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SUMMARY
 

The need for rational structural design methods to design
 

structures for either containing or deflecting (into "harmless"
 

regions) engine rotor fragments from aircraft jet engines is
 

discussed. It is arg-u~th~t efficiency and convenience cbon 
 -

siderations lead one to employ two-dimensional rather than
 

shell and/or three-dimensional-solid structural analysis models
 

at this time. Further, the judicious use of both theoretical
 

analysis and experimental data on engine-rotor-fragment impact
 
with selected structures is essential to achieve reliable and
 

efficient designs for this complex problem since only a limited
 

understanding of its many aspects currently exists.
 

Accordingly, restricting attention to fragment containment/
 

deflector structures whose deformations are confined essentially
 

to one plane '(the plane of the structural ring), it is noted
 
that already-validated methods for predicting the large-defle6­

tion elastic-plastic transient deformations of such structures
 
are available; reliable and accurate predictions result, provided
 

that one has accurate knowledge of the externally-applied trans­

ient forces to which the structure is subjected. In the present
 

context, these forces are the forces applied to the structural
 

containment/deflector ring by the impacting fragment(s) during
 

the impact and interaction process. A means for estimating
 

these impact/interaction forces experienced by the "ring" is to
 
conduct experiments in which (a) selected types of engine-rotor
 

fragments are caused to impact "typical" rings and (b) careful
 

measurements are made of the transient response and deformation
 

-of the impacted structure. The information is then used in a
 

"backward-solution" of a JET structural response computer code
 

to obtain an estimate of the externally-applied forces which
 

must have produced the experimentally-measured transient motion
 

and deformations of the fragment-impacted ring; this procedure
 

is termed the TEJ-JET process.
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SUMMARY CONCLUDED
 

The intent is that relatively few experiments used in con­

junction with the TEJ-JET process will provide information on the
 

external forces experienced by a containment ring to a given type
 

of fragment attack such that computer code studies of containment­

structure response could be carried out to reduce greatly the num-­

ber of experiments required for a wholly-experimental study of the
 

engine-rotor-fragment containment/deflection problem.
 

The theoretical feasibility of the TEJ-JET process was estab­

lished earlier. The present report describes work in progress to
 

assess whether or not this scheme is feasible in a practical sense
 

when experimental transient deformation data of the limited pre­

cision and accuracy provided by currently-available techniques are
 

employed.
 

Discussed here are the high-speed photographic techniques,
 

the film reading techniques, and supplementary measurements employ­

ed at the Naval Air Propulsion Test Center to obtain the desired
 

transient response data. Sources of error and data uncertainties are
 

identified. The techniques employed to reduce data reading uncer-.
 

tainties and to "correct" the data for optical-distortion effects
 

are discussed. These procedures, including spatial smoothing of
 

the deformed ring shape by Fourier series and timewise smoothing by
 

Gram polynomials, are applied illustratively to recent transient res­

ponse measurements involving the impact of a single T58 turbine rotor
 

blade against an aluminum containment ring. Plausible predictions of
 

the fragment-ring impact/interaction forces are obtained by one
 

branch of this TEJ-JET method; however, a second branch of this meth­

od, which provides an "independent" estimate of these forces, remains
 

to be (but will be) evaluated in near-future studies. These two esti­

mates of these "externally-applied forces" each with an appropriate
 
"reliability weighting factor" will be combined in a Kalman filter
 

branch of the TEJ-JET process to provide an "optimum estimate" of
 

these fragment-ring impact/interaction forces.
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SECTION 1
 

INTRODUCTION
 

1.1 Background
 

The occurrence of potentially dangerous failures of high­

speed rotating parts in aircraft turbojet engines has been well
 

documented in the past, and remains a problem without an adequate
 

solution to date (Refs. 1 to 3). Fragments emanating from high­

speed turbine, fan, or compressor rotors, be they blades or por­

tions of the disk with attached blades, may threaten passenger
 

safety and cause damage to equipment if not deflected away from
 

vital components or fully contained.
 

The design and construction of over-strong turbine parts
 

to eliminate the possibilities of failure are uneconomical, since
 

the possibilities of overspeed, overheating, fatigue, and the in­

gestion of foreign objects cannot be avoided entirely and may pre­

cipitate a failure. Diverting some of the weight penalty into the
 

design and construction of a heavier engine casing or additional
 

protective structure around failure-prone regions to contain or
 

deflect the fragments may become acceptable with the realization
 

that turbojet rotor failures cannot be eliminated completely.
 

Hence, the proble of analytically and experimentally studying the
 

interaction of fragments impacting containment/deflection struc­

tures is an important one.
 

Since mid-1968, the Aeroelastic and Structures Research
 

Laboratory of the Massachusetts Institute of Technology (MIT-ASRL)
 

has been investigating for NASA-LeRC theoretical methods of study­

ing the fragment containment/deflection problem, with the primary
 

objective being to develop the necessary analytical tools and asso-­

ciated computer programs which could be used by industry to aid in
 

the process of designing containment/deflection structures for
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turb.ojet_,engines _(Refs.., 4 t. lO) . _An experimental effort (Refs. 

11 to 15) has been carried out by the Aeronautical Engine Divi­

si6nothe NavafAir Propulsion Te-t Centert(NAPTC)-'Phila­

delphia, Pa. A closely-coordinated exchange of ideas, research
 

developments and- suggestions-for-ifuture- programs-has mutually-

aided these theoretical and experimental efforts.
 

Theoretical methods of analysis can play many useful roles
 

in the search for and the determination of practical least-weight'
 

design of structures for containing or deflecting engine rotor
 

fragments.
 

For preliminary desigh, it is often useful to employ a
 

severely simplified model to approximate the behavior of candi­

date containment/deflection structures. In particular, one might
 

approximate the actual containment structure which undergoes.
 

three-dimensional deformation under fragment attack by a struc­

tural ring which undergoes essentially only planar (2-d) defor­

mations. This simplification carries with it both advantages and
 

limitations., Some of the advantages are that this approach pro­

vides a very efficient way for (1) conducting preliminary esti­

mates for containment vessel thickness (compared with using A
 

general 3-d shell analysis), C2) screening candidate contain­

ment materials -to assess their -comparative efficiencies, (3) ex­

ploring the effects of various approximate forcing functions,
 

and (4) determining approximately the forces -applied to the con­

tainment vessel by attacking fragments via theoretical analysis
 

alone and/or by appropriately c6mbining experiment and theory.
 

However, the use of such a method will not enable one to predict
 

reliably the required threshold containment thickness of an actual
 

containment vessel -- the absolutely- essential 3-dimensional shell
 

deformation ingredient is missing: a quantitative assessment of
 

the importance of this ingredient remains to be made but recent
 

NAPTC parametric test results clearly show its importance.
 

+To be relocated shortly at Trenton, New Jersey.
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For detail design purposes, one needs more refined esti­

mates of required containment vessel thickness than the afore­

mentioned simplified analysis\9an provide. This information
 

can be most effectively furnished by a coordinated program of
 

experiments and more comprehensive structurai'analysis. The
 

structural analysis (and also experiments) must include more
 

comprehensive modeling of the actual structural configuration,
 

material properties, and the 3-d shell deformation behavior.
 

Proven analysis methods of this type would be useful for (1)
 

assessing the adequacy of the design under a series of forcing
 

functions which are chosen to represent various likely and/or
 

critical types of fragment attack and (2) reducing the amount
 

of ad hoc testing. However, the present knowledge of the forc­

ing function(s) applied to containment structures during frag­

ment attack is poor; this represents a major source of diffi­

culty and uncertainty.
 

Accordingly, rather than plunging into the very complex
 

problem of analyting and predicting these forcing functions
 

for the general problem of a 3-d containment/deflection shell
 

under attack by a simple single fragment, a complex single frag­

ment, or a complex succession of fragments, it was decided to
 

concentrate effort first on the much simpler problems of a plan­

ar containment vessel (a structural ring) in order to develop:
 

(a) 	methods for estimating the attendant forcing
 

functions (by theoretical analysis alone or by
 

a combination of theory and experiment) and/or
 

(b) 	methods for predicting the ring/fragment inter­

action and structural response directly without
 

seeking an explicit evaluation of the forcing
 

function itself.
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Various apr-oaches to items (a)- an-d (b) have been_0o~hi3Ared. 

The TEJ-JET concept (Ref. 5) was proposed for item (a); see 

Sectios 2 for a des-cription of the essence of this metho&. Also, 

the use of energy and momentum conservation relations for the 

fragment/ring system was considered for items (a) and (b) -r the 

respective resulting schemes are labeled CFM-JET (Ref. 8) and 

CIVM-JET (Ref. 7Y, respectively. The following terse key-word­

description identifies the principal advantages and disadvantages
 

of these three approaches:
 

* TEJ-JET
 

" Applicable to Simple Single as well as Complex
 

Multiple Fragments
 

" Must have Measured Transient Structural Response
 

Data
 

" Predicted Transient Externally-Applied Loads
 

are Useful for Preliminary Design
 

A Use as Unchanged in Screening Calculations
 

for Various Containment Vessel Materials
 

or
 

A Conduct Spot Check Tests and TEJ-JET
 

Analysis for One or Two Other Materials
 

* CIVM-JET AND/OR CFM-JET 

* Does Not Require Measured Transient Response Data 
* Uses Basic Geometry, Material Property, and Initial 

Condition Data
 

" Readily- Applied to Single Fragments
 

" Multiple or Complex Fragments
 

A More Difficult to Apply 

A Needs Further Development; Complex Logic 

" Complex but has Much Potential for Future
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Because of the potential of the TEJ-JET concept for deter­

mining "representative forcing functions" for both simple
 

fragments and very complex fragments with apparently comparable
 

effort, and because of limited funds and available trained per­

sonnel, it was decided to pursue the TEJ-JET concept first -­

deferring action on these alternate approaches until an appro­

priate later time. Accordingly, the development of the TEJ-JET
 

concept has proceeded, with the first stage of development
 

(Ref. 5) being devoted to containment rings subjected to single
 

blade impact; NAPTC Tests 88 and 91 were conducted in an effort
 

to obtain the required experimental data. Analyses of these
 

data have indicated the necessity for improved experimental
 

measurements. Hence, NAPTC subsequently has carried out similar
 

tests with improved techniques.
 

The recent MIT-ASRL work on the analysis, evaluation, and
 

application of the experimental results relating to the TEJ-JET
 

concept is the central topic of the present report. Similar
 

containment ring experiments and TEJ-JET analyses involving
 

(a) a tri-hub T58 turbine rotor impact and/or (b) a single
 

blade failure from a fully-bladed rotor followed by subsequent
 

impacts and additional blade failures have been recommended in
 

an effort to define typical forcing functions for additional
 

possible and/or likely types of fragment attack. It will remain,
 

however, to be demonstrated whether adequate rules can be devised
 

to "extrapolate" this forcing-function information to represent
 

similar types of fragment attack (with perhaps different frag­

ment material properties) against containment vessels composed
 

of material different from that used in the aforementioned ex­

periments.
 

It is to circumvent this tenuous extrapolation problem
 

and to eliminate the necessity for making the detailed experi­

mental transient response measurements now required for the
 
TEJ-JET concept that effort has been devoted to developing
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other fundamental analysis procedures which will drastically re­

duce the requirements for detailed experimental transient re­

sponse measurements of containment vessels subjected to fragment
 

attack. The attendant analysis procedures are termed CIVM-JET
 

7e)_and P M.JET _(Ref. 8)........ . . 

The information flow chart shown on the next page indicates
 

schematically the roles of the JET structural response computer
 

codes in relation to the concepts TEJ, CIVM, and CFM.
 

In the information flow chart shown on the next page, refer­

ence is made to computer programs JET 1, JET 2, and JET 3 -­

each with various different capabilities. The computer programs
 

JET 1, JET 2, and JET 3 enable one to predict the large deflec­

tion elastic-plastic transient structural responses of simple
 

2-d planar structures such as rings to prescribed* externally­

applied forces and/or to prescribed* imparted velocities. JET 1
 

(Ref. 4) pertains to free single-layer rings which may be sub­

jected to mechanical and/or thermal loads, whereas JET 2 (Ref. 5)
 

applies to both single-layer and multilayer, multimaterial, hard­

bonded unheated free rings which may be subjected to mechanical
 

loads and/or prescribed imparted velocities. JET 3 (Ref. 9)
 

applies to both complete and partial unheated single-layer rings
 

which can be either free or restrained in various ways; prescribed
 

mechanical loading or imparted velocities may be employed. Ref­

erences 4, 5, and 9 may be consulted for further details.
 

The present report is concerned mainly with documenting
 

the experimental techniques employed in obtaining transient de­

flection data, the subsequent analysis, improvement, and evalu­

ation of this data, and its preparation for use by the TEJ-JET
 

method for determining from measured ring transient structural
 

response data the external forces applied to a containment/de­

flection ring-during ring/fragment impact and interaction.
 

*The key item of present interest is that these quantities must
 
be prescribed or known.
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EFFECTS ON CONTAINMENT RINGS
 

FROM ROTOR-DISK FRAGMENT IMPACT 

Transient Response 

Deformations
 

Strains)-to Fracture Limit
 

This behavior can be predicted by 

JET 1 2-D Codes, 

JET 2 each with various 

I JET 3 different capabilities 

jIF ONE HAS RELIABLE INFORMATION ON 

A 	The distribution, magnitude, and time B The distribution, magnitude, and time
 

history of the FORCES applied to the OR history of the VELOCITIES locally
 

ring throughout the fragment-ring CENTRAL PROBLEM IS TO imparted to the ring throughout the
 

interaction Process. STEruINEu 	 A OR B fraent-ring interaction process.
 

VELOCITIES b
L~ind FjRCE:SbyFind 


TiJ Process OR/AND i 2 CFM { 	 3 CIVM Processl 

iTransient Forces I 	 Imparted Velocity Information I 

To 	Obtain Structural To Obtain Structural
 

IResponse, Apply to 	 Response, Apply to
 

JET 2, and/orJE2,a/o
 

JET 3JE3
 



Finally, the following key-word comments on the principal
 

roles which experiments are considered to play in the engine
 

rotor fragment containment/deflection problem may be useful:
 

E.1 	Explore Phenomena
 

* 	Simple Cases
 

_q 	Very pomplex Cases (too complex to analyze
 

reliably by available methods)
 

E.2 	 Data to Test Analysis Methods and Aid Develop­

ment
 

E.3 	Preliminary Data to Guide Designers
 

SSimple Rings (2-d structure): LOGICAL START-

ING POINT 

A Selected Fragments and Conditions 

A Assured Containment 

U 	Simple Cklindrical Shells (more variables)
 

* 	Ring-Stiffened Shells (many more variables)
 

E.4 	 "Proof Tests" of Full-Scale and/or Part-Scale Designs
 

a Conditions for Meaningful Proof Test
 

A 	Fragments
 

Types (most critical and/or likely)
 

Sizes (most critical and/or likely)
 

A 	Temperature Simulation: Takeoff
 

A 	Pressure (Air Flow, etc.): Takeoff
 

This 	report deals with item E.2.
 

The NAPTC experiments (Refs. 11 through 15) have been and
 

are in the process of contributing particularly to item E.1,
 

E.2, and E.3, with the contribution to item E.2 being pertinent
 

to the TEJ-JET, CIVM-JET, and CFM-JET developments.
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1.2 Report Organization and Contents
 

As noted earlier, the computer programs JET 1,. JET 2, and
 

JET 3 can provide accurate predictions of large-deformation
 

elastic-plastic transient responses of containment/deflection
 

rings if one supplies accurately prescribed information on the
 

externally-applied transient forces (or velocities imparted) to
 

the ring by the attacking fragment. However, the knowledge of
 

the transient forces has been poor. 'As a step toward improving
 

that knowledge, the TEJ-JET concept and the associated computer
 

program which can be employed to predict the location, magnitude,
 

and time history of ring/fragment interaction forces, based on
 

experimentally measured containment ring deflection history data,
 
have been pursued. The application of this type of analysis is
 

intended to provide insight into the types of forcing functions
 
that occur typically; such forcing functions subsequently can be
 

employed in the JET programs for carrying out parametric calcu­

lations of design interest for various simple containment/de­

flection structures. However, securing suitably accurate con­

tainment ring displacement history data (the necessary input
 

information for the TEJ-JET analysis) requires a carefully con­

trolled and conducted experiment wherein high-speed motion pic­

tures of a fragment-attacked containment structure are taken,
 

from which the displacement history can be evaluated.
 

The contents of the remainder of this report consist of
 

the following. Section 2 pertains to the TEJ-JET analysis pro­

cedure, with the presentation of the concept, the capabilities,
 

and the limitations, and establishes the input requirement of
 

reliable experimental data on the space-time history of the
 

containment ring deformations to be used for the prediction of
 

reliable forcing functions. Section 3 is devoted to the dis­

cussion of the NAPTC fragment containment/deflection experi­

mental program, describing the objectives, the test equipment,
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the experimental technique, and the recording and reduction of
 

the data. In Section 4, the NAPTC experimental data are ana­

lyzed, the sources of error are identified, and the processing
 

employed to improve the accuracy, reliability and usefulness of
 

the data is described. Section 5 presents the specialized sub­

programs which are needed for the analysis of the experimental
 

data and the preparation of the data for use in the TEJ-JET pro­

gram, and describes the functions they serve. Section 6 is de­

voted to the applications of the specialized subprograms, presen­

ting the available data, the magnitudes of the errors in the
 

experimental data, the compensation for optical -distortions, the
 

smoothing techniques employed in preparing the data for use in
 

TEJ-JET, and the exercising of the different steps of the program
 

with sample experimental data-for the estimations of the inter­

action forces by different approaches. Finally, Section 7 sum­

marizes the report and presents some comments.
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SECTION 2
 

THE TEJ-JET CONCEPT
 

Although the TEJ-JET concept is theoretically valid for
 

very general structural response.problems, attention is re­

stricted herein (as motivated in Section 1) to 2-d structural
 

response problems; the structure may undergo large-deflection
 

elastic-plastic transient structural behavior but the deform­

ations are all considered to lie, essentially, in one plane.
 

For problems of this type, structural response prediction
 

codes of the finite-difference type (JET 1 and JET 2) and of
 

the finite-element type (JET 3) have been developed at the MIT-


ASRL. It has been demonstrated that these codes can provide
 

accurate large-deflection elastic-plastic transient response pre­

dictions for structural rings (a) whose material properties are
 

known and (b) which are subjected to (1) a known distribution
 

and time history of externally-applied forces or (2) a given dis­

tribution and time history of velocity increments. Conversely
 

then, if one has detailed information of the transient structural
 

deformations and motion of a given structural ring, one should be
 

able, in principle, to "carry out a backwards solution" to deter­

mine the distribution and time history of the externally-applied
 

forces (and/or velocity increments) which were responsible for
 

producing the "observed transient structural response"; this idea
 

is the essence of the TEJ-JET concept.
 

In the present context, the TEJ-JET approach involves mak­

ing very detailed experimental measurements of the motion of a
 

structural ring subjected to rotor fragment attack. The subse­

quent TEJ-JET processing of this information provides the spatial
 

distribution and time history of the externally-applied forces
 

which the ring experiences from fragment impact and interaction
 

with the ring.
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The theoretical feasibility of the TEJ-JET concept has been 

verified by carrying through examples wherein a structural ring 

of known properties has been subjected to a prescribed distribu­

tion and time history of external forces. The resulting structur­

al response was predicted by a JET code. This structural response 

information was then processed (a) before and (b) after having 

been dtered by impo ing randomi errors With a Zdr6 mean-b t var­

ious levels of probable error to "simulate "experimental observa­

tion and data reduction errors"; the resulting TEJ-JET predic­

tions of the externally-applied forces were in excellent agree­

ment with the known externally-applied forces (Ref. 5). 

Therefore, it was believed to be timely to apply the TEJ-JET
 

analysis to experimentally-6bserved transient deformation and mo­

tion data for a fragment-attacked containment ring in order to de­
duce the spatial and timewise history of the external forces which
 

the ring had experienced as a result of fragment impact. In or­

der to minimize experimental and data interpretation uncertainties,
 

the initial studies have involved the impact of only a single T58
 

turbine rotor blade against "initially circular" containment rings
 
of 2024-T4 and 6061-T6 aluminum chosen because of their well known
 

stress-strain behavior. For this study only one blade was on the
 

rotor -- to avoid the complexity of subsequent blade/blade impacts
 

of the "thrown blade" with the remaining blades on a usual T58
 

rotor.
 

From the earlier noted studies, it is clear that the TEJ-JET
 

concept is feasible from a thoretical viewpoint, provided that
 

one has available sufficiently accurate and complete transient
 

structural response information on the fragment-attacked ring.
 

Experimentally determined structural response data, however,
 

involve many possible sources of error and uncertainty. It
 

remains, therefore, to determine whether or not available ex­

perimental observation/recording techniques and modern data
 

processing techniques are adequate to provide transient response
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data of quality and detail sufficient to permit deducing reliably
 

the impact-induced externally-applied forces suffered by the sub­

ject fragment-containment ring. This is the central matter
 

which is being addressed in the present report.
 

Preliminary studies had shown that early experimental and
 

data reduction techniques did not provide transient structural
 

response data of adequate+quality for this purpose. Hence, im­

provements in both experimental techniques and in data reduction/
 

processing techniques were devised and employed. The lessons
 

learned in this process are discussed in subsequent sections of
 

this report; in particular, discussed are the ways and means
 

employed in the effort to better the quality of the data required
 

as input in the TEJ-JET program: (1) by improvements in the ex­

perimental techniques in obtaining high-speed motion pictures
 

of the fragment-ring interaction in a spin chamber, (2) by care­

ful readout of the ring position data from individual picture
 

frames, then (3) by analyzing the data to determine sources of
 

error and introducing compensating corrections, and (4) finally
 

smoothing the transient response curves analytically, prior to
 

application in the TEJJER segment (see Fig. 3) of the TEJ-JET
 

program.
 

It should be emphasized that the main purpose of the TEJ-


JET scheme is to obtain estimates of the distribution and time
 

history of the external forces experienced by the containment (or
 

deflector) structure arising from a succession of impacts from
 

one or more simple or complex fragments. As depicted in the dia­

gram on the following page, one analyzes measured transient struc­

tural response data of the containment structure via TEJ-JET
 

processing to deduce the externally-applied forces which must have
 

produced the observed transient structural response. The intent
 

+In fact, one could not deduce from those data even "plausible­

looking" transient externally-applied forces.
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is that if the TEJ-JET type of analysis were applied to typical
 

cases of, for example, (a) single-blade impact, (b) disk-segment
 

impact, and/or (c) multi-bladed disk fragment impact, one could
 

determine the distribution and time history of the forces applied
 

to the containment ting for each case. Such forces (or appropriate
 

modifications thereof) could then be applied tentatively in com­

puter code parametric studies to estimate the structural response
 

for a variety of containment materials for containment rings sub­

jected to similar fragment attack. For structural/material cases
 

differing from that used in the postulated experiment from which
 

TEJ-JET has extracted forcing-function information, one could be
 

guided in appropriately modifying these external forces by dimen­

sional analysis considerations and selected spot-check experi­

ments that otherwise would be needed in a wholly-experimental at­

tack upon the engine rotor fragment containment/deflection pro­

blem. Additional reasons for pursuing the TEJ-JET idea are given
 

on pages 4, 5, and 7 of this report.
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SECTION 3
 

FRAGMENT CONTAINMENT EXPERIMENTS
 

3.1 Objectives
 

Since 1963 the Aeronautical Engine Laboratory (now the 
Aer6hautical Engine"Division) of the Naval Air Engineering. 

Center (now the Naval Air Propulsion Test Center), Philadelphia, 

Pa.,-has been engaged in a Rotor Disk Burst Protection study 

sponsored by the Lewis Research Center of the National Aeronaut­
ics and Space Administration. The initial objective of the study 
was to determine experimentally the feasibility of containing or 

deflecting fragments of burst rotors from turbojet aircraft en­

gines with the aim of preventing injury to passengers and crew 
or catastrophic loss of aircraft. 

In pursuing this goal an experimental program was developed
 

to generate data Useful for the design of containment/deflection
 

devices with acceptable weight penalties. This included the de­

sign and development of a Containment Evaluation Facility where
 
fragments from intentionally-failed rotors could interact with a
 
containment/deflection device in a spin chamber, and the inter­

action history could be recorded by high-speed motion picture pho­
tography and strain measuring systems. The facility has been used
 

extensively for the development of test techniques, the evaluation
 

of containment/deflection systems, and parametric testing. Refer­
ences 11 to 15 may be consulted for more detailed information.
 

With the need to understand the mechanics of the inter­

action between the fragments and the containment/deflection
 
device, the objectives of determining the interaction forces,
 
their duration and spatial distribution, as well as the pene­

tration or failure modes were stated. To accomplish this, the
 

need to develop computer programs with appropriate mathematical
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models for the interacting systems and adequate input conditions
 

was apparent. This analytical investigation was undertaken by and
 

carried out at the A&roelastic and Structures Research Laboratory
 

(ASRL) at M.I.T.
 

This report deals with one phase of the analytical inves­

tigation carried out at the ASRL --- that of determining the
 

actual interaction forces, both spatially and temporally. Al­

though the developed program is conceptually capable of treating
 

complex interaction cases, for the initial investigation and vali­

dation purposes the much simpler case of a single blade inter­

acting with a circular containment ring was considered. The nec­

essary input information of ring deflection history has been and
 

will be provided by experiments carried out at the NAPTC. The
 

objective was to carry out carefully-controlled experiments where
 

a single blade from a T58 turbine rotor (with all other blades
 

removed from the disk) was caused to fail at a nominal preselected
 

speed and to impact and interact with an aluminum alloy ring of
 

known dimensions and material properties (such as 2024-T4 or
 

6061-T6 aluminum alloy). The resulting few milliseconds of inter­

action were recorded by high-speed motion picture photography in
 

an attempt to provide high quality pictorial records of the ring
 

deflections. This pictorial record would then provide the numeri­

cal data: the Cartesian coordinates for specific points on the
 

containment ring as a function of time. Assembling the sets of
 

position components from the sequence of pictures resulted in the
 

sought position-versus-time history of the containment ring; this
 

constitutes2the input data to the TEJ-JET analysis.
 

3.2 Test Equipment
 

For the single-blade containment tests outlined above,
 

the larger of the two spin chambers at the Rotor Spin Facility
 

of the NAPTC was used. This chamber has an inside diameter of
 

157 inches and can be evacuated to maintain a pressure of 50
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microns absolute. A protective liner, made of concentric
 

steel cylinders laminated and bolted together with an inside
 

diameter of 120 inches, provides protection for the b~amber walls
 

from fragments generated during destructive tests. The chamber
 

is equipped with photographic/observation ports around its cir­

cumference away from the plane of possible impact from fragments­

of a failed rotor. With an optical quality mirror placed at a
 

45-degree angle from the vertical under the rotor and ring test
 

assembly, a "bottom view" in the axial direction of the rotor
 

(spinning in a horizontal plane) is provided through a photo­

graphic observation port.
 

The interaction of blade and containment ring is recorded
 

by a high speed continuous framing camera positioned at the
 

port. The camera, a Beckman and Whitley Model 350, is capable
 

of producing a sequence of pictures at a framing rate of up to
 

35,000 pictures per second on a 35 mm film strip approximately
 

34 inches long. The film is mounted on a rotating drum trans­

port which revolves at a -speed of 9375 rpm at the maximum fram­

ing rate. The framing shutter is a set of rotating mirrors
 

which expose the sequence of pictures on alternate halves of
 

the film width, with the exposures on one half of the. film lag­

ging in position 14 frames behind pictures exposed on the other
 

half of the film.
 

The photo lighting unit, a Beckman and Whitley Model 358
 

Electronic Flash designed for use with the camera described
 

above, has a maximum setting to provide 6,000,000 peak beam
 

candle power for a pulse duration of approximately 2.7 milli­

seconds. Rise time for the flash is within 1.5% of the pulse
 

duration, and extinction time is within 4% of the pulse dur­

ation. The flash can be triggered through a voltage pulse,
 

a closing contact switch, or an opening contact switch. There
 

is a maximum delay of 50 microseconds between triggering and
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initiation of the light pulse. Different methods of triggering
 

the flash were attempted in an effort to obtain a few pictures
 

prior to fragment-ring contact.
 

The test rotor is attached to the driveshaft of a drive­

turbine powered by compressed air. The test assembly is sus­

pended from the bottom of the spin chamber lid, and may rotate
 

the test rotor in a clockwise or counterclockwise direction in
 

the horizontal plane. The containment ring is positioned con­

centrically with the rotor and in the same plane, resting on top
 

of and supported freely by three thin guy wires radiating out­
ward from the center of the ring; frictional forces between the
 

ring and the support wires are deemed negligible. A complete
 

freely-supported ring is used because (among other reasons) this
 

configuration is well-defined in terms of "boundary conditions"
 

for structural response analysis purposes.
 

Containment rings were machined from billets of 2024-T4
 

or 6061-T6 aluminum. The ring dimensions were: inside diameters
 
of 15.0 inches, radial thicknesses of approximately 0.15 inches,
 

and axial lengths of approximately 1.5 inches. The edge of a
 

ring, in view of the camera, was marked with reflective paint
 

at 72 equidistant stations (five degrees apart) to represent
 
the ring "mass points" whose position-versus-time history was
 

to be recorded. A stationary background plate with reference
 

points* was employed to provide an inertial reference frame
 

for each individual picture exposed on the film strip. Figure 1
 

depicts the experimental set-up as viewed by the camera, show­
ing the reference grid, the ring "mass point stations" and the
 

blade reference marks.
 

The pictorial record of the ring deflection history is
 

translated into numerical ring "mass point" position data by
 

projecting an enlarged image from each frame of the motion
 

The number and location of reference points were altered in
 
later tests to improve the reliability and/or accuracy of the
 
reference frame and provide a known gridwork to be used in check­
ing for possible image distortions.
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picture film on a screen and reading the Cartesian position
 

coordinates of the reference points, the ring "mass points",
 

and reference marks on the blade. The film reader is a Nuclear
 

Research Instruments Corp. combination motion-picture projector
 

and precision measuring device. It can accommodate film strips
 

up to 70 mm. wide, which can be projected onto a 24x24-inch
 

ground-glass projection screen,-magnified 10 times or 50 times
 

by using the appropriate lens system. The image on the projec­

tion screen moves along with the motion of the film carrier,
 

while the reticle cross-hairs remain fixed at the center of the
 

screen. Thus, the data point image is brought to alignment with
 

the cross-hairs by moving the film carrier. As the film carrier
 

is-moved in the x,y directions in the plane of the film, digital
 

disc encoders on the lead screws provide the position coordinates;
 

the nominal screw pitch is 1 mm, and with a 1000-count encoder
 

the smallest position increment is 1 micron. An IBM 026 card
 

punch connected to the system keypunches the position coordinates
 

on punch cards in a predetermined format for subsequent analysis.
 

3.3 	Experimental Technique
 

The generation of experimental data for use in an exacting
 

analysis necessitates careful controls of the conditions under
 

carried out and the employment of tech­which the experiments are 


niques which will insure the maximum reliability of the generated
 

data.
 

Frequent feedback between the NAPTC, where the experimen­

tal effort was carried out, and MIT-ASRL, where the analysis of
 

carried out, resulted in con­the experimentally-obtained data was 


tinuous reassessment of the methods employed and indicated the
 

ways and means to obtain improved results.
 

For the full-scale containment tests carried out at the
 

NAPTC in support of the TEJ-JET analytical effort, T58 tur­

were re­bine rotors were employed. All blades, except one, 
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moved from the turbine disk, and the single remaining blade
 

was appropriately weakened at the root to cause its failure at
 

an approximate predetermined rotational speed. The turbine
 
was then balanced dynamically and mounted on the driven shaft
 
of the spin chamber turbine drive system. In the later tests, 

reference markings were added on the single blade for ease of
 
accurately locating its trajectory prior to and subsequent to
 
impact with the containment ring. These reference markings
 

were in the form of four narrow bands (chordwise on the blade)
 

of black paint. One of the bands was at the tip of the blade,
 

thus outlining the edge which would be first in contact with
 
the containment ring. The other bands were at known stations
 
between the root and the tip of the blade. One could thus
 

identify "blade reference points", say at the leading and
 

trailing edges of the blade on centerlines of the reference
 
bands, the position-time history of which would determine
 

the trajectory, orientation, and speed of the attacking blade
 

(see Fig. 1). As the blade contacted the containment ring
 
and then deformed, a reduced number of "blade reference points"
 

stayed visible, as illustrate,:for example, in Fig. 2.
 

The containment rings employed were cut from aluminum alloy
 

billets and machined to specific sizes. Initially 2024-T4 alu­
minum alloy was the material used. In the later tests 6061-T6
 

aluminum alloy material was used. The uniaxial mechanical (elas­

tic-plastic stress-strain) properties of the containment rings
 

are well known from standard tests. However, very few static
 
uniaxial stress-strain tests of the actual material used were
 

carried out to determine compliance with the "standard" properties.
 

Machining a ring of 15-inch internal diameter and 1.5 inch
 

axial length to a thickness of approximately 0.15 inches is in­

herently a difficult task. Although uniformity of cross-section­

al dimensions (thickness and axial length) and radial distance
 
was sought, slight oblateness in the circular shape of the ring
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and some variation of thickness within a known tolerance is
 

inescapable. Hence, in the latter tests the dimensions of the
 

machined ring were carefully recorded; in particular, the ring
 

thickness at specific stations along the perimeter was measured.
 

The containment rings were also marked to identify 72
 

equidistant points (5 degrees of arc) around the perimeter.
 

These points represent the so-called "mass point" stations the
 

position-versus-time history of which is needed for analysis,
 

For the initial tests, the "mass points" were marked by mask­

ing off sections on one edge of the ring before applying black
 

paint, thus exposing the more reflective aluminum surface al­

ternating with the black sections. In later tests, the con­

trast was enhanced by applying reflectorized paint at the "mass
 

point" locations on the ring. An additional marking at one
 

point between the equidistant "mass point" positions gave an
 

origin reference for the consecutive numbering of the mass
 

points for identification purposes in the motion pictures (see
 

Figs. 1 and 2).
 

Positioning of the-containment ring in the same horizontal
 

plane as the test rotor, and concentric with it, was done with
 

spacer gage blocks. The set of support wires on which the con­

tainment ring rested was adjustable for the vertical positioning
 

of the ring in the proper plane. Friction of the ring on the
 

support wires maintained the concentric positioning of the ring
 

around the test rotor.
 

The background plate was, by necessity, placed above the
 

ring-rotor assembly plane. As the photographed view was the
 

bottom view of the test assembly, the background plate then
 

became positioned in a plane parallel to but beyond the plane
 

of the ring-rotor assembly. This point is noted to stress the
 

fact that the ring "mass point" markings, which were on the
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viewed edge of the ring, and the reference points which were
 

marked on the background plate, were not on the same plane and
 

hence were at a different focal distance from the camera. The
 

effect would be a slight reduction in sharpness of focus and a
 

slightly different -magnification factor for the two different
 

planes; this reduction was not evident because of the depth of
 

field.
 

For the initial tests, the reference marks on the back­
ground plate were placed at four locations roughly forming the
 

four corners of a square. In addition, at each location a set
 

of a few intersecting lines was used, thus providing a gridwork,
 

any points of which could be picked as an inertial reference
 

point. For the later tests, after due experimentation and analy­

sis, a new reference-point pattern was designed and used on
 

the background plate. These reference points were carefully
 

placed at known locations and in sufficient numbers to provide
 

a background gridwork which could be used not only to determine
 

an inertial frame of reference, but also could provide a basis
 

for checking magnification factors in different directions and
 

regions of the field of view on the film plane, and hence identify
 

possible optical distortion in the circumferential or radial
 

directions of the resulting pictures. The reference point grid­

work was a pattern of three points on each of eight radial lines
 

(45 degrees of arc in separation) with the inboard set of points
 

at a radial distance of 6.5 inches, the central set at a radial
 

distance of 8.5 inches, and the outboard set at 9.5 inches. The
 

points were actually drilled on the background plate, and out­

lined with a circular band of reflectorized paint for visible
 

contrast. The rest of the background plate was painted in flat
 

white. A black backup plate behind the reference plate was visi­

ble through the reference point holes. The result is shown typi­

cally in Figs. 1 and 2.
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With the above test set-up in the spin chamber, the chamber
 

was sealed and evacuated, and the single-bladed test rotor brought
 

up to speed. Simultaneously, the high-speed motion-picture cam­

era was accelerated to its predetermined framing speed. Upon the
 

failure of the single blade at its weakened root, the electronic
 

flashwas triggered and the film was exposed with a sequence of
 

frames showing the interaction between the containment ring and
 

the attacking fragment. Because of the finite rise-time of the
 

flash to peak output and inherent delays in switching circuitry
 

to initiate the flash, it was found that triggering the flash upon
 

impact of the blade with the ring caused the initial instants of
 

the interaction to gounrecorded. Also, the actual time of initial
 

impact was difficult to determine. Accordingly, a triggering mech­

anism which initiates the flash upon the separation of the blade
 

from the disk (thus breaking a circuit) was designed and used,
 

thus providing a few picture frames prior to impact, in addition
 

to the ensuing interaction record. The duration of the flash be­

fore light output decay was ample to record the interaction period
 

of interest.
 

The high-speed motion pictures were exposed on Kodak Tri-X
 

film. Normal developing techniques were used for the film strip.
 

Enlarged prints of each picture frame were made as a visual re­

cord of the sequence of events. Initially, to safeguard the ori­

ginal negative, positive transparencies were made (contact print­

ed) and used for data reduction in the film reader. However,
 

the original negative itself was used in later cases as a more
 

reliable record for data reduction.
 

The film reader holds the film on a carriage between two
 

layers of glass. The carriage can be moved in the horizontal
 

plane and its position (Cartesian x-y coordinates) is automati­

cally shown on a panel in digital form in microns. The same
 

information can be automatically keypunched in specific fields
 

of a punch card.
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The projected image of the negative film is reflected via
 

an optical quality mirror, set at 45 degrees from the vertical,
 

onto a ground glass rear-projection screen, mounted vertically.
 

An image, magnified 50 times, is thus seen, superposed by a
 

stationary image of a set of cross hairs. Thus, the x-y co­

ordinates of any point on the film can be obtained by moving
 

the film carrier such that the point in question lies at the
 

intersection of the cross hairs. With the knowledge of the
 

Cartesian coordinates of all the background reference points,
 

ring "mass points", and the blade reference points obtained in
 

the film reader axis system, the relative positions of all points
 

are known. It is imperative, of course, that the position of
 

the film relative to the carriage remain fixed while all points
 

on each picture frame are being read. A simple transformation
 

will then cast the position of all points in an "inertial refer­

ence frame" based on the reference (background) points appear­

ing in each picture.
 

To insure against the possibility of inadvertently record­

ing the wrong coordinates for a point and to increase the
 

reliability of the position data, the sequence of reference
 

points, mass points, and blade references was read a total of
 

four times for each picture.* An averaged reading would thus
 

be more indicative of the point positions, andany gross error
 

in one reading would be identified if it fell beyond a certain
 

tolerance away from the average of the others. Should the 
-

latter happen, this "bad reading" would be discarded in compu­

ting the average reading.
 

By using n repeated readings of any given position, the relia­
bility of that position determination is increased by In' ;
 
in this case where n = 4, the reliability is increased by a
 
factor of 2.
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SECTION4
 

ANALYSIS OF EXPERIMENTAL DATA
 

4.1 Possible Error Sources
 

-The- -experimental-high-speed-mot-i-on- -picture data- -obtained­
by the NAPTC in the cited specialized single-blade containment
 

tests for subsequent analysis by the TEJ-JET program of the
 
MIT-ASRL are limited in accuracy by many error and uncertainty
 

sources. These sources intervene at many stages between the
 

initial design of the test set-up and the final desired record
 
of numerical data which consists of the Cartesian inertial­

space coordinates of (1) the background reference points, (2)
 
the ring "mass point" stations, and (3) the blade reference
 

marks, for each individual picture from the high-speed motion
 
picture film.
 

The error and uncertainty sources may be grouped convenient­

ly into the following categories:
 

(a) data point position uncertainties-,
 
(b) film reading and resolution uncertainties, and
 

(c) optical distortion effects.
 

Each of these categories is discussed in Subsections %.2, 4.3,
 

and 4.4, respectively. Subsection 4.5 presents the spatial and
 

timewise smoothing techniques employed to compensate for the
 

random errors.
 

4.2 Data Point Position Uncertainties
 

Falling into this category would be the case of an out-of­
round containment ring, marked with the 72 "mass point" stations
 

at the viewed edge. Difficulties inherent in machining a rela­

tively thin and short (in the axial direction) ring, discussed
 

earlier, have in fact resulted in rings that are not exactly
 

circular in shape. Also, the process of marking the "mass
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point" stations with reflectorized paint was a difficult one to
 

control, resulting in "mass point" marks which were not equi­

distant from each other, and had variations in "length" (meas­

ured in-the circumferential direction). Ideally, the "length"
 

of the "mass point" marks should be in the same proportion as
 

the "width" of the marks (measured in the radial direction)
 

which is determined by the thickness of the ring. However, it'
 

should be noted that although the "mass points" on the ring
 

were not equidistant and did not form an exact circle, they did
 

represent the initial 'condition of the ring. The TEJ-JET pro­

gram is capable of treating the initial conditions as repre­

sented, as it considers only the changes occurring from one in­

stant of time to the other, and is valid also for a "grotesque­

ly distorted" ring.
 

Also falling into this category would be the case of an
 

improperly marked background reference point pattern. The sub­

sequent computer analysis works on the assumption that the
 

reference point positions are known accurately, and bases an
 

inertial reference frame on the set of reference points; it
 

also computes variations in magnification factors in different
 

orientations of the image. Hence, any inaccuracies in the
 

positioning of the reference points on the background plate will
 

have an adverse effect on the reliability of the inertial frame
 

of reference, and may also introduce incorrect magnification
 

factors to the containment ring "mass point" positions. How­

ever, it should again be noted that this type of an error would
 

be a constant error throughout the interaction time interval,
 

and would have no effect on the data scatter discussed below.
 

4.3 Film Reading and Resolution Uncertainties
 

A major difficulty with the experimentally-obtained data
 

has been the presence of scatter in the data on the position
 

coordinates of the ring "mass points". This scatter was present
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in a spatial sense in each individual picture taken at a spe­

cific instant of time during the ring-blade interaction, and
 

was also present in the time domain) when the sequence of con­

secutive pictures obtained from the high-speed-motion picture
 

film was considered. In the spatial domain, the data scatter
 

manifested itself as a discrepancy from the anticipated smooth
 

curvilinear shape of the ring, were it the initial "circular"
 

shape or the subsequent deformed shape. In the time domain,
 

the data scatter manifested itself as a discrepancy from the
 

anticipated smooth trajectory of individual points on the ring,
 

or the expected stationary position of the reference points.
 

The time-wise data scatter was also present in the center-of­

gravity locus of the attacked ring, which represented the
 

average position of all 72 "mass point" stations of the ring.
 

Averaging the position components from 72 points, which in
 

themselves may have scatter in the space domain, should average
 

out the random errors contributed from the individual points.
 

The scatter present in the center-of-gravity locus of the ring
 

was hence attributed to difficulties in determining an "inertial
 

reference frame" based on the background reference points, the
 

position components of which were also individually subject to
 

the spatial scatter described earlier for the ring "mass point"
 

stations..
 

The random errors that were inherent in the systems employed
 

were difficult to reduce further in magnitude. They stemmed
 

from the fact that the camera, electronic flash, and film em­

ployed were functioning near their design limits and little
 

room for improvement was available. Thus, the camera was oper­

ated near its maximum framing rate, and the electronic flash
 

peak output was used to expose the medium high-speed film. Uni­

formity of exposure was difficult to obtain. The resulting
 

pictures, when projected magnified on the film reader screen
 

were grainy in nature, and the operator was confronted with cen­

tering the cross-hairs on clusters of the film grains of varying
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density. A distinct outline of the individual marks, be they
 

the reference points or the ring "mass points" or the blade
 

reference bands, was not present. The ground glass on which the
 

picture was rear-projected also added its share of grain. In
 

addition, as the blade contacted the ring and scraped against it,
 
the neighboring marks were clouded from a clear view by matter
 

generated as a result of the metal-to-metal scraping. Hence the
 

reliability of the data for the area of interest at or near the
 

point of impact suffered. Also, the film reader carriage posi­
tion (with the Cartesian coordinates shown as a digital readout)
 

was difficult to modulate; occasionally -the position coordinates
 

changed in increments of two microns (skipping the intermediate
 

value), the x-coordinate positioning knob freewheeled frequently
 

followed by sudden engagement and an unexpected jump of a few
 

microns, thus requiring a reversal in the positioning knob rota­

tion with its attendant lag. Hence, an uncertainty of 2 or 3
 

microns was conceded as being "unavoidable" with the present
 

photographic reading equipment.
 

To reduce the magnitude of the random errors, an averaging
 

process was employed. After reading the coordinates of the full
 

set of points in each picture, the process was repeated four times.
 

Hence, four readings were available for each point, and the data
 

quality could be judged by the approximate repeatability (or iare
 
lack of repeatability) of the position coordinates obtained. In
 

the subsequent analysis, the screened data, still showing random
 
scatter, was improved by the use of analytic smoothing techniques.
 

Subsection 4.5 discusses the methods employed to smooth the posi­

tion data.
 

4.4 	 Optical Distortion Effects
 

Falling into this category would be the aggregate of the
 

optical distortions contributed by the many stages of optical sys­

tems involved in exposing the film with the sequence of ring-blade
 

interaction events, developing it, and then projecting it through
 
the film reader equipment to obtain the numerical position data.
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The optical distortion effects were believed to be vari­

able during the test, or to have affected different parts of
 

the exposed film to varying degrees. The variable distortion
 

effects would of course be superposed on any optical distortion
 

that might have been constant for the duration of the test.
 

The -ources of possible optical distortion, some having
 

effects constant throughout the interaction period and some
 

contributing variable effects, may be identified as the follow­

ing: (a) misalignment of or a distorted image reflection by
 

the mirror in the spin chamber which deflects the camera's
 

horizontal view to a vertical view of the test set-up; (b) dis­

tortion through the glass observation port in front of the cam­

era; (c) distortions introduced by the many sets of lenses and
 

mirrors within the camera system, particularly any wobble or
 

vibration of the rotating mirror or film-carrying drum; (d) vari­

ations in film dimensional stability during exposure, develop­

ing, drying, and handling procedures; and (e) misalignment or
 

distortions attributable to the film-sandwiching glass, lenses
 

and mirrors, and the ground-glass projection screen of the film
 

reader.
 

Rather than attempt to track down the individual errors
 

and to introduce corrections or compensations at each level,
 

the approach of obtaining the best possible image with the
 

existing system under controlled conditions and then using
 

a corrective transformation based on the known gridwork of
 

background reference points was used. Thus, in the object
 

plane the background reference points were known to be in
 

specific locations. The Cartesian coordinates obtained through
 

the film reader for these same reference points, magnified oy
 

an average magnification factor, formed an image which was not
 

coincident with the actual pattern. The image showed distor­

tions in both the radial and circumferential directions of the
 

reference point patterns.
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An analytical method of transforming the image plane refer­

ence points to the object plane reference positions was developed.
 
The transformation function was selected to apply to locations
 

intermediate to the reference points as well. Hence, the image
 

plane ring "mass point" stations were also transformed to "opti­

cally corrected" inertial space positions by using the same
 
transformation. The transformation function was recomputed
 

for each individual picture. Thus the image plane reference
 

point pattern in each picture governed the transformation to
 

be applied for the correction of optical distortion effects.
 

It should be noted then, that heavy reliance was given to the
 

reference point positions as read, which in themselves were
 
subject to the random errors associated with reading position
 

components on the film reader.
 

4.5 Data Smoothing Techniques
 

The position data for the containment ring, obtained through
 

experiments carried out with due care and careful controls, and
 

subsequently analyzed and corrected for possible optical distor­

tion, were still subject to random scatter.- Since the solution
 

process in the TEJ-JET concept uses the second derivatives of
 

the position loci, any variation of the position loci from a
 
smooth curvilinear shape will result in wild fluctuations of
 

the approximated derivatives.
 

In view of the fact that.there was a limit to which one
 

could reduce the random experimental errors associated with
 

locating the ill-outlined points on the projected images of
 
the interaction events, the screened and optically-corrected
 

data were subjected to analytical smoothing techniques. The meth­

ods found to be reliable and applicable for this analysis were:
 

(a) spatial smoothing of the ring "mass point" position data
 
by Fourier series representation and (b) timewise smoothing
 

of the data points by Gram polynomial representation.
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Thus, fo a ring which was approximately circular in shape
 

initially and underwent distortions which gave it an oblateness
 

and a !localized cusp" at the zone of impact, the sum of an ade­

quate number of terms (or harmonics) in the Fourier series is
 

capable of representing the smoothed shape of the ring at each
 

instantiqtimwhen a pictnre is-available, --The £ulMFour-r-­

sine and cosine series was employed, and the magnitude of the
 
coefficient which multiplied each term determined the extent of
 

the participation contributed by that term to the total. Thus,
 

for the earlier part of the interaction where the ring did not
 

develop the "local cusping", the higher-order Fourier harmonics
 

had small coefficients and hence contributed little to the shape
 

determination. With advancing time, the higher harmonics came
 

into play as the ring shape was distorted further. Therefore,
 

in the time domain, the variation of the magnitude of each indi­

vidual Fourier coefficient determined the time history of the
 

deflected ring shape. Again, since the Fourier coefficients
 

were based on the shape of the ring at each instant of time and
 

relied on position data subject to random scatter, the time his­

tories of the individual Fourier coefficients fluctuated, al­

though on a reduced scale because of the averaging effect of 72
 
"mass point" positions. The Fourier coefficients needed smooth­

ing in the time domain; this smoothing was carried out by the
 

Gram polynomial smoothing technique.
 

The Gram polynomials (Ref. 18) are orthogonal under summa­

tion, and an adequate number of polynomials can approximate the
 

jagged curve represented by individual data points with a smooth
 

curvilinear shape. The analytic representation of this curvi­

linear shape, of course, easily lends itself to the computation
 

of time derivatives. Section 5 details the analytical smoothing
 

techniques employed.
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Due care should be taken in selecting the number of terms
 

employed both for the spatial and time smoothing of the experi­

mental data points. If only a few terms are used in the Fourier 

series, one may lose the definition of the "localized cusp" at 

the region of the ring impacted by the blade. If too many terms 

are used in the Fourier series, one may end up with a ring shape 
that follows very closely the scattered experimental position 

data. Thus, an adequate balance between "smoothing" of the 

points and "fitting" the analytic curve to the points should be
 
determined. The same argument applies to the time domain smooth­

ing by Gram polynomials. Employing only a few terms could
 

smooth out rapid changes in the shape of the time history curves
 

and blot from knowledge the existence of rapid accelerations,
 

whereas employing too many terms would tend to fit all of the
 
random fluctuations and generate incorrect acceleration esti­
mates. Again, a balance between "smoothing" and "fitting"
 

should be sought. Section 6 presents some results and discusses
 

the criteria on which the analyst can make a judgment.
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SECTION 5
 

SUBPROGRAMS FOR ANALYSIS AND REDUCTION OF DATA
 

5.1 General Requirements
 

To assist in the analysis and reduction process of prepar­

ing the experimental fragment interaction data for use in the
 

TEJ-JET program-, utility programs were developed. Some of these
 

subprograms are necessary tools used in the step-by-step data
 

reduction procedure, while others are employed as aids to dis­

play the resultant data in convenient form for quick analysis
 

and evaluation. Figure 3 shows a chart identifying the data
 

reduction and analysis paths. The series of subprograms used
 

in the steps leading to the TEJJER subprogram shown in Fig. 3
 

falls under the first category of being necessary tools in the
 

data reduction process and are discussed in this section. A
 

future report will document the complete TEJ-JET program.
 

As discussed in the preceding section, the experimental
 

data were subject to the cumulative effect of many sources of
 

unavoidable errors inherent in the limitations of the test
 

equipment, techniques, and initial data generation process.
 

Hence, the need for evaluating the experimental data to deter­

mine the extent of the uncertainties and errors and to com­

pensate for the shortcomings was indicated. This evaluation
 

and correction process was carried out by means of accepted
 

analytical techniques while exercising different options or
 

criteria to balance the analysis or evaluation between the
 

limits of stringency and practicality. In Subsection 5.2,
 

the functions served by the subprograms used as utility tools
 

are described.
 

5.2 Functions of the Subprograms
 

The position-versus-time history of the containment ring
 

subjected to single-blade impact was available as a set of
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position coordinates for each individual ring "mass point" sta­

tion at each time "instant" recorded on the high-speed photo film
 

strip.- A set of four readings of the position coordinates was
 
obtained for each point in each picture by reading the sequence
 
of point positions in four successive passes with the film reader.
 

This set of position history data represented the "raw data" to
 

be analyzed and evaluated.
 

5.2.1 Subprogram ANALYZ
 
The intent of obtaining a set of four repeated readings of
 

the same point was to compare the repeatability of reading the
 

position coordinates within a certain tolerance, to identify the
 

occasional data that exhibited a gross error, and to use the
 

screened data in obtaining an averaged value more representative
 
of the point position when "magnified" to actual size. This func­

tion was served by Subprogram ANALYZ.
 

Subprogram ANALYZ accepts the "raw experimental data" -­

representing the set of four separate readings in each picture for
 

the reference points, the ring "mass point" stations, and the
 
blade reference marks -- with the x,y position coordinates given
 

in microns in the film plane. The four values for the individual
 
components of the coordinates are then compared to check whether
 

they all fall within a specified tolerance. A built-in "filter"
 

eliminates from consideration the occasional reading which may
 

fall outside the tolerance, and computes an average position co­

ordinate based on the remaining "valid" position data. The sub­
program identifies the sets of position data that show difficul­
ties, with appropriate symbols in the output; the judgment of the
 

analyst on the validity of the resulting average may then be exer­

cised. Additional screening decisions are also used in the pro­

cess but are too elaborate to merit detailed discussion in this
 

report.
 

Having thus eliminated the gross errors and improved the
 

position data by the averaging process, ANALYZ then computes
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an "average magnification factor" based on the position com­

ponents of the background reference points in the film plane
 

(in microns) and the known positions of the reference points
 

on the actual background plate (in inches). In this "average
 

magnification factor" no attempt is made to identify possible
 

variations of the magnification factor in different directions
 

or regions in the film planeo! Further, an inertial reference
 

frame is established based on the reference points. The origin
 

of the inertial reference frame is located at the point coin­

cident with the "center of gravity" of equal masses imagined
 

to be positioned at the reference points. The orientation of
 

the inertial reference frame is based on the directions of the
 

principal axes of these equal masses imagined to be positioned
 

at the reference points.
 

Based on the average magnification factor, the average
 

position components of all the points are cast into the in­

ertial reference frame and computed as position coordinates
 

in the actual object plane (in inches). The resulting "averaged
 

position data" are presented as printed output and also key­

punched in the proper format for use in the subsequent analysis.
 

5.2.2 Subprogram CORECT
 

Analysis of the averaged position data, cast in the in­

ertial reference frame and adjusted for magnification to actual
 

size, indicated the presence of aberrations attributable to
 

possible optical distortions present in the experimental equip­

ment. The fact that the averaged position data for the back­

ground reference points did not coincide with the actual known
 

reference point locations laid the basis for an investigation
 

of optical distortion effects. It was determined that the
 

application of a single average magnification factor at all
 

points of the image plane and for any orientation fell short
 

*This matter is taken into account later.
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of representing the (slight) variations in magnification that
 

existed and that distorted the image. The distortions were such
 

that the actual circular and radial pattern of the reference
 

points "assumed an oblate shape", and the angular separation
 

of the radial lines varied in different quadrants of the image.
 

Hence, a method of compensating for the optical distortion
 

was developed to correct the data such that the reference point
 

positions would coincide with the actual locations and all inter­

mediate positions would also be adjusted by the proper inter­

polation. This function was served by Subprogram CORECT.
 

Subprogram CORECT accepts the "averaged data" -- represent­

ing the averaged data of four readings after screening for the
 

elimination of gross errors -- which are cast in an inertial
 

reference frame and are adjusted to actual size. The position
 

coordinates of the background reference points and the actual
 

locations of the reference points are then employed in a solu­

tion process to determine the proper correction factors.
 

The correct value of a position component can be approxima­

ted by a polynomial representation of the position components in
 

the image plane. Thus, if, for example, 21 of the 24 reference
 

point positions were available in the image plane, one could cast
 

the quations in the following complete quintic polynomial form
 

since a complete quintic polynomial consists of 21 terms:
 

Rx = a1 

+ x2x + a3y 

2 2 
a4x 
 o 5 xy - a 6 y 

3
+ a 7 x 3 4- a8 X2 4a 9 xy 2 +o 10 y (5.la) 

a1 1 x45ll 4a1 2 xY "2 a1 4 xy 4+ + 3c.3xy 2 1x3 5 

a16 x 5 + a17x4y + a 8 x9 x2y3 4- a20xY4+ a2 ty 

and
 

tnterpolation error is minimized when complete polynomials are
 
used.
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+ P7 x 3 x 23,Y + P9xY2 - Ploy 3 (5. ib) 

.3!1x +l2 1x + 13xy+ 1 4xy -1y 

5 4 3 2 23 4 5 
- -- ' - - 2 0 xy - 4-P 2 1y- . 

6 - - - -- - -I -Y4-Y-- 3- 2 4 . 9x -y 
. . . . . . .. . - 4- 5 

where Rx and Ry are the correct xy components of a reference
 

point, respectively, and the a's and $'s represent appropriate
 

constants. The x,y terms in the polynomials are the "averaged
 

data" reference point position components obtained from the
 

image plane. 

The above equations hold true for all of the reference
 

points with the associate'd x,y position components. Thus,
 

one can list the full set of equations and express them in
 

matrix form: 

{R}X [P] {H (5.2b) 

where jxJ and IRA are coumn matrices representing the correct
 

position components of the reference points:
 

IR(2) 5 2) .3
 

xy 
also {c} and fol are column matrices representing the constant
 

terms multiplying the elements in the polynomial expression:
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{a 2 P2 (5.4) 

2121
 

and the matrix- L] has the elements of the polynomial expres­
sion for each reference point, thus comprising a 21x21 square
 

matrix:
 

1 2 2ll 3 5
 

[P] :2 2 22 

1 X2 1 Y21 x2 1 Y1 

(5.5) 

All the elements of the [P] matrix can be computed from
 

the "averaged data" position components of the reference points.
 
The correct position, components IRxI and tRj of the reference 
points are also known. Hence, with the proper matrix solu­
tion techniques, one can solve for the constants fcj and f{j. 

Having determined [a3 and f[} , one may then calculate 
the "correct position" Rx and Ry for each new point with coordi­
nates x and y, according to the polynomial representations. 

It was established, however, that the solution for the
 
quintic polynomial with 21 unknowns gave (as must be the case
 
mathematically) the exact values at the reference point-posi­
tions, but developed extreme oscillations in regions interme­
diate to the reference points. The use of lower order poly­
nomials (with smaller numbers of unknowns) but using all 21
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equations equally weighted gave slightly poorer fit at the
 

reference points but much improved smooth interpolation be­

tween the reference points, where the ring "mass point" posi­

tions were. Applying a cubic polynomial fitting for example,
 

gave plausible corrected ring "mass point" positions. This
 

implies that- the f[.Ematrix-may--be- a squxar anont witha-fix, 
10 columns for a cubic polynomial expression, and 21 rows. The
 

solution process employed is described in Ref. 16.
 

Subprogram CORECT thus provides a set of "corrected data"
 

free of optical distortion. The data are provided as printed
 

output and also keypunched on cards with the appropriate format
 

for the subsequent analysis.
 

5.2.3 Subprogram SMOOTR
 

The set of "corrected data" provided as the output of the
 

preceding utility subprograms represents position data that
 

have been screened to eliminate obvious errors in reading posi­

tion coordinates, then averaged on the basis of the remaining
 

valid data readings, and subsequently corrected for magnifica­

tion and optical distortion effects. However, the position
 

data still suffer from random experimental errors associated
 

with the reading of (a) the reference points and (b) the ring
 

position data from a projected image of the high-speed film.
 

These errors are admittedly small in magnitude but are of im­

portance in an analysis which requires the availability of
 

time derivatives based on the displacements provided by the
 

position data. A smooth position-versus-time locus could of
 

course be differentiated conveniently and give reasonable
 

velocity and acceleration data, whereas a jagged position­

versus-time locus would result in rapidly changing velocity
 

and acceleration with large magnitudes. Smoothing the avail­

4o
 



able "corrected data" by employing accepted analytical smooth­

ing techniques would eliminate the random scatter of data
 

points and render the data amenbble for differentiation to
 

obtain plausible velocity and acceleration estimates. It should
 

be noted, however, that a low order of fitting the data points
 

in an effort to eliminate random scatter could result in smooth­

ing out an important change in curvature of the position locus
 

and mask from knowledge the associated velocity and acceler­

ation changes. In the other extreme, a tightly-fitted smooth
 

curve would tend to approximate the position of all data points
 

and reflect the attendant superfluous changes in position locus
 

curvature while following the scattered data points closely.
 

Hence, an adequate and sufficient amount of smoothing should
 

be introduced to eliminate the random experimental errors from
 

the "corrected data". This function is served by Subprogram
 

SMOOTR.
 

Subprogram SMOOTR accepts the "corrected data" -- repre­

senting the optically-corrected averaged position data -- and 

smooths the data both spatially within each picture and time­

wise in the sequence of pictures. The spatial smoothing of
 

the ring "mass point" position data in each individual picture
 

(or associated instant of time) is achieved by employing Fourier
 
series to represent the harmonic components of the ring shape.
 

An adequate number of terms, determined by the analyst, are
 

used in the summation of both the sine and cosine series. Thus
 

N 
Fv = A + A cos nt,+ B sin ne (5.6)
 

n=l vn n
 

N 
Fw =A + Aw cos ne + B sin n6 

n=1 n n (5.7) 

where Fv and Fw are the Fourier representation of the two
 

Cartesian components of the ring "mass point" position data,
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-is the angular position of the "mass point" in the inertial
 

reference frame, all of the AV, By, Aw Bw, terms are the Fourier
 

coefficients multiplying the cosine and sine series, and N is
 

the total number of terms in the Fourier series.
 

For a perfectly circular ring, the coefficients A and
 

A are--the-hortzontaI and vertical position components, respec­

tively, locating the ring's center of gravity in the inertial
 

reference frame; the coefficients A and B are equal to the
 

ring radius and hence F, = A cose and F = B sine represent
V V1 w w1
 

the circular shape of the ring about the center of gravity posi­

tion A , A . All other coefficients are equal to zero and the
 

associa~ed FSurier series terms contribute nothing to the ring
 

shape.
 

As the ring deforms under impact, the time-history of the
 

coefficients of the zeroth harmonic, A and A , will represent
 

the rigid body motion (center-of-gravity locus) of the ring;
 

changes in the magnitude of the coefficients of the first har­

monic, Av and Bw , will represent the expansion or contraction 

of the circular shape of the ring (the breathing mode); non­

zero values for the coefficients of the second Fourier harmonic,
 

AV2 , Bv2 A2 ,and Bw2, will represent the oblateness of the
 

ring in orientations determined by the relative magnitudes of
 

the constants; and higher order harmonics will further contribute
 

to a fuller description of the distorted shape. It should again
 

be noted that a large number of Fourier harmonics will follow 

the scattered position data too closely and accept superfluous 

distortions as valid data, whereas a small number of Fourier ­

harmonics will be inadequate as an important local distortion may
 

be smoothed out and unintentionally discarded (lost information
 

results). The analyst has to determine an appropriate compromise
 

between the two limits. The criteria on which a decision can be
 

based are explained in Section 6.
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The smoothing in space then results in the determination
 

of the magnitudes of the Fourier coefficients multiplying the
 

terms in the Fourier series. As the interaction time advances,
 

the magnitudes of the coefficients will change to reflect the
 

distorting shape of the ring. The coefficients for the higher
 
order harmonics in particular will exhibit increases in their
 

magnitude with increasing distortion. Hence, if one were to
 

plot the values for each coefficient against the associated
 

time, one would obtain curves representing the variation in
 

time of the constants. These curves may also be subject to
 

some experimental data scatter for the same reasons that the
 

stationary background reference points show scatter in the time
 

domain. An incorrectly-read position of a not-well-outlined
 

reference point may inadvertently affect the ring position data.
 

The smoothing in time is carried out by using Gram poly­

nomials+(Ref. 18) to smooth the locus described by each Fourier
 

coefficient in the series. As a result of this smoothing, the
 

distortion of the ring will progress smoothly from one instant
 

of time (picture record on the high-speed motion picture film)
 

to the next.
 

Gram polynomials are used to calculate a smooth curve
 

approximation to a set of discrete data as follows:
 

n 
f(s) 5Z a Pr(s,N) = y(s) (5.8)

r=0
r0 r r 

where f(s) are the discrete points to be smoothed
 

Pr is the rth Gram polynomial defined below.
 

ar is the rth Gram coefficient, determined such that
 

f(s) is approximated in a least-squared error sense.
 

+Gram polynomials are appropriate for the present discrete-data
 

application since they are orthogonal under summation (the Leg­
endre polynomial counterpart for continuous data, as discussed
 
for example in Ref. 5, is orthogonal under integration).
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N is one less than the number of data points. 
s is the abscissa variable (s = 0, 1, 2, 3,. .N) 

and n is one less than the total number of coefficients 

-usedto approximate f(s), where n < N. 

The general equation for the rth Gram orthogonal polynomial is: 

r r(r+l) s (r-l)r(r+l)(r+2) s(s-l) 

SrN (I)2 N (21)2 N(N-l)
 

(5.9) 

(r-2)(r-l)r(r+l)(r+2)(r+3) s(s-l)(s-2) ]
 

(3)2 N(N-l)(N-2) .
 

where 0rN is an arbitrary constant (see page 289 of Ref. 18).
 

If one makes use of an odd number of points, so that N is
 

even, then one can define
 

M = N/2
 

and
 

s = M + t (see sketch below)
 

1 2 3 |N+l

th
 

sh 

Also, choose
 
rC = (-i) (5.10)

rN
 

When these changes in variables are accomplished, the
 

first 6 polynomials can be written as follows:
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PO(t,2M) = 1 

pl(t,2M) = t/M
 

P2 (t,2M) = 3t2 - M(M+l)
2 M(2M-l) 

(5.11)

5t3 _ (3M2+3M-l)t
p_(t2M) = 

3 M(M-l)(2M-l)
 

P4 (t,2M) = 35t 4 - 5(6M2+6M-5)t 2 + 3M(M 2-1)(M+2)
2M(M-l)(2M-l)(2M-3) 

P5(t,2M) = 63t 5 - 35(2M 2+2M-3)t 3 + (15M 4+30M3_35M2-50M+12)t 

2M(M-1)(M-2)(2M-l)(2M-3) 

and the approximation for the discrete points becomes:
 

n 
f(t) Z - arPr(t,2M) = y(t) (5.12)
 

r=O
 

where
 

t = -M, -M+1, ., 0, . . ., M-l, M (5.12a) 

Higher-order polynomials can be obtained from the following
 

recursion formula (Ref. 19):
 

l 2(2r+1) tp (t) r(2M+r+l)
 

Pr+l(ti2M) (r+l)(2M-r) r (r+l)(2M-r) Pr-1t)
 

(5.13)
 

These polynomials posess the following orthogonality
 

property:
 

M
 
7- pq(t,2M) Pr(t,2M) = &qrYr(2M) (5.14)

t=-M
 

where
 

6qr is the Kronecker delta, and
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If(2M)r2r+1 1 (2M) (r) (5.15)(2M+r+l)CV+l) 


and the factorial nth power of s is defined to be (where n is a­

(s) = s(s-l)(s-2) - - - - (s-n+l) =(s-n)!s (5.16) 

where (s)CO) = 

The ars are independent and can be calculated as follows:
 

M 
ar(2M) = 1 2M f(t) pr (t,2M) (5.17)
 

yr(2M4) t=-Mr
 

The data points to be smoothed are f(t). Note that the Gram
 

polynomials are orthogonal under properly-weighted summation.
 

Thus, the Fourier -coefficients -- the discrete data points
 

f(t) to be smoothed -- undergo the Gram polynomial smoothing in
 

time. Program SMOOTR then gives as punched output the set of
 

coefficients of the Gram polynomials, ar2 needed to smooth the
 

Fourier coefficients, Av, Bv, Aw, Bw . This punched output is
 

in the proper format to be used as part of the input to the
 

TEJJER program, which reconstructs the smoothed Fourier coeffi­

cients and calculates the smoothed position data based on the
 

Fourier harmonic content. The printed output of subprogram
 

SMOOTR also shows the initial position data, the initial Fourier
 

coefficients, and the subsequently smoothed Fourier coefficients
 

for preliminary checks on the adequacy of the smoothing achieved.
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5.2.4 Subprograms CGLOX, PREADD, and FORCER
 

This group of subprograms provides a second branch (parallel
 

to subprogram SMOOTR described in the previous subsection) lead­

ing into a second input into the TEJJER program. Whereas sub­

program SMOOTR provides a means to calculate space and time
 

smoothed individual ring "mass point" position data for the
 

calculation of interaction forces, the group of subprograms
 

CGLOX, PREADD, and FORCER provides an estimate of the total force
 
acting on the ring based on the knowledge of the center-of-grav­

ity locus and the rotation, 0, of the ring. The three subpro­

grams are an integral set, but are not combined within one pro­

gram because of the need for analyst judgment and action at the
 

intermediate-answer stages. At the end of each subprogram, the
 

results are to be assessed and some options are to be exercised
 

prior to input into the following subprogram for analysis.
 

Subprogram CGLOX accepts the "corrected data" in repre­

senting the optically-corrected averaged position data -- as
 
does the previously-described subprogram SMOOTR. The individual
 

ring "mass point" position data are then used to obtain the
 

Cartesian coordinates of the ring's center-of-gravity and the
 

angular orientation of the ring in the inertial reference frame
 
for each picture (instant of time). The sequence of pictures
 

thus provides the ring center-of-gravity locus and angular rota­

tion versus time. Any accelerated motion of the center-of-grav­

ity or rotation of the initially-stationary ring would, of
 

course, be caused by external forces, such as those generated
 

by the impact of the blade fragment. A force applied at an
 

oblique angle to the ring's circumference would cause the rota­

tion as well as the translation of the containment ring, in
 

addition to localized bending. The subprogram output in printed
 

and keypunched form gives the Cartesian components of the center­

of-gravity as well as the angular rotation as discrete data for
 

the sequence of pictures.
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Since the ring is stationary prior to impact, the position
 

of the center of gravity and ring orientation during that time are
 

stationary, and one may pre-add a certain number of data points to
 

establish the pre-impact stationary loci, using the same values as
 

those provided by the first picture. It should of course be ascer­

tained that the first picture- does- indeed- record- a-premiffv-act con­

dition. Subprogram PREADD is a simple utility program which pre­

adds the specified number of points and prepares the keypunched
 

input data cards in the proper format for subsequent use.
 

The data at this point represent the center-of-gravity locus
 

and the rotation of the containment ring. Plotted versus time,
 

the data again exhibit the scatter due to experimental uncertain­

ties in reading individual-point positions, including the reference
 

points, from high-speed motion picture frames. Hence, the smooth­

ing of the discrete data points in the time domain becomes neces­

sary, prior to obtaining the center-of-gravity accelerations and
 

the angular accelerations on which an estimation of the total for­

ces is based. Subprogram FORCER serves this function. The time
 

smoothing is accomplished through Gram polynomial approximations of
 

the discrete data point locations similar to the technique des­

cribed for subprogram SMOOTR in Subsection 5.2.3. The points pre­

added to the center-bf-gravity locus and angular rotation history
 

establish data to represent the known stationary nature of the ring
 

prior to impact. Because the Gram polynomial approximation degen­

erates near the two ends of the curve being fitted, the pre-added
 

points guarantee that the unreliable part of the smoothing tech­

nique occurs at times prior to the time of interest (the initiation
 

of the impact). The availability of data points from pictures well
 

after the completion of the impact interaction provides the neces­

sary additional points at the other end of the curve to "absorb"
 

the uncertain region of smoothing beyond the time of interest (the
 

termination of the interaction).
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Subprogram FORCER thus accepts-the center-of-gravity locus
 

and ring rotation data, and smooths the data in time by employing
 

a specified number of Gram polynomials for the approximation. The
 

contributions of each polynomial are printed out, as well as the
 

sum total of all polynomials fitting the curve, in addition to the
 

coefficients multiplying the polynomials. The analyst thus has
 

the option of checking the results to determine the adequacy of
 

the smoothing. Having generated the polynomials fitting the dis­

crete data, subprogram FORCER computes the first and second deri­

vatives of the curves and obtains the total accelerations which
 

the .containment ring undergoes. With the knowledge of the ring
 

mass and moment of inertia, the total force history is calculated
 

and printed out for each option of Gram-polynomial smoothing. The
 

total computed force is highly dependent on the amount of smoothing
 

employed, and the analyst should judge which result gives the best
 

plausible total force estimate as a function of time. Since the
 

actual externally-applied forces experienced by the ring vary both
 

timewise and in spacewise distribution along the ring when the im­

pact sequence occurs, the analyst must apply some judgment or esti­

mation method if he wishes to deduce this type of force-distribution
 

time history data from the present total force information. In this
 

process he can make use of his knowledge of roughly where and when
 

tlhe fragment impacts occur along the ring as can be seen from the
 

sequence of motion-picture photographs.
 

In Section 6 the criteria used to j.udge the adequacy of the
 

smoothing, along with the presentation of results are discussed.
 

This information then becomes the second branch of the input in the
 

TEJJER program, to be used in addition to the smoothed individual
 
"mass point" position data provided by subprogram SMOOTR. A Kalman
 

filter within TEJJER provides the means to weight the data accord­

ing to associated levels of reliability prior to using the data in
 

the calculation of estimated "optimum external forces" acting on
 

the containment ring.
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SECTION 6
 

APPLICATION OF THE SUBPROGRAMS
 

6.1 Motivation and Objectives
 

In order to examine- -the-theoretical- feasibilrty or the 
TEJ-JET scheme for deducing externally-applied transient forces
 

from detailed transient structural motion/deformation data, the
 

JET2 computer code was employed to predict the transient large
 

elastic-plastic deformation response of an initially-circular
 

ring subjected to a specified distribution and time history of
 

externally-applied forces. This "correct" structural response
 

information was then "contaminated" to simulate errors which
 

inevitably would be present in experimental measurements of
 

this structural response behavior; this contamination was
 

achieved by perturbing the correct structural response infor­

mation by random numbers having a zero mean value but with
 

various levels of probable error. This contaminated infor­

mation was then subjected to the TEJ-JET analysis scheme, and
 

the resulting predictions of the distribution and time history
 

of the externally-applied forces were in very good agreement
 

with the specified externally-applied forces (Ref. 5).
 

Subsequently, structural response measurements conducted
 

at the NAPTC for single-blade impact against containment rings
 

(NAPTC Tests 88 and 91) were analyzed (Ref. 5). These data
 

were studied to ascertain the kinds and magnitudes of the
 

errors contained in these data (as in all experimental data);
 

also, the likely sources of the errors were identified. Be­

cause of the error level present, the TEJ-JET predictions of
 

the associated external forces were of low reliability.
 

After having devised (a) improved techniques to minimize
 

experimental measurement errors and (b) improved procedures of
 

analysis and error compensation, NAPTC Test 165 for impact/in­
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teraction of a single blade from a-T58 turbine rotor against a
 

containment ring-was conducted. The motion picture data were
 

read as described in Section 4; however, study of these data
 

showed that repeated readings from the same picture showed some
 

inconsistencies. Therefore, a second complete reading of this
 

film was carried out with great care and careful cross-checking.
 

The remainder of Section 6 is devoted to discussing the subse­

quent analysis of this "second reading" of the position data
 

for NAPTC Test 165.
 

6.2 Error Magnitudes in the Experimental Data
 

The position components of each data point on the film
 

which recorded the blade/ring interaction were read four times
 

in each picture frame. The four repeated readings showed rare
 

irregulatities in repeatability when the results were checked
 

by employing Subprogram ANALYZ with a tolerance or "test dis­

tance" of 12 microns in the film plane (approximately 0.045 in.
 

in the object plane). Repeatability in most instances was well
 

within half of that tolerance, or approximately 0.02 in. in the
 

object plane. However, it should be noted that this concerns
 

the reading of the same point in one picture frame. Variations
 

in film grain, distortion, lighting, and other causes may lead
 

the analyst to select a somewhat different part of the same data
 

mark on which to center the cross-hairs in subsequent picture
 

frames. This possibility is shown graphically in Fig. 4, where
 

the results obtained 'from pictures 1 and 2 are compared; both
 

are for the pre-impact condition. Here, the four readings for
 

each ring "mass point" position component have been averaged
 

after the elimination of gross errors, via Subprogram ANALYZ.
 

Since both pictures 1 and 2 are recorded prior to the moment of
 

blade impact against the containment ring, the pictures should
 

show a static ring; position components obtained from one should,
 

ideally, match the other. Figure 4a depicts the differences in
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the horizontal-position components, and Fig. 4b depicts the dif­

ferences in the vertical-position components for "mass points"
 

of pictures 1 and 2- Note that the-error bandwith is approxi­

mately 0.04 in. and that the "averaged data" employed at this--­

stage is prior to any corrections for optical djlstor-tion or- -any
 

sMoothing--i-n-time -arid -space.
 

In addition, similar uncertainties in reading the reference
 

marks produce errors in locating the reference frame-, which in
 

turn affect the location of all position coordinates referred to
 

that plane. The presence of errors in reading the stationary ref­

erence mark positions from the high-speed motion pictures is shown
 

in Fig. 5. The apparent variation of the position of reference
 

points 1,2, and 3 (three points on a radial line) as a function of
 

time (sequence of pictures) is shown iiM Fig. 5a for the horizontal
 

component, and in Fig. 5b for the vertical component. The error
 

bandwidth is again approximately 0.04 in. and the resultant uncer­

tainty in the reference frame derived from such reference points
 

definitely has a bearing on the ring position data*. This behaV­

ior is discussed further in Subsections 6.3-6.5.
 

6.3 Effects of Optical Distortion
 

The conversion factor employed in Subprogram ANALYZ to
 

convert positions from the film plane to the object plane was
 

a constant factor for each picture. The average radial dis­

tance of the reference points from the origin of the reference
 

frame was compared versus the corresponding distance in the
 

actual reference background plate in determining the average
 

conversion factor. Closer scrutiny of the reference point
 

positions obtained from a reading of the film with the appli­

cation of the average conversion factor indicated that the
 

*The results presented in Figs. 4 and 5 are in the film reader
 

axis system (subscript R). Results presented in subsequent
 
figures are in the inertial frame derived from the reference
 
grid (no subscript).
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variation in the reference point positions was considerable, and
 

was beyond any random effects. This is illustrated in Figs. 6a
 

and 6b for the radial and circumferential components, respective­

ly, of the set of reference points as seen in the first four pic­

tures of the film*. Note that both radial distortion and circum­

ferential distortion behave as essentially symmetric oscillations,
 

with the circumferential distortion lagging 450 in phase compared
 

with the radial distortion. This observation applies to all of
 

the picture frames. The radial distortion thus "gives an ellip­

tical shape" to the actual circular pattern of the reference
 

points (and hence to the circular ring) while the circumferential
 

distortion oscillates in a 1.5-deg amplitude about a minus 2.3-deg
 

mean value
 

The analytical methods of correcting for the existing optical
 

distortion, as described in Subsection 5.2.2, were subsequently
 

employed to account for the variable magnification factors exist­

ing at different regions of the film plane. The optically-correc­

ted reference point positions from picture number one are shown in
 

Figs. 7a and 7b for the error magnitude in the radial component
 

and in the circumferential direction, respectively*. Each figure
 

presents the results of four polynomial-fitting solutions, based
 

on the known position of the reference points in the actual object
 

plane. The four results shown are for the linear, quadratic, cu­

bic, and quartic polynomials. The quintic polynomial, employing
 

all 21 terms of the expression to solve for the 21 unknowns, gave
 

the exact solution for all of the reference point positions, as
 

expected. However, as explained earlier in the analytic presenta­

tion, positions intermediate'to the reference points showed extreme
 

To aid the reader in visualizing how each ordinate quantity var
 
ies with the abscissa coordinate, curves have been faired through
 
the data points.
 
+This B = -2.3-degree location represents the orientation of the
 

reference line passing through points 1,2,3,15,14, and 13 (see
 
Fig. 1) with respect to the "principal axes" of the optically­
distorted reference point array.
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oscillations for the quintic-polynomial-solution-case.
 

The adequacy of lower order polynomial fitting is shown in
 

Fig. 8 where the horizontal and vertical components of the ring
 
"mass point" positions are shown. The results obtained from the
 

linear, quadratic, and cubic polynomial fitting are essentially
 

the same, as shown in the plot, for the number of significant Cig .
 

ures that can --be -dentified at the scale shown. However, the quar­

tic polynomial fit, not depicted in Fig. 8, gives results notice­

ably different from the plot shown. Were they plotted, they would
 

show an oscillatory shape (albeit of small amplitude) superposed
 

on the sinusoidal shape of the position components depicted. Fig­

ure 9 presents the same position data from a segment of the ring
 

(the first ten "mass points") on an expanded scale. The original
 

position components are shown as a basis for comparison against the
 

linear, quadratic, cubic, and quartic polynomial fitting results.
 

Note the similarity of results for the first three polynomial fit­

ting solutions, but the- deterioration in fitting the correct shape
 

when the quartic polynomial fitting is employed. For the above
 

reasons, the cubic polynomial fitting to correct for optical distor­

tion was determined to be adequate, and further analysis was carried
 

out on the data thus corrected.
 

It should again be stressed that the data corrected for opti­

cal distortion still include experimental errors associated with the
 

reading of the reference point and ring "mass point" position data.
 

Actually, incorrect reading of the position components of an ill­

defined reference point would inadvertently affect the optical cor­

rection process. However, with information from 21 reference points
 

employed, the chances of incorrect compensation for optical error
 

are reduced considerably.
 

6.4 Spatial Smoothing of Ring Position Data
 

The optically-corrected ring position data, still subject to
 

scatter due to experimental uncertainties, were smoothed analyti­

cally in space, as explained in Subsection 5.2.3.
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Fourier sine and cosine series were employed to fit the experi­

mental position data with smooth curves. The magnitudes of
 

the Fourier coefficients determine the contribution each term
 

brings to the total harmonic content of the smooth fit to the
 

ring position data. As the ring/blade impact interaction time
 

advances, the changing shape of the ring causes changes in the
 

magnitudes of the Fourier coefficients, to reflect the vary­

ing harmonic content. In particular, with the local bending
 

of the impacted ring, the higher order terms contribute more
 

and more to the description of the ring shape. Thus, the mag­

nitudes of the higher-order Fourier coefficients show an in­

crease as time progresses.
 

The above effect is presented in Figs. 10a, 10b, and 10c
 
where the coefficients of the first, second, and third Fourier
 

harmonics are shown, respectively, as a function of time. The
 

first harmonic, of course, describes the circular shape of the
 

ring, and any expansion or contraction (the breathing mode) of
 

the ring. Note that the presence of both sine and cosine con­

tributions in either of the horizontal or vertical axis direc­

tions is due to the fact that the impact-induced cusp in the ring
 

does not coincide with either the Y or Z axis. Hence, the varying
 

values of the coefficients include the effects of ring rotation
 

(thus changing the G = 0-deg axis orientation) in addition to the
 

breathing mode. The second harmonic describes the oblateness of
 

the ring, as defined by the magnitude of the Fourier coefficients
 

depicted in Fig. 10b. Here, the ring is originally shown to have
 

negligible oblateness (magnitudes of the coefficients are nearly
 

zero) but the degree of oblateness is shown to increase with the
 

passing of time. Again, the orientation of the oblateness is de­

termined by the relative magnitudes of the Fourier coefficients.
 

The same observations of negligible initial contribution and
 

increasing magnitudes of Fourier coefficients with advancing
 

time hold true for the higher Fourier harmonics, similar to the
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case for the third Fourier harmonic depicted in Fig. 10c, which
 

contributes a tri-lobed component to thb distorted shape of the
 

Fourier series spatial smoothing. It should be noted that the
 

maximum magnitudes of the coefficients tend to be smaller for
 

the higher-order harmonics, indicating relatively smaller con­

tributions_-from--them--to-the-gen z r-hape of the smoothed posi­

tions. One should also note that the figures show eight pre­

added points, having the same values as the coefficients for
 

the first picture, to establish the pre-impact stationary shape
 

of the ring.
 

As a final observation, the reader's attention is drawn to
 

the fact that the time history of each coefficient shows some
 

scatter, so that the transition from one picture to the next
 

one is not exactly smooth.
 

6.5 Timewise Smoothing-of Ring Position Data
 

Following the spatial smoothing of the data points, the
 

next task was the smoothing in the time domain. The position
 

data expressed as a smooth function of time lend themselves
 

to easier differentiation and give plausible results of velocity
 

and acceleration estimates, as opposed to the differentiation
 

of jagged position loci which-would indicate rapidly changing
 

velocities and accelerations. The timewise smoothing is ac­

complished through the -use of Gram polynomials, as explained
 

in Subsection 5.2.3. The magnitudes of the Gram coefficients
 

determine the contribution of each Gram polynomial to the
 

smoothing fit.
 

A representative result showing the magnitudes of the
 

Gram coefficients employed to smooth the loci of the Fourier
 

coefficients depicted in Fig. 10b for the second Fourier har­

monic is shown in Fig. 11. The normalized magnitudes of the
 

four coefficients are shown on a logarthmic scale, indicating
 

the rapid decline in the order of magnitude for the higher-order
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Gram coefficients. Similar results are obtained for the timewise
 

smoothing of the coefficients for the other Fourier harmonics. It
 
should be noted that no definite cutoff exists beyond which -one
 

may neglect including the higher-order Gram polynomials. The high­

er-order terms contribute smaller amounts. to the total function,
 

but are important to a degree in preserving the representative
 

character of the position loci by approximating closely the data
 

points. However, including too many higher-order terms tends to
 

fit the scattered data points so closely that differentiation to
 

obtain velocity and acceleration gives implausible results.
 

The sensitivity of the results to the timewise smoothing is
 

best indicated by carrying through the analysis of the center-of­

gravity locus and rotation of the impacted ring. Figure 12 shows
 

the horizontal and vertical components of the center-of-gravity
 

locus and the ring's rotation versus picture number. The cg is,
 

of course, determined by averaging the positions of the 72 ring
 
"mass points", and is also equivalent to the zeroth Fourier harmo­

nic. However, despite this averaging based on a relatively large
 

number of components, data scatter is still evident. Part of this
 

is attributable to the uncertainties involved in the reference
 

frame determination, based on the available reference point posi­

tion data.
 

The magnitudes of the coefficients for the Gram polynomials
 

needed to smooth the og locus and ring rotation in time are depic­

ted in Fig. 13 for the two Cartesian components and the ring-rota­

tion component. Eight pre-impact points were pre-added to the cg
 

locus, duplicating the position components of picture number one,
 

to establish the stationary ring existing before the interaction.
 

The timewise smoothed cg locus and ring rotation is shown in
 

Fig. 14 for the cases of-(a) 5 and (b) 10 Gram polynomials+ . Note
 

that the 10 Gram polynomial case appears as an oscillation super­

posed on the 5 Gram polynomial case. The 6 through 9 Gram poly­

nomial cases are not presented here to avoid crowding the figure;
 

+ These pertain, respectively, to n = 4 and n = 9 in Eq. 5.8.
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however, they each result in minor corrections to the center­

of-gravity locus keeping in perspective the scale employed in
 

the plots. The time derivatives of the eg locus, of course,
 

show greater sensitivity, and will be discussed next.
 

6.6 Total CQllisionInduced-Foces-Es-t-imated- fronsthe-CGr
 

Locus
 

As discussed in Subsection 5.2.4, an estimate of the to­

tal collision force imparted by the attacking blade fragment
 

to the containment ring is made based on the acceleration his­

tory of the cg of the ring. The acceleration of the ring is
 

gleaned from the timewise smoothed cg locus, as its second
 

time derivative.
 

The force component imparted in the horizontal direction
 

of the reference frame is shown in Fig. 15 for each individual
 

Gram polynomial used in fitting the cg locus. Thus, the con­

tribution of each term is shown individually to enable one to
 

visualize the contribution which each additional term of the
 

Gram polynomial introduces to the total force estimate.,
 

Note that the third Gram polynomial term reduces to a
 

constant upon differentiation twice-, as evidenced by the con­

stant value shown in Fig. 15. The fourth term introduces the
 

linear variation, the fifth term introduces the quadratic vari­

ation, and so on. The divergence at the two extremities is as
 

anticipated, and is limited to the intentionally pre-added pre­

impact positions and the segment of time after the interaction
 

time of interest in the analysis. The above results include
 

the effect of the Gram polynomial coefficients as shown in
 

Fig. 13, -and hence the magnitude of the contribution of each
 

term is governed by the magnitude-of the coefficient.
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Figures 16a and 16b show the time history of the horizontal
 

and vertical components, respectively, of the estimated total force
 

acting on the ring, as a function of the number of Gram polynomials
 

employed for the smoothing. It is clear that the choice of the
 

number of smoothing polynomials defines the shape of the cg locus,
 

and hence the estimated force based on its second time derivative
 

(acceleration). The lower numbers are inadequate to depict the
 

forcing functions, whereas the higher numbers fit the scattered
 

points closer than desirable and result in the estimation of er­

ratic total forces.
 

A plausible estimate of the total force was selected to be
 

a faired curve through the average of the curves labeled 7,8,9, and
 

10 in Fig. 16. The resulting estimated force history components in
 

the Y and the Z direction are shown in Fig. 17. The time history
 

of the estimated total force is consistent with the time history of
 

the blade-to-ring impact location which is observed to commence in
 

the fourth quadrant of the inertial reference frame system and to
 

progress clockwise to the third quadrant. Thus the horizontal com­

ponent starts as a force in the positive direction, then crosses
 

over to a negative value in the third quadrant, whereas the verti­

cal component is in the negative direction throughout --- as can be
 

seen readily from Fig. 17 in conjunction with Fig. 18.
 

An examination of the sequence of motion pictures enables one
 

to estimate the location of the zone of blade/ring impact as time
 

progresses. This is shown in Fig. 18. At each time instant the to­

tal force depicted in Fig. 17 may be regarded as being distributed
 

in some plausible fashion over the blade/ring impact zone. Accord­

ingly, this provides one estimate of the distribution and time his­

tory of the blade/ring collision-interaction forces.
 

Although not discussed in this report*, a second estimate
 

of the blade/ring collision-induced forces may be made by a TEJ-JET
 

A future report will deal with this more complex matter.
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analysis of the motion of the individual "mass points" of the
 

ring, rather than of the ring's og. This leads automatically
 

to a determination of the magnitude and time history of the
 

externally-applied forces acting upon each ring "mass point".
 

By means of a Kalman filter scheme in the TEJ-JET_prQgram,­

----both--of--the-above forcing function estimates are combined, while 

applying appropriate weighting factors for each, in order to ob­

tain an "optimum estimate" of these externally-applied forces. 

These matters will be discussed appropriately and more fully in 

a future report. 
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SECTION 7 

SUM4ARY AND COMMENTS
 

The need for rational structural design methods to design
 

structures for either containing or deflecting (into "harmless"
 

regions) engine rotor fragments from aircraft jet engines is
 

discussed. It is argued that efficiency and convenience con­

siderations lead one to employ two-dimensional rather than
 

shell and/or three-dimensional-solid structural analysis models
 

at this time. Further, the judicious use of both theoretical
 

analysis and experimental data on engine-rotor-fragment impact
 

with selected structures is essential to achieve reliable and
 

efficient designs for this complex problem since only a limited
 

understanding of its many aspects currently exists.
 

Accordingly, restricting attention to fragment containment/
 

deflector structures whose deformations are confined essentially
 

to one plane (the plane of the structural ring), it was noted
 

that already-validated methods for predicting the large-deflec­

tion elastic-plastic transient deformations of such structures -are
 

available; reliable and accurate predictions result provided that
 

one has accurate knowledge of the externally-applied transient
 

forces to which the structure is subjected. In the present
 

context, these forces are the forces applied to the structural
 

containment/deflector ring by the impacting fragment(s)'during
 

the impact and interaction process. A means for estimating
 

these impact/interaction forces experienced by the "ring" is
 

to conduct experiments in which (a) selected types of engine­

rotor fragments are caused to impact "typical" rings and (b)
 

careful measurements are made of the transient response and
 

deformation of the impacted structure. This information is
 

then used in a "backward-solution" of a JET structural response
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computer code to obtain an estimate of the externally-applied
 

forces which must have produced the experimentally-measured
 

transient motion and deformations of the fragment-impacted
 

ring; this procedure is termed the TEJ-JET process.
 

The theoretical feasibility of the TEJ JET-process Was-'
 

es.tab-i-i-shed-eatlbr. The present report describes work in
 

progress to assess whether or not this scheme is feasible in
 

a practical sense when experimental transient deformation data
 

of the limited precision and accuracy provided by currently­

available techniques are employed.
 

In this report the experimental equipment and the tech­

niques employed at the Naval Air Propulsion Test Center (NAPTC)
 

for generating the needed data are described. Particular atten­

tion is given to identifying possible sources of error and un­

certainties in obtaining the sought experimental data, since
 

the success of the TEJ-JET process depends upon obtaining ex­

perimental transient structural motion and deformation data
 

of high accuracy. Accordingly, discussed are the careful con­

trol of the experimental steps involved -- beginning with the
 

equipment and the test arrangements -- to the generation of the
 

high-speed motion picture film recording of the impact-response
 

behavior, and culminating with the readout from each picture of
 

the film of the coordinates (or position) of the deformed struc­

ture using a Nuclear Research Instruments Corp. optical film
 

reader. In reading the film, the -viewer must exercise his
 

judgment in deciding where to position the reading cross-hairs to
 

locate the coordinates of a given "spot" on the structure; repeated
 

readings of a given spot will produce slightly different results
 

and, thus, some data uncertainty is present from this source.
 

In addition to identifying possible sources of error in
 

the generated transient position data of the structure (and of
 

the fragments), analytical means are described to compensate
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for (a) uncertainties in reading the "structural station" posi­

tion data, (b) optical distortion effects (camera system, film
 

shrinkage, optical reader, etc.), and (c) other random-errors
 

in the position data in both space and time. For the last of
 

these items, data smoothing: (1) in space by means of Fourier
 

series and (2) in time by means of Gram polynomials, is employed.
 

To illustrate these techniques, data from NAPTC Test 165
 

involving the impact of a single blade from a T58 engine tur­

bine rotor against an aluminum containment ring are analyzed.
 

These studies reveal the magnitudes of the errors* present in
 

the experimental data and also show the effects of the ana­

lytical compensation and smoothing techniques employed to
 

analyze the data. To date only one of the two "force extrac­

tion" branches of the breadboard TEJ-JET program has been
 

followed through to completion to determine the impact/inter­

action forces -- this branch deals with analyzing the motion
 

of the CG of the ring and deduces therefrom the total force
 

which acts upon the ring as a function of time. At any instant,
 

this total force is assumed to be distributed over a small
 

region of the ring where the film records show the impact/inter­

action to be occurring. From this analysis branch, the esti­

mated total force history is found to be plausible and physi­

cally consistent.
 

The second branch of the TEJ-JET process is designed to
 

produce information on the components of the transient external
 

force acting on each "mass point" of the structural ring. The
 

exercising of this second branch on the (improved) NAPTC Test
 

165 data has not yet been carried to completion. Thus, the
 

present report constitutes an interim progress report on the
 

practical feasibility of the TEJ-JET method. This work, how-


Improved techniques were employed in conducting NAPTC Test
 
165 and, hence, these errors are smaller than those present
 
in the earlier NAPTC Tests 88 and 91 which were discussed in
 
Ref. 5.
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ever, is proceeding, and a complete evaluation for NAPTC Test 165
 

will be carried out and reported appropriately in the future.
 

Finally, these two estimates (first branch and second branch)
 

of these "externally-applied forces" each with an appropriate
 
"reliability weighting factor" will be combined in a Kalman­

filter subprogramr of TEJ-JET to provide an "loptimum estimate"
 

of the transient impact/interaction forces experienced by each
 

mass point station of the ring.
 

Based upon the studies already conducted including the use
 

of the first branch of the TEJ-JET process, one may conclude
 

that the adequacy and the accuracy of the experimental data as
 

well as the effectiveness of the analytical teqhniques employed
 

have improved to a point where plausible TEJ-JET estimates of
 

the total impact/interaction forces can be deduced. Similar
 

success is anticipated with respect to the second force-estimate
 

branch of TEJ-JET.
 

In addition to the transient deformed-ring position data
 

provided photographically, it is believed that measurements of
 

transient strains on the ring could be employed as an addi­

tional element in TEJ-JET to obtain further improvements in
 

the estimated transient externally-applied forces. Accordingly,
 

for TEJ-JET as well as for checking CIVM-JET predictions (Refs.
 

7 and 10), increased attention to obtaining accurate transient
 

strain measurements is recommended. Finally, it should be
 

noted that the basic idea behind the TEJ-JET process is such
 

that, in principle, if proved to be practically feasible, it
 

can be applied to deduce the transient external forces applied
 

to containment/deflector rings under arbitrary kinds of frag­

ment attack: (a) single blade attack, (b) n-fragment attack,
 

(c) impact from one or more blades from a fully bladed rotor,
 
etc. Hence, a final evaluation of the practical feasibility
 

of this method is anticipated anxiously.
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