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EXPERIMENTAL INVESTIGATION OF MODEL V A R I A B U  -GEOMETRY 
AND OGEE TIP ROTORS 

Anton J. Landgrebe and E .  Dean Bellinger 
United Aircraf t  Research Laboratories 

SUMMARY 

An experimental invest igat ion was conducted t o  systematically explore 
t h e  e f f e c t s  of inter-blade spatial relat ionships  and p i t c h  var ia t ions  on ro tor  
performance and wake geometry. Variable-geometry r o t o r s  consis t ing of various 
combinations of blade length,  axial spacing, azimuth spacing, and co l lec t ive  
p i t c h  were t e s t e d  a t  model scale  i n  hover and forward f l i g h t .  
hover t e s t  of a model ro tor  wi th  an ogee blade t i p  design was conducted t o  
determine i t s  performance and wake charac te r i s t ics .  The resul ts  of t h i s  
invest igat ion indicate  t ha t  properly selected variable-geometry r o t o r  config- 
urat ions can of fer  subs tan t ia l  improvements i n  hover performance without 
adversely a f fec t ing  forward f l i g h t  performance. Axial spacing of a l t e r n a t e  
blades was found t o  provide the  g r e a t e s t  performance benef i t ,  and f u r t h e r  
improvements were achieved by combining azimuth spacing with axial spacing. 
The performance benef i t  appears t o  be related t o  the relief of l o c a l  adverse 
aerodynamic phenomena produced by vortex interference.  The ogee t i p  design 
was found t o  subs tan t ia l ly  reduce the  concentrated core i n t e n s i t y  of the  t i p  
vortex,  and could thus  prove beneficial  for t h e  relief of blade-vortex i n t e r -  
ac t ion  problems. However, the ogee t i p  was found t o  reduce hover performance 
a t  model sca le .  

I n  addi t ion,  a 

INTRODUCTION 

The importance of aerodynamic interact ions between hel icopter  r o t o r  
blades and t h e i r  t i p  vor t ices  i s  wel l  recognized. Many a n a l y t i c a l  and experi-  
mental programs have been conducted i n  recent y e a r s  t o  study ro tor  -wake i n t e r  - 
ac t ion  e f f e c t s ,  
A i r c r a f t  Research Laboratories (UARL), reported i n  Refs. 1 through 4 and other 
unpublished repor t s ,  have shown the relation between r o t o r  hover performance 
and wake geometry as influenced by basic  blade design parameters ( s o l i d i t y ,  
aspect  r a t i o ,  t w i s t  , t aper ,  and a i r f o i l  section),  ro tor  operational parameters 
(co l lec t ive  p i t c h  and t i p  speed) and blade t i p  design. 
studies a t  UARL t o  determine wake ef fec ts  for both hovering and forward f l i g h t  
conditions have been reported i n  Refs. 4 through 7. 

For example, previous experimental s tud ies  a t  the United 

Also, a n a l y t i c a l  

These s tudies  have shown 



t h a t  r o t o r  hover performance i s  sens i t i ve  t o  wake geometry va r i a t ions .  Thus, 
if r o t o r  wake geometry i s  properly modified through new ro to r  design concepts, 
it might be expected t h a t  s ign i f i can t  performance bene f i t s  could be achieved. 
For example, with hel icopter  gross weights normally l imi t ed  by hover pe r fo r -  
mance, and payloads t y p i c a l l y  20 t o  25 percent of  gross  weight, an increase 
i n  hovering l i f t  capab i l i t y  of 5 percent could r e s u l t  i n  a 20 t o  25 percent 
increase i n  payload. 

Previously, r o t o r  design changes d i r ec t ed  toward improving r o t o r  pe r fo r -  
mance and control l ing t i p  vortex - blade i n t e r a c t i o n  have mainly consisted of 
changes i n  individual  blade and t i p  designs. Other than changing number of 
blades, very l i t t l e  has been done t o  change the  spat ia l  r e l a t ionsh ip  between 
blades.  Relieving t h e  conventional geometric design cons t r a in t s  of r o t o r s  
such as coplanar blades, equal blade azimuth spacing, equal blade length ,  and 
equal blade c o l l e c t i v e  p i t c h  values, opens an e n t i r e l y  new dimension of design 
var iab les .  The p o t e n t i a l  f o r  c e r t a i n  combinations of t h e  new design va r i ab le s  
t o  r e s u l t  i n  improved ro to r  configurations had not been explored i n  depth. 
However, it was recognized t h a t  r eo r i en ta t ion  of the  t i p  vo r t i ce s  r e l a t i v e  t o  
the  blades, as provided by these  new design va r i ab le s ,  could p o t e n t i a l l y  lead 
t o  improvements i n  r o t o r  performance and possibly r o t o r  dynamic and noise 
cha rac t e r i s t i c s .  
t e s t e d  t o  explore the  e f f e c t s  of d i f f e r e n t i a l  rad ius ,  a x i a l  spacing, azimuth 
spacing, ar,d co l l ec t ive  p i t ch .  A s  conceived a t  t h e  NASA Langley Research 
Center, t h e  variable-geometry ro to r  i s  e s s e n t i a l l y  composed of two corotat ing 
conventional ro to r  systems, with equal number of blades,  t h a t  can be ax ia l ly  
and azimuthally spaced r e l a t i v e  t o  one another. Alternate  blades can have 
unequal length and unequal co l l ec t ive  p i t c h  s e t t i n g s .  

I 

Thus, a model variable-geometry r o t o r  (VGR) was designed and 

The objective of t h i s  model ro to r  i nves t iga t ion  was t o  systematical ly  
explore the e f f e c t s  of inter-blade spat ia l  r e l a t ionsh ips  on r o t o r  performance 
and wake geometry t o  determine promising r o t o r  configurations f o r  f u l l - s c a l e  
appl ica t ions .  

Detrimental blade-vortex in t e rac t ions  may a l s o  be a l l e v i a t e d  by reducing 
the  i n t e n s i t y  of  the  vortex during formation by s u i t a b l e  tip-shape modifica- 
t i o n s .  An add i t iona l  objective of t h i s  i nves t iga t ion  was t o  t e s t  such a t i p -  
shape proposed by the  NASA Langley Research Center. This design known as t h e  
"ogee" t i p  was adapted t o  a conventional model ro to r  and t e s t e d  as p a r t  of 
t h i s  investigation t o  explore i t s  influence on r o t o r  hover performance and 
wake cha rac t e r i s t i c s .  
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LIST OF SYMBOLS 

blade aspect r a t i o ,  R/c 

number of blades i n  ro to r  

blade chord, cm (or  i n . )  

chord of reference blade (longest blade) ,  cm (or i n . )  

ro to r  drag coef f ic ien t  : drag/pirRo(RRo)2 2 

2 2 
r o t o r  lift coef f ic ien t  : l i f ' t /prRo(~Ro) 

ro to r  torque coef f ic ien t  : torque/p7rRo(flRo) 3 2 

r o t o r  t h r u s t  coef f ic ien t  : thrust/p?rRE@Ro) 2 

f lapping hinge o f f s e t  dis tance from sha f t  ax i s ,  cm (or i n . )  

Mach number a t  t i p  of blade, RR/speed of sound 

t i p  Mach number of longest blades i n  d i f f e r e n t i a l  radius 
configurations 

radial coordinate from ro to r  shaf t  ax i s  t o  point  on t i p  vortex,  
nondimensionalized by Ro, (see Fig. 9 )  

r o t o r  radius (or blade s e t  radius) ,  cm (or i n .  ) 

radius  of ro to r  (or blade s e t )  w i t h  reference blades (longest 
b lades) ,  cm (or i n . )  

t ime, sec 

forward ve loc i ty  or tunnel  flow veloc i ty ,  m/sec (or f t / s e c )  

axial dis tance,  measured along ro tor  ax i s  r e l a t i v e  t o  upper hub, 
pos i t i ve  up, cm (or i n . )  

a x i a l  coordinate r e l a t i v e  t o  center of upper hub nondimensionalized 
by Ro, z = z/Ro, (see Fig.  9 )  - 
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t i p  vortex axial  coordinate r e l a t i v e  t o  the  t i p  of blade, 
nondimensionalized by Ro, pos i t ive  up (see Fig. 9)  

ro tor  shaf t  angle, angle between forward ve loc i ty  and plane 
normal t o  shaf t  a x i s ,  pos i t ive  nose up, deg 

blade flapping angle r e l a t i v e  t o  coned pos i t ion ,  deg 

peak-to-peak amplitude of blade flapping angle,  deg 

blade Lock number 

blade root  cutout,  measured from s h a f t  axis, cm (or  i n . )  

radius  increment between blades s e t s  (1) and (2), 
R ( I ) - R ( ~ ) ,  (see Fig. l), cm (or  i n . )  

r a d i u s  increment r a t i o ,  AR/Ro 

axial spacing between hubs of upper and lower blade s e t s ,  
2(1)-2(2) ,  (see Fig. l), cm (or  i n . )  

axial spacing r a t i o ,  AZ/C, 

c o l l e c t i v e  p i t c h  angle increment between blade s e t s  (1) and ( 2 ) ,  
q l ) - q 2 ) 9  deg 

@(1)-0(2), (see Fig. 0, deg 
azimuth spacing, azimuth increment between blade s e t s  (1) and ( 2 ) ,  

blade l i n e a r  t w i s t  , deg 

c o l l e c t i v e  p i tch  angle (mean p i t c h  value f o r  configurations w i t h  
a e f o ) ,  deg 

co l lec t ive  p i t ch  angle a t  0.75 R, deg 

ro tor  advance r a t i o ,  V D R o  

air  densi ty ,  grsm-sec2/crn 4 

r o t o r  s o l i d i t y  r a t i o ,  u =  bc/rR 



@ blade azimuth angle, measured i n  t h e  d i r ec t ion  of ro t a t ion ;  f o r  
hover t es t :  
measured from the  downstream blade posi t ion,  deg 

measured from plane of smoke; for  wind tunnel  t e s t :  

azimuth angle of blade 1, deg; in  flow v isua l iza t ion  photographs 
blade 1 i s  defined as t h e  blade which most recent ly  passed through 
the reference plane of smoke. 

@l 

$'(1),$'(2) azimuth angle of a blade of t h e  upper or lower r o t o r ,  respec t ive ly ,  
deg; i n  flow visua l iza t ion  photographs $'(1) i s  the  azimuth angle 
of the upper blade which most recently passed through the 
reference plane of smoke. 

$'W t i p  vortex azimuth angle, azimuth angle of point on t i p  vortex 
r e l a t i v e  t o  the  blade from which it was shed, measured from the  
blade (see Fig. 9 ) ,  deg 

t i p  vortex azimuth angle re la t ive  t o  blade 1, deg 
@ W l  

R ro to r  ro t a t iona l  frequency, rad/sec 

SubscriDts 

0 subscr ipt  ind ica t ing  reference blade (longest blade ) 

192 subscr ipts  indicat ing blade number 

(11, (2) subscr ipts  ind ica t ing  blade sets (1) and ( 2 ) ;  except f o r  coplanar 
blade s e t s :  
coplanar blades: (1) = larger blade set ,  (2 )  = smaller blade s e t  

(1) = upper blade se t ,  (2)  = lower blade s e t ;  f o r  
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VARIABLE -GEOMETRY ROTOR CONFIGURATIONS 

Axial Spacing Ratio. . . . . . . . 
Radius Increment Ratio . . . . . . 

Definit ion of Variable-Geometry Rotor Parameters 

Az = - = 

AR = - - C O  

bR R(1) - R(*) 
Ro R 0 

For a 6-bla,ded r o t o r ,  a wide range of ro tor  configurations can be 
achieved with a variable-geometry model without unbalancing t h e  t o t a l  r o t o r  
system by considering t h e  blades t o  be divided i n t o  two separate blade sets i n  
which each set of t h r e e  blades i s  symmetric as shown i n  Fig. 1. The blades 
within each blade s e t  are coplanar, azimuthally symmetric, and equal i n  length.  
Also ,  the  co l lec t ive  p i t c h  angles of t h e  blades within a blade set are the  
same. The major parameters t h a t  were invest igated are defined below i n  
Table I i n  terms of dimensional values f o r  the two blade sets (subscripted (1) 
and ( 2 ) )  and the  reference radius  (R,) and chord length (c,). The reference 
radius (R,) and reference chord (c,) correspond t o  those of the  longest blades 
t e s t e d  -- 0.7 m (27.5 i n . )  and 3.73 cm (1.47 i n . ) ,  respect ively.  
parameters a r e  termed variable-geometry r o t o r  parameters or simply VGR 
parameters. 

The major 

Collective Pi tch Increment, deg ... 
i 

TABLF: I 

DEFINITIONS OF VARIABLE -GEOMETRY ROTOR PARAMETERS 

I VGR Parameter Symbol and Defini t ion 

Azimuth Spacing, deg . . . . . . . I 

The convention used t o  d is t inguish  between blade sets 1 and 2 i s  t h a t  blade 
set 1 i s  t h e  upper r o t o r  and blade set 2 i s  the  lower r o t o r .  For coplanar 
configurations, where there  i s  no upper or  lower r o t o r ,  t h e  l a r g e s t  diameter 
blade se t  i s  defined as blade s e t  1. I n  accordance wi th  these d e f i n i t i o n s ,  
the  ax ia l  spacing r a t i o  i s  always a pos i t ive  quant i ty  whereas t h e  other VGR 
pa ra~~z te rn  zj' be e i t h e r  p s i t . i L e  or negative.  The azimuth spacing value used 
i s  always the  minimum spacing (e.g., i n  Fig. 1 A #  = 30 deg not A +  = 90 degj. 
The notation and s ign conventions used t o  describe the  variable-geometry r o t o r  
parameters a r e  included i n  Fig. 1 f o r  quick reference. 

6 



Selection of Rotor Configurations 

The primary consideration In  the select ion of t h e  s p e c i f i c  var iable-  
geometry r o t o r  configurations for  %his  invest igat ion was t o  provide config- 
urat ions which would include a wide but r e a l i s t i c  range of the  VGR parameters. 
The values l i s t e d  below i n  Table XI were selected as the nominal values f o r  
t h e  VGR parameters which were tes$ed i n  varied combinations on a 6-bladed 
r o t o r .  

TABLE I1 

TEST VALUES OF VARIABLE-GEOMETRY ROTOR PARAMETERS 

VGR Parameters 

- Axial Spacing Ratio, Az. . . . . . , , 
Radius Increment Ratio, hR . . . . . . 
Azimuth Spacing, A$, deg . . . . . . 
Collect ive Pi tch Increment, AO,  deg.. 

*Parentheses ind ica te  secondary test  values. 

Nominal Test Values* 

Schematics of t h e  variable-geometry r o t o r  canfigurations showing t h e  blades 
posit ioned according t o  each of t h e  VGR parameter values a r e  presented i n  
Fig. 2 .  
values were used f o r  a small number of tes t  conditions (e.g., 

I n  addi t ion  t o  varied combinations of the  values i n  Table 11, other 
A$ = *45 deg, 

fi = 1.5  and 2.5) .  

Axial spacing r a t i o s  of 1 and 2 chord lengths were believed t o  be within 
t h e  p r a c t i c a l  l i m i t  considering reasonable l imitat ions of shaf t  s i z e ,  weight 
and drag. 
the  se lec t ion  of blade azimuth spacing, 
Table I1 were selected considering a 6-bladed tes t  ro tor .  
f igura t ions  t h e  azimuth spacings were l imited t o  60 and t30 deg due t o  t h e  
physical  cons t ra in ts  a t  t h e  r o t o r  hub. 
t h e  selected values of 22 deg correspond t o  increasing and decreasing the 
p i t c h  angle on each blade s e t  by one degree r e l a t i v e  t o  the p i t c h  s e t t i n g  of a 
reference configuration having no d i f f e r e n t i a l  co l lec t ive  pi tch.  A ro tor  with 
s i x  blades was ava i lab le  as t h e  reference radius ro tor  (hii = 0). Two blade 
sets, each with three blades, were fabricated with radi i  of 70 and 85 percent 

Except for  t h e  coplanar configurations, complete f l e x i b i l i t y  i n  
A $ ,  was avai lable .  The values i n  

For coplanar con- 

For co l lec t ive  p i t c h  increment, A6 , 

7 



of t h e  radius  of the  reference blade s e t  t o  provide the add i t iona l  values i n  
rad ius  increment r a t i o ,  a, of 0.30 and 0.15, respec t ive ly .  
t h e  blade design f o r  t h e  two shorter  blade s e t s ,  constant s o l i d i t y  was main- 
t a ined  by varying the  chord between blade s e t s .  The o f f se t  of t h e  f lapping 
hinge (e) and the  dimensional roo t  cutout dis tance was a l s o  maintained con- 
s t a n t  between blade s e t s  of varying diameter. The values of t h e  r o t o r  design 
parameters for  each of t he  blade s e t s  with varying blade length a r e  tabula ted  
i n  Table 111. 

When es t ab l i sh ing  

TABU I11 

ROTOR DESIGN PARAMETERS* 

Des ign Faramet e r  s 

Number o f  blades i n  blade s e t .  . . 
Blade radius ,  R ,  cm ( i n .  ) . . . . . 
Blade chord, c ,  cm ( i n .  ) . . . . . 
Blade aspect r a t i o ,  AR . . . . 
Blade twist, el, deg. . . . . . . 
Blade taper .  . . . . . . . . . . . 
Blade a i r f o i l  sec t ion  (NACA) . . . 
Flapping hinge o f f s e t  r a t i o ,  e/R . 
Flapping hinge o f f s e t  r a t i o ,  e/%. 

Blade root  cutout ,  6/R. . . . . 
Blade root cutout ,  6/Ro . . . . 
Rotor s o l i d i t y  ( fo r  s ix  b lades) .  

Blade 
Set  1 

Blade 
Set  2 

Blade 
Set 3 

3 

69.85 (27.5 1 

3 e73 (1 47 1 

18.7 

0 

0 

0012 

0 093 

0 093 

0.171 

0.171 

0.102 

3 

59.37(23 937) 

4.39(1.73) 

13 9 5  

0 

0 

0012 

0.110 

0 093 

0.212 

0.171 

0.102 

3 

48.90 (19.25 ) 

9.2 

0 

0 

0012 

0.133 

0 093 

0.245 

0.171 

0 .lo2 

*Total number of blades i n  r o t o r  = 6. 
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VARIABLE -GEOMETRY ROTOR HOVER TEST 

Test Equipment 

The hover t e s t  program was conducted a t  the  UARL model ro tor  hover test  
f a c i l i t y .  The t e s t  f a c i l i t y ,  shown i n  Fig. 3, i s  located i n  a la rge  enclosed 
area of s u f f i c i e n t  s i z e  t o  prevent s ignif icant  wall  and ground e f f e c t s .  The 
f a c i l i t y  i s  equipped with a r o t o r  tes t  r i g ,  smoke and schl ieren flow v i s u a l i -  
za t ion  equipment, t h r u s t  and torque instrumentation, and a movable ground 
plane. 
t h e  r o t o r  f o r  t e s t i n g  out of ground ef fec t .  
geometry r o t o r  configuration on t h e  model ro tor  t e s t  r i g  a r e  shmn i n  Fig. 4 
and close-ups of the ro tor  hubs are shmn i n  Fig. 5. A 40-horsepowerY v a r i -  
able  speed e l e c t r i c  motor was used as a power source. The r o t o r  was driven 
through a 3 : l  speed reduction system t o  allow operation a t  a t i p  speed of 
198 m/sec (650 f t / s e c ) .  
made by means of strain-gaged load  c e l l s .  
shown i n  the schematic cross sect ion of the ro tor  t e s t ‘  r i g  i n  Fig. 6. The r i g  
instrumentation used t o  monitor the operation included a s o l i d  s t a t e  counter 
f o r  measuring ro tor  rpm, a v ibra t ion  meter, and a model power control  console. 

For t h i s  t e s t  t h e  ground plane was positioned a t  3.5 r o t o r  radi i  below 
Fbotographs of a var iable-  

Average ro tor  th rus t  and torque measurements were 
The motor-balance assembly i s  

Flow visua l iza t ion  equipment included t h e  following : 

1. 

2.  

3. 

4. 

5 .  

Variable posi t ion smoke rakes. 

A 70 mm camera and two high-intensity,  short  duration l i g h t  sources. 

An e lec t ronic  time-delay control  t o  permit photographing of the  
c y c l i c  time h i s t o r y  of t h e  ro tor  wake. 

A Fastax movie camera and high-intensity l i g h t s  f o r  high frame-speed 
movies. 

A l i g h t  source, mirrors,  schlieren ‘knife edge, and Fastax movie 
camera f o r  high-speed schl ieren movie photography. 

The model rotor  system consisted of rotor hubs and model blades which 

!tho separate rotor  hub systems were used fo r  
provided a l l  required combinations of axial  spacing, azimuth spacing, radius  
r a t i o ,  and c o l l e c t i v e  pi tch.  
t h e  coplanar and noncoplanar r o t o r s ,  as shown i n  Fig. 5. Azimuth spacing 
v a r i a t i o n s  were achieved i n  the coplanar hub through indexing the blade cuffs 
within a c i r c u l a r  s l o t  i n  the  hub. Due t o  the  physical interference con- 
s t r a i n t  for  t h e  coplanar hub, the spacing between adjacent blades was res- 
t r i c t e d  t o  a minimum of 30 degrees. For the noncoplanar hub, the r e l a t i v e  
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azimuth spacing of the  two blade s e t s  was varied by r o t a t i n g  t h e  lower hub on 
the  shaft  r e l a t i v e  t o  the  upper hub. Hinges were provided i n  t h e  blade cu f f s  
t o  provide f lapping a r t i c u l a t i o n .  
aluminum spar and balsa t ra i l ing-edge  sec t ion .  The blades were designed such 
t h a t  t he  e l a s t i c  axis, chordwise center  of grav i ty ,  and aerodynamic center  were 
coincident a t  the quarter-chord pos i t ion .  The-mass and s t i f f n e s s  p rope r t i e s  
of t h e  model blades g r e a t l y  exceeded those of model blades dynamically 
scaled from t y p i c a l  f u l l - s c a l e  blades.  
l a rge r  blades (aspect r a t i o  = 18.2) operating a t  a t i p  speed of 198 m/sec 
(650 f p s )  was 3.5 compared t o  a t y p i c a l  f u l l - s c a l e  Lock number of 10. 
model blade coning angles were lower than fu l l - sca l e  coning angles .  
t he  use of such ro to r  blades permitted concentration on the aerodynamic, 
r a the r  than the  a e r o e l a s t i c  aspects  of ro to r  hover performance. 
of t h e  blade design parameters was presented i n  Table 111. Photographs of the 
model blades are presented i n  Fig. 7. 

The model blade design consis ted of an 

For example, t he  Lock number of the  

Hence, 
However, 

A t abu la t ion  

Test Conditions 

The hover t e s t  was divided i n t o  two phases. I n  Phase 1, reasonable 
combinations of the t e s t  parameter values were se lec ted  f o r  a 6-bladed ro to r  
following the  d iv i s ion  of the VGR parameters i n t o  t h e  primary and secondary 
values which were noted i n  Table 11. A l l  combinations of t he  primary t e s t  
values were t e s t ed  i n  Phase 1, as wel l  as most combinations of primary and 
secondary values .  However, no t e s t i n g  was conducted of combinations cons is t ing  
of only secondary values i n  t h i s  phase. Phase 2 consis ted of t e s t i n g  combina- 
t i o n s  ofsome VGR parameters not included i n  Phase 1 i n  addi t ion  t o  some Phase 1 
configurations over an  extended range of c o l l e c t i v e  p i t c h  values.  A summary 
of the  rotor  configurat ions and t e s t  condi t ions f o r  the  VGR hover t es t  i s  
presented i n  Table I V .  

All t e s t  configurations were operated a t  two r o t a t i o n a l  speeds, 0, 
218.2 rad/sec and 283.6 rad/sec,  which correspond t o  t i p  speeds of 152.4 m/sec 
(500 f p s )  and 198.1 m/sec (650 f p s ) ,  respec t ive ly ,  f o r  t h e  la rger  diameter 
blade se t .  For the  reduced diameter blade s e t s  t h e  t i p  speeds were proportion- 
a l l y  lower due t o  the  constant r o t a t i o n a l  speeds. The r o t o r  t i p  speeds and 
corresponding t i p  Mach numbers f o r  a l l  configurations a r e  presented i n  Table V.  
For the  conventional ro to r  and f o r  configurat ions represent ing independent 
var ia t ions of t he  major var iab les  (AT, &, A$,  and A O ) ,  f i v e  nominal values 
of co l lec t ive  p i t c h  ( 8 = 0 ,  6, 8, 10, 11 deg) were t e s t e d  t o  provide reference 
performance r e s u l t s .  The maximum c o l l e c t i v e  p i t c h  of 11 deg was determined by 
a sharp increase i n  ro to r  noise  l e v e l  f o r  severa l  configurat ions a t  the higher 
t i p  speed (198 m/sec). This boundary was explored during t h e  t e s i s  of Ref. 1 
and was found t o  be r e l a t e d  to ' i nc ip i en t  s t a l l  f l u t t e r .  For other configura- 
t i o n s ,  a minimum of two nominal co l l ec t ive  p i t c h  values ( 8 = 8, 10 deg) were 
t e s t e d .  
10 
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TABLE V 

a= 218.2 rad/sec 

n p  Wch 
Tip Speed Number 

n R ,  m1-c (ms) ET 
152.4 (500) 0.45 
129.5 (425) 0.38 
106.7 (350) 0.31 

ROTOR TIP SmEDS AND TIP MACH "MBE3S FOR 
THE VAFUABLE-GEOMEYCRY ROTOR HOVER TEST 

SZ = 283.6 rad/sec 

Tip Mach 
Tip Speed Number 
nR, +ec (ms) 4 

198.1 (650) 0.58 
168.4 (552.5) 0.49 
138.7 (455) 0.41 

Blade Set Radius 
R, cm (in.)  

I I I 

Test Procedures 

Calibration. - Prior  t o  t e s t i n g ,  t h e  t h r u s t  and torque der iva t ives  
( t h r u s t  and torque per strain-gage u n i t )  were determined by s t a t i c a l l y  apply- 
ing known forces  and moments t o  t h e  ro to r  hub. 

Collective p i t c h  angle was s e t  manually with an estimated accuracy of 
k . 2  deg. 
t r a n s i t  w i t h  l i g h t i n g  supplied by a s t robotac.  
v i sua l iza t ion  photographs and t o  minimize e r r o r s  due t o  camera angle and l ens  
d i s to r t ion ,  a planar g r i d  ind ica t ing  2 percent increments of the  r o t o r  rad ius  
was placed i n  the  plane of t h e  smoke (reference plane)  and photographed p r i o r  
t o  the  t e s t .  
a g r id  template overlay f o r  the  reduct ion of t he  flow v i sua l i za t ion  photographs 
t o  radial and a x i a l  wake coordinates.  The blade azimuth pos i t ion  was C a l i -  

brated f o r  each fz by ca lcu la t ing  the  delay time between t h e  passage of a 
reference blade through the  reference plane and the passage of a s ing le  too th  
gear mounted on the  ro to r  shaft. 

Blade t racking  was checked by observing the  blade t i p s  through a 
T o  c a l i b r a t e  the  f l a w  

Photographs of t h i s  g r id  system were used i n  t he  construct ion of 

Data acquis i t ion .  - The procedure f o r  data acqu i s i t i on  was similar t o  
Each test  condi t ion was repeated a t  least twice t ha t  described i n  Ref. 1. 

wi th in  a t e s t  run (a t e s t  run consis ted of data recorded between the  s t a r t i n g  
and stopping of t h e  ro to r  r o t a t i o n ) ,  and the r e s u l t s  were averaged. 
t h e  t e s t  conditions were repeated t o  check t h e  r e p e a t a b i l i t y  of t h e  data. 

Many of 
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To obtain flow v i sua l i za t ion  data ,  smoke was in j ec t ed  i n t o  the  flow by 
movable smoke rakes located above and t o  the s ide  of the  r o t o r .  The smoke 
rakes were posi t ioned by remote cont ro l  t o  insure  a c l e a r l y  def ined t i p  vortex.  
The wake pa t t e rns  were recorded on f i l m  with remotely operated cameras. 
I l luminat ion was provided f o r  s t i l l  photographs by two microflash units (time 
durat ion 0.5 microsecond f o r  s top  a c t i o n ) .  A time-delay system was used t o  
t r i g g e r  the  cameras and microflash un i t s  when the  r o t o r  was a t  a desired 
azimuth pos i t ion .  The delay system used a one/rev s i g n a l  from the ro to r  
shaft as a reference,  and the delay time (manually ad jus ted)  was measured on 
an e l ec t ron ic  counter. For each t e s t  condition, 70 mm photographs were taken 
a t  preselected azimuth pos i t ions  of a reference blade w i t h  respec t  t o  the  
plane of t h e  smoke. 
Fig. 8. 
60, 90, and 105 deg. 
t he  i n t e r p r e t a t i o n  thereof ,  high frame-speed movies (4000 f’rames/sec) using 
sch l ie ren  techniques were taken a t  selected conditions.  

A sample flow v isua l iza t ion  photograph i s  presented i n  
Photographs were Peneral ly  taken a t  azimuth angles  of 0, 15, 30, 45, 

To supplement these  s t i l l  photographs and t o  assist i n  

Data Reduction 

Performance data. - Thrust  and torque measurements were converted t o  
t h rus t  coe f f i c i en t - so l id i ty  r a t i o  (CT/C), and torque coe f f i c i en t  - s o l i d i t y  
r a t i o  (CQ/O) values f o r  a l l  t e s t  conditions.  The air dens i ty  (p) used i n  
nondimensionalizing the data was calculated f o r  each t e s t  condition, based on 
the recorded temperature and pressure readings.  

Flow v i sua l i za t ion  da ta .  - To take advantage of t he  symmetrical nature  of 
the  near wake of a hovering ro to r  a s  wel l  as t o  f a c i l i t a t e  the  acqu i s i t i on  of 
quan t i t a t ive  data, the  wake f o r  t h i s  invest igat ion was observed by emit t ing 
smoke ex te rna l ly  from the  blades (i.e.,  i n  the nonrotating system). 
emitted from smoke rakes i n  a s ing le  plane and t h e  f l o w  pa t t e rns  were photo- 
graphed, as shown i n  Fig. 8. 
of the  wake near the  rotor was recorded. 
vo r t i ce s  appear as c i r c l e s  i n  which the  cent ra l  regions a r e  c l e a r  of smoke. 
The centers  of t h e  c i r c u l a r  c rass  sect ions are in t e rp re t ed  a s  t h e  centers  of 
t he  t i p  vortex core. 
d i s c o n t i n u i t i e s  present i n  the  smoke filaments passing through the  inner 
region of the  ro to r  wake. 

Smoke was 

I n  t h i s  manner, a two-dimensional cross  sec t ion  
The cross  sec t ions  of t h e  t i p  

The vortex sheet cross sect ions a r e  indicated by the  

The photographic wake data were analyzed f o r  se lec ted  t e s t  conditions t o  
The conditions were se lec ted  s o  as determine the  t i p  vortex cha rac t e r i s t i c s .  

t o  p e r m i t  assessment of t he  e f f ec t s  of t h e  VGR parameters. Radial and a x i a l  
wake coordinates  of t he  t i p  vo r t i ce s  were determined from t h e  photographs as 
funct ions of t he  wake azimuth angle (JlW), which i s  equal t o  t h e  blade azimuth 
t r a v e l  ( $ = a t )  from the time it generates the vortex cross  sect ion.  
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i l l u s t r a t e  t h e  wake azimuth angle concept a s c h e m t i c  of t he  wake of a 
2-bladed rotor  i s  presented i n  Fig. 9. I n  t h i a  f igu re ,  t he  t i p  vortex 
labeled GW = 180 deg was shed from blade 2 which has t r ave l l ed  180 deg from 
t h e  time it passed through the  plane of the  smoke (reference p lane) .  
following t i p  vortex was shed by blade 1 the previous time it passed through 
t h e  reference plane,  and thus t h e  wake azimuth angle f o r  t h i s  t i p  vortex cross  
sect ion i s  360 deg. It should be noted that the cross  sec t ions  i n  the v i s i b l e  
wake near t h e  ro to r  remain approximately i n  the  aame plane ( ro to r  wake 
tangent ia l  ve loc i t i e s  a re  small). 
wake coordinates fo r  each blade a t  a given azimuth angle are e s s e n t i a l l y  
equivalent due t o  symmetry. 

The 

For the  near wake of a hovering r o t o r ,  t h e  

The coordinates of t he  wake fo r  a given tes t  condition were determined by 
the  following procedure. A t ransparent  g r id  template was constructed from 
the  photograph of t h e  reference gr id .  With the  g r i d  template as an overlay,  
t he  r ad ia l  and a x i a l  coordinates of the wake from severa l  blades i n  a s ing le  
photograph were determined along with the corresponding wake azimuth coordi- 
nates .  This was repeated fo r  a sequence of photographs taken w i t h  t h e  ro to r  
a t  a ser ies  of prescribed r o t a t i o n a l  posi t ions.  A sample sequence i s  pre-  
sented i n  Fig. 10, i n  which the  ro to r  r o t a t i o n a l  pos i t ions  a r e  designated by 
the  azimuth pos i t ion ,  9, of the  blade which most recent ly  passed through the  
reference plane containing the  smoke. The r a d i a l  and a x i a l  coordinate r e s u l t s  
from the se r i e s  of photographs were then p lo t ted  as funct ions of $w. 
f a c i l i t a t e  t he  comparison of wake geometries from varying ro to r s  and t e s t  
conditions, the r a d i a l  and axial coordinates were nondimensionalized by the 
ro to r  r a d i u s ,  and differences i n  a x i a l  coordinates due t o  blade coning were 
eliminated by using the blade t i p  as the  reference (ZT instead of Z i n  Fig. 9 ) .  
The range of wake azimuth angles f o r  which da ta  could be acquired was l imited 
by the  v i s i b i l i t y  of t h e  smoke. For 6-bladed ro to r s ,  l e s s  than one revolut ion 
from each blade was v i s ib l e .  However, t h i s  was adequate because ro to r  per for -  
mance i s  mainly sens i t i ve  t o  the  near wake (region t o  approximately 0.3 R 
below ro to r ) .  

To 

Data Accuracy 

S t a t i c  data  r e p e a t a b i l i t y  for  t h r u s t  and torque was determined from 
repeated ca l ibra t ions  of t h e  s t r a i n  gages, 
determined by considering both the  deviations from average values from repeated 
t e s t  points within t e s t  runs and deviat ions between repeated t e s t  runs. 
on these considerations,  t he  accuracy of t he  hover performance da ta  is 
estimated t o  be w i t h i n  the  following valued: 

Dynamic da ta  r e p e a t a b i l i t y  was 

Based 



MT = 0.45 % = 0.58 

Thrust  Coeff ic ient  /Sol id i ty ,  CT/a % .0004 0003 
Torque Coeff ic ient  /Sol idi ty ,  CQ/V *o .00006 *O. 00004 

The estimated values do not r e f l e c t  scatter i n  the  performance data due t o  
inaccuracies  i n  s e t t i n g  the  co l l ec t ive  pitch. 
co l l ec t ive  s e t t i n g  s c a t t e r  d i d  not s ign i f i can t ly  inf luence t h e  thrust- torque 
performance curves of i n t e r e s t  i n  t h i s  invest igat ion.  

It w i l l  be Shawn t h a t  t he  

The estimated accuracies with which the  parameters determining a given 
t e s t  condition could be s e t  a r e  given below: 

Parameter Accuracy 

+ 
+ 
+ '  

Collect ive Pitch,  8 -0.2 deg 
Tip Speed, 4 lR -0.3 m/sec (h as) 
Azimuth Increment, A $  -2 deg 
Axial Spacing, AT. 10.02 

The estimated accuracy of measuring t h e  t i p  vortex coordinates a r e  l i s t e d  
below : 

Wake Coordinate A cc uracy 

Azimuth, $, 
Radial, F 
Axial, ZT 

% deg 

20.005 
*O .005 

Discussion of Hover Performance Results 

The hover performance t e s t  data f o r  each ro to r  configurat ion were 
transformed t o  graphical  form by p lo t t i ng  the  ro to r  t h r u s t - s o l i d i t y  r a t i o  
(CT/V) versus the to rque-so l id i ty  r a t i o  (CQ/U) for each co l l ec t ive  p i t c h  
s e t t i n g  ( 6 )  and t i p  %ch number (5). 
assess t h e  inf luence of each of t he  major var iab les  on model ro to r  hover 
performance. 
i n  t h e  CT/U, C Q / ~  format, the  s o l i d i t y  for a11 ro to r  configurat ions t e s t e d  
was constant  ( Q = 0.102), so that the  r e s u l t s  a r e  also d i r e c t l y  representa-  
t i v e  of comparisons based on CT and CQ. 
reference blade (Ro) was used throughout i n  nondimensionalizing, the  perfor  - 
mance r e s u l t s  a r e  a l s o  representa t ive  of the  dimensional t h r u s t  -torque 
va r i a t ion .  

The r e s u l t i n g  graphs were analyzed t o  

It i s  noted that altbough the performance results a r e  presented 

In addi t ion ,  s ince t h e  radius  of t he  



r,onventional ro tor ,  - The hover performance of t h e  conventional 6-bladed 
r o t o r  ( A 5  = 0,  AX = 0, 
Results of repeat  runs are included i n  t h i s  f i g u r e  f o r  e =  8, 10, and 11 deg 
t o  i l l u s t r a t e  the  r e p e a t a b i l i t y  of t h e  t e s t  da t a  when co l l ec t ive  p i t c h  i s  
r e s e t  between tes t  runs. Due t o  t h e  i0.2 deg accuracy of s e t t i n g  co l l ec t ive  
p i t c h ,  some scat ter  i n  t h e  performance da ta  i s  ind ica ted ,  
s c a t t e r  due t o  p i t c h  s e t t i n g  was l imi t ed  t o  movement along thea tbus t - to rque  
curve. Since the objective of t h i s  i nves t iga t ion  i s  t o  compare t h e  r e l a t i v e  
performance e f f i c i ency  of t h e  various configurations,  departures from the  
reference thrust-torque curves (e  .g., t h r u s t  increment a t  a given torque) 
r a t h e r  than movements along them are of primary significance.  
i n  Fig. 11were  averaged i n  subsequent f igu res  t o  provide a standard set of 
conventional r o t o r  da ta  t o  compare with da t a  f o r  variable-geometry config- 
u?ations. 

A $  = 60 deg, A0 = 0 )  i s  presente6 i n  Fig. 11. 

However, t h i s  

Thus the  da t a  

c t s  of a z i m u t h  SD acing and axial  mating. - The independent effects  
of azimuth spacing ( A $ )  and axial spacing (A<) on hover performance are 
presented i n  Figs. 12 and 13, respect ively.  
an "independent effect" i s  defined as t h e  independent va r i a t ion  of one VGR 
va r i ab le  from t h e  base conventional ro to r  configuration. Thus, f o r  the  
independent v a r i a t i o n  of azimuth spacing ( A $ )  t he  other VGR va r i ab le s  are 
E = 0, fi = 60 deg, and = 0. Likewise, f o r  t h e  independent va r i a t ion  
of a x i a l  spacing ( h z )  t he  other VGR var iab les  are FR = 0,  
and A O =  0 .  It i s  shown i n  Fig. 12 that varying the azimuth spacing from 
the  conventional 60 deg t o  30 deg has l i t l t l e  e f f e c t  on performance. 
However, varying a x i a l  spacing, as shown i n  F ig ,  13 has a s ign i f i can t  
e f f e c t .  
resul ts  i n  a s l i g h t  performance benef i t  only a t  t he  high t h r u s t  l e v e l s ,  b u t  
an a x i a l  spacing of two chord lengths (A? = 2 )  resul ts  i n  an appreciable 
performance bene f i t ,  p a r t i c u l a r l y  a t  t h e  high t h r u s t  - high t i p  Mach number 
t e s t  conditions. For example, a t  a CQ/U of approximately 0.009 t h e  t h r u s t  
i s  increased by f ive  percent.  A t  a CT/U of 0.08 the  torque i s  reduced by 
t,en percent. The corresponding change i n  f i g u r e  of merit i s  from 0.55 f o r  
the  conventional ro tor  t o  0.61. A s  indicated i n  Fig. 13 t h e  performance 
benefi t  i s  achieved a t  t he  f ixed  11 deg c o l l e c t i v e  p i t c h  s e t t i n g  through a 
decrease in  torque as opposed t o  an increase i n  t h r u s t .  I n  addi t ion t o  a 
possible  reduction i n  induced drag,  t he  Performance bene f i t  i s  probably due 
t o  a reduction i n  the  seve r i ty  of p r o f i l e  drag divergence near s t a l l  a t  t h e  
t i p s  of t h e  blades when a l t e r n a t e  blades a r e  a x i a l l y  spaced. 

For t h e  purposes of t h i s  r epor t ,  

A $  = 60 deg, 

An independent a x i a l  spacing va r i a t ion  of one chord length (A? = 1) 

The ef fec ts  on hover performance of combining axial  and azimuth spacing 
are shown i n  Figs. 14 and 15. 
i n t o  par t s  ( a )  and ( b j  t o  separate the  e f f e c t s  of pos i t i ve  and negative 
azimuth spacing. 
t h a t  of the previous f igu res .  
a t  an ax ia l  spacing, 
16 

For c l a r i t y  these  f igures  have been divided 

It i s  noted t h a t  the  sca l e  f a c t o r  has been changed from 
I n  Fig. 14, t h e  effects  of azimuth spacing 

A?, of one chord length are shown as compared t o  t h e  



performance of t h e  conventional ro tor .  
s u b s t a n t i a l  improvement i n  performance which increases with increasing t i p  
Mach number and t h r u s t  l eve l .  
g r e a t e s t  improvement a t  t h i s  axial spacing a r e  t h e  
configurations.  
c o l l e c t i v e  p i t c h  s e t t i n g s  for  the  
a r e  posit ioned one d i r e c t l y  above the other. Although the  performance curve 
i n  Fig. 14(b)  i s  similar t o  t h a t  of t h e  conventional ro tor ,  t h e  performance 
at  a specif ied p i t c h  s e t t i n g  i s  sh i f ted  down t h e  conventional r o t o r  curve 
so  t h a t  a s i g n i f i c a n t  decrease i n  t h r u s t  and torque r e s u l t s .  The extent  of 
t h i s  performance s h i f t  increases with col lect ive p i tch ,  and a t  a p i t c h  
s e t t i n g  of 11 deg t h e  p i t c h  increment r e l a t i v e  t o  t h e  conventional ro tor  
value i s  one deg. Althougb small s h i f t s  i n  t h e  data points  along t h e  perfor-  
mance curve can be a t t r ibu ted  t o  t h e  aforementioned accuracy range of s e t t i n g  
the  blade p i t c h  (fo.2 deg),  t h e  ex ten t  of t h e  s h i f t  f o r  t h i s  configuration 
g r e a t l y  exceeds t h a t  range. Also, t h e  pi tch s e t t i n g  was not  changed between 
the t e s t i n g  of the  A$ = 0 deg and t h e  other azimuth spacing configurations 
a t  t h i s  a x i a l  spacing. 
between the c lose ly  spaced blades which causes the  performance s h i f t  of t h i s  
"biplane configuration" r e l a t i v e  t o  t h e  conventional r o t o r .  

Several azimuth spacings resu l t  i n  a 

The configurations which demonstrate the 
A $ =  30, -30, and 45 deg 

Also of i n t e r e s t  i s  t h e  difference i n  performance a t  similar 
A$= 0 configuration f o r  which t h e  blades 

Thus, there is  a pronounced interference e f f e c t  

The e f f e c t s  of various combinations of azimuth spacing with an axial 
spacing (6) of two chord lengths a r e  shown i n  Fig. 15. 
t rends w i t h  t i p  Mach number and t h r u s t  level  are general ly  consis tent  with 
those a t  t he  one chord length spacing. 
mance a r e  even grea te r .  Also, the  performance var ia t ions  with azimuth 
spacing are much smaller. 
di f ference between the  
Fig. 14  f o r  = 1, only a s l i g h t  difference occurs a t  rz = 2. 
performance s h i f t  a t  a given p i t c h  se t t ing ,  noted above f o r  t h e  "biplane 
configuration", has decreased s ignif icant ly .  

The performance 

However, the improvements i n  perfor-  

For example, whereas a s i g n i f i c a n t  performance 
A $ =  30 and 60 deg configurations was indicated i n  

Even the  

It i s  concluded from the data presented thus far t h a t  axial spacing i s  
However, addi t iona l  t h e  predominant f a c t o r  i n  improving hover performance. 

improvements may be achieved through cgmbining t h e  proper se lec t ion  of 
azimuth spacing with axial spacing. 
measured was a seven percent increase i n  t h r u s t  l e v e l  a t  a CQ/O of approxi- 
w t e l y  0.009. 
configuration and operating condition: 

The highest performance increase 

This performance increase was achieved with t h e  following 

A 12 percent decrease i n  torque was demonstrated f o r  t h i s  configuration a t  a 
CT/& 0.08 ( 8 =  11 deg).  The corresponding change i n  f igure  of merit i s  

I 
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from 0.55 of t h e  conventional r o t o r  t0.0.62. 
t rends ,  higher performance increases than those measured should be obtainable 
f o r  t h e  6-bladed r o t o r  a t  higher c o l l e c t i v e  p i t c h  s e t t i n g s  ( t h r u s t  l e v e l s ) ,  
t i p  Mach numbers, and a x i a l  spacings. A l s o ,  as Shawn i n  Fig. 15, f o r  the 
axial spacing of two chord lengths the  performance increase was f a i r l y  
independent of azimuth spacing, and thus  similar performance benef i t s  may 
have been obtained a t  other azimuth spacings i f  t e s t e d  a t  the same t h r u s t  
l e v e l .  

Based on t h e  demonstrated 

The question t h a t  remains i s  whether or not  the  performance continuously 
improves as axial spacing i s  increased. 
on performance of varying a x i a l  spacing i n  small increments fran 1 t o  2.5 
chord lengths i s  shown f o r  t h e  30 deg azimuth spacing. A s  indicated,  the  
performance of the  configuration tes ted  cons is ten t ly  increases w i t h  axial 
spacing. In p a r t  ( b )  of Fig. 16, the da ta  points  f o r  th ree  of the A $  = 30 
deg configurations from p a r t  ( a )  have been replaced wi th  faired curves t o  
more c lear ly  compare t h e i r  performance with t h a t  of the conventional r o t o r .  
A t  the  high t h r u s t  - t i p  Mach number combinations f o r  t h i s  configuration, 
most of the performance benefi t  i s  achieved with one chord length axial 
spacing. 

I n  p a r t  ( a )  of Fig. 16, the  e f f e c t  

Effect of co l lec t ive  p i tch  increment, - The independent e f f e c t  of 
co l lec t ive  p i t c h  increment, shown i n  Fig. 17, was determined by s e t t i n g  
d i f f e r e n t  co l lec t ive  p i t c h  values on the  two blade s e t s  ( a l t e r n a t e  blades)  
of t h e  otherwise conventional ro tor  configuration. The co l lec t ive  p i t c h  
increment, A @ ,  i s  defined as t h e  t o t a l  p i t c h  increment between the  two 
blade s e t s  (1) and (2 ) .  
as follows: 

The co l lec t ive  p i t c h  on each blade set i s  defined 

I n  Fig. 17, t h e  mean co l lec t ive  p i tch ,  8 , i s  equivalent t o  the  conventional 
r o t o r  col lect ive p i t c h  a t  each t h r u s t  l e v e l .  
co l lec t ive  p i t c h  increment general ly  has a negl ig ib le  e f f e c t  on performance 
f o r  conventional axial and azimuth spacing. 
 ma??^^ is shnwn LE Fig: 17 a t  the htgh t h r u s t  l e v e l  for  the  configuration 
w i t h  
may be simply a t t r i b u t a b l e  t o  t h e  more severe s t a l l  of t h e  blade s e t  w i t h  
the  higher p i t c h  s e t t i n g .  

As indicated i n  Fig. 17, 

A s l i g h t  decrease i n  perfor-  I 

he = 2 deg a t  t h e  t i p  Mach number of 0.58. This performance decrease 
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Data showing t h e  e f fec t  of ‘collective p i t c h  increment on performance f o r  
various combinations of axial and azimuth spacing are presented i n  Fig.  18. 
I n  p a r t  ( a )  of t h i s  f igure,  performance data are presented f o r  an axial  
spacing of one chord length,  several  azimuth spacings, and a c o l l e c t i v e  
p i t c h  increment between t h e  upper and lower blade sets of 2 deg. The mean 
co l lec t ive  p i t c h  value f o r  each Configuration i s  8 deg. 
some minor reductions i n  performance, the primary var ia t ions  i n  t h e  data 
a r e  mainly along t h e  
performance data are presented f o r  a higher mean c o l l e c t i v e  p i t c h  value 
( 8 = 11.5 deg). 
spacing, A8 = 0 and -1, are 
shown. A t  t h e  lower t i p  Mach number, MT = 0.45, t h e  performance differences 
between t h e  configurations,with and without d i f f e r e n t i a l  p i t c h  are negl i -  
g ib le .  A s l i g h t  performance decrease i s  shuwn f o r  t h e  d i f f e r e n t i a l  p i t c h  
configurations a t  the higher t i p  Mach number. Thfs i s  consis tent  with the  
previously mentioned t rend f o r  operation i n  s ta l l .  

Although t h e r e  are 

A0 = 0 performance curves. I n  pazt  (b)  of Fig. 18, 

Results f o r  two axial  spacings, a z  = 1 and 2, one azimuth 
A J ,  = 30 deg, and co l lec t ive  pi tch increments, 

I n  conclusion, it appears t h a t  d i f f e r e n t i a l  c o l l e c t i v e  p i t c h  between 
blade sets general ly  has a negl igible  or s l i g h t l y  detrimental  e f f e c t  on 
hover performance. 

Effect  of d i f f e r e n t i a l  radius.  - To determine t h e  e f f e c t  of d i f f e r e n t i a l  
radius ,  two addi t iona l  blade s e t s  with r a d i i  70 and 85 percent of t h e  r a d i u s  
of the reference ro tor  were t e s t e d  separately i n  combination with a blade 
s e t  of t h e  reference r o t o r  (see Fig. 2 ) .  The corresponding r a d i u s  increment 
r a t i o s ,  
and 0.0, respect ively.  
constant f o r  a l l  blades and, thus,  a l l  rotors  had the same s o l i d i t y  (based 
on t h e  t o t a l  d i s c  area). 
blade s e t s  t h a t  comprise d i f f e r e n t i a l  r a d i u s  configurations obviously 
d i f fe red .  When nondimensionalizing t h e  rotor  t h r u s t  and torque t o  CT/c and 
G&, t h e  radius  and t i p  speed of t h e  reference ro tor  were used. 
common noridimensionalizing fac tors  for a l l  r o t o r s ,  the  data t o  be presented 
a r e  a l s o  representat ive of dimensional t h r u s t  and torque f o r  a l l  r o t o r s .  

A R ,  of t h e  two resu l t ing  r o t o r s  and the  base ro tor  a r e  0.30, 0.15, 
A s  mentioned previously, blade area (CR) was held 

I n  addi t ion t o  radi i ,  the t i p  speeds of t h e  two 

By using 

The independent e f fec t  of d i f f e r e n t i a l  radius on hover performance i s  
shown i n  Fig. 19. hR, was changed r e l a t i v e  
t o  t h e  conventional ro tor  configuration t o  demonstrate t h e  independent e f f e c t  
of Ax. 
reference blade s e t .  The decrease i n  thrus t  and torque a t  a given co l lec t ive  
p i t c h  with increasing radius increment r a t i o  i s  evident,  and i s  simply 
a t t r i b u t e d  t o  the  lower t i p  speed of the  shorter blade s e t .  
e f f i c i e n c y  improves with increasing 
due t o  t h e  decreased p r o f i l e  drag on the shorter blades associated with t h e  

Only t h e  radius increment r a t i o ,  

The t i p  Mach numbers, M J ~ ,  indicated on the f i g u r e  a r e  those of t h e  

The performance 
at the  l o w  t h r u s t  l eve ls .  This i s  
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lower t i p  speed (see data a t  8 = 0 deg) .  
performance with A T  de te r io ra t e s  and drops below t h e  conventional r o t o r  a t  
high th rus t  l eve l s .  
l e v e l  as t h a t  of t he  conventional ro to r ,  t h e  d i f f e r e n t i a l  rad ius  r o t o r  mus t  
operate a t  a higher co l l ec t ive  p i t c h  (1 t o  2 deg) t o  compensate f o r  t h e  
l o s s  i n  t h r u s t  due t o  the  lower t i p  speed of t he  shor te r  blades. 
t h e  d i f f e r e n t i a l  radius r o t o r  t o  s t a l l  e a r l i e r  than the  conventional ro to r  
which results i n  a decrease i n  performance eff ic iency.  
formance a t  low t h r u s t  l e v e l s  and decrease a t  high l eve l s  w i l l  be shown t o  
be cha rac t e r i s t i c  of a l l  d i f f e r e n t i a l  rad ius  configurations t e s t e d .  

A s  t h r u s t  l e v e l  i s  increased the  

This i s  ‘because t h a t ,  i n  order t o  a t t a i n  t h e  same t h r u s t  

This causes 

The increase i n  per -  

The e f f ec t  of d i f f e r e n t i a l  radius  on performance f o r  coplanar blades a t  
azimuth spacings of 
(a )  of t h i s  f igure  most of t he  da ta  f o r  t h e  same configuration as Fig.  19 has 
been replot ted using an expanded sca l e  t o  simplify comparison with t h e  other 
azimuth spacing configurations i n  p a r t s  (b)  and ( c ) .  
performance t rends f o r  an azimuth spacing of 60 deg a r e  similar f o r  azimuth 
spacings of 30 and -30 deg. Also ,  the data fo r  the  pos i t ive  and negative 
30 deg azimuth spacing shown i n  p a r t s  (b)  and ( c )  a r e  e s s e n t i a l l y  i d e n t i c a l .  
Thus,  t h e  e f f e c t  of d i f f e r e n t i a l  r ad ius  f o r  a given azimuth spacing appears 
t o  be independent of whether the short  blades a r e  leading or  lagging the  
reference blades.  

A$ = 60, 30, and -30 deg i s  shownin Fig. 20. I n  p a r t  

The previously noted 

The e f f ec t  of d i f f e r e n t i a l  rad ius  on t h e  performance of configurations 
wi th  combinations of axial  and azimuth spacing is shown i n  Fig. 2 1  f o r  some 
of t h e  configurations t e s t ed .  It was found t h a t ,  except f o r  the  A? = 1, 
AI) = 0 configuration (biplane configurat ion)  where a cons is ten t  reduction 
i n  performance occurred, the  data f o r  a given f i n i t e  rad ius  increment r a t i o  
were independent of axial  and azimuth spacing (within a CT/O of iO.OO1 a t  a 
given CQ/,). This was found t o  be true even though the  base performance 
curves i n  t h i s  f i gu re ,  fo r  ro to r s  with equal length blades,  s h i f t e d  with 
a x i a l  and azimuth spacing a s  discussed previously.  
gains  i n  performance that were previously achieved with axial  and azimuth 
spacing were associated with t h e  f a c t  that t h e  blades were of equal length.  
This  lends credence t o  the supposit ion t h a t  t he  performance gains  with axial 
and azimuth spacing a r e  due t o  the  r e l i e f  of aerodynamic in te r fe rence  e f f e c t s  
i n  the t i p  region of t he  equal length blades. 

It thus appears t h a t  any 

The performance t rends on a thrust- torque (o r  CT - CQ) basis, with 

That i s ,  t h e  observed decrease i n  p ro f i l e  drag a t  low t h r u s t  
d i f f e r e n t i a l  rad ius  a r e  similar t o  the  t rends  wi th  decreasing s o l i d i t y  
(Ref. 1). 
leve ls  Find the ear l ie r  s t a l l  a t  hinh - t h r u s t  l e v e l s  i s  c h a r a c t e r i s t i c  of a 
s o l i d i t y  reduction. 
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Effect  of combining d i f f e r e n t i a l  r ad ius  and d i f f e r e n t i a l  co l l ec t ive  
p i tch .  - The f i n a l  VGR configuration t o  be considered consisted of 

combining d i f f e r e n t i a l  rad ius  ( hR = k.15) with d i f f e r e n t i a l  co l l ec t ive  
p i t ch  f o r  various axial and azimuth spacings. 
d i f f e r e n t i a l  co l lec t ive  p i t c h  was produced by increasing the  p i t c h  of the  
shor te r  blade s e t .  The i n t e n t  was t o  increase t h e  t h r u s t  of t he  shor te r  
blade set t o  a l e v e l  c loser  t o  t h a t  of the l a rge r  blade s e t .  
the  combined d i f f e r e n t i a l  radius  and d i f f e r e n t i a l  co l l ec t ive  p i t c h  configura- 
t i o n  on performance i s  shown i n  Fig. 22 r e l a t ive  t o  i d e n t i c a l  configurations 
without d i f f e r e n t i a l  co l lec t ive  p i tch .  I n  part (a), t he  data f o r  coplanar 
configurations are presented f o r  two azimuth spacings, A $  = 30 and 60 deg. 
Performance i s  shown t o  increase with increasing p i t c h  on the shor te r  
blades ( A 8  < 0 f o r  pos i t iye  AX configurations).  
configurations with an axial spacing of one chord length i s  presented. 
are presented f o r  radius  increment r a t i o s ,  A T ,  of 0.15 and -0.15 which 
correspond t o  the 85 percent length blades mounted below and above the  
reference blades, respectively.  Consistent with the  coplanar ro to r  results 
i n  part ( a ) ,  increasing the  co l lec t ive  pitch on t h e  shorter  blade set  f o r  
configurations with d i f f e r e n t i a l  radius and axial spacing results i n  improved 
performance. This performance gain,  re la t ive  t o  the  A 0  = 0 configuration, 
i s  grea te r  with the  shor te r  blades above t h e  longer blades ( a = -0.15 
compared t o  AX = 0.15). 
l e v e l ,  was measured f o r  t he  "biplane configuration" ( A T  = -0.15, E = 1, 
A$ = 0 ,  A 8  > 0)  a t  t h e  higher t i p  h c h  number. 
15 deg configurations (not shown) were similar t o  the 
although not qu i te  as extreme. 
( a l s o  not shown) were e s s e n t i a l l y  equivalent t o  those of similar configura- 
t i o n s  b u t  w i th  pos i t ive  spacing. 
p i t ch  on the  long blades instead of the s h o r t  blades i s  shown i n  part (a )  of 
Fig. 22 (see data f o r  

With b u t  one exception, 

The e f f e c t  of 

In  part (b ) ,  t h e  data f o r  
Data 

The g rea t e s t  performance gain, a t  t he  t e s t e d  t h r u s t  

The r e s u l t s  f o r  the  A $  = 
A +  = 0 r e s u l t s  

The r e su l t s  f o r  negative azimuth spacings 

The ef fec t  of increasing the  co l l ec t ive  

A 8 = 4 deg) t o  be detrimental  t o  performance. 

The performance improvement achieved through increasing the p i t c h  on 
t h e  shor te r  blades results i n  delaflng the  adverse s ta l l  behavior of 
d i f f e r e n t i a l  r a d i u s  configurations.  In  Fig.  23, sample results showing the 
improved performance a t  t h r u s t  l eve l s  near s ta l l  and the associated perfor-  
mance benef i t  over the  conventional ro tor  are presented f o r  one of t h e  
configurations of Fig. 22. (The t rends observed f o r  t h i s  configuration are 
representa t ive .  ) 
following. Since, a t  the  same col lec t ive  pitch,  the  longer blades would 
reach drag divergence earlier due t o  t h e i r  higher t i p  Mach numbers, it is 
more e f f i c i e n t  t o  increase the  p i t c h  separately on the  shorter  blades t o  
place these blades a t  a mme favorable L/D condition. 
r e l a t a b l e  t o  t h o s e  produced on conventional r o t o r s  by r ed i s t r ibu t ing  the  
blade loading inboard with high twist and/or taper .  

The improved performance may be a t t r i b u t a b l e  t o  t h e  

The e f f e c t s  &re 

It i s  thus concluded 
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t h a t  use of t h e  proper d i f f e r e n t i a l  co l lec t ive . :p i tch  enhances t h e  performance 
of d i f f e r e n t i a l  radius  configurations by delaying the p r o f i l e  torque r i s e  of 
t he  longer blades.  However, s ince the  m a x i m u m  t h r u s t  condition was not 
invest igated,  t h e  ex ten t  of t h i s  performance benef i t  a t  higher t h r u s t  l e v e l s  
remains t o  be determined. 

Discussion of Flow Visual izat ion Resul ts  

To gain in s igh t  i n t o  the  aerodynamic environment inf luencing t h e  hover 
performance of t h e  variable-geometry ro to r  configurations,  t he  flow v i s u a l i -  
za t ion  data taken during t e s t i n g  were reduced t o  determine t i p  vortex geom- 
e t r y  cha rac t e r i s t i c s .  Wake coordinates and sample photographs a r e  presented 
here in  f o r  se lec ted  configurations.  The configurations were se lec ted  t o  
demonstrate the cha rac t e r i s t i c  wake f ea tu res  associated w i t h  each of t h e  VGR 
variables  and the  most promising combinations of these  design var iab les .  
Presented i n  t h i s  sec t ion  a r e  wake coordinates f o r  configurat ions with 
(1) independent var ia t ions  of each VGR parameter and ( 2 )  combinations of 
axial  and azimuth spacing. 

The t i p  vortex coordinates f o r  t he  conventional 6-bladed ro to r  a t  a 
co l lec t ive  p i t c h  s e t t i n g  of 10 
photograph of t h e  wake f o r  one ro to r  pos i t ion  where the az imuth  pos i t ion  of 
blade 1 ( $1) i s  1 5  deg i s  a l s o  shown (see  Fig.  10 f o r  sequence of photo- 
graphs a t  varying $ ). 
excel lent  agreement with t h e  generalized wake r e s u l t s  of Ref. 1 which 
includes an extensive descr ip t ion  of t he  wake cha rac t e r i s t i c s  f o r  conven- 
t i o n a l  hovering r o t o r s  and wake data f o r  varying numbers of blades,  t w i s t ,  
a spec t  r a t i o ,  t h r u s t  l e v e l ,  and t i p  Mach number. Wake symmetry was assumed 
i n  determining the  t i p  vortex coordinates.  A s  described i n  Ref. 1, t h e  t i p  
vortex for a 6-bladed hovering ro to r  becomes unsteady between one-half and 
one revolution from the blade.  
i s  thus  l imi ted  t o  t h e  near wake region. It i s  noted, however, t h a t  it i s  
t h e  near wake geometry which i s  of primary s igni f icance  f o r  performance 
considerations.  

deg a r e  presented i n  Fig.  24. A sample 

The wake data i n  Fig. 24 were found t o  be i n  

The ex ten t  of the  t i p  vortex coordinate data 

The e f f e c t  of an independent va r i a t ion  of blade azimuth spacing on t i p  
vortex geometry i s  shown i n  Fig.  25. 
urat ion i s  the  impingement of t h e  t i p  vortex of t h e  re ference  blade (blade 1) 
on the  following blade (blade 2 ) .  
graph where blade 2 i s  j u s t  about t o  en ter  the  plane of t h e  smoke. 
the azimut!? cpacizg frnm t he  60 deg of a conventional r o t o r  t o  30 deg 
provides less time f o r  t he  t i p  vortex t o  descend. 
lower Posit ion of the  second blade r e s u l t s  i n  the  vortex impinging on t h a t  

The main wake f ea tu re  f o r  t h i s  config- 

This impingement i s  evident  i n  t h e  photo- 
Reducing 

This coupled w i t h  t he  
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blade. 
t h r u s t  r e l a t i v e  t o  blade 1 which can be a t t r ibu ted  t o  the  aerodynamic i n t e r -  
ference associated with t h e  close proximity of t h e  vortex.  
angles beyond t h e  vortex impingement, a c lear ly  defined vortex core could not 
be distinguished f o r  the  vortex of blade 1 i n  t h e  f l o w  v i sua l iza t ion  photo- 
graphs. The coordinates f o r  the  t i p  vortex from blade 2 were found t o  be 
general ly  similar t o  those from the conventional blade. 
absence of the abrupt change i n  axial coordinate which corresponds t o  t h e  
abrupt increase i n  a x i a l  v e l o c i t y  due t o  the  passage of t h e  following blade. 
This i s  due t o  t h e  increased azimuth spacing between blades 2 and 3 (90 versus 
60 deg) which results in a greater axial dis tance between t h e  vortex and t h e  
following blade (blade 3) 

The lower pos i t ion  of the second blade ind ica tes  luwer coning* and 

For azimuth 

The exception i s  t h e  

The e f f e c t  of independent var ia t ions  of blade axial spacing i s  shown 
i n  Figs. 26 and 27 for  E = 1 and 2, respectively.  
from the upper blade (blade 1) passes r a d i a l l y  ins ide  t h e  t r a j e c t o r y  of t h e  

vor t ices  from the upper and lower blades are such t h a t  the  vortex from t h e  
upper blade i s  accelerated t o  a grea te r  downward ve loc i ty  than the conven- 
t i o n a l  r o t o r  vortex. 
a ted i n  the v e r t i c a l  d i rec t ion .  
blade passes below t h e  vortex from t h e  lower blade. 
vor t ices  are j u s t  below the  t i p  path plane of the lower blade s e t  as 
indicated by t h e  i n t e r s e c t i o n  of t h e  a x i a l  coordinate curves i n  Figs. 26 and 
27. A general  observation t h a t  appl ies  t o  a l l  configurations i s  t h a t ,  when 
t h e  vor t ices  from two adjacent blades i n i t i a l l y  reverse t h e i r  r e l a t i v e  axial 
posi t ions,  it occurs a t  or j u s t  below the t i p  path plane of the lower blade 
s e t .  

The vortex t r a j e c t o r y  

I lower blade (blade 2) .  Near the r o t o r ,  the c i r c u l a t i o n  d i r e c t i o n s  of t h e  

Likewise, t h e  vortex from the  lower blade i s  deceler- 
A s  a result, the  vortex from t h e  upper 

This occurs when the 
I 

Flow v i s u a l i z a t i o n  results for  configurations w i t h  a 30 deg azimuth 
spacing and various a x i a l  spacings a r e  presented i n  Figs.  28 t o  34. 
a r e  the configurations which showed s ignif icant  p o t e n t i a l  f o r  performance 
improvement. 
OZ, of one chord length a r e  shown. The movement of the  vor t ices  from the 

These 

I n  Fig. 28, the t i D  vortex coordinates f o r  an a x i a l  sFacing, 

*The axial spacing, A>, i s  defined a t  t h e  hub. It i s  not exac t ly  
representa t ive  of axial spacing a t  the  blade t i p s  due t o  possible  differences 
i n  coning between blades,  
t h i s  condition i s  approximately 2 deg. 
approximately 20 percent i s  indicated between blades 1, 3, 5, and 2, 4, 6 .  

The nominal coning angle f o r  t h e  model blades a t  
1 A difference i n  coning and t h r u s t  of 
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upper and lower blades about one another i s  evident from the a l t e r n a t e  
crossings of both the  r a d i a l  and ax ia l  coordinate p l o t s .  
be c l ea r ly  observed i n  photographs showing the  time h i s to ry  of t h e  wake 
(Fig. 29)  and i n  the  photograph (Fig. 30) i n  which the t i p  vortex cross  
sect ions are labeled (A through F) according t o  the  blade from which they 
were generated.. The t i p  vortex coordinates and the  vortex pos i t ions  rela- 
t i v e  t o  t h e  blade are compared t o  those of t h e  conventional ro to r  i n  Figs .  
31 and 32 f o r  t h i s  axial spacing of 1.0. The primary differences from the  
t i p  vortex geometry of a conventional ro tor  blade a r e  evident i n  the axial 
coordinates shwn  i n  Fig. 31. I n  the  important region d i r e c t l y  behind the  
blade, ($w< 180 deg) the  vortex from t h e  upper blade i s  displaced fu r the r  
from the  t i p  path plane and the  vortex from the  lower blade i s  displaced 
nearer t o  the  t i p  path plane. This combined with the  change i n  the s p a t i a l  
re la t ionships  between blades results i n  the  blade-vortex pos i t ions  shown 
i n  Fig. 32 i n  comparison with those of a conventional ro to r .  As w i l l  be 
discussed later i n  t h i s  sect ion,  t he  increased axial dis tances  between the 
blades and the  vor t ices ,  p a r t i c u l a r l y  fo r  t he  upper blades ( 0 . 0 8 ~  versus 
0.02R) , i s  of importance when considering haver performance. 
axial  spacing of 1.5, it was found that t h e  vortex pairs no longer cross  
each other  i n  the r a d i a l  d i rec t ion  as shown i n  Figs. 33 and 34 f o r  a x i a l  
spacings of 2.0 and 2.5, respect ively.  As axial spacing i s  increased f o r  
t h e  30 deg azimuth spacing, the  vortex from blade 1 approaches blade 3 on the  
lower blade s e t  and a t  a spacing of 2.5 t h e  vortex impinges on t h e  blade 
(see Fig. 34) a t  the  indicated t h r u s t  l eve l  (CT/C = 0.072). 

This movement may 

Beyond an 

The vortex coordinates for  the "biplane configurations" ( A $  = 0)  are  
of spec ia l  i n t e r e s t  i n  t h a t  they demonstrate an unusual a l t e r a t i o n  of the  
vortex pa t t e rn  a t  one of the  axial spacings tes ted .  In  Fig. 35, the 
coordinates f o r  an a x i a l  s p c i n g  of one chord length a re  shown t o  be similar 
t o  those i n  Fig. 28 for  the  same a x i a l  spacing but an azimuth spacing of 
30 deg. 
manner. 
vor t ices  do not cross paths.  A t  $wl = 120 t o  150 deg, t h e  crossing i n  the  
a x i a l  d i r ec t ion  i s  abrupt ly  prevented by the  influence of the  bound and t i p  
vortex from blade 4 on t h e  vortex of blade 2.  

That i s ,  t he  vortex pa i r s  move around one another i n  a s imilar  
However, as shown i n  Fig. 36 for  an a x i a l  spacing of 2.0, t he  

The flow v isua l iza t ion  r e s u l t s  for t he  d i f f e r e n t i a l  co l lec t ive  p i t ch  
configurations were the most d i f f i c u l t  t o  analyze. For some of these , 

d i f f i c u l t  t o  accurately t r ack  the  vortex locat ions with an acceptable degree 
of confidence. For t h i s  reason the t i p  vortex coordinates showing the  e f f ec t  
of an independent co l lec t ive  p i t ch  var ia t ion from the  conventional ro to r  a r e  
not included herein.  
configuration with a d i f f e r e n t i a l  col lect ive p i t ch  of 2 deg a re  presented i n  

I configurations port ions of t he  near wake appeared t o  be unsteady, and it was I 

However, t h e  coordinates f o r  a 30 deg azimuth spacing 
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Fig. 37. It appears that t h e  c lose  passage of t h e  vortex from blade 1 t o  
blade 2 results i n  a decreased t h r u s t  l eve l  and coning angle f o r  blade 2 
as indicated by t h e  lower a x i a l  posit ion of i t s  t i p .  It i s  a l s o  observed 
t h a t  the  two vor t ices  from blades 1 and 2 remain close together which 
results i n  considerable in te rac t ion .  

The independent e f f e c t  of d i f f e r e n t i a l  r a d i u s  on t i p  vortex geometry 
i s  shown i n  Figs.  38 and 39 f o r  rad ius  increment r a t i o s  of 0.15 and 0.3. 
The a x i a l  spacing shown between a l te rna te  blade t i p s  i s  due t o  differences 
i n  the v e r t i c a l  t i p  posi t ions with coning f o r  unequal blade lengths and 
differences i n  coning angle between the long and short  blades f o r  unequal 
Lock numbers. 
s ing ly  r e s u l t  i n  pronounced d i s t o r t i o n s  of t h e  t i p  vortex t r a j e c t o r i e s  -- 
a t  l e a s t  f o r  the  r e l a t i v e l y  large radius increment r a t i o s  tes ted .  

Unlike t h e  other VGR variables,  d i f f e r e n t i a l  r a d i u s  does not 

Sample flaw visua l iza t ion  photographs f o r  other  variable-geometry 
I r o t o r  configurations are presented i n  Fig. 40. 

Descriptions are given i n  Refs. 1 and 2 of t h e  e f f e c t s  of t i p  vortex 
posi t ions on hover performance. 
hover performance may be d i r e c t l y  related t o  changes i n  wake geometry. 
p a r t i c u l a r  s ignif icance are t h e  r e l a t i v e  pos i t ions  between t h e  blades and 
t h e  i n i t i a l  t i p  vor t ices  t h a t  pass beneath the blades. I n  an attempt t o  
determine i f  there  i s  any obvious correlat ion between performance t rends  
and wake geometry t rends f o r  the variable-geometry ro tors ,  the t i p  vortex 
coordinate v a r i a t i o n  with axial spacing was plo t ted  f o r  VGR configurations 
w i t h  an azimuth spacing of 30 deg. 
because it demonstrated a s igni f icant  performance increase w i t h  increased 
a x i a l  spacing. The var ia t ion with AX of t h e  axial and radial coordinates 
for  the poin ts  on the t i p  vor t ices  which a r e  d i r e c t l y  beneath an upper and 
lower blade (blade-vortex in te rsec t ions)  i s  shown i n  Fig. 41. 
coordinates, ET, represent the v e r t i c a l  distances from each vortex td’ t h e  
t i p  of a s i n g l e  upper or lower blade, as noted. 
conventional r o t o r  are a l s o  shown f o r  comparison. 
indicated by $w. The GW values may be used i n  ident i fying the biade which 
shed each vortex i f  it i s  recognized that $w i s  equivalent t o  the  azimuth 
i n t e r v a l  between the  blade which shed the vortex and t h e  selected upper or  
lower blade i n  Fig. 41. 

240, and 270 deg are not shown because, as previously mentioned, they were 
indis t inguishable  a f t e r  the  vortex impingement. 

It i s  concluded there in  that changes i n  
O f  

I 

This s e t  of configurations was selected 

The axial 

The coordinates f o r  the  
I 

The age of each vortex i s  1 
I 

I For t h e  zero a x i a l  spacing configuration, coordin- 
I I nates  of vortex points  shed from t h e  upper blade for  $w values of 120, 150, 
I 
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For the lower blade, no obvious reason f o r  a performance increase 
Some with a x i a l  spacing i s  evident from the vortex coordinate t rends .  

vo r t i ce s  move away from the blade while others  move c lose r .  However, f o r  
+ h e  upper blade, t he  minimum a x i a l  d i s tance  between the  blade and vortex 
: s  increased by more than a f ac to r  of t h r e e  r e l a t i v e  t o  the  d is tance  f o r  
1 lie conventional ro to r .  This i s  more c l e a r l y  indicated i n  Fig.  42 where 
' l ~ e  coordinates i n  Fig. 41 have been cross-plot ted to provide a p i c t o r i a l  
view of the movement of the t i p  vortex pos i t ions  with axial spacing 
\a r ia t ions* .  
l i a d e  could r e s u l t  i n  t h e  r e l i e f  of vortex induced s t a l l  a t  t he  blade t i p  
wtiich i s  produced by the  strong upflow j u s t  outboard of t h e  vortex,  as 
uescribed i n  Refs. 1 and 2.  
I h r u s t  l eve ls  could r e s u l t  f o r  the  three upper blades.  
tetween performance and vortex pos i t ion  for  the  th ree  lower blades i s  d i f f i -  
c u l t  t o  i n t e rp re t .  
fu r the r  above t h e  blade with increased axial spacing, t he  vo r t i ce s  from the  
previous blade p a i r  move c loser  t o  the  blade.  I n  f a c t ,  as shown previously 
j11 Fig. 34, a near vortex impingement occurs f o r  A? = 2.5. However, t he  
c lose  posi t ion of t h i s  vortex may not be as severe f o r  t h i s  configurat ion as 
f o r  t he  conventional ro to r  because of (1) i t s  occurrence on only th ree  of 
t he  six blades, ( 2 )  t h e  reduced p o s s i b i l i t y  of inducing t i p  s t a l l  due t o  i t s  
more inboard r a d i a l  pos i t ion  (F = 0.88 versus 0.94) a t  which the  Mach number 
and loca l  angle of a t t a c k  a r e  normally lower, and (3) the  counteracting 
inflow e f fec t  of the t i p  vortex outboard of t h e  impinging vortex.  It thus  
appears t h a t  a ne t  gain i n  performance f o r  configurations with axial  and 
azimuth spacing i s  due t o  a n e t  improvement i n  the  vortex o r i en ta t ion  f o r  
the  upper blades and a compensating vortex o r i en ta t ion  f o r  t h e  lower blades.  
llowever, the extreme complexity of t h e  vortex system makes it d i f f i c u l t  t o  
I-oiiclude t h i s  without an extensive a n a l y t i c a l  study of the  e n t i r e  r o t o r -  
1 ake system**. 

The increased dis tance between t h e  near vortex and t h e  upper 

Thus an increase  i n  performance a t  the  high 
The r e l a t ionsh ip  

Although t h e  vortex from the  preceding blade moves 

*The t w o  p i c t o r i a l  views i n  Fig.  42 a r e  views of t he  t i p  vortex c ross  
sections i n  the  planes of t he  upper and lower blades which a r e  similar t o  
the view i n  a smoke photograph when a blade i s  i n  t h e  plane of the smoke. 
To i l l u s t r a t e  t h i s ,  the  labe l led  vortex cross  sect ions ( A  through F )  i n  
the  photograph i n  Fig.  30,where t h e  lower blade i s  i n  the  plane of t he  
smoke, a r e  indicated i n  Fig.  42 (b)  . 

+*The poss ib i l i t y  t h a t  the  performance benef i t  w i t h  a x i a l  spacing i s  due t o  
some phenomenon unrelated t o  t i p  vortex in te r fe rence  i s  a l s o  recognized. 

e x s q l e ,  It E S ~  he thnf. t.he general  dmnwash pa t t e rn  across  the  blades 
i s  favorably a l t e r ed  when axial  spacing i s  introduced, or t h a t  the  lower 
r o t o r ,  by v i r t u e  of axial loca t ion ,  produces an increase i n  effective d i s c  
area thereby providing improvements assoc ia ted  with lower disc loading. 
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WIND TUNNEL TEST ‘OF VARIABLE-GEOMETRY ROTORS 

Several of t h e  model variable-geometry ro to r  configurations were 
selected f o r  an exploratory wind tunnel  t e s t  t o  compare the performance, 
vibrat ions,  and.f lapping response of variable-geometry r o t o r s  with a con- 
ventional ro to r .  

Test Equipment 

The wind tunnel  t e s t  program was conducted i n  the UARL 4 x 6 f t  sub- 
sonic wind tunnel  (Fig. 43) which has a closed c i rcui t  and operates a t  a 
m a x i m u m  t e s t  sec t ion  ve loc i ty  of 110 mph. 
octagonal test  sec t ion  i s  atmospheric. The same ro to r  t es t  r i g ,  ro tor  hubs, 
and blades used i n  the hover t es t  were used i n  the  wind tunnel  t es t .  Photo- 
graphs of a conventional and variable-geometry ro tor  mounted i n  the  wind 
tunnel  a r e  presented i n  Fig. 44. Rotor thrust, torque, and longi tudinal  
force  were measured by means of strain-gaged load c e l l s  or bending beams. 
A provision fo r  varying ro tor  shaft angle between f12 deg was avai lable .  
Cyclic p i t c h  control  was not provided and co l l ec t ive  p i t ch  was s e t  manually. 
Longitudinal and la teral  v ibra t ion  amplitudes were measured on the ro to r  
shaft using conventional v ibra t ion  pickups. Blade flapping was measured 
through the def lect ion of strain-gaged bending beams mounted on t h e  hubs and 
wired t o  a s l i p  ring-visicorder system which provided d i r e c t  read-out of the 
flapping time h is tory .  

S t a t i c  pressure i n  the  i r r egu la r  

Te s t Configurations and Operating Conditions 

The wind tunnel  t es t  was l i m i t e d  i n  scope t o  an exploratory t e s t  of a 
few variable-geometry ro to r  configurations. 
spacing of one chord length and an azimuth spacing of  30 deg was selected as 
the base variable-geometry ro tor  configuration on t he  basis of t h e  po ten t i a l  
performnce advantage demonstrated i n  the hover t es t .  
var ia t ions  (60 and -30 deg) and the reference conventional r o t o r  made up the  
other  primary configurations.  
se lec ted  as one of t he  secondary configurations along w i t h  configurations 
including d i f f e r e n t i a l  radius  and d i f f e r e n t i a l  co l lec t ive  p i t ch .  
t o  t e s t  a biplane configuration (bz = 1.0, AJI  = 0) was terminated due t o  
blade contact  occurring i n  forward flight. Whereas, the primary configura- 
t i o n s  were tested over an extensive range of advance r a t i o ,  co l l ec t ive  
p i t ch ,  and shaft angle,  only a minimal amount of data were obtained fo r  the  
secondary configurations.  The tes t  configurations and cont ro l  s e t t i ngs  are 
l i s t e d  i n  Table V I .  Generally, each tes t  configuration was t e s t ed  a t  a t i p  

A configuration w i t h  a x i a l  

Two azimuth spacing 

A grea ter  ax ia l  spacing (hz = 2.0) was 

An attempt 

.. . 
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speed of 91.4 m/sec (300 f p s ) ,  advance rati'os of 0.1, 0.2, 0.3, 0.4, and 
0.47, and a t  shaf t  angle increments of 2 deg. Tip speeds above 91.4 m/sec 
and cer ta in  high advance ratio,high l i f t  conditions were not t e s t ed  due t o  
blade edgewise s t r e s s  limits. These l i m i t s  were associated with the  absence 
of lag hinges i n  the model and not with any charac te r i s t ic  of t he  var iable-  
geometry ro tors  .. 

TABU VI 

TEST CONFIGURATIONS A N D  CONTROL SETTINGS 
VARIABLE-GEOMETRY ROTOR W I N D  TUNNEL TEST 

Rotor Configuration 

Conventional Rotor 
m = 0 ,  Ai = 0 ,  A 6  = 0, 

Variable-Geometry Rotor 
hR = 0, A< = 1.0, A 0  = 

A$ = 60 

, A q  = 3 

Variable-Geometry Rotor 
= 0 ,  hz = 1.0, A$ = 0 ,  AJ, = 60 

Variable-Geometry Rotor 
a = 0, & = 1.0, A 6  = 0 ,  A$ = -30 

Variable-Geometry Rotor 
hR = O ,  hi = 1, A 6  = O ,  & = O  

Variable -Geome t r y  Rotor 
hR = 0, LE = 2.0, 

Variable-Geometry Rotor 
bR = 0 ,  A< = 1.0, 

= 0 ,  A@ = 30 

A 0  = -1, = 30 

Variable-Geometry Rotor 
3R = 0.15, hz = 1.0, A 0  = 0 ,  30 
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Collective 
Pitch, 6 ,  deg 

0 
3 
6 
9 
12 

z 

b 
9 
3 
6 
9 
6 

9 

O(1)  = 9 
6 ( 2 )  = 10 

9 

lhaft Angle Range 
as, deg 

0 t o  12 
-6 t o  6 
-12 t o  0 
-12 t o  0 
-12 t o  -4 
-8 t o  8 
-12 t o  0 
-12 t o  0 

-6 t o  6 
-10 t o  0 
-12 t o  0 

-6 t o  6 
-10 t o  0 
-12 t o  0 

0 

-10 t o  0 

-10 t o  0 

-10 t o  0 



Test Procedures, Cats Reduction, and Accuracy 

The t e s t  procedure consisted of mounting t he  desired r o t o r  
configuration, s e t t i n g  t h e  co l l ec t ive  pi tch and shaft angle,  and varying 
the  tunnel  air  speed t o  a t t a i n  the  required advance r a t i o s .  Recorded data 
consisted of r o t o r  t h r u s t ,  longi tudina l  force, torque, blade f lapping,  and 
r o t o r  shaft v ibra t ion  l eve l s .  The ro tor  performance data  were transformed 
t o  coe f f i c i en t  form, C&, C D / ~ ,  and C d c .  
inf luence of t he  non-scaled hubs and shaft, t a r e s  represent ing the lift, 
drag, and torque of the i so l a t ed  hubs and shaft were measured and removed 
from t h e  data. Peak-to-peak blade flapping and v ibra t ion  amplitudes were 
analyzed t o  determine the  influence of the various r o t o r  configurations on 
blade response and ro to r  v ibra t ion  l eve l s .  The estimated accuracy of the 
data i s  shown i n  Table VII. 

I n  order t o  eliminate the  

TABLE VI1 

ESTIMATED ACCURACY OF WIND TUNNEL DATA 

L i f t  coe f f i c i en t / so l id i ty ,  C L / ~  . . . . t0.002 

Drag coe f f i c i en t / so l id i ty ,  C D / ~  . . . . -0.001 + 

Torque coe f f i c i en t / so l id i ty ,  C Q / ~  . . . k.0002 

Blade f lapping amplitude, p,,, deg. . . i0.3 
+ 

Rela t ive  v ib ra t ion  amplitude, cm ( i n . ) .  . -0.12 (k.005) 

Discussion of Wind Tunnel Results 

Performance c h a r a c t e r i s t i c s .  - Sample comparisons of t he  forward f l i g h t  
performance c h a r a c t e r i s t i c s  of one of the  variable-geometry r o t o r s  versus a 
conventional r o t m  configuration are presented i n  Fig.  45, parts ( a )  and ( b )  
f o r  advance r a t i o s  of 0.1 and 0.3. As mentioned abov?, the r o t o r  configura- 
t i o n  shown (hR - 0, fi = 1, 
configurat ion f o r  t he  wind tunnel  t e s t  because of i t s  improved hover per for -  
mance. 
s o l i d i t y  are p lo t t ed  versus ro to r  shaft angle f o r  t h ree  co l l ec t ive  p i t c h  
values .  
t h e  two r o t o r s .  I n  Fig. 45, p a r t  ( c ) ,  a performance comparison over t he  
advance r a t i o  range t e s t e d  i s  shown fo r  three representa t ive  operating 

= 30 dog, A 0  = 0)  WRS selected as t he  base 

Rotor lift, drag, and torque coef f ic ien ts  nondimensionalized by ro to r  

The performance r e s u l t s  a r e  shown t o  be general ly  equivalent f o r  
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condi t ions consis t ing of t h ree  d i f f e ren t  combinations of co l l ec t ive  p i t c h  
and sha f t  angle. Again, t h e  performance of the two r o t o r s  i s  shown t o  be 
genera l ly  equivalent.  A performance comparison between other primary 
r o t o r  configurations which have t o  o ther  azimuth spacings (A$ = 60 and -30 
deg) and the conventional ro to r  indicated similar r e s u l t s .  
t r u e  f o r  the 1imi.ted amount of da ta  obtained f o r  t he  configurat ion with an 
ax ia l  spacing of two chord lengths  as shown i n  Fig.  46. It i s  thus con- 
cluded tha t ,  wi th the  exception of s l i g h t  differences f o r  a few i s o l a t e d  
conditions,  va r i a t ions  of blade azimuth spacing and axial spacing have a 
negl ig ib le  e f f e c t  on in tegra ted  forward f l i g h t  performance. Considering 
these  wind tunnel  r e s u l t s  together  with those of t he  hover t e s t ,  it 
appears tha t  variable-geometry r o t o r  configurat ions with axial and azimuth 
spacing can o f fe r  improved hover performance without adversely a f f ec t ing  
forward f l i g h t  performance. 

This was a l s o  

The influence on forward f l i g h t  performance of d i f f e r e n t i a l  co l l ec t ive  
p i t c h  and d i f f e r e n t i a l  radius  as va r i a t ions  from the  base variable-geometry 
r o t o r  i s  shown i n  Figs.  47 and 48. 
obtained for these secondary configurat ions,  t h e  following performance 
t r ends  are  indicated.  Increasing the  p i t c h  on the  th ree  blades of t he  lower 
blade s e t  reduced forward f l i g h t  performance f o r  conditions near s t a l l  as 
indicated i n  Fig. 47 by the  decrease i n  r o t o r  l i f t  curve s lope and increase 
i n  r o t o r  drag and torque slopes r e l a t i v e  t o  the  base configuration*. A s  
ant ic ipa ted ,  the l i f t  and torque of t he  d i f f e r e n t i a l  rad ius  configuration 
decreased r e l a t i v e  t o  t h a t  of t he  base configuration f o r  t he  same co l l ec t ive  
p i t c h  se t t i ng  as shown i n  Fig. 48. 
blades corresponds t o  an approximate one degree decrease i n  p i t c h  on the  
base configuration and i s  cons is ten t  with the  hover r e s u l t s  discussed 
previously.  

%sed on the  l imi ted  wind tunnel  da ta  

The decrease due t o  the  shor te r  length  

Vibration cha rac t e r i s t i c s .  - The s h a f t  v ibra t ion  data  were analyzed t o  
determine t h e  inf luence of t he  variable-geometry r o t o r  configurat ions on 
v ibra t ion  l eve l s .  The v ibra t ion  data  were obtained from v ib ra t ion  meters 
mounted t o  t h e  ro to r  sha f t  and or iented t o  measure the  peak-to-peak ampli- 
tude i n  the longi tudinal  and l a t e r a l  d i r ec t ions  i n  a plane normal t o  the  
shaf t .  The v ibra t ions  of the  various r o t o r  configurat ions were compared a t  
similar operating conditions.  A comparison of the  r o t o r s  wi th  an axial  
spacing of one chord length and varying azimuth increments indicated that, 
a t  l e a s t  below s ta l l ,  t he re  i s  no s ign i f i can t  e f f e c t  of azimuth spacing 
between the upper and lower blades on v ibra t ions .  Based on a l imi ted  amount 

*This trend was a l s o  observed from t h e  da ta  a t  other  advance r a t i o s .  



of data ,  t h i s  was a l s o  found t o  be t rue  for  independent var ia t ions  of 
(1) a x i a l  spacing from one t o  two chord lengths and (2)  d i f f e r e n t i a l  
co l l ec t ive  p i t c h  (one deg) between a l t e rna te  blades.  
configurations with axial spacing (dual hub r o t o r s )  were of t he  same order 
of magnitude as those of the  conventional coplanar r o t o r ;  however, d i r e c t  
comparisons between r o t o r s  were not believed t o  be meaningful because of t h e  
d i f f e r e n t  hub mass cha rac t e r i s t i c s .  As ant ic ipated,  v ibra t ions  increased 
subs t an t i a l ly  f o r  s t a l l e d  conditions.  Excessive v ibra t ion ,  which prohibited 
t e s t i n g  a t  and above an advance r a t i o  of 0.3, were produced by t h e  d i f f e r -  
e n t i a l  radius  configuration. 
duced peak v ibra t ions  approximately 3 times higher than the  ro to r  with 
a = 0 a t  an advance r a t i o  of 0.3. 

The vibrat ions of the  

For example, t h e  r o t o r  with a = 0.15 pro- 

Flapping characteristics. - Sample comparisons of t he  flapping angle 
va r i a t ion  with azimuth pos i t ion  f o r  a variable-geometry ro to r  (AT = 0, 
fi = 1, 
Fig. 49 f o r  two t e s t  conditions.  
been removed t o  d i r e c t l y  compare the  harmonic content of f lapping. 
f lapping i s  e s s e n t i a l l y  f i rs t  harmonic fore-and-aft, t y p i c a l  of hinged 
blades without cyc l ic  p i tch .  
angle of the upper blade (.$ 
of the  upper and lower blades corresponds c lose ly  t o  the  b u i l t - i n  azimuth 
spacing of 30 deg. 

A$ = 30 deg, A 0  = 0)  and a conventional ro to r  are presented i n  
The mean flapping angle (coning angle)  has 

The 

Flapping i s  shuwn with respect  t o  the  azimuth 
). The phase s h i f t  between the flapping peaks 

(1 1 

The blade flapping amplitudes measured f o r  the  various ro tor  
configurat ions are presented i n  Fig. 50 a t  selected advance r a t i o s .  The 
peak-to-peak flapping angles associated with each cont ro l  s e t t i n g  ( O,cus) a r e  
l i s t e d  separa te ly  f o r  each blade set (p 
geometry r o t o r  configurations,  and the conventional r o  o r  flapping ampli- 
tudes are included f o r  comparison. It i s  recognized t h a t  t he  absolute 
values of t he  flapping amplitudes a r e  not representat ive of t yp ica l  f u l l -  
s ca l e  ro to r s  due t o  the  absence of cyc l ic  p i t ch  and appropriate scal ing.  
However, the data  were taken t o  observe r e l a t ive  differences between ro to r  
configurations for  use as an indicator  of wake interference e f f e c t s .  
Comparing t h e  flapping amplitudes a t  similar control  s e t t i ngs  ind ica tes  t h a t  
f lapping va r i e s  between blade sets within a configuration as well as between 
configurations.  This i s  t rue even f o r  the configurations which include only 
axial and azimuth spacing f o r  which performance var ia t ions were negl igible .  
The d i f fe rence  i n  flapping amplitude between the  upper and lower blades a t  
a given p i t c h  s e t t i n g  general ly  increases with t h r u s t  l e v e l  (o r  shaf t  angle) 
An i n t e r e s t i n g  reversal from the  upper blade having the  higher amplitude t o  
the  lower blade having the higher amplitude i s  shown i n  Fig. 50, part (a ) ,  
f o r  a va r i a t ion  of azimuth spacing from 30 t o  60 deg. For example, a t  the  
highest  lift te s t ed  ( C J , / ~  = O.lO),the peak-to-peak f lapping of the upper 
blades of t h e  configuration w i t h  an azimuth spacing of 30 deg i s  higher by 

and p p ~ p  ) of the  var iable-  
T1) 4 ’  
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1.8 deg (pmp = 17.0 versus 15.2 deg). 
configuration, the  peak-to-lJeak flapping of  the  upper blades i s  lower by 
1.7 deg (pnp = 14.8 versus 16.5 deg). 
i n t eg ra t ed  performance ( l i f t ,  drag, and torque)  i s  e s s e n t i a l l y  unchanged by 
axial and azimuth spacing, these inter-blade spacing var iab les  do result i n  
blade response var ia t ions .  
ping could be produced by aerodynamic in te r fe rence  e f f e c t s  from the  model 
dr ive  s h a f t  which m y  influence one blade s e t  o r  configurat ion more than the  
o ther ;  however, it i s  expected t h a t  the primary va r i a t ions  i n  flapping a r e  
caused by d i f fe rences  i n  blade-vortex in te r fe rence  e f f e c t s  associated with 
va r i a t ions  i n  wake geometry. 

Conversely, f o r  the 60 deg 

It t h u s  appears t h a t ,  although t h e  

It i s  recognized that some va r i a t ions  i n  f l a p -  

HOVER TEST OF MODEL ROTOR BLADES WITH OGEE TIPS 

Conventional, coplanar model ro tors  w i t h  blades having an ogee t i p  
design were hover t e s t e d  as part of t h i s  inves t iga t ion .  The ogee t i p  shape, 
shown i n  Fig. 51, a s  conceived a t  the  NASA Langley Research Center, evolved 
from exploratory,  Fmall-scale, smoke tunnel t e s t s  which were d i rec ted  toward 
reducing t h e  i n t e n s i t y  of the  t i p  vortex during i t s  formation by su i t ab le  
t ip-shape modifications.  

The conceptual basis of the  ogee t i p ,  as s t a t e d  i n  Ref. 8, i s  as 
11 follows. 

formation mechanism, which r e s u l t s  from the  three-dimensionality of t h e  flow 
f i e l d .  The primary vortex i s  formed along t h e  streamwise edge of a rectang- 
ular wing t i p  - much l i k e  a d e l t a  wing leading edge vortex.  This separat ion 
vortex forms an in tense  core and as it passes off the  t i p  t r a i l i n g  edge the  
wing shed vortex sheet  i s  entrained and concentrated i n t o  a combined t i p  
vortex system. 
o v e r a l l  l i f t i n g  system. The ogee t i p  shape i s  designed t o  e l iminate  t he  
separat ion vortex.  
edge, s t a r t i n g  a t  the  leading edge, at an angle  s u f f i c i e n t  t o  assure t h a t  
t he  local flow s w i r l  angle cannot produce a reattachment of the  flow coming 
from beneath the  t i p  on the  upper surfa-ce. 
decreases toward the  wing t r a i l i n g  edge, due t o  a drop-off i n  d i f f e r e n t i a l  
pressure and the  associated swirl angle. 
i n t o  the  wing t r a i l i n g  edge t o  avoid a sharp d i scon t inu i ty  i n  l o c a l  flow." 
Essen t i a l ly ,  t h i s  t i p  shape change decreases the  s t eep  gzzadient i n  the  l o c a l  
lift d i s t r i b u t i o n  i n  the  t i p  region, and prevents  t he  formation of a separa- 
t i o n  vortex.  

The shape i s  based upon a concept of a two s tage  t i p  vortex 

The separat ion vortex mechanism i s  not e s s e n t i a l  t o  t h e  

This i s  achieved by cu t t ing  back t h e  t i p  streamwise 

The cutback angle gradual ly  

The t i p  edge i s  f a i r e d  smoothly 
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Model blades with interchangeable epoxyp las t i c  t i p  sec t ions ,  Shawn i n  
-Fig.  52, were used t o  conduct an exploratory t i p  design t e s t .  
were inse r t ed  i n  the  ogee t i p  sect ions t o  increase  t h e i r  s t r u c t u r a l  s t rength .  
Blades with the  NASA ogee and rectangular t i p  sec t ions  were hover t e s t ed .  
The blades were similar t o  the  reference radius blades (R = 27.5 i n . )  of 
the variable-geometry r o t o r  tes t  except f o r  t w i s t  and the provision f o r  
mounting varying t i p  sec t ions .  Both t i p  sect ions were t e s t e d  on 3- and 6 -  
bladed r o t o r s  a t  t h ree  t i p  speeds and several  c o l l e c t i v e  p i t ch  s e t t i n g s .  
tests were conducted a t  t h e  same hover t e s t  f a c i l i t y  described e a r l i e r  f o r  
t h e  variable-geometry r o t o r  hover t e s t .  
i s t i c s  and ro to r  operating conditions a r e  l is ted i n  Table VIII. 

Carbon fibers 

The 

The nominal model blade character-  

TABU VI11 

NOMINAL MODEL BLADE CHARACTERISTICS AND ROTOR OPERATING 
CONilITIONS -- OGEE TIP DESIGN TEST 

Linear twist, deg. . . . . . . -8 

Radius, R, cm ( in . ) .  . . . 69.9 (27.5) 

Chord, c ,  cm ( in . )  . . . . 3.73 (1.47) 

A i r f o i l  sect ion.  . . . . . . NACA Wl2 

Number of blades, b. 3 ,  6 

Tlp h c h  numbers, % . . 0.31, 0.47, 0.54 

Collect ive p i t c h  s e t t i n g s ,  8, deg. . 0, 6, 8, 10, 11, 11.5 (or 12) 

I The maximum t i p  Mach number was l imited t o  0.54 t o  avoid possible  f r ac tu re  
of t he  extreme end of t he  model ogee t i p  section. 
r e s u l t s  f o r  t h e  ogee t i p  are compared i n  Fig. 53 w i t h  the rectangular  t i p  
data .  
A t  low t h r u s t  l eve l s ,  t h e  ogee t i p  performance i s  equivalent t o  that of the  
rectangular  t i p  for  a 3-bladed ro to r .  A smell performance improvement, 
which borders on the  range of the  experimental accuracy, i s  shown f o r  the 
6-bladed ogee t i p  ro to r .  
rectangular  t i p  resulting i n  performance degradation at  high t h r u s t  l e v e l s  
ogee t i p  data were not acquired for the  3-bladed r o t o r  a t  a t i p  Mach number 

The hover performance ’ 
1 The data accuracy var ies  wi th  t i p  Mach number as estimated i n  Table I X .  

The model ogee t i p  stalls e a r l i e r  than the  
I 
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TABLE IX 

J 

Tip Mach Number 
= 0.47 MT = 0.31 MT % = 0.54 A 

Performance Parameter 

Thrust coef f ic ien t  /s o l i d i  t y  CT/U 0.0007 0.0004 0.0004 

Tor que coeff ic ient  /s o l i  d i  t y  CQ/(+ 0.00013 0.00007 0.00004 
1 

of 0.54 due t o  a s t r u c t u r a l  fa i lure  of a t i p .  
c l e a r l y  established from the  da ta  a t  t h e  other t i p  Mach numbers and f o r  
six blades. 

However, t h e  s t a l l  t rend  i s  

A question a r i s e s  a s  t o  the  proper s o l i d i t y  r a t i o  t o  us9 when comparing 
the  performance data  of the two ro to r s .  I n  Fig.  53, a constant s o l i d i t y  
((+= 0.102) based on the nominal chord and radius noted i n  Table V I 1  was 
used. Thus t he  comparison i n  Fig.  53 i s  similar t o  a comparison of t h e  
performance on a th rus t  versus torque bas i s .  
data  on t h i s  basis is  of i n t e r e s t  t o  t h e  designer who i s  constrained t o  a 
f ixed  rotor  radius and a nominal chord and desires the  maximw thrust- torque 
r a t i o  from h i s  r o t o r .  However, t h i s  form of comparison does not account 
f o r  t h e  reduction i n  s o l i d i t y  of the  ogee t i p  which a port ion of t h e  per- 
formance degradation can be a t t r i bu ted  t o .  
s o l i d i t y  value which accounts f o r  t he  blade area removed i n  the  t i p  region 
((+= 0.0964), t he  C T h  and C ~ U  values of the  ogee t i p  r o t o r  i n  Fig.  53 
should be multiplied by 1.04. Alternately,  using weighted s o l i d i t y  r a t i o s  
which emphasize the  importance of the  blade outboard region, CT/(+and C 
values of . the  ogee t i p  r o t o r  i n  Fig.  53 should be mult ipl ied by 1.13 and 1.16, 
respect ively.  Based on weighted s o l i d i t y  r a t i o s  the  performance curves of t he  
ogee t i p  ro to r  are c loser  t o  those of t h e  rectangular  r o t o r  than is  shown i n  
Fig.  53. However, a performance degradation s t i l l  e x i s t s  i n  the  s t a l l  region. 
A portion of t h e  performance degradation of t he  ogee t i p  may be a t t r i b u t e d  t o  
a change i n  a i r f o i l  e f f ic iency  a r i s i n g  from the  reduction i n  Reynolds number 
w i t h  decreasing t i p  chord and the  departure of the a i r f o i l  s ec t ion  from a 
NACA 0012 sec t ion  t o  an e l l i p t i c a l  sec t ion  a t  the  t i p .  
demonstrate the performance t rends f o r  model ro to r s  employing the  ogee t i p ,  
they may not be conclusive f o r  f u l l - s c a l e  ro to r s  due t o  the  Reynolds number 
influences. The difference i n  the  t i p  Reynolds number range of t h e  rectangular  
and ogee t i p  sect ions between the  model blade and a t y p i c a l  fu l l - s ca l e  blade 
is  shown i n  Table X. Considering the  s ign i f i can t  d i f fe rences  i n  t h e  a i r f o i l  

' c h a r a c t e r i s t i c s  f o r  the above Reynolds numbers, t h e  zicBe2. rctcr perfnrmance 
results should be considered as only a preliminary evaluation of t h e  ogee 

Comparison of t he  performance 

For performance based on a 

du 

Although these r e s u l t s  
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TABLE X 

SCALING PARAMETERS FOR THE OGEE AND RECTANGULAR TIPS 

Reynolds number a t  

t i p ,  and f u l l - s c a l e  r o t o r  t e s t i n g  is recommended. 
fu l l - s ca l e  r o t o r  testing of t he  ogee t i p  is reinforced by the  inconsistency 
of o ther  experimental performance r e s u l t s  from recent  model w i n g  s ec t ion  
and m o d e l  p rope l le r  t e s t s  (Refe. 8 and 9 ) .  
r a t i o  of t h e  ogee t i p  w i n g  a t  fu l l - s ca l e  Reynolds number, before s t a l l  
onset, was reported t o  be improved over the rectangular  t i p  w i n g  by about 
f i v e  percent,  whereas, i n  Ref. 9, a performance decrease of t e n  t o  s ix t een  
percent is noted f o r  the  ogee t i p  adapted t o  a h ighly  twisted model propel le r .  

The d e s i r a b i l i t y  of 

I n  Ref. 8, the  l i f t  t o  drag 

Flow v i sua l i za t ion  photographs and movies were taken dur ing  the  t i p  
t es t  using smoke and sch l ie ren  movie techniques. Sample smoke photographs 
f o r  t he  ogee and rectangular t i p s  a r e  shown i n  Fig.  54. 
rectangular  t i p  data, the  smoke flow visua l iza t ion  data f o r  t h e  ogee t i p  
showed tha t  the  t i p  vor t ices  were more diffused.  
showed t h a t  t h e  rectangular  t i p  produced strong concentrated vo r t i ce s ,  b u t  
t h e  t i p  vo r t i ce s  of the  ogee t ipped blades were bare ly  v i s i b l e .  
i nd ica t e s  that the  ogee t i p  design reduces the  concentration of t he  t i p  
vortex over that  produced by a rectangular t i p .  

I n  con t r a s t  t o  t he  

The sch l ie ren  r e s u l t s  

This 

These flow v i sua l i za t ion  r e s u l t s  a r e  consis tent  w i t h  t h e  r e s u l t s  of 
Refs. 8, 9,  and 10 which also show that  the concentration mechanism 
assoc ia ted  with t h e  in t e rac t ion  of the  intense core of t he  separat ion 
vortex and t h e  t r a i l i n g  vortex sheet is no longer present .  I n  Ref. 9,  a 
model p o p e l l e r  wi th  ogee t i p s  i s  shown t o  produce a very small concentra- 
t e d  vortex from the  extreme t i p ,  and a large d i f fuse  swir l ing mass behind 
the  c e n t r a l  region of t h e  t i p .  From the  fixed wing vortex measurements of 
Ref. 8, it was reported t h a t  t he  core diameter from t h e  ogee t i p  was 
weakly defined and estimated t o  be subs t an t i a l ly  l a rge r  (two t o  f i v e  t imes)  
than  that from the  rectangular  t i p ,  and the m a x i m u m  t angen t i a l  v e l o c i t i e s  
i n  the  vortex core a r e  reduced below those of a rectangular  t i p  by a f ac to r  
of four .  The data a l so  show that s ign i f i can t ly  more time i s  required f o r  
t h e  vortex formed by t h e  ogee t i p  t o  r o l l  up completely and develop i t s  
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maximum tangent ia l  veloci ty .  
process i s  more s imilar  t o  the  r o l l  up of a t r a i l i n g  vortex sheet than t h e  
formation of a conventional t i p  vortex.  

It was reported that t h e  vortex formation 

Thus, a l l  model r e s u l t s  t o  date, both r o t a t h g  and nonrotating, 
i nd ica t e  t h a t  t he  elimination of t he  separat ion vortex mechanism, which was 
the  goal of the  ogee t i p  design, was subs t an t i a l ly  achieved. 
noted, however, t h a t  t h e  ogee t i p s  reduced model sca le  ro to r  performance as 
reported herein,  and thus the impact of t he  aerodynamic phenomenon produced 
by t h i s  t i p  shape on fu l l - sca l e  ro tor  performance should be establ ished.  

It should be 

CONCLUSIONS AND RECOMMENDATIONS 

The following conclusions apply t o  the  6-bladed variable-geometry 
r o t o r  and ogee t i p  configurations as t e s t ed  i n  t h i s  inves t iga t ion  a t  model 
sca le .  

1. Axial spacing of a l t e r n a t e  blades o f f e r s  a s ign i f i can t  hover 
performance advantage r e l a t i v e  t o  a conventional ro tor  configuration a t  
t h r u s t  l eve ls  near s ta l l .  This  performance advantage general ly  becomes 
grea te r  with increased axial  spacing, t h r u s t  l e v e l ,  and t i p  Mach number. 

2.  
addi t ional  hover performance improvement. 
ment i s  lessened as the  axial spacing i s  increased from one t o  two chord 
lengths.  

Combining the proper azimuth spacing with axial  spacing o f fe r s  an 
The ex ten t  of t h i s  added improve- 

3. , Varying the  azimuth spacing independently from the  60 deg spacing 
of the conventional coplanar ro to r  does not improve hover performance. 

4. Differen t ia l  co l lec t ive  p i t c h  f o r  ro to r s  having equal length 
blades generally has a negl igible  o r  detr imental  e f f e c t  on hover performance. 

5 .  Dif fe ren t i a l  radius o f f e r s  improved performance a t  low t h r u s t  
l eve l s ,  b u t  t h i s  advantage i s  compromised by the lower t h r u s t  c apab i l i t y  
a t t r i bu ted  t o  e a r l i e r  s ta l l .  The performance degradation associated with 
t h i s  premature s t a l l  can be delayed by increasing t h e  co l lec t ive  p i t ch  of 
the short  blades r e l a t i v e  t o  t h e  long blades. 

6 The t i p  vortex pa t te rns  of var iable  -geometry ro to r  configurations 
are rnucii iiioi'e coiiiplax thsi t2oi;e of conventional ro to r s .  
between these complex vortex pa t te rns  and t h e  measured hover performance 
t rends  are ' d i f f i c u l t  t o  i n t e r p r e t  without a n  extensive analytical study 

The r e l a t i o n  
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of the  e n t i r e  rotor-wake system. However, from considerat ion of  t he  t i p  
vortex geometry and t h e  associated blade-vortex in t e r f e rence  e f f e c t s  f o r  
r o t o r s  wi th  a x i a l  spacing, it appears t ha t  t he  measured performance gain of 
such r o t o r s  may be due t o  a net  improvement i n  t h e  vortex o r i en ta t ion  
r e l a t i v e  t o  the individual  blades.  I n  pa r t i cu la r ,  t he  improved performance 
a t  high t h r u s t  l e v e l s  may be associated with induced s ta l l  r e l i e f  on the  
upper blades provided by the t i p  vortex reor ien ta t ion .  

t i o n  of the  possible  benef ic ia l  inf luence of variable-geometry r o t o r '  
configurations on blade response and noise c h a r a c t e r i s t i c s  a r e  recommended. 
F ina l ly ,  it i s  recommended that ana ly t i ca l  methods be developed t o  pred ic t  
var iab le  geometry-rotor performance and blade response c h a r a c t e r i s t i c s .  

I 

7. Variat ions of ro to r  a x i a l  and azimuth spacing genera l ly  have a 
negl ig ib le  e f f e c t  on in tegra ted  forward f l i g h t  performance. 

8. Differences i n  blade f lapping amplitudes of variable-geometry 
ro to r  configurations i n  forward f l i g h t  imply d i f fe rences  i n  aerodynamic 
in te r fe rence  e f f e c t s  which may be a t t r i bu tab le  t o  va r i a t ions  i n  wake 
geometry . 

9. No pronounced v ibra t ion  problems were evident i n  forward f l i g h t  
f o r  constant r a d i i  configurat ions;  hcwever v ibra t ion  l eve l s  of t h e  d i f f e r -  
e n t i a l  r a d i u s  configurations t e s t ed  became excessive a t  advance ratios of 
0.3 and above. 

10. Flow v i sua l i za t ion  r e s u l t s  ind ica te  t h a t  the ogee t i p  design 
inf luences the  t i p  vortex formation mechanism and succeeds i n  reducing the  
concentration of the  t i p  vortex. 
hover performance. 
the  ogee t i p  on f u l l - s c a l e  performance remains t o  be es tab l i shed .  

However, t h e  ogee t i p s  reduce model sca le  
The impact of t h e  aerodynamic phenomenon produced by 
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A z  
NOTATIm 

b Number of blades i n  ro tor  

R(1),R(2) 
AR 

Ro 

Radii of blade se t s  (1) and (2)  

Radius difference between blade se t s  (1) and (2),  R(,)- R(2) 

Reference blade radius (largest  radius) 

z(,),zB) Axial coordinates of upper and lower blade se t s  (1) and (2) 

Az Axial spacing between upper and lower blade se t s ,  -z(2) 

co Re'ference blade chord (chord of largest  radius blade) 

AJ/ Azimuth increment of blade se t  (1) relative t o  bladz se t  ( 2 ) , q I ) - @ ( 2 j  

B(,,,B(,) Collective p i tch  angles on blade se t s  (1) and (2 )  

AB Collective p i tch  angle increment between blade se t s  (1) and (2), 8(1,-8(2) 

B Nominal collective pitch value (mean pitch value for configurations with 

A3 Radius increment ra t io ,Ar / lo  

A; Vertical  spacing ratio,Az/co 

e+ 

Except for coplenar blade se t s :  (1) = upper blade s e t ,  ( 2 )  = lower blade s e t .  
For coplanar blades: (1) = larger blade se t ,  (2) = smaller blade se t .  

Figure 1. - Schematic of Variable-Geometry Rotor and Notation. 
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BLADES OF BLADE SET (2) ARE SHADED 

A$ = Oo 

1 

BLADE SET (2 ) .  
IS H IDDEN 

A $ =  15' 

A$ = 60' 

AIJ =-15'  

A$ = 30' A $ =  -30° 

(a)  - Azimuth Spacings. 

Figure 2. - Variable-Geometry Rotor Configurations. 



BLADES OF BLADE SET (1) ARE UNSHADED 

BLADES OF BLADE SET (2) ARE SHADED 

- 
&I = 0.30 AFl = o  &I = 0.15 

L = O  

, L 

(b) - Radius Increment Ratios and Axial Spacings. 

Figure 2 .  - Concluded. 
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Figure 3. - UARL Model Rotor Hover Test Fac i l i ty .  

43 



------- 

F i g u r e  1; .  - Model Rotor  Hover Te::t Rig. 
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COPLANAR HUB 

i 

DUAL HUBS 

Figure 5. - Model Rotor Hubs. 
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0 

Figure 6. - Schematic Cross Section of Rotor Test Rig. 
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Figure 7. - Model Rotor Blades.  
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CONVENTIONAL ROTOR b = 6 

dl = 00 $ = 15' 

& = 30' $ = 45' 

Figure 10. - Sequence of Flow Visual iza t ion  Photographs Showing the  Time 
His tory  of t h e  Wake. 
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Figure 11. - Hover Performance of the Conventional 6-Bladed Rotor. 
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Figure 12. - Independent E f fec t  of Azimuth Spacing on Hover Performance. 
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Figure 13. - Independent Effect of Axial Spacing on Hover Performance. 
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COLLECTIVE PITCH ANGLE 
INCREMENT, A o ,  DEG 

CONVENTIC 
ROTOR 

A 2  
0 4  / - IU 

1 l o  

/ / e =MEAN COLLECTIVE PITCH 

e ( , )  = e  + ~ e / 2  

I I I I 1 I I I I 1 I 0 0.002 0.004 0.006 0.008 0.010 
C Q / ~  FOR MT = 0.45 

I I 1 1 I I I I 1 I 

CQ/U FOR MT = 0.58 

Figure 17. - Independent Effect  of Di f fe ren t ia l  Collective Pi tch on 
Hover Performance. 
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( a )  - Mean Collective Pi tch,  8 = 8 deg. 

Figure 18. - Effec t  of Collective Pitch Increment on Hover Performance f o r  
Various Combinations of Axial and Azimuth Spacings. 
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( b )  - Mean Collective Pitch,  8 = 11.5 deg. 

Figure 18. - Concluded. 
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0 0 { ROTOR 
A -  ---0.15 
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CQ/U FOR MT, = 0.58 

0 

Figure 19. - Independent Effect of Different ia l  Radius on Hover Performance. 
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E = 1, A$ = 60'. AB 10,  b - 6  
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(a) - Kz = 1, A $ =  60° and 30°. 

f o r  Combined Axial and Azimuth Spacings. 
Flgure 21. - Effect of Different ia l  Radius on Hover Performance 
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Figure 21. - Continued. 
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Figure 21. - Concluded. 



0.05 

0.04 

0 

o 
\ 

I- 

0.06 

0.05 

0.04 

0.003 0.004 0.005 
CQ/U FOR MT 0 = 0.45 

w 
0.003 0.004 0.005 

CQ/ u FOR MT 0 = 0.58 

(a) - Coplanar Rotors -- A? = 0. 

Figure 22. - Effect of D i f f e r e n t i a l  Collective Pitch on Hover Performance 
f o r  a Configuration With Dif fe ren t ia l  Radius. 
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Figure 22. - Concluded. 
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Figure 23. - Sample Results Showing Improved Performance Near S t a l l  f o r  a 
Configuration With Di f f e ren t i a l  Collective P i tch  Combined With 
Di f f e ren t i a l  Radius. 
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Figure 43. - UARL 4 x 6 ft Subsonic Wind Tunnel. 
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Figure 44. - Conventional and Variable  -Geometry Rotors i n  Wind Tunnel. 
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