indicating that the processors' local copy of the queue must be discarded

and a change made. This will normally occur when the flight phase changes.,

and also in the event of reconfiguration following a fault condition. It

is expected that the vectors within the queue matrix will be maintained

as circular buffers, thereby preventing any requirement to change the numbers

except to place new items on the queue (change a 0 to the task number) or to

remove tasks that have been completed (change a task number to a 0).

In addition to the data structures described above, the allocation task'

will store a note as to which flight phase is current, and also it will keep

a note of the resources currently. available, normally those processors, busses

and memory modules that are operative.

The allocation function consists of deciding which tasks are computed

in each processor. Two possible algorithms are described -- the first

algorithm attempts to find a solution, the second algorithm adjusts the

result of the first to remove cases where necessary constraints have been

disobeyed.

The allocation, problem can be stated as follows:

Let P be the number of processing modules having the same computing

power' and associated memory capacity. Let N be the number of'tàsks.

for the j th task (j

c = fraction of-computing power required

= fraction of memory capacity required

A-3	 /

(3).

(4)

7A m
J . i i 3 -

c
•jJjjl

(Memory constraint)

(Computing constraint)

r = replication required for the task
3

Determine an allocatioz matrix A 1 : i = 1,...,P; j =

where

A	 =
ii	

0 or 1	 (No fractional allocation) 	 (1)

(Correct replication)
	

(2)

Note that we are only concerned with finding an allocation matrix

and not with any defined optimum. It may be desirable to define an optimum

solution as one which leaves all spare capacity (both computing and memory)

uniformly distributed among processors; however, a contrary case can be made

to leave spare capacity concentrated in one processor in order to aid the

reconfiguration and re-allocation in the event of a processor failure. The

algorithms below were not. intended to find such an optimum, however defined.

Replication of tasks can be. both active and passive. By active, we

mean that the tasks will run in those processors. By passive, we mean that

sufficient capacity is available to allow them to run in the event of failure

of one of the active allocated processors. Passive allocation would only be

used for those tasks where the task must be carried out in a time interval

that is too small to allow loading it to a new processor upon reconfiguration.

Algorithm 1

The general scheme of the algorithm is to allocate tasks one by one

starting with that task which has the greatest demand upon a resource (i.e.

maximum c or m) and progressing down to the last task which has the

easiest constraint. The allocation is made to those processors-that have

the maximum available of the most demanded resource. Ties are decided

arbitrarily, in our example, by allocating to the lowest numbered processor.

A-4

In the event that m = C., the tie is broken by deciding on the basis of the

resource which is most critical (memory in our example). The algorithm is

shown in flow-chart form in Figure A-2.

Algorithm 2

Algorithm 2 is applied after algorithm 1 and is applied repetitively

(including possibly zero times) until constraints 3 and 4 are satisfied. The

algorithm consists of finding that constraint 3 or 4 which is disobeyed to

the greatest extent, and moving a task to that processor which has the maximum

available of that resource. The movement is subject to the constraint that a

single task may not exist twice in the same processor (i.e.; A 	 or 1).

The task that is moved Is that which most tends to equalize the constraints.

A more sophisticated version of the algorithm Is to re-allocate (using algo-

rithm 1) all the tasks previously allocated to the two processors.

Example

Table A-1 shows the values of r,,	 and c for a real example.

Table A-2 shows the application of algorithms 1 for this example. As

can be seen, algorithm 2 does need to be applied as all constraints are

satisfied. To illustrate the use of algorithm 2 consider the artificial,

example set of 3 tasks, with P = 2.

Task m c r,,

1 .1 1

2 .1 .8 1

3 .7 .7 1

The result of algorithm 1 will yield an allocation matrix

Tasks

	

[1	 0	 1
Processors I

	

[0	 1	 0

A-5

INITIALIZE

FIND MAXIMUM
c1m1=c,m

FIND MAXIMUM
C, m

FIND MINIMUM
C 1 , M1

ALLOCATE TASK J
TO MODULE i

•	 REMOVE TASK
I	 I	 FROM LIST

No • DONE

c.	 Computing Requirement
Yes for Task j

m = Memory Requirement
for Task j ALL M	 Yes

C. = Computing Load Already Cl	 1	 Exit

Allocated to Module i
= Memory -Load Already,

•	 Allocated to Module i No

• Algorithm 2
•	 SA-1406-22

FIGURE A-2	 ALLOCATION ALGORITHM 1

A-6.

Table A-i

Example Data For. Allocation Function

Task No. m c r

1 .02, .04 3

'2 .02 .33 4

3 .10 .12 4

. 4 . .03 .02 3

5 .23 .14 .4

6 .03 .01 .	 3

7 .43 .25 3

8 ' .12 .09 3

9 .20 .06 3

10 .10 .01 3..

11	 ' .10 .01 '	 3

12	 ' .12 .12 4

13 .15 .01 3

14 .10 .20 '4

A-7

Table A-2

Application of Algorithm 1 for Data in Table 1 and P = 6

PROCESSORS

1 2 3 4 5 6

Task just allocated Em Ec Em Ec Em Ec I Em Ec Em Ec I Em Ec

7 43 25 43 25 43 25

2 45 58 2 33 2 33 2 33

5 66 39 25 47 25 47 25 47

9 45 53 45 53 45 53

14 76 59 53 45 55 73 55 73

13 60 59 68 46 60 54

3 70 71 86 71 78 58 70 66

8 82 80 67 82 67 82

12 90 70 79 94 79 94 82 78

10 92 81 89 95 89 95

11 96 72 99 96 92 79

1 98 76 92 74 94 83

4 95 83 95 76 92 97

6 98 84

= =

95 98

-

97

-

84

Totals F98

=

84

=

98

=

76 195 76 11 99 96 95 98 97 84

*Capacity is expressed as a percentage, unchanged values not entered.

A-8

with

:A 1 m. = 1.5 ,	 A2 m . = .1

A 1 c . =	 .8	 A2c. = .8

Algorithm 2 calls for movement of a task from processor 1 to processor 2,

based upon balancing the systems' as far as possible.

The changed matrix would become

[i

This allocation matrix satisfies the constraints

A-9

Appendix B

COMPARISON OF THE SIFT SYSTEM AND A MULTI-CHANNEL SYSTEM

INTRODUCTION

In this appendix we compare the SIFT architecture with the multi-

channel concept. The multi-channel concept uses n independent computers,

each capable of performing all tasks, and 'a highly reliable voter at the

output to compare all data before it is transmitted to an effector.

Variation on both the SIFT and the multi-channel concept are discussed.

In all cases we assume a chip failure probability of 106 per hour.

We use the notation that P[event] = probability of the event occurring per

hour.

REQUIREMENTS

*
We distinguish between tasks of most criticality (MC) where error

probabilities should be.be .low 10-8 per hour and those less critical (LC)

tasks where errors should be beloe 10	 per hour (approximately). We also

distinguish those tasks required for automatic 'blind' landing and other

tasks. The landing phase is the most demanding in terms of computing load.

Based on the entries of Tables 2 and 3 of Volume II, we summarize in

Table B-1 a representative set of requirements, where M = memory require-

ments in K words and P = processor requirements in MIPs.

Table B-1

Computation and Memory Requirements

Landing	 Other

M.C. P=	 .29 P=	 .09

M= 8.7 M= 2.2

p =	 .9 P=	 .05

L.C. M = 6.8 M = .5.5

*	 .
In this analysis, we do not distinguish between erroneous outputs to
actuatórs.and null outputs. A more comprehensive analysis would need
to make this distinction.

B-1

Note that no allowance has yet been made for an executive to. carry out

such functions as multiprogramming, voting, etc.

We assume that words contain, on the average, 24 information bits. We

further assume that a memory chip contains 4K bits, and that it requires 30

chips/MIP to realize the CPU.

Case 1 Multi-channel

We assume 10 percent extra memory and processor requirement to handle

the multiprogramming and other executive requirements (interrupt handling,

etc.). The multi-channel concept requires enough memory in each channel to

hold all tasks (= 23.2K + 10 percent	 26K), and the CPU must handle the

heaviest task load (= .38 + 10 percent	 .42 MIPs). Therefore for each

channel we have

26K words = 156 chips	

}

	
170 chips

0.42 MIPs	 13 chips

Assume that the chips in the voter (sufficiently replicated for reli-

ability) are negligible and considerthe probability of error for 3, 4.and

5 channel configurations.. The results are displayed in Table B.2.

B-2

Table B-2

Reliability Estimates for Multi-channel System

3 Channel

Total chips	 = 540

P{l fault]	 = .51 X 10 ,... voting masks error, discard faulty
channel

P[2 faults]	 = .17 X 1016, ... system failure

4 Channel

Total chips

P[l fault.]

P[2 faults]

P[3 faults]

5 Channel

Total chips

P[l fault]

P[2 faults]

P[3 faults]

P[4 faults]

=680

= .68 X 10, ... voter removes faulty channel

= .34 X 10
6,	

voter masks second fault, discard faulty
channel

= 1.2 X - 10-10 ,... system failure

=850

= .85 X 10, ... voter removes faulty channel

= .58 x	 ... voter removes faulty channel

= .3 X 10, ... voter masks fault, discard faulty channel
-13	 .

= 1 X 10	 ,... system failure

Case 2 SIFT With Fault Tolerance Achieved by Uniform Replication

For this case, the strategy is to triplicate all tasks, and when faults

occur to reduce the LC tasks to duplicate, then single processors, finally

removing them entirely in the event that resources are drastically reduced.

We assume 20 percent overhead for executive plus voting routines.

The memory and processor requirements are as in TableB-3. The re-

liability results are displayed in Tables B-4, B-5 and B-6, for a SIFT sys-

tem decomposed into 4, 6 and 10 modules, respectively.

B-3

Table B-3

SIFT Processor and Memory Requirements

Landing	 Other

. P=	 .35 P=	 .11
M. C.

M = 10.4 M = 2.6

P=	 .11 P=	 .06.
L. C.

M=	 8.2 M= 6.6.

Total memory requirement = 27.8 j 28K
Maximum CPU requirment = .46 MIPs

Table B4

Reliability Estimates for a 4-Module SIFT

Each memory = (28 X 3)/4 = 21K = 126 chips 	
136 chips

Each CPU	 = (0.46 X 3)/4 = 0.35	 10 chips J

Total chips = 544

We denote MC during landing as MCtL etc.

P[l fault] =.54X 10 3 ,M = 63K, P = 1.05

During Landing: Remove.LC, MC survive

During Other: MC survive, all LC to SIMPLEX, future removal LC/L

P[2 faults] .= .22 x 10 6 , M = 42K, P = 0.70

During Landing: MCA only survive in DUPLEX

During Other: All MC to DUPLEX in memory, all LC to SIMPLEX, future re-
moval of LC/L

P3 faults] .= .6 X 10 10 System Failure

B-4

Table B-5

Reliability Estimates for a 6-Module SIFT

Each memory = (28 x 3)/6 . = 14K = 84 chips
	

91 chips

Each CPU	 = (0.46 X 3)16 = 0.23 1 7 chips J

Total chips = 546

P[l fault] = .55 X 10, M = 70K, P = 1.15

During Landing(1)Fault masked, LC to SIMPLEX

During Other: Fault masked, future LC/L to SIMPLEX

P[2 faults] = .25 X 10 6 , M = 56K, P = 0,92

During Landing: Fault masked, MC, LC to DUPLEX

During Other: LC failure, MC fault masked

P[3 faults] = .91 X 10
-10

M = 42K, P = 0.69

During Landing: System failure

During Other: LCfailure, MC fault masked

P[4 faults] = .16 X 10 14

All: System failure

(1) Assumes slight increase of CPU to .24 MIPs

B-S

Table B-6
Reliability Estimates for a 10-Module SIFT

Each memory	 = (28 X 3)/10 = 8.4K = 51 chips

}	
55 chips

Each CPU	 = (0.46 X 3)/10 	 0.14	 chips

Total chips	 = 550 chips

P[l fault] =	 .55X l0, .M = 75.6,	 P = 1.26

During Landing: Fault'masked, LC to DUPLEX

During Other: Fault masked, LC/0 to DUPLEX, Future LC/L to DUPLEX

P[2 faults] =	 .27 x 10_ 6 , M = 67.2, P = 1.12

During Landing: MC fault masked, LC failed

During Other: Fault masked, Future LC/L fail

P[3 faults] =	 .19 X 10 9 , M = 48.8,	 P = O98

During Landing: MC fault masked, MC/L to DUPLEX

During Other: Fault masked, Future LC/L fail

P[4 faults] =	 .73 X lO s , M = 40.4,	 P = .84

During Landing: Possibility of system failure

During Other: Possibility of LC failure, future MC/L in DUPLEX

Case 3 . SIFT .with Coding, in Memory

The majority of chips for SIFT in Case 2 are used in the memory.

We can add protection by using an error detecting/correcting code. The

analysis displayed in Tables B-7 and B-8 is for a single. error correcting,

double error detecting code with an' assumption of 25 percent increase in

memory cost. A module failure requires failure of one chip in the CPU or

two chips in the memory. The reconfiguration strategy is as shown in

Figure B-1, for most-critical tasks. Low criticality tasks are run in

SIMPLEX mode.

B-6

Reliability Estimates for a 3-Module SIFT With Coding in Memory

Memory per module = (13 X 2 + 15)/3 + 25 per cent 17K = 102 chips

CPU per module	 = (.35 X 2 + Al)/3 = .27 = 8 chips	 J 110

Total chips = 330 chips

P[C1J fault] = ' .8 X 10 5/per module

P [single memory fault] = 104

P[double memory fault] = 10

P[LC task failure] = .8 X 10

P[reconfiguration for MC] = .3 tX 103

	

P[second module failure (undiagnosable)J = 3 X 10 4 X .8 X 10	 = 2.4 X lOs,
system failure

RUN TASK
IN DUPLEX

DOUBLE	 SINGLE

MEMORY	 MEMORY FAULT	 CPU FAULT
FAULT	 (MASKED)

REPEAT TASK
TO GOOD	 4	 CPU FAULTY IN NEW

	

_j-J RECONFIGURE	 DIAGNOSE WHICH I	 I 	 I

MODULE	 MODULE	 BY REPEATING I
I IN ANOTHER

[
MODULE	 I

SA-1 406-25

FIGURE B-i SIFT WITH CODING, RECONFIGURATION STRATEGY

FOR MOST CRITICAL TASKS

*
CPU fault is any disagreement between the cooperating pair of modules,
without indication of memory fault. It therefore includes the case
of multiple non-correctable or-detectable faults in the memory of the
module, which is far less probable than a CPU fault.

B-7

Table B-8

Reliability EstinI.tes for 4- and 6-Module SIFT
With Coding in Memory'

4 Module

Memory per module = (13 x 2 + 15)/4 + 257o 13K = 78 chips	
84 chips

CPU per module	 = (.35 X 2 + .11)/4	 .2 = 6 chips	 5
Total chips	 = 332

P[CPU fault] = .6 X 10 5/per module

P[single memory fault] = .8 X 10 -4

P[double memory fault] = .6 x 10-8

P [LC task failure] = .6 X 10

P [reconfigurationj = .3 X 10

P[second module fail] = •.8 X 10

P[MC task fail] = 1.3 X 10

16 Module

Total chips = 348

P[LC fail) = .4 X 10

PMC fail] = 2 X 10

Note that in the SIFT architecture, either with or without coding the

occurrence of faults reduces the available CPU power preventing the MC/L

tasks from being carried out. The CPU is only approximately 8 percent of

the total. If the CPU were, to be designed with double the capacity (in

MIPs) the cost would rise by 8 percent but the probability of system failure

would, for some systems, be improved immensely. The results for the different

configurations are displayed in Table B-9 and in 'Figure B-2.

C

B-8

1 0-13

icr'2

10-Il

10_b

icr9

• io

I

icr6

NUMBER OF CHIPIS
$A-1406-1

FIGURE B-2 PROBABILITY OF FAILURE OF MOST CRITICAL FUNCTIONS P (MC fail)
AGAINST NUMBER OF CHIPS

Table B-9

Summary of Size and Reliability of Alternative Architectures

System No	 of Chips P[LC fail] P[MC fail]

REQUIREMENTS 0.(10) 108

SIMPLEX 170 2 X 104

MULTI-CHANNEL

3	 MODULE 510 1.7 X

4	 U 680 1.2 X 1010

5	 " 850 1.0 X 1013.

SIFT -

4	 MODULE 544 5.4 X 10 4 6 x

3	 H 546 2.5 X10. 6 9 x 10_li

10 550 2.7 X 10 7 7.3 X 10

SIFT + CODING

3	 MODULE 330 8 X 16- 6 2.4 X 10

4	 " 332 6 X 10- 6 1.3 X 10- 11

6	 " 348 4 X 10 6 2 X ioll

SIFT (DOUBLE CPU MIPi)

4	 MODULE 584 2 X 107 (10- 14
6	 " 588 10

(iO) -18

10	 " 590 -

SIFT+ CODING +
DOUBLE CPU MiPs

3	 MODULE 354 1.6 X 10 9 X 109
U

356 1,2 x 10 (lO0

6 372 8 X 106. :	 (10)

B-b

	Page 1
	Page 2
	Page 3
	Page 4
	Page 5
	Page 6
	Page 7
	Page 8
	Page 9
	Page 10
	Page 11
	Page 12
	Page 13
	Page 14
	Page 15
	Page 16
	Page 17
	Page 18
	Page 19
	Page 20
	Page 21
	Page 22
	Page 23
	Page 24
	Page 25
	Page 26
	Page 27
	Page 28
	Page 29
	Page 30
	Page 31
	Page 32
	Page 33
	Page 34
	Page 35
	Page 36
	Page 37
	Page 38
	Page 39
	Page 40
	Page 41
	Page 42
	Page 43
	Page 44
	Page 45
	Page 46
	Page 47
	Page 48
	Page 49
	Page 50
	Page 51
	Page 52
	Page 53
	Page 54
	Page 55
	Page 56
	Page 57
	Page 58
	Page 59
	Page 60
	Page 61
	Page 62
	Page 63
	Page 64
	Page 65
	Page 66
	Page 67
	Page 68
	Page 69
	Page 70
	Page 71
	Page 72
	Page 73
	Page 74
	Page 75
	Page 76
	Page 77
	Page 78
	Page 79
	Page 80
	Page 81
	Page 82
	Page 83
	Page 84
	Page 85
	Page 86
	Page 87
	Page 88
	Page 89
	Page 90
	Page 91
	Page 92
	Page 93
	Page 94
	Page 95
	Page 96
	Page 97
	Page 98
	Page 99
	Page 100
	Page 101
	Page 102
	Page 103
	Page 104
	Page 105
	Page 106
	Page 107
	Page 108
	Page 109
	Page 110
	Page 111
	Page 112
	Page 113
	Page 114
	Page 115
	Page 116
	Page 117
	Page 118
	Page 119
	Page 120
	Page 121
	Page 122
	Page 123
	Page 124
	Page 125
	Page 126
	Page 127
	Page 128
	Page 129
	Page 130
	Page 131
	Page 132
	Page 133
	Page 134
	Page 135
	Page 136
	Page 137
	Page 138
	Page 139
	Page 140
	Page 141
	Page 142
	Page 143
	Page 144
	Page 145
	Page 146
	Page 147
	Page 148
	Page 149
	Page 150
	Page 151
	Page 152
	Page 153
	Page 154
	Page 155
	Page 156
	Page 157
	Page 158
	Page 159
	Page 160
	Page 161
	Page 162
	Page 163
	Page 164
	Page 165
	Page 166
	Page 167
	Page 168
	Page 169
	Page 170
	Page 171
	Page 172
	Page 173
	Page 174
	Page 175
	Page 176
	Page 177
	Page 178
	Page 179
	Page 180
	Page 181
	Page 182
	Page 183
	Page 184
	Page 185

