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DOUBLE TIME LAG COMBUSTION INSTABILITY MODEL

FOR BIPROPELIANT ROCKET ENGINES

INTRODUCTION

Since it was first observed in the early 19h0's, low frequency combustion

_nstability or chugging in liquid rocket engines has been the subject of many

analyses. Von Karman (i) was the first to propose that the phenomenon is due

to a combustion time delay between the instant of propellant injection and

subsequent conversion into combustion products. In 1950 Gunder and Friamt (2)

presented an analysis in which this combustion delay was the essential feature

but also included the inertia of the liquid in the feed system. This was

followed about one year later with an analysis by S,-,merfield (i) which also

incorporated the combustion delay and feed system inertia. Gunder and Friant

treated both monopropellant and bipropellant rocket systems with a common

combustion delay for the latter case. Summerfield treated only the monopro-

pells_t case. In both of these analyses the authors showed that instability

is not possible if the pressure drop across the injector is greater than

one-half the chamber pressure. Crocco and Cheng (3) later refined the model

for the monopropellant case by assuming a time varying combustion delay which

for simplicity was correlated to chamber pressure. Their analysis considered

feed system inertance and capacitance as well as resistance. Hurrell (4)

introduced the concept of an injection velo_ ity-dependent combustion delay and
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its effect on the neutral stability boundaries. More recently Wenzel and

Szuch (5) conducted an analysis of the bipropellant case by allowing different

vaporization rates for the two propell_ _ts. However, feed system inertane_

and caps.citance were not considered. An interesting conclusion from this work

was that in some cases decreasing the ratio of the injection pressure drop to

chamber pressure results in a transition from unstable to stable operation. This

cannot be predicted from single combustion dela_ analyses.

All of these smalyses have served to establish the current knowledge and

understanding of low frequency combustion instability and have guided the pre-

vention and/or elim!nation of the phenomenon in past rocket engine develolmnent

work. However, in analyzing current high chamber pressu e, bipropellant rocket

engines with propellants possessing distinctly different vaporization rates

(time lags), these analyses have certain shortcomings. First, the analysis of

a bipropellant rocket engine with a monopropellant model applied individually

to each propellant system yields questionable results because it neglects the

influence of the other system on the overall stability. Second, the use of a

bipropellant model with a common combustion delay to represent propellants with

distinctly iifferent vaporization rates is unrealistic. And third, in view of

the fact that feed system inertance and capacitance play an important role along

with injection pressure drop in determining the stability of the overall system,

these factors should also be included in the model. It should be possible, at

lease in some cases, to stabilize the combustion with less impact to the overall

rocket system by optimizing these parameters rather than adjusting only the

pressure drop. Reliance on an injection pressure drop greater than one-half the
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chamber pressure to guarantee st:;_illty is unrealistic from both the standpoint

of high pump discharge pressures that _uld be required for today's engines and

from the results of the analysis ox'Wenzel and Szuch.

This report advances a bipropellant stability model in which feed system

inertance and capacitance are treated along with injection pressure drop and

distinctly different propellant time lags. The model is essentially an

extension of Crocco's and Cheng's mononropellant model to the bipropellant

case assuming that the feed system Anertance and capacitance along with the

resistance are located at the injector. The ueutral stability boundaries are

computed in terms of these parameters to demonstrate the interaction among

then.

/

r
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Conbustion Chamber and Associated E_uations

Croeco's in_eniousderivation of the combustion chamber equation is

based only on a limited number of fundamental assumptions and definitions.

First, like 5unmerfield, he postulates that the chamber pressure p is a

_unction o£ time t, even when the combustion process is a steady one. Next,

he suggests that the rate o£ combustion processes in the chamber is a function

of several variables, the two _Jre prominent of which are pressure and temp-

erature; the rest of the relewmt variables are lumped into a single group,

Z. Thus, without identifying the nature o£ the combustion process, he states

neat ly,

Process Rate - _p,T,Z) - f(p,7,Z_[1 + p' _] (1)

where the bars on the variables indicate the steady-state values of these

variables, and p' - p - p is the small perturbation of the chamber pressure,

and H.D.T. denotes the higher derivative terms, such as

In so doing, Crocco singles out the predominant effects of pressure on

the process rate f, and disregards those o£ the others. As it will be

shown later that, out of this perfectly general and vague definition of f,

Crocco was able to lay the foundation for the formulation of the relationship

between the burning and the injection rates of the propellant.

From the definition of f just introduced, it is easily obtained by

transposition

:I

J,/
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n = p'(H.D.T.) , f(p,T,Z) - £_,Y,_ (2)

f(p,T,Z) f(p,T,Z)

where n is simply the percent change of process rate, with respect to the

steady state process rate, due to a small perturbation in pressure, p'

Crocco and Cheng call this % change the interaction index. This index seems

to reflect, to some degree, the design of combustion chamber.

The next innovation that Crocco introduced at the outset of his in-

vestigation in combustion instability is the concept of a time lag, tt,

which is the total time elapsed between the instant when n = 0 and the instant

when n = 1. To simplify the ensuing analyses, he assumes further that during

a certain portion of this time lag, i.e.T, the interaction index n is zero1'

- . is the insensitive
and during the rest, i.e. • = _t Ti, n = 1 Thus, Ti

part and • is the sensitive part of the total time lag _t"

With these two quantities defined, the following statement concerning

the energy £a contained in a certain element of propellant as it transforms

from liquid state into gaseous products of combustiDn can be made

t

f f(t') dt' = (3)
Ba

t-T

Note that the lower limit of the integ_ll is the instant when the process

rates begin to be affected by the combustion processes. Note, too, that

this same level of energy £a would have been reached also, if the processes

of combustion had been steady. Thus, it is equal]y valid

,+ . ++ •
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d

t

/ YCt') at, = Ea C41 :
t-T

where the schematic variation of the rate functina f with respect to the

time lags T and _ are shown in Figure _.

?

Process

Rate /

/

?

Fig. A ,

Observing the schematic variation of £(t), one may write

t-T t t

/ f(t') dt' + /_ f(t') dt' = Ea - /_ _(t') dr' (S)

The first integral on the left-hand side of (5) can be rewritten approximtely,

Transposing,

i
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t-_

. t-T 1 / f(t' '
= ) at (7)
_{t-_)

t-I

But, from (5),

t-_ t

/ ' IfCt') dt [fCt ) f(t' '= - - )] dt

t-T t-_

hence, (7) becomes

t , , t , ,

___ = .f f(t )- fCt )dt'_- f _t.)- _._t ) dt'

Jt-_ f(t-_) Jt._ -f(t')

Using the definition o6 n from (2), we have

t

t t t
T-_ = -n__ p (t) dt (8)

t-_

Differentiation with respect to t of _-_ under the integral sign yields then

dT _ n ' t
dt -- [p (t) -p (t-_)] (93

P

This equation only portrays a part of the combustion chamber phenomenon.

The second part of the derivation o£ the chamber equation is con-

cerned with the mass balance in the combustion chamber. It begins with

the premise that the mass of propellant injected equals the mass burned

at an instant _t later.

65i(t ) dt - 6$b(t+Tt) (dt + dT) (10)

where the subscripts i and b denote injection and burning_ respectively.

The time lag _t in (10) is approximateiy equal to and will be later T-
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replaced by its counterpart _t in the steady state process. Now let

t - or -

Eq. (lO) becomes

6_i(T-Tt) (dT-dT) = 6_b(T) dT

r)r

Renaming T as t. as the starting instant of the process is immaterial, we

have

dT _

6filb(t) = 6_i(t-_t) (I - _ ) (II) :

Eq. (I) is now modified slightly, with the understanding that in a steady-

state process _i = 6mb'

6_b(t) - 6_b - 6_i(t-_t) - 6[ i - d_._T.dt6mi(t-_) (12)

If the injection rate is constant, i.e. 6mi(t) = _'z = 6mb,=it follows i

then

6_b(t) = 6_b (I - _).dr
,,

The next phase of investigation deals with the dynamics of the com-
.,

bustion chamber. For a non-steady process we can write

d :

_pCt) = _eCt) + _ M (t) (15)

where _b(t) is the rate of generation of combustion products, _e[t) is

the rate of ejection of gases through the nozzle, and Mg(t) is the mass :

of gases accumulated inside the chamber. Since Mg(t) is proportional to

the chamber pressure, the rate of accumulation of Mg(t) is

1974010288-010



-9-

d Mg (t) = M dd--t- g d-t [P(t)]_
P

where Hg is the steady-state value of_(t).

Considering the total amount of the combustion product from t . 0 to

the current instant t = t, we have

t /-T t! ! ! !
_b(t ) dt = _i(t ) dt (14)

o o

Differentiation of (14) with respect to t gives

d_ (is)_b(t) = (1 - _-_)mi(t-_t)

Substitution of (9) into (15) yields

'= _l+n [L_Z.P (t-_)
mb (t) _i(t-T t)L P P

or, with a slight modification,

_ T �6b(t) - _+_ / ' ' mi(t-T )-mm= 1 + n[ P- (t)-p+p _ p (t-l)-p ���_
L p p j m

Denoting

mb (t)-_ mi(t-It)-_ '
- PbCt ) , - Pi(t-It) and p Ct)-p - ¢(t)

we have,

Pbft) = n [¢(t) - ¢(t-_)] + Pitt-it) + n[¢(t) -¢(t-_)]piCt-_t)

or, approximately,

Pb(t)_. Mi(t-_t) + n It(t) - ¢(t-_ )] '(16)
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Introducing the gas residence time

e = (17)
g Mg/_ ,

as the time an average element of products of combustion w£11 remain in

side the chamber in a steady-state operation before it emerges from the

nozzle, Eq. (13) becomes

d_
d--_+ _ (z) = _b(Z) (18)

where z = t/Og. (19)

The ejection rate can be calculated from the steady-state nozzle transfer

function [6] as

Ve(Z ) = ¢(z) (20)

Substitution of (16) into (18) gives the equation of combustion chamber

dynamics.

de
d-_ * @(z) = Ui(z-zt) * n [@(z) - ¢(z-_)] (21)

where zt has been approximatedby the steady-state value {t and has also

been non-dimensionalizedby the use of 0 .
g

Th_ term pi(z-_t) in (21) can not be determined without an examination

of the mechanics of the feed system of the rocket engine.

Obvxausly, if the injection rate is independent of the pressure

oscillations in the chamber, (21) reduces to its simplest form.

d_
d--{-*(l-n) _b(z)= - n _b(z-_) (21)
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Derivation of Feed System Equation

A schematic feed system for a monopropellant rocket engine as shown as

in Fig. 25can be mathematically represented by several simple component

equations, each of which portrays a specific portion of the operation.

....

Ai

I Cl_,_bec

Fig. B No_zl_

Pump: Po-Po m -_
= - D o-----9-0 (22)

m
o o

dP1
",ine0-I: _O-_l= p° X d-_ (23)

d_n
= ],£ o (24)Pc'P! A dt

d_ 1
Line I-2: pl-P2 = _ _ (25)

. 2
_n

1 i (26)

Injector plate: P2"PI = 2 PoAi2

_1 • _i (No feedback centrol) (27)
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where D an-t X are the proportional const_ o2 _he pump and the equivalent

spring constant of the feed line, respectively. X is ¢loseJy related to the

feed line capacitance C£.

H.S. Tsien [3] obtained a differential equation from (22) -(27) which

relates the feed system dynamics with the combustion chamber phonemes:on.

d2

1 dPi
+ [I (P + ½)] Ui �C_(P�_-)+ -']

d2u i d3@i .
+ [DJE(1 - y)(P + {) • JEy] _ �J2Ey(1-y)dz--...r.-O. (28)

where

p = !__ (pressure drop parameter )
z

2APPoX
E = _Elasticity parameter)

0g

J = (Inertia parameter)
2ApA_

g

Simplification of (28) is possible for specific _ases:

I. Constant feed pressure, D = 0

dPi d2g i d2_ i

P(¢ + JEy d___ + Ul + j + JEy + j2Ey(l-y} = 0, dz--/'r- (29)i

If. Line elasticity or line capacitatce concentrated at injector plate, y=l

d2 dPi d2u i

P(¢ + JEd_) + _i + J d--{-' �dEdz--'z-= 0 (29)ii
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III. Constant feed rate, D +

de d_i d2_i
PE _ + _. + E _ + (l-y) JE dz--_-t- = 0 (29)iii

IV. Line elasticity or Line capacitance concentrated at the tank end

of line, y = O.

dPi
de +D(P+½)] i+[DEEP+½)+J]PIe + DE(P + 1) _ ] +

d2pi
+ DJE (P + {) _ = 0 (29)iV

FoI each special case (four sample cases are shown above) the feed

system equation F(ui, @ ) = 0 (29) must be solved simultaneously with the

chamber equation C(¢,pi) = 0 (21). if one is interezted in the stability

aspects of the problem, only the characteristic equation is of importance.

Some sample analyses leading to this chamber equation will be given below.

C_se I. Define a dif£erential operator

d d 2 d 3

= 1 + J _- + JEy _ + j2Ey (1 - y) _ . (30)

Then (29)i becomes for the instant of z-_ t

d 2

P [I + Oey a-z-2]¢(z__)+ • Pi(z-Tt)" = 0 (31)

Applying the different=el operator _ defined by (30) into (2_) we have

de •
_b _l - n)¢(z) - n@ (z-_) + _-] _ pi(z-Tt) (32)

Substitution of (32) into (31) yields a differential equation in ¢ only.

¢

,m
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e d_ d 3

d 2

+ pet+JEy_] #(_-_)- o

or

I(l-n)+ [i+ (:-n)J]d d2 __j d3
+ J [i+ C1-n)Ey]3-/2+JEy[(1 (l-y)+ i]_3

\
\

+ J2Ey (i-y)_ ¢(z)

d d2 d3
+ [P - n - nJ _-_ + (P-_)JEy_- nj2_y(1-y) dz--_]@(z-_) = 0 (55)

Equation (33) can be written symbolically

L1 [@Cz) ] + L2 [@Cz-_) ] = 0 (34)

where

L1 (l-n) + [I + (l-n)J] d d2

d 3 d_
+ JEy [Cl-n) J (l-y) + 1] _'3 + j2Ey (l-y) _ , C_5)

and

d2 d 3L2 = (P-n) - nJ + CP-n) JEy_-_.- n J2Ey Cl-Y) _'3 •

Now we relate the £mtction with a retarded variable Cz-_) with @(z)

by the use o£ Laplace transform_ namely,

¢Cs)• / e-sz @Cz)dz
0

and
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e sz �
°�|�dz= e-syr@(s) (36)
0

Thus,

(l-n) + [I �(1-n)J]s+ J [I + (1-n)Ey]s2 + JEy [1 + (1-n)J(1-y)]s 3

+ j2Eytl-y)s_ } ¢(s) - rl + (1-n)J] ¢(o)

- [_ �o-n)Ey][s,(o) �_¢I,.o]

d2

-JEyrl + (1-n)J(1-y)][s2¢(o) + s _z J z=o+

d2 d3

+ e [(P-n) - nJs + (P-n)JEy s2 - nj2Ey(1-y)s 3] @(s)

d �[+ nJ¢(o) - (P-n)JEy ['s¢(o) + _-- z-o

+ IxI2Ey(1-y) [s2¢(0) + S _'] Z.O+

Solving for ¢(s), we have

_(s)- _1(s1/¢2(_) 08)

where

•[,%(o).o_,(o).e(o)]• J'F#(._.-y)[o_ _,(O).,e(O),_,.,(o)]

b
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• JZy[l+(1-n)J(l-y)]_3,.j2_(1_y)J_

-e-_ [(P-n)-_J_,(P-_)JEy2-nPEy(l-y)P1

Eq (38) can now be inverted. The inversion process involves the

evah,ation of the residues at the poles inside a contour which encloses

all the poles of the integrand. Since there are no poles other than those

introduced by the vanishing of the denominator, we only need to set it to

zero and seek its roots, either real or complex, flence

+

(l-n)*[l+(l-n)J] s+J [l+(1-n)Ey] s2+jEy ['l (1-y)._s3+j2Hy(l-y)s _

-S_

= e [(P-n) nJs + (P-n) Jgys 2 - nJ2E7 (l-y)s 3] (59) :.

If' N _ L, such thnb the line cap_ciLence is concentrated at the injector plate

end of the line, (39) further reduces to

(!-n) + (l-n)J] s + J[l + (l-n)H]s 2 + JHS 3 -T--s

P - n - nJS + (P-n) JHs z = • (40) :

For given values o£ J,E,P,N and _, the roots (either real or complex)

can be solved from (40). Since these roots will give rise in the solution

¢(z) to such terms as

S.Z
1

cie £ • 0,I,2,...® (41)
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We are certain that a real positive root Si or a positive real part of a

complex root will cause ¢(z) to increase without bound as z increases. In

other words, the existence of such a root signifies instability, whereas the

existence of a negative real root Si or a negative real part of a complex

root indicates stability.

Case }H. Constant feed rate

d d2
Dsfine _ = i + E _+ (l-y) JE _ (42)

then (29)III becomes for the instant of z - Tt

PE _z"¢(z - T-_+ _pi(z-zt) = 0 (45)

But _i(z - zt) is, from (21),

- d
_i(z - Tt) - _[(1 - n + _Z)@(Z) + nO(.,-, - T-_] (44)

Hence

-PE ¢(z - _ + [1 + E * (1 - y) JE _r][(1 - n + @(z) . n@(z - x)] = 0

Simplifying, ,,

d2
(I - n • _-z)[l• E _-z• (I - )')JE _.-z_r-]¢(z) .

d2 - .{PE4,

The counterpart of Sq. (59) for this case is

(1 + BS �(1- y) JES2)[1 * s - n + n • "Ts] + PEa e" Ts = 0 (46)

Eq. (46) can be solved for s for s real or for s, complex. For real s, we

,e
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transpose (46) as

e-X-s (1 - n + s)[1 + Es + (1 - y)JEs 2]
- PEs + nil + Es + (1 - y)J-Es2] (47)

graphical procedure must be used to construct curves for the left and right

sides of (47) for various values of the parameters n,E,y,J, and P. The

intersections of these curves locate the roots. Again, positive roots indi-

cate stability, otherwise, instability.

For s complex, we substitute in (46)

s=a+i_

r_ _ulting in

e-aZ(cos r_o- i sin _)

[(1 - n + a)AI - uA2] + i[a_. 1 + (I - n + a)A2]
R .

(PEa +nAl) + i(PEu + nA2) (48)

where A1 = 1 + Ea + (I - y)JE(a2 - _2),

A2 = E_I+ 2(I - y)JEaw. (49)

Equate the real and imaginary parts in (48), we obtain

-,t_ (Pl_t + nA1)[(1-n+ct)Al..-toA2]+ (PEa, + nA2)[tt,Al+ (1-n+a)A2]- e 1"00 '_ m - -

(l'l,_ + nA1)2 .+ (Pl_,_ + nA2 )2
(_o)

-'_i,, _,_- (PZ_+ nAD[(1-.+_)A2+.,All- (PZ_+"A2)[-,oA2+(1-n+,.lAl]
(PEa + nA1)2 + (PNo + nl2 )2

Further simplificatlon yields

1974010288-020
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(£E_ +nAl) _A!+(I-n+_)A2 - (PEw + nA2) (l-n+_)AI- wA2

- ban ,_ = -(PEer+ nAl) _A2-(I-n+_)A1 + (PEw + nA2) (I-n+_)A2-_AI (51) i

e = (S2)

(PEa + nAl)2 + (PEw + nA2)2

1_e case of neutral stability is characterized by a - 0. Setting

a = 0 in (51) and (52) we obtain

nA_[_A_ + (1 - n)A_] - (pF._ + nA._)[(1 - n)A'_ --_,',1
-tan TO)--

-nA_[mA_ - (1 - n)A_] ¢ (PEso + nAb)I(1 - n)A_ -mAi'l

[(1 n)2 * _2][(A_)2 * (A_)2]
1 = (54)

(nAil2 + CpP_ + nA_)2

o = 1 - J'E_ 2
,here A1

2

O m F_b]
A2

J' = (i - y)J.

Simpli£ying, C53), (54) becomes

_, I -n]-- m - (1 - n) + CP + n) [F_ + n-tan T_ = C55)

and

(p+ n)2.n2 . [_a+ CI- n)2 -n2](_a +t) Cs6)
where

Jw - _ . :,
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THE PRESENT_L

The low frequency combustion stability model described here is an

extension of Crocco and Cheng's (4) analysis of the monopropellant system

to the bipropellant case. The model considers the injector capacitance and

inertance as well as the resistance of both propellant systems and allows

for separate and distinct time lags for each propellant. Previous bi-

propellant models do not consider the effects of injector capacitance and

inertance. The time lags are the time intervals between the fuel and oxidizer

injection and the assumed sudden conversion to exhaust products; they include

all the physical and chemical processes in the conversion such as heating,

vaporization, mixing, and reaction.

f

ANALYSIS

The monopropeilant, single time lag model of Crocco and Cheng is modified

to accommodatethe bipropellant case by adding a term accounting for the g

second propellant to the equation governing the dynamics of the gas flow in

the coz_bustion chamber and adding a new equation representing the dynamics of

the second feed system. The modified equation for the chamber dynamics in

dimensionless form is

6pcEt) �6Pc(t)=(t- To) Tf) (57) ,
dt

+ n [ 6Pc(t) - 6Pc(t-T)l

assuming the the pressure and temperature at av_7given instant are constant

throughout the combustion chamber and the time lag is constant for _ii propellant _,

elements. The dimensionless chamber press,_re, Pc and flow rates Wo and _f are 3

1974010288-022



-21-

defined in terms of their steady-state values and the dimensionless time,
;

t_ time la_ for the oxidizer and the fuel, To and Tf, and sensitive time

lag, T, are defined in terms of the gas residence time, eg. (Symbols are

listed at the front of the report and eg is defined in Appendix A.)

Two dimensionless equations representing the dynamics of the feed

system, one for the oxidizer and one for the fuel assuming constant feed

pressure at the injector inlet and all capacitance and inertance located at

the injector are

2 2

Po(l+JooED ) 6Pc(t) + (I+JoD + JoEoD ) 6_o(t) = 0 (58)

2 2

Pf(l+JfE_ ) 6Pc(t) + (l+J_ + J_ ) _Wf(t) = 0 (59) i

where D is a differential operator, and the d_mensionless inertance, Jo and

Jf, capacitance Eo and Ef and pressure drop parsmeters, Po and Pf, are defined

in Appendix A. Substituting equations 2 and 3 into equation i and applying

Laplace transformation to the result yields

2 2

S+J E S ][l+JfS+JfEfS ][S+l-n+ne -Xs][l+Jo o o

-_ S 2 2 -_fS 2 2
= -e o Po[l+JoEoS ] [l+JfS+JfEfS ] - e Pf[l+JfEfS ] [l+JoS+JoEoS ] (60)

Substituting s+i_ for S in equation (60) and equating the real and imaginary _.

parts of both sides results in two simultaneous equations,

--ST

(GH-KN)(m*I)-(EH+GN)m = -Poe o {coo mTo[MH-N(2_JoEo) ] + sin mTo[MH+H(2S_oEo)]}

-Pf e -_Tf {coo _Tf[RG-N,(2S=JfEf)I + sin mTf[KR+G(2emJfEf)]} (61)

--ST

(GH-KN)= *_t+GN) (s+l) = -Po e o {coo =To[MN+H(2_mJoEo) ]

-sin =To[MH-N(2sO_JoEo) ]}

-Ffe-aTf Icos _f[KR+G(2_JfEf)] -sin _f[RG-K(2amJfEf)] } (62) _,
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where: G = 1 + J _ + J E (_2_ _2)
O O O

}3 = 1 + Jfa + JfEf(_ 2- _2)
Z

K = J m + 2J E m'_
O O O

N = Jf_ + 2JfEf_

M = l+J E (a2-_2)
00

R = l+JfEf(_2-_ 2)

For reasons to be stated later, the interaction index n and the

vaporization time _ have been set to zero in Equations (61) and (62). _

Equations (61) and (62) can be solved simultaneously_for _ and _ to _-

evaluate the stability of any combustor design once the pressure drop, in-
r

ertance, capacitance and time lags are known*. The magnitude of a indicates

incidentally, the proneness of the system to instability (if _>o) or to stability

(if_<o).

The time lags, T and Tf are by Crocco's definition the total time lagsO

and are composed of a constant, steady-state (insensitive) portion and a var- _"

iable (sensitive) portion _. Rigorous analyses would take into account this

time-dependent or sensitive portion of the time lag; however, for most appli- °_.

cations it can be neglected because it is small compared to the total time lag.

Once the sensitive time lag is taken as zero it follows that the interaction "

index must also be zero because zero sensitive time lag requires that the _

burning rate be independent of chamber pressure. ,

% The programs written for this purpose are listed in Appendix C. The
calculations which underlie the solutions for _ and _ are discussed in

Appendix B. i

* The curves showing variations of a with Lo (Vo) while OF (VF) is held
constant are shown in Figures C (D).

I
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The total time lag is defined as the time increment between injection of

a propellant and its conversion into combustion products. Certainly this time

lag is not the same for all propella_._,_iements. It is th_refJre customary to

define an average time lag for each propellant which may be. done by determining

the lapsed travel time between injection and the axial position where

combustion is assumed to take place. The methods of Priem [7] can b_:used

to determine the position of the combustion front.
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DISCUSSIONS AND RESULTS

In _'_e_"to illustrate the effects of capacitance, inertance and

resis%ance of tt:e_ystems on stability, equations 5 and 6 were solved for

the neutral stability boundaries (_= 0). Figares 1 through 3 show the

neu_ra_ stability boun_arie_ in terms of the fuel and oxidizer orifice lengths

_or %h__ different oridizer pressure drops Fuel and oxidizer cavity volume,

_uel pressure dzop and time lags are held constant. Figures 4 an_ 5 show

the neutral stabili%y boundaries for two different fuel pressure d_'ops

while oxidizer pressure drop is held constant along with the cavity volumes

and time lags. Because more than one pair of roots satisfy equations 5 and

6 multiple stable and _mstable zones exist• The fuel and oxidizer pressure

drops affect these zones but unfortunately nc trends are apparent.

Figures 6 through 8 show the neutral stability boundaries in terms of

the fuel and oxidizer cavity volumes for three different exidizer pressure

dro_s. Fuel and oxidizer orifice lengths 3 fuel pressure drop and time lags

are held constant. Figures 9 and iO show the neutral stability boundaries

for two different fuel pressure drops while oxidizer pressure drop is held

constant along with the orifice lengths and time lags. Although multiple

sta_le and unstable zones exist as in figures 1 through 5, it appears that

intermediate values of oxidizer and fuel pressure drops (figures 7 and 9,

respectivelj) result in the narrowest unstable zones. Thus, if an operating

poinL were selected which is in an unstable zone of figure 6, the system

could bu stabilized by reducing either the oxidizer pressure drop to 124 psi,

or the fuel pressure drop to 87 psi (figures 7 and 9). Further reduction in

either oxidizer or fuel pressure drop results in the return to unstable

operation. This result cannot be predicted by either single time lag

models or double time lag models which do not include injector inertance

and capacitance.
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CONCLUSIONS

The contribution advanced by the stability model described here is

the inclusion of injector inertance and capacitance in addition to resis-

tance in the analysis of bipropellant rocket systems with different time

lags. Neutral stability boundaries are shown in terms of these parameters

in order to demonstrate their interactions.

This model provides a method of designing a stable system by ol_l.izing

the pertinent design variables rather than maximizing the pressure drop and i

ignoring the others which has been the traditional approach. This model

suggests that in some cases stability can be enhanced by reducing pressure
a
h

drop, and therefore maintaining pressure drop to chamber pressure ratio is

not necessarily desirable, i

t

/

2

i

[ ,i
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I
i

i

• i
Subscript i

c Combustion chamber

,, Oxidizer

t' Fuel

i Init ial

Sut_rscrlpt

* Indicates dimensione _-quantities • :-
i

%
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LIST OF SYM3OU_

SYMBOL L_;FINITION

D Differential operator, d/at

E Dimensionless elasticity parameter

j Dimensionless inertia parameter

p Dimensionless pressure drop parameter ,

p_ Pressure
4

p Dimensionless pressure

M Molecular weight ,

V Volume i

T Temperature ;

Mass flow rate

R Universal gas constant

p Pressure drop :

0 Density

X Compliance

e Gas residence time
g

1 Injector orifice length

A Injector orifice area

s Laplace transform variable

Weight flow rate

t Dimensionless time

n Interaction index

a Dimensionless Damping Coefficient "

m* Damping Coefficient _

m Dimensionless frequence

_* Frequency

Dimensionless time lag

T* Time lag

T Dimensionless sensitive _ime lag _

T" Sensitive time lag

i

il
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APts.ndix A

Definition of Parameters

The gas residence time, eg is used to nondimensionslizemany of the _.

i quantities used in tlleanalysis. It is defined as

VcPc VcPcHc
: eg i R TC

! -_.

The pressur_ drop parameter, P is defined as

Pc
2Ap

The elasticity parameter, E is defined as

*, E = 2A._$p.£_ _'mB
g -

The inertia parameter, J is defined as

J - _
2apAe

g

: The real and imaginary parta of the Laplace transform variable S (a and m),

the oxidizer and fuel combustion delays, and the sensitive time lag are non- "

_' dimensionalize_by the use of the gas residence time, @g, namely,
" i

i _ = aue
[ g

't = '_o/e__: o g
J

_" _rf=Tf/eg

i _*/eg'T'- L
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Appendix B

Solution of Equations (61) and (62) by Newton-Raphson Method I

For convenience, Equations (61) and (62) are denoted, symbolically and

respectively, as

f(a,_)= 0 (A-I)

g(a,_)- 0 (A-2)

By series expansion, Equations (i) and (2) are rewritten

af

f(a,w) = f(an_l,_n_ I) + (a-an_l) _ (an_l,Wn_l)

af )
+ (W-_n-l) _ (an-l'_n-1 (A-3)

g(a,_)= s(%_l,_n_1) �(a_n_I)a_ (an-l'_n-i)

+ (__%_i)__Z ) (A-_)aw (an-l'_n-i

wherean-l' n-i are the values of a and _ at stsge of computation n-l.

Now if at a subsequent stage n, where a = an and w = _n the right-hand sides

of (3) and (h) vanish, the following can be written immediately.

af af ) = -f(an-l'_n-i )an _ (an-I '_n-i ) + _n _ (an-I '_n-I

af

+an-i _ (an-i '_n-i) •

_f ) (A-5) '
i +_n-I _ (an-i '_n-i

:

n (an-l'_n-1) + Wn a_ (an-l'_n-l) = -g(an-l'_n-l)

! _ (an_'_n _)i +%-i_a - -

_-& (A-6)
I +_n-i _ (an-i'_n-i )
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W_itten "in matrtx fore, (5) and (6) take the fore

b • • • m

"_f _f" °n ,I "af )f" °.-1_'_ _-; I _-_ _-;
• - J + (A-'r)

_g "n I ag ag %-1
_a aw n-1 . . _ n-1 ;)a aVn.1 • •

b

Inversion of (7) ytelds

. aa ;)w n-1 . .,n-1
(A-8)

- f. •
• u,

: an'l 1 _w " _'- ,'

vn-1 ag _f ;]. j " am a_n-1 ; n-i

where
"_f _f

m

_,_ ;)w

OFG- (A-9) i

;)a aw n-1

Iteration follows untt1 the roots a and v are pin-pointed wtthtn desired

accuraCy.

Such a schemeof solvtng simultaneousequations ts kmm as the ltewton-

1
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I

l _phson method.

A comput,_rprogram was developed such that for given para=eters for

a specific rocket, m_tue, ['or lnst_mce,

Po " J,36, ;'=, - 4.82, Jo " 1.z89, _0 " 0.20t8,

%o " 5,-%92. Tt" " o._. at " 0.o6i, Ef - 0.233,
i
I the i'undament_l roots ax'e obta.iued

f
a = - 0.112

i
I,. - 0.49.

Other examples are solved :_[milarly ,,rodthe results o£ computation

are shows in _'It;s.i and li,

3

L
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APPENDIX C

Computer Programs and Sample Calculations

!

J

k
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N

$1,1H •
c RI ok'lO_t ! ANT

C qA_CH 2q, |q73 ,_
C
C CIJRVF 3tFIG.ItPER _ERCH B_DATA FROM RICHeAONO

C SE_KIN_ A PLAIT _F L_ VERSU_ LF

P "PA_IS,IO0| NCASF
3 LNQ FnRqATII2)

q tO! CflRNATI2F|O.b) ':

T _C=37.2

q THR.:OoO0026 ._
r

o OPN-62.

It qqO-Z_.q

E_ OPF-&3,3
It ATF-O,96_ T

14 _NF-4.30
C

17 PJq.RL0_RN_IIZ_._DP_A_O_GI;_THG)

It PJF=RL¢_R_F/(2_.*_PF_&TF_G_.tTHG)
I o PEn-O.OTZl

?l Tn_s,3A_

C THE F_LL_HING CAPDS CONTAIN INFO FO_ LATER USE IN VARYING VVO V$ VVF _[

C
(. _CC-IZ_8.
C VVrl_12._

t VVFzq. _
C _Hr;-O,00023q_ .

_v')=O.O|
C qRF-O,OOO

C P£_H_eRKf)*VV_/IRqQ*THG_IVO_O_S|I
¢ OrFzRHrF_RKF_VVrlIR_F_THG_IPFF#O_II
C PO_,_.O_ _A_ USF_ I_ CURVE 2|FIG.|

r _P_=12¢ NA_ _ISFO IW £URVE _t FIG.|
(" ')P_sHh.6 _ U_E_ tin CIIRV_ 2_FIG.i
C _,Erl=O. i3_7 _A5 USEO IN CURVE 2eF|G.|
C ;_n _F LATENT IF_Rq&TION
C

ZS _t:O.Ol
_ W-O,OL ,',

r

Z_ IT Ft_qATILHII

27 I_ FO_NArlqX_eLINEA_ ENGINE COqBUSTION STABILITY STUDYet/I ;_
_ _ITCIb_IR)
29 ?¢) rqRM&TI|OX_tL_I_t_EIO.k_XteLF.e_E_O.6_I|
30 M_ITFIh,_O) qLQ,PLF

?
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!
tl I_ _:)RqAr(|_X,'ALP_AatI|XtWALPDfA Ile|SXteOMFGAmtIOX, IOMEGA lel/)

_4 rV_A=r_PI-T']t4L)
_ rVF&-FXP{-TFSAL)

3_ ,_OCF:CflS(TF_M)
_a PP_F:S|NIrFSd)
40 PP_T:I.
41 PPST-O,
*Z AAdW=AI*AL-N*W

C
6J P_u|.fPJ_ALfPJnSP[_$AAWW
_4 P_:L. L_PJFSPEF#AAWM
45 P4=PJ_eWeIL._.tmEOeALJ
46 oqN=_JF*_*II.+2.ePEF_AL|

;q _R:PH-PJFSAL
4 _ PtI=2.$PJ_$P_$AL$_
_ PVs2.$PJFSPFFeAL$_
_l _A:AL_|.-PN*PN*ETASPPCT
5_ Pfl=_-pNSFTASPPST

S_ _F=FVOA*PPSO

5_ OO:CVFASPPCF i$6 FF:EVFA*PrSF
_ AJImnGSPH-PNN$_K

_q AJ2:PHSPK_PN_G 1

qQ AJfiup_$PH-PUsPN_4
6_ &JTmPMSPNNtPHsPU
_[ &Ja:DRSPG-P_$PV

"_ P_A;PJr]eIL.*2.$PFnSAL) Ih4 PltA_PJF$(|._2.$PFFSAL)

_ PNA:2.$PJFe_EFS_
_7 oMA=2.epJg$;_$_L
_e PQA=_.$PJFSP_FSAI
_3 PI)A:PKA
?_ PVAmPNA

7_ nG&=O.
7t £CA=- T_$FVOASPPCI)
74 _EA=- TOt_VO_tPPSO
_ r_A= - TF$_VFA$_PCF
16 F_A:- TFsTVFASPPSF
_7 PGWm-PKA
"8 PHW=-PNA
?_ PKWmP_A
m_ PNWmPHA
41 PMW_n_W

8_ PRW_PHW
ql PUW_PMA
q4 PVW:PR_
qq P&Wm-P_A
R_ P_WtPAA
q? CCW-FEA
48 EEWm-CCA
q9 _W.FFA

t
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lI CKI=)GtPHA+PGACPH-PNN*PKA-PNA_PK

*,' CK)=PHt_K_+PHWtPK+PNN_PGN+PNWePG
_ CK$=PG_PHW_P_W_PH-P_N_PKW-PNNtPK

')_ rK6=PHtPKAf_HAtPK_P_N_PGA_PNAtPG

_ CK_=nqA_PH+P_*_HA PUtPNA-PUA_PNN
tt6 CK_za_w_P't+PMtP_-PUW_@NN-PUtPNW

q7 CKT:PMA_OqN P_tPHePU&+PHAtPU
,)_ CKR=PM_s_N_PMtPNW+PHW_PU+PH_PUW

q9 Cvq:_RAe=O+PRtPGA-P_AIPV-PKtPVA

I )0 CKLO=OO_tPG+_R*PG_-PK_PV-PK_P_W
|')| _K||_PRA_PK+#RtPKA_P_AePVtPG_PVA

!0) C_|_:PRW_PK_q_PK_=GWtPV+P_pvN

iO_ FFF=PA_AJI-PS*AJ?+P_(CC_AJ_EE_AJT|+P_F_(OO_AJg+FF_AJ|||

l_ GGG=P_*AJI+PAeAI_+_OO*(CC_AJ?-EEeAJS|+PFFe(OD_AJiL-FFtAJg|
I0_ F'-FA=PAAI&JI+PAiCKL-P_A_AJ2-PS_CK_

i _Pn_tICCAeAJS+¢C_CKStFEA*AJ?+EE_CKT)

| +PFFe(OOAeAJq_OO*CKg_FFA_AJ||+FFtCK|||
FNI) ,1F FFF_

C

tO6 FFFW=PAH_J|+PA*CK]-PBW_AJ_-P_CK2
| _P_qe(CFH*_JSeCC_CK6+EFW_AJTeEE_CKS)

L _PFF_(_OW#AJ_+OO_CKLO+FF_tAJ|l+FF_CK12)
C F_O_ _F FFFW "_
F

IO t (;GGA_PSA*AJI+PB*CKI+PAA*AJ2+PA*CK6
[ +PO_*(CC_AJ_+_C_CKT-rFA*AJS-EE_CKS|

| +PFF*()OA_AJII_OD_CKII-FFAtAJg-FFtCK9)
C FNI) nF _A

C

LQ_ _GGH:PHH_AJ|+PR_CK)+P_H_AJ_+PA_CK_
1 +POn_(CCH_AJ7 S-EEWtAJS-EE_CKb)
I +PFF*IDDW_AJ||_O_CKL2-FFHtAJg-FFe_K[O)

_Nn qF GGGW

)_ _FGuFFFAeG_-G_ .GGGA*FFFW

II0 GC_L-(GG ;_F-FFF_*GGG)IDFG
ILL AL'AL-G _"

|L? GG_Z-(-I.G_t;FF+FFFA_GG)/OFG
- lit WI-_-GG_2

i, r !

ll_ W"IT_I_,I6I AL,AItWoWI

" [IL_I_ _L=AiIFIARS(GGGIi'LT'IOoOOII'ANO'ABSIGGGII'LT'(O'OOIII GO TO 50 ]

) 12_ _r_ Tn ! (

lZ _ _N')

! I '
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! l_fA_ _Nt;l_r COqI_USTI'I_ bTABILITY STUgY

L,I=O.[OOOE OI LF=O.qO_OE O0

AI.PV4A ALPHA | ONEGA OMEGA [

O.]0000_OOF-OL 0.SLSS_4_OF O0 O. IO000000E-OL O°4LT43Z?OE-O[
O,SLESb4SOE OO -O,#9_8_&TOS 00 0.41743270E-01 O°69B]gs$oE-o|

I -O.4_4_467OF 09 -0.3009_270E O0 0.698)9S30E*01 0°72969750E-01

-O.30_94ZTOF O0 -O, IOQ606TQE OO O,TZQbgT)OE-OL O.85579990E-O|
-O. tOq_O_70F O0 0.|S632RTOF 00 O,8ssTgqqoE-01 0.|5707|80E O0

O.|Sb3_H73E 00 ;)._qRQBg_OE-01 O.|STOT|SQE OO O.SbS3Rk60E O0
0.8_qq940_-0[ 0.4977B040_ O0 0.SbS3844OF OO 0,37635260E 00

O,4_??RO40E 00 -0.27112540E O0 O,3763_Z6OE O0 0.3103S610E O0
-0._71|2',40_ 00 -_.LL232140F 09 O.3103SbIOE O0 0.33325400F O0

l -0,|_$2140F 00 -O.7_q_oqOE-02 0.33325_00E O0 0.390478_0E O0

-O.7_9_ouOE-02 oQ.t|A||O30E-03 0.390478|0E 00 O._)62EQ§OE O0

-O.IL_E|O)OE-03 -0,47754940_-02 Q._36Z|gSOE O0 O.4365ST40E O0

i -O._T?_4'_kOF-02 -0.4730_670_-02 0._3635740E O0 0.436360_QE O0

L . i
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_h D_=_-PN_ET&SPP%T
q7 CC=FVnA_PPCfl
Sq FE=FV_A*PP_n
%,) [)9=EVFA#PPCF
60 ¢¢=_VFA_PPSF
6L hJ|_p_PH-PNNtO_ _"
h2 AJ2=PHSPK_PNN_PG

_3 _Jfi=PM*PH-PU_PNN
*_ &J7=PM_PNN_PH_PU
_5 _Jq=PR_PG-PK _PV

,; 6R _q6=nJPlil* \�4�\�*pLFI&L|
_9 PKA=2*_PJ_PEO _
70 PNA=7.*PJF_PFF_
7[ O_A=2. tPJfltPF_*4L
?Z PR_=2._PJF_O¢FaAL
73 DU&:°KA
74 _VAzPNA

i 75 P&&:L.

77 CCA=- T_EV_A#PPCq
7R r_A:- Tqt_V_At_PSq
7q _=- TF=FVFA_PPCF
q_ FFA=- TF*EVFA*°PSF

_? PH_:-PNA

qK PMW_OG_
q6 _RWzPHW •
47 P_0W:P_A
RR nVW=PRA
q_ P_Wt-OBA
_ PR_tPAA
_L CC_:F rA
q? rF_--CCA

q4 FFW=-O_A
_ CK|_P_tPHAt_A_PH-PNNt_K&-PNAtPK
06 _KZaPHePK_(_HWePK_PNNt_PN_mPG
q7 _K3:P_tPH_fP_W _ptt-PNNSPK_-PN_epK
_ CK4:PHtPKA _NtPGAePNAePG
,_,) _K%=PMA*DH_PHA-PIJ_PNA-PLJAmPNN

I_O CK6_DqMtPH)Pq_PH_'PU_ tPNN-DLI_PNM
I_L CK_P_AtPqN eP_tPNA_pH*PUA_PHA_PU
102 Cq4aPM_PNN _PqeDN_tPHWtPUePH_PU_
10_ _Kq=PR&_P_ )PR_p_&-PK&_PV'PK_pVA
_,, CK|O:Pk_PGtP_tPG_-PK_ePV-PK_PV_
i,_5 rK|T:PHA_PKtPR_PKA_P_A_"V#P_tPVA
|_ CK|2=P_tPKePqtPK_PGN=PVePGePVW
1,)7 FFF:p&_&j|-oHeAJ?eP_t(CC_AJS ePFFt(DO_AJgtFF_J[[)
I0_ _GF.p_tAJ|_pAtAJ2ePOOe(CC*AJT-EEtAJS| AJ|_-FFtAJg|"
t:)_ FprA.P_AtAJL_PA#CK|-_AtAJ2-_StC_';

t _p_e(CCAeAJqeCC_CK_eF_AaAJTeE_*:KT)
'_ ] )_Fe(O_AeAJ9+Oa)eCKgeFFAmAJt|_FFtCKII|

I|_ rFF_-PAW*AJ[ePA*CK)-PRMeAJ2-PO_CK2
'_ i | .pf_tle|CCH*AJ_CGeCKb+[F_SAJ?*F_eCKS) :

| • _pF_e(O_t_eAJg_OOe_KtO_FF_eA_||#FFtCKI_| _

|1| _GA.p_A*&JL_P_tCKtePAAeAJ2ePA_CK4
• _ ; :-

i ,
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! ,P.1,;ei_(_*AJI*CCOCK?-EE&eAJT_-EEeCKS)
| *nr_o(O_Ae4JII_OOeCK|I-FFAe&Jg-FFeCKg/

1|2 _H=PHHeAJ| epHeCKI_PAUe&J2tPAOCK2
| .PI_e|CC_eAJ?_CCtCK:-_FHtAJq-_£eCKG)
| epFFo|f)f)KeAJILeOrleCK|2-FFMO&Jg-FFOCKLO|

! !_ _G_I "( GC,G_eFFF-FFF_eGGG)/DFG
li_ _L-AL-GGCL
lib GGG2=I-f;,GGAorFF_FFF4eG6GI/OFG
11? WI=W-4GG2
II_ l_ "nRu&TIlOX,2(lb.qtSY_2El6.9l
i|Q _RIvElbel_) _Lt&|t4tWl
I?fl IF(ABS(GGG|J,LToIO°OOI)eANOeABSIGGGZ)oLTeIOoOOL)) GO [fl SO
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