IMAGE DISPLAY AND MANIPULATION SYSTEM

(IDAMS)

PROGRAM DOCUMENTATION

APPENDIXES A-D
(NASA-CE-132916) 1IMAGE DISPLAY AND N73-17915
MANIFULATION SYSTEM {IDAKS) PROGRAHN
 DOCUMENTATION, AFPENDIXES A-D {Computer \
Unclas

' Sciences Corp.) ~385 p HC $22.25 CSCL 09B
| 462 o | G3/08 31544

SEPTEMBER 1972

COMPUTER SCIENCES CORPORATION

. 5006-04000-02TR

IMAGE DISPLAY AND MANIPULATION SYSTEM
(IDAMS)

PROGRAM DOCUMENTATION . -

Prepared by
COMPUTER SCIENCES CORPORATION
For
GODDARD SPACE FLIGHT CENTER
Prepared for
Lottie E. Brow;n
Code 563
Ulnder.

Contract No., NAS 5-11723
Task Assignment No, 040

Prepared by: Approved by:
V/ . W W5° o2 WﬁM jfa:/fz’/f?}—
R. W. Cecil Date M. D.”Vogel &’ YT Datg
R.cr. bhite Zo FAag. 1922
R. A. White Date
I LS oo s, Clrcua 301972

M. R. Szézuf 7 Date

Revision Number

Original

Revision 1

Revision 2

Record of Revisions

Date
September 1972

January 1973

Decemher 1973

Revisions

4~14, 4-19, 4-20, 4-26, 4-31, 4-35,

4-45, 4-49, 4-52, 4-60, 4-86, 4-96,

4-97, 4-98, 4-104, 4-144, 4-147,

4-148, 4-149, 4-151, 4-152, 4-153, 4-158,
4-159, 4-160, 4-172, 4-174, 4-176,

4-177, 4-178, 4-179, C-79, and C~80.

iii, vi, 2-2, 4-65, 4-65, 1 through 4-65. 18,
4-180 through 4-209, BE-20, C-41, C-41.1
through C-41.7, C-81 through C-95

TABLE OF CONTENTS

: Page
fection 1 - JDAME Svstem

1 1 SCOpC 31‘1(1 PUI'DOSG IR R R T T T I I S P IS IS S B 1"'1
1.2 Pl‘OlJlGn] Defl?]ltiorl R R A I L L P R T) 1—1
1.3 ' I}I‘Oblenl ‘\!lﬂ]}'SlS ------ . 0. P S 1-3
1.4 Progrim Summary S £
1.5 Program Logic and Flow ..., ey I £

Section 2 - Exccutive Program Description
Introduclion . 4vvavewenwens.. e a e s e ereaneas 2-1
2-1

DRIVER-1DADIS Processor Executive Program . . v e o« s s

Section 3 - General Purpose Subroutine Descriptions

DO

)

-

QJS.OQJC.OCQ
[+ B8

L W

cr =1 &

LBLRD - Tape Label Reading Subroutinec00eeevs 3
LBLWRT - Tape Label Writing Subroutine . + v v v v ve v e v v 3=
IDAMSDSK - Disk Input/Output Subrouting v s v evevee 3
READRITE - Tape Input/Output Subroutine. eeses 3
UTMCON -~ UTM/Geographic Coordinate Interconversion _
Subroutineg .. cv v i v v e v i et it e e st e s s e ees 311
TWOFIT - Two-Dimensional Least-Squares Fit Subroutine .. 3-16
MATINV ~ Matrix Inversion Subroutine ...+ v v v v e v evess 3-20
PERGEN - Inverted Bit-Order Permutlation Generating
Subroutine N 3-23
TRIGGN - Sine Table Gc,nemtmrr Subroutineg . . v s v v s v vss. 3-25
FFTONE - One-Dimensional Fast Fourier Transform
Subroutine i i e e c e enaeasee O-26
CODE ~ Character Translation Subroutine+ ¢ ¢ ¢ cs.+.. 8S-28
MOVE - Character Moving Subroutine .,4 eeeeeesee 3-30
CODERTO6 ~ Byte to Character Conversions Subroutine 3-32
ADDLINE - Message Array Update Subroutine 3-34
TTWLVE - 212 Display Station Interface Subroutine 3-36

Section 4 - Task Program Descriptions

Wb

il el
-3 S o

DATCH - Task EntIy Pro2ram . v v v s v v v v s 0 04 o« o0 &
TESTGN -~ Test Pattern Generadlion Prograile o o + ¢ o+ « o 4
LIST - Tape to Printer Utility Program. « . . « v v v v o o . 4
CONTRAST - Radiometric CorrectionProgcram .. v 4 ¢ » o« 4~
CONVOLVE - Convolubion Program ¢« v v v o v v o ¢ o+ . 4
EXPAND ~ Imare Expansion Program . . s « s » ¢ + s ¢ »« 4
SHADIL - Photometric Correclion Program . . + 4 v « o« =« 4

' ¥
B IO =
[+2 I Y

ii

P

TS

L I
Pt = D GO
=

O e I I
oo =aoc U W

N el e s

(15N

L] -
by b
= o

.

AN
A]
@ DD

4,24
4.25
4, 26
4. 27

4.28
4,29
4,30
4.31
4,32
4,33
4,34

4.35
4.36
4,37
4.38
4. 39
4,40
4,41
4.42
4.43
4.44

"TABLE OF CONTENTS (Cont'd)

FFT - Fast Fourier Transform Program . . « «» = « « « s «
FPCON - Floating-Point Conversion Program . . . « . +
SMOOTH - Floating-Point Smoothing Program . . « + « . »
CXPACK - Complex Packing and Unpacking Program
ERROR - Message Processing Program . « « + ¢« o ¢ « v
REDUCE - Image Reduction Program . . « « « « = o » s « ¢
HISTO - Histogram and Statistics Program
CHAROUT - Pixel Character Qutput Program
TEXTGN - Text Generator Program . . « - s « ¢ o+ = s s »
NEIGHBOR - Nearest Neighbor Printer Listing Program -
DISPLAY - Intéractive Display Program . « « « ¢ = s ¢ s
MODIFY - Image Editing Program . . « « « « « « s s ¢ s s
INSERT - Window Insertion and Mosaicking Program
GRID - Grid Overlay PTOZTAML . + « &+ » s o s o o o o 4+ o o o
GEOMTRAN - Geometric Transformation Program
CHIPGN - Reference Chip Generation and Update

ProOgram .+ « o s o ¢ + a s s o s s 5 5. ¢ ¢ 4 s 2 s s s s 8o
RZOMAP - Reseau Mappmg Program . . « ¢« ¢« s « ¢ o « s »
CORREL - Image Correlation Program . .« . « + + « s « « «
RESECT - Spatial Resection Program . . . + « « o ¢ s ¢ « &
UTMGEO - UTM/Geographic Coordinate Conversion
PrOgram . « « o o s o o s o o o 2 v ¢ 4 s & 5 v 8 s 40 00
FPMULT - Floating-Point Array Multiplication Program. .
FPSUM - Floating-Point Summation Program+ . « .
FILTGN - Digital Filter Generating Program
RANDGRAY - Random Gray Level Generation Program . .
IMERGE - Bulk ERTS Tape Merging Program
PMERGE - Precision ERTS Tape Merging Program
PPUPDATE - Precision Processing Disk File Update
PrOSTAIM . + o o v s s o s s s 5 o ¢ o 8 5 s 8 0 ¢ s o v s
VPICIN - VICAR Image Reformatting Program
INCREASE - Image Enlarging Program . « s « « = s« + s o »
COLOR - False Color Coding Program . . . « « « « + « ¢« «
FPLIST - Floating-Point Listing Utility Program
DMDOUT - Digital Muirhead Reformatting Program
ADDPIX - Picture Addition Program . . « « « =« ¢« = = + « &
FORMAT - IDAMS Format Conversion Program »
HISTCONT - Histogram-Contrast Correction Program . - .
JOYSTICK - Interactive Digplay Program . « « « « « ¢+ . .
MSSCON - Special-Purpose Convolution Routine. + «

iii

4-87
4=-94
4-99
4-104

4-125
4-128
4-131
4-134
4-142
4-144
4-150

4-155
4-164
4-166
4-168
4-172
4-174
4-176
4-178
4-180
4~183
4-205

TABLE OF CONTENTS (Cont'd)

Appendix A ~ Executive Program Flowcharts

Appendix B - General Purpose Subroutine Flowcharts

Appendix C - Task Program Flowcharts

Appendix D - Floating-Point Data Representation

iv

LIST OF ILLUSTRATIONS

Figure

1-1 IDAMS Processor General Flow . . -+« « «» e e s . 1-5
4"1 ReSD].uti.Oll TeSt Tal‘get 4 4 2 & 5 5 ¥ 3 0 » PO R R T T R T Y B 4_5
4-2 Contrast CONVersions « « « o v a s ¢ s s 6 05 20 s » e e a e s 4-12
4_3 TEXTGN Characters [T T T T T B T B R R) « v & 8 4 B % B 4-61

LIST OF TABLES

Table

2-1 Task Program Overlay Assignments « « « c s s s v v v vees 272
4-1 FPCON Conversion and Transfers .« oo v v vee s 437
4-2 FPCONInput Data + « ¢ oo 0o v e v v o v e s e e e 4~41
4-3 FPCON OQutput Data « » « « + v+« e e e e ve s 4-42

Table

2-1
4-1
4-2
4-3

LIST OF ILLUSTRATIONS (Cont'd)

GECOMTRAN Program Flowechart . . « « « ¢ v o v v v v s 0 o0 0 o s
CHIPGN Program Flowchart . . « « ¢ o ¢« v 0 0 0 s o 0 s 60 0 o v o
RZOMAP Program Flowchart ¢ ¢ s s e e u oo o v o s oo
CORREL Program Flowchart . . .« ¢ o o s 0 0 v o v s
RESECT Program Flowchart .« « ¢ s v ¢ ¢« o s o 0 00 s 0 00 00
UTMGEQ Program Flowchart « « ¢ o ¢ o o o o s 0 o s n v v v 0 0o
FPMULT Program Flowchart . . ¢« ¢« ¢« o o o v s e e 0 s s v v v 0
FPSUM Program Flowchart .« . - ¢ ¢ s o ¢ v 0 00 0 0 v 0o v 0 o v -
FILTGN Program Flowechart . « « o v v ¢ o v o v 0 0 v o 0 0 v o0 e
RANDGRAY Program Flowchart « « + s « ¢ ¢ s 0 0 0 o 0 0 s 0 o s
IMERGE Program Flowchart . « ¢ ¢ ¢« ¢ v 0 s s v o 00 0 0 a0 o
PMERGE Program Flowchart . .« o o ¢ o s v 0 v a0 st s o v v
PPUPDATE Program FIOwChart . « o « o o o v v v v s o o s s s o s
VPICIN Program Flowchart . .+ ¢ v ¢ s s v o c e 00 0 0 v 0 o v o
INCREASE Program Flowchart « « « « ¢ ¢ o s ¢ o e 0o o v v v s v s
COLOR Program Flowehart . . o v o o o s s o o s« v s 0 v o ¢ 0 n
FPLIST Program Flowchart - « « o o s o o o v 0 v v 0 0 o u o s s s
DMDOUT Program Flowchart . . « ¢ . v e v v o0 s e a s v v o0
ADDPIX Program Flowchart . « « o o o v s o o v o v v v v 0 v v 0
FORMAT Program Flowchart . . « ¢ ¢ o ¢ 0 0 0 0 v v v v v 0 oo

HISCONT Program Flowchart, e e e e e e e
JOYSTICK Program Flowchart . . . « « « . . v v o v s e e e s
MSSCON Program Flowchart« . v ¢« v o v v v v 00 v v vt

LIST OF TABLES

Task Program Overlay Assignments . « « « « v v o 0 v s o ¢ 4 o o
FPCON Conversicon and Transfers .« « « « « v o ¢ o ¢« o o ¢ s 4 o 4 4
FPCON Input Data e s v e s s s e s s s e s e
FPCONOutput Data . . v o o ¢ o o o o o ¢ o s o o s o 2 00 ¢ 20

vi

I':lf"lu e -

1-1
1-1

0
[P 3L

t:ltdtlzﬁt:lt:ﬂ

v

¥

I 4
[#3]

1

t‘ﬁtnmmuuwt:
Hl—awc’z:co-qm
Mo oo

i
—t
[I¢]

-14

1
[y
[+

Y
Mo L0 b

'(;)GDGQOOGOOOU:’W
LLLELRES
T I L]

R cRoRoRoReReReRe R,
T U UNUSIUNILA
[L= T e » T [or T) SN

|
i)
—

= O

LIST OF ILLUSTRATIONS

INDARNS Processor General FIow o o o o e v v ¢ o

Hesolution

Test Farget o . o

Controst Conversions o o « e
TENTGN Charactors « « s

Subroutinge
Subroutine
Subrouline
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine
Subroutine

-Subroutine

Subroutine
Subroutine

Subroutine CODESTO6 Flowehart « + ¢ o ¢« 2 o« s

"DRIVER Program. Flowchart

LBLRD Flowchart

LBLWRT Flowehart « o o0 s s ¢ o o
TRAMSDSE Flowehart v 0 o o o o s
READRITE Flowehart « « o o v o o s
UTMCON IFlowehart « « ¢ o+ & « «

TWOFIT Flowchart
MATINV Flowchart
PERGEN Flowchart
TRIGGN Ilowchart
FIrTONE Flowchart
CODE Flowchart

ALOVE Tlowchart

= 3 e ® & 4 B s s "

Subroutine ADDLINE Flowchart « « ¢« » « 0 o ¢«
Subroutine TTWLVE Flowchart « « » ¢ ¢ o ¢ o @
BATCH Program Flowchart
TESTGN Program Flowchart

LIST Program Flowchart

* 4 & & = & B & 4 & @

T 4 &+ * & 0 = " =2 ¥ »

CONTRAST Program Flowchart « + s+ « o « o

CONVOLVE Program Flowchart . .« « s ¢ «'a o

EXPAND Frogram Ilowchart

SHADE Program Flowchart . .

FFT Program Flowchart . .
FPCON Program Flowchart .«
SMOOTH Program Flowchart
CXPACK Program Flowchart

ERROR Preogram Flowchart - .

REDUCE Program Flowchart

CHAROUT

~ HISTO Program Tlowchart. . -

Program Flowchart

TEXTGN Program Flowehart .
NEIGHBOR Program Flowchart « - v « v ¢ o o
DISPLAY Program Flowchart
MODIFY Program Flowchart
INSERT Program I'lowchart

GRID Program Flowchart « .+ « « &

A & 4 & & B w & & @

.
L]
.
»
-
-
-
L]

* LN T T T
LI -« s £ b @

L] (3

-

- L B]
« » »

Uﬁtﬁtﬂ@bﬂ?bﬂtﬂbﬂtﬂtﬂtﬁ

7

M o e P
Lo oo L
LDCO—C!G!O«K\JI-—‘HH‘:O -

[DO Y B S
T
Cy O D =D

Ak
P
[Le 0 s I |

Ficure

| I 1 1 1 ¢ 1 t1 1
[- T P T L I JL T o S I - B I - I -2 (G L
e Qo N = O W0 - O e LS

1
5L
=1)

1
L2
o =3

e]

ﬁO?OOOOOOOOOO"JGOOGQO
pb-‘.-h-%m !

[l

LIST OF ILLUSTRATIONS (Cont'd)

GLEOAMTRAN Program Flowchart

C.‘]iIl‘GN—}’1'0;.;'1";1111 Flowchart

RZOMADP Program Flowchart .

CORRLIL Program Flowchart . ..
-RESECT Program Tlowechart . s

UTMGEO Program Flowehart .
PMULT Proqram Tlowchart

FPSUA Program Flowehart . .
FILTGN Program Flowchart . .
RANDGRAY Program Flowchart
INMERGE Program Flowchart . .
PAMERGE Program Flowcehart

PPUPDATE Preogram Flowchart
VPICIN Program Flowchart ..
INCREASE Program Flowchart .
COLOR Program Flowchart . .
FPLIST Program Ilowchart . .
DMDOUT Program Flowchart .
ANDPIN Program Flowchart . .
FORMAT Program Flowchart .

-

LIST OF

TABLES

Task Program Overlay Assignments . . .
FPCON Conversion and Transfers

FPCON Input Data e e e
FIPCON OQutput Data “ ke e

L T I R I

« & & 5 8 8

vi

nnnnn

oooooooc;:onooodoo

| I S S T A S | 1 1 ¢
=3 =3~ =] 1 3T h Sy OO
[Ra R Mo B AR B I R T A BRI S T SV e

C-75
C-80

SECTION 1 - IDAMS SYSTEM DESCRIPTION

1.1 SCOPE AND PURPOSE

The Image Display and Manipulation System (IDAMS) Processor provides the
user with an open-ended capability for performing a variety of operations on
a large-scale digitized pictorial image (up to 5000 lines of 5000 picture ele-
ments per line). It consists of a modular package of analytical tools (task
programs) that can be used to enhance, manipulate, and analyze pictorial
information from a satellite or other photographic source. Specifically the
IDAMS Processor provides support for the Earth Resources and Technology

Satellite (ERTS) program,
1.2 PROBLEM DEFINITION

The IDAMS Processor was developed to satisfy a requirement for the following

types of picture processing:
1. Image degradation removal and simulation

a. Convolution filter, including weighted sampling
b. Position-independent radiometric correction
C. Complex array multiplication and addition

d. Filter weight table generation

e. Gray level noise generation
2. Discrete Fourier transform and its inverse
3. Data conversion and scaling
4, Autocorrelation to power spectral density and its inverse

5, Smoothing, including Hamming and Hanning, of frequency space

image representations

6, Position-dependent photometric correction

1-1

Image display and description

a. Image reduction and expansion (linear and nonlinear)
b, Histogram and statistics generation

c, Bit masking

d. Printed output

e. Text generation

f. False color conversion
Compositing and editing

a, Image point and line editing
b. Window insertion and mosaicking
c. Grid overlay

d. Intensity siretching
Geometric correction
Precision processing

a. ERTS bulk and precision image reformatting
b. Reference chip g:aneration and update

C. Reseau mapping

d. Cross correlation

e. Spatial resection

f. UTM/lat-long coordinate transformation

g. Disk file editing

1.3 PROBLEM ANALYSIS

The IDAMS Processor is meant to be a flexible picture processing package
with a capability for the addition of new features, as needs arise. For this

reason, the overall design must adhere to the following considerations:
1, Organization of a modular task structure

2, Overall job control by an executive, with user's choice of sequence

and types of image processing to be performed

3. Standard task and parameter cards for each task, with identical

formats for all tasks to minimize effort in structuring a run

4. - Design of functions that are identical for more than one task, such
as tape label processing and moving data within core, as general-

purpose subroutines that can be called by any task program

. Provision of a general system support capability, such as tape list-
ing and test pattern generation programs, to assist in test and eval-

uation of image processing tasks.

1-3

1,4 PROGRAM SUMMARY

The IDAMS Processor is a package of task routines and support software that
performs convolution filtering, image expansion, Fast Fourier transformation,
and other operations on a digital image tape. A unique task control eard for
Fhat program, together with any necessary parameter cards, selects each proc-
essing technique to be applied to the input image. A variable number of tasks
can be selected for execution by including the proper task and parameter cards
in the input deck. An executive maintains control of the run; it initiates ex-

ecution of each task in turn and handles any necessary error processing,

1.5 PROGRAM LOGIC AND FLOW

A small core resident program, DRIVER, directs the execution of all tasks
within the system. It initially passes control to the batch processor, BATCH,
which reads one task card and any parameter cards for that task. The program
performs a preliminary edit on the data and places the information in COMMON.
Control then returns to DRIVER, which calls the task selected ft;r execution,

To save core, BATCH, all task programs, and the error processing routine
reside on an overlay tape. As the execution of each task terminates, control
returns to the main driver program for iniﬁation of the next task. Execution

continueg until all control cards have been processed or a fatal error occurs.

Figure 1-1 is a general flow diagram for the SyStBIrI—FIt -s];;)iv—s the rﬁaximum
configuration of input and output peripherals operating with a task routine, but

one or more of these devices may not be used by an individual task,

1.4

—
cDC 212 BATCH
INTERACTIVE R ASK
DISPLAY STATION PROCESSO COL'I'SROL
CARDS

CORE PROGRAM
RESIDENT OVERLAY/
DRIVER DATA TAPE
A
SYSTEM/
DATA
TAPE
TEMPORARY
STORAGE TASK
DG 854 ROUTINE
DISK DRIVE

PRINTER
LISTINGS

CONSOLE
MESSAGES

Figure 1-1. IDAMS Processor General Flow

1-5

SECTION 2 - EXECUTIVE PROGRAM DESCRIPTION

2,1 INTRODUCTION

The IDAMS executive consists of a core-resident'routine (DRIVER), a task

entry module (BATCH), and an error processor (ERROR). Since BATCH and
ERROR reside on the overlay tape with task routines, they have been included
in Section 4, Task Program Descriptions. Table 2-1 lists these routines to-

gether with their overlay assignments,

2,2 DRIVER - IDAMS PROCESSOR EXECUTIVE PROGRAM

2.2,1 Program Description

DRIVER is the main core resident program used to control execution of all
IDA MS task and special-purpose routines. DRIVER first calls the batch
processing overlay to read and edit the first/next set of task control cards.

If the return is normal, it calls the overlay for the indicated task. This
sequence--first calling BATCH followed by a call to the proper overlay task--
continues until an END card is encountered or a fatal error occurs, If the
ERROR overlay determines that recovery is to be attempted from a fatal

+ error condition, DRIVER continue$ with the next task.
2.2.2 Parameters

No parameters are necessary.

2.2.3 Input

There is no input to DRIVER.

2.2.4 Output

There is no output from DRIVER.

2,2.5 Examples

None.

2-1

2-¢

Jverlay

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15
16
17
18
18
20
z1
22
23
24

Name

BATCH
TESTGN
LIST
CONTRAST
CONVOLVE
EXPAND
SHADE
FFT
FPCON
SMOOTH
CXPACK
ERROR
REDUCE
HISTO
CHAROUT
TEXTGN
NEIGHROR
DISPLAY
MODIFY
INSERT
GRID .
GEOMTRAN
CHIPGN
RZOMAP

Table 2-1. Task Program Overlay Assignments

Function
TASK ENTRY MODﬁLE
TEST IMAGE GENERATION
TAPE TO PRINT (INTEGER)
RADIOMETRIC CORRECTION
CONVOLUTION FILTERING

INVERSE CONVOLUTION FILTERING

PHOTOMETRIC CORRECTION

DISCRETE FOURIER TRANSFORMATION

DATA SCALING AND CONVERSION

HAMMING AND HANNING SMOOTHING

COMPLEX DATA PACKING

ERROR PROCESSING

IMAGE REDUCTION

HISTOGRAM AND STATISTICS
TAPE TO PRINT (CHARACTER)
TEXT GENERATION

POINT NEIGHBORHOOD LISTING
INTERACTIVE DISPLAY PACKAGE
IMAGE TAPE EDITING

WINDOW INSERTION

- GRID OVERLAY

GEOMETRIC TRANSFORMATION
CHIP GENERATION
RESFEAU DETECTION

Overlay

25
26
27
28
28
30
1
3z
33
34
35
36
37
38
39
40
41
42
43
44
45-64
65-99

Name

CORREL
RESECT
UTMGEQ
FPMULT
FPSuM
FILTGN
RANDGRAY
IMERGE
PMERGE
PPUPDATE
VPICIN
INCREASE
COLOR
FPLIST
DMDQUT
ADDPIX
FORMAT
HISTCONT
JOYSTICK
MSSCON
TEST 45-64
UNUSED

Function

IMAGE CORRELATION

SPATIAL RESECTION

COORDINATE CONVERSION

FLOA.TING POINT MULTIPLICATION
FLOATING POINT ADDITION

FILTER GENERATION

RANDOM NOISE GENERATOR

BULK IMAGE MERGING

PRECISION IMAGE MERGING

DISK FILE EDITING

VICAR TO IDAMS CONVERSION

LINEAR IMAGE EXPANSION

FALSE COLOR CODING

FLOATING POINT LISTING

IDAMS TO NOAA CONVERSION

PICTURE ADDITION

IDAMS FORMAT CONVERSION
HISTOGRAM-CONTRAST CORRECTION PROGRAM
DISPLAY SYSTEM WITH JOYSTICK CONTROL
SPECIAL-PURPOSE CONVOLUTION PROGRAM
TEST OVERLAYS

2.2.6 Messages
None,
2.2.7 Flowchart

See Appendix A, Figure A-1,

SECTION 3 - GENERAL PURPOSE SUBROUTINE DESCRIPTIONS

3.1 LBLRD - TAPE LABEL READING SUBROUTINE

3.1.1 Program Description

This general-purpose subroutine uses a tape name, logical unit number, and
file number to locate the label record of an input tape file for further pro-
cessing. It makes an initial search to locate the proper file number. ¥ it
cannot be found, LBLRD sets the system error code and terminates abnormally.
When a match is found on the file number, LBLRD checks the name and, if no
match is found, again takes an abnormal error exit. When file number and
name both match, LBLRD returns the contenis of the label record to the
calling program and writes them on the line printer,
3.1.2 Parameters
The calling sequence for LBLRD is

]

| CALL LBLRD (LABEL)

|

i

{where the parameter is

| LABEL - array into which label contents are to be read, The calling

program passes tape file name, logical unit number, and file
number to LBLRD,

3.1.3 Input

.LBLRD requires an input tape in standard IDAMS format.
3.1.4 Output

LBLRD prints the l1abel on the line printer.

3.1.5 Examples

A typical label record listing produced by LBLRD is

INPUT LABEL DATA - NAME = JAMESBLU, 4096 PIXELS, 3218 LINES,
LUN 49, FILE 1

3-1

3.1.6 Messages
Message

LBLRD - WARNING, NO MATCH
ON LUN nn, LUN CHANGED TQ nn

BAD FILE NO nnn

aaaaaaaa ON LUN nn NE aaaaaaaa

3.1.7 Flowchart

See Appendix B, Figure B-1.

Explanation

The logical unit number found on
tape did not match the one supplied;
the one supplied is being used.

The file number requested could not
be located on the input tape; execu-
tion terminates.

The tape file name passed to LBLRD
did not match the one found in the
label record; execution terminates.

3.2 LBLWRT ~ TAPE LABEL WRITING SUBROUTINE

3.2.1 Program Description

This general-purpose subroutine uses a logical unit number and file number to
position an output IDAMS tape to the first available record and then writes the

label record into that location.

Upon entry, LBLWRT prints the contents of the label record and rewinds the

tape. It makes a search based on the input file number until the tape is at the
point where the lahel is to be written. A bad file number will cause abnormal
program termination. Once the proper position is found, LBLWRT writes the

label and returns to the caller.
3.2,2 Parameters
The calling sequence for LBLWRT is
CALL LBLWRT (LABEL)
where the parameter is
LABEL - array containing the contents of the label to be written. Infor-
mation in the array includes the tape file name, number of
characters per recprd, number of records, logical unit number,
and file number,
3.2.83 Input
There is no input other than the label array,

3.2.4 Output

LBLWRT writes the contents of the label record on the output tape and prints

them on the line printer.
3.2.5 Examples
A typical label record listing preduced by LELWRT is

OUTPUT LABEL DATA - NAME = JAMESBLU, 4096 PIXELS, 3218 LINES
LUN 47, FILE 1

3-3

3.2.6 Messages
Message

BAD FILE NO OR BAD LUN

3.2.7 Flowchart

See Appendix B, Figure B-2.

3-4

The file number or logical unit
number passed to LBLWRT did not
correspond to data found on tape;
execution terminates,

3.3 IDAMSDSK - DISK INPUT/OUTPUT SUBROUTINE

3.3.1 Program Description

This routine provides disk 1/0 capabilities for the IDAMS task routines using
the CDC Model 3234 Mass Storage Controller and Model 854 disk drive. The
Model 854 has 32, 320 sectors of 64 24-bit words each, organized into 202
cylinders, each of which has 10 tracks of 16 sectors apiece. IDAMSDSK enables
the user to reference these sectors, or cells, in blocks of arbiti'ary length

using sequential location numbers from 0 to 32319.

Entry DPSEEK converts the specified cell location number into cylinder, track,
and sector address, issues a seek instruction to the Control Data Model 3234
Peripherai Controller, and returns to the caller without waiting for the record-

ing heads to reach the specified position.

Entry DPPUT waits until the heads are positioned as specified by the last
seek, and then writes a specified number of complete 64-word cells from a
specified full-word buffer. Upon completion, a seek is issued for the cell
immediately following the last one written onto, and control is returned to
the caller, Entry DPPUTF issues the write command and then returns

control to the caller immediately, . "

Entry DPFETCH waits until the heads are positioned as specified by the last
previous seek and then reads a specified number of complete 64-word cells
into the specified buffer. Upon completion, a seek is issued for the cell

immediately following the last one read, and control is returned to the caller.

Entry DPFETCHF issues the read command and then returns control to the

caller immediately.

Entry DPCHECK checks the status of the last command and waits for comple-

tion before returning to the caller.

3.3.2 Parameters
The calling sequences for IDAMSDSK are

CALL DPSEEK (IDLOC)

CALL DPPUT (BUFF, NCELL)
CALL DPFETCH (BUFF, NCELL)
CALL DPPUTF(BUFF, NCELL)
CALL DPFETCHF (BUFF, NCELL)
CALL DPCHECK

where the parameters are
1, IDLOC - Location number (0 to 32319) of cell to be read or written

2. BUFF -First core memory location of integer or real buffer for

disk data transfer
3. NCELL~Number of 64-word cells to be read or written
3.3.3 Input
For DPFETCH only, disk cells are specified by the call parameters,
3.3.4 Ou_tplﬂ:_
For]jPPUT only, disk cells as specified by the call parameters.

3.3.5 Example

Copy ten consecutive blocks of 500 core words each, located in BUFF (1) through
BUFF (5000), onto the disk, starting at cell number 4000. The necessary se-
gquence of FORTRAN instructions is

DIMENSION IBUFF (5000)
COMMON IDUMMY (5), IEROR

CALL DPSEEK (4000)

3-8

IPOINT =1
DO 3201I=1, 10
CALL DPPUT (IBUFF (IPOINT), 8)
IF (IEROR-4) 320, 320, 11111
320 IPOINT = IPOINT + 500

11111 ({error processing routine)

Note that for this example the eighth cell in each block is not entirely filled by
the 500 words, since 8 X 64 = 512; the extra 12 words in the cell are skipped

over before starting to write the next block of data.

3.3.6 Messages

IDAMSDSK generates the following non-fatal messages: -

Message Explanation
DISK NOT READY - WHEN READY, Disk powei' not turned on, not up to
PRESS FINISH speed or Control A on front panel of -

controller may not be set to 2,

DISK CHECKWORD ERROR CYL nnnn During disk read a checkword error

TRK nnn was encountered; processing will
continue using the doubtful data
unless cancelled by operator.

The following fatal error messages may also be generated:

Message . Explanation
SEL, QUTW, OR INPW REJECTED After accepting CON instruction,
REPEATEDLY disk failed to accept subsequent
instructions.
DISK OVERFLOW The number of cells specified by

DPPUT or DPFETCH would have
required reading or writing beyond
cell 32319,

3-7

Message

DISK ADDRESS ERROR

LOST DATA

WRITE LOCKOUT

BAD DISK TRACK NO nn ON
CYLINDER nnn

RESERVED TRACK NO nn ON
CYLINDER nnn

TOO MANY CHECKWORD ERRORS

UNKNOWN DISK ERROR, STATUS
CODE = nnnn

3.3.7 Flowchart

See Appendix B, Figure B-3.

3-8

Explanation

Disk cell location specified by
DPSEEK was not between 0 to 32319

" (program error) or was refused by

Disk Controller (hardware error).

Channel transferred data faster
than disk read or write rate (hard-
ware error).

Unable to write on disk,

Specified track has been tagged as
bad using Disk Controller switches.

Specified track has been reserved
using Disk Controller switches,

Repeated checkword errors have
occurred causing execution to
terminate.

The specified status code does not
indicate any of the errors above,

3.4 READRITE - TAPE INPUT/OUTPUT SUBROUTINE

3.4.1 Program Description

This subroutine performs tape input/output processing for the IDAMS task
routines. Entry points are provided to read or write a magnetic tape record
with or without unit status checking. If necessary, recovery from parity

" errors is attempted.

Entry READ causes one logieal record to be read, followed by a unit status

check,

Entry READF causes one logical record to be read, followed by an immediate

return to the calling program.,
Entry WRITE will write one logical record and check the unit status.,

Entry WRITEF will write one logical record and return immediately to the

calling program.
Entry CHECK tests the status of the last tape I/O operation on the unit specified.

If a parity error is detected on one of the tape units READRITE checks to see
whether or not a warning message is to be printed based on a preset counter.
A second check is then made to terminate the run if a preset limit on the
number of acceptable errors is passed. The program then takes the appro-

priate action and returns to the caller.
3.4.2 Parameters
The calling sequences for READRITE are

CALL READ (LUN, IOBUFF, LENGTH)
CALL READF (LUN, IOBUFF, LENGTH)
CALL WRITE (LUN, IOBUFF, LENGTH)
CALL WRITEF (LUN, IOBUFF, LENGTH)
CALL CHECK (LUN, IOBUFF, IOPT)

3-9

where the parameters are

LUN - Tape logical unit number

IOBUFF - Input/Output buffer starting location

LENGTH - Number of words to read or write

IOPT - Not currently used

3.4.3 Input

For READ and READF only, one tape record is read,’

3.4.4 Output

For WRITE and WRITEF only, one tape record is written.

3.4.5 Example

None.

3.4.6 Messages

READRITE may generate the following messages:

Message

PAR ERR, LINE nnnn, LUN nn

nn PARITY ERRORS ON LUN nn,
RUN WILL ABORT AT nn

3.4.7 Flowchart

See Appendix B, Figure B-4.

3-10

Explanation

A parity error has been detected on
the indicated tape unit or on disk,
execution continues,

More than an arbitrary number of
tape parity errors has been detected,
execution will terminate if a
threshold number is exceeded.

3.5 UTMCON - UTM/GEOGRAPHIC COORDINATE INTERCONVERSION
SUBROUTINE '

3.5.1 Program Description

UTMCON converts Universal Transverse Mercator (UTM) grid coordinates to
geographic latitude-longitude coordinates or, as specified by the calling pro-

gram, carries out the inverse transformation,

UTMCON begins by examining the zone designator, IZONE. If it is non~zero,
latitude and longitude values are converted to UTM northing and easting using

as central meridian longitude

L =-183° + 6° x [iZONE]
C. 1.

where negative values of Lc are west of Greenwich, and positive values

are east. The difference A between the input longitude and Lc.m; is computed;
if this value exceeds 4-1/20, the value of IEROR in COMMON is set and control
is returned to the calling program without carrying out the conversion. Similar
action is taken if the latitude is not between -90° and +90°, where a negative

value is interpreted as south latitude.
The conversion is then carried out using the formulae

E=rsin - (sinAcos ¢)

N=s+r [sin-l(ﬁ-lp—%) - ¢]
cos;

zsm 29 + 038111 4p) -

-1/2
)/

s =a(cl¢-—c

2
r=a({l-e sinzip

where

a =,9996 x semi-major axis of spheroid

2 .
e = eccentricity squared

3-11

E = grid meters east of central meridian
N = grid meters north of equator
¢ = latitude (negative for southern hemisphere)

A = longitude relative to central meridian of zone (negative for
west of c.m.)

and the expansion for meridian distances s, accurate to < 0,2 meters, has co-

efficients
_,. 1.2 3 4
©17+ 7% 64 °©
L o
2 8 32
o 15 4
3 56

In order to produce a positive easting value and record the UTM zone,
500000 + IZONE x 106 is added to the easting value. The easting and northing

values are then returned to the calling routine,

If IZONE = 0, a conversion from UTM to latitude-longitude is carried out. The
value of easting passed by the calling routine is divided by 106; the quotient rep-
‘resents the zone number, and the remainder the UTM easting, The false easting

of 500,000 is subtracted from the easting to obtain the value of E,

Because the equation relating N and ¢ cannot be solved explicitly for ¢, an

iterative technique is used. An initial estimate of ¢ is computed as

¢i = N o

Successive approximations for ¢ are then computed by first computing the value

N (¢i) obtained using the i-th estimate, and then using

3-12

N - Nig.)

9.

i+l L, 1 E2+2§_2
a 5 5~ te |5sin g, -
‘ Zcos¢ia

When N-N(¢i) < 1 meter, the estimate 911 is taken as the value of ¢; normally
only two iterations are required to obtain an accuracy of better than 0.5 meters.
If adequate convergence is not obtained within five iterations, IEROR is set and
control is returned to the calling program without performiﬁg the conversion.

Otherwise, the longitude relative fo the central meridian is computed using
A =sin | (sin E;/COS qo)
and added to the central meridian longitude for the specified zone. The latitude

and longitude values are then returned to the calling program.

3.5.2 Parametiers

The calling sequence for UTMCON is
CALL UTMCON (XLAT, XLONG, UTME, UTMN, IZONE)
where the parameters are

XLAT - Latitude in degrees and decimal fraction; south
latitude is denoted by a minus sign

XLONG - Longitude in degrees and decimal fraction; longitude
west of Greenwich is denoted by a minus sign

UTME - UTM easting, with central meridian assigned a false
easting of 500, 000 meters. The value is preceded

by 106 X zone humber.

3-13

UTMN = UTM northing, with negative values representing
southern hemisphere northing less false northing
of 107 meters; i.e., negative values are distances

from equator

IZONE - UTM zone if conversion from lat/long to UTM is
desired; 0 if conversion from UTM to lat/long is

required

For either type of conversion, one pair of coordinate parameters are dummy
locations into which UTMCON will store the results of converting the values

passed in the other pair of coordinate locations.
3.5.3 Input

The only input to UTMCON is through the parameters,
3. 5.4 OQutput

The output from UTMCON is stored into the locations specified in the calling
sequence parameters,
3.5.5 Examples

Find the latitude and longitude corresponding to UTM easting of 648320 and
UTM northing of 6423880, in UTM zone 19. The call is

CALL UTMCON (XLAT, XLONG, 19648320, ; 6423880., 0)

' Find the UTM easting and northing for 38.447203 degrees north latitude and

96,266667 deg. west longitude. The result is to be referred to UTM zone 15

(central meridian 93° W), The call is

CALL UTMCON (38,447203, -96, 266667, UTME, UTMN, 15)

3-14

3.5.6 Messages

UTMCON sets the value of IEROR in COMMON' to indicate three error condi-

tions, as follows:

Message

LONGITUDE MORE THAN 4.5 DEG
FROM C. M.

LATITUDE GREATER THAN 90 DEG

NO CONVERGENCE FOR LATITUDE

E:_gglanation

Input longitude too far from central
meridian of specified zone.

Error in input parameter,

Input northing too large; correspond-
ing latitude cannot be found,

In each case, control is returned to the calling program without carrying out

the requested conversion.
3.5.7 Flowchart

See Appendix B, Figure B-5.

3.6 TWOTFIT - TWO-DIMENSIONAL LEAST-SQUARES FIT SUBROUTINE

3.6.1 Program Description

This general-purpose subroutine determines the coéfficients of the two-
dimensional polynomial(s) which yield(s) the least-squares best fit(s) to one

or more sets of values determined at an arbitrary set of points. The variance
between the values obtained from the least-squares polynomial coefficients and

the input data is also computed.

TWOFIT begins by checking that the degree I deg of the required polynomial is
between 1 and 5, and that the number of points Npt for which values are speci-

fied satisfies

AR)
N >= +
pt 232 Ideg *+1 (Ideg 2
If either condition is not satisfied, an error code is set and control is re-

turned immediately to the calling program.

Otherwise, TWOFIT computes the coefficients bkl of the approximating poly-

nomial
I I
de deg-k k1
2y =20 Z 0 by Xy
k=0 1=0

by finding the values of bkl for which the variance between actual values z,
at the points (xi, yi) and the computed values z(xi, yi) is a minimum; this

variance is given by

N
1 t 2
V= ~ _}_}p [zi -zx,, y.)]
: i’ 7i
pt i=1

The computation is carried out by calculating the coefficient matrix and

right-hand side column vector(s) of the system of linear equations

N N
t de deg-k m+k n+l t m
P g E B x° 'y, b,=3P Z, X, y,
i=1 k=0 1l=0 i=1 t
<m< <p<
O_m_Ideg, O‘H"Ideg-m

The general-purpose subroutine MATINV is then called to obtain the solutions

for the coefficients bkl by matrix inversion.-

In the event that the matrix is found to be singular, an error code is set and
no solutions are returned; otherwise, TWOFIT returns one set of coefficients

bkl for each set of values zi passed in the call.

3.6.2 Parameters
The calling sequence for TWOFIT is

CALL TWOFIT (IDEG, NPT, NSET, X, Y, Z, A, B)
where the parameters are |

IDEG - Degree of polynomial desired
(1< IDEG £ 5)

NPT -~ Number of points for which values are
supplied
NSET - Number of sets of values to be fit

X - NPT floating point values of x-coordinates
of data points

- NPT floating~point values of y-coordinates

Z -« NPT % NSET floating-point observed
values at points (x, y). The first set of
NPT values are given in the first NPT
locations; the second set in the next NPT
locations, and so on .

A = A dummy array containing at least
2 2
-j—: (IDEG + 1) (IDEG +2)° floating

point locations for intermediate computa-
tion, contains values of variance on re-
turn

B Contains floating-point polynomial coeffi~
. clents on refurn; must provide at least
1

3 NSET #{IDEG + 1) #{IDEG + 2)
locations, First set of coefficients occupy
first %(IDEG +1p{IDEG + 2) locations,
and so on.

NOTE: The points at which values are specified should include at least IDEG + 1
different x-values and IDEG + 1 different y-values.

3.6.3 Input
Input to TWOFIT is entirely through the calling sequence, as specified above.

3.6.4 OQutput

The results of TWOFIT are returned via the éalling sequence and the error
code IEROR in COMMON.

3.6.5 Example

Two sets of displacements, DELTAX and DELTAY, have been dete:mined for
69 points whose coordinates are located in arrays X and Y. It is desired to
obtain the coefficients for the least-squares third-degree polynomials and
place them in arrays COEFFX and COEFFY. Suitable FORTRAN statements

are

DIMENSION COEFFX (10), COEFFY (10), A (100), DELTAX (69),
1 DELTAY (69), DELTA (138), X (69), Y (89), COEFF (20)
EQUIVALENCE (DELTA (1), DELTAX (1)), (DELTA (10),
1 (DELTAY (1)), (COEFF (1), COEFFX(I)),

Y

o' (COEFF (11), COEFFY (1))

CALL TWOFIT (3, 69, 2, X, Y, DELTA, A, COEFF)

On return, the variance between the actual values and those computed from

the polynomials will be located in A(1) for DELTAX and A{2) for DELTAY.

3.6.6 Messages

TWOFIT sets error codes for three abnormal conditions, as follows:

Message

POLYNOMIAL DEGREE LT 1 OR
GT 5

TOO FEW KNOWN POINTS

MATINV GAVE SINGULAR SOLUTION

3.6.7 Flowchart

See Appendix B, Figure B-6.

Explanation

Requested polynomial degree not
between 1 and 5

Number of points with known values

less than % (Ideg + 1,) (Ideg+ 2)

MATINV gave singular solution:

known points did not occupy at

least;(I + 1) different x positions
deg

| (I dog * 1) different y positions

3-19

3.7 MATINV - MATRIX INVERSION SUBROUTINE

3.7.1 Program Description

This general-purpose subroutine inverts a square matrix of up to 21x 21 and/or
finds the solutions to one or more sets of simultaneous linear equations whose
coefficient array is represented by the matrix. The determinant of the matrix

is also computed.

MATINV uses the Gauss-Jordon method of pivotal condensation, with total pivot
searching and row interchange. It is a modification of a routine developed by
D. C. Knight of the Commonwealth Scientific and Industrial Research

Organization, Adelaide, Australia,

Execution begins by searching the matrix for the element having the largest
absolute value. This element is moved onto the principal diagonal and the
other elements in the pivot column reduced to zero by subtracting multiples of
the pivot row from the other rows. The search and reduction continues until
all columns have been reduced, giving the solution vectors, if requested. The
inverse of the matrix is then computed, if requested, by interchanging columns
of the matrix so as to reverse the effects of the row interchange. The deter-
minant is computed as the product of the pivotal elements. If at any time the
pivot value falls below 1,0 x 10-90, the matrix is treated as being singular,

and the determinant value is set to zero.

3.7.2 Parameters
The calling sequence is

CALL MATINV (A, B, N, L, DET)
where the parameters are

A - Array to be inverted; contains inverse
matrix on return

3-20

B -
N -
L -
DET -

3.7,3 Input

Array of right-hand side vectors for-
sets of simultaneous linear equations of
the form AX = B; on return, containg
solution vectors X

Order of A

|L|is number of vectors in B. The sign
of L is used to specify the desired com-
bination of solutions and/or inverse, as

follows:

L > 0, only solutions are given
L =0, only matrix inverse is given

L < 0, both solutions and inverse are
given '

Contains determinant of A on return,
DET = 0 for singular matrix

The only input to MATINV is via the calling sequence.

3.7.4 Quiput

The only output from MATINV is returned through the subroutine arguments.

3.7. 5 Example

It is desired to obtain solutions to the two sets of simultaneous linear equa-

tions
8
z a
i=1
8
z
i=1

3-21

where B is a two-column matrix whose first column contains the vector
{yi} and whose second column is { z i} , and X is a column vector composed

of the unknowns {xi} . The solutions can be obtained by calling MATINV as follows:
CALL MATINV (A, B, 8, 2, DET)

On return, the two sets of solutiong will be in the two columns of B. Since
L > 0, the inverse of A is not computed. The results should be checked for

the possibility of a singular matrix by testing whether DET = 0,

3.7.6 Messages

MATINV generates no messages,
3.7.7 Flowchart

See Appendix B, Figure B-7.

3-22

3.8 PERGEN - INVERTED BIT-ORDER PERMUTATION GENERATING
SUBROUTINE

3.8.1 Program Description

This general-purpose subroutine generates a table of integer index values
which may then be used to place a complex data array in permuted order for
use by FFTONE (one-dimensional Fast Fourier transform subroutine),
PERGEN computes the table values by reversing the bit-order of each binary
number between 0 and the table size minus one, It modifies the results to
take into account FORTRAN indexing methods, including the use of two
floating-point numbers to represent each complex value in fhe array. All
odd-numbered entries are calculated and then copied into even-numbered

entries before exiting,

3.8.2 Parameters

The calling sequence for PERGEN is
CALL PERGEN (MX, PERTBL)

where the parameters are

MX =~ Number of binary digits in index

PERTBL - Buffer for storing final results

3.8,3 Input

PERGEN needs only the parameter, MX, and a tahle area of sufficient size.

3.8.4 Qutput

PERGEN produces the table, PERTBL.

3.8.5 Examples

None,

3-23

3.8.6 Messages

None.
3.8.7 Flowchart

See Appendix B, Figure B-8,

3.9 TRIGGN - SINE TABLE GENERATING SUBROUTINE

3.9.1 Program Description

This general purpose subroutine generates a table of sines of angles between

0 and 7/2 in steps of 2 T/NX, where NX is the number of columns in the array.
3.9.2 Parameters
The calling sequence for TRIGGN is
CALL TRIGGN (MX, TRGTBL)
where the parameters are

MX - Size of table, 2**(MX - 1) values are generated.

TRGTBL - Storage location for sine values,

3.9.3 Input

TRIGGN requires the parameter, MX, and a table area of sufficient size.

3.9.4 Output

TRIGGN produces the sine table, TRGTBL.

3.9.5 Examples

None.

3.9.6 Messages

None.
3.9.7 Flowchart

See Appendix B, Figure B-9.

3-25

3.10 FFTONE - ONE-DIMENSIONAL FAST FOURIER TRANSFORM
SUBROUTINE

3.10.1 Program Description

FFTONE carries out a one~-dimensional fast Fourier transform on a line of
data. It begins by computing the appropriate normalization factor. FFTONE
then permutes the complex values to reverse the bit-order of their binary
indices. Before they are stored into their new locations, each value is
multiplied by the normalizing factor. The line is then transformed using the
one-dimensional fast Fourier transform algorithm, and control returns to the

calling program.
3.10.2 farameters
The calling sequence for FFTONE is as follows:
CALL FFTONE (MX, DATA, TRGTBL, PERTBL)

where the parameters are

MX - Number of passes for FFT, log base 2 of N
DATA - Location of complex array to be transformed
. TRGTBL - Table of sines for first quadrant
' PERTBL - Bit-order reversed table created by PERGEN.

3.10,3 Input
FFTONE needs only the input parameters.

3.10.4 OQutput

FFTONE creates one transformed line of data in the output buffer.

3.10.5 Examples

None.

3-26

3.10.6 Messages

None.
3.10.7 Flowchart

See Appendix B, Figure B-10.

3-27

3.11 CODE - CHARACTER TRANSLATION SUBROUTINE

3,11,1 Program Description

The general-purpose COMPASS subroutine CODE provides high-speed character
translation by fable lookup. CODE loads each character of the input array in
turn, beginning with the last one, and uses it to index one of 64 entries in the

translation table. It stores this entry into the output array.
CODE requires about 11 microseconds for each character translated.
3.11.2 Parameters
The calling sequence for CODE is
CALL CODE (N, DATAIN, DATOT, TABLE)

where the parameters are

N - Number of consecutive characters to be translated

DATAIN - Location of first character of input array

DATOT -~ Location of first character of output array. DATOT
might coincide with DATAIN; overlapping is permitted
only if DATOT = DATAIN.

TABLE - Full-word array of translation values. Only low-order

six bits of each word are used; first word containe trans-
lation for input character 00 g’ next word for input 01 g’

and so on to input 77 g
3.11.3 Input

CODE passes the number of characters to be translated, an array containing

the data to be translated by the calling sequence and a translation table.

3.11.4 Output

CODE returns an array containing the translated data through the calling sequence.

3-28

3.11.5 Example

Not applicable.

3.11.6 Messages

CODE generates no messages.
3.11.7 Flowchart

See Appendix B, Figure B-11,

3-29

3.12 MOVE - CHARACTER MOVING SUBROUTINE

3.12,1 Program Description

The general-purpose COMPASS subroutine MOVE moves data within core. It
moves the data in blocks of 128 characters, with the exception of a smaller

first block, using the CDC 3200 Block Control MOVE instruction.

MOVE requires about 4 1/2 microseconds for each character moved; if the
source and destination addresses are full-word boundaries and the count is a

multiple of 4, however, this time is reduced by a factor of 4.
3.12,2 Parameters
The calling sequence for MOVE is

CALL MOVE (N, 8, D)

where the parameters are

N - Number of characters to be moved
8 - Character address of start of source array
D - Character address of start of destination array

If D=8+ 1, MOVE will propagate the first character of S through all of D;

this may be used for zeroing out an array.
3.12,3 Input

MOVE passes the number of characters to be moved and the character
addresses of the origin and destination of the data being moved through the

calling sequence,

3.12.4 Output

MOVE moves data into the user-specified location.

3.12.5 Examples

Not applicable.

3-30

3.12.6 Messages

MOVE generates no messages.
3,12, 7 Flowchart

See Appendix B, Figure B-12.

3-31

3,13 CODESTO6 - BYTE TO CHARACTER CONVERSIONS SUBROUTINE

3.13.1 Program Description

This general-purpose subroutine uses table look-up to translate 8-bit bytes,

packed three per word, into 6-bit characters, packed four per word.

CODESTO6 begins by accessing the character count, input and output buffer
addresses, and tahle location and storing them into the main loop. Then one
input word is loaded at a time., The bytes are accessed one at a time by shifting
them, transferring one byte to an index register, and using it to load a value
from the translation table; the resulting character is then stored into the output
buffer. When the required number of characters have been translated in this

manner, control is returned to the caller.

3.13.2 Parameters
The calling Bequence is

CALL CODESTO6 (N, IBUFFIN, CBUFFOUT, ITABLE)
where the parameters are

N - Number of characters to translate
IBUFFIN
CBUFFOUT
ITABLE

Integer array containing input

Character array for output

Integer translation table containing 256 entries

3.13.3 Input

The only input is via the calling sequence.

3.13.,4 Output

The translated output is in the array specified by the calling sequence.

3-32

3.13.5 Exampile

It is desired to translate 24 words (72 bytes) in a buffer INBUFF and place
them into a character array CBUFT starting with character position 15. The
translation is to be as specified by a table ITAB, The required calling

sequence is

CALL CODESTO6 (72, INBUFF, CBUFF(15), ITAB)

3.13.6 Messages

CODEBTO6 generates no messages,
3.13.7 Flowchart

See Appendix B, Figure B-13.

3-33

3.14 ADDLINE - MESSAGE ARRAY UPDATE PROGRAM

3.14.1 Program Description

This is a general-purpose subroutine which adds one or more lines of BCD
data to the permanent 212 message array in COMMON, If the array is
already full, enocugh lines are made available for the new data by rolling the

array from bottom to top, truncating the oldest data,

Upon entry, ADDLINE calculates the number of lines needed for the new
message and makes the necessary room. Old data is blanked out and new

data is moved in, The program then returns to the caller.
3.14, 2 Pé,rameters
The calling sequence is

CALL ADDLINE (ICHARS, CLINE)

where the parameters are

ICHARS - Character count for the message to be added.

CLINE - Beginning location of the new message (character address).|
3.14.3 Input
The only input is via the calling parameters.
3,14.4 Output
Output is to the message array in COMMON.
3.14,5 Examples
None.
3.14.6 Messages

None.

3-34

3,14.7 Flowchart

See Appendix B, Figure B~14.

3-35

3.15 TTWLVE - CDC 212 INPUT/OUTPUT SUBROUTINE

3.15.1 Program Description

TTWLVE is the input/output driver for the CDC 212 Display Station. It has
four entry points; TTWCON, CDCON, STORE, and INTER.

TTWCON is the CDC 212 initialization routine which sets up an address in the
CIT table in core, and clears and connects channel 4, It must be called
before any attempt is made to read or write on the 212. Upon entry to
TTWCON, interrupt control is disabled, channel 4 is cleared, and the connect
instruction is issued. If rejected repeatedly, a message is written to the
operator and the program waits for a ready condition, When successful, the
address c;f the interrupt processor is stored in the CIT table, interrupt

control is enabled, and the program returns to the caller,

CDCON is the 212 display output routine. When this routine is cailed, up to
250 words are presented on the 212 screen., Upon entry to CDCON, the input
buffer address and word count parameters are picked up and stored into
instructions later in the program. A loop'is then entered which converts the
input data from internal BCD to 212 external code. The screen is blanked and
data is output a line at a time until done. If output fails because of a channel
busy condition, a message is written to the operator. Before returning, the

converted data is restored to its original code,

STORE is the 212 input routine. This routine transfers up to 250 data words
from the display screen into core. Upon entry to STORE, the return data
buffer address and word count parameters are stored where needed in the
program, A loop is then entered to wait for an interrupt from the 212. After

the interrupt is made and serviced by INTER, STORE returns to the caller,

INTER is the 212 interrupt processor which reads data from the 212 into the
area defined by the buffer passed when a call to STORE is executed. This routine

is entered when the SEND switch is depressed on the 212 keyhoard. Upon

3-386

entry to INTER, initialization is performed and the input area is filled by ex-
ecuting an INPW instruction. A channel busy message is generated if necessary.
After a successful data transfer, an interrupt switch is set to 1 in COMMON
location IPARIT(10). The data is then converted to internal BCD code and the
entire array is shifted left two characters, The program then returns control

to the central Interrupt Processor,
3.15.2 Parameters
The calling sequences for TTWLVE are as follows:

CALL TTWCON
CALL CDCON (IWRDBUFF, COUNT)
CALL STORE (WRDBUFF, COUNT + 1)
where the parameters are
IWRDBUFF - Array address of first data word

COUNT - Integer word count for amount of data to be transferred

3.15.3 Input

TTWLVE reads an array from the 212 when a call to STORE is executed
followed by an external interrupt generated at the 212 keyboard,

3.15.4 Output

TTWLVE writes an array to the 212 when a call to CDCON is executed.

3.15.5 Example

None

3.15,6 Messages

TTWLVE may generate the following advisory messages:

3-37

Megsage Explanation

212 CONNECT FAILURE, NOW Could not connect channel 4, hard-
LOOPING UNTIL READY ware not ready.

CHANNEL 4 BUSY OVER 3 A channel 4 input/output operation has
SECONDS failed continuously for three seconds,

hardware not ready.

3.15.7 Flowchart

See Appendix B, Figure B-15.

SECTION 4 = TASK PROGHAM DESCRIPTIONS

4.1 BATCH - TASK ENTRY PROGRAX]

4.1.1 Prozram Descripiion

This is a task entry module which receives 1ask and parameter data cither
from cards or the 212 display station. BATCH decodes and uses this informa-
tion fo set up conditions for executing the various user tasks within the IDAMS
processor. DRIVER calls BATCH before execution of each task to briﬁg in
from cards or the 212 display the parameter information necessary for the ex-
"ecﬁtion of one task program, BATCH interprets the free format input data, '
edit~checks tape name, logical unit and file numbers,; and input picture
coordinates, then stores tl‘llese. values in COMMON. In addition, special

' parameters required for an individual task are transferred to COMMON.

‘Upon entry, BATCH performs initialization of constants and zirrays. Messages
are written out indicating card or interactive mode. Tor interactive mode,

the message "READY. FOR INPUT” is written to the 212 followed by a read
from that device. A call to CDCON performs the 212 write function while a
call to STORE does the read. For card mode, data is read directly from

cards,

After the data has been initially read into the program, BATCH decodes
fields and suhftcldq on the task card. An undefincd task name will cause a

fatal error, as will improper use of field delimiters.

BATCIH next pelform a limits check on logical unit and file numbers, ﬁzen

calls PARAMIS to decode the parameter data. This is followed by further limits
checi\s on starting line and pixel and number of lines and pixels, The primary
input label is read and both the number of pixels and number of linee are reduced

if necessary.

BATCH then returns control to DRIVER to cxecute the next task.

4-1

4,1,2 Parameters

BATCH functions with DRIVER as part of the executive, and requires no

parameters.

4.1.3 Input

BATCH reads the user-supplied task and data from cards or the 212 display,
and transmits the information to the indicated task program through COMMON.

4,1,4 Qutput

BATCH lists each input card on the printer and 212 display station as it is

processed.

4.1.5 Examples

Not applicable.

4,1.6 Messages

BATCH can generate the following non-fatal messages:
IDAMS PROCESSOR - CARD MODE
THIS IS taskname (console only)
or

variable task and parameter data Each user-supplied set of task and
(printer and 212 display only) parameter information is written
to the printer and 212 display,

When a SWITCH task card is encountered, these additional messages will be

written

NOW SWITCHING MODES
IDAMS PROCESSOR - INTERACTIVE MODE
READY FOR INPUT (printer and 212 display only)

If the number of pixels or lines must be reduced, BATCH will write one of the

following messages:

NUMBER OF PIXELS REDUCED TO nnnn
or

NUMBER OF LINES REDUCED TO nnnn

BATCH may also generate a humber of fatal error messages, as follows:

Message Egp_lanation
ILLEGAL CARD TYPE The task name read did not match

any hame kept in an internal table,

MISSING DELIMITER ON TASK Parentheses, commas, or fields

CARD were incorrect on the task card,

ZNDARY INPUT LUN LT 1 OR The secondary input tape logical

GT 55 unit number specified was outside
the limits defined for programmer
units.

2NDARY INPUT FILE NO LT 1 The secondary input file number

OR GT 999 did not fit within the arbitrary

limits of 1 to 999,

OUTPUT LUN LT 1 OR GT 55 The output logical unit number
specified was outside the system
limits defined for programmer
units.

4.1.7 Flowchart

See Appendix C, Figure C-1,

4,2 TESTGN - TEST PATTERN GENERATION PROGRAM

4,2.1 Program Description

This task subroutine generafes a test image ieure 4-1) having 270 lines of .
o by o o

340 pixels each, as follows:

1. Standard resolution bars in left half
2. Single blip at line 45, pixel 240

3. g-x~8 array of 20-x-20 uniform gray squares in lower right.

Upon entry,” TESTGN initializes pointers necessary to define boundaries for
the resolution bars. It writes a label in IDADMS format on the first record of ‘
the 6utput tape, Thehars aré in an internal array of 230 iines, each con-
taining 120 pmcls After 20 lines of zeros are written, TESTGN moves the
resolution bar data into the left half of lines 21 through 250, The right half

. of these lines is all zero except line 45, pixel 240, which con:ains_")the single
point image, Lines 91 through 250 have bars in the leit half and uniformly
increasing 20-x-20 blocks of gray levels in the right hall. The last 20 lines |
and the first and last 20 pixels in every line are all zero, forming a boxder

around the test image. : : . -
4,2.2 Parameters |

No speci.al parameters are required.

4.2.3 M

There is no input other than the TESTGN task control card.

4,2.4 Output |

' TESTGN creates a test image of 270 lines and 340 pixcls coataining resolulion
bars, a singlé point image, and uniform gray blocks in standard IDAMS

format on an output tape,

Ya
]
e

 erowr
IMAGE

i} 1l 2 {) 23] is! iR (i
(2 1] i 1y [¥4 13 (144 15}
{16) a7 (+B) HE (z0; 121 {22} 123}
(24) (75} 1261 (hrhs i28) {29 30! a3n
(121 {33 134)] 135 {37} (18] 39}
120) “in 142) {431 184) (45} 146} (L]
{ag) 149) 1501 {81} (52} ’ {53} 154) (5.‘:.}-
(56} {67) {58} 58] 6 {61} 162) 1831

260

2rn L

0 20 30 80 160 120 140 180 200 220 249 260 280 300

Figure 4-1. Resolution Test Target

4,2.5 Examples

To create the standard test image of 270 lines and 340 pixels each, the follow-

ing task control card is necessary:

rI'ESTGN, . ATEST1, 49, 1}

This will create the previously described pattern on the tape mounted on
logical unit 49. The IDAMS label record will contain the name "TEST1" for

future reference.

NOTE: Card format specifications are defined in the IDAMS User's Guide.
4,2.6 Messages

There are no messages.

4,2,7 Flowchart

See Appendix C, Figure C-2, .

4.3 LIST ~ TAPL TO PRINTER UTILITY PROGRAM

4.3.1 Program Description

LIST is a task routine used to generate a printed listing of selected sections
of selected lines of images. It is used primarily for checkout and evaluation

of other tasks.,

Based on input dala, LIST accesses the proper tape unit and reads and prints
the tape label for the specified file. It compares the number of lines .ﬁnd
pixels requested with the actual values found on tape, and reduces one or
both of the requested values, if nccessary. It then prints a line at a'time in |
integér form.;t, preceded by the line number, until it has listed all requested
data, The uscr has the opﬁon of specifying packed or spaced output via an

input parameter,
4,3.2 Parameters

LIST requires the following special parameters:

~J

1, SKIP = interval between successive input lines, SKIP =1 or.

default if all input is to be printed

. . -
2. IBLOCK - block list option. If IBLOCK =1, horizontal and
——- : vertical spaces are suppressed. If this field is defaulted,

normal spaeing is used. .

4,3.3 Input

A tape containing integer data in standard IDAMS format is necessary,

4.3.4 Quiput
This routine lists the portion of the input tape specified through input

parameters on the printer,

4-7

4.3,3 Examples

A previous program has created a tape, which is now mounted on LUN 47, Its
overall data dimensions are 4096 pixels and 3218 lines. 'Its label name is
JAMESBLU and the file number is 1. To list every 100th line beginning at

pixel 20 and line 50, the following control cards are necessary:

r.IST, {JAMESBLU, 47, 1}, (20, 60, 4077, 31698}, ,1

(100

NOTE: Card format specifications are defined in the IDAMS User's Guide.
Parameters must be supplied in the order shown in paragraph 4. 3. 2.

4,3.6 Messages

None,
4.3.7 Flowchart

See Appendix C, Figure C-3.

1.4 CONTRAST - RADIOMETRIC CORRECTION PROGRAM

4.4.1 Pregram Descrintion

The task })1jo§1'nn1 CONTRAST provides for converting the gray level values
of an image ‘using table look-up. The table can be obtained from any of three
sources: a standard {able of radiometric corrections stored in the program;
a complete conversion table supplied by the user; or a table generated by
linear interpolation between user-supplied pairs of old and new gray-level
values, whicﬁ define a piecewise linear relation between old and new values.,

' CONTRAST can also perform a bit maskir‘lg operation on an IDAMS formatted
data tape where the number of bits to be set to zero is determined by the first

parameter.

Upon entry, CONTRAST examines the first input parametér, N, If2€ N< 11,
:N'pairs of coordinate points must follow which define the piecewise linear
graph io be used for 06111puting the translation table, If N =1, the translatioﬁ
table is input as para.meters 2-65 I N = 0, an internal translation table is
used. If - 5< N< -1,] NI bits are masked by computing an appropriate
translation table. The lowest order (rightmost) bit will be set to zero in each
pixel if N = .-1. In any case, after generating or storing the required *table,
CONTRAST reads in one line of input data at a time, Unwanted Jines are not
processed, General purpose subroutine CODE translates one character at a
time to new gray-level values specified by the table. The finished line is
written on output, and successivp 1.ine$ are produced in the same manner

until the specified region of the image has been processed.
4.4.2 Paramelers

“The contrast conversion table can be specified in one of four ways, If the
conversion is to follow a lincar or piecewise lincar velalion, the parameters

are shown in the following page.

1, N = number of pairs of coordinate points that follow (2 £ N £ 11)

2,3, Old and new values, respectively, for point at left-hand end of left-

most line segment

4,5, Old and new values, respectively, for point at left-hand end of next

line segment

2N, 2N + 1. 0ld and new values, respectively, for point at right-hand

end of last (right-most} line segment

The first pair of values should include at least one zero; the last pair at least
one 63, If the first old value is nonzero, all values less than it will be assigned
2 new value of zero. If the last old value is not 63, all values greater than it
will be assigned the 1ast- new value. At most, 11 pairs of coordinates can be
specified, corresponding to 10 contiguous line segments, In addition, the old

values must be sirictly increasing,
If a nonlinear conversion is required, the parameters are:

1. N =1 TUse table of new values entered as parameters 2 to 65 for

old values 0 to 63, respectively

2-65, New values to which the old values 0 fo 63, in that order, are to be
converted; 64 values must be supplied
or,

1, N = 0 Use standard fable, stored internally

If bit masking is desired, -5 £ N € -1 Mask |N| low order bits to zero in each

pixel.
4,4.3 Input

CONTRAST requires a single input image tape in standard IDAMS format.

4-10

4,4,4 Output

CONTRAST generates a single output image tape in standard IDAMS format.

4.4,5 Examples

It is desired to: increase the contrast in the low-density regions of a picture,
TEST1; decrease the contrast in the medium-density region; and not change
contrast at higher densities, in accord with the funetion depictéd in Figure
4-2. The entire picture of 3000 lines of 3600 pixels each is to be processed.

Appropriate IDAMS source statements are:

@THAST, (TEST1, 49, 11, (1, 1, 3600, 3000), (CONTRAST, 47, 1),

[4, 0,0, 20, 40,55, 55, 63, 63

NOTE: Card format specifications are defined in the User's Guide.
Parameters must be supplied in the order shown in paragraph 4.4.2.

4,4.6 Messages

CONTRAST generates the following fatal error messages:

Message | Explanation
N NOT LE 11 AND GE ~5 The first special parameter con-

tained a value out of range.

COORDINATE VALUE GT 63 OR An old or new gray level value was
LT 0 beyond the range 0-63.

OLD COORD NOT STRICTLY A specified value of the old inten-
INCREASING gity was less than or equal to the

preceding value.

OLD COORD NOT STRICTLY A specified value of the old inten-

INCREASING . sity was less than or equal to the
preceding value; execution
terminates. -

4-11

NEW VALUES

{55,556)

(20,40}

{63, 63}

(0,0}

OLD VALUES

Figure 4-2. Contrast Conversions

4~12

4.4,7 Flowchart

See Appendix C, Figure C-4.

4-13

4.5 CONVOLVE -~ CONVOLUTION PROGRAM

4.5,1 Program Description

The task program CONVOLVE nrovides capahilities for convolving an image
data set with a uscr-s'uppliéd weight nmtrix, Applications include simulation
of samplilng and blurring processes and digital filtering for edge enhancement
and blur reduction. The program can generate output values for each input.
pixel, or at inrger, usel"—Spczci.ficd inerements between pixels and/or lines.
The weight table can have either odd or even dimensions, it can either be
- symmetric about the x and_ y axes, in which case only one quadrant needs to

be specified by the inpht parameters, or it can be nonsymmetric.

CONVOLVT begins by accessing the ihput parameters and computing the

amount of COMMION required for storing the weights. The remainder of
" COMMON is dynamiéally aliocated for picture data, to msximize processing
efficiencj.r. The program computes the sums of the positive weights and the -
-negatiize weights separately, and checks that neither sum, after normalization,
exceeds 32.5 in magnitude; a larger value could pr'oducé:an uncorrecfable over-
flow during computation. The program then normalizes the weights, with 12-
bit fractional part, to make their sum equal unity; optionally, the usef can

specify alternative normalization, -

The progrﬁm. then compares the dimensions of the specified region of the input
image with the size of the entire input image. If the specified region exceeds
the available inpﬁt da_ta., CONVOLVE reduces the specified numbers of lines

and pixels to fit the available data, and writes an advisory message on the
printer. If the specified region extends to or near the edge of the available data,
the program makes provision for copying the boundary pixels outward to min-
imize edge effects by ensuring that each clement of the weight matrix will always

have a corresponding pixel value.

A=A

The program then compares the dimensions of the specifi.ed region with the
available COMMON size, If the entire input region will not fit into core at one
time, the program makes provision for breaking the image into horizont:il strips.
If each such strip contains fewer lines of data than the number of lines of weights,
the program also segments the imagé into vertical strips. Néxt, it computes

the remaining constants required for reading, writing, shifting, and convolving
the data. It passes the constants required by the COMPASS subroutine ADDWTS
by calling ADDPRM, which stores the parameters and modifies ADDWTS logic

to provide maximum efficiency for the particular set of parameters.

The program reads input data into core until the available space is filled, and
copies data on the edges of the input image outwards, if required. If segmen-
tation into vertical strips is required, the program first {ransfers data from

tape to disk, and then reads back into core from there,

The program calls subroutine ADDWTS to carry out the convolution to génerate
one line of output. To compute each output pixel, ADDWTS first resets the
variable SUM to zero. For each weight, from one to four input pixels, depend-
ing on the symmetry of the weight array, are loaded and added together, and

the sum is multiplied by the weight, This product is added to SUM, When all
weights have been used, SUM is divided, with rounding, by 4096 to eliminate the
12-bit fractional part, If the result is negative, it is replaced by 0, the minimum
gray-level value; if the result is greater than the maximum allowed value of 63,
it is reduced to 63. The result is stored into the cutput buffer, and the input
pixel addresses incremented as specified by the user-supplied parameter, and

the next output pixel is computed.

The program writes each output line onto the output tape as soon as it is com-
puted. When vertical segmentation is required, the program stores the segments
of each line temporarily on disk until a complete cutput line has been assembled.
When all output lines have been computed for one block of input data, the program

reads an additional block of data into core, after first moving to the top of core

- '4-15

any lines from the bottom of the previous input block that are needed for com-
puting additional output. Processing continues one block at a time until the en-

tire output image is complete,

When segmentation into vertical strips is required, the program processes the
first segments of all lines on the disk first, then the second, and so on, If the
input data does not exceed about 4 million characters, the program will process
the entire image from one loading of the disk., For larger images, the disk is

reloaded as many times as necessary.,

Execution time has three components: tape 1/0, computation time, and disk 1/0
(if any). Tape 1/0O is normally a small fraction of the total, because the input
and output tapes are read or written once without intermediate rewinds, Com-
putation time is abouf 20 microseconds per output pixel and per weight for sym-
metric weight arrays, and about four times as long for nonsyﬁlmetric arrays;
for inerements other than one, the numbers of output lines and pixels per line

will equal the input numbers divided by the increments.

When segmentation into vertical strips is required, disk I/0 will réquire an ad-
ditional 1 to 6 minutes for each 1 million input pixels, depending on how many
strips are required. Example: Processing a 3200-x-4100 input image with a
20-x-20 symmetric weight array and output increments of 11 and 16 requires

approximately 1 hour and 20 minutes,

4.5.2 Parameters

CONVOLVE requires six special parameters and a table of weights, in addition

to the standard parameters that define the input image. These special param-

eters are:
1. NX - number of columns in full weight matr:ix
2. NY - number of rows in full weight matrix
3. INCRX - increment between ocutput pixels

4-16

4, INCRY - increment between output lines

5. IDIV - quantity by which input weights are to be divided for
normalization, If IDIV = 0, weights are divided by their

sum.

6. ISYM - symmetry of weights
0 = Nonsymmetric

1 = Symmetric

7. Weights, beginning with top line of array and left-hand end of line.
For ISYM = 0, NX times NY values must be supplied. For ISYM =1,
only the upper (NY + 1)/2 rows and left-hand (NX + 1)/2 values in

- each row are entered.

NX can have a maximum value of 256. The product of NX and NY may not exceed
about 2000 for a nonsymmetric matrix or 3500 for a symmetric matrix; these
values correspond to square arrays approximately 45 x 45 and 60 x 60, respec-

tively.

47. 5.3 Input

CONVOLVE requires a single input image tape in standard IDAMS format.
4.5.4 Output

CONVOLVE generates a single output image in standard IDAMS format, For
large images and weight arrays, the program requires disk storage for tempo-

rary output.
4,5,5 Examples

1. Simulation is desgired of the averaging characteristics of a detector
that weights the central 36 points of an 8-x-8 array equally, and
weights the 28 boundary points only half as much, The distance be-

tween successive sampling centers along the line is five elements,

4-17

and that between lines is eight elements. The corresponding weight

matrix ean be represented as:

e e
1-il\)MNlMl\‘lM—‘
- AN NN NN =
HNNN‘NNN-I
‘-iNM.NNNN-l
- N RN NN N -
- NN RN NN
- ml wl md mb el =3

An entire input image named LARGEPIC, having 4000 lines of 4000 pixels each,

is to be processed. Appropriate IDAMS task and parameter cards are:

(CONVOLVE, (LARGEPIC, 49, 1), {1, 1, 4000, 4000), {SMALLPIC, 47, 1,2

2, It is desired to sharpen edges and enhance high-frequency details of
the upper right quarter of a 3000-x-3000 image named CHEBAY
using a symmetric 11-x-11 filter described by the matrix whose up-

per left quadrant is:

z 0 -1 -4 -6 -6
0 3 -G 4 15 19
-1 6 12 20 13 5
4 4 20 10 -76 60
6 15 13 76 20 10
-6 19 5 60 10 844

4-18

Appropriate IDARMS {adk and parameter ecards arce:

,/CU.'\‘VOLVE, {CHEBAY, 48, 1), (1501, 1, 1500, 15801, (SHARPBAY, 47, 1), 3

P 1 11 % 1 o 1 2 0 i 4 6 % o 3 6 4
'(15 1w % 6 12 20 13 5 -4 4 20 -0 76 60 -6 15
F6 20 10 6 19 5 G0 10 Bgaa

. Ty
r

NOTE: Card forimat specifications are defined in the User's Guide, Parameters
must be supplied in the order shown in paragraph 4.5, 2.

4.5.6 Messages

Message

SUM OF WEIGHTS = 0

NY TOO LARGE FOR AVAILABLE
CORE

WEIGHT VALUES TOO LARGE

4.5.7 Flowechart

See Appendix C, Figure C-5.

Explanation

User has specified weight normali-
zation by dividiag by sum of weights
(IDIV parameter = 0) and this sum
= 0, fatal error, :

Insufficient core to hold both

_weight table and NY data segments

of minimum possible length, fatal
error,

Sum of either positive or negative
weights, after normalization,
exceeded 32, 5, making possible
uncorrectable overflow, fatal error.

4.6 ENPAND-- IMAGE EXPANSION PROGRAAL

4,6.1 Program Description

The task program EXPAND converts an input image into an expanded cutput
image using a user-supplied table of weights. These weights can be chosen to
simulale the spreading associated with a raster-type scanning or recording

deviee, or to provide interpolstion between input points.

The weight table represents the fraction of the value of an input pixel located

at a position c'oi'responding to the center of the table that will be contributed to
-output yalueé having relative positions equivalent to the relative positions of the
weights. In other words, an input image array containing all zeros, except for
a single element equal to unity, would (ignoring round-off effects) give an out-
put image containing a sin.gle copy of the weight table surrounded by zeros. If
the diinensions NX, NY of the table exceed magnification factors MX, MY,
there will be overlapping between the weight distributions centered on adjacent
'input poiﬁts, so the value of an oulput pixel can be a sum of e weighted con-

tributions of several input pixels.

When NX or NY is even, the center of the weight table is_'taken to be on column
NX/2 or row NY/2, respectively; i.e., for an even-even weight table, the
center is taken to be the upper le.ft one of the four values that surround the
gﬁometric center. Similarly, the First pixel of the input array is‘taken to be at
column (MX +1)/2 or MX/2 and row (MY + 1)/2 or MY/2, according to whether

MX and MY are odd or even, respectively.

E}CPAND. begins by dividing each user-supplied integer weight value by the
specified divisor us'ing 12-bit fractional precision. If a symmetric array is
specified, ihe program genémtes the complete weight arrvay by copying from
the upper left quadrant suppllied by the user. Becausc different output points
will usc different subsets of the weights, the program compares the sum of the

positive members and negative members of each possible subset with 32.5 to

4-20

ensure that no uncorrectable overflow can occur during computation of the

output values.

The program then examines magnification factors MX and MY and the table
dimensions NX and NY to determine whether the points on the edges of the out-
put image will need to reference input data beyond the edges of the input image.
If so, the program computes parameters to permit extending the input image
by copying the edge points outwards; if the center of the weight array falls on a
point outside the input image, however, the program reduces user-supplied

dimensions NL and NP, and writes an advisory message.

The program then computes the remaining parameters required for reading in
and processing the data. In particular, if the required input image is too large
to fit into core, the program computes parameters to permit dividing the input
into horizontal strips to be processed one at a time. A call to PXLPRM passes
constants required by the COMPASS subroutine PXLBLD: PXLPRM also modi-
fies PXLBLD logic, as required, by the relative values of MX and NY.

The program then reads data from the input tape until core storage is filled.

It then calls PXLBLD to compute one line of output data at a time. To compute
one output pixel, PXLBLD loads each input pixel that will contribute to the out-
put value, multiplies it by the appropriate weight, and adds the results together.
This sum is divided, with rounding, by 4096 to eliminate the 12-bit fractional
part. If the result is negative, it is replaced by the minimum gray-level value,
zero. If the result exceeds the maximum value of 63, it is replaced by 63. The
result is stored into the output buffer, and the index register is initialized for

computing the next output pixel,

After each output line is generated, the program writes it on the output tape.
After all data in core have been used, the program reads additional strips of the

image, if any, into core and processes them in the same manner.

4-21

Execution time is roughly proportional to the number of output pixels generated
and the average number of input pixels that contribute to each output value;

this number is roughly equal to (NX*NY)/(MX*MY). For 3000 output lines of
4000 pixels each, using about three input pixels for each output value, EXPAND

requires about 30 minutes.

4.6.2 Parameters

EXPAND requires the following special parameters:
1. NX - number of columns of weight matrix
2 NY - number of rows of weight matrix

3. . MX - factor by which image is to be expanded along the line, in

x direction

4, MY =~ magnification factor in direction perpendicular to lines

(y direction)

5. IDIV ~ integer by which each integer weight parameter is to be
divided for normalization
6. ISYM - symmetry of weight table

6 = nonsymmetric
1 = gymmetric about x and y axes

7. Weight parameters, beginning with top row and left-most value on
row. For ISYM = 1, only (NX + 1)/2 or NX/2 values per row and
(NY + 1)/2 or NY/2 rows need be supplied for NX and NY, respec-

tively, odd or even.

The parameters are restricted by the requirements that: the length of the out-
put line, MX*NP, cannot exceed 5000; and there must be room for at least

1+ (NY - 1)/MY lines of input in core at one time. Hence,

MX £ 5000/NP
NY < (20000/NP - 1)*MY + 1
where NP is the number of pixels per line of input to be processed.

4-22

4,6.3 Input

EXPAND requires one input tape in standard IDAMS format.

4.6.4 Output

EXPAND generates one output tape file in standard IDAMS format.
4.6.5 Examples

1. Simulation is desired of the output of a moving-gpot recorder that
produces an intensity distribution, on 5-x-5 centers, described by

the weight matrix.

10 15 18 20 18 15 10
12 18 23 25 23 18 12
10 15 18 20 18 15 10

== N W N -
W ~N oW
W N oW
- N WN =

Because thig table is symmetric about the X and Y axes, appropriate task and

" parameter cards for processing a 500~x-500 image SMALLPIC would be:

’éXPAND, {SMALLPIC, 49, 1}, (1, 1,500, 500}, (XPND1, 48, 1), 2

4-23

2. Magnification is desired of a 1000-x-1000 region of an image
PINERUST, by three in each direction, using bilinear interpolation.

The required weight matrix is:

1/9 219 113 2/9 179
29 a9 213 afo 2/9
13 2/3 1 2/3 173
2/9 a0 2/3 4/9 2/9

19 2/9 13 2/9 19

If the upper left corner of the desired region is at line 501 and pixel 351,

' appropriate task and parameter cards would be:

FEXPAND. (PINERUST, 47, 1), (361, 501, 1000, 1000}, (PRX, 49, 1), 1

FS 5 3 a3 9 1 1 2 3 2 4 L 3 6 o

‘NOTE: Card format specifications are defined in the User's _Gui'clf;.u Param-
eters must be supplied in the order shown in paragraph 4.6,2.

4.6.6 Message

Meesage Explanation
WEIGHT DIVISOR IDIV EQUALS Weight divisor parameter of zero
ZERO cannot be processed, fatal error,
WGHT SUBSET NORMALIZED SUM An uncorrectable overflow {output
TOO BIG value more than 32,5 times input

value) could occur with weights
normalized as specified by the
weight divisor parameter, fatal
error,

4-24

Message
NY AND NP ARE TOO LARGE FOR
CORE
4,6.7 Flowchart

Sée Appendix C, Figure C-6.

4-25

Explanation

Insﬁfficient core available to hold
enough input lines for the size of
weight table defined, fatal error.

4.7 SHADE -~ PHOTOMETRIC CORRECTION PROGRAM

4.7.1 Program Description

The task program SIIADE mikes position-dependent gray-level corrections
on an image using user-supplied calibration data, Assuming the relationship
between the true gruy lc*. el T and mc‘:qured value M to be linear, at any point

the true value can b(w""“m_d from the observed value usmo the relation-

ship
T = Slope * M + Intercept ') (1)

Measuring the values Ml and M2 for two knovwn gray-levels T1 and 'I‘2 deter-

mines the slope and intercept. Interms of these data, the slope and inter-,

- cept are given by

Slope = (T, = T}/ (M, - M) o (2a)

Intercept = (M, - M, T)/ o, (2b)

B My
In practice, the measurements of Ml and ‘\fIz are made conveniehtly at each
point of a rectangular calibration grid using the same values of T1 and T2 at

each point.

SHADE begins by checking that the user-specified region of the input image to
be corrected is entirely enclosed by the calibration grid. It then uses Athe values
of Tl and Tz, and of Ml and Mz for each point on the calibration grid; they are
entered as parameters to compute the slope and intercept at each grid point.

It then computes the constants used to control the input and output of data and
the processing loops; a call to the entry point SHAPRM sets constants required

by the COMPASS subroutine SHADIT.,

SIIADE then processes the input data lying between the first two rows of ihe
calibration grid, To compute the values of 510136 and intercept for points not
coinciding with a mhbratlon grid point, SHADE uses bilinear interpolation,
by computing, for each sect of four neighboring c‘lhbratlon points, the coeffi-

cients a, b, ¢, d, e, f, g, and h in thc foxmui'le

4-26

Slope = a + bx + cy + dxy o (33)
Intercept = e + fx + gy + hxy . (3b)

where x and y denote distances from the upper-left corner of the rectangle

defined by the four neighboring grid points.

SHADE reads in input data one line at a time. It then computes the values of
the c;ombinations (a + cy), (b +dy), (e +gy), and (f + hy) for that line for each
calibration rectangle and converts them to fixed-point represeﬁtation with 16-bit
fractional precision. SHADIT then processes the line of input data using equa-
tion (1); the values of slope and intercept for successive points are obtained by
incrementing the initial values of (a + cy) and (e + gy) in steps of (b + dy) and

(f + hy), respectively: the initial values are reset for a new réctangle each time
a vertical column of the calibration grid is reached. The intensity-corrected

line of data is then written on the output tape.

When all input data within one row of calibration rectangles have been corrected,
SHADE computes the interpolation coefficients for the next row and processes
data as described above. Processing continués until all input data have been

corrected, after which control returns to the monitor program.
4,7.2 Parameters
SHADE requires the following special parameters:

1. INITX - x-coordinate (pixel number) of upper left point in calibra-

tion grid

2, INITY - y-coordinate (line number) of upper left point in ealibra-
tion grid '

8. INCRX - spacing (in pixels) between columns of calibration grid
4. INCRY -~ spacing (in lines) between rows of calibration grid

5. NX - number of columns in calibration gi‘id (not greater than
21)

4-27

6. NY - number of rows in calibration grid (not greater than

441/NX)

7. LEVELL1 - lower (lighter) true value of gray level used for calibra-

tion

8. LEVEL2 « upper (darker) true value of gray level used for calibra-
tion: LEVEL2 > LEVELIL

9. LMEAS - NX times NY pairs of measured calibration values, be-
ginning with top line of grid and left~-most calibration
point on line. First value in each pair corresponds to
LEVEL1. Data are four-digit integers (0000 to 6300)
representing 100 times measured values; i.e., with two

implied decimal places.

The ealibration grid must entirely enclose region of the input image to be proc-

eased; this means that the relations

SP 2 INITX
SL 2 INITY
NP < INITX + NX*INCRX ~ (SP - 1)
NL £ INITY + NY*INCRY - (SL - 1)

must be satisfied; execution will be aborted otherwise:. “However, SHADE will
simply ignore additional rows or columns of calibration data not required for

processing the specified input image, and will carry out processing normally.

The 16-bit fractional precision used by SHADIT will keep round-off errors to
less than one~half gray level as long as INCRX is less than 512; because incre-
menting between lines is done with 36-bit floating-point precision, there is no

restriction on the value of INCRY.

The computed values of slope and intercept for all calibration points must be

between -127 and +127; execution will be terminated otherwisge.

4-98

4.7.3 Input

SHADE requires one input tape in standard IDAMS format.
4.7.4 Output

SHADE generates one output tape in standard IDAMS format.
4,7.5 Example

Calibration measurements have been made at pixels 50, 200, 550, and 800,
and lines 100, 400, 700 and 1000 using true gray levels of 16 and 48, The re-

sulting measured values were:

(10,42) {13,44) {15,46) (17,47
{11,42) {14,45) {16,48) (17,49
{12,43) {15.46) {16,49) (17.51)
11,43 {16,47) ' (15,50} {16,52)

Appropriate task and parameter cards for processing the region of an input

image, CB207, between pixels 100 and 800 and lines 100 and 900 are

/SHADE, (CB207, 49, 1}, (100, 100, 701, 801), (CB207CR, 47, 1), 3

‘60 100 250 300 4 4 16 48 1000 4200 1300 4400 1500 4600 1700 4700

/110(] 4200 1400 4500 1600 4800 1700 4300 1200 4300 1500 4600 1600 4900 1700 5100

‘

/1100 4300 1500 4700 1500 5000 1600 5200

I NOTE: Card format specifications are defined in the User's Guide. Parameters
| must be supplied in the order shown in paragraph 4,7, 2,

4-29

4,7.6 Messages

SHADE generates the following diagnostic messages:

Message

NX EXCEEDS 21

Message

NX*NY EXCEEDS 441

SOME DATA LIES OUTSIDE CALIB
GRID

INVALID CALIBRATION DATA

SLOPE/INTERCEPT OVFL INPT

VALUE NNNN

COEFF OVFL, CAL GRID ROW
MMMM COL NNNN

4,7.7 TFlowchart

See Appendix C, Figure C-7.

Explanation

More than 21 columns of calibration
points were specified; execution
terminates. '

Explanation

More than 441 calibration points were
specified; execution terminates.

Specified region of input image
was not entirely enclosed by cali-
bration grid; execution terminates.

INCEX or INCRY was not positive,
LEVELZ2 was not greater than
LEVEL1, or second number of a
pair of measured values was not
greater than first number; execu-
tion terminates.

Value of slope or intercept com-
puted from pair NNNN of calibra-
tion data was outside the range
-127 to +127; execution terminates.

An interpolation coefficient
agsociated with row MMMM and
column NNNN of the calibration
rectangles was less than -127 or
greater than +127; execution

terminates.

E]

4.8 ¥FT - FAST FOURIER TRANSFORM PROGRANM

4.8.1 Program Description

This task routine perforins a one~ or two-dimensional TFourier transform on

a complex array of not more than 512 rows and 512 columns, which is stored

on disk.

FIT uses four subroutines, Subroutine TRIGGN generates a sine-cosine table,
Subroutine P ERG LN generates a table of integers to place the complex data
array in permuted order, such that the tl'dnsformcd values will be in normal
sequence. Subroutine FFTONE performs a one—dimen_sioxial Fast Fourier
-transform on the permuted complex data array. Subroutine FLIP transposes
the transformed values of a one-dimensional F¥T to prepare the complex

data for a two~-dimensional transform. It flips the final result of the second

transform again to place the transformed values in the original array order.

FFT begins by calling suvroutine TRIGGN to generate a table of sines of
angles between 0 and #/2 in steps of 27/NX, where NX is the number of colunms
in the array. If the user has specified a negative sign for the complex expo-

nential, negatwes replace the resulting values.

A table of index permutations is then generated by calling PERGEN. Tlns
routme basically computes the numbers obtained by reversing the bit- order of
each binary number between 0 and N-~1; it modifies the results to take-into
account FORTRAN indexing methods, including the use of two floating-point

numbers to represent each complex value in the array.

The data are then read into core one line at a time. TFIT calls the subroutine
FITONE to carxy out the one-dimensional fast Fourier transforzﬂ on the line.
FI'TONE begins by computing the appropriate normalization factor. It then
permutcs the complex values o reverse the bit-order of their binary indices.
Before they are stored into their new Iécations. they are each multiplied by

the normalizing factor. The line is then fransformed using the one-~dimensional

4-31

Fast Fourier transform algorithm, and control returns to the main routine,

which writes the line back onto the disk.

After all lines have been processed, the routine examines the user-supplied
parameter IDIM to determine whether a two-dimensional transform is re-
quested. If so, the routine interchanges the rows and columns of the array

on the disk by calling FLIP, If the number of rows and columns are not the
same, FLIP interchanges these parameters and computes new tables of sines
and permutations, FFTONE then processes the rotated array in the same way
as before. When the entire array has been transformed, another call to FLIP
interchanges the rows and columns again, When processing is complete, con-

trol returns to the monitor,

FFT execution time for an N*M complex array is approximately N*M log2 N*M
milliseconds for a two-dimensional transform. For example, a 64*64 array

requires about one minute for transformation.
4,8.2 Parameters

1. MX - log2 NX, where NX is the number of columns in the data

array (NX must be a power of 2)

2. MY -1log_ NY, where NY is the number of rows in the data array

2
(NY must be a power of 2)

3. IDIM - dimension of FFT required

1 = perform FFT along rows only

2= perform FFT along rows and columns
4, ISIGN - sign of exponential function in transform

-1 = use negative sign (normally used for transform from

image space to frequency space)

+1 = use positive sign (normally used for the inverse

transform)

4-32

4,8.3 Input

FFT requires a complex data array on disk, 16 complex words/cell, beginning

in cell 1.

4.8.4 Output

FFT places the transformed values on disgk.
4.8,5 Examples

An array of 32-x-32 complex data words has been stored on disk. A two-
dimensional inverse Fourier transform is to be performed on this data, The
parameters required are MX = log2 NX =5, MY = logz NY =5, IDIM = 2,
ISIGN = ~1 as shown in the following card layout:

NOTE: Card format specifications are defined in the User's Guide. Parameter
- must be supplied in the order shown in paragraph 4. 8, 2,

4,8.6 Messages

FFT may generate the following message:

Message Explanation
ARRAY SIZE TOO LARGE The complex data array is larger

than 512 x 512, execution terminates,

NOTES: 1. FFT assumes that the origin of coordinates is in the upper left
corner of the input array (the y axis is positive downwards),
and leaves the origin of coordinates in the same place in the
input. The user must specify the necessary conversions when
transferring data between disk and tape if the image on tape is
to have the origin at the center of the array.

4-33

2. A symmetric normalization has been assumed, whereby the
Fourier transform is

NX-1 NY-1

B - 1 Z z -27ri(km/NX+ £ n/NY)

NX*NY

and the inverse transform is
NX-1 NY-1

B Z Z 2T ifkm/NX+ ¢ n/NY)
f =
. mhi /'—“""*NY o .

4.8.7 Flowchart
See Appendix C, Figure C-8.

4-34

4.9 FPCON - EFLOATB\’GJ’OINT CONVIRSION PROGRAM

4,9,1 Program Doscrintion

The task program FPCON carries out conversions between the various floating-
point and scaled (six-bit character) representations of image data, the Fourier
components of an image, and associated power specira and autocorrelation

ArTays.
The following floating-point representations can occur:
1, Tull array of real image

2 Full array of real values representing modulus or squared modulus
(power spectrum) for the TFourier transform of an image or an

associated autocorrelation function; two arrangements are possible:

a. Origin (zero frequency) at corner of array; this is the nor-
mal format for output from or input to the Fast Fourier -

“transform
b. Origin at center of array

3. One-half array of complex Tourier components for an image (or
other real array) in real-plus-imaginary for;ﬁ; the remaining
half of the ai‘ray can be reconstructed using symmetry properties,

as described in Appendix D

4. One~half array of complex Fourier components in modulus-plus—

phase form
3. Packed complex representation of Fourier components, as de-
scribed in Appendix D

The routines generaﬁng them normally place these representations on disk,
but they can be transferred to and from tape. The program uses the {first

{our floating-point words on the disk cell immediately following the last data
g-p &

record to store the maxima (words 1 and 3) and minima (words 2 and 4) of the
real and imaginary parts, respectively (or modulus and phase), of the complex
arrays. For real arrays the program sets words 3 and 4 to zero. FPCON
does not provide conversions from packed representation (5.); instead, the

routine CXPACK must be used to convert between (3.) and (5.).
The sealed (six-bit) representations handled by FPCON are:
6. Real image array

7. Full array with origin (zero frequency) at center representing first
part (modulus or real part) of complex values for the Fourier

transform; two types of scaling are possible

a. Linear

b. Logarithmic

8, Full array with origin at center representing second part (phase
or imaginary part) of complex values for Fourier components;

the same two types of scaling are possible

The scaled representations do not reside on disk; hence, conversions to or

from floating point are required for transferring scaled data from or to tape.
Tabhle 4~1 lists the possible conversion and transfers provided by FPCON.

Main routine FPCON accesses the size parameters, reads a requested
transfer/conversion code ranging from 1 to 22, and passes control {o a multiple-
entry subroutine to carry out the required processing. When control returns

to FPCON, it reads the next code. If a valid code is found, it again passes
control to the appropriate subroutine. If the code is a zero, or if it is invalid,

FPCON terminates and returns control to the monitor.

Entries FOLCN to FO6CN set parameters to identify the entry point and then
enter a subroutine that handles all data transfers from tape to disk. For the

first five entries, the program creates a conversion fable from the 64 different

4-36

Table 4-1. FPCON Conversion and Transfers

CODE

CONVERSION OR TRANSFER

10

11-19

21

22

6-BIT IMAGE DATA ON TAPE TO FLOATING POINT
ON DISK

6-BIT LINEAR SCALED DATA ON TAPE TO FIRST .
PART OF COMPLEX FLOATING-POINT VALUES FOR
SYMMETRIC HALF ARRAY ON DISK

6-BIT LINEAR SCALED TO SECOND PART OF COMPLEX
VALUES

6-BIT LOGARITHMIC SCALED DATA ON TAPE TO
FIRST PART OF COMPLEX VALUES FOR SYMMETRIC
HALF ARRAY ON DISK

6-BIT LOGARITHMICALLY SCALED TO SECONC PART
OF COMPLEX VALUES

FLOATING POINT ARRAY TRANSFERRED FROM TAPE
TO DISK

COMPLEX MODULUS-PLUS-PHASE SYMMETRIC HALF
ARRAY QN DISK TO REAL-PLUS-IMAGINARY S5YMME-
TRIC HALF ARRAY ON DISK

FULL ARRAY OF MODULUS VALUES ON DISK TO
SQUARED MODULUS VALUES ON DISK

FULL ARRAY ON DISK WITH ORIGIN AT CENTER 70
FULL ARRAY ON DISK WITHIN ORIGIN AT CORNER

SYMMETRIC COMPLEX HALF ARRAY ON DISK IN
MODULUS-PLUS-PHASE REPRESENTATION TO FULL
ARRAY ON DISK OF MODULUS VALUES WITH CORNER
ORIGIN

INVERSE OF 1-9, RESPECTIVELY

SYMMETRIC COMPLEX HALF ARRAY ON DISK IN
MODULUS-PLUS-PHRASE REPRESENTATION TO FULL
ARRAY ON DISK OF SQUARED MODULUS VALUES WITH
CORNER ORIGIN

DISK TOPRINTER FLOATING POINT LISTING

TAPE TOPRINTER FLOATING POINT LISTING

4-37

six-bit values to floating point, using constants stored in the label records for
codes 2 through 5. The program then computes constants controlling the
number of characters to be read from each tape and the manner of storage into
the floating point line to be stored on disk. Then the program reads in data,
one line at a time, and converts them to floating points for codes 1 through 5.
For codes 2 through 5, the program reads in the existing line on digk before
conversion begins, so both the first and second parts of the complex word can
be filled in by two successive calls to FPCON, using different inpuf data files.
For these codes the program shifts the origin (zero frequency point) of the
array from the center to the corner, and stores the data as one-half a symme-
tric array. The program then writes the floating-point line onto disk before

processing the next input line.

Entires FO7CN, F08CN, F17CN, and F18CN set parameters to identify the

entry point, and then enter a subroutine that converts one line of disk data at

a time between real-plus-imaginary and modulﬁs -plus-phase complex floating-
point format or between modulus and squared-modulus real floating-point values.
The complex data are in the format of one-half a symmetric array; the conver-
sion takes into account the special packing of the values along the symmetry .

axes, as described in Appendix D.

FOOCN and F19CN enter a subroutine that reads pairs of lines from disk, one
each in the upper and lower half of the array, interchanges the right-hand and
left-hand ends of each line, and then stores the lines back on disk in inter-
changed positions. After all lines have been so process-ed, the program has

transferred the origin of the array from corner to center, or vice-versa.

Entries F10CN and F20CN set parameters to identify the entry point and then
enter a subroutine for converting a complex moduius—plus—phase array to a
full réal array, with corner 'origin, of modulus or squared modulus values.
The program reads one péir of symmetricalljr located lines from disk at a

time, and constructs two lines of the full real array from them using the

4-38

gymmetry of the complex array. The program processes additional pairs of

lines until the entire array has been converted.

Entries F11CN to F16CN set parameters to identify the entry point and then
enter a subroutine for transferring data from disk to tape. For entry code 18,
the program checks to see whether maxima and minima of the array on disk
have been previously determined; if not, it sets‘,parameters for examining
each floating-point value as it is transferred to find maxima and minima. For
entry codes 11 through 15, the program computes a table of threshold values
for converting from floating-point to six-bit scaled values. It then computes
parameters for accessing the required words on disk and storing them in out~
put lines for tape. The program reads data from disk one line at a time. For
codes 11 through 15, the program carries out a set of six comparisons of
each floating-point value against threshold values to determine the six bits of
its character representation. For codes 11 and 16 the program writes the
cutput line d_irectly onto tape; for codes 12 throug_h 15 it stores the output line
on a scratch region of disk, After all floating-point data have heen processed,
the program reads back the scratch daﬁ for codes 12 through 15 into core in
pairs of symmetrically located lines. The program generates a full array
with_center origin one line at a time, and writes it onto disk. Fbr codes 11

to 15, it writes the floating-point value for gray level 0 and the floating-point
increment between levels on the tape level record; for code 16, it records

maximum and minimum values instead.

FPDUMP is entered for codes 21 and 22. If code 21 is specified, NY lines of
NX floating-point values each is read from disk cell 1 and listed on the line
printer. For entry code 22, NY records of NX floating-point values afe read

from tape, after reading the label, and dumped to thelli.ne printer.

4-39

4,9.2 Parameters

In addition to the parameters (SP, SL, NP, NL) specifying the region of the
input image, if any, to be used, the program requires the following special

parameters:

1. NX - number of complex values per line of packed array on
disk, NX is one-half the number of pixels per line of a
real image, secaled (six-bit) array, and power-spectrum
or autocorrelation array. NX must be a power of 2,

ZZSNX 52?

2. NY -~ number of lines in array. NY must be a power of 2;

ZOSNYS2?

3. ICODE - one to five integers, each specifying a transfer/con-

version step.
4,9,3 Input

Table 4-2 lists the input data required for the various transfer/conversion
options. |

4.9.4 Output

Table 4-3 lists the output data created by the various transfer/ conversion

options.
4.9.5 Examples

A section of input tape, TEST1, consisting of the first 256 lines and 512 pixels
per line is to be converted to floating-point representation on disk, then back
to six-bit image data on an output tape. The task and parameter cards required

are:

ﬁ’com. (TEST1, 49, 1), (1, 1,512, 256], (FPCON1, 47, 1). 1

Fss 256] Y

4-40

Table 4=2, FPCON Input Data

CODE

INPUT

25

7,10,20

"

12-15

16

17

19

21

22

IMAGE TAPE IN STANDARD IDAMS FORMAT

IMAGE TAPE, REPRESENTING SCALED FLOATING-POINT DATA,
IN STANDARD IDAMS FORMAT

TAPE FILE CONTAINING A FLOATING-POINT ARRAY, LABELLED
IN STANDARD IDAMS FORMAT

DISK FILE CONTAINING ONE-HALF OF SYMMETRIC COMPLEX
ARRAY IN MODULUS-PLUS-PHASE REPRESENTATION

DISK FILE CONTAINING FULL ARRAY OF REAL VALUES,
NORMALLY REPRESENTING MODULUS

DISK FILE CONTAINING FULL ARRAY OF REAL VALUES,
NORMALLY WITH ORIGIN AT CENTER

DISK FILE CONTAINING FULL ARRAY OF REAL IMAGE VALUES

DSK FILE CONTAINING ONE-HALF OF SYMMETRIC COMPLEX

ARRAY IN EITHER MODULUS-PLUS-PHASE OR REAL-PLUS-IMAGINARY

REPRESENTATION
D!SK' FILE CONTAINING A FLOATING-POINT ARRAY

DISK FILE CONTAINING ONE-HALF OF SYMMETRIC COMPLEX
ARRAY IN REAL-PLUSAMAGINARY REPRESENTATION

DISK FILE CONTAINING FULL ARRAY OF REAL VALUES,
NORMALLY REPRESENTING SQUARED MCODULUS

DISK FILE CONTAINING FULL ARRAY OF REAL VALUES,
NORMALLY WITH ORIGIN AT UPPER LEFT CORNER

DISK FILE CONTAINING A FLOATING-POINT ARRAY

TAPE FILE CONTAINING A FLOATING-POINT ARRAY,
LABELLED IN STANDARD IDAMS FORMAT

4-41

Table 4~3. FPCON Output Data

CODE OUTPUT
1 DISK FILE CONTAINING FULL ARRAY OF REAL IMAGE VALUES
26 DISK FILE CONTAINING ONE-HALF OF SYMMETRIC COMPLEX ARRAY
IN EITHER MODULUS-PLUS-PHASE OR REAL-PLUS-IMAGINARY
REPRESENTATION '
6 DISK FILE CONTAINING A FLOATING-POINT ARRAY
7 DISK FILE CONTAINING ONE-HALF OF SYMMETRIC COMPLEX ARRAY
IN REAL-PLUS-tMAGINARY REPRESENTATION
8 DISK FILE CONTAINING FULL ARRAY OF REAL VALUES, NORMALLY
REPRESENTING SQUARED MODULUS
9 DISK FILE CONTAINING FULL ARRAY OF REAL VALUES, NORMALLY
WITH ORIGIN AT UPPER LEFT CORNER
10 DISK FILE CONTAINING FULL ARRAY OF REAL MODULUS VALUES
WITH ORIGIN AT UPPER LEFT CORNER
1 IMAGE TAPE IN STANDARD IDAMS FORMAT
1216 IMAGE TAPE, REPRESENTING SCALED FLOATING-POINT DATA, IN
STANDARD 1DAMS FORMAY
16 TAPE FILE CONTAINING A FLOATING-POINT ARRAY, LABELLED IN
STANDARD IDAMS FORMAT
17 DISK FILE CONTAINING ONE-HALF OF SYMMETRIC COMPLEX ARRAY
N MODULUS-PLUS-PHASE REPRESENTATION
18 DiSK FILE CONTAINING FULL ARRAY OF REAL VALUES, NORMALLY
REPRESENTING MODULUS
19 DISK FILE CONTAINING FULL ARRAY OF REAL VALUES, NORMALLY
WITH ORIGIN AT CENTER
20 DISK FILE CONTAINING FULL ARRAY OF SOUARED MODULUS VALUES
WITH ORIGIN AT UPPER LEFT CORMER
21 DISK FILE TO PRINTER LISTING, FLOATING POINT
22 TAPE FILE TO PRINTER LISTING, FLOATING POINT

4-42

Convert an array of complex real-plus-imaginary values on disk to complex

modulus-plus-phase representation on disk., Control cards are:

Convert six-bif image data to floating point on disk. Treat it as a full real

array with center origin and shift to corner origin. Control cards are:

f:PCON. (TEST1, 49, 1), (1, 1. 128, 16). . 1

rﬁll 16 1 9

Assume six-bit log scaled data is stored on tape and is to be converted to the

second half-word of a complex array on disk. This step is then to be followed
by another conversion to six-bit linear scaled data on tape. The following

control cards are necessary:

r:PCON. (LOGDATA, 49, 1), (1, 1, 128, 16), (LINDATA, 47, 1}, 1

(64 16 5 13

NOTE: Card format specifications are defined in the User's Guide. Param-
eters must be supplied in the order shown in paragraph 4.9. 2.

4.9.6 Messages

FPCON generates the following diagnostic messages:

Message Explanation
TRANSFER/CONVERSION CODE An invalid option was specified on
LT10RGT 22 input; execution terminates.

4-43

Message Explanation

NL OR NP NOT AVAILABLE ON The number of lines or numher of

INPUT pixels to be processed is not available
on the input tape; execution termi-
nates.,

4.9.7 Flowchart

See Appendix C, Figure C-9.

4-44

4,10 S?\IOOTI% -~ PLOATING-POINT SMOOTIING PROGRAM

4.10.1 Program Descripiion

This task routine convolves an array of real floating-point valucs stored on
disk vwith a uscr-suppliod, 5\'1 nmcetric 3~x~3 or 5-x-5 set of smoothing weights,

and leaves the smooiled array in the same place on disk.

SMOOTH begins by converting the input weights from integer to floating-point
format, Ii then compuies a series of constants required for processing. In
pérticular, it checks whether a sufficient number of full lincs can be held in
core at one ime to permit mhcmnt processing; if not, it arranges to divide

the lines into segments of 128 values each.

SMOOTH then reads data into core until it is filled., .For data at the edge of
the, input array, it obtains an extension of one or two values all around by copy-

mg the boundary values outwalds. it then convolves the data with the smoothing

\velghts, using the cxtension values as necessary te provide an output array

of the same size as the input. It writes the smoothed data back on disk.

Some of the data alrcady in core will contribute to thé, next set of output; for
this reason, SMOOTII moves these data to the top of the core -region before
it reads in more data. If segmentation is required, it siores some lines
temporarily on a scratch area of the disk, and reads lines storéd i)revi'ousl},.r
baékrinto core. Then it reads additional data from the input array.to again
fill core, or until the last input line has been used. It again convolves ‘the
data in core with the smoothing weights, and writes the results back onto

disk. This process continues until the entire image has been processed.

Execution Hme is about 5 milliseconds for each floating-point value convolved
‘using a 3-x-3 weight array and about 10 milliseconds for 5-x-5 weights; for
example, convolving 32 lines of 512 values each with a 5~x-5 weight array

. requires about threc minutes.

4-45

4,10, 2 Parameters

1.

NX - a positive integer, the number of real values per line

of data on disk
NY - a positive integer, the number of lines of data on disk
IDIM - dimension of square weight array, where

3 = 3-x~3 weights

3 = 5-x~-5 weights
IDIV - number by which TWGHTS values will be divided to

create floating-point weighted array. This value can

never be zero.

IWGHTS - Four (IDIM = 3) or nine (IDIM = 5) values representing
welghts in upper-left quadrant of array. These are
integers that will be divided by IDIV and converted to

floating-point numbers.

NOTE: The value of NX for SMOOTH is the number of floating-point values

per line, that is, twice the value defined for FFT and FPCON, which
refers to the number of complex values per line,

4.10.3 Input

Input for SMOOTH is a floating-point array stored on disk beginning in cell

number 1. If NX is not an exact multiple of 32, the remainder of the last cell

for each line is not used; i.e., each line begins in a new cell.

4,10.4 Output

SMOOTH returns the smoothed values to the same location on disk from which

they were input.

4-46

4.,10.5 Example

It is desired to smooth a floating-point array containing 32 lines of 512 points
each using a symmetric 5-x-5 weight matrix. The matrix will be weighted as

follows:

Appropriate IDAMS task and parameter cards are:

(SMOOTH, 1

rrnz 22 5 81 1 2 3 2 4 6 3 6)

NOTE: Card format specifications are defined in the User's Guide. Param-
eters must be supplied in the order shown in paragraph 4.10.2,

4,10.6 Messages
SMOOTH generates the following diagnostic messages:
Message Explanation

TABLE DIMENSION NOT 3 OR 5 The parameter defining the dimension
of the matrix in the smoothing process
was not a 8 or 5; execution terminates.

NX OR NY ZERO OR NEGATIVE The parameter NX or NY, defining
the number of points per line or num-
ber of lines, was input as zero or a
negative value; execution terminates.

4-47

Message : Explanation

WEIGHT TABLE DIVISOR LE ZERO The parameter IDIV by which the
weight matrix will be divided was

input as zero; execution terminates.

4,10.7 Flowchart

See Appendix C, Figure C-10.

4-~48

4.11 CXPACK -~ COMPLEX PACKING AND UNPACKING PROGRAM

4.11.1 Program Description

This task rouline provides packing and unpacking of complex data arrays

using the formulae given in Appendix D,

-

After accessing the input parameters, CXPACK calls subroutine TRIGGN
(described as part of the FFT package) to generate a table of sines of argu-
ments 27 I/Nfor 6 < I s N/4, where N = 2 * NX is the number of columns
in the complete unpacked array. Tle routine then computes constants re-
quired for accessing the disk file and processing the lines of data; if unpacling
is requesied, it initializes values of minimum and maximum for both the real

and imaginary paris.

lee routine reads in the first line of data, corresponding to' k=0 (see
Appendix D).' Because the arrays are periodic in k with period M, 't1_1e line
for M - k is identical, and need not be vead. CTXPACK calls a special routine
to fill the first complex word and also word NX/2 + 1, It then initializes,
indexes, and computes the femaining words in the output 'line. using the sym-
metry relationships. For each word, the routine obtains the corresponding
sine and cosine values by table lookup in the table previously generatéd by
TRIGGN; if unpacking has been recuested, the routine reverse-s the sign of
the éésine. It then completes the computation of each symmetric pail.* of
complex values using the same coding for either packing or unpacking.. It

then writes the line back onto disk,

CHAPACK reads successive lines of data in symmetric pairs, After a special
~ sfcp to compute the first complex word of each output line, it initializes
_indexes so the remaining values can be computed using the same coding used

for the first line.

4-49

When all symmetric pairs of lines have been processed, CXPACK reads in
and processes the last line in the same manner as the first line; control

returns to the monitor.

If data are being unpacked, CXPACK searches each output line for new maxima
and minima before writing it onto the disk. After all lines have been processed,
it writes the two maxima and minima for the entire array onto the disk cell,
immediately following the last data line, before it returns control to the

monitor.

4,11.2 Parameters

1. MX - Icug2 of number of complex words per line of packed
array
2. MY - log2 of number of lines in array

3. IUNPCK - specifies conversion required:

0 = pack

1 = unpack
4.11.3 Input

Input for CXPACK is a floating-point complex array on disk, beginning in

cell number 1.
4,11,4 Qutput

CXPACK puts the packed or unpacked result back onto the disk in the same

location as the original data.
4.11,5 Examples

An array of floating-point data packed into the real and imaginary parts of
complex words is now stored on disk. The complex array size is 512 lines of

256 complex words per line. The following control cards will unpack this

4-50

data, leaving one-half the resultant array in the location of the original input
(the second half of the array is symmetric with the first and, therefore,

discarded):

FKPACK,,,J
I’s s 0

NOTE: Card format specifications are defined in the User's Guide, Param-
eters must be supplied in the order shown in paragraph 4.11. 2.

4,11.6 Messages
CXPACK generates no special diagnostic messages.
4,11.7 Flowchart

See Appendix C, Figure C-11.

4-51

4,12 ERROR - MESSAGE PROCESSING PROGRA M

4.12.1 DProgram Desceripiion

ERROR is always called at the end of a run for normal ferminations, or when a
fatal ervor occurs durin g excceulion of a sequence of IDAMS tasks, Its primary
function is to interpret the system error code and use the result to build a mes-

sage array for display on an appropriate output device,

When entered, ERROR initializes constant and task names needed for ereating
the message. Because all messages are stored in subroutine GETMSG, this
brogram is called to pick up the first Iine:- "FATAL ERROR IN AAAAAAAALT
ERROR inserts the proper ‘task name in piace of AAAAAAAA. I the job has
~ended normally, the program replaces tlns line with NORMAL END OF JOB,

and ERROR then writes out the message and returns.

If a subroutine had been called from the task program, the program puts the
messagé "AAAAAAAA WAS IN EXECUTION WIHEN ERROR-OCCURRED"

into the message array, and replaces AAAAAAAA with the actual sub'routine
name. It then generates the next two lines, econtaining the messages "ERROR
CCDE AND MEANING FOLLOW' and "IEROR = nann." The last line is an
interpretation of what the error code means. Breaking the errox codekdown
info a task pointer and a displacement generates this line, ERROR then calls
GETMSG to pick up the proper message, writes out the message array, and

returns to DRIVER.,
4,12.2 Parameters

ERROR requires no parameters.

4,12.3 Iiput

There is no external input to TRROR,

4-52

4,12.4 Output
ERROR writes a message block on the console typewriter and line printer.
4,12.5 Examples
A typical fatal error message produced by ERROR is:
FATAL ERROR IN EXPAND
ERROR CODE AND MEANING FOLLOW
IEROR = 6003
END OF FILE ON TAPE
4,12.6 Messages
Error produces no messages other than the error message array.

4,12.7 Flowchart

See Appendix C, Figure C-12,

4-53

4,13 REDUCE - IMAGE REDUCTION PROGRAM

4,13.1 Program Description

The task program REDUCE, will reduce a standard IDAMS image by an
integral factor computed from input parameters. Blank fill characters are
provided on both sides and/or top and bottom, if needed to complete the
requested output image. The results are then written on the specified output

tape.

Upon entry, the program computes the largest integral reduction factor, An
output line buffer is set up with edge fill characters, if any, and the output
label record is written. If any fill lines are required at the top of the output
picture, they are written out at this time. The program then enters a main
processing loop to read an input line, reduce its length by the reduction

factor, and store it in an internal array. This process continues until enough
input lines are collected to form one output line. Averaging is then performed
between lines, the completed line is moved to the output buffer, and the results
are written at the bottom of the output picture, if needed. The program then

returns to the monitor.
4,13.2 Parameters

1. NPC = Number of pixels to be output
2. NLO = Number of lines to be output
3. IFILL = Gray level for edge fill (default = 0)

4,13.3 Input

REDUCE requires a single input image tape in standard IDAMS format.
4,13.4 OQutput

REDUCE generates a single output image tape in standard IDAMS format.

4-~54

4,13.5 Example

A 400 line by 1000 sample portion of input image BIGPIC is to be reduced to
fit a 500 by 500 output requirement. This implies a reduction factor of 2 in
both the number of data lines and pixels, Therefore, the resultant output
image will contain a 200 line by 500 pixel image data area preceded and
followed by 150 lines of fill characters. No fill is necessary along the left
and right edges. The following IDAMS source statements would be appro-

priate;

ﬁaouce, {BIGPIC, 49, 1), (1, 1, 1000, 400), (OUTPIC, 47, 1), 1

F—.oo 500

4,13.6 Messages

None.
4.13.7 Flowchart

See Appendix C, Figure Cc-13.

4-55

4,14 HISTO - HISTOGRAM AND STATISTICS PROGRAM

4,14,1 Program Description

This task program reads an IDAMS format image tape and produces 2 printed
listing of both a numeric table of intensity frequencies and a histogram in

graphic form. The mean, median, and standard deviation are also provided,

The program first examines standard input parameters to determine the
portion of the input picture for which statistics are to be gathered. A set of
64 counters, one for each possible gray-level value, is initialized with zero
counts. A line of data is then read, each value is examined, and the corre-
sponding‘ counter incremented by 1. Additional lines are similarly processed
until the specified input data have been exhausted, The array of counters is
then examined to determine the maximum value, and a graphing interval is
determined such that the tallest bar in the histogram will just fit on the

printer page.

After the data has been normalized, a header line is printed. Next, the bin
values are printed as columns of X's where each X represents a percentage of

the total. The value assigned to each X is given in the header line.

Following the histogram, a table of the exact frequency counts for each of the
64 bins will be printed, In addition, the mean, median, and standard deviation

about the mean will be provided.
4,14,2 Parameters

There are no special parameters., Required standard system parameters are
task name, input file name, input file number, starting line, starting pixel,

number of lines, and number of pixels.
4.14,3 Input

HISTO requires a single input image tape in standard IDAMS format.

4-56

4.14.4 Output

HISTO prints out a histogram of gray levels contained in an input image,
followed by a table of actual frequency counter values for the same data., The

mean, median, and standard deviation are also printed.

4,14,5 Examples

None.

4,14.86 Meséages

HISTO generates no special messages.
4,14.7 Flowchart

See Appendix C, Figure C-14.

4-57

4,15 CHAROUT ~ PIXEL CHARACTER OUTPUT PROGRAM

4,15,1 Program Description

The task program CHAROUT converts a selected portion of an IDAMS input
image to alphanumeric format. Pixel data is translated into characters
using a table look-up technique. The 64-position conversion table {o be
used is stored internally or, optionally, input as parameters. The standard
internal table contains 32 unique characters, providing a different output
character for every two gray levels. There are no restrictions on the user-
gsupplied table values, For printed output, data is listed in block format.

If the length of the requested output line exceeds the maximu-m printer line
length, the program will print the data as a sequence of vertical strips of
the specified picture. If an output tape is named on the task card, data will

go to tape instead of the printer.

When entered, the program generates the necessary conversion table from
either input parameters or the stored data. A line of input picture data is
then read into core and CODE is called to translate the line into the cutput
character representation., The converted line is then written either on

tape or the line printer. Lines are read, translated, and written until the

requested portion of the input picture has been processed,
4,15,2 Parameters

The alphanumeric conversion table can be specified in one of two ways. If
only a task card is supplied, use of the internally stored table is assumed.
If a parameter card is provided, the first 64 columns are used to fill the

table of translation values.
4.15.3 Input

CHAROUT expects a single input image tape in standard IDAMS format.

4«58

4,15.4 Output

CHAROQUT either prints a character representation of the input data on the

line printer or writes an output IDAMS format tape.

4,15.5 Messages

None.

4.15.6 Example

Test tape TESTI is to be printed on the line printer in 2 character format.

The following control cards are typical:

FHAROUT, (TEST1, 49, 1), (1, 1, 340, 270), ,1

‘ r\BCDE EGHIJKLMNOPQRSTUVWX Y 20123456789ABCDEFGHIJKLMNOPORSTUVWXYZO1

4,15.7 Flowchart

See Appendix C, Figure C-15.

4-59

4.16 TEXTGN - TEXT GENERATOR PROGRAM

4.16,1 Progeram Description

The task program TEXTGCN is used to generate an hIph:Lnumeric text for output

directly onto a blank tape or to be combined with an input image tape for output.

The character sct of the teoxt consists of the letters A through Z, numerals

0 through 9, and special characters =+ -/ * ; (), . and blank. The text is in-~
put from cards, ‘Each card represents a line of the text, Each character in the
card is decoded into a 5-character by 7-line {8 x 11 counting spacing) mﬁtrix of
gray and zero 1cvels. (See TFigure 4——3.) |

Seven image lines are \\11tten one at a time to output after onc text card is proc-

essed Where a text is to be combined with an irnage tape the orwmal image is

preserved as much as possible,
The program terminates after all cards are processed,
4,16,2 Parametiers

The {ask card parameters for starting line, starting pixel, number of lines, and
number of pixels are used to select a portion of the input picture for output. If
no input picture is specified, the number of lines and number of pixels fields are

used to define the size of the output image.
In addition, the following special parameters are necessary:

1. Starting pixel Tor leff edge of test line(s)
2. - Stariing line for top edze of first line of text
3. ~ Multiplication factor for text data (default = 1)

4. s + 0« Variahle number of text lines

4,16.3 TInput

Text cards and an IDAMS image tape if (ext is to be combined for output.

~4=60

19-%

% 3585 38%
$ % 5 3 E I
$- & B E .
3] EL3 3]]
S55%5 * % %
% % b % B H
5 5 E'S %81 255
%% 5%55% LR
] $ i * L] ®
% 3 Y % » i3
$ 3 & » = b Y
b 4 % 5333 R 1
3] ® v &
555 Y L3
$ £33 h¥3S
%5 L3 5 %
§ ® B
% 3 RHG
% % E)
5 5 i %
5% *336% L %3
L3
PE355 *
FE%E »3a8s
)
$5355% ¥

FI
H%
b$EBH

$5585%%
%
%
$5%%
]

%
33555

Figure 4-3,

FH35$

Hh o

%85 3

£ % §

$ 3

¥ 53 53%%

% E 3 $

$ 5. %
X33 Y §

$ 3]

S § $

$ 3 g

$ * 3
5 3 i %

L3) L
%5 %

$ 5
$ 0%
b %%
$ %
$ g
5 5%
3
3
b
Y E 33
b2 $%
% 3
% 3

TEXTGN Characters

P RAWE G

R X
R RN

L R NN N

s
%%

$5%

LR R

1558

R N
@
Ll
»
6 A A R

HARB e n O
¥ o o
R H A OGN

4,16,4 Output

An IDAMS image tape with imbedded text with just the generated text as data,

4,16.5 Example

A 1000 by 1000 input image, DATAPIC, is to be marked for identification with
the header "JAMES RIVER - BLUE SEPARATION" starting at line 1, pixel
250. The following control cards could be used: |

4EXTGN, {DATAFIC, 49, 1}, (1, 1, 1000, 1000), (OUTPIC, 47, 1), 2

250 1

/JAMES RIVER — BLUE SEPARATION

4,16,6 Messages

TEXTGN generates no special messages.
4,16.7 Flowchart

See Appendix C, Figure C-16.

4-62

4,17 NEIGHBOR - NEAREST NEIGHBOR PRINTER LISTING PROGRAM

4,17,1 Program Description

The task program NEIGHBOR accepts as input an TDAMS image tape, a point
location, and an output array size. A printer listing of infensity values of neigh-
bors surrounding the input point is produced as a square array with the input

point at the center,

When entered, NEIGHBOR checks the input parameters to ensure the printed
array will fit on one page, Next the input label is read and unwanted records

are skipped. After a header line is printed, the program prints an array of pixel
values with the input point location at the center, When the requested array is

completely printed, the program returns control to the monitor.
4.17.2 Parameters

The following three special parameters are necesgary:

1. Number of central pixel
2. Number of central line
3. Array size

4,17,3 Input
NEIGHBOR requires a single input image tape in standard IDAMS format.

4,17,4 Output

NEIGHBOR produces a printed array of points with a selected pixel at the center,
4,17.5 Messages

Message Explanation
ARRAY SIZE REDUCED TO 40 X 40 The requested afray will not fit on

one page, processing continues with
a 40 by 40 output array.

4-63

4,17.6 Example

It is desired to print a 5 X 5 portion of an image called TEST1 surrounding a
point located at line 190, pixel 240, Apprbpriate IDAMS control cards would
be:

I/NEIGHBOH, (TEST1, 49, 1), ,%

(240 190)

4,17.7 Flowchart

See Appendix C, Figure C-17,

4-64

4.18 DISPLAY - INTERACTIVE DISPLAY PROGRAM

4.18.1 Program Description

The task program DISPLAY provides the user with numerous image display and
manipulation functions. The program displays the available capabilities on the
CDC 212 and the user interactively inputs the desired function codes via the 212
keyboard. The task is subdivided into a main driver routine and {wo segments.
The first segment handles all of the functions except the reduce/increase phase

of the ZOOM capability, which resides in the second segment.

Once control is passed to the program DISPLAY1 in the first segment, the in-
itial reseau coordinates and hox coordinates are set. The subroutines TVCON
and TTWCON are called, which connect the TV, and CDC 212 hardware, re~
spectively. A call to the subroutine CDCON enables the following function code
table to be displayed on the 212,

IDAMS
FUNCTION CODES

BOXGEN 01 ENLARGE 04 LEFT 06
RESEAU 02 SHRINK 05 RIGHT 07
ERASE 03 UP 08
LOCATE = 10 DOWN 09
DATA 11 ZOOM 17
DATA1 12 EXIT 18 REWIND 13
SELECT 16 FORWARD 14

REVERSE 15

The program calls the subroutine STORE, which waits until a function code has
been input to the 212, The program converts the code from a BCD number to
an integer value and returns the integer as an argument. DISPLAY branches to

the appropriate subsection depending upon the value of the function code.

4-65

4.18.1.1 BOXGEN Function

If the BOXGEN function code (01) was requested, the program checks to see if

a reseau mark is already displayed on the TV. When no reseau mark is on the
TV, the program computes the box coordinates such that the box will be centered
on the TV and will be 138 pixels by 100 lines in size. However, if a reseau mark
is displayed on the TV, the box coordinates are computed such that the 138 by 100
box will appear centered around the reseau mark location. The reseau mark is
then erased by calling the subroutine KILLIN. Once the box coordinates have
been set, the program branches to a subsection of the program which converts
the computer image coordinates to a TV format and sends them to the TV hard-
ware. To convert the Y coordinates to TV format, the values are divided by 2
and if the original coordinates were even, then 255 is added to the halved values.
This is done to accommodate the TV feature of having a main level and an in-
terlace level. The lines alternate between the main and interlace levels, and
therefore, line 1 is equal to the TV line 0, line 2 equals TV line 256, ...,

line 511 equals TV line 255, and line 512 equals TV line 511,

The x coordinates must also be converted to a TV format., The TV hardware
counts pixels across the line in increments of 11 and therefore, the hardware
must know in which group of 11 the pixel resides (x/11) and the pixel position
within the group (MOD{x, 11)). The x coordinates are converted and the group
mimber is placed in bits 23-12 of the TV coordinate word and the remainder value
resides in bits 11-0 of the word. The conversion subsection then calls the pro-
gram, DISP, which sends the TV coordinates to the TV hardware. DISP is a |
COMPASS i'outine which sends a function code for a box or reseau mark, and
then transfers the coordinates fo the TV hardware. Control is then returned to
the conversion subsection, which returns to the originating function subsection.
In the case of the box generator function, control is returned to the point where
the function code table is displayed on the 212 and the program is waiting for

another function code.

4-65.1

4.18,1.2 RESEAU Function

- When the RESEAU function code (02) is specified, the program checks to see
if a box is already displayed on the TV. If no box exists on the screen, the
program sets the reseau coordinates such that it will be centered on the TV.
However, if a box is already displayed, the program computes the reseau co-
ordinates such that it will be centered within the box area. The box is then
erased with a call to KILLIN and the program branches to the previously de-
seribed TV conversion subsection. After the reseau mark has been placed on
the TV, the program redisplays the function code table and waits for the next

code to be input.
4.18.1.3 ERASE, ENLARGE, and SHRINK Functions

The third function ERASE (03), clears any box or reseau marks from the TV by
calling the subroutine, KILLIN, This subprogram sets the TV function register
to 0, which removes all marks from the TV screen. The program returns from
the erase subsection, to display the function code table again, and wait for the

[

next input function.

The fourth and fifth fuhctions, ENLARGE (04) and SHRINK (05), are processed
in the same subsection. A check is made to see if a box is displayed. If not,
then conti'ol returns to the program area which displays the function code table.
If a box is displayed, the box coordinates are checked to see if the box can be
enlarged or reduced, depending on which function was requested. If the box is
the maximum (minimum) size, then control returns to the program area from
which the function code table is displayed. Otherwise, the coordinates are ap-
propriately reduced or increased by one in order to enlarge or reduce the box.
A call is made to the delay routine, ICLOCK, which stalls processing a speci-
fied number of milliseconds. This is necessary in order to slow down the box
enlarging (reducing) action so that the user has control over the box movement.

Control is transferred to the subsection which converts the coordinates to TV

4-65, 2

format and sends the values to the TV hardware. The program continues to en-
large or reduce the box until either the SEND key on the 212 is depressed or the
box reaches maximum (minimum) size. Control then returns to the program

area which displays the function code table.
4.18.1.4 LEFT, RIGHT, UP, and DOWN Functions

One subsection handles the functions which manipulate the movement of the box
or reseau: LEFT (06), RIGHT (07), UP (08), and DOWN (09). Depending upon
the direction of the requested movement, the program checks if the coordinates
have reached an edge of the image and, therefore, cannot be moved in the re-
quested direction. If this test is positive, then, control returns to the program
area which displays the function code table. Otherwise, the appropriate co-
ordinates are reduced or increased by one and control transfers to ICLOCK
and the TV conversion subsection, where the TV formatted coordinates are
sent to the TV hardware. The program continues to move the box or reseau in
the requested direction until either the SEND key is depressed or the box (or
reseau) reaches an edge of the image. Control, then, returns to the code

which displays the function code table.
4.18.1.5 LOCATE Function

When the function, LOCATE (10), is reqliested, the corresponding subsection
writes the location of the box or reseau, which is presently displayed on the
TV, onto the printer and the 212, The program checks to verify that a box or
reseau is displayed on the TV. If no marks are on the TV, control returns to
the program area which displays the function table. Otherwise, the program
prints out the coordinates of the box or reseau on the printer. Before the val-
ues can be output to the 212, the integers must be converted to left justified
BCD format. This process is done in the subroutine BINBCD, and the re-
formatted coordinates are output to the 212. Control returns to the program
area which displays the function code table only after the user has depressed
the SEND key on the 212 keyboard.

4~65.3

4,18.1,6 DATA and DATA1 Functions

The functions DATA (11) and DATA1 (12) are handled in the same subsection.
This subsection transfers image data from tape files to the TV. The program
first requests the tape unit number from the user by calling the subroutine
CDCON, which prints out the request on the 212, The subroutine STORE is then
called, which will return with the user’'s reply in BCD format. The program
converts the value to an integer format. The program requests that the user
input the color gun numbers. The color gun number, which is returned from a
call to STORE, is converted to binary and checked to ensure that it is valid.

If the number is not valid (0 <N = 7) the program will again fequest that the

user input the color gun mumbers. The program reads the label record and

prints out the length of the record.

Next the program enters a loop which reads 32 lines of data and properly posi-
tions the data in a format necessary for the TV hardware. Because of the main
and interlace structure of the TV, even lines are separated from the odd lines.
Consequently, as the data lines are read in, pointers are set which direct the
data into the appropriate buffer location. For instance, in buffer 1 the lines
1,3,5,...,31 are sequentially packed, and lines 2,4,6...,32 are sequentially
packed in buffer 2. The tape reads are double buffered, and while the next line
is being read, the last line's data is sent to the subroutine, FLIP. This sub-
routine reverses the pixel order of each word in the line (i.e., if the charac-
ters ABCD are input as a word, they would be returned as DCBA in the same
word). This procedure is necessary in order to make the data compatible with
the TV hardware's counting method. After a set of 32 lines have been read in
and processed by FLIP, the 16 even lines and 16 odd lines are ready to bhe
transferred to the TV.

The subroutine LINDIS is called for each set of 16 lines. This routine prepares
the data for the transfer and then outputs it to the TV. LINDIS is a COMPASS

subroutine which computes the function code depending upon whether the lines

4-65.4

are main or interlace and sends the function code to channel 2 (TV hardware).
The subroutine then checks to see if the requested function was DATA (11) or
DATAL (12). If the request was for DATA, then each word of the 16 line data
block has the least significant bit shifted off. This is required because the

TV hardware, which counts from left to right, can only handle five of the six

bits per pixel value. Without shifting, the most significant bit would be lost,
which is an undesirable result. Consgequently, by shifting each word to the

right one bit, the TV hardware will be picking up the most significant bit and
only losing the least significa.nt bit. However, the DATA1 (12) function does

not shift the data words and sends the data words as fhey are input. This feature

is available in case a user wishes to view the data without the shifting procedure.

Once the data words have been prepared for transfer, LINDIS sends two blocks

of 16 lines to the TV, channel 2, and waits for the I/0 to be completed before
returning to DISPLAY1. This procedure of processing data in sets of 32 lines
continues until the program senses an end-of-file mark on the input tape. If

the program determines that the total number of lines read ig not an even multiple
of 32, it prints a message indicating that some data lines must have been lost.
The program concludes this fact because the nurr;ber of lines in a TV size image

is 512, which is an even multiple of 32, Control then returns to the program

area which displays the function code table.
4.18.1.7 REWIND, FORWARD, and REVERSE Functions

The functions REWIND (13), FORWARD (14), and REVERSE (15) are all handled
in the same subsection. The program calls CDCON, which requests that the
user input the appropriate magnetic tape logical unit number. The subroutine
STORE returns the tape unit number in a BCD format and the program converts
it into a binary integer value. If the request function was REWIND (13), the
program rewinds the tape and returns to the program area which displays the
function code table. If the FORWARD (14) or REVERSE (15) functions were

gpecified, the program sends a request, for the number of files to be skipped,

4-65.5

to the user via the subroufine CDCON. The reply is returned from STORE and
is converted from BCD format to an integer value. The program then forward
spaces or backspaces the appropriate number of files, and, if the backspace

function is being executed, the end-of-file mark is skipped over before control

returns to the program area which displays the function code table.
4.18.1.8 SELECT Function

The subsection which processes the SELECT (16) function enables the user to
select the coordinates of a box which will be displayed on the TV screen. By
referencing the subroutine CDCON and STORE, the program requests that the
user input the coordinates of the desired box. The coordinates must be input

in the following order; leftmost pixel value, rightmost pixel value, top line
mumber, and bottom line number. Because the box figure appears in either

the main level or the interlace level, the input line values must both be even or
odd. If the line numbers are mixed, the program outputs a méssage to the 212
indicating the error, and then corrects the line numbers by forcin.g them to both

be even or odd values.

The program receives the parameters from the subroutine STORE and scans
the parameter list from the last word of the input array to the first word. The
program ignores blanks and expects commas to be the separator between co-
ordinates. The coordinates are converted to integer format and sent to the TV
conversion subsection, which converts the values to TV format and sends them
to the TV hardware. I the parameter list has not been correctly input, the
program requests that the coordinates be input again. Once the box has ap-
peafed on the TV, control returns to the program section which displays the

function code table.
4.18,1.9 ZOOM Function

The last display function is the ZOOM (17) function which takes the area bound
within a box or the TV image and increases or reduces it into a TV size image.

The phase of the funetion which requests the required parameters and determines

4~65.6

if an increase or reduction of the master image is needed makes up a subsection
of the DISPLAY1 program. The code which actually performs the reduction or
enlargement of the image resides in a separate segment. By referencing
CDCON and STORE, the DISPLAY1 subsection initially requests the name of the
image which is displayed on the TV, the tape unit on which the TV image tape
resides, and the file number of the image. These parameters are stored in the

label array, LBLIN.

The label processing routine, LBLRD, is then called to read the TV image

file label, and the information stored in LBLIN is used to verify that the tape

is positioned at the requested image. The requested file label contains the
name of the master tape (the image tape from which the TV image originated)
which is used to send a message to the user, via the 212, reminding him that the
specific master tape must be mounted. The reduction or enlargement factor
that was used when creating the TV image from the master image is stored in
word 11 of the TV file label. Using this factor, the box coordinates, and the
dimensions of the master image, the program determines whether the master
image must be increased or reduced to create the desired TV image. If the

box enclosed area would not result in an optimum TV size image, the program
sends a message to the user asking if the user still wants to create the requested
TV imagé. If the user replies negatively; then the program branches back to
the program area which displays the function code table. If the user replies

positively, the program continues processing.

A request is made for the master tape logical unit number and file number and
then the program reads in the master image file label. The program then re-
quests, via the 212, that the user supply the output TV image name, tape unit
mimber, and file number. The output label is written onto the specified tape.
Before going to the segment which carries out the actual reduction or enlarge-
ment, the program requests that the user verify that all of the parameters are

correct, If the response is negative, the program branches to the beginning of

4-65.7

the ZOOM subsection and begins the requests for input parameters again. i
the user replies positively, the program returns to the main driver which calls
segment 2, REDINC, the program that reduces or increases the master image
data.

Upon entry, REDINC computes the largest integral reduction or multiplication
factor which will just permit the input to fit within a TV size image. An output
line buffer is set up with edge fill characters, and the output label record is
written. If any fill lines are required at the top of the TV picture, they are
written out at this time. A main increase or reduce processing loop is entered.
If no increase or reduction is necessary, the master image is just transferred
to the output image. If a reduction is required, the program reads an input line,
reduces its length by the reduction factor, and stores it in an internal array.
This continues until enough input lines are collected to form one output line.
Averaging is then performed hetween lines and the completed line is output. If
an enlargement is involved, the program reads an input line, enlarges its length
by the multiplication factor, and outputs the enlarged line the requested number
of times. After all lines have been processed for either enlargements and re-
ductions, the program writes out any remaining lines of bottom fill. Control
then returns to the main driver which recalls segment 1, DISPLAY1, and the
IDAMS function code table is again displayed. |

4,18.1.10 EXIT Function

The user exits from the DISPLAY package by selecting the EXIT (18) function
code. When the program receives this code it returns to the main driver,

which then returns to the IDAMS system.

4~-65.8

4.18,2 Parameters

DISPLAY calls the IDAMS display package whose parameters are provided
interactively through the 212 Display Station. By specifying the name DISPLAY

on the task card, the following function code table is displayed on the 212 screen.

. IDAMS
FUNCTION CODES

BOXGEN 01 ENLARGE 04 LEFT 06
RESEAU 02 SHRINK 05 RIGHT 07
ERASE 03 UP 08
LOCATE 10 - DOWN 09
DATA 11 ZOOM 17
DATAL 12 EXIT 18 REWIND 13
SELECT - 16 FORWARD 14

REVERSE 15

In order to execute any one of the functions, the user must type in the corre-
sponding numeric code and depress the SEND key. A description of each func-

tion is given below.

Code " Funetion Description

| 01 | BOXGEN: Generates a box which, if no reseau mark
displayed on the TV, is centered on the
TV screen and has the following (pixel,
line) coordinates: upper left corner
(283, 206), upper right corner (421, 206),
lower left corner (283, 306), and lower
right corner (421,306). If a reseau mark
is already displayed on the TV, a box
(138 pixels by 100 lines) which will be lo-

cated around the reseau coordinates, will

4-65.9

Code Function Description

01 replace the reseau mark. To alter the
Cont'
(OI? d) location and size of the box, refer to the
functions LEFT, RIGHT, UP, DOWN,

SHRINK, and ENLARGE.

02 RESEAU - Places a reseau mark on the TV screen
which, if a box is not presently displayed
on the TV, has the following (pixel, line)
coordinates at its center: (357,256). Ifa
box is already displayed on the TV, a
reseau mark which is located at the center
coordinates of the box replaces the box,
To manipulate the reseau's location, refer

to the functions LEFT, RIGHT, UP, and

DOWN.

03 ERASE Removes a boX or reseau mark from the
TV.

04 ENLARGE Increases the size of the box which is dis-

plajed on the TV. To stop the enlarging
action, the user must depress the SEND

key.

05 SHRINK Reduces the size of the box which is dis-
played on the TV. To halt the shrinking
action, the user must depress the SEND

key.

06 LEFT Moves the box or reseau mark to the left.
The left action is halted by depressing
the SEND key.

4-65. 10

Code

o7

08

09

10

11

Function

RIGHT

UP

DOWN

LOCATE

DATA

Descripfion

Moves the box or reseau mark to the right.
The right action is halted by depressing
the SEND key.

Moves the box or reseau mark upward.
The upward action-is halted by depressing
the SEND key.

Moves the box or reseau mark downward.
The downward action is halted by depress-
ing the SEND key.

Returns the coordinates of the box or
reseau which is presently displayed on
the TV screen. When the user wants to
clear the coordinates from the 212 and
have the function code table reappear, the
SEND key must be depressed.

Drops ah image tape file, which contains

64 gray level data, onto the TV, The pro-
gram requests two input parameters. The
tape unit on which the image tape is
mounted must be keyed in after the re-
quest appears on the 212, After the SEND
key is depressed, a request for the color
gun number will appear. The TV has three
TV refresher disk files available for image
data storage, and each disk can be assigned
to one of the three available color guns (red,

green, or blue). The color gun parameter

4-65.11

Code

11
(Cont'd)

Function

Description

is a value which determines which disk
file(s) the user wants for storing an image.
The parameter is an octal representation
of a three-digit binary number, in which
each digit corresponds to one of the disk
files and the "on-off" conditions are rep-
sented by ones and zeros, respectively.
The following table shows the correspond-
ence between the color gun humber, the
disk assignments and the binary number

from which the parameter value was de~

rived.
Binary
Color Representation
Gun Disk Disk Disk Disk

Number File(s) 3 2 1
1 1 0 0 1
2 2 0 1 0
3 land2 0 1 1
4 3 1 0 0
5 1land 3 1 0 1
6 2 and 3 1 1 0
7 1,2, and3 1 1 1

Once the user hag specified the disk file(s)
into which the image data are to be stored

and the SEND key has been depressed, the

image will be dropped to the disk, and dis-
played on the TV. The user can define

which color is to be associated with each

4~65.12

Code

11
{Cont'd)

12

13

14

Function

DATAl

REWIND

FORWARD

Description

disk by manually setting the three color
wheels switches on the IDAMS Control Panel.
The three wheels, from left to right, rep-
resent the color guns of red, green, blue,
respectively. By setting the wheels to the
appropriate disk number, the user has com-
plete control over the color assignment of

any image stored in the TV disk files.

Drops an image tape file onto the TV. The
required parameters are described above
under function code 11. DATAL differs
from DATA in that the data contains 32
gray level values and, therefore, the data
words do not have the least significant bit
shifted off. However, the most significant
lot will be truncated since only five bits of

data can be displayed at one time.

_Rewinds a requested tape. The program
requests the logical unit number on which
the required tape is mounted. After key-
ing in the tape unit number and depressing
the SEND key, the tape is rewound to

loadpoint.

Forward spaces a tape a specified number
of files. The program requests the logical
unit number on which the required tape is
mounted. After keying in the tape unit

aumber, the program requests the number

4-65.13

Code

14
(Cont'd)

15

16

17

Function

REVERSE

SELECT

Z0O0OM

Description

of files over which the tape is to space for-
ward. Once the SEND key ig depressed,
the tape is forward spaced the specified

number of files.

Backspaces a tape a specified number of
files. The program requests the logical
unit number on which the required tape is
mounted., After keying in the tape unit
mimber, the program requests the number
of files over which the tape is to be back-
spaced. Once the SEND key is depressed,
the tape is backspaced the specified num-

ber of files.

Enables the user to select the coordinates
of a box which is to be displayed on the
TV. The program requests that the coor- -
dinates be input in the following order:
leftmost pixel, rightmost pixel, top line,
lower line. The line number should be
paired even, or odd, but not mixed. This
is a display hardware requirement. The
parameters must be separated hy commas
and the final parameter must be followed
by a blank. Any blanks placed between

parameters are ighored.

Takes the area bound within a box on the
TV image and increases or reduces it into

a TV size image. The program requests

4-65. 14

Code

17
{Cont'd)

Description

the name of the image which is presently
displayed on the TV, After entering in the
name and depressing the SEND key, the
TV image's tape unit is requested, and is
followed by a request for the file number
{(be sure to specify the file number with
two digits). A message reminding the
user that the master tape must be mounted
is displayed on the 212, and is followed by
a request for the master tape's unit num-
ber and file number. Before the program
begins the ZOOM procedure, information
about the new output tape is requested.

The user is asked to supply the output tape
name, the unit humber and the file number.
The program requests that the user specify
if the input parameters are believed to be
correct. If a '""Y"is returned, the program
continues with the ZOOM process. How-
ever, if an '"N" is returned, the program
begins the input parameter requests again.
This gives the user, who is aware of an
input parameter error, another chance to
supply the correct input. (Note: After key-
ing in the proper response to all requests,
remember to press the SEND key.) The
program will display on the TV whether an
increase or reduction of the master image

was necessary and the multiplication factor

4-65.15

Code Function Desgcription

17 involved. The "ZOOM' image will reside
(Cont'd) oh the output tape when the program is com-
| pleted, and the user must reference DATA
when he wishes to drop the image onto the

TV screen.

18 EXIT Returns control to the IDAMS main DRIVER

program.
4.18.3 Input

DISPLAY has variable inputs depending upon which functions are requested. If
the functions DATA, DATAL, REWIND, FORWARD, or REVERSE are requested,
DISPLAY requires a single input image tape in standard IDAMS format. If the
ZOOM function is requested, two input image tapes in standard IDAMS format

are required (a TV size image tape and the master image tape).
4.18.4 Output

Display drops image data onto the TV and displays a box and resean mark on
the TV screen. If ZOOM is referenced, a single output image tape in standard
IDAMS format is produced.

4.18.5 Examples

The fourth file on the image tape which is mounted on tape unit 49 is to be
dropped onto all three TV disks. A reseau mark is to be placed on the image
and moved to a desired point, where a box replaces the reseau mark. The box
is increased slightly and the coordinates are printed out. The enclosed aresa is

increased to a TV size image and the new image is dropped onto the first TV

4-65.16

disk. The following communication would be required to achieve the above

operations.

L The following single control card would be submitted.

(DISPLAY

2. The code 14 {FORWARD) would be entered on the 212 and the SEND
key depressed. The user would specify the number 49 to the mag-
netic tape unit request and then would specify the number 03 to the

request of number of files to be skipped.

3. The code 11 (DATA) would drop the fourth file on the TV after the
user has specified the logical unit number 49 and color gun number 7

(binﬁry representation indicating all three disk files).

4, The code 02 (RESEAU) would be entered on the 212 and a reseau
mark would appear on the TV, once the SEND key has been de-

pressed.

5. By using codes 06-09 (LEFT, RIGHT, UP, DOWN) the user would

locate the area of interest.
6. The code 01 (BOX) would replace the reseau mark with a box.
7. The box would be increased by using code 04 (ENLARGE).
8. The code 10 (LOCATE) would display the box coordinates on the 212,

9. The code 17 (ZOOM) would increase the enclosed area using the

master tape image data and outputting the area as a TV size image.

10. The new image is dropped onto the color gun 1 disk by referencing
code 11 (DATA) again. The output tape unit from the ZOOM phase

is entered as the input tape unit and the color gun number is 1.

4-65. 17

4.18.6 Messages
DISPLAY generates no special messages.
4.18.7 Flowchart

See Appendix C, Figure C-18.

4~85. 18

4,19 MODIFY - IMAGE EDITING PROGRAM

4,19.1 Program Description

The task program, MODIFY, will recreate a missing or destroyed data line

on an IDAMS tape by performing a pixel by pixel linear interpclation between
the two existing data lines which bracket the one to be replaced. Alternatively,
one or more consecutive lines may be deleted from a tape image. It also
permits the user to modify individual pixels on an IDAMS tape where necessary.
Modifications performed are based on sets of keywords followed by parameters
needed for the function indicated., For efficiency, these input parameter sets
are first sorted on line numher to permit the updating process to be accom-

plished in one pass through the input tape.

When entered, MODIFY checks the input parameters for keywords, grouping
them by sets and supplying default values where necessary. The parameter
sets are then sorted by line number. After writing an IDAMS label on the

output tape, a major processing loop is entered which reads a line, modifies

it where necessary, and writes the resulting line on the output tape.
For function code DEL, the requested number of input lines is skipped.

For function code ADD or MODIL.,, data values for the new line are calculated

by averaging between bracketing input lines.

For function code MODP, the specified number of pixels is replaced by the

supplied value.
When all parameter sets have been processed, MODIFY returns to the monitor.
4.19.2 Parameters

MODIFY requires the following special parameters in sets, the firsi of which

must be a keyword,

4-66

3'

Function code - ADD, DEL, MOD, or MODP only.

a. ADD will insert one or more new lines starting at the

specified line number.

b. DEL will delete one or more lines starting at the specified

line number.

C. MODL will modify all or part of a line by averaging between

the preceding and following lines.

d. MODP will replace one or more pixels in a line with an input

value.

Starting line number - This indicates the first line to be added,

deleted, or modified.

Number of lines/value - For ADD and DEL, this field indicates
the number of lines affected (default = 1). For MODL, this field
is always set to 1. For MODP, this field contains an input value

for the pixels being replaced (default = 0).

Starting pixel - For MODL and MODP only, this field may be used
to specify a starting pixel other than the beginning of the input line
(defauit = SP). Not used for ADD or DEL.

Number of pixels - For MODL and MODP only, this field is used
to specify a number of pixels less than or equal to the number in
the input line (MODP default = 1, MODL default = NP). Not used
for ADD or DEL.

4,19,3 Input

MODIFY requires an input tape in standard IDAMS format.

4,19.4 Output

MODIFY produces an output tape in standard IDAMS format.

4-67

4,19.5 Example
1. An image tape, TESTI1, is to be modified as follows:
a. Delete lines 21 - 40

b. Add four lines after line 230
C. Change line 150

The following control cards would carry out the desired modifica-

tions and create a new tape, MODT EST:

WDNFY, (TEST1, 49, 1}, (1,1, 340, 270}, (MODTEST, 47, 9}, 1

‘ DEL, 21, 20, ADD, 231, 4, MODL, 150

2, Assume that points in an image tape, TEST1, are to be altered

as follows: 1

Pixel Line Value
240 45 63
30 125 0
200 245 10

Control cards which would cause the results to be written onto a

tape called TEST2 are shown below:

{MODIFY, (TEST1, 49, 1), (1,1, 270, 340), (TEST2, 47,1}, 1

‘ MODP, 45, 240, 63, MODP, 125, 30, 0, MODP, 245, 200, 10

4,19.6 Messages

Bad data values, if any, are printed on the line printer, In addition, the

following messages may be generated:

4-68

Message Explanation

BAD LINE NUMBER A conflicting or illegal line number
was defined as an input parameter.

BAD FUNCTION CODE An illegal function code was defined
on input,

4,19.7 Flowchart

See Appendix C, Figure C-19,

4-69

4,20 INSERT - WINDOW INSERTION AND MOSAICKING PROGRAM

4,20,1 Program Description

Task program INSERT provides a capability for superimposing a portion of one
image upon another. Two IDAMS image tapes are accepted as input with the
primary input tape (as defined on the task control card) considered as base and
the secondary input tape the "window." A single composite IDAMS image is
output. A mosaicked output tape can be created by repeating the INSERT function

as many times as needed.

INSERT initially picks up the input paraméters and calculates the size of the out-
put image, the number of lines to be copied directly to output before and after

the window, and the pixel position of the window relative to the primary input

line. Tnaffected lines are then copied directly to output, A loop is entered next
to process the window portion of the image. A line of the primary input and one

of the windows' is read, the lines are merged, and the compoasite is written to out-
put. Looping continues until the entire window area has been processed. Any
remaining base image lines are then copied to the output tape after which INSERT A

returns to the system,

NOTE: Fill characters are supplied for cases where the window extends beyond
the boundaries of the base image, :

4.20.2 Parameters

INSERT requires the following parameters:
1. INSPW - Starting pixel of window position in secondary input
2. INSLW - Starting line of window position in secendary input
3. NPWNDW - Number of pixels in window-

4, NLWNDW - Number of lines in window

4-70

5, IOTSPW - Pixel position in output of upper left corner of window

(default = 1)

6, IOTSLW - Line position in output of upper left corner of window

(default = 1) :
7. IFILL - - Fill character gray level value (default = 0)

A negative value for parameter 5 or 6 indicates that the upper- left corner of
the window is the specified number of pixels or lines to the left or above,

respectively, the upper left corner of the base image,

In addition, the task name, primary and secondary input, size, output, and

cards fields must be defined on the task control card.
4,20,3 Input

INSERT requires a primary (base) input tape and may have an optional

secondary (window) input tape, both in standard IDAMS format.

4.20,4 Output

INSERT produces an output tape in standard IDAMS format.

4.20.5 Example

A 100*100 window from tape, WINDOW, starting at pixel 50, line 75 is to be
ingerted into a base image called TEST1 beginning at pixel 125, line 150, The
result will be called COMPOSIT. The following control cards would accom-
plish the desired result:

[INSERT, (TEST1, 49, 1, WINDOW, 47, 1), (1.1, 340, 270), (COMPOSIT, 48, 1), 1

F), 75, 100, 100, 125, 150

4~-T1

4,20,6 Messages

INSERT may generate the following messages:

Message

2NDARY INPUT STARTING PIXEL
TOO BIG

ONLY nnnn WINDOW INPUT PIXELS
AVAILABLE

2NDARY INPUT STARTING LINE TOO
BIG

ONLY nnnn WINDOW INPUT LINES

AVAILABLE

4,20,7 Flowchart

See Appendix C, Figure C-20,

4-72

‘The starting pixel value specified
was greater than the highest pixel
number in the image, execution
terminates.

The line length defined for the
secondary input exceeded the
available length, execution con-
tinues with pixels reduced.

The starting line number specified
was greater than the last line in
the image, execution terminates.

The number of lines defined for the
secondary input exceeded the
available line count, execution
continues with number of lines
reduced.

4,21 GRID - GRID OVERLAY PROGRAM

4.21.1 Program Degcription

The task program, GRID, superimposes a reference grid on an IDAMS image
tape. The grid block size and infersection points are controlled by input pa-
rameters. In addition, width and gray level value assigned to the grid line

may be input as parameters or defaulted to 1 and 63, respectively.

GRID begins execution by accessing the input parameters and calculating which
pixels and lines are to be replaced by grid values. After writing an output

label, the program enters a major procegsing loop. Within this loop, a data
line ig read and characters are either inserted for vertical grid lines or the
entire line is replaced by the grid line value. The completed line is then written
on the output tape. Looping continues until all lines are processed and GRID

then returns to the system,
4.21.2 Parameters
GRID requires the following special parameters:

1. JUNCP - Pixel number of first junction (default = grid block
' width/2)

2. JUNCL - Line number of first grid junction (default = grid block
length/2)

3. NPGRID - Grid block width in pixels

4, NLGRID - Grid block length in lines

5. LINSIZ - Grid line size (defaults to 1 pixel width)

6. LINLVL - Grid line gray level (default = 0 or 63 if IFILL = 0)

7. IFILL - Fill character to use if an output grid only is desired
(default = 0)

4-73

4.21.3 Input

GRID requires an input tape in standard IDAMS format, unless an output grid

with fill data for background is desired.

4,21.4 Output

GRID generates an output tape in standard IDAMS format,

4,21.5 Example

A grid is to be superimposed on an image, TEST1. There are to be 30 pixels
and 20 lines per grid block, and the first intersection is to be at pixel 5, line
10, Each grid line is to be two pixels wide with an assigned value of 32, If
the output is called GRIDTEST, the following control cards would be appro-
priate:

‘/GRID. {TEST1, 49, 11, (1, 1, 340, 270}, (GRIDTEST, 47, 1), 1

F, 10, 30, 20, 2, 32

4,21.6 Messages

The folloWing fatal error message may be generated:

Message Explanation
BAD GRID SIZE PARAMETER The number of pixels or lines

defined on input for grid block size
was 0 or negative, execution
terminates.

4,21,7 Flowchart

See Appendix C, Figure C-21.

4-74

4,22 GEOMTRAN - GEOMETRIC TRANSFORMATION PROGRAM

4,22,1 Program Description

GEOMTRAN is a general purpose geometric transformation program that will
allow the user to approximate a wide range of non-linear geometric transforma-
tions with a piecewise linear transformation. This program will not only allow
for simple scaling and rotation operations, but will allow the user to map specific
control points onto corrected control points in such a way as to map other points

of the image linearly with respect to near control points,

This program, because of its generality and complexity, is divided into three

phases:

1. The first phase reads the input and constructs pieces of output lines

(merge strings) which are written to disk.

2, The second phase merges the line pieces constructed by the first

phase and writes longer "merge strings" to fape.

3. The final phase merges the strings on to tape strings until the final

image has been constructed,
Each of these phases will now be explained in detail.
4,22,1.1 Phase 1

The first phase of the geometrie transformation routine begins by reading the

input parameters which consist of the following:

1. A sequence of points (Xi’ Yi) i=1, --., n contained in the input
image. For example these points would generally be points of

¢ interest or of known geographic location (see Diagram 1),

4-75

(¥|,V‘I EXZ.YII I)(J.YJI

doc vy ® Ky ¥g
o g Vel Diagram 1

- 1%, ¥5)
LA
P Xy, Yl

4. ¥g) g Vg [L A ST

A corresponding sequence of points (X;, Y%) i=1, +«+, n inthe
the output image. These points would generally be the "corrected"

points of those points specified in the input image (see Diagram 2).

X ¥y b, ¥

()C_’.V"I

Diagram 2

a g, ‘l",l

1t ¥y

A list of segment pairs (pi, qi) i=1, +»», m that indicate line seg~
ments between pairs of points, These line segments serve to divide
the image into topologically distinct regions (see diagrams 3 and 4)

so that the applicable linear transformation can be applied to inter-

mediate points.

- v Iy, ¥y
.7y [E A (xy. %4l iy ¥y 2 T2
Dy, Vg
4 x5 ¥
. Diagram 3
(L]
e ad (X ¥y
1%, ¥
Xy ¥yqr
1 Y1
g, Ygl ¥ 3q)

4-76

These segments are input to the program as index pairs. In Dia-

grams 3 and 4 these pairs would be:

1,2),2,3),(1,4), ,5), 3,5), &,5), &,6), 5, 7); (5,8),(3,8), 3,11),
(6,7),(7,8), (8,11), (8,10), (6, 9), (9, 10), (10,11), (7, 10).

4, The portion of the input image to be transformed is specified (see

Diagram B),

\

Diagram 5

V

5. The portion of the output image to be displayed will be specified

{see Diagram 6).

Diagram 6

6, The tape units for both input a_lid output will be specified,

The next portion of Phase I of the Geometric Transformation Program performs

the actual transformation requested, It accorni:ﬁshe this in the following way:

1. Memory allocation parameters ﬁi‘e computed for dutput buffers, in-

put buffers, and image storage.

2, The input image is read and the portion of the input image to be trans-

formed is stored in memory until available memory is filled.

4=-77

The line segments that make up the rectangular boundary of the
portion of the image held in memory are intersected with the line
segments of the input segment list. These intersections will define a
new segment list and a new point list in the input image (see Dia-
gram 7). (Parametric functions are generated to create the new line

segment list,)

Diagram 7

The corresponding point list to the updated point list will be calcu-
lated for the output image, |

Each of the segments in the updated list in the output image will be
intersected with the segments that make up the rectangular bound-
ary of the portion of the output image to be displayed (see Dia-

gram 8),

Diagram 8

These points of intersection will define a new segment and point‘ list

in the output image (see Diagram 9),

N
I"—'—'—_—/\ /\ Diagram 9

ettt e

—

4-78

6.

The corresponding point list to the new point list will be calculated

for the input image (see Diagram 10).

A
v
AN

Diagram 10

V

The updated segment list in the output image is now ordered in the
following way. The two end-points of each segment are ordered so
that the top left point index is first in the pair. The entire list of
segments is now ordered by the first point so that the list is in left
to right within top-to-bottom order, This sorting of the segments
will allow a great deal of time to be saved as the raster segments

are generated later in the program.

The first output line will start at the first point of the first segment
in the ordered list, This line will intersect a specific number of

segments that will be put into a "current segment list".
The current segment list will contain the following for each segment:
a, The index pairs (pi, qi) indicating the segment

b. The X' coordinate of the intersection of the current output line

with the segment

c, The X and Y coordinates of the corresponding point in the

input segment

d. The change in the output intersection bX'y for a change by

one of the output line

4-79

NOTE:

10.

e. The change (AXY, &YY) in the input intersection for each

change, by one, of the output line

f. The change (AXX,
change, by one, of the pixel along the output line

AYX) along the input segment for each

g. The change (ﬁAXXYAAY) of (AX AY) for each change,

by one, of the output line
The points of intersection (Xi) of the segments in the current line
list with the current output line are in ascending order with respect

to X . This is because of the order of the output line segments,

The first intersection p of the output line m corresponds to the
intersection (X, Y) in the corresponding input segment. = This point
in the input segment lies within the area defined by four adjacent
pixels in the input image. The four pixel values, and the position
(X, Y) are used to interpolate an output pixel that will correspond

to output point (p, m).

If a given raster point (X , Y) on the output image maps into (X', Y')

- -1
under T 1 in the input image; 1 e., (Xm Yn)T = (X', Y"), and if

(X', Y') isin the area bounded by the p1xels (X‘ Y])’ (Xl 1 Y'), (X‘ J+1)

l
and (x') where the pixel values are Z j+1 Zl]+1 d zZ! i+g+1,

respectlvely, then the output pixel value assocxated wi (Xm, Yn) is:

= | t t - ZT t - [
n & Xi) (Y) { 1+1]+1 zij+1 Zi+1j)
- I L (I X - t 1 - 7
Y Yi) (Z. Z1 +1) x - Xi) (Z Zi+1])

+Zj

Two types of output buffers are maintained by the Phase I pé.rt of
the Geometric Transformation Program. The first buffer type

contains the following;:

a, The line number and pixel number of each section of output

line

4-80

11,

12,

13.

14.

h. The number of pixels in the section of cutput line
c. The sector of disk on which this section is found

d. The word within the sector where section starts

e. The character within the word where section starts

This buffer is of fixed length and is written to disk when full. The
second buffer contains raw pixel values, is of fixed length, and is

emptied to disk whenever it becomes full,

The point (X, Y) is stored in buffer 1, and the value of the point
(p, m) is stored into buffer 2. The location of this store is stored

in buffer 1.

One is added to the X value of the current pixel position and this
value is checked against the next X intersection value in the current
line list. If the pixel position is less than the intersection value,
then AXX and AYX are added to (X, Y), an interpolation is done and
the resulting pixel value is stored in buffer 2 and step 11 repeated.
If the pixel is equal to the next intersection, then a pointer to the

segmenf in the current line list is advanced and step 11 is repeated.

When the pixel position in the current line is equal to the last X
value in the current line list, then the current line number is in-

cremented by 1,

When the line number is equal to one or more segment ends in the
current line list, then these segments are deleted from the list and
replaced by segments from the segment list whose start values

match the deleted end value. (List process is employed here,)

If new segments are added then X', (X, Yy, AXX,
A&XXY, AAYXY, and AX' are computed for those segments. The

segments that were not deleted from the list are processed in the

A AX
YXI Y'l AYY’

4-81

following way. AAX__ and AAY
respectively, A)%, and AY
AX' is added to X,

Xy are added to AXX and AYX,

y are added to X and Y, respectively, and

15. Step 9 is entered and this entire process continues until no more
segments can be entered into the current line list. At this point
Step 2 is entered and memory loads are processed until the input
data is exhausted or until one of the disk files is full, at which time

Phase II is entered.
4,22,1.2 Phase II

The second phase of the Geometric Transformation program has as its input
the three files and one reference word generated by Phase I of the program,

These files are stored on the disk,

The reference word, which is always loeated in word one of cell number 32170,

contains the total number of core loads from disk.

The first file, which will be called the "core load table" will contain the following

information for each core load:

word 1: cell number of start of "index file" (2nd file)
word 2: start word number within cell number

word 3: number of index entries for core load

The second file, which is the "index file'!, contains the following data for each

string:

word 1: The line number of the beginning of the string
word 2: The pixel number of the beginning of the string
word 3: The number of pixels in the string

word 4: The cell number of start of string

word 5: The word *100 + character number of start of string

4-82

The third file contains the strings of pixel values to which the index entries

refer.

The output from Phase II consists of three tapes that contain merge strings
distributed among the three tapes in a Fibonacei series, so that Phase III can
achieve a polyphase merge. When the number of actual merge strings on a tape
is less than the number specified in a Fibonacci series, the differences are

stored in common, where they will be passed to Phase IIL
Phase II sorts from disk to tape in the following way:

1, Tt uses the core load table to read in index buffers from the disk,

which refer to the first strings of each core load.
2. The indexes are sorted by pixel number within line number.

3. After the indexes are ordered, strings are read from disk in the
order of the indexes and stored in an output buffer along with their
associated start line, start pixel, and number of pixels, When
required, strings are merged together, and redundant pixel values

are omitted.

4, When output buffers are full they are emptied to specified output

units in accordance with the Fibonacci algorithm.
4,22,1,3 Phase III

This phase has as its input the three merge tapes that were the output from

Phase II. Phase III assumes that the merge strings are arranged on the three
tape drives in a Fibonacci series so that the image string can be merged by the
poly-phase sort-merge method. In the case where the number of required strings
specified for each tape exceeds the actual number of strings residing on a tape,

a set of numbers is supplied from Phase II which represents the number of

strings lacking on each tape.

4-83

Two of the tapes are defined as input and have been rewound, while the third
tape is used as output and is positioned at the record following the last image

merge string output from Phase II,
Phase III processes tapes in the following way:

1. Merge strings are read from the two input tapes and merged onto a
single string on the oufput file, In the case where the dummy string
counter is greater than one, no tape processing is done, but the

counter is decremented and processing is continued,
2, This process continues until one of the input tapes is exhausted.
3. The exhausted tape is rewound and becomes the new output tape.
4, The old output tape is rewound and becomes one of the input tapes,

5, This process continues until all of the merge strings have been
merged into one complete image string., At this time, the tape is
rewound and copied into IDAMS format. Any gaps in the image are

filled with zeros.

4,22.2 Parameters

1. SPO - Starting pixel of cutput window
2, SLO - Starting line of output window
3. NPO = Number of pixels of output window
4, NLO - Number of lines of output window
5. NOSEG - Number of line segments
6. NOPQOT - Number of points
7. ICODE = 0, if parameters on card

1, if parameters on disk

8. Starting point number of a line segment

4-84

a, Ending point number of the same line segment

.

(8 + NOSEG * 2). Starting pixel number of the first input image point

(9 -+ NOSEG * 2), Starting line number of the first input image point

* s 2w

(8 + NOSEG * 2 + NOPOT * 2). Starting pixel number of the first corrected
(output) image point
(9 + NOSEG * 2 + NOPOT * 2). Stating line number of the first corrected
(output) image point

4,22.3 Input

An input tape in standard IDAMS format is necessary.

4,22.4 Output

An output tape in standard IDAMS format is generated.

4,22.5 Example

A selected portion of the test image, TEST1, is to be rotated through an angle
of 45 degrees after it has been increased to TV size. The resulting output will

be another TV size image (700*512). Four control points will be defined in the

4-85

input and output images in a manner which will achicve the desired 45-degree

rotation. These points arve:

Paint Input (pixel, line) Out‘pht (pixel, line)
134,40 350,1
2 565,40 700,256
3 505,471 350, 512
4 134,471 1,256

Connecting line segments will be defined to define a mapping rectangle. - Points

i-4, 1-2, 2-3, and 34 will be connected., The neccessary parameters are:

INCREASE, (TESTT, 49, 1), {1, 1, 340, 270}, {(TVTEST, 48, 1), 1

[700,512

(EDMTHAN (TVTEST, 48, 1), (134, 40, 432, 432), (ROTATE, 45, 1}, 3

TN

ﬁ‘l. 700,512,4,4,0,1,4,1,2,2,3,4,3

(3:: 40, 565, 40, 565, 471, 134, 471

(350, 1,700, 256, 350, 512, 1, 256

4.22,.6 Messages
The geometiric transformation program produces no messages,
4.22,.7 TFlowchart

See Appeﬁdix C, TFigure C-22,

4,23 CHIPGN - REFERENCE CHIP TAPE GENERATION AND UPDATE PRO-
GRAM

4,23.1 Program Description

The task program CHIPGN extracts one or more reference chips from an image
tape and writes them onto a new reference tape or adds them to an existing ref-
erence tape. I no new chips are requested, CHIPGN simply prints out the

directory of an existing reference chip tape.

If 2 new tape is to be generated (specified by an entry in the output field of the
task card) a blank directory block is generated, the directory label record is
set to specify zero chips, and the directory file is written onto the ouiput tape,
When an existing reference chip tape is specified as an input (secondary input
for update mode and primary input for directory listing mode), CHIPGN begins
by reading the existing directory into core. For update mode, the label data
are transferred to the output label block and the tape is advanced to the end of
the last chip file. For directory lisfing mode, control is transferred directly

to the directory listing procedure.

Otherwise, CHIPGN accesses the parameters specifying new chips one at a

time. The keywords are scanned, parameters are converted to suitable formats,
and a check is made to see that the specified reference chip lies within the
boundaries of the input image. If not, an advisory message is printed, and the
next set of parameters is scanned. For each valid chip specification, the chip
count in the directory label is incremented by one and the chip name is generated,
The general purpose subroutine UTMCON is called to convert UTM to Lat-Long
or vice versa, depending on which set of coordinates were input as parameters,
Then the chip label is generated and written out. The label data, together with
the source image location and any memorandum, are also entered in the appro-
priate line of the directory block. The input tape is then advanced to the starting
line for the chip, and image data are transferred to the output tape one line at

a time. When the chip file is complete, an end of file is written.

4-87

After the last chip file has been written, the output (reference) tape is rewound,
the directory is printed out, and the new or updated directory file is written

onto the output tape,

NOTE: CHIPGN can write a maximum of 98 reference chips onto a single refer-
ence chip tape.

4,23.2 Parameters

A separate set of parameters is used to specify each chip to be generated. Be-
cause the user may enter either Lat/Long or UTM coordinates, CHIPGN requires
that parameters be identified by keywords, successive parameters must be sep-

arated by commas. The parameters are:

1, CPP = nnnn - Pixel location on input image of chip
center
2. CPL = nnnn -~ Line location of chip center. Note:

processing time will be minimized if
successive chips are specified in

order of increasing CPL.

3. LAT = dd,mm,ss, s: - Latitude of chip center. If N/S desig-
nation is omitted, north latitude is '
agssumed unless latitude is preceded
by a minus sign, in which case south

latitude is assumed.

4, LONG = ddd, mm,ss, s@ - Longitude of chip center. If E/W
designator is omitted, north is as-
sumed unless value is negative, in
which case west longitude is assumed.

5. ZONE = nng - UTM Zone. If N/S designator is

omitted, north is assumed unless

number is preceded by a minus sign.

4-88

6. UTME = nnnnnn - UTM easting in meters (=500,000 at
zone central meridian)
7. UTMN = nnnnnnh - UTM northing in meters
8. ELEV = nnnn - Elevation above sea level in meters
9. MEMO = T'ee...cc' - Up to 24 alphanumeric characters of
identifying memorandum enclosed in
guotes (optional parameter)
NOTE: Either, but not both, Lat/Long or UTM coordinates must be supplied.
The use of the input and output specifications on the task card determines
whether a new tape, update, or only the directory listing is to be generated, as
follows:
Mode Input/Output Specifications
List Directory Only Primary Input = Reference Chip Tape
No secondary input or output
New Relerence Tape Primary input = Source Image
Output = Reference chip tape
Update existing tape Primary input = Source Image

Secondary input = Reference chip tape
No output specified

n all cases the input size specification is ignored, and may be defaulted.

NOTE:

All reference tapes are identified by the name of the directory file,
which consists of five alphanumeric characters followed by 01D; for a
new tape, only the first five characters of the specified output name
are used. Reference chip files have the same initial five characters as
the directory file, followed by a two-digit file number and the letter R
as shown below:

Specified output name: EASTBAY

Directory file name: EASTBO1D
First chip file name: EASTBO2R
Sixth chip file nhame: EASTBOTR

4-89

4.23.3 Input

CHIPGN requires one or two input tapes in standard IDAMS format, depending

on the mode selected. They have the following significance:

Mode Input(s)
List Directory only Single input = reference chip tape
New Reference tape Single input = source image
Update existing tape Primary input = source image

Secondary input = reference chip tape
4,23.4 Output

Output frem CHIPGN comprises a printer listing of the reference chip direc-
tory and a tape containing a directory file and one or more reference chip
files in standard IDAMS format; the number of chips is specified by word 7 of

the directory file label. Qutput specification depends on the mode selected,

as follows:
Mode Output
List directofy only No ocutput tape specified
New reference tape Output - tape specified on task card

Secondary input tape specified

Update existing tape No output specified on task card;
output = secondary input tape

Each reference chip file has an extended label, as follows:

Word(s) Contents
1-2 Name of chip: XXX3XnnR where nn is

file number and R is always present as
an identifier

5 IL.UN: Logical unit number when
generated (value does not affect sub-
sequent use)

6 File Number (between 2 and 99)

4-90

Words Contents

7=8 Latitude: Floating point, degrees and
decimal fraction, with sign indicating
north (+) and south (-)

9-~10 Longitude: Floating point, degrees and
decimal fraction, sign indicates east (+)
and west (=)

11-12 UTM easting: Floating point, preceded by
108 times zone number and sign indicating

north (+) or south (=}

13-14 UTM northing: Actual value in northern
hemisphere; value -107 (giving negative
result) in southern hemisphere.

15-16 Elevation

The directory file has a standard label, except that word 7 specifies the number
of chip files on the tape, The directory comprises a single 2156-word (98 by 22)
record containing for each chip its name, latitude, longitude, UTM easting and
northing, elevation above sea level, source name, position of chip center in

source, and 24-character identifying memorandum,

The printer listing gives the directory data for each chip: latitude and longitude
are converted to degree, minute, and second form and UTM coordinates are

expressed in standard format.
4,23.5 Example

1. A reference tape is to be created using two areas from an image
tape named FLGHTQ16, Task and parameter cards would be as

follows:

Fmpcm, (FLIGHTQ16, 48, 1},, (WILDWEST, 47, 1), 2

F:P = 368, CL=426, LAT=33, 18, 56.0, LONG=105, 16, 24.2W, ELEV=987, MEMO='"DRY GULCH JUNCTION",

CP =861, CL=3248,LA}:32, 09, 16.4, LONG=105, 01, 48.8W, ELEV=1126, MEMO="TEXACO TANK FARM

4-~91

Note that only the first five characters of the output name will be
kept, to make the directory file name WILDWO(1D and the chip names
WILDWO02R and WILDWQ3R, *

2. An additional chip is to be added to tape WILDWO01D, generated
above, from image tape FLGHTQ18. Task and parameter cards

are:

[eHIPGN, (FLIGHTQ18, 48, 1, WILDWO1D, 47, 1), , , 1

FP = 3247, CL=1892, LAT=133, 06, 10.0, LONG=-105, 17, 18.6, ELEV=874, MEMO="THOMPSON POND’

3, At a subsequent time it is desired to check the contents of this tape

by examining the directory. The required task card is:

r:HIPGN, (WILDWO1D, 47, 1)

4.23.6 Messages

Message Explanation
aaaa IS NOT A KEYWORD An illegal keyword was detected,

execution continues,

CHIP AT CPP = nnnn, CPL = nnnn The chip coordinates will not per-

NOT WITHIN RANGE mit a full chip to be extracted
from the input image, parameters
are discarded and execution con-

tinues.
ATTEMPT TO ADD nnTH CHIP HAS The chip tape is full, no more
EXCEEDED CAPACITY chips may be added unless others

are removed,

4-92

4,23.7 Flowchart

See Appendix C, Figure C-23,

4,24 RZOMAP - RESEAU MAPPING PROGRAM

4.24.1 Program Description

This task routine locates reseaus on RBV imagery using a digital filter which
is highly selective for vertical and horizontal bars, fits a least-squares poly-~
nomial to the corresponding displacements from the nominal positions, and gen-
erates a table containing nominal and actual locations, using the polynomial to

fill in any missing reseaus by interpolation.

RZOMAP begins by calling the subprogram GETRZO to find as many of the
reseaus as possible. GETRZO begins by setting up the output table. If the user
has entered a table of nominal locations as parameters, these are transferred to
the output table. Otherwise, an internally stored table is used. The remaining
parameters are then checked for defaulted values, which are replaced by values

appropriate to the table of nominal reseau locations.

The reseau search is carried out one row of reseaus at a time. For each row,
the estimated position of the Ieftmost reseau ié determined, and the approximate
positions of the remaining eight reseaus on the row is computed using the esti-
mated increment, The tape is advanced to the 64th line before the estimated

line position of the leftmost reseau, and two lines of image data are read in.

Two sets of 128 accumulators for image column and row sums are initialized

for each one of the nine search regions.

Then additional data are read in one at a time, using a total of three buffers.
As a new line is being read, the COMPASS subroutine XYGRAD is called for

each search region in turn.

It uses the 129 pixels centered on the estimated pixel position of the reseau in

each of the two lines already in core to compute the quantities

G, (X,¥) = [f(x,y) - f(x-l,y)] | f(x,y) - f(x-1,y)|

Gy (x,¥) = [f(x,y) - f(x,y-l)] | f(x, y) - f(x,y-1)|

4-94

for each pixel location, and adds the gradient terms to the appropriate accumu-
lator for that row or column of the search area. In these formulae, f(x,y) rep-
resents the gray level at pixel position x of line y of the input image, and the
gradients Gx and Gy have been weighted by the absolute values of the differences
in order to give extra emphasis to the large gradients associated with the edges

of the reseau marks.

Lines are processed in this manner until 128 row sums (requiring 129 input
lines) have been computed for each of the nine reseau search regions. For each
reseau, the means and standard deviations about the means are computed sep-
arately for the set of row sums and the set of column sums. Each setf is scanned
for local minima at least 1.5 standard deviations below the mean, and local
maxima at least 1.5 standard deviations above the mean. A bar of the reseau
mark will be identified by a minimum which is followed by a maximum within

two to eight locations; the mean bar position will be computed as the average of
maximum and minimum positions plus 0.5 (since the nth gradient value is derived
from pixels or lines n-1 and n). If one and only one pair of pixel and line posi-
tions is found, these will be stored in the reseau location table as "actual' lo-
cations; if no pair is found (or, very occasionally, more than one possible pair),
zeros will be stored in the location table to show that the search for that partic-

ular reseau was unsuccessful.

GETRZO searches for the remaining eight rows of reseaﬁ marks in the same
way as for the first row. However, the estimated pixel positions for reseaus
in succeeding rows are taken equal to the actual position of the reseaus in the
previous row, except for the reseaus which were not located, Similarly, after
the second row, the leftmost reseau's line position is estimated using the actual
separation between the two previous rows of reseaus in place of the original
estimate. When all 81 reseaus have been searched for, GETRZO returns con-

trol to RZOMAP,

4-95

The subprogram POLYZ1s then called to prepare a condensed location iable
containing only {hese reseaus whose actual locations were ohtained by GETRZO.
Thig {ahle is passed {o the subrouting TWOXIT, 'which fits third or fifth degrce
- polynomials, as specified by the user, to the x diSpIélcements ang y displace-
ments of the actual reseaus relative to the nominal reseau positions. The coef-
ficienis for the two polynominals are then stored in COMMON by POLYZ, and

control is returnd o RZOMAD.

The final step is performed by the subprogram NTRDP2 which usés the polynomial
coellicients to co.m}:mte the Jocations of the missing reseaus and store them in
the table. The table is copied onto the reseau location file on disk, and also
written on the printer. Control is then returned to RZCMAP, which terminates |

the program and rewurns control to the IDAMS monitor.
4.24,2 Parameters

RZOMAYP requires the following parameters:

1, IDEGR - 3ors- desired degree of polynomiai fit used for inter-
polation. Default =3
2. MP - Estimated pixel location of midpoint of upper left reseau
3. ML - FEstimated line location of upper left reseau
4. P - Estimated spacing between reseaus along lines (pixel
increment)
5. 1L - Estimated spacing between reseaus perpcndiculézr ta
| scan lines (line increment)
a. NCOL = Number of columns of reseaus., Default = 9; maximum
=9
7. NROW - Number of rows of reseaus. Default = 9, maximwun =9
8. [CODE - Nominal rescau table indicator. Format is n + 10*m where m is

the spectral band number (1, 2, or 3) and n = 0 if using stored

4-96

table, n =1 if table is to be computed, n - 2 if user is
supplying tble.
9, LPy, LLGE) - Pixel .:m(i' line coordinates of nominal rescau loca-
| tions, beginning with i =1 for upper left, and pro%
cecding from left to right along row and then to
successively lower rows, Default: use storved table,
NOTE: A zero for any of the first eight paraweters or for LP(1) is interpreted

~as a defauiied value, Tor 31, AL, ID and IL,default values are ob-
iained {rom upper lefi corner of table of nominal values, '

4.24.3 Input

RZOMAT requires one input image, representing RBV sensox oulput, in stand=-

ard IDAMS format.
4.24.4 Oufput

RZOMAP generates a table containing nominal and actual reseau locations which
is stored in the rescau location file on disk and also listed on the printer, The
disk {ile occupies disk cells (sectors) 5 to 10 and comprises one header record

and 81 data records of four integer words each,

The header record format is

Wordﬂ - C‘divlte.n‘ts

1-2 Image name

3 Number of reseaus from GETRZO .
4 Number of reseaus from NTRP2

Each data record corresponds to one resean mark, starting with the top row and

going from left to right within each row. The record format is

Word Symbol | Contents
1 NOMDP Nominal pixel positidn
2 NOML Nominal line position

'3 IMP Actual pixel position in image
4

IML Actual line position in image

497

4,.24,5 Example

An image JAMESRIU is to be seanned for resenu marks. The vominal locations
are those of the standard stored table, and represcnt a 9 by 9 grid. Missing
reseaus arce to be {illed in u;éing a {ifth dcgrqc polvnowial fit., The upper left
rescau is estimitted to be at pixel 290 and line 340, and the spacing between
reseau columns is approximately 405 pixels, and boi.'.'.'oc_n rows, about 330 lines.

Suitable IDARXS task and parameter cards arce:

ﬁzomm, (JARIESELU, 49, 1), 1

Fs, 200, 340, 405, 330, 9, 9

4,24,.6 Messages

In addition to messages generated by the general-purpose subroutines, RZOMNAP

generates the following fatal-error messages:

Message Cxplanation
ESTIMATED RESEAU LOCA-~ Specified line or pixel increment
TION OUTSIDE IMAGE between reseaus too large, so

' that some reseaus lie outside
input image
TOO FEW RESEAUS FOUND Not enough reseaus were identi-
BY GETRZO ' fied by GETRZO to permit

finding least-squares fit poly-
mnomial of specified degree.

4,24,7 Tlowchart

See Appendix C, Figure C-24,

4~-93

4.25 CORREL - IMAGE CORRELATION PROGRAM

4.25.1 Program Description

This program determines the relative positioning of a reference chip and an
image segment for which the variance between the gray-level values, norma-
lized to equal average gray level and standard deviation about the mean, is a

minimum,

For each relative position of the reference image within a search area specified

by the user, the variance is computed using the formula

_Z_Exr
N oo
X r

r
V=2+2 o "
r

b

where x and r represent gray-level values for the input image and reference
image, respectively; X and T are the averages over N points defined by the

dimensions of the reference image, and the standard deviations are computed by

2 1 2 -2
o’x mNEx - X

2 1 2 .2
Gr —NZr -r

'In all three equations, the summation extends over the area of the reference

image.

CORREL begins by reading in the reference image and computing ¥ and o if
o, =0, an error exit is taken, since no correlation is possible. Lines of the
specified segment of the input image are then read in until there are as many
input lines in core as there are reference lines. The values of x and xz are
added up for each column, To generate one line of the variance array, the

COMPASS subroutine CROSS is called to add up the cross products {r x) for

4-99

each horizontal position of the reference image relative to the input image. The
column sums for x and xz are then added together for those columns overlaid by
the first position of the reference image, and the first variance in the line com-~
puted. The x and xz sums are then modified to correspond to each successive
position of the reference image and the corresponding variance values computed.
If g, = 0 (perfectly uniform image), the variance is assigned the value 2,0, Each
variance value is tested to see whether it is the smallest one so far; if so, 1ts
position in the matrix is recorded. The variance line is then saved on disk,

The next line of the input image is then read in, and the column sums of x and

x2 modified te include the new line and exclude the former top line. The next

line of the variance is then computed in the same way as before,

When the rentire variance array has been computed, the 15 x 15 submatrix with
the minimum value at its center is read into core, (The submatrix size is re-
duced if minimum is less than eight locations from edge of variance matrix.)
If the minimum is within two locations of the edge, an advisaryrmessage is
written. A test is also made for sharpness of the minimum by computing the
average of the eight variance values adjacent to the minimum. This average is
compared with the values of the 16 next-adjacent elements; if any is smaller

than the average, a warning message is written.

The position of the center of the reference image relative to the input image
for minimum variance is printed out, together with the variance value. The
variance submatrix is also printed. If the user specified that the data should
be stored, the image coordinates of the reference chip control point and the
geographic and UTM coordinates read from the reference chip label are stored

in the specified position on disk.

4-100

4.25,2 Parameters

CORREL requires the following parameters:

1, MCP - Central pixel loeation in reference (mask) image
2, MCL - Central line in mask

3. NPM - Number of pixels in mask - preferably odd

4, NLM - Number of lines in mask - preferably odd

5. ISAVE - 0 - correlation results are not saved on disk

1 - the control point file on disk is cleared and correla-
tion results written into record 1

2 = correlation results are written into next available
record (maximum 11}

-n - results of this correlation replace record n of con-
trol point file

Note that the search area (variance matrix) size is defined by:

1, NCOL
2, NROW

NP - NPM + 1
NL -NLM +1

4.25,3 Input

CORREL requires two input images. The secondary image is used as a refer-

ence image (mask) for correlation against the primary input image.
4,25,4 Output

CORREL prints out the minimum variance value, the corresponding position
of the mask center point relative to the input image, and 15 x 15 submatrix of

variance values around the minimum,

If ISAVE > 0, the position of the center point of the mask and its corresponding
geographic and UTM coordinates (taken from the reference chip label record)

are written onto record ISAVE of the control point file on disk,

4-101

4,25.5 Example

It is desired to correlate an 81 x 81 segment of reference chip WILDW23R,

centered at pixel 51 and line 51, against an image FLGHTQ49.

The control

point is located at approximately pixel 2480 and line 210, and the search is to

be carried out over an area up to 25 pixels and lines on all sides of this point.

Then the total image segment to be searched has dimensions of 131 x 131

(81 + 2 x 25), with its upper left corner at pixel 2415 and line 145 (2480 - 131/2,

etc.).

The value ISAVE = - 4 will cause the result to be saved in record 4 of the control

Hence the task and parameter cards are:

FORREL. (FLIGHTQ49, 47, 1, WILDW23R, 48, 23), (2415, 145,131, 131)., 1

(51, 51, 81, 81, -4

point file on disk,

4.25.6 Messages

CORREL may generate fatal error messages, as follows: |

Mes sage

CORREL MASK OR SEARCH
AREA TOO LARGE

CORREL SEARCH AREA NO1
POSITIVE

MASK EXTENDS OUTSIDE
REFERENCE IMAGE

MASK IS ENTIRELY UNIFORM

4-102

Explanation

The specified mask and search
areas are too large for available
core

NCOL and/or NROW computed
from parameters are negative

Mask parameters not entered
correctly

Mask has no features at all; corre-

lation not possible.

Message

WARNING - VARIANCE MINI-
MUM IS AT OR VERY NEAR
EDGE OF SEARCH AREA

WARNING - VARIANCE MINI-
MUM IS NOT SHARP

WARNING ~ THIS IS NOT A
REFERENCE CHIP., RESULTS
CANNOT BE STORED ON DISK
SINCE CENTRAL PQOINT
COORDINATES ARE NOT
AVAILABLE.

WARNING - NAME OF CONTROL
POINT FILE ON DISK, NOT
NAME OF INPUT IMAGE.
RESULTS HAVE NOT BEEN
STORED.

WARNING - SPECIFIED RECORD
NUMBER GREATER THAN 1,
NEW DATA HAVE NOT BEEN
STORED.

WARNING - CONTROL POINT
FILE ON DISK ALREADY FULL.

DATA HAVE NOT BEEN STORED.

In addition, the following advisory messages may also be generated:

Explanation

The correlation may not be reliable
due to edge effects,

A well-defined minimum could not
be found, results are questionable.

The mask used was not in refer-
ence chip format, disk file data is
incomplete.

Conflicting file names, data is
ignored,

Only ten control point files are
permitted.,

Disk file is already full and space
must be made available before
more chips can be added.

4.25.7 Flowcharts

See Appendix C, Figure C-25,

4-103

4.26 RESECT - SPAYIAL RESECTION PROGRAM

4.26.1 DProgram Description

This routine uses an iterative diffcrential correction procedure to obtain cor-
rectlons to the nominal spacecraft attitude and altitude, These minimize the
variance between the obscrved image iocatmns of selected control points, the
locations compuicd using the corvectied aititude :m.d aliitude parameters, and
the Imbwn geographie coordinates of the-control points. The corrected param-
eters are used to compute a grid of displacement \ ilues by means of whxch
GEO’\II‘RA‘\I can transform the image to a UTM pr o;octmn When the resection
has already been carried out for one spectral band of an RBV image, the pre-
cision parameters for tl?at band may be used to go directly to computatior;' of
GEOMTRAN coordinates for additional bands. RESECT begins by accessing
the parameters to determine the type of sensor being used, the scale of the
final projection, and whethexr the UTM projection is to be aligned north~south
.or in the direction of the satellite heading, Tables of ephemerié and attitude
data, control point data, and, for RBV images, reseau locations are then
copied from the files stored on disk by IMERGE, RZOMAP, and CORREL (in-'
cluding modifications made by PPUPDATE or previous execution of RESECT),
after first checking that the image name on disk agrees with the imagé specified
as input. Since normal label checking cannot be carried out by BATCH, the
winddxi' parameters (sp, sl, np, nl) are then checked for default, and if so0, the
full image is specificd. A check is also made that enough control points are
supplied to permit solving for all the resection parameters, Beyond this point,
after certain constants have bcen éomputed, the procr:duré i5 sensor-dependent,

For RBV imagés, RESECT continues as deseribed helow,

The latitude ¢, longitude L, and elevation IT for each conirol point are then
converied {o coordinates (xo, ye, ze} relative to the satellite nadir point (p
3 - n

Ln’), where X, is positive in the direction of satellite heading and 2 is
- _ &

1-104

positive upwards normal to the plane tangent to the earth ellipsoid at the nadir

point (the nadir plane), The transformation equations are

X U-U
e n
Ve) h (bij) V-Vy
Z wW-Ww
e n
where
U = (r + H) cos &cos (L—Ln)
V = (r + H) cos ®sin (L-Ln)
2 .
W= {r (1-e”) + H] sin@®

and (Un, Vn, Wn) are the values of the nadir point. The constants describing

the earth ellipsold are

eccentricity squared

al- e? sin’®)_1/2

o
1l

a1
i

a = semimajor axis of ellipsoid

The elements of the rotation matrix are given by

cos¢' sin tI’n -sinag! -cos¢' COS @n
b..) = singa' sind cosaof -gina' cosd
ij n n
cosd 0 sin @
n n
where @' = satellite heading from south (compass bearing —1800).

4-105

If a secondary RBV image has been specified, only the transformation coeffi-
cients are computed, and control then jumps to the procedures for generating
the parameter grid for GEOMTRAN. Otherwise, RESECT proceeds to compute
corrected attitude. For RBV images from the ERTS satellites, for which the
small uncertainties in gan and Ln can be adequately taken into account by lumping
them with the roll and pitch errors, the corrections are computed in the follow-

ing manner,

The observed image coordinates (xi, yi) of each control point (normally obtained
by CORRELating against a reference chip) are converted to face-place coordi-
nates (xf, v f) using the table of actual and observed reseau positions, where the
actual positions are assumed to include corrections for lens distortions. This
is accomphshed by determining the image coordinates (x y } of the nearest
reseau mark by finding the reseau mark for which (x -X) + (y - y) is a
minimum. The next nearest reseaus (xi . yi‘) on the same row as (" o yi) and
(x%’, yi‘) on the same column are then found (using next reseau to right if
xi - ii is positive, and so on). Defining the vectors

Ap = & -Xp ¥ o)
D} = =% %} - %)

D" = (x" - [L.
; (4 y.)

and, similarly, A o D%, and D'f‘ for the corresponding points in faceplace co-
cordinates, the location of the control point in faceplate coordinates is computed

by linear interpolation, using the components of Ai normal to D! and D', as
1 1

xf xf_ A x DU A x D
(*) =(—)+“ﬁf——l‘D£*ﬁ—lﬁ‘D¥
g Vg i x DY j i

where the symbol x denotes the vector cross-product.

4-106

The transformation of the true locations of the control points from the earth

nadir-point coordinates (xe, Yo ze) to faceplate coordinates is then carried

out in two steps using the nominal attitude and altitude parameter values. The

first step obtains the coordinates (xs, Yo zs) of the control point relative to

the sensor, where the sensor axes, initially parallel to the X, Yo Zg axes,

have been rotated through yaw angle «, roll angle w, and pitch angle ¢. Apply-

ing the rotations gives

X X
2] e
Vs = Ry Ry, Ry Ve
Z z -h
s e

where the product of the three rotation matrices is

COSPCOSK - singsinwsink cos¢sing + singsinwcosk

R Rw Rx = -CcOoSwsin Kk COSWCOSHK

¢
SingcosKk + cos¢sinwsink Singsink - cosSy sinwcosk

and
h = altitude of spacecraft above nadir plane.
The féceplate coordinates are then
x =% +£_. =% LB
£t |z Ys= %z 7

=v +..£..._ = _f_
Ve~ g Izslxs“yf SX

where

f = focal length of RBV camera

X, g'zf) = faceplate coordinates of point on camera axis

4-107

-singcosw
sinw

COSPCOSW

in image and faceplate coordinates, the X or X, axis is transverse to the satel-
lite heading, rather than coincident with it, and the Xs and yg 8xes are positive

in the +yX and +xs directions, respectively.

RESECT then computes differential corrections to the values of «, W, @, and
h by requiring that the variance V between the faceplate coordinates (x? , y?)
computed from the observed image locations of the control points and the
coordinates (xf, v f) computed using the nominal attitude and altitude parameters

be a minimum; V is defined as

1 o 2 o .2
ve B legmx) v 0p-Yy)]

where the summation extends over the entire set of N control points.
The conditions for V to be a minimum are

8V BV 3V a3V

9k~ 3w aw_ahzo

To simplify the computation of these derivatives, X and y ¢ are expanded

around their values for the nominal parameter values K, @, $, and 1-1, giving

ox [5):4
Xféxf(ﬁ,cj,{a, Y+ vy (K-E)+5E-J (W-)
ox Bxf _
+ 5p (279 * 7y (h - h)
o 3,
Yf=Yf(K,w,rp.h)+ = (k=B 4+ 5m (w-D)
Byf ay

4-108

For further simplifications, the derivatives of e and Ve are approximated at

the average values of attitude and altitude rather than the nominal values for

the instant at which the image was recorded, i.e, , K =w= ¢ =0, h = ho' Then

using
vy § r
£ s
dxf = — dy + ‘—'—E (dzs)
s ZS
f
f EF.L_ (dz)
dyf Z dxs 7 2
8 8

and the infinitesimal rotation from (xe, Vg ze) to (x , Vg zs) in the form
s

dXs Ve de + ho do

dy

o -xedx - hodw

dzs = -—yedw + xedqo - dh

we obtain

f . f 2 f f
dxf‘— h xedx - (f+ 7 ¥,) dw + 5 Xeyedqp > yedh
(o] h h, h

o, o
f f f 2 f
= 4 -— - — 3 — - —
dyf hy yedx h2 XYa dw + (f + hz X,)y de h2. xedh
o o o

from which the required (approximate) derivatives may be extracted. By intro-

ducing the notation

4-109

we can write the conditions for minimum variance as

D4 5Y;

f 0 f
- - - j=1,4

It

o
0= 2% [(x,- X)

which, with the aid of the expansions around the nominal values of the{ Q’j } .

becomes

24: Z X, 9X, . A ayf> R
1 | control day day boy Boy 7
B points

control
¢ 5 points

o _ ayf
+ Vo =¥ (K& 3, h)} — i=1,4
f f da, ’

After all the terms have been evaluated, the set of four simultaneous linear . -
equations for the four corrections IAajI are solved by a call to the general
purpose subroutine MATINV. The corrected values of Iaj l are used to com-
pute new values of (x ¢ yf) for each control point. The variance is compuied;
if its square root has decreased by less than 0,1 resclution elements compared
to the previous variance, and fewer than 5 iterations have been performed, a

further set of corrections to the new values of Iajl is computed.

Otherwise, the final values of kK, w, ¢, and h are printed out, together with a

measure of goodness of fit defined by

m= [V/2N - 4)]1/2

4-110

and the contributions to the variance by each control point, The corrected

parameters are also enterd in the ephemeris file on disk.

Finally, RESECT generates a grid of image points and their corresponding
UTM ecoordinates to be used as input parameters for the geometric transforma-

tion routine, GEOMTRAN,

This procedure begins by computing the image coordinates of a 10 by 10 grid
of calibration points, in the form of 81 identical rectangles which are just large

enough to completely cover the image subset specified by the window parameters,

The UTM coordinates of the corresponding point on the ground are then com-
puted for each calibration point in turn, This procedure begins by computing
the faceplate coordinates of the calibration point using the same procedure as

before.

Because the values of Zg for these points are not known a priori, the corre~

sponding values of (xs, ys) are then computed from

Z
= - _8 -
Xg 7 (yf vg

" _%g —
ys T f (xf - xf)
using zS = -~ h as a first approximation. The corresponding valuesof {(x , v ,
e’ ‘e

ze) are then computed using the inverse of the rotation Ry Rw Rk; this inverse

is given simply as the transpose of the matrix,

From this approximate set of (xe, ye, ze), the corresponding values of U, V,
and W are obtained by an inverse rotation through angles <I>n and ¢' . Latitude
and longitude are then computed ﬁsing

tan (L. - Ln) = V/U

W
(1-62) (U2 + Vz)l/2
H=0

tand =

4-111

Because of the apprixomate computation of (xe , ye s ze), the values of L. and
¢ are not exact. Instead, an iterative procedure is used in which this trial set
of (L, ¢, H) is transformed back to (xf, yf). The working values of (xf, yf)
are incremented by the residual error between the true value and the value
obtained from (@, L, H), and the transformation from faceplate coordinates
to approximate geographic and back to faceplate is repeated. This process

continues until the residual errors are less than 0.1 resolution element,

Finally, the resulting geographic coordinates are converted to the UTM grid
zone containing the nadir point by a call to UTMCON,

If the user has specified north-south alignment of the output grid, the value of
o' 18 checked to see whether it ig between 90° and 2’?’009 in which case the
grid will be oriented with line number increasing from south to north, or be-
tween 90° and -90°, in which case normal map orientation will be used, A
warning message will be written if this requires rotation through more than

8.1 degrees, in which case GEOMTRAN execution time may be excessive,

The UTM value for points along the top and left-hand edge of the grid are
scanned to find the largest northing and smallest easting value for any point
(for normal map orientation) or smallest northing and largest easting (for in-
verted orientation). These values are rounded to the nearest multiples of 1000
meters which lie outside the entire grid. The rounded values are taken as the

origin of output coordinates, corresponding to pixel 1 of line 1.

The UTM coordinates for each grid point are then converted to output image
coordinates by determining x and ¥ displacements from the origin in meters,

dividing by the user-supplied scale factor, and rounding to the nearest integer,

If the user has instead specified alignment along the spacecraft line of flight,
rotated easting and northing values are obtained by

EI’

- - LI — 1 ¥
(E En) cosq' - (N Nn) sin o'

N!

- i - - t
(E En) sin e N Nn) cos o

4-112

where (En, Nn) are the coordinates of the nadir point (obtained, if necessary,
by a call to UTMCON). The topmost and leftmost values in rotated coordinates
are rotated back to standard UTM, rounded to a multiple of 1000 meters, and
rotated back to the coordinates aligned along the track. Output image coordi-
nates are then computed from the rotated grid coordinates. The output and
input image coordinates of each grid point are then entered in the table. A
table of 1inkage_s, specifying all pairs of grid points which are adjacent along
either rows or columns, is also generated. These tables are printed out, and
also stored on disk cells 13 to 24 for access by GEOMTRAN. The alignment
angle of the output grid, the UTM coordinates of i{ts origin of coordinates, the

scaling factor, and the UTM coordinates of the nadir peint are also printed out.

For MSS images, the procedures are quite similar to those for RBV. However,
account must be taken of the motion of the satellite, and hence of the nadir
point, during the time required to scan one frame. In addition, the rotation

of the earth and the non-linear relation between the scanner mirror angle and

pixel number (i.e., elapsed time from the start of the scanning of the line) must

be allowed for.

For each control point, the time difference between control point acquisition

and format center time

At a

-1
scan ¢cp fc

)

is computed, where the average interval between line scans is Tsca.n = (73.42/6)
millisee, lcp is the line number, and 1 fo is the line number of the format cen-

ter, The geographic coordinates ((,’bEI s Ls ’ HS) for the subsatellite point at

4-113

the time at which the control point was scanned are computed from the format-

center nadir point coordinates (d?n s Ln s 0) by

1+ (1 - ez) t:a,n2 &,

& =& - coso' V At
k
rd - e2) (1 + tan> %) trac

1
e - —] -
Ls Ln r cos tbn sin o V1'.1'9.01(ot ne At

H =0
8

where r, 92 ,» and o' have the same meanings as for the RBV resection,
Vtrack ié the velocity of the subsatellite point, and Qe = 27 /86164 rad/sec is
the earth's rotational angular velocity.

Using these values of (Ebs, LS) in place of (@ng Ln), transformations to geo-
centric coordinates (U, V, W) and subsatellite-point coordinates, (xe, ye, ze)
are carried out in the same manner ag for RBV control points; however, a

new set of (bij) must be computed for each control point,

The measured image position for each control point is then converted to
apparent coordinates (xg R y;) of the point when projected into the plane z = h0
in the coordinate system (xs, ys, zs) which rotates with the satellite (the ~Zg
axis is the line of sight of the scanner at mid scan, and the X axis lles in -

the plane of the z axis and the spacecraft velocity, roughly coinciding with the

latter). The conversion equations are

x° =0

p

o _

yp = hota.nB

4-114

where the non-linear relationship between time (pixel position pp) and scan-

mirror angle 8 (measured from mid-scan) is expressed as

c
g = L
c

+
Z sin (czpp e3) +c

4

The coordinates computed from the actual position relative to the subsatellite

point are then computed by

X X
8 e

= R R R
Y 2 BB 1 %
Z z -h
s e

in the same way as for the RBV sensor, with the exception that now the attitude
and altitude parameters are time varying. The approximate values of each of
these 4 parameters at 9 different times, representing titne intervals of 3. 45
sec from 13. 8 sec before until 13, 8 sec past the format-center time, are input
y1=1.4,1=1,9, In

ij
addition, after the first iteration of the resection procedure each of the four

via the ephemeris file on disk as the parameters A

attitude/altitude parameters has a constant correction a and an additional time-

dependent correction hiAt associated with it. Thus the nominal values of the

attitude/altitude parameters at time At relative to format center are given,

using linear interpolation between Ai] and Ai, j+1 by
& = Ay = -3?.':55@ =2 AL 1 3-450‘3.;4‘;) =LA a; T b, At
where the value of j is computed as
_ At +17.25 (integer part only)
3.45 _ _

4-115

The projected coordinates are then computed by

xp = _hoxs/ z
v, = -hoys / Z

where the minus signs are required because Z is negative,

The actual resection will be carried out by finding those corrections to the
attitude and altitude parameters which will minimize the variance between the
values (XF?, y;) derived from the control-point image coordinates and the

values (xg s yr‘))) derived from the geographic coordinates by means of the oo il.e.,

2 2

V= 2 [(x -x;) +(yp-y°) :}
control P
points

is to be minimized by requiring

av._ 3 _ _
32 b, i=lL 4
1 1

The required derivatives of V are obtalned by expanding xp and yp as

4 Bxb 4 axb
x T X + 9 —= Aa+ 3 === Ab
p P aai | i i1 Bbi i
_ ayp 4 ayp
= + — +
Yp P ; a Aai Z [-}3] Abi
i=1 i =1 i

4-116

where

Xp = XD (Aijy At; ai’ bi)
y o= A, Dt a,b
Aai = a, - &
Ab, = b, -b
i i i

and ai, bi represent the nominal values of the corrections,

The derivatives of the projected coordinates are related to the satellite coordi-

nates by
dx = -th_/z)dx +¢h x /zz)dz-
P o 8 5 08 8 8
dy = =th /z)dy +(thx /z2) dz
p o' "8 Vs os’ "8 B

For small deviations of the attitude/altitude variables from their average values
(K= w=¢@ =0, h= ho), the derivatives of {xs, Vo zs)- are the same as for the

RBV; allowing for the time dependence for the MSS case, this gives

dxs = ye(da1 + Atdbl) + ho(da3 + Atdba)
dys - -xe(dal * Atdbl} - ho(da3 * Atdb2)
dz =

-ye(da.2 + Atdbz) + xe(da3 + Atdba) - (d.a4 + Atdb4)

Hence, for the average values of the « {° the variations of (xp, yp) with the
(a_, bi) are given by
i
xeye
dxp = ye(da1 + Atdbl) aha (da.2 + Atdbz)
2 .

X y
e e
+ (hO + ‘E;-') (da3 +'Atdb3) --1'1'0— (da4 + Atdb4)

4-117

2
y
- _ - _e _
dy, = -x (da + Atdb,) (ho+h0) (da, + Atdb,)

Xeye ye
B (Ot Atd>,) h (da, + Atdb)

+

Accordingly, these relations are used to compute the derivatives for each
control point, which are then used to compute the coefficients of the system
of eight linear equations in the eight variables (A a5 Ahi, i=1,4), obtained

from the conditions for minimum wvariance, in the form

4 Bxp axp byp ayp
2) + &
k=1 control aai aa'k as'i aak ‘ ak
points
4 (Bxp Bxp ayp ayp)]
N> !) [Ab
ko1 |control \92% %P %3y 9b] k
points
o axp 0 %,

- 3 [x-i (-7) =B1,i=1,4
control P p) bai (p p) Bai]
points

and
4 dx dx 3y 23y \]
R Do s s S S S
k=1 control i ak _ bi ak]
points '
4 d 3 3 3 ’
4 Z E XP xP + yP YP A'bk
ab 3b b 3b :
k=1 | control 1 k 1 k
points ‘ B
o axp o ayp

= Z X =X +{y - y yi=1, 4
control (P p) abi (P p) ?E;
points

The solutions are obtained by a call to MATINV.

4-118

For the first iteration, initial values of a, = Ei = () are assumed. Before each

i
subsequent iteration, these estimates are updated by the relations

a +Aa —- a
3y Tay i

bi +Ab1 - bi

where Aai . Abi s 1=1, 4 are the solutions obtained during the previous
iteration., After each repetition, the variance, expressed in terms of resolu-
tion elements, is compared with the variance from the previous iteration,

When the difference is less than 0. 01 squared resolution elements, or after
five iterations, the results are written out, together with the quaiity measure
defined for the RBV case. The values of a, and bi are also used to dorrect the
sets of nine values for each parameter, Aij , before they are written back onto

the disk.

A 10 by 10 grid of image points is then created in the same manner as for the
RBYV resection to initiate the computation of GEOMTRAN coefficients. For
each image point, the corresponding values of (xg ' yg) are computed, These

are used as test values (xp, yp) to compute approximate values of (xB, Yy zs)

using
X = X
8 p
.VS = Yp
Zz = =h
8 0

The inverse rotations to (x_, y_, z_) and then to (&, L, H) are carried out
using matrix values appropriate to the At computed from the.image line
number, His set equal to zero, and the approximate geogfaphic coordinates
are transformed back to the satellite coordinate system, giving values

(;:S,]-IS, ES) from which projected coordinate values (ip, §p) are computed;

4-119

at each step, the same formulae are used that were specified for the control

point transformation.
The squared distance between approximate and true projections,
2 - 02 0.2
d” = x_-x) + -v)
(o p} (Vp y
is computed. If it exceeds 0. 01 squared resolution elements, the estimated

values of (xp, yp) are updated by

-x -x9 - x
(p} P

P
- o
yp (yp yp) yp

and the approximate transformation to geographic coordinates and exact

transformation back to projected satellite coordinates is repeated,

When the distance is less than the test value, the values (®, L, 0) are trans-
formed to UTM coordinates by calling UTMCON. After all 100 grid points
have been mapped into UTM coordinates, the actual generation of the output

grid is carried out in exactly the same way as for the RBV case,
4,26,2 Parameters

RESECT requires 4 parameters, followed by a table of boresight offsets, if
required. The parameters are
1, ISENSOR - RBV, MSS, or other allowed sensor type of up to four
characters, beginning with alphabetic

2. ISCALE - Number of meters per resolution element (pixel and
line separation) in output grid; integer format

3. IALIGN - Alignment of output grid
0 or default - along spacecraft track
1 - along north-south axis

4-120

o

4, IBAND -~ For RBV only
Flag to indicate whether first band for this image or
an additional band
0 or default - first band, do full resection
1-9 - Use results, on disk, of previous resection and
stored table 1 {o 9, respectively, for boresight
offsets
10 - Use offsets entered via parameters
When boresight offsets are to be entered as parameters, three integer values
are required, giving the corrections which must be added to the attitude param-~
eters obtained by spatial resection on the initial band. The corrections are

given in this order:
1. IYAW - Correction (micro radians) to be added to yaw
2. IROLL - Correction (micro radians) to be added to roll
3. IPITCH - Correction (micro radians) to be added to pitch
4.26.3 Input

Although RESECT does not access image data, it requires specification of the
image name and the rectangle for which a geometric transformation grid is
to be generated; the values of LUNIN and FILEIN may be arbitrary, since they

are not used,

In addition, disk files of ephemeris data, control point data, and reseau data
(RBV only) are read as input. Corrections and additions to these tables may
be entered by means of PPUPDATE.

Note that these disk files may sometimes be saved temporarily on a tape; in
this case, they must be reloaded onto disk by a preliminary execution of

FPCON, using the following task and parameter cards:

rpccm, {tapenama, LUNIN, FILEIN],,, 1

ﬁB, 24,6

4-121

4,26.4 Output

The principal output from RESECT is a table stored on disk cells 13 to 24
which describes the image coordinates and corrected UTM grid coordinates

of a 10 by 10 grid of calibration points, This file consists of a four-word
header record, 100 four-word location data records, and 180 two-word linkage

records, as follows:

Header record

Word Contents
1-2 Image name
3 Number of grid points (alwayé 100 for

" RESECT output)

4 Number of linkages (always 180 for
RESECT output)

Location records

Word Contents
1 Grid pixel position
2 Grid line position
3 Image pixel position
4 Image line position

Linkage records

Word Contents
1 Grid point (numbered in order of
appearance in location table) at start of
linkage line

2 Grid point at end of linkage line

4-122

For RESECT, the linkages are always the same: first, all pairs of adjacent
polnts in the top grid line, going from left to right, are linked, and then all
linkages from points in the top line to the points in the same column on the
second line. Then the same linkages for the second line, and so on for succes-

sive grid lines. Hence the table will be:

1,2 2,3 3,4 4,5 5,6 6,7 7,8 8,9 9,10
1,11 2,12 38,13 4,14 5,15 6,16 7,17 8,18 9,19 10,20
11,12 12,13

81,91 82,92 83,93 84,94 85,95 86,96 87,97 88,98 89,99 90,100
91,92 92,93 93,94 94,95 95,96 96,97 97,98 98,99 99,100

The location records are also written out on the printer:

When the full resection is performed, the altitude and attitude values and an
indication of their accuracy are listed on the printer. The precision attitude
and altitude values are also entered on the ephemeris file on disk, in place of

the approximate values,

4.26.5 Example

An RBV image WALLOPSI is to be processed by RESECT using the ephemeris
data stored on disk by IMERGE, the control point data stored by CORREL, and
the reseau data stored by RZOMAP. The task and parameter cards are:

ﬁﬂm (WALLOPSt, 49, 1), (1, 1, 4500, 3600)., 1

[GBV, 75,1

where the last parameter has been defaulted.

4-123

Note that the scale distance for separation between picture elements (resolution
elements) is given in meters; for ERTS images the following values, with

their equivalents in feet, are likely to be appropriate:

Meters Feet
75 246
80 262
85 279

4,26,6 Messages

RESECT generates the following warning message:

WARNING - OUTPUT MAY REQUIRE EXCESSIVE ROTATION TO
ACHIEVE NORTH-SOUTH ALIGNMENT

RESECT generates the following fatal messages:

Message

DISK TABLE FOR
WRONG IMAGE

INVALID SENSOR
TYPE

TOO FEW CONTROL
POINTS

'SP, SL, SPECIFY
POINT OUTSIDE
IMAGE

COEFF MATRIX SIN-
GULAR ON FIRST
PASS

Explanation

The image name in the header of one
of the tables on disk is not the same
as the specified input image.

Specified sensor not RBV,

Not enough control points were used to
permit solving for the resection variables

Value of SP or SL less than 1 or greater
than maximum image size.

Most probable cause: control points too
close together or three or more on same
straight line.

4,26,7 TFlowchart

See Appendix C, Figure C-26.

4-124

4,27 UTMGEO -~ UTM GEOGRAPHIC COORDINATE CONV-ERSION
PROGRAM

4,27.1 Program Description

This routine provides a capability for transforming UTM grid coordinates.
into geographic latitude and longitude, and vice versa. The two types of con-

versions may be intermixed during a single execution of the program.

UTMGEO begins by scanning the parameter data for keywords, which ind_icate
which type of coordinates are being input. .The keywords are identified, and
the coordinate values are converted to internal format. The general purpose
subroutine UTMCON is then called to carry out the conversion. The results
are then converted back to standard format, and hoth the létitud_e and longitude
and the UTM grid coordinates are printed out. Additional pairs of coordinates
are processed in the same manner until the specified numberr of coordinate pairs

have been converted,
4,27,2 Parameters

In order to identify the type of coordinates, keyword identifiers must precede
each numerical value; successive parameters rhust be separated by commas,

The parameters are as follows:

1, LAT = dd,mm, ens:.sls\I - Geographic latitude, If the N/S desig-
nator is omitted, north latitude is as-
sumed unless the value is preceded by
a minus sign.

2. LONG = ddd,mm, ss.sa - Geographic longitude, If the E/W des-

ignator is omitted, east longitude is
assumed unless the value is preceded

by a minus sign.

4-125

N

3. ZONE = nn - UTM zone number. If the N/S designator is
omitted, north is assumed unless the number
is preceded by a minus sign,

4, UTME = nnnnnn - UTM easting, with zone central meridian =

500, 000 meters

5. UTMN = nnnnann = UTM northing, with equator = 0 meters in
northern hemisphere, In soufher hemisphere,
a false northing of 10 000 000 is added, so
that grid distance from equator = UTMN -107

meters,
4,27.3 Input
UTMGEQ requires no input other than parameters.
4.27.4 Output

UTMGEO produces a printed listing of the geographic latitude and longitude and
UTM zone, easting, and northing for each coordinate pair entered as param-

eters.
4.27.5 Example

It is desired to convert three sets of coordinates from Lat/ Long to UTM and
two sets from UTM to Lat/Long. Appropriate IDAMS batch processor task and

parameters cards are:

[61'MG EO,, 5

FAT = 26, 16, 24.5N, LONG=127, 48, 12 4E,

[ions = 335, UTME=764329, UTMN~97846285,

/ZONE = -33, UTME=765228, UTMN=9784007,

AT = 00, 18, 11.4, LONG=33, 18, 12.0,

A AT = 56, 48, 58.85, LONG=726, 12, 04.0W

4-126

4,27.6 Messages

UTMGEO generates one message:

AAAA IS NOT A KEYWORD Keyword is not valid, processing
skips to next parameter set.

4.27.7 Flowchart

See Appendix C, Figure C-27.

4-127

4.28 FPMULT - FLOATING-POINT ARRAY MULTIPLICATION PROGRAM

4,28,1 Program Description

This task routine forms the products of corresponding elements of two floating
point arrays, one of them stored on tape and one on disk. The two arrays may
be both real, both complex, or one (on tape) real and the other (on disk) complex.
The complex arrays must be in IDAMS symmetric half-array format, and may
be in real~plus-imaginary or modulus-plus-;phase format. When both arrays
are complex, they must be in the same format (a preliminary execution of
FPCON option 7 or 17 may be used to convert one array). When a complex
array is multiplied by a real array, the latter is assumed to have its origin

at the corner (FPCON option 9 may be used for conversion from center-origin
form) and to be symmetrie, so that only the left~hand half array need be used.
The product array is left on disk in place of the input array. |

FPMULT begins by determining the types of arrays to be multiplied, and
checking the label of the array on tape to ensure that it is the specified size.

Minimum and maximum test values are initialized.

Data are read double-buffered from tape and single buffered from disk one
line at a time. Corresponding elements are multiplied together using logic
appropriate to the type of data, all result values are tested against the current
maximum and minimum values, and the line of products written back onto disk

in place of the last input line.

When all lines of the product array have been computed, the maximum and
minimum values are written into the disk cell following the end of the last

array line, and control is returned to the IDAMS monitor,

4-128

4,28,2 Parameters
FPMULT requires the following parameters:

1, NX - Number of complex values or one~half number of real

values per line of both input arrays
2, NY = Number of lines in both input arrays

3. ITYP =~ Types of arrays (integer value with following meanings)
1 - Both Real, both corner origin or both center origin
2 - Both complex, real—plus-imag'inary‘format
3 - Both complex, modulus-pius-phase format

4 - One real array, corner origin and one complex,
real-plus—~-imaginary format ‘

5 - One real array, corner origin and one complex,
modulus-plus-phase format

4,28.3 Input

FPMULT requires two floating-point input arrays, one on tape (primary input)
in standard IDAMS format and one on disk, If the two arrays are not of the

same type, the primary input (tape) array must be real. The SP, SL, NP, NL
field on the task eard is ignored, since the entire array is always used and its

size is specified by the parameters NX, NY.
4.28.4 Output

FPMULT generates one floating-point output array on disk; it is in the same

form as, and replaces, the secondary input array.

4,28,5 Example

A complex real-plus-imaginary symmetric half-array on disk, having 64 lines
of 32 complex values each, is to be multiplied by a real array on tape named

FLTR16B. Suitable IDAMS task and parameter cards would be:

ﬁMULT, (FLTR16B,49,1),,,1

ﬁz 64 4

4-129

4,28.6 Messages

FPMULT generates the following fatal-error message:

Message Explanation
PRIMARY INPUT ARRAY The size parameters on the input
WRONG SIZE tape label do not satisfy NP=16*NX,
NL=NY

4,28,7 Flowchart

See Appendix C, Figure C-28,

4-130

4.29 FPSUM - FLOATING-POINT SUMMATION PROGRAM

4,29,1 Program Description

This task routine computes the sum or difference of two floating-point arrays,
Either or both arrays may be multiplied by constant weighting factors, The
floating point arrays may be real or complex real-plus-imaginary; the latter

may be in packed or unpacked IDAMS complex format,

FPSUM begins by setting flags to indicate whether either array is to be multi-
plied by a weight other than unity, and whether either 1s to be taken wi_th a neg-
ative sign. The label of the primary (tape) input is checked to see that it is the
correct size, and establish whether one pair or two pairs of maximum and min-
imum values, corresponding to real and complex arrays, respectively, were
required, Then a seek is issued for the first line of the secondary data set,

located on disk, and the first data line is read from tape.

The summation is earried out one line at a time, as follows., The line of data

is fetched from disk, a seek is issued to return the disk heads to the start of
that line, the last read from tape is checked for completion, and a new read,
into an alternate buffer, is issued. Then the line of tape data already in core

is added to the line from disk, changing signs and multiplﬁng by constants as
specified by the flags, and each new value is tested as a possible minimum or
maximum. The tape input buffer assignments are then interchanged and the
completed line of data is written back onto disk. At the completion of this Write,

the disk head is in position to read the next line of input from the disk.

When all lines have been processed, the result array has replaced fhe second-
ary input on disk, The maximum and minimum values are then written into the
cell following the last line of array data, and control is returned to the IDAMS

monitor,

4-131

4,29.2 Parameters

FPSUM requires four parameters, as follows:

1, NX - Number of complex words per line or one-half number of real

words per line
2. NY - Number of lines of data

3. X1 - Floating-point multiplier for all elements of primary input

array (from tape)
4, X2 = Floating-point multiplier for secondary input (from disk)
4.29.3 Input

FPSUM réquires two input data sets., The primary data set is a floating point
array which has been previously copied to tape from disk by F PCON option 16.
The values of SP, SL, NP, and NL on the task card are ignored. The values

of NPI and NLI on the input tape label must equal 16 * NX and NY, respectively,

for the summation to be carried out.

The secondary input resides on disk, beginning in cell 1, and is not referenced
by the task card. It is the responsibility of the user to ensure that the valuea of

NX and NY specified in the parameters are correct for the data set on disk.
4,29,4 Output

FPSUM produces a floating point array on disk, starting in cell 1, in the same

mode as the two input arrays,
4,29,5 Example

The difference of a floating point array A206FT on tape and an array on disk
is to be computed. The array contains 64 lines of 128 complex words each,

Appropriate task and parameter cards are:

F:Psum, {A206FT, 49, 1),.. 1

rze 64 1.0 1.0

4-132

4,29,6 Messages

FPSUM generates the following fatal error message:

Message Explanation
TAPE INPUT ARRAY NOT The size specified in the label
SPECIFIED SIZE (NP=16*NX, NL=NY) does not

agree with values of NX and NY
specified by parameters.

4,29,7 Flowchart

See Appendix C, Figure C-29,

4-133

4,30 FILTGN - DIGITAL FILTER GENERATING PROGRAM

4,30.1 Program Description

This task routine generates filters corresponding to a two~dimensional modu-
lation transfer function (MTF). Output may be either a symmetric set of weights
for convolution image-space filtering or an array of real values in corner-origin
format for frequency-domain filtering by array multiplication. The input MTF
may be specified as the product of two functions, each of which may be a linear,
radially symmetric, or elliptically symmetric function, with principal axes
oriented along the x or y axes. The actual MTT values along the principal axis
may be entered as a complete point-by-point table, pairs of coordinates of the
end points of segments for a piecewise linear function, or by specifying the

3 db point and ratio of high-to-low frequency point for a high or low emphasis
filter. To avoid overenhancement of noise by a filter represented as the prod- -
uct of two MTF's, a maximum gain for the product filter may be specified, The
logic can easily be extended to include additional optidns for generating MTF

values internally,

FILTGN begins by calling the subprogram TABLEGN which accesses the param-
eters to determine the type of output filter requested, whether one or two input
functions have been specified and the type for each, and the source of MTF val~-
ues for each filter. If a complete table has been entered by the user, it is trans-
ferred directly to the appropriate specification, and the first gain value is copied
into the table for all frequencies up to the first frequency value. Successive
values are then generated by linear interpolation between adjacent pairs of co-
ordinate values. For either of the preceding cases, the table is completed by

copying the final gain value into any locations remaining,
If a high or low pass filter is specified, the parameter specifying the ratio of

high~to-low frequency modulation is converted to a real number th and tested

4-134

to see whether high emphasis (th > 1) or low emphasis (th < 1) i8 required.
For high emphasis, the MTT table is compiled by computing the gain

2,2
Gk)=1+ (th - 1)/11 +k0/k)

for integral values of k, where ko is the user-specified 3 db frequency. For

low emphasis, the formula used is
G = G+ (t - G_)/(+ K2 /D)
hf hf ¢}

If an elliptically symmetric MTF is being used, it will be necessary to evaluate
points off the coordinate axes by interpolation, If the minor axis of the ellipse
is f times the major axis, then the effective distance of a point (k, 1) from the
origin is -

2
2
kz~zu1 =i+
5 = r

f

where i is the integral number of units from the origin, r is the remainder, and
k is the distance along the major axis. In order to use efficiently the cubic in-

terpolation formula for the Fourier amplitude a(k, 1),

afc,1) = G(i) + B)r + C)r” + Dy’

TABLEGN computes tables of the coefficients using the formulae
B)=-1/3G(i-1)-1/2G(i) + G(i +1) - 1/6 G({ + 2)
Ci)=1/2G@i-1) - G(i) +1/2 Gi+1)
Di)=-1/6GE-1)+1/2G(i) -1/2 Gl +1) + 1/6 G(i +2)

These tables will be computed for
1 Z /141N +1
(?NCOL+1\ + —-f-é(—z— ROW)

4-135

2]1/2

values of i for an ellipse whose principal axes lie along the x-axis; for y-axis
alignment, the number of rows Nrow and columns Ncol are interchanged in the
above formula, However, due to core storage limitations, any required entries
in the table beyond 600 will be supplied by duplicating the 600th value; this need

could arise, for example, for N =N =572 and £ < .47 .
col row

When all required tables have been generated, FILTGN calls the subprogram
MTFGN to generate the full two-dimensional MTF. When the final output is to
be a set of convolution weights, a 32 by 32 MTF is generated, regardless of the
specified size of the final filter (which may not exceed 33 by 33), MTFGN ini-
tializes test values for maximum and minimum and then generates one pair of
symmetrically located lines at a time by computing the left-hand half of the line
from the fa.bles generated previously and then copying these values into the other,
symmetrical, half of the line. When two functions have been entered, the values
obtained from the first function are computed for the half-line, and then multi-
plied by the corresponding values for the second line, Each value is compared
with the previous maximum and minimum values of the array and also checked
to ensure it does not exceed the maximum gain specified by the user; if so, it
is reduced to this maximum. The completed line is then written into two sym-
metrically located records on disk, and the computation continued until the MTF
is complete. The final values of maximum and minimum are then copied onto
the next disk cell following the last array line. If the final output is to be a
frequency--space filter, FILTGN terminates processing and returns control to
the monitor., To generate a set of convolution weights, FILTGN instead calls
the subprogram INVERT. This program reads the top 17 rows of the 32 by 32
MTF back into core, inserts zero words after each MTF value to form a com~
plex array, and calls PERGEN, TRIGGN, and FFTONE (which are described

as General Purpose Subroutines) to carry out one~dimensional Fourier trans-
forms on these 17 rows, The left~hand.17 columns are then interchanged with
the first 17 complex words of each row, and the new (flipped) rows extended

using the symmetry of the array. FFTONE is again used fo Fourier transform

4-136

the 17 flipped rows and the results are flipped back again to complete the two-

dimensional Fourier transform,

The sum of the values which will be included in the final set of convaolition

weights is computed, and then the output array is generated in integer format,

normalizing the values to produce a sum of 4096 and shifting the origin of co~

ordinates from the corner to the center of the array. The filter array is then

listed on the printer and copied onto the output tape for future reference.

4,30.2 Parameters

FILTGN requires the following parameters, all of which are in integer format

except the identifiers X and Y:

1-

ITYPE

NCOL

NROW

MAXGAIN

AXIS1

Type of filter to be generated
1 - Frequency domain (MTF)

2 - Image domain (convolution weights)

Number of columns in filter
For frequency domain, must be power of
o2l s N <2
col s
For image domain, must be odd and £ 33
Number of rows in filter. Same restrictions as for

NCOL

Maximum gain in final MTF, as integer multiple of
zero-frequency gain; this permits avoiding over-
enhancement of high-frequency noise x;srhen filter is
product of two high-emphasis filters

Default or 0: No tests are made

X or Y (single letter) - axis along which first MTF

component is aligned

4-137

6. ISYM1 - Symmetry of first MTF component:

1 - Linear - MTF value depends only on coofdinate
along AXIS1, and is constant in direction perpen-
dicular to it

2 - 1000 - Elliptical (1000 = circular) with major axis
along AXIS1 and minor axis = (ISYM1/1000) times
major axis for each elliptical contour

7. INPUT1 - Mode of input for first set of MTF values

1 - Full table of MTF values |

2 - Piecewise-linear representation by coordinate
pairs

3 - High/Low emphasis filter

8. =~ (Data) - Specification of MTF values along AXIS1, Format
depends on mode of input, as foliows:
INPUT1 = 1 _
N = Number of vilues in-table _
Kl’ Kz, RN Kn - MTF values times 1000
(i.e., 333 represents , 333) beginning with
zero frequency '
INPUT1 = 2
N - Number of pairs of coofdinates
Ml’Kl’Mz’Kz’ rer ,MN, KN - pairs of vglues,
with Mi =integer frequency value followed
by Ki = 1000 times MTF value, Values of
Mi must be strictly increasing.
INPUT1 =3 _
IHF - Ratio of high-frequency MTF to low fre-
quency (D.C.) MTF, times 1000 (i.e.,
IHF = 200 means hig_h frequency MTF is

.200 times dc MTF).

4-138

I3DB - Frequency at which frequency-dependent
part of filter is 50% of maximum (3 db

point).

9. AXIS2 - X orY - Alignment axis for second input MTF., If

default or zero, only one MTF supplied

10, ISYM2 -~ Symmetry for second MTF, if any. Same codes as
for ISYM1,
11, INPUT2 - Mode of input for second MTF, if any. Same codes

ag for INPUT2,

12, (Data) - Bpecifications of MTF values along AXIS2, if any.

Same formats as for first MTF.
4.30.3 Input
Input to FILTGN is entirely via parameters, as described above,
4.30.4 Output

FILTGN has two alternative types of output. If the user specifies a convolution
(image-space) filter, the result is printed as a table of integer values normal-
ized to a sum of 4096. Since the table is always symmetric, only the upper left
quadrant, including the symmetry axes, is printed. The table is also stored,

with standard IDAMS label, on the output tape, if any, specified by the user.

If the user specifies a real floating point array, it is output onto disk in standard
IDAMS floating point format, beginning in cell 1. The symmetric array is in
corner-origin format. Conversion to other formats or copying onto tape may

be achieved using FPCON, specifying NX = NCOL/2, NY = NROW.
4.30.5 Example

It is desired to enhance the high-frequency detail of an image using a radially

symmetric filter whose 3 db point is at 50% of maximum frequency and with

4-139

a limiting gain of 3 times the dc gain. In addition, instrumental noise at
approximately 25% of maximum frequency in the horizontal direction is to
be suppressed. Output is to be a 21 by 21 convolution filter. Since a 32 by
32 MTF array is generated whenever a convolution filter is to be created,
one-half the symmetric MTF will contain 16 points, so that 50% of maximum
frequency is 8 and 25% is 4. Hence suitable IDAMS task and parameter

specifications are:

rILTGN,,,, 4
F, 21,21,0

[i, 1000, 3, 3000, 8,

[g, 17, 1000, 1000, 1000, 0, 1004, 1000, 1000, 1000, 1000, 1000

rooo, 1000, 1000, 1000, 1000 1000,

Notice that for the MTF table frequency 4 is the 5th MTF value given, since
the table beging with the zero-frequency value; in this table, all frequencies
are given unit modulation except the noise frequency, which is given modu-
lation zero in order to suppress it completely. (The actual filter generated
will involve approximations and roundings, so that the suppression will not
be complete.) Since no output tape is specified, the convolution weights will

be printed but not saved on tape.

4,30,6 Messages

FILTGN may generate the following fatal error messages:

Message Explanation
INVALID OUTPUT TYPE Parameter ITYPE not 1 or 2

INVALID AXIS SPECIFICATION Alignment axis not specified as
XorY

4-140

Messgage

ILLEGAL SYMMETRY CODE

ILLEGAL INPUT MODE

ILLEGAL FREQUENCY VALUE

FREQ VALUES NOT STRICTLY
INCREASING

SPECIFIED FILTER GAIN IS
NEGATIVE

CONVOLUTION FILTER TOO
LARGE

CONVOLUTION FILTER
DIMENSION NOT ODD

SUM OF WEIGHTS NOT POSITIVE

Explanation

Symmetry code ISYM not between
1 and 1000

Input mode not 1, 2, or 3

Frequency value not between 0 and
599 (piecewise-linear case) or not
positive (high/low emphasis case)

For piecewise-linear input mode,
frequency coordinates not strictly
increasing

For high/low emphasis, high-
frequency gain has illegal negative

value

Dimensions specified for convolu-
tion filter exceed 33 by 33

Dimensions specified are not both
odd

Sum of unnormalized convolution

weights is zero or negative; normal-
ized filter cannot be generated

4.30,7 Flowchart

See Appendix C, Figure C-30.

4-141

4.31 RANDGRAY - RANDOM GRAY LEVEL GENERATION PROGRAM

4.31.1 Program Description

The Random Gray Level Generation Routine enables the user fo either generate
an image of random gray valued pixels with a given mean value and standard
deviation, or to add random gray values with a mean of zero and a given stand-
ard deviation to each of the pixels of an input image. In each of the cases the

distribution of the gray values is normal over the image.

Upon entry the program reads the parameters which initializes the random
number generation routine. The IDAMS tape is then read (if one is given) and
the random values are either added or stored into successive pixel positions

in the lines of the image. The image is then written to an output tape.
4.31.2 Parameters
The random number generation routine requires the following parameters:

1, The standard deviation of the random numbers to be generated
2. The '"seed" of the generator

3. The mean value of the random numbers if no input image is given
4.31.3 Input .
RANDGRAY requires an input tape in standard IDAMS format (if applicable),
4.81.4 Output
RANDGRAY requires an output tape in standard IDAMS format.
4.31.5 Example

Assume that a random noise pattern is to be superimpoéed on an existing image
and that the noise is to have a standard deviation of five gray levels., A "seed"

value of 1875 is to be used. The following control cards would be required,

[ﬁANDGRAY, (TEST, 49, 1), (1, 1, 270, 340), (TESTZ, 47, 1), 1

f. 1875

4-142 -

4.31.6 Messages
Illegal values of parameters are printed, if any occur.
4.31.7 Flowchart

See Appendix C, Figure C-31.

4-143

. 4,32 IMERGE - BULK ERTS TAPE MERGING PROGRAM

4. 32,1 Program Descripiion

: '_fhis task routine unpacks the data from four 7-track ERTS computer compatible
tapes (CCT's) representing the four strips of one spectral band of an RBV or
MSS image and builds a single output image tape in standard IDAMS format.

The anndtaﬁon data from the CCTs are converted to CDC 3200 formats, stored

in the annotation file on disk, and also printed' out for reference.

IMERGE begins by determining whether data to be merged is RBV or MSS. If the data
is MSS, control goes to a subroutine that builds a look=-up table used for compressing
the 8-bit characters from the Pulk CCT's to 6~bit characters for the IDAMS image tape.

After tho table is built, 1t is saved in core for use b;the' MSS merge program. <Control

then returns to the main driver program.

IMERGE sets up a message instructing the operator to dismount the SCOPE and
IDAMS overlay tapes ,- and mount the four input tapes and .the output tape on speci-
fied units; the program then pauses until the operator confirms that the mounting .
is complete. If RBV data are being processed, the speectral band numbers and

associated output data set names are rearranged in reverse band seguence.

The header data on each CCT are then read. The date and time identifiers are

' cqmpared to ensure that they are the same for all four tapes; if not, an error
flag is set and execution aborts, The strip numbers are read, and a table
created of the logical unit numbers for strips 1 through 4; if four different strips
are n'of pljesent, an error exit 1s taken. The data record length is read; for
RBV it is checked to see whether it is less than 3456 bytes, and an error exit
taken if not. For MSS, the adjusted line length and correction code are also
decoded; if the correction code does not specify an acceptable data mode, an
error exit is taken. , The output label is then written, specifying 4608 pixels
per line for_J_l}BV or the adjusted line length for MSS, and 4125 or 2340 lines
for RBV or MSS, respectively (780 lines for MSS Band 5).

The annotation record from strip 1 is read next, while the corresponding rec-
o
ords on the other three tapes are spaced over. The acnotation data are decoded
*

converted to floating point format, and stored on the annotation file on disk,

Cell 25 is filled with dummy maximum and minimum values of 1.0 to facilitate

the use of FPCON for saving the disk tables on tape. The annotation data are

also written out on the printer.

For RBV, the input tapes are advanced to the first data records for spectral

band 2 or 1 if band 3 is not to be processed.

Then image data are read in one record from each tape at a time, and an appro-
priate entry point to the COMPASS subroutine REPACK called to generate full
output lines one at a time. For RBV data, for which one input record contains
three consecutive line segments, three output lines will be generated before the
next input read. For ERTS-B MSS data, every fourth record, containing band 5
data, will be skipped, except when band 5 is being output, in which case only

every fourth input record will be read.

When all lines have been processed, the input parameters will be checked to
see whether any further bands are to be processed. If so, the MSS iapes will

be rewound and RBV tapes will be advanced to the appropriate band.

The header and annotation records are skipped, and instructions issued to the
operator to mount a new output tape. When the operator returns control, the
new output label is written, and the image data processed in the same manner
as for the first tape. When all output tapes have been generated, or a fatal
error has been encountered, the operator is instructed to remount the SCOPE
and IDAMS overlay tapes. When the operator returns control, IMERGE exits,
and returns to the IDAMS monitor for error processging or initiation of the next

task.
4.32.2 Parameters
IMERGE requires the following parameters:

1. ITYPE - Image Type: 1= RBV
2 = MSS Type Ila (4 bands)
3 = MSS Type IIb (5 bands)

4-145

2. NBAND

Integer number of spectral bands to be processed

3. IBAND1 Integer band number for first spectral band

4, OUTNAME2Z2 Five to eight alphanumeric characters specifying

name to be given to second output tape (if any)

5. IBAND2 Integer band number for second band

6. OUTNAME3

Name and band number for additional band, if

requested

7. IBAND3

NOTE: The name specified for the output is applied only to the first spectral
band requested. Additional spectral bands are named in the param-
eters. The input size field on the task card is ignored; the output
image always represents the entire input image.

4.32.3 Input

Four input computer-compatible tapes are required, representing the four strips

of the same ERTS frame.

NOTE: Do not specify any input on the task card, since the CCTs do not have
IDAMS-compatible labels.

4,32.4 Output

IMERGE generates one or more image tapes in standard IDAMS format; each

tape represents one spectral band for a single ERTS frame.

4-146

In addition to the standard data in words 1 10 6, the output label containg a sum-

mary of annotation and ID data {rom the computer compalible (input) tapes, as

follows:
Word Contents
7-9 Scene/Frame 1D, BCD, in Form

ENDDININAMSBNC where
1 = ERTS mission code
DDDUIIMMS = day and time of exposure
B = Speciral band ideantifier
N = Sequential subframe identifier
(if needed)
C = AISS data mode/correction code:
1s bit =1 for decompression
2g hit = 1 for Hi gain on band 2
3s bit = 1 for Hi gain on band 3

107 " Format center latitude, degrees with 12~
" bit fraction (..., to nearest 1/4096
degree)
11 Format center longitudes, degrees with

12-bit fraction

12 Nadir latitude, degrees with 12-bit
. fraction '
13 Nadir longitude, degrees with 12-bit
fraction : =
14 Sun elevation, degrees (no fraction)
15 Sun azimuth, degrees
16 | - Orbital heading {rom North), degrees

A table of annotation data is written onto disk in cells 1 to 4, and also listed on

the printer. The header record consists of ten words, as follows:

Word Symbol Meaning
1-2 OUTNAMEL Name of first IDAMS output data set

generated for this ERTS {frame

Word Symbol Medning

3-4 OUTNANER Names of ddditional outpul tapes, if any;
o~6 - OUTNAMEZ unused localions are filled with zoros
78 QUITNAN

9-10 OUTNAMES

The second record contnins ten words of ditta, The 'ﬁrst nine word are identienl
to words 7 through 15 of the output label, Word 10 contains the number of pixels

per line, NPO.

The third record contains 12 words I'epresenting six floating-point entries for

attitude and orbital data at mid-scan time, as follows:

1-2 » ' Yﬁ\v, in radians

3-4 _ ' Roll, in radjans

5-G T Pitch, in radians

7-8 Altitude, in meters _

9-10 Velocity along track, meters/second
11-12 Orbhital heading from north, degrees.

4.32.5_ Example

ad

Merge the four CCT tapes for an RBYV image to create outpul tapes named

TETONRED and TETONI-R from spectral bands 2 ang 3, respectively, Suitable

IDAMS task and pParameter cards are:

FME RGE,, (TETONRED, a7, 1,1

f, 2,2, TETONI-R, 3

4~148

4.32,6 Messages

The ERTS bulk image copversion routine prints out a table of annotation data

associated with the image being converted to IDAMS format. The following

operator messages are also typed out:
Message

DEMOUNT OVERLAY AND SYSTEM

TAPES .
MOUXNT OUTPUT ON LUN nn AND SET
AT 800 BP1 '

MOUNT INPUT TAPES ON REMAINING
DRIVES (IN ANY ORDER)
WHEN READY, PRESS CLEAR

"MOUNT OUTPUT TAPE ON LUN nn
WHEN READY, PRESS CLEAR -

REMOUNT RTS AND OVERLAY TAPES
WHEN READY, PRESS CLEAR

Explanation

All tape drives are required to handle
four input tapes and one output tape.

A new outfaut tape is nceded for each
spectral band.

System and program tapes must be
restored when processing is com-
plete. '

 In addition, one of these fatal errors may be produced:

Message

STRIP NUMBER NOT BETWEEN 1
AND 4

INPUTS NOT ALL SAME ERTS FRAME

INPUTS NOT 4 DIFFERENT STRIPS

ILLEGAL SPECTRAL BAND

WRONG LINE LENGTH FOR GIVEN
_SENSOR

4‘.32. 7 Flowchart

See Appendix C, IMigure Cc-32.

' Invalid strip pumber, tape cannot be
identified. ‘
Frame ID (Date and Time) not same -
for all input tapes.

One or more strips has been dupli-
cated on input.

Specified spectral band not allowed
for specified seasor type.

Line length specified by annotation
record not appropriate to sensor

type.

4-149

4,33 PMERGE - PRECISION ERTS TAPE MERGING PROGRAM

4.33.1 Program Description

This task routine unpacks the data from precision 7-track ERTS computer com-
patible tapes (CCTs) and builds a single output image tape in standard IDAMS
format. The annotation data from the CCTs are converted to CDC 3200 formats,

stored in the annotation file on disk, and also printed out for reference.

- PMERGE begins by determining the type of precision tape being input, If the
precision tapes are sixteenth frame tapes (two input tapes) or quarter frame
tapes (four input tapes) the program PARMER is called to process the tapes,
When the tapes are full frame tapes (four input tapes) the program FULMER

is called to process the tapes.

PARMER and FULMER both read the header data on each CCT., The annotation
records are read, the data decoded, converted to floating point format, and

stored on the annotation file on disk.

PARMER determines if the input tapes are quarter frame or sixteenth frame.
If sixteenth frame tapes the output label is written, specifying 1024 pixels per
line and 1024 lines, In the case of quarter frame tapes, the specifications

are 2048 pixels per line and 2048 1;nes. Image data are read in one record at
a time from each tape at a time and the COMPASS subroutine REPACK called
to generate 4096 6-bit characters, A record contains a portion of eight con-
secutive lines. Each line portion from one fape's record is merged with the
corresponding line portion of the other input tape(s). The eight completed out-

put lines are generated before the next set of input records are read.

FULMER's logic becomes more complicated because of the larger amount of
input image data, FULMER begins by writing the output label, specifying 4096
pixels per line and 4096 lines. The image data is arranged on the four input
tapes in eight strips in which the 1st and 5th strips reside on tape 1, the 2nd

and 6th strips reside on tape 2, etc. FEach strip contains 512 records and each

4-150

Yecord contains § pixel values for 512 consecutive lines. ;I'he scan linge begins with

~the right-most pixel of the first line in a strip and scans down 512 lines Ixfore pre-
ceding to the next pixél valuc, Consequently, in the case of thé first strip, the
image data from the first record would be ordered as follows: pixel 4096 from
line 1, pixel 4096 from line 2,4. pixcl 4096 from linc 512, pixel 4095 from
line 1, pi\e! 4005 from line 2, pixel 4095 from line 512, +ees.. pixel

4088 from line 1, pnel 1088 from line 2, pixel 4088 from line 512, » -~

Due to the nature of the input data it is not poqe]hlp to ou!,put even the first lmt, of
imagery in IDAMS format until 512 records, which constitutes a strlp, have hecen
read. Because the core restrictions préevent 512 complete lines from being stored
in core, PMERGE is forced to store portions of thé 512 lines onto disk storage.
The program reads in four consecutive lines, soris and orders the pixels such that
8 words of pixel values from cach line are linked together., These blocks of eight
words are then stored on disk befor_é the next set of four records is read in. This pro-
cess contiﬁues until 512 records have been processed and stored onto disk., At this
point, the program fetches the data back from disk until it can output onto tape four
ﬂcompletc consecutive lines. The data is fetched from chsh until 519 lines have been
output. PMERGE thea proceeds to carry out the same series of operations on the

remaining strips of data until a full image has been processed,

When all lines have been processed, both PARMER and FﬁLB'IER chetk the-
inptﬂ;_parameters to see whether any further bands are to be processed. If so,
inStructions are issued to the operator to mount a new output tape, and the
image data is proccssed in the same manncyr as for the first tape., When all

- output tapes have been generaied, or a fatal error has been encountered, the
operator is instructed to remount the SCOPE and IDAMNS overlay tapes. When
the operator returns conirol, PMERGE exits, and returns to the IDAMS

monitor for error processing or initiation of mc next taslk,

4-151

4,33.2 Parametévs
_ PMERGE requires the following paramecters:
1. ITYPE - Inputtiype: 1 ={ull frame tapes

2 = 16th frame tapes
3 = qudrter {rame tapes

2. NBAND - Intcger number of spectral bands to be processed
3. IBANDI - Integer band number for first spectral band
4. OUTNAMEZ. - Five to eight alphanumeric characters specifying

name to be given to second output tape (if any)

IBAND2 - =~ Integer band number for second band
OUTNAME3 -~ Name and band number for add}tional band, if
ret;uested.
IBANDJ -

NOTE: The name specified for the output is applied only to the first spectral
band requested. Additional speciral bands are named in the param-

eters. The input size field on the task card is ignored; the output
image always represents the entire input image. '

4.33.3 Input

Four {two) input ¢omputer compatible tapes are required, representing the

four strips of the same ERTS frame.

NOTE: Do not specify any input on the task card, since the CCTs-do not have
IDAMS - compatible labels. '

4.33.4 Outpuf

IMERGE generates one or more image tapes in standard IDAMS format; each

tape represents one spectral band for a single ERTS {rame,

4-152

A table of annotation data is written onto disk in cells 1 to 4, and also lisied

on the printer. The header record consists of five double words, as follows:

Word "~ Symbol Meaning

1-2 . OUTNAMEL Name of first IDAMS ouiput data set
generated for this ERTS frame.

3-4 QUTINAMEZ Names of additional output tapes, if any;

5-6 OUTNAMES3 unused locations are filled with zeros.

7-B QUTNAMEL- :

9-10 QUTNAMES

The first data record contains seven floating point words, as follows:

Floating Point

-Word Contents
1 Nadir latitude, degrees
P Nadir longitude, degrees

Spacecraft heading at format center, radians
Spacecraft altitude at format center, meters

3
4
5 Yaw at format cenﬁer, radians
6 Roll at format center, radians
7

Pitch at format center, radians

For MSS images, an additional record containing 38 floating~point words is also

generated, as follows:

Floating Point _ .
Word(s) Contents

i~ 7 . Spacecraft velocity (component tangential to

each) at frame center, meter/second

2 Average rate of change of tangential com-
ponent of velocity during scanning of {rame,

2
meter/(second)

3-11 Spacecraft altitude at times -13.8, -10.3,
-6.9, -3.4, 0.0, +3.4, +6.9, +10.3, and

413, 8 seconds from forimat ceriter time

A~1R%

Floating Point

Word(s) Contents

12-20 Yaw angles at corresponding t{imes
21-29 Roll angles at corresponding times
30-38 Pitch angles at corresponding times

4,33.5 Example

Merge four CCT full frame tapes to create output tapes named PREC1, PREC2,
and PREC3 from spectral bands 1, 2, and 3, respectively. Suitable IDAMS task

and parameter cards are:

FMERGE,,, (PREC1, 47, 1), 1

F, 3, 1. PREC2, 2, PREC3, 3

4.33.6 Messages
PMERGE generates no messages.
4.33.7 Flowchart

See Appendix C, Figure C-33.

4-154

4.34 PPUPDATE - PRECISION PROCESSING DISK FILE UPDATE PROGRAM

4.34.1 Program Description

This task routine provides a capability for adding, deleting, changing, or listing
records in the data files on disk containing ephemeris, reseau location, countrol
point location, and geometric transformations iﬁfoi‘matipn for use by the routines
in the precision processing and geometric mam'pul_ation packages. It provides a
means for entering test data and editing data stored on disk by IMERGE, RZOMAP,
CORREL, and RESECT.

PPUPDATE is designed to carry out a sequence of updating and listing steps on
a single loading of the overlay. It begins processing by reading disk cells 1
through 24 into core. The keywords designating successive task steps are then

processed one af a time,

The first keyword for each step 1s scanned to determine whether‘ephemeris, re-
seau, control point, geometric grid, or geometric linkage data are to be proc-
essed. The second key word is then accessed to defermine whether the required
function is adding, deleting, or changing a data reecord or algo lsting the entire

table. Control is then passed to the required moduls.

Each module begins by accessing the remaining parameters for that step, ex-
cept that no additional parameters are needed for a listing step. For delete
and change, the next parameter specifies the number of the data record to be
deleted or changed; record zero is interpreted as the header record, which
may be changed but not deleted. When a deletion is made, the record count
in the header record is reduced by one, and the remaining data records are
moved up to fill the gap., When a record is to be added, the number of the next
available record is obtained from the count in the header reébrd, which is in-

cremented after first checking that the file is not already full.

The data for the new or éhanged record are then ihterpreted and convertéd to

the required internal formats, The user is required to suppiy all entries in the

4-155

record, and not merely those to be changed, with the exception that for control
point records either latitude-longitude or UTM easting and northing may be

entered.

When each update or listing step is completed, control is returned to the
keyword-scanning module. When the keyword DONE is encountered, the updated

files are written back onto disk, and control is returned to the IDAMS monitor.
4,.34.2 Parameters
For each step to be executed, the following parameters are required:

1. File ID - keyword with following meanings:
EPHM - Ephemeris and annotation file:
RZO - Reseau location file
CP ~- Control-point location file
GRID -~ Grid-point location file
LINK - Linkage file for grid points
DONE - Last step finished; always required as last

parameter

2. Mode - keyword with following meanings:

INIT - Initialize the designated file

LIST - List designated file, including header record
(except for LINK, whose header is printed
with GRID) _

ADD - Add a data record, and update record count
in header

DEL - Delete a data record, close up gap, and update
count in header | |

CHNG - Change a record

4-156

4.

Record Number (DEL or CHNG)

0 - change header record; with DEL, 0 causes an error

>0 - change or delete specified data record

New Data Entry (ADD)

New Data Entry (CHNG only)

For EPHM, RZ0O, GRID, and LINK, the entire new record must be entered in

the same format as specified for that table in the paragraphs under Input. A

reference to LINK record 0 will be interpreted as the header file for GRID.

For CP, the header file has only three of eight words currently in use; only

these three words should be entered.

For CP data files, the parameters should be entered in the same manner as

for CHIPGN. This requires that either UTM or Lat/ Long values be entered,

that every parameter be preceded by a keyword, and that successive param-

eters be separated by commas. The parameters are:

1.

2,

crp

CPL

LAT

LONG

il

nnnn
nnnn

dd, mm, ss.s

E
ddd, mm, ss. SW

Image pixel position of control point
Image line position of control point

Latitude of control point. If N/S des-
ignation is omitted, north latitude is
assumed unless latitude is preceded
by a minus sign, in which case south

latitude is agsumed,

Longitude of control point, If E/W
designator is omitted, north is as~
sumed unless value is negative, in

which case west longitude is assumed.

4-~-157

-~ UTM Zone. If N/S designator is

Wz

5. ZONE = mn
omitted, north is assumed unless

' number is preceded by a minus sign

6. UTME = nnnnon -~ UTM casting in meters (=:500, 000 at
zonc central meridiany

7. UTMN = mnannnnn ~ UTM northing in meters

8. ELEV = npnn .~ Elevation above sca level in mecters .

4.34.3 Input’

No input image is used. In addition to the paramecters, inpui data for PPUPDATE
. are taken from the precision processing files contained in cclls 1 to 24 on the disk.
(Note that if these files have been copied temporarily onto tape, they may be

reloaded onto disk usifig TPCON option 6 with NX = 16, NY = 24.)
The formats of these files are as follows:

1. Ephemeris and Annotaiion Data (Disk Cells 1 to 4)

Header Record (10 words)

Worxrd Contents
1-2 Name (8 BCD charactexs maximum) of first IDAMS

output data set generated for this ERTS frame
3—4 Name of second data set, representing a different
. spectral band, for this ERTS frame

'5—-6 | Name of third data set

7-8 Name of fourth dafa sct (MSS only)
9-10 Name of {ifth data set (ERTS5-B MSS only)

Unused locations are filled with zeros.

Identification Record (10 words)

Word ' Contents

1-3 Scene/Frame ID, BCH, in form:

4-158

EDDDHEMMSBNC, where
E = ERTS mission code
DDDHINIALS = day and time of exposure
B = Spectral band identifier
N = Sequential subframe identifier
(if needed)
C - MSS data mode/correction code-
1's bit = 1 for decompression
2's bit = 1 for ili gain on bund 2
4's hit = 1 {for 1 eain on band 3
4 Format center latitude, degrees with 12—
bit fraction (i.e., to nearest 1/4006 degree)

Format center longitude, degrees with

fe7]

. 12-bit {raction

Nadir Iatitude, degrees with 12-bit {raction

6

T Nadir longitude, degrees with 12-bit fraction
8 Sun elevation, degrees (no fraction)

9

Sun azimuth, degrees

10 . ~ Length of scan line, pixels

Mid-Scan attitude and orbital data record (12 words)

Word - Contents
- 1-2 Yaw, in radians, floating point

3-4 _ Roll, in radians, floating point .

5-6 Pitcﬁ, in radians, {léating point

7-8 -Altitude, in meters, floafing point

9-—10 Velocity along track, meters/sceond, floating point
11-12 . Orbital heading from north, degreces, f{loating point

MSS attitude/altitude record (72 words)

Word Contents

1-13 9 values of Yaw (radians, floating point) at -15.8,
~10.35, -6.9, -3.45, 0.0, 3.45, 6.9, 10.35, and

19,5 sceonds from mid-scan time

4-159 .

19-36 .9 values of e, ab same times
3734 & values of Pitch, at same times
55-72 9 values of altitude (mcters, flonting point), at same times

Reseau Location Table (Disk cells 5 Lo 10)

One header record and 81 data records of four integer words each.

The header record format is:

Worf_.id Contents

1-2 Image Name
3 NMumber of rescaus from GETRZO
4 Number of reseaus from NTRDP2Z

The data records correspond to reseau marks starting with the top
line and going from left to right within each line of reseaus. The
record format is:

Word Syrmlol Contents
1 NOMP Nominal pixel pcsition
2 NOML Nominal line position
3 o Imp - Pixel position in image
4 M1, Line position in image

4-160

Control Point Location (Disk cells 11 and 12)
One 8-word header record and up to 10-12 word data records.

The header record format is:

Word Contents
1-2 Image name
3 Number of data records
4-8 Unused

The data record format is:

Word Symbol Contents

1 ICPP Image pixel position of control point

2 ICPL Image line position of control point

3-4 XLAT Latitude, degrees and decimal fraction

5-6 XLONG Longitude, degrees and decimal fraction

7-8 UTME UTM easting, proceeded by 106 times
zone number

9-10 UTMN UTM northing, negative for southern
hemisphere

11-12 ELEV Elevation above sea-level, in meters

Geometric Transformation Coordinates (Disk cells 13 to 24)

One four-word header record, 100 four-word location data records,
and 180 two-word linkage data records; unused data records are

ignored. The header record format is:

Word Contents
1.2 Image name
3 - Number of grid points
4 Number of linkages

4-161

The grid point location record format is:

Word Contentsg
1 Grid pixel position
2 Grid line position
3 Image pixel position
4 Image line posgition

The linkage record format is:
Word Contents

1 . Grid point (numbered in order of appearance
in location table) at start of linkage line

2 Grid point at end of linkage

4,34,4 Output

| Output from PPUPDATE is an updated set of precision processing data files on

disk and printer listings of those files which the user specifies.

4.34.5 Example

After examining the results of processing performed by RZOMAP and CORREL,
the user has decided to modify the position data for the 19th reseau, delete the
correlation results for the third and seventh control points, and add one new con-
trol point value. Suitable IDAMS control statements are:

[ﬁPupnATE,,,, 7

rﬁzo. CHNG, 19, 3148, 582, 3117, 585,

rﬁzo, LIST,

P, CHNG, 3, CPP=2402, CPL=1681,

BN

Z0ONE = 33, UTME=804280, UTMN=26400, ELEV=1180,

RN

P, DEL,7,

TN

, LIST,

2

NE

-

4-162

Note that the user has obtained a listing of the updated reseau and control

point location files. Instead of deleting CP record 3 and subsequently adding

the new control point, he has saved one step by using CHNG to replace record

3 by the new data,

4,34.6 Messages

PPUPDATE may print one or more of the following warning messages:

Message

aaaa MODE IS AN ILLEGAL OPERA-

TION ON FILE aaaa

nnnn IS AN ILLEGAL RECORD
NUMBER

aaaa FILE FULL, NEW RECORD
CANNOT BE ADDED

4.34.7 Flowchart

See Appendix C, Figure C-34.

4-163

Eﬂglanation

An illegal attempt was made to
alter a portion of one of the files,
probably a header record., Data

is ignored and processing continues.

The supplied record number is
inconsistent with currently defined
file limits. Data is ignored and
processing continues.

No more available space exists in
file aaaa, DEL or INIT must be
performed before another record
can be added. Data is ignored and
processing continues.

4.35 VPICIN - VICAR IMAGE REFORMATTING PROGRAM

4.35.1 Program Description

This task routine converts an image which has been generated in standard
VICAR format on a 7-track tape using the IBM-360 tape conversion mode into

an image in standard IDAMS format.

VPICIN begins by generating a table for converting the 8-bit grey-level values
to 6-bit values by truncating the two low-order hits. The VICAR label records
are then read in, and the EBCDIC data translated to BCD using the general-

purpose subroutine CODESTO6 and an internally stored conversion table. The
size of the image is obtained from the labels, and the labels are written on the

printer.

After the last label record has been read and identified as such, VPICIN writes
the IDAMS label onto the output tape. The image data records are then read,
using double buffering, and translated to 6-hit values one line at a time, again
using CODE8TO6, with the translation table generated at the start of the routine.

When all lines have been processed, control is returned to the IDAMS monitor.
4.35.2 Parameter
VPICIN requires a single parameter in integer format:

1. LUNV - logical unit number of tape drive on which VICAR tape is

mounted
4.35.3 Input

Input to VPICIN is a single 7-track tape containing a VICAR image with standard
VICAR labels generated using the IBM 360 conversion mode for tape output.

Since this image does not have an IDAMS label, it cannot be specified by the
standard input field of the IDAMS task card, Instead, this field must be
defaulted, and the logical unit number specified by the parameter LUNV, de-

scribed above.

4-164

4.35.4 Output

VPICIN creates one output image in standard IDAMS format and a printer

listing of the VICAR labels on the input image,
4.35.5 Example

It is desired to convert a VICAR image mounted on LUN 49 into an IDAMS out-
put tape on LUN 47; the output image is to be name VICAR037. Appropriate

IDAMS task and parameter cards are:

lﬂplcm,,, (VICAR037, 47, 1), 1
f"

4.35.6 Mesgsages

VPICIN generates one fatal error message, as follows:
Message Explanation
END OF VICAR LABEL NOT FOUND VICAR tape apparently not in standard
format; start of image data could not

be identified.

Warning messages are also written to inform the user when parity errors have

been detected, these messages are:

PARITY ERROR ON VICAR LABEL
nnnn PARITY ERROR(S)IN DATA

No other action is taken by the program for parity errors,
4.35.7 Flowchart

See Appendix C, Figure C-35.

4-165

4.36 INCREASE - IMAGE ENLARGING PROGRAM

4.36.1 Program Description

The task program, INCREASE, will enlarge a standard IDAMS image by an
integral factor computed from input parameters. Blank fill characters are pro-
vided on both sides and/or top and bottom, if needed to complete the requested

output image. The results are then written on the specified output tape,

The program computes the largest integral multiplication factor which will just
permit the input to fit within a specified output image. An output line buffer is
set up with edge fill characters, if any, and the output label record is written.

If any fill lines are required at the top of the output picture, they are written out
at this time. The program then enters a main processing loop to read an input
line, enlarge its length by the multiplication factor and output the enlarged line
the requested number of times. This process continues until all of the input
lines have been read and processed. Any remaining lines of bottom fill are

written out, if necessary, and the program returns to the monitor.

4,36.2 Parameters

1. NPOUT = number of pixels to be output
2. NLOUT = number of lines to be output
3. IFILL. = gray level for edge fill, default = 0

4,36.3 Input

INCREASE requires a single input image tape in standard IDAMS format.

4,36.4 Output
INCREASE generates a single output image tape in standard IDAMS format.

4.36.5 Example

A 200 line by 500 pixel sample portion of input image LITPIC is to be reduced
to fit a 500 by 1000 output requirement. This implies & multiplication factor

4-166

of 2 in both the number of data lines and pixels. Therefore, the resultant
output image will contain a 400 line by 1000 pixel image data area preceded
and followed by 50 lines of fill characters. No fill is necessary along the left

and right edges.

The following IDAMS source statements would be appropriate:

[mCFlEASE, (L{TPIC, 49, 1), (1, 1, 500, 200}, {OUTPIC, 47, 1), 1

FODO 4000

4,36.6 Messages

None.
4,36,7 Flowcharts

See Appendix C, Figure C-36.

4-167

4.37 COLOR - FALSE COLOR CODING PROGRAM

4.37.1 Program Description

The task program COLOR provides for a '"false—color" presentation of an

image using table lookup. The program has the capability of generating several
IDAMS - format image files from a single input image, using a different con-
version code for each output. The translation tables can be obtained from any
of three sources: several standard tables of color corrections stored in the
program, a complete conversion table supplied by the user, or a table generated
by linear interpolation between user-supplied paira of old and new gray-level

values, which define a piecewise linear relation between old and new values.

After intefpreting the first keyword, which designates which spectral band is
being represented, the required table is retrieved or generated and stored into
the program area. COLOR reads in one line of input data at a time and stores
the input line in a disk file for future reference. The COMPASS subroutine
CODE translates one character at a time to the new gray level values specified
by the table. The finished line is written on output, and successive lines are
produced in the same manner until the specified region of the image has been
processed. Then the next keyword is interpreted, the required table set up and
the next output file, representing a different spectral band for a "false-color"
presentation of the input image, is produced. Successive color keywords are
processed until all the parameters have been digested and the output tape has

been completed.
4.37.2 Parameters

Three color translation tables are required, one for each spectral band. Each

table must be preceded by a keyword, which designates the color spectral band.

1. Keyword (RED, BLUE, GREEN)

The color translation tables can be specified in one of three ways,

4-168

If the {ranslation is to follow a non-linear relation, then the remaining param-

eters are
2. N=2
3._66-
2 =1
3. M=1

Use table of new tables entered as parameters

3 - 66 for old values 0 to 63, respectively,

New values to which the old values 0 to 63, in that
order, are to be converted; 64 values must be

supplied

OR

Use standard table, stored internally

Use primary table for specified color

Use secondary table for specified color

If the translation is to follow a linear or piecewise linear relation, the remain-

ing parameters are:

2. N=3
3 M
4,-5.

6.-T

2N.,2N + 1,

Use pairs of coordinate points

Number of pairs of coordinate points that follow

(2< M< 11)

Old and new values, respectively, for point at

left-hand end of leftmost line segment

Old and new values, respectively, for point at

left-hand end of next line segment

Old and new values, respectively, for point at

right-hand end of last (rightmost) line segment

The first pair of values should include at least one zero; the last pair at least

one 63. If the first old value is nonzero, all values less than it will be assigned

a new value of zero. If the last old value is not 63, all values greater than it

will be assigned the last new value. At most, 11 pairs of coordinates can be

4-169

specified, corresponding to ten contiguous line segments. In addition, the old

values must be strictly increasing,
4,37.3 Input

COLOR requires a single input image in standard IDAMS format. The size
of the image to be processed [N = ((NPI - 1)/4 + 2}/65 + 1 * NLI] must be
less than 32300, so that the input image can be stored onto disk.

4.37.4 OQutput

COLOR generates a single output tape with multiple files in standard IDAMS
format, For each spectral band requested, a file of a false color image is

generated.
4.37.5 Examples

It is desired to generate three bands of a false-color image, (RED, GREEN,
and BLUE). The input image has previously been reduced to TV size and it is
desired to use the standard tables for each band. Appropriate IDAMS source

statements are:

fOLOR, (TVJAMES, 49, 1}, (1, 1,700,512}, (COLOR, 48, 1), 1

Pl

[ﬁED, 1.1, GREEN, 1, 1, BLUE, 1, 1

The output tape will consist of three files, whose names are COLORR, which
contains a "red" image, COLORG, which contains a "green" image, and

COLORB, which contains a ""blue" image.

4,37.6 Messages

COLOR generates the following diagnostic messages:

Message Explanation
N NOT LE 11 ANDGE 0 Either N was found to be negative or

more than 11 pairs of coordinates
were specified; execution terminates,

4-170

Message
COORDINATE VALUE GT 63 OR LT 0

OLD COORD NOT STRICTLY
INCREASING

IMAGE SIZE TOO LARGE FOR DISK

4,37.7 TFlowchart

See Appendix C., Figure C-37,

4-171

Explanation

A parameter greater than 63 or less
than 0 was specified; execution
terminates,

A specified value of the old intensity
was less than or equal to the preceding
value; execution terminates.

The input image specified ig too large
for COLOR to process since the image
will not fit on disk,

4.38 FPLIST - FLOATING-POINT LISTING UTILITY PROGRAM

- 4.38.1 Program Descriplion

The task program FPLIST provides a ﬂoatihg point formatted print for a user-

- supplied number of pixel valucs and number of lines.

FPLIST begins by determining if the input image resides on magnetie tape or
on disk. Fach'line segment is fetched and the specified number of pixel values
is output onto the printer. This process continues until all the requested lines

have been printed.
4.38.2 Parameters

FPLIST requires the following two parameters:

1, NX - pumber of floating point values to be printed per line

2. NY - number of lines to be printed
4,38.3 Input i
FPLIST requires one of the two following inputs:

i. an image tape in standard IDAMS format’

2. a disk file containing image data
4,38.4 OQutput

FPLIST provides a formatted floating .point print of the user-supplied input

carea.

4.38,5 Examples

An array of 32 x 16 floating point words has been stored on disk. - FPLIST is to

print ouf the array. The appropriate task and paramcter cards are:

(FPLIST,,,J _ - S
(32,16

4-172

4,38.6 Messages
None.
4,38,7 Flowchart

See Appendix C, Figure C-38.

4-173

4,29 DMDOUT - DIGITAL MUIRNHEAD REFORMATTING PROGRAM

4,39,1 Program Descrintion

This task program reformats IDAJIS images into the format required by the
Divital Muirhead Display (DAD) at the National Oceanic and Atmospheric

Agency.

DMDOUT ‘bcglins by determining whether the cutput image can fit within the 2500
by 2500 rasier size or requires the 5000 by 5000 raster, and sets the mode in
the header fecord accordingly, The operator is 2lso instructed to mark the
tape with the appropriate mode, If the imagerhas more than 4860 lines, a

bit is also set in the header record to suppress the gray-stiep \\}edge, wh_ich

is otherwise generated automatically by the DMD system. The header record

" is then writlen onto the output tape.

For the 5000 by 5000 mode, the length of the output tape required is also
estimated; if only one reel is required, the operator is instructed to mark it

accordingly.

The requested segment of the image is then read in one line at a time, aligned
for output, and written onto the output tape. On completion, the operator
is reminded to mark both reels of a double-reel image. Control then returns

~ to the IDANS driver.

;4. 39,2 Parameters

DMDOUT requires no parameters.

4,39, 3 Input

DMDOUT VI.‘;CC]HiI‘eS a single input image in standard IDAJMS format.

4,39, 4 Outout

DMDOUT generates an output image in the format required by the Digital

Muirhead Display.

C4-174

4.39.5 Example

A 3000 by 3000 segment of an image called IMAGES, starting at pixel 501 of
line 101, is to be converted for DMD recording. The required IDAMS control

statement is

(DMDOUT.(I MAGEG,49.1),(501,101,3000,3000),(,.47,1)

4,39,6 Messages

DMDOUT generates one fatal error message:

Message Explanation
IMAGE TOO LARGE The specified output image dimensions

exceeded 5000 pixels by 4980 lines

A number of advisory messages are also generated to instruct the operator

how to mark the output tape, as follows:

USE 556 BPI, MARK TAPE 'sxxx - BYTE MODE'
... AND 'REEL 1 OF 1'

IF SECOND OUTPUT REEL WAS REQUIRED, MARK TAPES '1 OF 2'
AND '2 OF 2' - IF ONLY ONE REEL, MARK '1 OF 1

4.39.7 Flowchart

See Appendix C, Figure C-30.

4-175

4.40 ADDPIY - PICTU RE ADDITION PROGRAM

4,40,1 Prosram Description

)
This task routine merges two images in TDAMS format. This is achieved by adding

the values of correspending pixels and storihg the sum info the corresponding

pixel location of the output image.

Upon entry, the-routine reads the Jabel from the secondaty input tape and verifies _
that the imave size specified for the primary input image is the same or less. than
the size of the sccondary tape. If the image sizes are compatible, then the pro-

-gram generates and writes the output 1abel.

N
The two input tapes are positioned to their resp:c'éctivc starting lines and the pro-
gram begins the merging pProcess. The routine reads in one record from each
input tape at a time, computes the sum of each corresponding pixel value and

outputs the merged liﬁe onto the output tape. 'This procedure continues until the

specified numbef of recoxds have been processed.
ADDPIX then returns control to DRIVER.
4,40,2 Parameters

ADDPIX requires the following parameters:
1. ISSP -~ secondary input tape start pixel

2. 1881, - secondary inputl tape start line
4.40.3 Input
ADDPIX requires two input tapes in standard IDAMS format.
4,40.4 Oulput

ADDPIX generates a single output tape in standard IDAMS format which contains

the averaged sum of the two input tapes.

4,40.5 Exn.mgle '

It is desived to merge a portion of an image from two different input sources. The

4-176

size of the portion is 64 pixels by 100 lincs and, on the primary input tape, the area
to be merged is located in the um'vc‘r feft-hand corner of the entire image, while on
the secondary input tape, the area starts after line 100. Appropriate IDAMS source

statements are:

(ADDPIX, (N1, 49, 1, INZ, 48, 1), (1, 1, 61, 100), (OUT, 17, 1, 1

o F 100

4,40.6 Messaves

ADDPIX may generate the following message:
.________h__I\-Tessasse Explanation
IMAGE SIZE EXCEEDS SECONDARY The user specified an image size which

INPUT SIZE . is larger than the secondary input tape's

image size,
4.40.7 TFlowchart

" See Appendix C, Figure C-40.

4~177

1,41 FORMAT - IDAMS FORMAT CONVERSION PROGRAM

4.41.1 Program Description

The task program, FORMAT, converts a rectanguiar image to an IDAMS~Tormatted
tape and vice-versia. The rvecord length and number of records on a rectangular image

arc unknown, while this information is supplicd in the label record of an INAMS image.

Format be}cgins execution by delermining the direction of the conversion. In the case
where an 1DAMS to rectungular .convcrsion is recuested, tﬁe program ignores the

IDANRIS label record and after deleting the line number from an IDAMS record writes
the image line onto the output tape. This process continues until all of the requested

lines have been ocufput.

: Wheﬁ a rectangular image is to be converted to IDA Mé‘, format, it becomes neces-
sary to determine thé record length. The program readé the first record from the
rectangular image, determines the length of the record and sets the necessary
variables. A dummy IDAMS label is written and as each record is read from the
rectangular image it is output onto the TDAMS ~ formatted tape, after the line
number has been placed into the first word of each record. This process continues
 until an end-of-file ‘mark is sensed on the input tape. After writing an end-of-file
mark on the output tapé, the IDAMS tape is then :e;.voﬂnd and the completed IDAMS

tape label is written onto the tape. FORMAT then returns control to the system.

4,41.2 Parametiers

FORMAT requires the following épecial parameter;
LUN =. unit 1}umber of rectangular image tape

4.41.3 Input

FORMAT requires an inpui tape in either IDAMS format or in rectangular image

format.

4.41.4 Output

FORMAT generates an output tape in either a rectangular image format or in

IDAAIS format.

4-178

4.41.0 Faxnmple
EATRULL UL

A rectangular fmage is to be converted to an IDAMS formated image.

IDAMS bitch processor.task and parameter cavds are:

(ﬁbiiwnvr,,, (IDAMSTAP, 47, 1), 1.

(48

4,41.6 Nlessages

TORMAT docs not generate ahy messages.
4.41.7 Tlowchart

See Appendix C, Tigure C-41.

4-179

Approprinte

4.42 HISTCONT - HISTOGRAM-CONTRAST PROGRAM

4.42.1 Program Description

HISTCONT is a program which attempts to make an image's gray level appear
more uniform between the six different ERTS/MSS scan lines. This is achieved
by creating comprehensive histograms and performing a contrast conversion on

a scan line hasis.

The program has two modes of operation: (1) the entire process of histograms
and contrasting is exem;ted as a single task, or (2) the initial histograms and
creation of the contrast look-up ta,bles is run as a separate step from the con-
trast portion of the program. Initially the program determines which mode the
user gpecified. If no contrast tables have been input, the program transfers
control to the histogram program. This program checks to see if the number
of specified input lines is an even multiple of 6 and if it i8 not, the mumber of
lines is altered to force it to an even multiple of 6. The input tape is forward
spaced to the first specified input line, if necessary. Each record is read and
the subroutine TALLY stores each line's gray level values into the appropriate

scan line bins.

Once all the required lines have been processed, the program computes and
6utputs six histograms in which each graph represents the intensity frequencies
of a unique set of scan lines. Six numeric tables of the intensity frequencies
are algo printed out. The program then computes a cumulative histogram and
tables using one of the scan line sets as the base detection line., A look-up

table for each set of scan lines is computed by finding midpoints of input bins
relative to the base detector line bins. The five look-up tables are punched out
as parameter cards, in case the user wishes to run the contrast phase at a later
time. If an output tape has not been specified, control returns to the IDAMS
driver‘. If an output tape has been specified, and the contrast look-up tables

have either been input by parameter cards or from the histogram phase, control

4-180

is transferred to the contrast program. The contrast program calls the sub-
routine CODE, which applies the appropriate contrast conversion on each line.
As a final program verification, the program generates new histograms for

each of the six scan line sets. Control is then returned to the IDAMS driver.

4.42.2 Parameters
1. IBASE = The base detector line number (1 through 6)

2. ITAB = (a) If not gpecified, implies the histogram and contrast

phases are to be executed

{b) A table of 320 values (5 sets of 64 new values to be
used in the contrast phase). When these values are
present, only the contrast portion of the program is

executed.
4.42.3 Input
HISTCONT requires one input tape in standard IDAMS format.
4.42.4 Output

HISTCONT generates numerous histograms, punched parameter cards, and
either one or no output tapes in standard IDAMS format, depending on the mode

selected. They have the following significance:

Mode Output

Histogram only Six scan line histograms, one cumulative
histogram of base detector line, punched

parameter cards of look-up tables
Contrast only Single output tape, six scan line histograms

Histogram and contrast All of the above mentioned oufputs

4-181

4.42.5 Example

It is desired to make the image CONT1 gray levels appear more uniform be-
tween the six different ERTS/MSS scan lines. The entire 3000 by 3000 picture
ig to be processed. The base detector line is line 4 and the user specifies that

the output image name be OUT1. Appropriate IDAMS source statements are:

fCONTHIST, (CONT1, 49, 1), (1, 1, 3000, 3000), (OUT1,48,1),1
(4

4.42.6 Messages

None
4,42.7 Flowchart

See Appendix C, Figure C-42,

4-182

4,43 JOYSTICK - INTERACTIVE DISPLAY PROGRAM

4.43.1 Program Description

The task program JOYSTICK supplements the numerous user image display
and manipulation functions provided by the 212 display package. The user con-
trols the functions by depressing buttons on the joystick box, which have been
predefined to perform specific functions. Also, several available capabilities
are displayed on the CDC 212 and the user interactively inputs the desired
function codes via the 212 keyboard. The task is subdivided into a main driver
routine and two segmenfs. The first segment handles all of the functions ex-

cept the ZOOM capability, which resides in the second segment.

Once control is passed to the program JOYSTICK in the first segment, the

initial reseau coordinates and box coordinates are set. The subroutines TVCON,
TTWCON, and JOYCON are called which connect with the TV hardware, the

CDC 212 hardware, and the DDI (analog-to-digital converter), respectively. A
call to the subroutine CDCON enables the following function code table to be
displayed on the 212.

- IDAMS
FUNCTION CODES
(CODES 01 - 09 ARE FUNCTIONAL IN TASK DISPLAY)

LOCATE 10

DATA 11 ZO00M 17 REWIND 13
DATA1 12 EXIT 18 FORWARD 14
SELECT 16 REVERSE 15

The program calls the subroutine STORE, which waits until a function code
has been input to the 212 or a joystick button has been activated. The joystick

4-183

box contains six buttons and the joystick control. The buttons and stick have

been assigned the following functions:

Buiton Function

1 Generates a box on the TV; if a box is al-
ready displayed on the TV, by activating

button 1 the box is erased.

2 Generates a reseau on the TV; if a reseau
is already displayed on the TV, by activat-

ing button 2 the reseau is erased.

3 Returns the coordinates of the box or
reseau which is presently displayed on

TV screen.

4 Enables the user to move the box or reseau
left, right, up, or down, by moving the

joystick left, right, up, or down.

5 Enables the user to enlarge and shrink the
box by moving the joystick up and down,

respectively.

6 Enables the user to vertically enlarge and
shrink a box by moving the joystick up and
down; and enables the user to horizontally
enlarge and shrink a hox by moving the

joystick right and left, respectively.

If a function code has been input via the 212, the program converts the code
from a BCD number to an integer value and branches to the appropriate subsec-
tion, depending upon the value of the function code. I one of the joystick but-
tons has been activated, STORE returns the button number, and JOYSTICK

branches to the appropriate subsection.

4-184

4.48,1.1 Description of Joystick Function Buttons
4.43.1.1.1 Button 1

I the joystick function button 1 was depressed, the program checks to see if a
box or a reseau is already displayed on the TV. If a box is on the TV, the
program erases it by calling the subroutine KILLIN, and control returns to
where the program is waiting for another function code to be input or for the
joystick controls to be activated., When no reseau mark is on the TV, the pro-
gram computes the box coordinates such that the box will be centered on the
TV and will be 138 pixéls by 100 lines in size. However, if a reseau mark is
displayed on the TV, the box coor&inates are computed such that the 138 by 100
box will appear centered around the reseau mark location. The reseau mark

is then erased by calling the subroutine KILLIN.

Once the box coordinates have been set, the program branches to a subsection
of the program which converts the image coordinates to a TV format and sends
them to the TV hardware. To convert the Y coordinates to TV format, the
values are divided by 2; if the original coordinates were even, then 255 is
added to the halved value. This is done to accommodate the TV feature of
having a main level and an interlace level. The lines alternate between the
‘main and interlace levels. Therefore, line 1 is equal to the TV line 0, line 2
equals TV line 256, ..., line 511 equals TV line 255, and line 512 equals TV
line 511.

The x coordinates must also be converted to a TV format. Because the TV
hardware counts pixels across the line in increments of 11, the hardware must
know in which group of 11 the pixel resides (x/11) and the pixel position within
the group (MOD(x,11)). The X coordinates are co_mrerted, the group number is
placed in bits 23-12 of the TV coordinate word, and the remainder value re-
sides in the bits 11-0 of the word. The conversion subsection then calls the

program DISP, which sends the TV coordinates to the TV hardware. DISP is

4-185

a COMPASS routine which connects with the TV (channel 2}, sends a function
code for a box or reseau mark, and transfers the coordinates to the TV hard-
ware. Control is then returned to the conversion subsection, which returns to
the originating function subsection. In the case of the box generator function,
cdntrol is returned to where the function code table is displayed on the 212 and

the program is waiting for another function or joystick interrupt.
4,43.1.1.2 Button 2

When the joystick button 2 is depressed, the program checks to see if a reseau
or a box is already displayed on the TV, If a reseau is on the TV, the program
erases it by calling the subroutine KILLIN, and control is transferred to where
the program is waiting for another function code to be input or for the joystick
buttons to be activated. If no box appears on the screen, the program sets the
reseau coordinates such that it will be centered on the TV. However, if a box
is already displayed, the program computes the reseau coordinates such that it
will be centered within the box area. The box is then erased with a call to
KILLIN and the program branches to the previously described conversion sub-
section. After the reseau mark has been placed on the TV, the program redis-
plays the function code table and waits for the next code to be input or the next
button to be activated.

4.43,1,1.3 Button 3

When the third button is depressed, the corresponding subsection writes the lo-

cation of the box or reseau which is presently displayed on the TV onto the printer

and the 212. The program checks to verify that a2 box or reseau is displayed on
the TV. If no marks are on the TV, the control returns fo the program area
which displays the function table. Otherwise, the program prints out the co-
ordinates of the box or reseau onto the printer. Before the values can be output
to the 212, the integers must be converted to left-justified BCD format. This

process is done in the subroutine BINBCD, and the reformatted coordinates

4-186

are printed onto the 212. Control returns to the program area which displays
the function code table only after the user has depressed the SEND key on the
212 keyboard.

4.43,1.1.4 Button 4

The fourth button is functional only when used in conjunction with the joystick.
When the program senses that the fourth button has been depressed, it trans-
fers control to the CHKJOY subroutine. CHKJOY returns control to JOYSTICK
only if the joystick has heen activated while the fourth button is depressed or if
the fourth button is no longer depressed. When the joystick has been moved,
the program attempts to move the box or the reseau on the TV in the same di-
rection that the joystick was moved (up, down, left, or right). Depending upon
the direction of the requested movement, the program checks whether the co-
ordinates have reached an edge of the image and, therefore, cannot be moved in
the requested direction. If this test is positive, then control returns to the
program area which displays the function code table. Otherwise, the appropri-
ate coordinates are reduced or increased by one, and control transfers to the
TV conversion subsection where the TV formatted coordinates are sent to the

TV hardware.

The subroutine ICLOCK is used to control the speed at which the box or reseau
is moved. The argument which is sent to ICLOCK and indicates the number of
milliseconds to delay processing, is a function of the pressure applied to the
joystick. If the joystick is lightly pushed in the desired direction, the ICLOCK
variable is large and the box or reseau movement is slow. The speed of the
box (reseau) movement increases as more pressure is applied to the joystiek.
The program continues to move the box or reseau until either the fourth button
is no longer depressed, the joystick is no longer activated, or the box (reseau)
reaches an edge of the image. Control is then returned to the code which dis~

plays the function code.

4-187

4.43.1.1,5 Button 5

The fifth button is also only functional when used in conjuhction with the joy-
stick. When the program senses that the fifth button has been depressed, it
checks by calling the subroutine CHKJOY, to see if the joystick has been moved
up or down. If the joystick has been moved up, the box is increased; and if the
joystick has been moved down, the box is reduced. The box coordinates are
checked to see if the box can be enlarged or reduced, depending on which func-
tion was requested. If the box is the maximum (minimum) size, then control
returns to the program area from which the function code table is displayed.
Otherwise, the coordinates are appropriately reduced or increased by one in

order to enlarge or reduce the box.

A call to the delay routine, ICLOCK, which stalls processing a specified num-
ber of milliseconds, is used in order to make the movement of the enlarge/
reduce process increase as the pressure on the joystick increases. Control is
transferred to the subsection which converts the coordinates to TV format and
sends the values to the TV hardware. The program continues to enlarge or re-
duce the box until either the fifth button is no longer depressed, the joystick ig
no longer activated, or the box reaches an edge of the image. Control is then
returned to the program area, where the function codes are displayed and the

program is 'wa_iting for the next command.
4.43.1.1.6 Button €

The sixth and last button is used in conjunction with the joystick. When button

6 is depressed and the joystick is moved up and down, the box is vertically in-
creased and reduced, respectively. When the joystick is moved right and left,
the box is horizontally enlarged and reduced, respectively. The box coordinates
are checked to see if the box can be enlarged (or reduced). I the box is the
maximum (minimum) size, then control returns to the program area from

which the function code table is displayed. Otherwise, the coordinates are

4-188

appropriately increased or reduced by one in order to enlarge or reduce the
hox. The speed of the enlarging or reducing process, which is changed by ap-
plying more or less pressure to the joystick, is controlled by calls fo the delay
routine, ICLOCK. The program then transfers control to the subsection which
converts the coordinates to TV format and sends the values to the TV hardware.
The program continues to enlarge or reduce the box until either the sixth button
is no longer depressed, the joystick is no longer activated, or the box reaches
an edge of the image. Control is then returned to the program area where the

program waits for the next command.
4.43.1.2 212 Functions
4,43.1.2,1 LOCATE Function

When the function LOCATE is requested from the 212, the corresponding sub-
section writes the location of the box or reseau which is presently displayed on
the TV onto the printer and the 212, The program checks to verify that a box
or reseau is displayed on the TV. If no marks are on the TV, the control re-
turns to the program area which displays the function table. Otherwise, the
program prints out the coordinates of the box or reseau onto the printer. Be-
fore the values can be output to the 212, the integers must be converted to left-
justified BCD format. This process is done in the subroutine BINBCD, and the
reformatted coordinates are printed onto the 212. Control returns to the pro-
gram area which displays the function code table only after the user has de-
pressed the SEND key on the 212 keyboaxrd.

4.43,.1,2,2 DATA Functions

The functions DATA (11) and DATAIL (12} are handled in the same subsection.
This subsection transfers image data from tape files to the TV. The program
first requests the tape unit number from the user by calling the subroutine
CDCON, which prints out the request on the 212. The subroutine STORE is
then called, which will return with the user's reply in BCD format. The

4-189

program converts the value to an integer format. The program requests that
the user input the color gun numbers, which will specify the TV disk(s) onto
which the image is to be dropped.

The TV has three TV refresher disk files available for image data storage, and
and each disk can be assigned to one of the three available color guns (red,
green, or blue). The color gun parameter is a value which determines which
disk file(s) the user wants to use for storing an image. The parameter is an
octal representation of a three-digit binary number, in which each digit cor-
responds to one of the disk files and the "on-off' conditions are represented by
ones and zeros, respectively. The following table shows the correspondence
between the color gun number, the disk assignments, and the binary number

from which the parameter value was derived.

Binary Representation

Color Gun Disk Disk Disk Disk
Number __ Files) 3 2 1
1 1 0 0 1
2 2 0 1 0
3 1 and 2 0 1 1
4 3 1 0 0
5 1land3 1 0 1
6 2and 3 1 1 0
7 1,2, and 3 1 1 1

Once the user has specified the digk file(s) into which the image data are to be
stored and the SEND key has been depressed, the image will be dropped to the
disk and displayed on the TV. The user can define which color is to be assoe-
iated with each disk by manually setting the three color wheels switches on the
IDAMS Control Panel. The three wheels, from left to right, represent the color
guns of red, green, blue, respectively. By setting the wheels to the appropriate
disk number, the user has complete control over the color assignment of any
image stored in the TV disk files.

4-190

The color gun number, which is returned from a call to STORE, is converted to
hinary and checked fo be sure it is valid, If the number is not valid (0 <N = T)
the program will again request that the user input the color gun numbers. The
program reads the label record and prints out the length of the record. Next
the program enters a loop to read 32 lines of data and properly position the
data in a format necessary for the TV hardware. Because of the main and in-
terlace structure of the TV, even lines are separated from the odd lines. Con-
sequently, as the data lines are read in, pointers are set which direct the data
into the appropriate buffer location. For instance, in buffer 1 the lines 2,3,4,
...,31 are sequentially packed, and lines 2,4,6,...,32 are sequentially packed
in buffer 2. The tape reads are double buffered, and while the next line is
being read, the last line's data is sent to the subroutine, FLIP. This subrou-
tine reverses the pixel order of each word in the line (i.e., if the characters
ABCD are input as a word, they would be returned as DCBA in the same word).
This procedure is necessary in order to make the data compatible with the TV

hardware's counting method.

After a set of 32 lines have been read in and processed by FLIP, the 16 even
lines and 16 odd lines are ready to be transferred to the TV. The subroutine
LINDIS is called for each set of 16 lines; this routine prepares the data for the
ti'ansfer, ‘and then outputs it to the TV. I;.INDIS is a COMPASS subroutine
which computes the function code depending upon whether the lines are main or
interlace and sends the function code to channel 2 (TV hardware). The subrou-

tine then checks to see if the requested function was DATA (11) or DATAL (12).

If the requeét was for DATA, then each word of the 16 line data block hag the
least significant bit shifted off. This is required because the TV hardware,
which counts from left to right, can only handle five of the six bits per pixel
value. Without shifting, the most significant bit would be lost, which is an un-
desirable result. Consequently, by shifting each word to the right one bit, the
TV hardware will be picking up the most significant bit and only losing the least

4-191

significant bit. The DATA1 (12) function however, does not shift the data
words but sends them as they are input. This feature is available in case a

user wishes to view the data without the shifting procedure,

Once the data words have been prepared for transfer, LINDIS sends two blocks
of 16 lines to the TV, channel 2, and waits for the 1/0O to be completed before
returning to DISPLAY1. This procedure of processing data in sets of 32 lines
continues until the program senses an end-of-file mark on the input tape. I
the program determines that the total number of lines read is not an even
multiple of 32, it prints a message indicating that some data lines must have
been lost. The program concludes this fact because the number of lines in a
TV size image is 512, which ig an even multiple of 32, Control then returns

to the program area which displays the function code table.
4.43.1.2.3 Tape Functions

The functions REWIND (13), FORWARD (14), and REVERSE (15} are all
handled in the same subsection. The program calls CDCON, which requests
that the user input the appropriate magnetic tape logical unit number. The sub-
routine STORE returns the tape unit number in 2 BCD format and the program
converts it into a binary integer value. If the request function was REWIND (13),
the program rewinds the tape and returns to the program area which displays
the function code table. If the FORWARD (14) or REVERSE (15) functions were
specified, the program sends a request for the number of files to be skipped to
the user via the subroutine CDCON. The reply is returned from STORE and is
converted _from BCD format to an integer value. The program then forward
spaces or backspaces the appropriate number of files. If the backspace func-
tion is being executed, the end-of-file mark is skipped over before control re-

turns to the program area which displays the function code table.

4-192

4,43.1.2.4 SELECT Function

The subsection which processes the SELECT (16) function enables the user to
select the coordinates of the box to be displayed on the TV screen. By refer-
encing the subroutine CDCON and STORE, the program requests that the user
input the coordinates of the desired box. The coordinates must be input in the
following order; leftmost pixel value, rightmost pixel value, top line number,
and bottom line number. Because the box figure appears in either the main
level or the interlace level, the input line values must both be even or odd. If
the line numbers are mixed, the program outputs a message to the 212 indicat-
ing the error, and then correcté the line numbers by forcing them to both be

even or odd values.

The program receives the parameters from the subroutine STORE and scans
the parameter list from the last word of the input array to the first word. The
program ignores blanks and expects commas to be the separator between co-
ordinates. The coordinates are converted to integer format and sent to the

TV conversion subsection, which converts the values to TV format and sends
them to the TV hardware. If the parameter list has not been correctily input,
the program requests that the coordinates be input again. Once the box has ap-
peared on the TV, control returns to the program section to display the function

code table.
4.43.1.2.5 ZOOM Function

The last display function is the ZOOM (17) function which takes the area bounded
within a box on the TV image and increases or reduces it into a TV size image.
This function is accomplished by the program ZOOM, which is in the second
overlay segment. The ZOOM routine initially requests by referencing CDCON
and STORE, the name of the image which is displayed on the TV, the tape unit
on which the TV image tape resides, and the file number of the image. These

parameters are stored in the label array, LBLIN.

4-193

The label processing routine, LBLRD, is then called to read the TV image
file label and, the information stored in LBLIN is used to verify that the tape
is positioned at the requested image. The requested file label contains the
name of the master tape (the image tape from which the TV image originated)
ahd, using this information, the program sends a message to the user via the
212 reminding him that a specific master tape must be mounted. The reduction
or enlargement factor that was used when creating the TV {mage from the
master image is stored in word 11 of the TV file label. Using this factor, the
box coordinates, and the_a dimensions of the master image, the program deter-
mines whether the master image must be increased or reduced to create the
desired TV image. I the box enclosed érea would not result in an optimum
TV size image, the program sends a message to the user asking if the user
still wants to create the requested TV image. If the user replies negatively,
the program branches back to the program area which displays the function

code table. If the user replies positively, the program continues processing.

A request is made for the master tape logical unit number and file number,
and then the program reads in the master image file label. The program then
requests via the 212 that the user supply the output TV image name, tape unit
mumber, and file mmmber. The output label is written onto the specified tape.
Eefore going to the segment which carries out the actual reduction or enlarge-
ment, fhe program requests that the user verify that all of the parameters are
correct. If the response is negative, the program branches to the beginning of
the ZOOM routine and begins the request for input parameters again. If the
user replies positively, the program contimies and reduces or increases the

master image data.

7.00M computes the largest integral reduction or multiplication factor which
will just permit the input to fit within a TV size image. An output line buffer
is set up with edge fill characters, and the output label record is written. it
any fill lines are required at the top of the TV picture, they are written out at

4-194

this time. A main increase or reduce processing loop is entered. If no in-
crease or reduction is necessary, the master image is just transferred to the
output image. If a reduction is required, the program reads an input line, re-
duces its length by the reduction factor, and stores it in an internal array.
This continues until enough input lines are collected to form one output line.
Averaging is then performed between lines, and the completed line is output.
If an enlargement is involved, the program reads an input line, enlarges its
length by the multiplication factor, and outputs the enlarged line the requested
mumber of times. After all lines have been processed for both enlargements
and reductions, the proé;ram writes out any remaining lines of bottom fill.
Control then returns to the main driver‘wh.ich calls segment 1, JOYSTICK.
The IDAMS function code table is again displayed.

4.43.1.2.6 EXIT Function

The user exits from the JOYSTICK package by selecting the EXIT (18) funetion
code. When the program receives this code it returns to the main driver,

which then returns to the IDAMS system.
4.43.2 Parameters

JOYSTICK calls the IDAMS joystick package whose parameters are provided
interactively through the 212 Display Station or through the joystick control
box. By specifying the name JOYSTICK on the task card, the following func-

tions code table is displayed on the 212 screen:

IDAMS
FUNCTION CODES
(CODES 01 - 09 ARE FUNCTIONAL IN TASK DISPLAY)

LOCATE 10

DATA 11 ZOOM 17 REWIND 13
DATA1 12 EXIT 18 FORWARD 14
SELECT 16 REVERSE 15

4-195

In order to execute any one of the functions, the user must type in the cor-
responding numeric code and depress the SEND key. A description of each

function is given below:

Code Funetion Desecription

10 LOCATE Returns the coordinates of the box or
reseau which is presently displayed on
TV screen. When the user wants to clear
the coordinates from the 212 and have the
function code table reappear, the SEND

key must be depressed.

11 DATA Drops an image tape file which contains
64 gray level data onto the TV. The pro-
gram requests two input parameters.

The tape unit on which the image tape is
mounted must be keyed in after the re-
quest appears on the 212. After the SEND
key is depressed, a request for the color

gun number will appear.

The TV has three TV refresher disk files
available for image data storage and each
disk can be assigned to one of the three
available color guns (red, green, or blue).
The color gun parameter is a value which
determines which disk file(s) the user
wants to use for storing an image. The
parameter is an octal representation of

a three-digit binary number, in which
each digit corresponds to one of the disk

4-196

Code Function Description

11 files and the "on-off" conditions are rep-~
(Contb'd) resented by ones and zeros, respectively.
The following table shows the correspond-
ence between the color gun number, the
disk assignments and the binary number

from which the parameter value was

derived.
Binary
Color Representation
Gun Disk Disk Disk Disk
Number File(s) 3 2 1
1 1 0 0 1
2 2 0 1 0
3 1l and 2 0 1 1
4 3 1 0 0
5 1and 3 1 0 1
6 2 and 3 1 1 0
7 1,2, and 3 1 1 1

Oncé the user has specified the disk file(s)
into which the image data are to be stored
and the SEND key has been depressed, the
image will be dropped to the disk, and dis-
played on the TV. The user can define
which color is to be associated with each
disk by manually setting the three color
wheels switches on the IDAMS Control
Panel. The three wheels, from left to

right, represent the color guns of red,

4-197

Code Function

11
(Cont'd)
12 DATAL
13 REWIND
14 : FORWARD

Description

green, blue, respectively. By setting the
wheels to the appropriate disk number, the
user has complete control over the color
assignment of any image stored in the TV
disk files. Once the color gun number has
been entered and the SEND key depressed,
the image will be dropped on the TV.

Drops an image tape file onto the TV. The
required parameters are described above
under function code 11, DATAI differs
from DATA in that the data contains 32
gray level values and, therefore, does not
have the least significant bit shifted off.
However, the most significant bit will be
truncated since only five bits of data can

be displayed at one time.

Rewinds a requested tape. The program
requests on which tape unit the required
tape is mounted. After keying in the tape
unit number and depressing the SEND key,

the tape is rewound to loadpoint.

Forward spaces a tape a specified number
of files. The program requests the logical
unit number on which the required tape is
mounted. After keying in the fape unit
number, the program requests the number

of files over which the tape is to be spaced

4-198

Code Funetion

14

(Cont'd)
15 REVERSE
16 SELECT
17 Z00M

Description

forward. Once the SEND key is depressed,
tape is forward spaced the specified num-

ber of files.

Backspaces a tape a specified humber of
files. The program requests the logical
unit number on which the required tape is
mounted. After keying in the tape unit
number, the program requests the number
of files over which the tape is to be back-
spaced. Once the SEND key ig depressed,
the tape is backspaced the specified num-

ber of files.

Enables the user to select the coordinates
of a box which is to be displayed on the
TV. The program requests that the co-
ordinates be input in the following order -
leftmost pixel, rightmost pixel, top line,
lower line. The line numbers should be
paired even, or odd, but not mixed. This
is a display hardware requirement. The
parameters must be separated by commas
and the final parameter must be followed
by a blank. Any blanks placed between

parameters are ignored.

Takes the area bounded within a box on the
TV image and increases or reduces it into

a TV size image. The program requests

4-199

Code

17
{Cont'd)

Funection

Description

the name of the image which is presently
displayed on the TV. After entering in

the name and depressing the SEND key,
the image's tape unit is requested, fol-
lowed by a request for the file number (be
sure to specify the file number with two
digits). A message reminding the user
that the master tape must be mounted is
displayed on the 212, and is followed by a
request for the master tape's unit number
and file number. Before the program be-
gins the ZOOM procedure, information
ahout the new output tape is requested.
The user is asked to supply the output tape
name, the unit number, and the file num-
ber. The program requests that the user
specify if the input parameters are believed
to be correct. If a '"Y" is returned, the
program continues with the ZOOM process.
However, if an '"N'' has been returned, the
program begins the input parameter re-
quests again. This gives the user, who

is aware of an input parameter error,
another chance to supply the correct input.
(Note: After keying in the proper response
to all requests, remember to press the
SEND key.) The program will display on

the TV whether an increase or reduction

4-200

Code Function Deseription

17 of the master image was necessary and
(Coni;'d) the multiplication factor involved. The
"ZOOM" image will reside on the output
tape when the program is completed, and
the user must reference DATA when he
wishes to drop the image onto the TV

screen.
18 EXIT Returns control to the IDAMS main driver
~ program.

For special instructions pertaining to the operational procedures involved when
using JOYSTICK and the TV, refer to Section 3.4.3 (Special Instructions for
the DISPLAY User) in the IDAMS User's Guide.

The other means of supplying parameters is by activating one of the six buttons
on the joystick control box. The buttons and stick have been assigned the fol-

lowing functions:

Button Function

1 Generates a box on the TV; if a box is already
| displayed on the TV, by activating button 1 the

box is erased.

2 Generates a reseau on the TV; if a reseau is al-
ready displayed on the TV, by activating button 2

the reseau is erased.

3 Returns the coordinates of the box or reseau

which is presently displayed on the TV screen.

4-201

Button Function

4 Enables the user to move the box or reseau left,
right, up, or down by moving the joystick left,

right, up, or down.

5 Enables the user to enlarge and shrink the box

by moving the joystick up and down, respectively.

6 Enables the user to vertically enlarge and shrink
a box by moving the joystick up and down; en-
ables the user to horizontally enlarge and shrink

a box by moving the joystick right and left.

4.43.3 Iput

JOYSTICK has variable inputs depending upon which functions are requested.
I the functions DATA, DATA1l, REWIND, FORWARD, or REVERSE are re-
quested, JOYSTICK requires a single input image tape in standard IDAMS format.
I the ZOOM function is requested, two input image tapes in standard IDAMS

format are required {(a TV size image tape and the master image tape).

4.43.4 Output

J OYSTICK drops image data onto the TV and displays a box and reseau mark
on the TV screen. H ZOOM is referenced, a single output image tape in stand-

ard IDAMS format is produced.
4.43.5 Examples

The fourth file on the image tape which is mounted on tape unit 49 is to be
dropped onto all three TV disks. A reseau mark is to be placed on the image
and moved to a desired point, where a box replaces the reseau mark. The box
ig increased slightly and the coordinates are printed out. The enclosed area

is increased to a TV size image and the new image is dropped onto the first TV

4-202

disk. The following communication would be required to achieve the above

operations:

L The following single control card would be submitted.

FTOYSTICK

2. The code 14 (FORWARD) would be entered on the 212 and the SEND
key depressed. The user would specify the number 49 to the mag-
netic tape unit request and then would specify the number 03 to the
request of number of files to be skipped.

3. The code 11 (DATA) would drop the fourth file on the TV after the
user has specified the logical unit number 49 and color gun number 7
(binary representation indicating all three disk files).

4. The second button on the joystick control box would be depressed

and a reseau mark would appear on the TV,

5. By depressing the fourth button and moving the joystick to the left,
right, up, and down, the reseau would be moved left, right, up,

and down, respectively.

6. Once the user has located the area of interest, the first button
‘would be depressed which would replace the reseau mark with a

box.

7. The box would be enlarged by depressing the fifth button and moving
. the joystick upward.

8. The box coordinates would be displayed on the 212 by either de-
pressing the third button on the joystick control box or by referenc-

ing code 10 on the 212,

9. The code 17 (ZOOM) would increase the enclosed area using the

master tape image data and output the area as a TV size image.

 4-203

10. The new image would be dropped onto the color gun 1 disk by
referencing code 11 (DATA) again. The output tape unit from the
ZOOM phase would be entered as the input tape unit and the color
gun number would be 1,

4.43.6 Mesgsages
JOYSTICK generates no special messages.
4,43.7 Flowchart

See Appendix C, Figure C-43.

4-204

4,44 MSSCON - SPECIAL PURPOSE CONVOLUTION ROUTINE

4,44,1 Program Description

The task program MSSCON provides the capability for convolving an image

data set with a special-purpose, user-supplied weight matrix consisting of six
individual row matrices used eyelieally in processing the image. In esserice,

the program is a modification of program CONVOLVE which allows the use of

a particular type of weight matrix. Applications include all standard CONVOLVE
applications: simulation of sampling anhd blurring processes; digital filtering

for edge enhancement; and blur reduction. OCutput values can be generated for
each input pixel, or can be specified at larger increments at the user's dis-
cretion. The weight table is a sequence of six row matrices and must be spec-

ified in its entirety.

Initially, the input parameters are accessed and the amount of COMMON re-
quired for storage of the weight tables is computed. In order to maximize
processing efficiency, COMMON which is required for picture data is allocated
dynamically. For each of the six row weight matrices, separate sums of posi- 'I
tive and negative weights are made, and testing of each sum is done to ensure
that none, after normalization, exceeds 32.5 in magnitude, since a larger value
could cause an uncorrectable overflow. Each weight is then normalized so as

to make the sum of the weights in each row equal to zero.

The program next compares the dimensions of the specified region of the input
image with the size of the entire input image. If the specified region exceeds
the available input data, CONVOLVE reduces the specified numbers of lines
and pixels to fit the gvailable data and writes an advisory message on the
printer. If the specified region extends to or near the edge of the available
data, the program makes provision for copying the boundary pixels outward to
minimize edge effects by ensuring that each element of the weight matrix wiil

always have a corresponding pixel value.

4~205

The program then compares the dimensions of the specified region with the
available COMMON size. If the entire input region will not fit into core at one
time‘, the program makes provision for breaking the image into horizontal
strips. Next, it computes the remaining constants required for reading, writ~
ing, shifting, and convolving the data. It passes the constants required by the
COMPASS subroutine ADDWTS by calling ADDPRM, which stores the param-
eters and modifies ADDWTS logic to provide maximum efficiency for the par-

ticular set of parameters.

The program reads input data into core until the available space is filled, and
copies data on the edges of the input image outwards, if required. In order to
generate one line of output, a call to subroutine ADDMSS is first required in

order to set pointers to the appropriate row matrix in the weight table.

The program calls subroutine ADDWTS to carry out the convolution to generate
one line of output. To compute each output pixel, ADDWTS first resets the
variable SUM to zero. For each weight, from one to four input pixels, depend-
ing on the symmetry of the weight array, are loaded and added together, and
the sum is multiplied by the weight. 'This product is added to SUM. When all
weights have been used, SUM is divided, with rounding, by 4096 to eliminate
the 12-bit fractional part. If the result is negative, it is replaced by 0, the
minimum gray level value; if the result is greater than the maximum allowed
value of 63, it is reduced to 63. The result is stored into the output buffer,
and the input pixel addresses incremented as specified by the user-supplied

parameter, and the next output pixel is computed.

The program writes each output line onto the output tape as soon as it is com-
puted. When all output lines have been computed for one block of input data,
the program reads an additional block of data into core, after first moving to
the top of core any lines from the bottom of the previous input block that are
needed for computing additional output. Processing continues one block at a

time until the entire output image is complete.

4-206

Execution time has three components: tape 1/0, computation time, and disk
I/0O (if any). Tape I1/0 is normally a small fraction of the total, because the
input and output tapes are read or written once without intermediate rewinds.
Computation time is about 20 microseconds per output pixel and per weight for
symmetric weight arrays, and about four times as long for nonsymmetric ar-
rays; for increments other than one, the numbers of output lines and pixels

per line will equal the input numbers divided by the increments.
4.44.2 Parameters

MSSCON requires six special parameters and a table of weights, in addition

to the standard parameters that define the input image. These special param-

gters are:
1. NX = Number of celumns in full weight matrix.
2. NY = Number of rows in full weight matrix.

3. INCRX = Increment between output pixels.
4. INCRY = Increment between oufput lines.

5. INDIV = Quantity by which input weights are to be divided for
normalization. If IDIV = 0, weights are divided by their

sum.
6. ISYM = Symmetry of weights: 0 = nonsymmetric; 1 = symmetric.

7. Weights, beginning with top line of array and left-hand end of line.
For ISYM = 0, NX times NY values must be supplied. For ISYM =1,
only the upper (NY + 1)}/2 rows and left-hand (NX + 1)/2 values in

each row are entered.

NX can have a maximum value of 256. The product of NX and NY may not ex-
ceed about 2000 for a nonsymmetric matrix or 3500 for a symmetric matrix;
these values correspond to square arrays approximately 45 X 45 and 60 X 60,

respectively.

4-207

4.44.3 TInput

MSSCON requires a single input image tape in standard IDAMS format.

4.44.4 Output

MSSCON generates a single output image in standard IDAMS format. For large

images and weight arrays, the program requires disk storage for temporary

oufput.

4.44.5 Examples

A 100 X 100 section of a standard test pattern is convolved with a set of cyclical
weights designed to incrementally shift each successive line to the right by one
pixel further than the previous line, with the pattern repeating every six lines.

The appropriate weight matrix ig:

0, 5, 10, 15, 20, 15, 10, 5
1, 6, 11, 16, 19, 14, 9, 4
2, 7, 12, 17, 18, 13, 8, 3
3, 8, 13, 18, 17, 12, 7, 2
4, 9, 14, 19, 16, 11, 6, 1
5, 10, 15, 20, 15, 10, 5, 0

Since only a 100 X 100 section is being used, the appropriate IDAMS fask and

parameter cards are:

Py

MSSCON, (TEST1,48,1) (1,1, 100,100), (TESTZ2,47,1),7

(8, 1’ 1’ 1! 0’ 0,

/
0, 5, 10, 15, 20, 15, 10, 5

4-208

1, 6, 11, 16, 19, 14, 9, 4

2, 7, 12, 17, 18, 13, 8, 3,

3, 8, 13, 18, 17, 12, 7, 2

4, 9, 14, 19, 16, 11, 6, 1,

5, 10, 15, 20, 15, 10, 5, 0

NOTE: Card format specificationé are defined in the User's Guide. Param-~

eters must be supplied in the order shown in Section 4. 5. 2.

4.44.6 Messages

Message

SUM OF WEIGHTS =0

NY TOO LARGE FOR
AVAILABLE CORE

WEIGHT VALUES
TOO LARGE

4.44.7 Flowchart

See Appendix C, Figure C-44,

Explanation

User has specified weight normalization
by dividing by sum of weights (IDIV param-

eter = 0) and this sum = 0; fatal error.

Insufficient core to hold both weight table
and NY data segments of minimum pos~

sible length; fatal error.

Sum of either positive or negative weights,
after normalization, exceeded 32.5, mak-
ing possible uncorrectable overflow; fatal

error.

4-209

ENTRY
DRIVER

¥

CALL
BATCH
PROCESSOR
OVERLAY

ANY
ERRORS
?

YES

ANY
MORE TASKS
?

CALL
NEXT TASK
OVERLAY

NC ANY

ERRORS
?

YES
ERROR/MSG
PROCESSOR RECOVERY
OVERLAY MADE

Figure A-1, DRIVER Program Flowchart

ENTRY
LELRD

OBTAIN
LABEL DATA
FROM COMMON

REWIND
TAPE

READ FIRST/
NEXT LABEL
RECORD INTO
COMMON

DOES PRINT
LOGICAL UNIT WARNING
MATCH NO MATCH
ON LUN NN

I
FATAL ERROR

FATAL ERROR
NAME FOUND ABEND
NE INPUT NAME

COMPARE
\NPUT FILE NO.
TO NO, ON
TAPE -

FILE NAME
MATCH INPUT
?

PRINT
LABEL
DATA

|

RETURN

Figure B-1. Subroutine LBLRD Flowchart

B-1

ENTRY
LBLWRT

OBTAIN LABEL
DATA FROM
COMMON

PRINT THE
QUTPUT
LABEL
CONTENTS

{

REWIND
TAPE

COMPARE FATAL ERROR

FILE NO. TO BAD LABEL
DATA
g
j ¥
SKIP AREND
FIRST/NEXT
FILE

CAN

NEXT FILE

BE USED
?

NO

YES

WRITE NEW
LABEL ON
TAPE

RETURN

Figure B-2. Subroutine LBLWRT Flowchart

B-2

PR e
ENTARY ' ENTRY ENTRY
DPSEE K K DFPUT DPEETCH

N, _.Tﬂ.ﬁ ‘h—_’—r—.___/
A t
i GETPARM GETPAAM
gfx:g;g ! AGCESS ’ ACCESS
AND SECTOR FARAMETERS PARAMETERS
ADORESSES AND YEST ! AND TEST
FOR OVERFLOW | FOR OVERFLOW
)

l

SET UF

NO vnuo SET UP START
CYLINDER AND STOP BUFFER ST P ER
ADDRESSES ADDRESSES
YES } A

GETCELY } GETCELL GETCELL
PASS ADDRESS | REISSUE REISSUE SEEK

rO DISK I SEEK TO TO DISK

CONTROLLER { DISK SECTOR SECTOR

L

I

RETURN TSTREADY TSTREADY
— WAIT UNTIL WAIT UNTIL

POSITIONER POSITIONED
ON TRACK ON TRACK
WRITE / AEAD
OUTPUT INPUT
DATA DATA

3
GETNEXT
COMPUTE l
MEXT CELL
ADDRESS, |
ISSUE SEEK j

“

RETURN

Figure B-3. Subroutine IDAMSDSK Flowchart (1 of 3)

T

CHANNEL 7
EQUIP 2
UNET 0

[}
:
‘ CONNECT
|
I

[—_—

- .
SUCCESS ™. YES
| WITHIN 1 SEC

NO

WHITE
MESSAGE
TQ OPERATOR

—/ WAIT

/ FOR REPLY
T T -

(GETNEXT)

i

COMPUTE
CYLINDER AND
SECTOR ADDRESS
OF NEXT
AVAILABLE CELL

s >

?

YES |

—
|/ outeurt
CYLINDER
AND SECTOR
ADDRESS

./'/L\
_~COMMAND ™. NO

<~ ACCEFTED
SWITHIN 1 SEC.~
7

)
& AETURN)

' TSTREADY }

-

SET 50
MILLISECOND

WAIT

POSITIONER
READY
¥

RETURN

NO

50 M5
FINMISHED
¥

YES

THIS ssvmn‘: NO ISSUE
END OF DISK . SEEK TO
-~

NEXY CELEL

- S
C AETURN)

ERAOR
CONDITION
?

GET PARM }
—/

LOAD NUMBER
OF CELLS TO
READ OR WRITE

COMPUTE
ADDRESS OF
LAST CELL TO
READ OR WRITE

LOAD BUFFER
ADDRESS.
STORE RETURN
ADDRESS

RETURN

Figure B-3. Subroutine IDAMSDSK Flowchart (2 of 3)

ENTER
ERROR CODE

FOR REPEATED
REJECT

ENTER ERROR

CODDE FOR
DISK OVERFLOW

—

(o)

COPY
STATUS

CODE

ADDRESS
EAROR

EMTER ERROQR
CODE FOR
ADDRESS ERROR

RETURN

DISX ERROR
PROCESSING
ROUTINE

LOST DATA
?

CHECKWORD
ERI;OR

ENTER EARCR
CODE FOR
LOST DATA

WRITE
MESSAGE
ON CONSOLE
ARD PRINTER

ENTER ERROR
CODE FCR
WRITE LOCKOUT

ENTER
ERRCR CODE

4 RETURN

2 RETURR!

Figure B-3. Subroutine IDAMSDSK Flowchart (3 of 3)

B-5

RETURH

SAVE ERTEA ERROR
CYLINDER o CODE FOR
AND TRACK it BAD OR RE-
HUMBER SERVED TRACK
ENTER RETURM
sﬁ:‘;fs ERROR COOE
CODE FOR UNKNOWN
MEK ERROA

-~ T,

{ ENTRY
\ CHECK

i

' ENTRY
READ

ENTAY
WRITE

e

i | i
b UMIYST f | READ ONE WRITE ONE
1 CHECKTHE . LOGICAL TAPE LOGICAL TAPE
ij URT STATUS |] RECORD RECORD
L _] “T*J
Ii\\
// ‘-\\ S —
e DONE ‘j,ﬁg_m___J ENTRY
- - AEADF
\ / e
YlS !
/{ ._1.____7
T READ ONE

,/ NORMAL e VES

“ RETURAM RETURN
V -——.—_—. — —
</’ PARITY \\ NU ABNORMAL
RETURN

ERROR
7 //_

INCREMENT]
PARITY ERROR i
COUNTER FOR

THIS LUN '
4

IR —

L PRINT ~, “ES fPRINT PARITY |

MESSAGE .~ ERROR
? //,/’}_ [{_ MESSAGE |
NO]

/E\
/////TOO S VES

7 MANY PARITY
&\\\fnnons
>
~

NO
(RETURN w

e ™

ABNORMAL
RETURN

Figure B-4. Subroutine READRITE Flowchaxt

LOGICAL
TAFE RECOR D

RETURM .\

ENTRY
WRITEF

WRITE ONE
LOGICAL
TAPE RECORD

¥

RETURN

ENTRY
UTMCON

COMPUTE ZONE Lo TTUDE
NUMBER AND RELATIVE TO
E FROM UTME ENTRAL
MERIDIAN
COMPUTE
CENTRAL COMPUTE COMPUTE
MERIDIAN & GEOGRAPHIC
LONGITUDE i LONGITUDE
COMPUTE
LONG ITUDE INITIALIZE
RELATIVE ITERATION SET
TO CENTRAL COUNTER: IEROR = 0
MERIDIAN 1
COMPUTE RETURN
LONGITUDE SET N(qf).)
DIFFERENCE > 45 IEROR = 507 - Né
?
Bren

LATITUDE SET
>907DEG IERROR = 508
RETURN LESS
COMPUTE THAN SET
E AND N 5 ITERATIONS {EROR =502
?
YES
ADD FALSE INCREMENT RETURN
EASTING AND ITERATION
ZONETOE o COUNTER:
TO GET UTME i+1>i

Figure B-5. Subroutine UTMCON Flowchart

B-7

ENTRY
TWOFIT

NPT >1
%(IDEG+H1{IDEG+2)
?

CLEAR
COEFFICIENTY
MATRIX AND
VECTOR ARRAYS
SELECT
1ST POINT

COMPUTE ALL
REQUIRED POWERS
CF X AND Y
SEPARATELY

COMPUTE X, Y,
AND Z CROSS
PRODUCTS; ADD
TOMATRIX
AND ARRAY

Figure B-6.

SET IEROR = 607
POLYNORMIAL
DEGREE<1
OR TOO LARGE

MATINV
COMPUTE
POLYNOMIAL
COEFFICIENTS

SET IEROR = 608
TOO FEW
VALUES

GIVEN

SEY
SINGULAR IEROR = 609
RESULT SINGULAR
? SOLUTION

COMPUTE

VARIANCE

FOR EACH
POLYNOMIAL

RETURN

Subroutine TWOFIT Flowchart

ENTRY
MATINV

COMPUTE
ARRAY SIZE
PARAMETERS

INITIALIZE
DETERMINANT
VALUE AND
PIVOT RECORD

FIND LARGEST
ELEMENT NOT
IN ROW OR COLUMN
ALREADY USED
ASPIVOT

vALUE <10°%0
?

RECORD COLUMN
USED AS
- NEW MVOT

IS NEW
PIVOT ON MAIN
DIAGONAL
?

INTERCHANGE
ROWS TO PUT

MULTIPLY
DETERMINANT
VALUE BY
PIVOT

REDUCE OFF-
DIAGONAL VALUES
1N PIVOT COLUMN
TO ZERO

sanngl

ALL TERMS IN ROW
OF COEFFICIENTS
AND RIGHT-HAND
SIDES REDUCED
AT SAME TIME

SET
DETERMINANT
=0

YES

PIVOT ON
MAIN DIAGONAL

Figure B-7. Subroutine MATINV Flowchart

RETURN

ALL
COLUMNS
R EDI..!JC ED

INVERSE
MATRIX
REQUESTED
?

INTERCHANGE
MATRIX COLUMNS
TO GET
INVERSE

STORE
DETERMINANT
VALUE

RETURN

ENTRY
PERGEN

ISTOP = 2
JSTOP = 2**MX
K = SSTOP+1

1=1+2

2 .
1
1=2
PERTBLIl} =
PERTBL(I-1}
i

PERTBLIINDEX) =
PERTBLIINDEX)+
JSTOP, | =142
INDEX = INDEX+2

NO
YES

INITIALIZE
ORD-NUMBER
-—— ENTRIES IN
PERTBL ([PERMU-
TATION TABLE)

PERTBLIINDEX}
w1

PERTBL{INDEX+2)

\ INDEX = INDEX
+ISTOP
J= 42
INDEX =
INDEX+4
J= 12
NO 4 >JISTOP
?
ves [
]
= ADD ADODI- COPY ODD-
ot rore L _ 1 monaLeiTTo NUMBERED ELE-
INDEX = ISTOP+1 ODD-NUMBERED MENTS INTO
_ ENTRIES EVEN-NUMBERED
ELEMENTS
Figure B-8, Subroutine PERGEN Flowchart

B-10

RETURN

RETURN

ENTRY

TRIGGN
|
N = 2ux{MX-2) TRGTAL
TRGTBL(N+1}=1 [~ ISSINE
TABLE

TRGTBL{1} =0

MO

YES

TRGTBL(N/2+1}
=SORT(.5)

YES

N2 =N+2
N3 = N+3
M3=M-3

KSTOP = N2/2
KSTEP = 2xxM3
=1

KSTART =
1+KSTEP/2
K = KSTART

TRGTBL(K} =
SORT(1-TRGTBL
IN2-2xK) 12.0)

TRGTBLIN2-K)
=S0RT(1-
TRGTAL{K)xx2)

K = K+KSTEP

NO

KSTEP =
KSTART-1
1=1+1

YES

Figure B-9. Subroutine TRIGGN Flowchart

B-11

=)

ENTRY

FFTONE
INTERCHANGE
DATA VALUES
¥ — — -1 TO REVERSE
BIT-ORDER AND
NORMAL IZE
M = MX
M2 = M/2
| = 2xxM2
COMPUTE J=PERTBLII)
— — — — —|NORMALIZING
FACTOR
YES
YES
]
NO
FNORM = FNORM
0.7071068/1 =1.0/1
N =241 N=T1* A = DATAL)
B = DATA(J+1)
1 DATA(J} = FNORM*
- DATA(H)
i
)
N1T=N/2
N2 =N/a DATA(H1)
= FNORM*DATA (1+1)
DATA(I) = A*FNORM
DATA(1+1)
| = B*FNORM
ISTOP = 2*N
=1
1= +2
¥
2

Figure B~-10. Subroutine FFTONE Flowchart (1 of 3)

B-12

LSTEP=2
LSTOP = 2*N
KSTOP =1
JSTEP=N

LSTEP = 2*LSTEP
KSTOP = 2*KSTOP
JSTEP = ISTEP/2

PREPARE TO

_|caRRY THROUGH

ONE STEP
OF FFT

JANGLE =J

YES
JANGL?E SN2 - ,\f :‘33.&&.;
NO [we A
]
SINE =
TRGTBL(JANGLE+1)
COSINE = TRGTBL
(NZ-JANGLE+1)
YES
COSINE < COSINE
0S \ o = .COSINE
NO e]
NO
COSINE
JANGLE = J
! = .COSINE
YES 1
|
5

| Figure B-10. Subroutine FFTONE Flowchart (2 of 3)

B~13

e e —

]

A = DATAIL+K}
B = DATA(L+K+1)
C =DATAIL+K
+KSTOR)

D = DATAIL+K
+KSTOP+1}

Y

E = C*COSINE
- D*SINE
F = C*SINE
+D*COSINE

DATA{L+K)
=A+
DATAIL+K+1}
=B+F

DATA(L+K+KSTOP)
=AE
DATA{L+K+KSTOP
+1) = B-F

COMPUTE A
NEW PAIR
OF VALUES

¥

L = L+LSTEP

L =LSTOP
?
| ves

4= MHISTEP
K=K+2

‘NO
YES

1=1+1

RETURN’

\ Figure B-10. Subroutine FFTONE Flowchart (3 of 3)

1

ENTRY
CODE

PICK UP
COUNT: ADDR
OF INPUT, QUT-
PUT, TRANSLA-
TION TABLE

i

LOAD NTH
CHAR OF
INPUT

LOAD TABLE
VALUE FOR
NTH CHAR

STORE TABLE
ENTRY IN
OUTPUT

ARE
ALL CHARS
PROCESSED
N=0
?

YES

RETURN

Figure B-11. Subroutine CODE Flowchart

B-15

ENTRY
MOVE

PICK UP NO.
OF CHARS,
INPUT AND
OUTPUT ADDR.

COMPUTE NO.
OF 128 CHAR
BLOCKS TO
MOVE

MORE YES MOVE 1
BLOCKS TO
MOVE BLOCK
? -

ANY YES MOVE
CHARS LEFT ‘ PARTIAL
TO MOVE BLOCK

?

RETURN

Figure B-12, Subroutine MOVE Flowchart

B-16

ENTRY
CODESTO6

STORE PARAM- INCREMENT
ETERS INTQ
MAIN LOOP OUNTEF
COUNTER

INSTRUCTIONS

SETUP
COUNT FOR
THREE BYTES

RETURN

LOAD ONE INCREMENT
INPUT WORD INPUT BUFFER
ADDRESS
SHIFT AND
MASK TO

GET ONE BYTE

LOAD VALUE

. FROM TABLE

USING BYTE
AS INDEX

STORE OUTPUT
CHARACTER

Figure B-13. Subroutine CODE8T06 Flowchart

B-17

ENTRY
ADDLINE

CALCULATE
LINES
REQUIRED
FOR MESSAGE

ROOM
NEEDED

MOVE -

MOVE

ENTIRE
ARRAY UP

MOVE -
BLANK OUT
QLD DATA

|

MOVE-
MOVE NEW
DATA INTO

ARRAY

BUMP LINE
POINTER
IN COMMON

RETURN

Figure B-14. Subroutine ADDLINE Flowchart

B-18

ENTRY ENTRY
TTWCON CDCON
DISABLE PICK UP

INTERRUPT AND STORE
CONTROL PARAMETER
DATA
CLEAR CONVERT
AND CONNECT &{;{:E{g
CHANNEL 4 212 CODE
NO BLANK OUT
) SCREEN AND
OUTPUT
DATA
YES
WRITE NO
OPERATOR REJECTED
MESSAGE ?
+— YES
INTER WRITE
ADDRESS OPERATOR
INCIT MESSAGE
ENABLE
INTERRUPT RECONVERT
CONTROL DATA
RETURN RETURN
Figure B-15.

B-19

ENTRY
STORE

PICK UP
AND STORE
PARAMETER
DATA

WAIT FOR
INTERRUPT

RETURN

ENTRY
INTER

!

PICK UP
AND STORE
PARAMETER
DATA

READ FROM
THE 212

WRITE
OPERATOR
MESSAGE

SET
INTERRUPT
SWITCH IN
COMMON

CONVERT
DATA TO
INTERNAL
BCD

Subroutine TTWLVE Flowchart

RETURN

ENTRY JSTORE '

PICK UP AND
STORE PARAM-
ETER DATA

3

IF 212 INTER-
JPT OCCURS
DURING LOOF,
CONTROL GDES
TO INTER

CLEAR CHANNEL
0 AND SEND
FUNCTION CODE
TO DDI
[CHANNEL O

READ
JOYSTICK
VOLTAGE
VALUES

A BUTTON
DEPRESSED
?

2MD
PASS THROUGH
LOOFP
?

13

THE SAME

BUTTON “ON"
?

SAVE

BUTTON
NUMSBER

YES STORE BUTTON
NUMBER IN RETURRN
COMMON

Note: JSTORE is present only in the
TTWLVE program version
which resides in the JOYSTICK
overlay. It replaces the entry
STORE.

Figure B-15. Subroutine TTWLVE Flowchart (2 of 2)

B-20

ENTRY
BATCH

WRITE
HEADER
MESSAGES

DECODE
FIELDS AND
SUBFIELDS

RETURN

READ TASK
DATA FROM
CARDS OR 212

g

DELIMITER
ERROR
?

FATAL ERROR
WRITE MESSAG
AND EXIT

\K

Figure C-1.

RESET CARD/ PARAMS-
INTERACTIVE DECODE
MODE SWITCH PARAMETERS
WRI'LIIE“ gOTE CHECK
CONTINUE LIMITS
WAIT FOR ANY
MANUAL ERRORS
INTERRUPT 7

RETURN

LBCRD-
READ LABEL
{OPTIONAL)

RETURNM

BATCH Program Flowchart

C-1

ENTRY
TESTGN

INITIALIZE
CONSTANTS
FOR COMPUTING
RESOLUTION
BARS

LBLWRT-
WRITE
OUTPUT
LABEL

#

GENERATE
RESCLUTION
BARS

ZERQ
QUTPUT
BUFFER

WRITE LINE
ON TAPE
AND PRINTER

INCREMENT
LINE
POINTER

RETURN

LINE<21
OR>230

ZERO
OUTPUT
BUFFER

?

BUF

MOVE LINE
OF BARS
INTQ OUTPUT

FER

LINE<21
?

READY
FOR NEXT ROW
OF BLOCKS

INITIALIZE SET UP
VALUES FOR NEXT ROW
FIRST ROwW OF GRAY
OF BLOCKS BLOCKS

LINE
?

9999

= a5

INSERT ZERQ OUT
POINT IMAGE POINT
AT PIXEL 240 iIMAGE
Figure C-2. TESTGN Program Flowchart

C-2

ENTRY
LIST

INITIALIZATION

REWIND
TAPE
READ RETURN
INPUT
LINE

SUPPRESS
SPACING
[OPTIONAL)}

PRINT /
THE

LINE

Figure C-3. LIST Program Flowchart

ENTRY
CONTRAST

USE
STANDARD
TABLE
?

YES

YES

1S
TABLE

SUPPLIED
?

TRANSFER
USER-SUPPLIED
TABLE TO
TABLE ARRAY

COORDINATES
SUPPLIED
?

TRUNCATE
1TOS
BITS
?

COMPUTE
APPROPRIATE .
TRANSLATION
TABLE

1S
FIRST NEW
VALUE >0

IS

FIRST OLD

VALUE 20

AND <63
?

YES

FILL TABLE
WITH ZERQES
UP TO PAIR
1,1

Figur

PAIRS

COMPUTE TABLE

FROM COORD.

COCRDINATE
VALUE GE&3
OR LTO

=8

ERROR CODE

ERROR
RETURN

e C-4.

IS
FIRST NEW
VALUE=0
?

TABLE{1) =
PAIR (2,1}

XCOORD
PAIR{1,J+1}
- PAIR(1,0)

XCOORD
<0
Fd

NO

SCOPE =
[PAIR{2,J+1}
-PAIR{ZN1/

XCOORD

INDX =
PAIR(1,0) +
2YCOORD =
PAIR(2,)) +
SCOPE

OLD COORD
NOT STRICTLY
INCREASING
ERROR CODE
=9

11111

ERROR
RETURN

CONTRAST Program Flowchart (1 of 2)

TABLE(INDX)
= YCOORD+0.5

INDX NO | \NDX = INOX+L
= PAIR(1,J+1) : YCOORD =
? YCOORD+SLOPE
J=J41
FILL REMAIN-
DER OF TABLE
PAIR(1I1) WITH PAIR
3 (2441

Y

LBLWRT
WRITE LABEL
ON OUTPUT

SKIP
UNWANTED
INPUT
RECORDS

READ
ONE INPUT
RECORD

COMPUTE
ACTUAL
NUMBER OF
LINES PRO-
CESSED

CODE TRANS-
LATE DATA
FROM INPUT

LINE INTO

CUTPUT LINE

WRITE
ONE LINE
ON OUTPUT

WERE
ALL REQUESTED
LINES PRO-
CESSED

YES

STORE
CORRECTED
NUMBER IN
OUTPUT LABEL

WRITE MSG-
ONLY NNNN
LINES
PROCESSED

LBLWRT

REWRITE

oUTPUT
LABEL RECORD

RETURN

MORE
RECORDS TO
TRANSLATE
?

YES

NO |

N NOT LE11
AND GED
ERAOR CODE
=7

ERROR RETURN

Figure C-4. CONTRAST Program Flowchart (2 of 2)

ENTRY

CONVYOLVE

MAKE DYNAMIC
ALLOCATION OF
COMMON FOR
DATA AND

WEIGHTS

1

FIND SUMS
OF POSITIVE,
NEGATIVE,
AND ALL
WEIGHTS

NORMALIZATION
TO SUM = 1 SPE-
CIFIED
?

USE USER-
SUPPLIED
WEIGHT
DIVISOR IDIV

STORE
WEIGHTS AND
NORMALIZE
THEM

NO

USE SUM
AS WEIGHT
DIVISOR

i

CAN

NORMALIZED
WEIGHT

CAUSE UNCORRECT-

ABLE OVER-

FLOW
?

NO

NORMALIZE
WEIGHTS USING
12-8IT FRAC-
TIONAL PART

Figure C-5.

YES

ERROR
RETURN

. ERHORA
RETURN

LBLWRT
WRITE QUT-
PUT IMAGE

LABEL

DETERMINE
LINE EXTEN-
SIONS REQUIRED

Y

DETERMINE
UPWARD AND
DOWNWARD
EXTENSIONS
REQUIRED

f

COMPUTE
PARAMETERS
FOR READING

FROM INPUT
TAPE

CONVOLVE Program Flowchart (1 of 5)

NO

COMPUTE
LONGEST SEG-
MENT OF LINE

WHICH WILL FIT

I51T

AT LEAST ONE

DISK CELL
?

YES

COMPUTE PARAM-
ETERS FOR
TEMPORARY
STORAGE OF
IMAGE ON DISK

CORE LOAD
EQUALS BLOCK
OF LINE
SEGMENTS

Figure C-5.

ERROR
RETURN

READ LINE
OF DATA
FROM TAPE
INTQ CORE

EXTEND LINE
AS REQUIRED
BY PARAMETERS

3
DETERMINE
METHOD FOR
— ™ LOADING DATA
INTO CORE
|
ADDPRM
CORE LOAD SET
ENTIRE INPUT EQUALS PARAMETERS
FIT INTO CORE EMTIRE AND LOGIC
IMAGE FOR ADDWTS
i
COMPUTE COMPUTE PARAM-
NUMBER OF ETERS FOR
FULL INPUT CONVOLVING
LINES WHICH DATA ONE LINE
FIT IN CORE AT A TIME
IS1T CORE LOAD
AS LARGE AS YES LINE
NUMBER OF LINES FouALS BLock L) <SegmEnTATIONSNC
OF WEIGHT INPUT LINES REQL?IIHED

DPSEEK
FIND FIRST
CELL ON
DISK

FIND 5TARTING
LINE OF DATA
ON INPUT TAPE

LINE

SEGMENTATION

REQUIRED
?

LAST

LINE OF INPUT

READ
?

YES

C-7

COPY LINES
UP OR DOWN |t
AS REQUIRED

CONVOLVE Program Flowchart (2 of 5)

ADDWTS
GENEHATE ONE
LINE OF CON.
VOLVED OUTPUT

WRITE LINE
INTO QUTPUT
TAPE

ALL
DATA IN CORE
PROCESSED

ENTIRE
INPUT IMAGE
PROCESSED
?

DPPUT
TRANSFER
EXTENDED

LINE TO DISK

DPSEEK/DPPUT
WRITE LINE'ON
DISK ADDITIONAL
TIMES TO ACHIEVE
UPWARDS EXTEMSION

ves NO

SHIFT TO TOP
OF CORE ANY
DATA NEEDED
FOR ADDITIONAL
DUTPUT LINES

Figure C-5.

ENTIRE
INPUT IMAGE
DN DISH
?

DPSEEK/DPPUT
WRITE LINE ON
DISK ADDITIONAL
TIMES TO ACHIEVE
DOWNWARDS
EXTENSION

DISK FILLED
?

NO

POINT TO
FIRST SEGMENT
OF EACH LINE
ON DISK
B
DPSEEK/DPFETCH
FILL CORE WiTH
SEGMENTS OF
CONSECUTIVE
INPUT LINES
DPSEEX/DPFETCH
FIRST RETRIEVE
SEGMENT OF PARTLY COM.
LINES PLETED QUTPUT
? LINE

NO

|

ADDWTS
GENERATE ONE
LINE SEGMENT
OF CONVOLVED

OUTPUT

WRITE
COMPLETE
OUTPUT LINE
ON TAPE

DPSEEK/DPPUT
SAVE PARTLY
COMPLETED
OUTPUT LINE

NO ALL YES

DATA IN CORE
PROCESSED
?

CONVOLVE Program Flowchart (3 of 5)

Cc-8

ALL
LINES ON DISK 0
PROCESSED
?

YES

ALL NO

SEGMENTS PRO-

CESSED
?

YES

ENTIRE
INPUT IMAGE NO
PROCESSED

?

YES

|

RETURN

Figure C-5,

SHIFT 7O TOP
OF CORE ANY
DATA NEEDED FOR 8
NEXT BLOCK
OF OUTPUT
ADDNPQ
REDUCE
SEGMENT THE > YES NUMBER OF
LAST OUTPUT PIXELS
? GENERATED
) BY ADDWTS
NO
INITIALIZE POINT TO
CONSTANTS NEXT SEGMENT
FOR REFILLING OF EACH
DISK LINE ON DISK
¥ 1
ADDNFPD
RESET NUMBER s
QOF OUTPUT
PIXELS TO
ORIGINAL
VALUE

CONVOLVE Program Flowchart (4 of 5)

ENTRY
ADDWTS

INITIALIZE
INPUT
ADDRESS,
OUTPUT
COUNTER

SET LOAD
FROM ADDRESSES
FOR FIRST/
NEXT OUTPUT
PIXEL

COMPUTE CON-
TRIBUTIONS
OF REMAINING
WEIGHTS

REPLACE
RESULT
BY ZERQ

REPLACE
RESULT BY
63 (MAXIMUM
GRAY VALUE)

f

ROUND OFF
FRACTIONAL
PART OF RESULT

BOTH ODD
?

ONLY
SINGLE COLUMN
OF WEIGHTS
?

NUMBER

OF ROWS OF

WEIGHTS ODD
?

COMPUTE CON-
TRIBUTION
FROM CENTRAL
WEIGHT

COMPUTE CON-
TRIBUTIONS
FROM CENTRAL
ROW OF
SINGLE COLUMN

MOR

OUTPUT PIXELS

TO COMPUTE
?

MORE WEIGHTS
TO USE

Figure C-5.

NO

ENTRY
ADDPRM

STORE CONSTANTS
AND SET BRANCHES
tN ADDWTS AS
REQUIRED BY
PARAMETERS

ENTRY
ADDMPO

SET NUMBER
OF QUTPUYT
PIXELS N
ADDWTS

RETURN

CONVOLVE Program Flowchart (5 of 5)

C-10

ENTRY

EXPAND
DETEHMI'IE\IE
ACCESS LINE EXTEN-
PARAMETERS RESAS:’;SED
1
DETERMINE
UPWARDS AND
WEIGHT ERROR DOWNWARDS IMAGE
DIVISOR = 0 RETURN EXTENSION
? REQUIRED

DYNAMICALLY
ALLOCATE CORE
STORAGE FOR
WEIGHTS, DATA

TRANSFER
WEIGHTS FROM
PARAMETERS TO
WEIGHT TABLES

]

DETERMINE SUM
OF EACH SUBSET
WHICH MAY BE
ASSQCIATED WITH
ONE OUTPUT PIXEL

NORMALIZE
WEIGHTS USING
12-BIT FRAC-
TIONAL

PRECISION
CHECK WHETHER
UNCORRECTABLE

‘_ - T = OVERFLOW

COULD OCCUR

ANY
SUM 325

?

YES

ERROR
RETURN

LELWRT
WRITE LABEL
QN OUTPUT
IMAGE TAPE

Figure C-6. EXPAND Program Flowchart (1 of 4)

C-11

DETERMINE
CORE LOAD
PARAMETERS

ENTIRE

NO

PROCESS
IMAGE IN
BLOCKS OF CON-
SECUTSVE LINES

tMAGE FITS
IN CORE
?

SPECIFY FULL
NUMBER OF
LINES FOR
FIRST LOAD

COMPUTE NUM-
BER OF LINES
FOR EACH
CORE LOAD

[

COMPUTE
PARAMETERS
FOR CARRYING
OUT EXTENSION

PXLPRM
SET BRANCHES
AND CONSTANTS
IN PXLBLD

LOCATE ;
FIRST

READ
ONE LINE
OF INPUT

LINE
EXTENSIONS N YES EXTEND
REQUIRED LINE AS
Y REQUIRED
|
LAST VES COPY INTO
INPUT LINE LINES BELOW AS
READ REQUIRED AND
? IF POSSIBLE

SET FLAGS
FOR LAST
LINE READ

IS THIS
FIRST BELOCK
IN CORE
. ?

YES

COPY FIRST
LINE UPWARDS
AS REQUIRED

INPUT LINE

’

Figure C-6. EXPAND Program Flowchart (2 of 4)

C-12

INITIALIZE
POINTERS FOR
PROCESSING
DATA IN CORE

PXLBLD
CREATE ONE
LINE OF
INPUT

WRITE LINE
ON OUTPUT
TAPE

ALL
DATA IN CORE
PROCESSED

ALL

INPUT TO BE

PROCESSED
?

YES

RETURN

Figure C-6. EXPAND Program Flowchart (3 of 4)

SAVE ANY LINES
IN CORE NEEDED
FOR NEXT OUTPUT
BY MOVING TO
TIP OF CORE

C-13

ENTRY
PXLBLD

INITIALIZE

ADDRESSES
AND COUNTERS
FOR LINE

INITIALIZE
FOR ONE
QUTPUT PIXEL

LOAD ONE
INPUT
CHARACTER

MULTIPLY BY
APPROPRIATE
WEIGHT AND
ADD TO SUM

Q0
WEIGHTS TO USE
?

POINT TO
NEXT WEIGHT
AND INPUT
CHARACTER

Figure C-6. EXPAND Program Flowchart (4 of 4)

RCGUND OFF
FRACTIOMAL
PART OF
RESULT

RESULT
NEGATIVE
7

RESULT > &3
?

ENTRY
PXLPAM

SET BRANCHES
AND CONSTANTS
AS REQUIRED
BY CONSTANTS

YES

REPLACE
HESLULY BY
ZERO

REPLACE
RESULTBY 63
{MAXIMUM
GRAY VALUE}

STORE RESULT
IN ODTPUT
BUFFER

LAST
DUTPUT PIXEL
DONE

?

C-14

l RETURN l

ENTRY
SHADE

ANY
PARAMETER
ERRORS

"

CAILIBRATION
GRID 0K

ABEND

DISCARD
UNNEEDED
CALIBRATION
PGINTS

/

EVALUATE
SLOPE AND
INTERCEPT AT
EACH GRID
POINT

SET UP

ANY
CONSTANTS
OVER—,FLOW TG CONTROL
) 110

Figure C-7. SHADE Program Flowchart (1 of 2)

C-15

SHAPRM
PASS LOOP
CONTROL

VALUES

LBLWRT -
WRITE
LABEL ON

OUTPUT

COMPUTE
COEFFICIENTS
FOR BILINEAR

INTERPOLATION

READ A
LINE OF
INPUT DATA

]

SHADIT -
CORRECT
INTENSITY

VALUES

END OF

THIS CALIBRA-

TION RECTANGLE
?

MODIFY
COEFFICIENTS

FOR NEXT LINE

RETURN

ENTRY
SHAPRM

STORE
PARAMETERS
INTO SHADIT

INSTRUCTIONS

RETURM

ENTRY
SHADIT

SAVE SLOPE
AND INTERCEPT
VALUES

PICK UP
FIRST/NEXT
PIXEL

COMPUTE NEW
VALUE USING
SLOPE AND
INTERCEPT

STORE PIXEL
BACK
INTO LINE

NEED

INCREMENT
NEW CALISB. SLOPE AND
COLUNN INTERCEPT

?

MORE
COLS.TO
PROCESS
?

NO
RETURN

YES

PICK UP
NEW SLOPE

AND INTERCEPT

Figure C-7. SHADE Program Flowchart (2 of 2)

C-16

NX = 2* *MX
NY = 2**MY

ERROR MSG
SPECIFIED
ARRAY SiZE
TOO LARGE

ABEND

PERGEN
CREATE PERMU-
TATION TABLE

IN PERTBL

NX = ND. OF COLS
NY = N0. OF ROWS

TRIGGN
CREATE TABLE
OF FIRST
QUADRANT SINE
IN TRGTBL

1ISIGN >0
?

NO
I

CHANGE 5IGN
OF ALL
VALUES IN
TRGTBL

NCELL =
NO. OF
CELLS/ROW

NCELL =
1+{NX-1}/16
ISTOP=NY

IDLOC =1
=1

DPSEEK
FIND
RECORD
1DLOC

DPFETCH
READ NCELL
RECORDS (1
LINE} INTO
DATA

DPSEEK
POSITION
DISK AT
CELL DISK

FFTONE
TRANSFORM
LINE IN
DATA

Figure C-8. FFT Program Flowchart (1 of 4)

DPPUT
WRITE A
LINE ONTO
DISK

IDLOC =
IDLOC+NCELL
=1+

ITERAT =2
?

YES

DPSEEK

ITERAT =2

FLIP

INTERCHANGE
ROWS AND COLS.
OF DISK ARRAY

YES
NO

INTERCHANGE

VALUES OF MX

AND MY ALSO
NX AND NY

B

Figure C-8.

ND

C-18

YES |

. FIND CELL
{ IpLoc

Y

"STORE 0.0
INTO DATA{1)
TO DATA(4)

DPPUT
WRITE ¥
CELL FROM
DATA

END

FFT Program Flowchart (2 of 4)

PLACE BLOCK INTO
POSITION IN
FLIPPED ARRAY;
IF ARRAY NOT
SQUARE, USE
TEMP SPACE

—

ENTRY
FLIP

MX = {NX-1)/16+1
MY = (NY-1)/16+1

T
[

N = MX*MY
N16= N*16
READ 16 CELLS
FROM DiSK,
EXCHANGE ROWS
AND COLUMNS
DPFETCH
READ ONE 1DLOC =
DISK CELL IDNEW+N16
INTO BUFF
1 * - 7
y
I¥ = (1-1/MX ' 1DLOC =
1X = LIV IDLOCHMX IPT - iN‘lITPT
~
YES DPSEEK
> FIND DISK
CELL FOR DPSEEK
NEW IDLOC FIND DISK
CELL tDLOC
NO
IDOLD=1X ,
16T MX*IY
IDNEW = |Y

DPPUT
+16*MY *{IX-1} C'E:II..LLLFORNDEM

DATA{PT)

DATA(IPT) = BUFFIK

DATA(IPT+1) =
IDLOC ~ 1DOLD BUFF(KH) IPT =
- IPT = 1PT+32
tPT+32 K = k+2 e
IDLOCHMY
J= 41
NO
DPSEEK -
FIND DISK
ELL IDL
c oc "o
YES
IPT = IPT-510 | YES
IPT = INITPT 1= 31
a=1

Figure C-8. FFT Program Flowchart (3 of 4)

C-19

NO y RETURN
INITPT =1 IDLOC = IDNEW
2 »] YES MOVE FLIPPED
ARRAY INTO
] FINAL LOCATION
FROM TEMP SPACE
7 .
1=1+1
]
NO iDLOC
= 1 = N16+
YES

DPSEEK
FIND IDLOC
DPFETCH
READ 32 CELLS

DPSEEK
FIND CELL
DPPUT
WRITE 32
CELLS

INITPT = 513
IDLOC = IDNEW

1=1+32

IDLOC = 1DOLD

I = N16
?

RETURN

Figure C-8. FFT Program Flowchart (4 of 4)

C-20

I>5
OR. ICODE(I)
=0
?

PRINT
‘ILLEGAL
TRANSFER/
CONVERSION
CODE’

YES

]
‘STEP | -
TRANSFER/CON-

VERSION CODE =
ICODE(I)’

¥

FiCN-
CARRY OUT
PROCESS
ii = ICODE(I}

I=1+1

Figure C-9,

FPCON Program Flowchart (1 of 7)

Cc-21

ENTRY
FOICN

TO FOSCN

|

SET LOG, < LOC
TO DIFFERENT
VALUES ACCORD-
ING TO ENTRY
POINT

LBLRD-
READ
INPUT LABEL
INTO LBLIN

]

CREATE TABLE
FOR CONVERTING
CHARACTERS TO
FLOATING POINT

ENTER VALUES
OF MAX AND
MIN ON LAST

DISK CELL

5

COMPUTE CON-
STANTS FOR
ACCESSING TAPE,
CONVERTING DATA,

AND TRANSFER-

RING TO DISK

READ ILINE
FROM TAPE
AND CONVERT
TO FLOATING
POINT

WRITE
RESULTS
TO DISK

ANY
MORE LINES
ON TAPE
?

RETURN

YES

Figure C-9. FPCON Program Flowchart (2 of 7)

ENTRY FO7CHN,

FOSBCN, F17CN,.
F18CN

/

SET IENTRY TO
1,23 AND 4 FOR
FO7CN,F17CN FOBCN,
AND F1BCN
RESPECTIVELY

READ A
LINE FROM
DISK TO

BUFFIN

X = BUFFIN(I}
¥ = BUFFIN{I+1)

CONVERT DATA
REAL-PLUS-
IMAGINARY TO
MODULUS-
PLUS PHASE

Figure C-9,

CONVERT DATA
N BUFFIN FROM
MODULUS-PLUS-
PHASE TO REAL-
PLUS-IMAGINARY

CONVERT DATA

iN BUFFIN FROM
MODULUS TO

MODULUS-SQUARED

CONVERT DATA
IN BUFFIN FROM
MODULUS-SQUARED,
TO MODULUS

®_,

WRITE
RESULTS
BACK INTO
DISK

ANY
MORE LINES
ON DISK
?

‘ RETURN |

| = I+ISTEP

FPCON Program Flowchart (3 of 7)

C-23

Figure C-g .

ENTRY

FOACN, F19CN

f

HOUSEKEEPING

L

READ A
LINE FROM
FIRSY HALF

OF DISK FILE

)

SHIFT ORIGIN
OF DATA IN
LiINE FROM CENTER
TO CORNER OR
VICE VERSA

COMPLETE
SHIFTING OF 2
LINES OF DATA

READ A
LINE FROM
SECOMD HALF
OF DISK FILE

WRITE
RESULTS
BACK IN RE-
VERSE ORDER

ANY
MORE LINES
?

FETCH MORE
LINES DATA
FROM 15T AND
2ND HALVES

RETURN

FPCON Program Flowchart (4 of 7)

ENTRY
F10CN, F20CN

SET IENTRY TO
1IF F10CHN,
2 1F F20CN

HOUSEKEEPING

READ A
LINE FROM
DISK INTO
BUFF

CREATE A FULL
ARRAY OF
SQUARED-MODULUS
VALUES

CREATE A FULL
ARRAY OF
MODULUS

VALUES

Figure C-9.

WRITE
RESULTS
BACK
ONTO DISK

THERE MORE
DATA

RETURN

15 - YES

?

FPCON Program Flowchart (5 of 7)

C-25

ENTRY
FI11CN-F16CN

/

DIFFERENT
VALUES ARE SET CREATE DATA
FOR LOG AND LOC ATE DAT

DEPENDING ON RO OaEL T
THE ENTRY POINT LABEL
{
HOUSEKEEPING WRITE
LABEL ON
OUTPUT TAPE
]
i
FIND MAXIMUM DETERMINE
AND MINIMUM PARAMETERS FOR

VALUES OF READING, CON-

COMPLEX ARRAY VERTING, AND
WRITING DATA

]

IF NO MAXIMUM
HAS BEEN FOUND,

ASSUME INVERSE READ
TRANSFORM WITH DISK INTO
NORMALIZED DATA BUFFIN

GENERATE TABLE

OF UPPER LIMITS YES
FOR LINEAR ’
SCALING
NO
Y
VALUES LESS FIND MAXIMUM
THAN XSTART AND MINTIMUM
WILL BE SCALED IF NOT DONE
TO ZERO PREVIOUSLY
]
8

Figure C-9. FPCON Program Flowchart (6 of 7)

C=26

SCALE THE
LINE OF DATA
IN BLUFFIN

]

FIND SCALED
VALUE BY
PLACING X

RELATIVE 7O

VALUES IN TABLE

IS
DATA IN ILINE
COMPLETELY CON-
VERTED

NO

TRANSFER DATA
FROM BUFFIN
TO OTBUFF

RETURN

WRITE DATA
TO TEMPO-
RARY DISK

STORAGE

IDTEMP =
IDTEMP+NCTEMP

IDTEMP
=1DT2
?

READ CON-
VERTED DATA
INTO BUFFIN

MOVE SCALED
DATA FROM
BUFFIN
TO OTBUFF

AVERAGE
SCALED DATA
IN OTBUFF

ARE
THERE ANY

MORE LINES
?

RETURN

Figure C-9, PPCON Program Flowchart (7 of 7)

C~27

ENTRY
SMOOTH

FATAL ERROR
MX OR NY
ZERO OR
NEGATIVE

FATAL ERROR
TABLE
DIMENSION
NOT30ORE

FATAL ERROR

WEIGHT
DIVISOR ZERO
OR NEGATIVE
SET MATRIX ERROR
CONSTANTS RETURN
BASED ON
PARAMETERS

LINE
SEGMENTA-
TION NEC-
ESSARY

YES

SET CONSTANTS
FOR SEGMENTED
LINES, FLAGS
TO SAVE REST

SET CONSTANTS
TO FIT WHOLE
LINES INTO
CORE

¥

COMPUTE
NUMBER OF
LINES THAT

CAN FIT

INTO CORE

Figure C-10. SMOOTH Program Flowchart (1 of 4)

C-28

DPSEEK
LOCATE 18T
CELL ON DISK
FOR INPUT

DPFETCH
READ NCELL
CELLS INTO

CORE {1 LINE)

DPSEEK
LOCATE NEXT
CELL ON DISK
FOR INPUT

EXTEND LEFT
EDGE POINTS
LEFT ONCE

YES

EXTEND
LINES RIGHT
?

EXTEND RIGHT
EDGE POINTS
RIGHT ONCE

ALL
LINES IN

CORE
?

NO

=1+

DPSEEK
LOCATE CELL
FOR QUTPUT

EXTEND
BOTTOM LINE

COMPUTE
COUNTERS FOR
SAVED OR
STORED DATA

DOWNWARD
ONCE

YES

EXTEND
DOWN AGAIN
?

EXTEND TOP
EDGE POINTS
UP ONCE

SET POINTERS
INTO BUFFER
=1

Figure C-10. SMOOTH Program Flowchart (2 of 4)

~ | convoLve

~ ONE LINE AT
A TIME AND
WRITE IT OUT

NQ

COMPUTE NEW
POINT USING
WEIGHT MATRIX
AND SURRQUND-
ING VALUES

IS

THIS LARGEST

VALUE SO

FAR
?

YES

XMAX = X

IS
THIS SMALLEST
VALUE 80
FAR

YES

?

XMIN =X

NO

STORE NEW
VALUE INTO
BUFFER BUMP
COUNTERS
J = J+1

ALL

POINTS IN

LINE SMOOTHELDL
?

DPPUT
WRITE LINE
TO DISK

DECREASE

RESET
COUNTERS
TO HANDLE

LAST STRIP

NUIMBER OF

BUMP Al L

COUNTERS
1= 1+1

LINES TO
BE READ IN

LAST

LINE IN CORE
DONE
?

LINES
IN BUT NOT
EXTENDED
DOWN

EXTENDED AND

NO
- 4

SET NEW
COUNTERS
FOR NEXT SET

YES
OF LINES

LINES

DONE
?

DPSEEK
LOCATE

TEMPORARY
DISK AREA

DPPUT
STORE POINTS
FROM CORE

DPSEEK
LOCATE
NEXT CELL
FOR INPUT

MOVE BOTTOM
LINE(SI TO
TOP CF CQRE

SETFLAG TO
0, SET COUN-
TERS TO FINISH
SMOOTHING LINES

YES

FLAG
SET TO EXTEND
LINE UP

DPFETCH
READ SAVED
POINTS INTO
TOP OF CORE

DPPUT
LOCATE NEXT
CELL FOR
INPUT

RECOMPUTE-
POINTERS

Figure C-10. SMOOTH Program Flowchart (3 of 4)

C~30

BUMP
TEMPORARY
COUNTERS

ONLY

ONE STRIP

HAS BEEN

SMOOTHED
?

LAST
STRIP TO BE

PROCESSED
?

RESET FLAG
TO EXTEND
LINE RIGHT

SET FLAG
NOT TO MOVE
ANY POINTS
LEFT

=

EXTEND
LINES UP
?

DPFETCH
READ STORED
LINES INTQ
TOP OF CORE

SETITO
POINT TO
START OF
LINE

Figure C-10.

DPSEEK
LOCATE
DISK CELL
FOR QUTPUT

PICK UP
EDGE VALUES
FROM STORAGE

RECOMPUTE

POINTERS

DPSEEK
LOCATE ONE
CELL PAST
LAST OUTPUT
CELL

DPPUT
STORE XMAX
AND XMIN
ONTO DISK

SMOOTH Program Flowchart (4 of 4)

C~31

ENTRY
CXPACK

HOUSEKEEPING

CREATE SINE
TABLE IN
SINE USING W

INITIALLZE
COUNTERS
AND FLAGS

1S YES

PACK SWITCH
SET
?

NO

CALCULATE
SUMR, SUMt,
DIFFR, DIFF!

{

PACK OR
UNPACK EACH
COMPLEX VALUE
IN BUFF

INITIALIZE
MAX AND
MIN VALUES

{ READ Z LINES
FROM DISK FOR
1ST AND LAST
ONLY ONE IS
READ

!

SEPARATE
COMPUTATION
FOR 1ST COMPLEX
VALUE ON EACH
OUTPUT LINE

Figure C-11.

!

WRITE
RESULTS
BACK ONTO
DISK

ANY
MORE LINES
ON DISK

WRITE MIN
AND MAX
VALUES ONTO

DISK

f

RETURN

CXPACK Program Flowchart

USE ERROR CODE
TO FIND
MESSAGE

GETMSG-
PICK UP
SPECIFIC
MESSAGE

PRINT
MESSAGE
ARRAY

SSWTCH-
CHECK
SENSE
SWITCHES

GETMSG-
“NORMAL
END OF JOB”
INITIALIZE MESSAGE
CONSTANTS ARRAY
| ceTmse. RETURN
“FATAL ERROR
IN AAAAAAAA”™
GETMSG-
oo YES “AAAAAAAA
ROUTINE WAS IN
EXECUTION"
No [J
GETMSG-
“ERROR CODE
AND MEANING
FOLLOW”
GETMSG-
“IEROR =
NNNN"

ERROR
RECOVERY
WANTED
?

RESET
ERROR
FLAG

RETURN

Figure C-12. ERROR FProgram Flowchart (1 of 2)

C-33

ENTRY
GETMSG

PICK UP
ARRAY ADDR,
MSG POINTERS

IS
TASK CODE
0
?

YES

PICK UP
MISC. MES-
SAGES ARRAY

DISPLACEMENT

MOVE
MESSAGE
INTO OUTPUT
ARRAY

[

RETURN

Figure C-12, ERROR Pro

is YES PICK UP
SUBROUTINE ™, TASK
CODE 0 NUMBER
?
]
LOAD LOAD TASK
SUBROUTINE MESSAGE
MESSAGE BLOCK
BLOCK ADDR ADDRESS
]
ADD IN THE

gram Flowchart (2 of 2)

C=-34

ENTRY

REDUCE 1
COMPUTE
REDUCTION READ
FACTORS AND LINE OF
EDGE FILL INPUT
CONSTANTS
LELWRT- REDPXL-
WRITE COMPUTE
OUTPUT REDUCED
LABEL OUTPUT

LOAD FiLL READY
CHARACTERS TO
IN OUTPUT AVERAGE
BUFFER ?
WRITE REDAVE-
FILL AVERAGE
LINES BETWEEN
AT TOP LINES
REDPRM.
SET WRITE
SUBROUTINE ouTPUT
CONSTANTS LINE
SKIP
UNWANTED
INPUT
LINES

WRITE
FILL LINES
AT BOTTOM

RETURN

Figure C-13. REDUCE Program Flowchart (1 of 2)

C-35

ENTRY ENTRY ENTRY

REDPRM REDPXL REDAVE
COMPUTE ADD PIXELS PICK UP
CONSTANTS FOR GIVEN A WORD
FOR REDPXL REDUCTION FROM
AND REDAVE FACTOR BUFFER
STORE
‘ DIVIDE BY
T SAVE
IN REDPXL RESULY REDUCTION
; IN BUFFER
AND REDAVE St
RETURN VES MORE STORE
PIXELS IN RESULT
LINE IN OUTPUT
LINE

7

NO

RETURN

NO

RETURN

Figure C-13. REDUCE Program Flowchart (2 of 2)

C-36

ENTRY
HISTO

TLYPRM-
SET
PARAMETERS
FOR TALLY

READ
A LINE
OF DATA

TALLY-
TABULATE
GRAY LEVEL
VALUES FOR

THIS LINE

COMPUTE
NORMALIZED
FREQUENCIES

PRINT
HEADER
LINE-

Figure C-14.

STORE X'S
IN OUTPUT
LINE

PRINT
ONE LINE
OF
HISTOGRAM

MORE X'§ TO
PRINT
?

NO

\

PRINT
LINE OF
BIN LABELS '

PRINT
NUMERIC
FREQUENCY
TABLE

/

PRINT MEAN,
MEDIAN, AND
STANDARD
DEVIATION

T~ [T

(RETURN)

C-37

ENTRY
TLYPRM

COMPUTE
CONSTANTS
FOR USE
BY TALLY

STORE
RESULTS
IN TALLY

RETURN

ENTRY
TALLY

PICK UP
PIXEL
VALUE

INCREMENT
PROPER BIN
COUNTER

NO

RETURN

HISTC Program Flowchart

ENTRY
CHAROUT

INITIALIZE
CONVERSION
TABLE

LBLWRT-
WRITE
QUTPUT
LABEL

A

SKIP
UNWANTED
INPUT

READ
INPUT
LINE

CODE-
TRANSLATE
THE LINE

NO

Figure C-15.

PRINTED

QUTPUT
?

WiLL
LINE FIT
ON DNE
PAGE
7

SETUP
TO PRINT
PART OF RETURN
EACH LINE —_

MO

MORE
STRIPS TO
SAVE PRINT
REMAINDER 2
ON DISK
YES
READ LINE
PRINT SEGMENT
CHARACTER FROM DISK
DATA

PRINT
CHARACTER
DATA

YES

g MORE
YES SEGN_I’ENTS

CHAROUT Program Flowchart

C~38

ENTRY
TEXTGN

PICK/UP
PARAMETERS

MERGE
TEXT WITH
INPUT
TAPE
[

COPY
BEGINNING
DATA LINES
TO QUTPUT,

IF ANY

|

ACCESS
1ST/NEXT
TEXT CARD

IMAGE

DECODE EACH
TEXT CHARACTER
INTO MATRIX
REPRESENTATION

Figure C-16.

C-39

1S

TEXT LINE

COMPLETELY

DECODED
?

WRITE ONE
OQUTPUT
LINE

HAS

TEXT LINE

BEEN

WRITTE
?

COPY
REMAINDER
OF IMAGE

TO OUTPUT

RETURN

TEXTGN Program Flowchart

Figure C-17.

ENTRY
NEIGHBOR

ABNORMAL
RETURN

CHECK
PARAMETERS

SKIP
UNWANTED
RECORDS

PRINT
HEADER
LINE

PRINT A
LINE OF
PIXELS

MORE
PIXELS TO
PRINT
?

YES

NO

NEIGHBOR Program Flowchart

C-40

ENTRY DISPLAY 1

INITHALIZE
POINT COORD-
INATES AND
VARIABLES

TVCON

COMNNECT WITH
TV HARDWARE
AND CLEAR
FUNCTION
REGISTERS

TTWCON

CONNECT
WITH
212

DISPLAY FUNC-
TION SELECT
CODRES AND
CONVERT USER'S
CODE TO BINARY

WHAT
DOES FUNCTION
cop

E=

Figure C-18.

i
-

BOXGEN

RESEAL

ERASE

b

m
-4
!
o®
2]
m

1
&

SHAINK

LEFT

&

RIGHT

U

(=2
-]

DOWN

[
«©

(4]
LOCATE

1
—-

=11
DATA

=12
DATAY

5

=13
REWIND

k

=14
FORWARD

=15
REVERSE
SELECT

QOM

bad

=18
EXIT

&

C-41

15
RESEAL
DISPLAYED ON
TV
?

SET FOUR
COORDINATES
FOR BOX
GENERATION

BOX
DISPLAYED ON
TV

SET FOUR
COORDINATES
FOR RESEAU
GENERATION

DISPLAY Program Flowchart (1 of 8)

SET FLAG
EQUAL TO
0

KILLIN

SET TV
HARDWARE FUNC-
TION REGISTER
TOO

A £
BOX/RESEAU
BEING
ENLARGED
7

CAN

BOX/RESEAU
BE INCREASED
INS1ZE
?

Figure C-18,

15
BOX OR RESEAU
DISPLAYED ON

TV
?

ARE
COORDINATES
OUT OF
RANGE
?

DEPENDING ON
DIRECTION
{LEFT, RIGHT,
UP, DOWN) ADD
OR SUBTRACT 1
FROM RESPECTIVE
COORDINATES

J
ICLOCK

SLOW DOWN
BOX/RESEAU
ACTION

CAN

BOX/RESEAU

BE REDUCED

IN SIZE
?

YES

YES

COMPUTE NEW
COORDINATES
AND SLOW DOWN
ACTION {ICLOCK)

DISPLAY Program Flowchart (2 of 8)

C-41.1

1

BOX

DISPLAYED
?

PRINT
BOX
COORDINATES

SETUPBOX
COORDINATES
FOR 212 OUTPUT
AND QUTPUT
TO 212

PRINT
RESEAU
COQROINATES

1

SET UP RESEAU
COORDINATES
FOR 212 QUTFUT
AND QUTPUT TQ
212

HAS

SEND KEY BEEN

DEPRESSED
?

NO

Figure C-18.

RECQUEST TAPE
UNIT FOR IMAGE
TO BE DRCOPPED
ON T.V. (CON-
VERT TO BINARY)

REQUEST COLOR
GUN CODE AND
CONVERT TO
BINARY

READ 32 DATA
LINES AND PRINT
DUT LENGTH OF

LABEL RECORD

READ DATA
LINE (EVEN AND
00D LINES GO
INTO DIFFERENT
BUFFERS}

¥ES

NO

KILLIN

CLEAR TV
HARDWARE FUNC-
TION REGISTER

C-41.2

9

FLIP

REVERSE CHAR-
ACTER ORDER IN
EACH DATA WORD

HAS
SET QF
32 LINES BEEN
READ IN
?

NO

DISPLAY Program Flowchart (3 of 8)

LINDIS
AEQUEST
SEND 16 EVEN iNPUT BOX
COORDINATES

NUMBERED LINES
TOTV

LINDIS
PLACE COORD-
SEND 16 O0D INATES IN
ICOOR ARRAY

NUMBERED LINES
TOTY

PRINT
ERROR
MESSAGE

WERE
4 PARAMETERS
1NPUT
?

WERE
BOTH LINE
NUMBERS EVEN
QR QDD

PRINT MESSAGE
AMD CORRECT
LINE NUMBERS

REQUEST TAPE
UNIT AND
CONVERT TO
INTEGER

BACKSPACE
SPECIFIED
NUMBER OF
FILES

DOES
FUNCTION
CODE = 14
3

REQUEST NUMBER
OF FILES TQ
SKIP AND CON-
VERT TO INTEGER

FORWARD WRITE
HﬁmlgD SPACE REQUESTED EQF
NUMBER OF MARK
FILES

Figure C-18. DISPLAY Program Flowchart (4 of 8)

C-41.3

REQUEST
TV IMAGE
NAME

|

REQUEST TAPE
LUNIT AND
FILE NUMBER;
CONVERT TO
INTEGER

READ TV
IMAGE TAPE
LABEL

VERIFY THAT
MASTER TAPE
IS MOUNTED

DETERMINE IF
AN INCREASE
OR REDUCTION
15 NEEDED

COMPUTE
VARIABLES AND
FLAGS FOR
BOTH CASES

Figure C-18,

C-41.4

AEQUEST MASTER
TAPE UNIT
AND FILE
NUMBER

READ MASTER
IMAGE TAPE
LABEL

REQUEST OUTPUT
TV IMAGE
NAME, TAPE
UNIT, AND
FILE NUMBER

SET
TV
COORDINATES

DISPLAY Program Flowchart (5 of 8)

COMPUTE

YTV
COORDINATES
RETURN
|
COMPUTE
X TV

COORDINATES

\
DISP

SEND TV
COORDINATES
TOTHE TV
HARDWARE

1S
FUNCTION
CODEZ4 AND
=9
?

15
CODE =
TO40R S5
?

Figure C-18. DISPLAY Program Flowchart (6 of 8)

C-41.5

ENTRY DISP ENTRY FLIP

STORE ADDRESS
OF TV COORD- T
INATES INTO et
INSTRUCTION
Y 1
CONNECT : : REVERSE
WITH TV ORDER OF
HARDWARE CHARACTERS

BOX SEND STORE
EUNCTION BOX REVERSED
7 FUNCTION WORD

HAVE
SEND ALL INPUT
RESEAU WORDS BEEN

FUNCTION PROCESSED
¥
COORDINATES
TOTV
HARDWARE
\
RETURN

Figure C-18. DISPLAY Program Flowchart (7 of 8)

C-41.6

ENTRY TVCON

CLEAR 1/
CHANNEL 2 {(TV)

CONNECT
TO
CHANNEL 2

KILLIN

SETTV
FUNCTION
REGISTERTOO

RETURN

ENTRY KILLIN

SETTV
FUNCTION CQDE
TOQ

RETURN

ENTRY LINDIS

J

PICK UP DATA
ARRAY ADDRESS
AND STORE INTO

INSTRUCTIONS

CREATE 12-BIT
FUNCTION CODE
FROM ICODE
AND IADD

15
FUNCTION
CODE = TQO
i1
?

NO

SHIFT OFF
LEAST SIGNIF-
ICANT BIT OF

EACH DATA WORD

SET
FUNCTION
CODE

TRANSFER 2
BLOCKS QOF 16
LINEE TO TV
CHANNEL 2

18
OPERATION
COMPLETED
?

RETURN

NO

GET STATUS
FROM CHANNEL
2

Figure C-18. DISPLAY Program Flowchart (8 of 8)

C-41.7

ENTRY
MODIFY

MOVE
PARAMETERS
INTO KEYWORD
SETS

SUPPLY
DEFAULTS
|F NEEDED

SORT
ENTRIES
ON LINE
NUMBER

LBLWRT-
WRITE
OUTPUT
LABEL

NO

MODe
?

NO

SKIP
UNWANTED
INPUT

PICK uP
1ST/NEXT
SET

COPY
UNAFFECTED
LINES
TO DUTPUT

MODL, AVERAGE
PRIOR AND
NEXT LINES

UNWANTED

SKIP
LINES

COMPUTE
AVERAGE
LINE

LINE(S)

REPLACE
PIXELS
WITH NEW
VALUE

MORE

LINESTO

PROCESS
?

YES

COPY QUT
REMAINING
LINES

RETURN

Figure C-19. MODIFY Program Flowchart

C-42

ENTRY

INSERT
\)
LEBLRD-
READ READ LINE
SECONDARY OF BASE
{NPUT IMAGE
LABEL
[1
‘ CHECK READ LINE
PARAMETERS OF WINDOW

]
SUPPLY FiLL
COMPUTE CHARACTERS
CONSTANTS 'AS NEEDED
]
WRITE COPY
OUTPUT MERGED
LABEL LINE TO
QUTPUT
\
SKIP
UNWANTED
LINES

COoPY COPY
UNCHANGED REMAINING
LINES TO LINES TO
QUTPUT QUTPUT

\

{ RETURN)

Figure C~20. INSERT Program Flowchart

C-43

PICK UP
PARAMETERS,
CALCULATE
GRID POINTS

LELWRT-
WRITE
QUTPUT
LABEL

READ
A LINE
OF INPUT

FILL ENTIRE
LINE

WITH GRID
CHARACTERS

INSERT
CHARACTERS
FOR VERTICAL
GRID LINES

WRITE
THE
COMPLETED
LINE

RETURN

Figure C-21. GRID Program Flowchart

C-44

ENTRY
GEOMTRAN

\

ALLOCATE
MEMORY FOR
1/0 BUFFERS,

DATA STORAGE

LOCATE
STARTING
LINE OF
INPUT TAPE

YES

READ
LINE
OF DATA

MORE
ROOM
IN CORE

NO s

CREATE NEW
LINE SEGMENT
AND POINT LISTS
FOR THIS INPUT

]

CALCULATE
QUTPUT POINT
LIST, DEFINE
LINE SEGMENTS

¥

FIND LIST SEG-
MENT BOUNDARY
(NTERSECTIONS
FOR PARY OF
OUTPUT TO BE
DISPLAYED

|

SET
END FLAG

\

FIND LINE SEGMENT
RECTANGULAR
BOUNDARY INTER-
SECTIONS FOR DATA
NOW IN CORE

Figure C-22,

C=45

CREATE NEW LINE
SEGMENT AND
POEINT LISTS
FOR OUTPUT

|

CALCULATE
CORRESPONDING
POINT LIST FOR
INPUT IMAGE

SORT NEW LINE
SEGMENT LIST
FOR OUTPUT
IMAGE

GEOMTRAN Program Flowchart (1 of 7)

a. FIND
STARTING LINE
SEGMENT IN
DUTPUT IMAGE

¥

b. CALCULATE X’
OF INTERSECTION

LINE W/SEGMENT

OF CURRENT QUTPUT

c. CALCULATE X, Y
POINT N INPUT

FOR CORRESPONDING

¥

d. CALCULATE

CHANGE IN OUTPUT
INTERSECTION AXy
FOR CHANGE BY ONE
OF OUTPUT LINE

|

e. CALCULATE
O AY) IN INPUT
INTERSECTION FOR
EACH CHANGE BY ONE
OF OUTPUT LINE

\

f. CALCULATE
mxAYx} ALONG
INPUT SEGMENT FOR
EACH CHANGE BY ONE
OF PIXEL ALONG
OUTPUT LINE

8. CALCULATE

DAY,)

X Xy

OF (A AV,) FOR'EACH
CHANGE BY ONE

OF OUTPUT LINE

Figure C-22,

STORE a. THRU g.
INTO A “CURRENT
LINE SEGMENT"

SET INITIAL
CUTPUT LINE
AT SLD

#..—_

CALCULATE
X" IN QUTPUT
FOR Y’

Y

INTERPOLATE
TO FIND
PIXEL VALUE
AT (X', ¥

IS
PIXEL
VALUE
BUFFER
FUEL
?

NO

DUMP TO
PIXEL VALUE
STORAGE
ON DISK

}

STORE PIXEL
VALUE INTO

‘THE BUFFER

ADVANCE
ONE PIXEL
ALONG Y

C-486

GEOMTRAN Program Flowchart (2 of 7)

INTERSECTION
REACHED
?

END INCREMENT
OF CURRENT L'“é%ﬁiqu‘érgm
LINE
BY ONE

?

INCREMENT
LINE NO.
BY DNE

MORE
OUTPUT
LINES TO
PROCESS
4

YES

Figure C-22. GEOMTRAN Program Flowchart (3 of 7)

C-47

ENTRY
PHASEZ

ON 15T CALL,
INITIALIZE THE
TAPE DISTRI-
BUTION VARIABLES

DETERMINE ONTO
WHICH TAPE UNIT
[THE MERGE STRING
IS TO BE WRITTEN

FETCH
NUMBER-OF CORE-
LOADS
FROM DISC

FETCH 15T
ENTRY FROM
EACH CORE LOAD'S
INCEX TABLE

COMPARE INDEX
TABLE ENTRIES
TO DETERMINE
LOWEST ENTRY

REDUNDANT WITH
PREVIOUS

DECREMENT
CORE-LOAD-
ENTRY-COUNT

ANY NO INSERT END

MORE : OF MERGE
STRING
MARK

ENT‘II:!IES

INSERT 3 HEADER
WORDS INTO
QUTPUT
BUFFER

FETCH
NEXT
INDEX
ENTRY
WRITE END
OF TAPE RECORD
IDENTIFIER ON
UNIT A AND B

COM-
PLETED
PROCESSING
IMAGE
T

GEOMTHARN

UPDATE
PREVIOUS
HEADER'S PIXEL
COUNT

INSERT
PIXEL STRING

Figure C-22.

INTO QUTPUT
BUFFER

GEOMTRAN Program Flowchart (4 of 7)

C-48

ENTRY
PHASE3

COUNTER FOR
UNITA=0

READ BUFFER
FROM
UNIT A

DECREMENT
DUMMY STRING
COUNTER
BY ONE

SET FLAG
ON FOR
EOTON A

1S
DUMMY
STRING COUNTER
FOR UNITB

=0

NO

READ BUFFER
FROM
UNITB

PUT REMAINDER OF
STRING INTO OUT-
PUT BUFFER. SET {

NECESSARY
POINTERS

DECREMENT
DUMMY STRING

COUNTER
BY ONE

SET FLAG ON
FOR EOT
ONB

Figure C-22.

GEOMTRAN Program Flowchart (5 of 7}

C~49

ANY

YES PUT END
Rl OF STRING n
> tN OUT BUFFER o

WRITE
OUTPUT BUFFERS
ONTOUNITC
POINT TOQ
YES HEST OF MERGE o
STRING ON
OTHER TAPE

DETERMINE
WHICH STRING
1S NEXT

SPECIFY START IN
AND OUT
CHARACTERS; IF

DOES
STRING NEED

TO 8E MERGED ONE OF oUT
W/LAST OUTPUT BUFFERS FULL,
STRING WRITE DUT
? ONTO UNITC

SPECIFY START IN
AND OUT
CHARACTERS FLAG
JF STRING WILL

FILL ONE BUFFER
UPDATE PIXEL
COUNT

MOVE STRING
INTO
OUTPUT BUFFER

END
OF BUFFER
ON EITHER
TAPE
z

Figure C-22. GEOMTRAN Program Flowchart (6 of 7)

C~50

REWIND COMPLETED REWIND OUTPUT
INPUT TAPE AND TAPE. ASSIGN
ASSIGN AS OUTPUT AS INPUT
TAPE (UNIT C)
¥]

REWIND AN
REWIND C INPUT TAPE AND

AND ASSIGN ASSIGN AS

AS INPUT OUTPUT

COPY STRINGS
INTO IDAMS

FORMAT AND FILL IN
- GAPS WITH ZEROS

RETURN

Figure C-22. GEOMTRAN Program Flowchart (7 of 7)

C=-51

ENTRY
CHIPGN

CREATE LABEL

NEW WRITE WRITE
TAPE YES AND BLANK CHIP LABEL END.OF-FILE
SPECIFIED CIRECTORY FOR RECORD
) DIRECTORY FILE

=0

READ TAPE WRITE MAKE DIRECTORY
DIRECTORY FILE DIRECTORY ENTRY AND
INTO DIRECTORY FILE INCREMENT

ELOCK IN CORE ONTO TAPE CHIP COUNT

;

oNLY POSITION INPUT
LIST IMAGE TAPE “E‘;‘.’l?"
DIRECTORY TO FIRST TAPE
3 LINE OF CHIP
| =)
]
DECODE A PRINT
PARAMETERS INPUT DIRECTORY
FOR ONE IMAGE
CHIP
TRANSFER ONLY YES
REQUIRED SEGMENT] LIST
TO OUTPUT DIRECTORY
BUFFER ?
NO
uT™ é‘Jw&"r WRITE WRITE NEW
uTePuT DIRECTOGRY
COORDINATES LAT/LONG ° LINE FILE
GIVEN TOUTM
?
YES
UTMCON [NO
CONVERT
utTM TO 2 END
LAT/LONG

Figure C-23., CHIPGN Program Flowchart

C-52

ENTRY

RZOMAP

e,

T .
TABLE

USER
SPECIFIED
LOCATIONS
?

NO

REPLACE STORED
NOMINAIL
LOCATIONS
BY USER-SPECIFIED
LOCATIONS

ZERO QUT

ACCUMULATORS

FOR SEARCH

ROWS, COLUMNS

ISSUE READ
FOR NEXT
LINE

|

QBTA{N VALUES
FOR DEFAULTED
PARAMETERS FROM
RESEAU LOCATION
TABLE

POINT TO FIRST
RESEAU ROW
SET UP LOCATION

ESTIMATES

ADVANCE TAPE
TO START
- OF SEARCH
AREA

i
READ IN
FIRST TWO

LINES

o

—

FIRST RESEAU
SEARCH AREA

POINT TO

ON LINE

INTERCHANGE
BUFFER
ASSIGNMENTS

LAST

READ

COMPLETE
?

ALL

LINES

PROCESSED
?

YES

GRADIENT TERMS,
ACCUMULATORS

XYGRAD
COMPUTE

ADD TO

FIND AND
STORE ACTUAL
RESEAU
LCCATIONS

POINT TO
NEXT SEARCH
AREA
ON LINE

LAST
ROW OF

RESEAUS
DONE
?

UPDATE
LOCATION
ESTIMATES

POINT TO
NEXT ROW

Figure C-24. RZOMAP Program Flowchart (1 of 3)

C=53

TABULATE

COMPUTE

THOSE RESEAUS BEGIN LOCATIONS OF BEGIN
WHICH WERE - POLYZ2 MISSING RESEAUS - —— NTRP2
ACTUALLY SUBPROGRAM USING SUBPRDGRAM
LOCATED POLYNOMIALS
\
TVORT WRITE
POLYNOMIAL COMPLETED
TABLE
TO X-DIS- ONTO DISK
PLACEMENTS
! ¥
T¢$f” WRITE
POLYNOMIA TABLE
1I'-o ¥-DIS. L ON LINE
PLACEMENTS PRINTER
) 3
STORE RETURN
POLYNOMIAL

COEFFICIENTS

Figure C-24. RZOMAP Program Flowchart (2 of 3)

C-54

ENTRY
XYGRAD

STORE ADDRESSES

OF UPPER AND ADD PRODUCT
LOWER LINE TG ROW
SEGMENTS ACCUMULATOR

STORE ADDRESSES
(OF ROW ACCUMLUILA-

TOR AND COLUMN FD((: 3??:3{5-”
ACCUMULATORS ' :
INITIALIZE
PIXEL COUNT STORE AS
FOR LINE MULTIPLIER

SEGMENT

COMPUTE DIFFERENCE COMPLEMENT
FOLY) - F(X-1,¥) NEGATIVE m;F§£§¥g§

NO T
L
STESRE MULTIPLY
DIFFE RENCE
MULTIPLIER BY MULTIPLIER

#

ADD PRODUCT

COMPLEMENT TO COLUMN
D;;':E'r:si F‘Tﬁlcgﬁ DIFFERENCE ACCUMU-
o IN REGISTER LATOR INCREMENT

PIXEL INDEX

NO

MULTIPLY
DIFFERENCE
BY MULTIPLIER

YES

Figure C-24, RZOMAP Program Flowchart (3 of 3)

C-55

ENTRY
CORREL

READ
REFERENCGE
CHIP

COMPUTE
SUM OF GRAY-
LEVEL VALUES
AND SQUARES

ADD UP COLUMN
SUMS FOR FIRST
VARIANCE VALUE
ON LINE

PQINT TO
FIRST VARIANCE
VALUE
ON LINE

READ
LINES OF IMAGE
DATA EQUAL
TO NUMBER OF
LINES OF CHIP,

COMPUTE

COLUMN

POINT TO

SET VMIN = 10%

COMPUTE ONE
VARIANCE
VALUE

UMIN = NEW

STORE LINE
ON
DISK

LAST
VARIANCE
LINE
¥

READ
NEXT IMAGE
LINE

READ
15 X 15 SUB-
ARRAY ABOUT
MINIMUM FROM
DISK

PRINT

MINIMUM
VALUE,
LOCATION,
SUBARRAY

VARIANCE LINE

MODIFY WRITE
SUMS OF VALUES
COLUMN SUMS ADVISORY
AND SQUARES
D SauAR POINT TO NEXT MESSAGE

WRITE SHARP
FIRST LINE OF VALUE ADVISOR
¥ MINIMUM
T s ATRIX SAVE POSITION
VARIOUS MATR S e MESSAGE ?

YES

CRESS SAVE LOCATION
COMPUTE CROSS OF MINIMUM, | ves STORE
TERMS FOR COORDINATES RESULT
ONE LINE EOR CHIP 7
OF VARIANCE O DISK
nO
POINT TO NEXT
COMPUTE SUMS
FOR NEXT RETURN
VARIANCE
VALUE

Figure C-25. CORREL Program Flowchart (1 of 2)

C-56

ENTRY
CROSS

STORE
CALL
ARGUMENTS

ZERO OUT
DOUBLE
PRECISION
ADDERS

POINT TO
FIRST LINE
OF REFERENCE
CHIP

ZERO OUT
SINGLE
PRECISION
ADDERS

POINT 7O
FIRST ELEMENT

OF CHIP
LINE

CONVERT CHIF
GRAY LEVEL
VALUE TO
FULt WORD

POINT TO
CORRESPONDING
IMAGE PIXEL
ND FIRST SINGL
ADDRESS

Figure C-25.

COMPUTE PRODUCT
OF iMAGE PIXEL
AND CHIP VALUE;
ADD TO ADDER

y

INCREMENT

IMAGE PIXEL

AND ADDER
POINTERS

LAST
ADDER
INCRE-

MENTED

?

YES

POINT TO
NEXT CHIP
PIXEL

ADD SINGLE
PRECISION ADDERS
TO DOUBLE PRE-
CiSION ADDERS

*..._—

YES

CONVERT
DOUBLE PRECISION
ADDERS TO
FLOATING POINT

NO

C=b7

POINT TO
NEXT LINE
OF REFERENCE
CHIP

RETURN

CORREL Program Flowchart (2 of 2)

ENTRY
RESECT

ACCESS
PARAMETERS

EPHEMERIS
DATA IN
PARAMS

READ
EPHEMERIS AND,
ATTITUDE
FROM DiSK

FROM DISK

J

ENOUGH
CONTROL
POINTS
?

RESEAUS
IN PARAMETERS
?

NO

SET
ERROR
CODE

RETURN
READ
RESEAU
LOCATICNS
FROM DISK

IN COEFFICIENT ARRA

MATH MODEL(S}
FOR OTHER
SENSORI(S)

NOT YET DEFINED

FACE PLATE COORDS

SET
ERROR
CODE
]
COMPUTE NADIR
COORDINATOR RETURN
FOR EACH
CONTROL PCINT
CONVERT IMAGE
COORDS OF I USES TABLE
CONTROL POINTS TO OF RESEAUS

CONVERT
NADIR CODRDS

TO FACEPLATE
COORDS.

OF CONTROL POINTS = =]

USES NOMINAL
ATTITUDE
VALUES

1

COMPUTE
PARTIAL
DERIVATIVES

!

COMPUTE TERMS

<

FOR CORRECTION

EQUATIONS
- !
ALL
DISK SET MATINV
FILES FOR ERROR COMPUTE
THIS CODE INVERSE
IMAGE ARRAY
i Y
RETURN 2

Figure C-26. RESECT Program Flowchart (1 of 2)

C=-58

-

OMPUTE VARIANCE]

USING NOMINAL

ATTITUDE AND
ALTITUDE

SET ITERATION
COUNTER TO 1

VARIANCE)®
DECREASED
P <0.1

ITERATIONS YE

ALREADY
?

NGO

INCREMENT

|

COMPUTE RIGHT-
HAND SIDES
OF EQUATIONS
FOR CORRECTIONS

f

MULTIPLY BY
INVERSE COEFFI-
CIENT MATRIX TO

GET CORRECTIONS

Y

COMPUTE
CORRECTED
ATTITUDE
AND ALTITUDE

!

CONVERT NADIR
POINT
COORDINATES
TO FACEPLATE
USING NEW
VALUES

I

COMPUTE
NEW
VARIANCE

FTERATION
COUNTER

CONVERT UTM

OF IMAGE
CORNERS TO
ROTATED UTM
NO*—- —
GENERATE
10 X 10 GRID

ENCLOSING IMAGE

——

CONVERT IMAGE
COORDINATES OF
IMAGE CORNERS
TO FACEPLATE
COORDINATES

i

CONVERT
FACEPLATE
TO NADIR
COORDINATES

!

YES

CONVERT GRID
COORDINATES
BACK TO
STANDARD UTM

—

NOY—-

UTMCON
CONVERT GRID
POINTS TO
LAT/LONG

}

CONVERT
TO NADIR
TO FACEPLATE
TO IMAGE
COORDINATOR

f

CONVERT NADIR CREATE
COORDINATES TO OUTPUT
LAT/LONG TABLE
UTMCON
CONVERT WRITE
LAT/LONG TABLE
TOUTM ON DISK
COMPUTE
MEASURE

OF GODODNESS

PRINT
CORRECTED
PARAMETERS
GOODNESS,
TABLE

RETURN

Figure C-26. RESECT Program Flowchart (2 of 2)

C-59

ENTRY
UTMGEO

ACCESS COUNT
OF PARAMETER
PAIRS

-

DECODE
ONE PAIR

PRINT
DECODING MESSAGE:
SUCCESSFUL o INVALID
? FORMAT
UTMCORN
COMPUTE
CORRE-
SPONDHMNG
UT™M
UTMCON
COMPUTE
CORRE-
SPONDING
LAT/LONG
1
'
PRINT
LAT/LONG
AND UTM

COORDINATES

ALL
PAIRS DONE
?

Figure C-27. UTMGEO Program Flowchart

C=60

ENTRY
FPMULT

AND MAXIMUM
TEST YALUES

DPSEEK
POSITION
DISK HEAD
TO FIRST LINE

READ
FIRST LINE
FROM TAPE

DPFETCH
READ ONE
LINE
FROM DISK

DPSEEK
REPOSITION
HEAD TO
START OF
SAME LINE

CHECK
AWAIT
COMPLETION
OF LAST
TAPE READ

Figure C-28,

READ
SET INITIATE TAPE
CORRECT ERROR READ INTO
SIZE CODE ALTERNATE
? BUFFER
FORM PRODUCTS
FOR FIRST AND
lmllLllﬁ;nlannE RETURN LAST ELEMENTS

iN LINE
{SPECIAL PACKING)

!

i

MULTIPLY FORM
CORRESPONDING REMAINING
ELEMENTS PRODUCTS
] p— T
DPPUT
WRITE LINE

OF PRODUCTS
BACK ON DISK

INTERCHANGE
TAPE INPUT
BUFFERS

FORM RECORD
CONTAINING
MAXIMUM AND
MINIMUM VALUES

DPPUT

WRITE INTO

NEXT CELL RETURN
ON DISK

FPMULT Program Flowchart

C=61

ENTRY FPSUM

SET FLAGS
INDICATING
MULTIPLIER
TYPES, SIGNS

SIZE

SPECIFIED

CORRECTLY
?

DETERMINE
WHETHER READ
IS COMPLEX FROM
MAXIMUM, MINI-

DPSEEK
SEEK FIRST
LINE OF
SECONDARY
INPUT
READ
FIRST LINE
OF PRIMARY
INPUT

CHECK
LAST READ
FROM TAPE

SET ERROR
CODE FOR
WRONG SIZE

READ
REQUEST NEXT
LINE, INTO
ALTERNATE
BUFFER

T T

MUM VALUES -

| |

RETURN

DPFETCH
READ ONE
LINE FROM
DISK

DPSEEK
REPOSITION
DISK HEAD
TO START
OF SAME LINE

Figure C-29. FPSUM Program Flowchart

FOR SUMS OF
CORRESPONDING
WORDS, USING
MULTIPLIERS,
SIGNS

DPPUT
WRITE THIS
RECORD ONTO
DISK

f

TEST RESULTS
FOR NEW
MINIMA,
MAXIMA

]

INTERCHANGE
BUFFER ASSIGN-
MENTS FOR
TAPE INPUT

DPPUT
WRITE RESULTS
LINE BACK
ONTO DISK

SET UP RECORD
FOR MAXIMA,
MINIMA

RETURN

ENTRY ENTRY
FILTGN TABLEGN

TABLEGN
ACCESS
PARAMETERS ACCESS
GENERATE PARAMETERS
MTF TABLES
MTFGN
GENERATE SET POINTERS
TWO- FOR FIRST
DIMENSIONAL MTE TABLE
MTF

CONVERT SAVE
TO IMAGE SYMMETRY
SPACE CODER
?
INVERT COMPUTE
COMPUTE LENGTH OF
CONVOLUTION REQUIRED
FILTER TABLE
INPUT MODE

?

! + 2 + 3 f OTHER %

GENERATE SET ERROR

COPY TABLE Gik}) FROM COMPUTE Glk) FLAG FOR

INTO Glk) COORDINATE FROM HiGH/LOW {NVALID
PAIRS FILTER FORMULA MODE CODE

L]
1)
RETURN

(OR CIRCULAR)

ELLIPTICAL™_ NO

SYMMETRY

COMPUTE
B(i), cli), D)

SET POINTERS
FOR SECOND
MTF TABLE

Figure C-30. FILTGN Program Flowchart (1 of 2)

C=63

ENTRY
INVERT

THER HALF
INITIALIZE SIIE-IB-SFFER USING DPFETCH INTERCHANGE
LINE COUNT, SYMMETRY READIN ROWS AND
¥-COORD, TESTING LINE OF COLUMNS, AND
MAX/MIN FOR MAX/MIN MTF EXTEMD NEW ROWS
TEST VALUES VALUES
FFTONE
p EXPAND LINE
INITIALIZE WA aUT TO COMPLEX TR
X-COORD LINE FORMAT ONE ROW
FIRST YES | no HALF
ELIPTICAL NO OR LAST ARRAY
INTERPOLATION LINE N CORE
NEEDED 2 2
! 7
NO YES
DPPUT
OBTAIN WRITE SAME PERGEN
INTEGRAL PART LINE INTO GENERATE m;gac;n&n{;; ¢
AND REMAINDER SYMMETRIC PERMUTATION COLUMNS
FOR LOCATION TABLE AGAIN
INTERPOLATION
COMPUTE MTF NORMALIZE TO
VALUE FROM LAST LINE SUM = 4096
FIRST AXIS: DONE AND CONVERT
STORE IN BUFFER ? : TO INTEGERS
YES
TRIGGN
GENERATE
RETURN TABLE QU?\RD'NT
HALF-LINE OF SINES oF HLRTnér:T
DO,NE OPY TO OUTPL
? ——’1 TAPE, IF ANY
FETONE :
FOURIER
TRANSFORM
SECOND RETURN
T ONE LINE
REQUIRED
?
YES ALL
NO LINES
GENERATE MTF TRANSFORMED
VALUES FROM ?

SECOND AXIS;
MULTIPLY BEUFFER
VALUES BY THEM

Figure C-30, FILTGN Program Flowchart (2 of 2)

C-64

ENTRY
RANDGRAY

SET UP
CONSTANTS

WRITE
OUTPUT
TAPE LABEL

{

pp—

COMPUTE
TABLE OF AREAS
UNDER
GAUSSIAN

¥

DEVELOP SQUARES
OF INTEGERS AS
SUMS OF ADD
INTEGERS

¥

INCREASE COUNT
FOR VALUES
WITH LARGEST
FRACTIONAL PARTS

!

FIND LAST
NON-ZERO VALUE
OF INTEGRAL
PART

P

NOISEPRM

FIND TABLE
OF NOISE
VALUES

YES

POSITICN
TAPE AT
FIRST LINE

READ
NEXT
LINE

Y

MOVE

POSITION
DATA IN
OUTPUT
BUFFER

]

NOISE

ADD NOISE
FACTCR TO
PIXEL VALUES

¥

WRITE
OUTRUT
LINE

ANY
MORE
LINES TO
PROCESS
7

& NO

RETURN

Figure C-31. RANDGRAY Program Flowchart (1 of 2)

2 NOISEPRM

/
FILL INPUT e
TABLE OF
BUFFER WITH NOISE VALUES
THE MEAN
VALUE
Y [
MOVE
RETURN
POSITION
DATA IN
OUTPUT
NOISE
ADD NOISE
FACTOR TO
MEAN VALUES
* ENTRY
NOISE
WRITE
OUTPUT |
LINE
ADD NOISE
VALUE FROM
TABLE TO PIXEL
GRAY-LEVEL
- VALUE
MORE
LINES TO

PROCESS
7

RETURN

i

Figure C-31. RANDGRAY Program Flowchart (2 of 2)

C-66

ENTRY
IMERGE

INSTRUCT
QOPERATOR TO
REPLACE SYSTEM
TAPES BY INPUT

READ
INPUT
HEADERS

4
DIFFERENT
STRIPS
?

COMPILE TABLE
OF LOGICAL UNIT
NUMBER FOR
EACH STRIP

YES

NO

SET
ERROR
FLAG

SET
ERROR
FLAG

SET
ERROR
FLAG

ARRANGE
SPECTRAL
BAND REQUESTS
IN DECREASING
ORDER

MSS
DATA MODE
O.K.

?

READ
ANNOTATION
RECORD FOR
TAPE 1

SPACE OTHER
TAPES/
RECORD

CONYERT
ANNOTATION
DATATO
FLOATING
PCHNT

WRITE
ANNOTATION
FILE
ON DISK

PRINT
ANNOTATION
DATA

SET
ERROR
FLAG

Figure C-32., IMERGE Program Flowchart (1 of 3)

C-67

ENTRY
REPACKM

ENTRY REPACKR:

STORE INPUT AND
OUTPUT ADDRESSES;

T
SOUTPUT BUFFER. INCREMENT
ADDRESSES. INPUT POINTER WORD COUNT,
WORD COUNT BY 3, SHIFT COUNT BAND, CONVERSION
BY 1BYTE TABLE ADDRESSES

INITIALIZE INITIALIZE
INPUT AND INPUT, OUTPUT
OUTPUT POINTERS,
POINTERS SHIFT COUNT

YES

LOAD DOUBLE LOAD SiNGLE
WORD = § RETURN WORD
8-BIT VALUES INTO A
Y 1
STORE SHIFT DOUBLE
LOW ORDER REGISTER DECREMENT INPUT
6 BITS 8 BITS RIGHT POINTER 1
HAVE
6 VALUES INCREMENT LOAD DCUBLE SHIFT A
WORD INTO A-Q | |
BEEN OUTPUT SHYFT LAST 8 RIGHT 8
DO?NE POINTER -1~ SHIFT COUNT

STORE 6-8IT
INCREMENT CHARACTER INTO
QUTPUT CONVERSION OUTPUT
POINTER REQUIRED INCREMENT OUTPUT
? POINTER
SHIFT A RIGHT 8
REPEAT
USE LOW-ORDER
LINE. OF BITS OF A CONVERSION,
ALL DONE TO INDEX LOAD CHARACTER
? FROM TABLE STORAGE, POINTER
INCREMENT

YES

RETURN

Figure C-32,

IMERGE Program Flowchart (2 of 3)

C-68

NO

YES

IS

THIS BAND YES

READ ONE

RECORD FROM

REQUESTED EACH INPUT
ADVANCE INPUT
TAPES TO
NMEXT FILE
REQUESTED
NO
REPACKM
GENERATE ONE | NO
LINE OF G-BIT
GRAYVALUE
DATA
| YES §
REPACKR
GENERATE ONE
e "LINE OF 6-BIT
LINE(S) GRAY-VALUE
DATA
Figure C-32,

ER
FULL no /REWIND OUTPUT
NUMBER AND WRITE
OF LINES COARECTED
READ LABEL
l-vES

MORE
BANDS TG DO
?

REWIND
TAPES

INSTRUCT

REWIND OPERATOR
INPUT TO REMOUNT
TAPES SYSTEM TAPES

INSTRUCT
OPERATOR
TO MOUNT

NEW OUTPUT

i

RETURN

IMERGE Program Flowchart (3 of 3)

C-69

ENTRY
PMERGE

RAME : HALF OR

ITYPE=1

7 QUARTER IMAGE

!

FULMER- RETURN
PROCESS
FULL IMAGE
POSITION
INPUT TAPES

AT REQUESTED

BAND

READ ONE
RECORD FROM
EACH TAPE

ENTRY REPACK-
PARMER CONVERT TO
6-BIT
CHARALCTER
AND MERGE
DATA
ONLY HAVE
2 INPUT
TAPES

OUTPUT
THE 8 LINES
COF DATA

INSTRUCT
OPERATOR TQ
MOUNT 4
INPUT TAPES

-

READ AND
PROCESS INPUT
TAPE LABEL
AND ANNOTATION
RECORD

INSTRUCT
OPERATOR
TO MOUNT NEW
QUTPUT TAPE

MORE
BANDS TO
PROCESS
?

RETURN

Figure C-33. PMERGE Program Flowchart (1 of 2)

C-70

II RECORD

ENTRY FULMER

INSTRUCT
OPERATOR
TO MOUNT

1NPUT TAPES

READ AND
PROCESS iNPUT
TAPE LABELS AND
ANNOTATION

WRITE OUTPUT
LABEL AND
100 DUMMY

RECORDS
W/EOF MARK

REWIND
OUTPUT TAPE
AND READ
LABEL

!

POSITION INPUT
TAPES AT STRIPS
1-4 OF NEXT BAND,
SKIP FILES, IF
NECESSARY

!

READ, CONVERT
{(REPACK), AND
STORE ON DISK

ONE RECORD AT A
TIME GOING FROM
TAPE TO TAPE

WHEN DISK IS

READ ID
RECORD AND
POSITION AT

STRIPS5-8

!

REWIND
OUTPUT TAPE
AND READ
LABEL

*,4__-__

READ STRIPSS5-8
FROM TAPE AND
STORE 8 HALF
LINES INTO ARRAY

!

FETCH CORRE-
SPONDING HALF
LINE FROM DiSK

AND PUT INTO
ARRAY BEHIND

1ST HALF OF LINE

REWIND OUTPUT /
TAPE. READ LABEL
AND 96 RECORDS.

PCc 2 JONED FOR

NEXT WRI'IB

Y

PROCESS DATA
FROM 4TO5
UNTIL END
OF BAND

i

INSERT LINE NO.
AND WRITE LINE
TO TAPE

96
RECORDS

QUTPUT
7

NO.

READ OUTPUT TAPE
UNTIL EOF MARK

ANY
MORE
BANDS YO

PROCESS
)

INSTRUCT
OPERATOR TO
MOUNT NEW
QUTPUT TAPE

RETURN

FULL, WRITE FOUND. THEN READ

EXCESS ONTO RECORDS AND SAVE
OUTPUT TAPE IN AVAILABLE DISK
SPACE

Figure C-33, PMERGE Program Flowchart (2 of 2)

C-71

EMTRY
PPUPDATE
READ WRITE
CELLS 1-24 CELLS1-24 RETURN
FROM DISK ON DISK

|

Y [ves

FIND FILE
KEYWORD NOQ
AND MODE

PRINT
HEADER
AND DATA
RECORDS

ILLEGAL

OPERATION

MODIFY

INDICATED
RECORD

INIT MODE-

CLEAR THE
FILE

ADD OR
DELETE

RECORD
INDICATED

Figure C-34, PPUPDATE Program Flowchart

c-72

ENTRY
VPICIN

GENERATE
TABLE FOR
CONVERTING
GREY LEVELS

BUFFER IN
READ ONE
VICAR
LABEL RECORD

PRINT
ADVISORY
MESSAGE

PARITY
ERROR
?

NO *“'

CODEBTO6
CONVERT
EBCDIC LABEL
TO BCD

PICK UP
NUMBER OF
PIXELS AND
LINES IN {MAGE

INITIALIZE
POINTERS FOR
DOUBLE
BUFFERED
INPUT

WRITEF
INITIATE
OUTPUT OF
CONVERTED
LINE

BUFFER IN
READ FIRST

ENTIRE
IMAGE

SET ERROR
CODE FOR

LAST LABEL
NOT FOUND

INPUT DATA A
LINE DON
|
ERROR PARITY
ON LAST A ROR
READ 2
?
NO
BUFFER IN INCREMENT
INITIATE PARITY
READ FOR ERROR
NEXT LINE COUNT
CHECK
WAIT UNTIL
LAST OUTPUT
LINE WRITTEN
CODEBTOS6
CONVERT LINE
OF DATA
TOGBITS
SET FLAG
FOR ERROR
RETURN
L

RETURN

Figure C-35. VPICIN Program Flowchart

C-73

ENTRY
INCREASE

COMPUTE
INCREASE
FACTORS AND
FIND LARGEST

COMPUTE
EDGE FILL
CONSTANTS

LBLWRT-
WRITE
OUTPUT
LABEL

{

SET UP
OUTPUT LINE
BUFFER WITH

EDGE FILL CHARS

Figure C-36.

ANY
FILL LINES

?

YES

WRITE
FILL
LINES

=

READ
DATA LINE
INTO CORE

!

INCR-
INCREASE
THE LINE

LENGTH

YES

Y

WRITE THE
OUTPUT
LINE

SHOULD
THIS LINE
BE RE-
PEATED
?

C-74

WRITE ANY
REMAINING
LINES OF
BOTTOM FILL

|

RETURN

INCREASE Program Flowchart (1 of 2)

ENTRY

INCR
SAVE INDEX
REGISTERS
INCREMENT
INPUT
CHARACTER
ADDRESS
BY ONE
LOAD CHARACTER
ADDRESS OF
INPUT
AND OUTPUT
END
_ NO OF INPUT
DATA
?
LOAD INPUT
CHARACTER
RESTORE
= INDEX
REGISTERS
STORE CHARACTER
INTO OUTPUT ,
ARRAY
RETURN
i
INCREMENT OUT-
PUT CHARACTER
ADDRESS BY ONE

Figure C-36. INCREASE Program Flowchart (2 of 2)

C-75

ENTRY COLOR

DETERMINE 18T
KEY WORD TIME THRU
(GREEN,)BLUE. LOOP
RED

SKIP
DETERMINE TABLE
STANDARD YES | NUMBER, TRANS. UNAANTED
TABLE FER TABLE TO FILES
> MODE| TABLE ARRAY
1S TRANSFER USER READ
TABLE YES! SUPPLIED TABLE- ONE INPUT
SUPPLIED TO-TABLE RECORD
? MODE ARRAY

COORDI-
NATES
SUPPLIED
?

VALID
NUMBER OF
PAIRS
?

ANOTHER SET
OF PARAM-
ETERS

COMPUTE TABLE
VALUES, LOGIC
SAME AS
CONTRAST

LBLWRT
WRITE LABEL
ON DUTPUT

Figure C-37. COLOR Program Flowchart

C-76

FETCH ONE
RECORD
FROM DISK

END
OF ENTRIES

NO

STORE
RECORD
ON DISK

CODE TRANSLATE
DATA FROM
INPUT LINE

INTO QUTPUT
LINE

WRITE ONE
LINE ON
OUTPUT

TAPE

READING
FROM TAPE

ENTRY
FPLIST

COMPUTE
NUMBER OF
WORDS
TO PRINT

INPUT
FROM TAPE
?

INPUT LINE

OF DATA
FROM
TAPE

WRITE OUT
PIXEL VALUES

IN FLOATING
POINT FORMAT

ANY
MORE
LINES TO
PROCESS
?

RETURN

YES

Figure C-38.

C-77

FETCH DATA
FROM DISK
FILE

WRITE QUT
PIXEL VALUES
IN FLOATING
POINT FORMAT

ANY
MORE
LINES TO
PROCESS
?

YES

NO

RETURN

FPLIST Program Flowchart

ENTRY
DMDOUT

SET HEADER
S as00 NL>.4860 SV, FLAG TO
SUPPRESS GRAY
WEDGE
NO |
|
NP>2497 AESET MODE WRITE
OR.NL=2421 HEADER
? TO 5000 ON QUTPUT
NP25001 N\ YES SET ERROR READ
JOR.NL=4981 “IMAGE T0OO ||:-|lp':i’g
? LARGE"
NO]
| !
e
OPERATOR
TO WRITE MODE PIXELS 10
ON TAPE
BUFFER

' i

COMPUTE NUMBER
OF DOUBLE
WORDS PER

OUTPUT LINE

!

COMPUTE

WRITE
CUTPUT
LINE

LENGTH OF
OUTPUT TAPE

LENGTH

>2300 FT
?

NO
RETURN

INSTRUCT

OPERATOR
TO PREPARE
FOR 2 REELS

Figure C-39, DMDOUT Program Flowchart

C-78

ENTRY -
ADDPIX

/

LBLRD-
READ
SECONDARY
INPUT
‘LABEL

IS
SECONDARY
INFUT LARGE
ENOUGH

LBLWRT-
WRITE
OUTPUT
LABEL

y

POSITION

INPUTS AT

STARTING
LINE

¥
‘ READ ONE
. RECORD
FROM
PRIMARY AND

SECONDARY
INPUT

{

ADD CORRES-
PONDING PIXEL
VALUES AND
STORE INTO
OUTPUT ARRAY

RETURN

Figure C-~40. ADDPIX Program Flowchart

C-79

WRITE
OUTPUT
RECORD

| YES
RETURN

ENTRY
FORMAT

N

READ FIRST' REWIND
; INPUT RECORD OUTPUT
CONVERSION AND DETER- TAPE AND
TO IDANS MINE RECORD READ cUNMMY
? LENGTH LABEL
NO) |

LEBLWRT-
WRITE
DuMMY
1DAMS
LABEL
READ
INPUT
RECORD

READ
INPUT
RECORD
WRITE
OUTPUT
RECORD
LESS THE
LINE NUMBER

BACKSPACE
ONE RECORD
AND WRITE
IDANS LABEL

RETURN .

~—] T]
‘HH*““mx ~ﬁﬁaf‘~ah %‘M\“ﬁaﬁ

WRITE
QUTPUT

END
OF INPUT RECORD

AFTER ADDING
LINE NUMSER

DATA
?

\

' vES

RETURN

END OF
FILECON
ENPUT
?

NO

Figure C-41. FORMAT Program Flowchart

“C-80

ENTRY HISTCONT

ANY

CONTRAST

TABLES INPUT
?

ARE
LINES AN
EVEN INTEGRAL
OF 6
7

YES

PRINT WARNING
AND RESET LINE
PARAMETERS

SKIP
UNWANTED
LINES

READ
NEXT
RECORD

TALLY

STORE GRAY
LEVELS INTO

APPROPRIATE
SET OF BINS

COMPUTE 6
HISTOGRAMS

WAS

A BASE LINE

SPECIFIED
7

ND

SET
DEFAULT

YES

COMPUTE BASE
LINE CUMULATIVE
HISTOGRAM

OUTPUT BASE
LINE
CUMULATIVE
HISTOGRAM

COMPUTE 5
CONTRAST
LOOKUP TABLES
AND PUNCH OUT

waAS
OUTPUT TAPE
SPECIFIED
?

RETURN

Figure C-42. HISTCONT Program Flowchart (1 of 2)

SKIP
UNWANTED
LINES

READ
NEXT
RECORD

!
CODE

CONVERT GRAY
LEVELS USING
APPROPRIATE

LOOK-UP TABLE

ALL RECORDS
BEEN PROCESSED
7

COMPUTE S
HISTOGRAMS

RETURN

Figure C-42. HISTCONT Program Flowchart (2 of 2)

C-82

13

ENTRY JOYSTICK

DATA '—\\V//
=12
INITIALIZE ,
POINT COORDI- INTEREUPT DATA 1
NATES AND ;)
VARIABLES
=13 -
+ REWIND \\j//
TVCON)
JOY STICK =14
CONFECT o .6
W/TV DEPRESSED FORWARD
{CHANNEL 2] f
YES s
* ! 16
TTWCON REVERSE
CONNECT
W/212

(CHANNEL 41 18 17
SELECT
JOYCON =1 =2 =3 =4 =5 =6 =17 .
: ZOOM
CONNECT
W/DDI wox|

LOCATE MOVE SIZE SHAPE
(CHANNEL C} RESEAU

8
1 1 8
‘ } 20
3 [\\i//J [[9 1 EXIT

DISPLAY
FUNCTION
CODES

)

STORE
SENSE 212
INTERRUFT OR
JOYSTICK
BUTTCNS
DEPRESSED

Figure C-43. JOYSTICK Program Flowchart (1 of 11)

C-83

BOXGEN

15

BOX ALREADY

DISPLAYED
?

NO

IS
RESEAU
ALREADY
DISPLAYED
?

YES

YES

KILLIN

REMOVE BOX
FROM TV-RESET
FLAG

COMPUTE BOX
COORDINATES
ARGUND
RESEAU MARK

)

COMPUTE BOX
COORDINATES
SUCH THAT BOX
1S CENTERED
ON TV SCREEN

KILLIN

REMOVE RESEAU
FROM TV-RESET
FLAG

Il

DINATES TO
TV FORMAT
AND SEND
TOTV

CONVERT COOR-

1S
RESEAU
ALREADY
DISPLAYED
P

NO

1S

YES

KILLIN

REMOVE RESEAU
FROM TV-
RESET FLAG

COMPUTE RESEAU
COORDINATES

BOX YES
WHICH ARE
DISPLAYED CENTERED W/IN
. BOX
KILLIN
COMPUTE RESEAU
COORDINATES SUCH
THAT RESEAU IS FSSMOT\\’EF?%)ET
CENTERED ON
TV SCREEN FLAG

|

CONVERT COOR-
DINATES TO TV
FORMAT AND
SENDTO TV

Figure C-43. JOYSTICK Program Flowchart (2 of 11)

LOCATE

]

BOX

DISPLAYED
?

PRINT
RESEALF
COORDINATES

SET UP RESEAU

PRINT COORDINATES
BOX FOR 212 QUTPUT
COORDINATES AND OUTPUT
TO 212

SET UP BOX
COORDIMATES
FOR 212 QUTPUT
AND QUTPUT
TO 212

HAS

SEND KEY

BEEN DEPRESSED
?

NO

MOVE

15
BOX OR
RESEAU DIS-
PLAYED ON
™
?

HAS
JOY STICK

BEEN MOVED 8
?
YES
COMPUTE WAIT
TIME AS FACTOR
OF JOYSTICK
VOLTAGE
SUBTRACT 1
FROM ¥1 AND
¥2
s ADD 1
MOVEMENT TO Y1 AND
DOWN ¥
7
15 ADD 1
MOVEMENT 55 TO Xt
TO RIGHT AND X2
?

SUBTRACT 1

FROM X1 AND | e —
x2

Figure C-43. JOYSTICK Program Flowchart (3 of 11)

C-85

1CLOCK

WAIT
SPECIFIED
TIME PERIOD

#

CONVERT
COORDINATES TO
TV FORMAT
AND SEND
TOTV

15
‘MOVE"
BUTTONSTILL
DEPRESSED
?

HAS
JOYSTICK
BEEN MOVED
up
?

HAS
JOYSTICK
BEEN MOVED
DO;NN

NO

15
'SIZE’

BUTTON STILL
DEPRESSED
?

YES

f— e ———

INCREASE X2,
Y2 By 1

DECREASE X1,
¥Y2BY t

e

DECREASE X2,
Y2

INCREASE X1,
¥Y1BY1

!

COMPUTE WAIT
TIME AS FACTOR
OF JOYSTICK
STATUS

ARE

COORDINATES

WITHIN

RANGE
7

YES

ICLOCK

WAIT
SPECIFIED
TIME PERICD

!

CONVERT COOR-
DINATES TO
TV FORMAT

AND SEND
TOTY

Figure C-43. JOYSTICK Program Flowchart (4 of 11)

C-86

HAS
JOYSTICK
BEEN
MOVED
?

COMPUTE WAIT
TIME AS FACTOR
OF JOYSTICK
STATIC

1S

MOVEMENT
DOWN DECREASE Y2
? BY 1
DECREASE X1
BY 1
INGREASE X2
BY 1
MOVEMENT | INCREASE X1
15 TO —
LEFT | DECREASE X2
| BY 1
_________ 4

Figure C-43.

]

'SHAPE’

BUTTON STILL
ON

ICLOCK

walT
SPECIFIED
TIME

CONVERT
COORDINATES

DECREASE Y1
BY 1

TG TV FORMAT
AND SEND TO TV

INCREASE Y2
BY 1

INCREASE Y1
BY 1

JOYSTICK Program Flowchart (5 of 11)

C-87

DATA

DATAT -

REQUEST TAPE
UNIT FOR IMAGE
TO BE DROFPED

ON T.V. (CON-
VERT TO BINARY}

REQUEST COLOR
GUN CODE AND
CONVERT TO
BINARY

)

READ 32 DATA
LINES AND
PRINT QUT
LENGTH QF
LABEL RECORD

\ |

LINDIS

SEND 16 EVEN
NUMBERED LINES
TOTV

\

LINDIS

SEND 16 ODD
NUMBERED LINES
TOTV

DIFFERENT
BUFFERS)

—

YES

READ DATA
LINE (EVEN
AND ODD LINES
GO INTO

KILLIN

CLEAR TV
HARDWARE FUNC.
TION REGISTER

NO

=

-

FLIP

REVERSE CHAR-

ACTER ORDER
IN EACH DATA
WORD

HAS
SET OF 32
LINES BEEN
READ IN

C-83

Figure C-43. JOYSTICK Program Flowchart (6 of 11)

FORWARD
47 |SELECT

REVERSE
REWIND
REQUEST TAPE REQUEST
INTEGER COORDINATES
REQUEST NUMBER PLACE CDOR-
DQES OF FILES TO DINATES IN
FUNCTION CODE SKIP AND CON- ICOOR
=13 VERTTO ARRAY
7 INTEGER

PRINT
ERROR
MESSAGE

BACKSPACE
SPECIFIED
NUMBER QF
FILES

DOES

FUNCTION

CODE =14
?

REWIND
TAPE

! FORWARD WER
SPACE BOTH PRINT MESSAGE
1 REQUESTED LINE NUMBERS AND CORRECT
NUMBER OF EVEN OR LINE NUMBERS
FILES QoD

CONVERT
1 COORDINATES TO
TV FORMAT AND
SENDTO TV

Figure C-43. JOYSTICK Program Flowchart (7 of 11)

C-89

ZOOM

REQUEST
TV IMAGE
NAME

REQUEST MASTER
TAPE UNIT AND
FILE NUMBER

¥

REQUEST TAPE
UNIT AND FILE
NUMBER; CONVERT
TO INTEGER

READ MASTER
IMAGE TAPE
LABEL

READ TV
IMAGE TAPE
LABEL

Y

REQUEST OUT-
PUT TV IMAGE
NAME, TAPE
UNIT, AND
FILE NUMBER

VERIFY THAT
MASTER TAFE
1S MOUNTED

SET
™
COORDINATES

¥

DETERMINE IF
AN INCREASE OR
REDUCTION IS
NEEDED

¥

COMPUTE VARI-
ABLES AND
FLAGS FOR
BOTH CASES

RETURN

Figure C-43. JOYSTICK Program Flowchart {8 of 11)

C-90

ENTRY DISP

!

STORE ADDRESS
OF TV COOR-
DINATES INTO
INSTRUCTION

CONNECT
WITH TV
HARDWARE

BOX
FUNCTION
?

SEND
RESEAU
FUNCTION

TRANSFER
COORDINATES TO
TV HARDWARE

ENTRY FLIP

LOAD
INPUT
WORD

!

SEND
BOX
FUNCTION

REVERSE
ORDER OF
CHARACTERS

STORE
REVERSED
WORD

RETURN

HAVE
ALL INPUT
WORDS BEEN
PROCESSED

RETURN

Figure C-43. JOYSTICK Program Flowchart (9 of 11)

Cc-91

ENTRY TVCON

CLEAR I/
CHANNEL 2
TV}

ENTRY LINDIS

PICK UP DATA
ARRAY ADDRESS
AND STORE INTQ

INSTRUCTIONS

Y

CONNECT
TO CHANNEL
2

1

KILLIN

SET TV
FUNCTION
REGISTER TO O

RETURN

ENTRY KILLIN

SETTV
FUNCTION CODE
TOO

!

RETURN

Figure C-43.

CREATE 12-BIT
FUNCTION CODE
FROM ICODE
AND IADD

15
FUNCTION

1

SHIFT OFF
LEAST SIGNIF-
ICANT BIT QF

EACH DATA WORD

|

SET
FUNCTION
CODE

[

TRANSFER 2
BLOCKS OF 16
LINESTO TV
CHANNEL 2

1S
OPERATION
COMPLETED
?

C-92

GET STATUS
FROM CHANNEL
2

JOYSTICK Program Flowchart (10 of 11)

ENTRY JOYCON

ENTRY CHKJQY

CLEAR I/O
CHANNEL -
(DDI)

COMNNECT
TO CHANNEL
0

RETURN

CLEAR CHANNEL
0 AND SEND
FUNCTION CODE

READ VOLTAGE
VALUES FROM
DD

15
SAME
BUTTON
DEPRESSED
?

HAS
JOYSTICK
BEEN
MOVED
?

YES

RESET FLAG

SET
DIRECTION
FLAG

COMPUTE AND
SET SPEED
FACTOR

RETURN

)

RETURN

Figure C-43. - JOYSTICK Program Flowchart (11 of 11)

C-93

ENTRY
MSSCON

ALLOCATE
COMMON FOR
DATA AND
WEIGHTS

NORMALIZE
EACH ROW
OF WEIGHTS

LBLWRT

WRITE
QUTPUT
IMAGE LABEL

DETERMINE
LINE EXTEN-
SION REQUIRED

o

DETERMINE
UPWARD AND
DOWNWARD
EXTENSION
REQUIRED

!

COMPUTE
PARAMETERS
FOR READING

FROM INPUT
TAPE

WILL
ENTIRE
INPUT FiT

IN CORE
?

STORE WEIGHTS
AND NOR-
MALIZE THEM

DETERMINE
METHOO FOR
LOADING DATA
INTO CORE

COMPUTE
PARAMETERS
FOR CONVOLV-
ING DATA ONE
LINE AT A
TIME

CORE LOAD
EQUALS BLOCK
CF FULL IN-
PUT LINES

CORE LOAD
EQUALS
ENTIRE

IMAGE

f

[

Figure C-44.

READ LINE
OF DATA
FROM TAPE
INTO CORE

EXTEND LINE
AS REQUIRED
BY PARAMETERS

LAST

LINE OF

INPUT READ
?

YES

COPY LINES
UP DR DOWN
AS REQUIRED

MSSCON Program Flowchart (1 of 2)

Y

ADMSS

SET POINTER
TO BEGINNING
OF APPROPRIATE
AROWWEIGHT
MATRIX

Y

ADDWTS

GENERATE
ONE LINE
OF CONVOQLVED
OUTPUT

WRITE LINE
ONTO OUTPUT
TAPE

ALL

DATA IN NO

ENTRY
ADDMSS

)

STORE
CONSTANTS AND
WEIGHT TAEBLE
ADDRESS FOR
APPROPRIATE
ROWWEIGHT
MATRIX

CORE PROCESSED
?

ENTIRE
INPUT IMAGE
PROCESSED

SHIFT TO TOP
OF CORE ANY
DATA NEEDED
FOR ADDITIONAL
OUTPUT LINES

Figure C-44,

Y

RETURN

MSSCON Program Flowchart (2 of 2)

APPENDIX D - FLOATING-POINT DATA REPRESENTATION

D.1 FLOATING-POINT ARITHMETIC

The complex quantities on which the fast Fourier transform (FFT) operates are
processed using standard FORTRAN double-word floating-point arithmetic; this
ensures straightforward adaptation of the programs to other computers. Sub-
stantial savings in computation time and storage space, without significant loss
of accuracy, might have been achieved by using a nonstandard, single-word,
floating-point representation rather than the standard CDC 3200 double-word
software floating-point routines; however, extensive use of assembly~language

coding would have been required. Therefore, this alternative was rejected.
D,2 MAXIMUM ARRAY SIZE

The FFT program uses an algorithm that requires array dimensions to be

powers of 2, to simplify program logic. Because each complex quantity re-
quires a total of four 24-bit computer words to represent both real and imaginary
parts, approximately 6000 words available for storing arrays in core will accom-
modate a maximum of 1024 complex numbers, occupying 4096 computer words.
Due to symmetries resulting from the absence of imaginary components in the
original image data, these 1024 values normally will be packed into a 512-value
line before performing the FFT or its inverse. The 32,300 cells (64 words/cell)
available on disk storage are not quite sufficient to hold 1024 lines of 512

complex values each; therefore, the effective capacity of the disk is 512 lines.

For these reasons, an array of 512 lines of 512 values each is the largest that
can be processed by FFT without requiring the addition of complicated and time-
consuming provisions for frequent data transfer between disk and seratch tape.
Because this size of array already requires more than an hour to transform on
the CDC 3200, it was decided that there was little point in trying to provide for

a larger array size.

Because image data is packed two pixels per complex word, an image with a

maximum of 512 lines and 1024 pixels per line can be transformed.
D.3 THREE-STEP PROCESSING

Since the maximum-sized complex array can be accommodated on the disk, the
FI'T and smoothing routines store all intermediate results on the disk. To
give the various Fourier transform and smoothing tasks maximum flexibility in
input and output formats, any task involving complex data is subdivided into

three steps:

1. Transfer input data from tape to disk, performing required packing
and conversion during transmission so it is stored in standard

- format.
2. Carry out the FFT or smoothing and leave results on disk.

3. Transfer output data from disk to tape, performing any required

unpacking, conversion, or scaling.

The FPCON routine transfers input data from tape to disk, carries out most
format conversions of data already on disk, and transfers output data from disk
to tape. However, a separate routine, CXPACK, packs and unpacks data on

disk.
D.4 COMPLEX SYMMETRIC ARRAY PACKING AND UNPACKING: CXPACK

To halve FFT execution time, placement of alternate real values in the real

and imaginary parts of the complex values converts a real input array to a
pseudo—complex array. After Fourier transformation, the pseudo-complex
array must be unpacked to obtain the actual Fourier components of the input ar-
ray. The unpacked array of Fourier components is twice as large as the packed
array. Because the input is real, however, only one-half the unpacked values
need to be stored; the remainder can be obtained by using the symmetry proper-
ties of the Fourier components of a real array. The following paragraphs de-

gcribe the mathematical details of this procedure.

D-2

Alternate elements of a real M by N array g, 2T° packed into an M by

N/2 complex array frnn according to the relation

c 0,10, Mo1; 0= 0,1, 000y 1

flrnn B gm,. on ! gm,2n+1’ m 2

After carrying out the fast Fourier transform on fmn s the Fourier coefficients
b associated with gmn can be computed from the Fourier coefficients a

ke
associated with fmn by using the equation

k{

b = b* = 1 I(+ a* ._.N_-._!
ke~ OM-k,N-2~ 278 (ke im-kr T H
. =27ig/N * N |
-ie Crep” 2yt 2 Y
k=0,1,...,M-1; £= 0,1,.,.,§~ 1
. % .
Due to the symmetry relation between. bk.e and bM-k, Neg ’ only the first

N/2 + 1 columns of bm need to be stored; the remaining N/2 - 1 can be

computed using the symmetry equation. The packed array a__ , however,

ki
requires only N/2 columns of storage. It would be very inconvenient to have

to use a slightly larger disk array to accommodate the b However, the

ke L]
need for the extra column (£= N/2) can be eliminated as follows:

For 4= 0, the symmetry principle simplifies to

* *
bk, 0 bM—k,N - bM-k, 0

because bk»@ is periodic in £ with period N; for £ = N/2, this symmetry gives

*

b

b N/2 T M-k, N/2

Hence, by using the first column of the array to hold values of b for

k, 0
k< M/2 and b for k= M/2., all values of b, = may be reconstructed

ks
and bm/z, 0"

k, N/2
f
rom an M x N/2 array except for bO, N/2

For these values, however, the symmetry principle gives

* *
= = b
bo, N/2 bM, N/2 T0,N/2
and,
* *

b =b =
M/2,0 M/2,N bM/Z,O

where the periodicity of b has again been utilized. Hence, and

ke bo, N/2

1. imi i d b
bM/z, 0 are both real. A similar computation shows that bO, 0 an M/2, N/2

are also real. The four real values can, therefore, be stored into two complex
words. The storage arrangement that has been employed is to store b 0.0 and
b into the real and imaginary parts, respectively, of the first complex

and b

0,N/2

value of the first line in the array; and b » respectively,

M/2,0 M/2,N/2
into the real and imaginary parts of the first complex value of line M/2 + 1 of

the array. (This line corresponds to k - M/2, since k=0 for the first line.)

When an inverse Fourier transformation is desired, the half array of bk values

described above must be packed back into the a This is achieved using the

m »
formula:

1 . 2mifd/N . 2mi/N | * N
g~ (e byt (-1 by g -t

kzo’lntngM-l; 2: O,I,noQ,EN"- 1

After the inverse Fourier transformation has been carried out, the values of

gmn can be recovered simply by using

g =Re (fmn)

m’zn m=0,1,..-, M“I;D:O,l,-.-,zﬁ“l

Bm,2n+1 = Im €)

where Re and Im denote real and imaginary parts, respectively.

