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SUMMARY

A finite-difference procedure for computing the turbulent, swirling,
compressible flow in axisymmetric ducts is described. Arbitrary distributions of
heat and mass transfer at the boundaries can be treated and the effects of struts,
inlet guide vanes, and flow straightening vanes can be calculated. The calculation
prbcedure is programmed in PYRTRAN IV and has operated successfully on the UNIVAC 1108,
IBM 360, and CDC6600 computers. The analysis which forms the basis of the procedure,
a detailed description of the computer program, and the input/output formats are
presented. The results of sample calculations performed with the computer program
are compared with experimental data.



N

2.0° INTRODUCTION S

ks .
27 .

A continuing problem in the development of air breathing propulsion systems is
the design of efficient subsonic diffusers. Not only 1s the:engineer faced with
building an efficlent diffuser, but frequently he must tailor the exit flow within
certain physicel constreints imposed by the propulsion engine. This task has proven
- extremely difficult in the past since the engineer has been forced to rely on
empirical design methods based on correlations of limited experimental data. Diffuser
performance maps based on empirical correlations have been published by Reneau
(Ref. 1) for incompressible two-dimensional flow and by Sovran (Ref.2) for incom-
pressible annular flow. These performance meps generally correlate pressure rise:
coefficient with area ratio and length and serve as useful design tools within the
class of geometries tested. In addition, regions of stall on the performence map
have been defined by Fox (Ref. 3) for two-dimensional diffusers and by Howard (Ref. k)
for annular diffusers. Thus, reasonable bounds have been set for the design of
unstalled diffusers. Sovran (Ref. 2) has developed a correlation for pressure rise
coefficient as a function of inlet blockage due to boundary leyer displacement, thus
adding a new parameter to the correlations. The effect of inlet Mach number has been
examined by Runstadler (Ref. 5) for two-dimensional diffusers and performance meps
published. Comparable performence meps for annular diffusers apparently have not
been published, ‘ o o

Even with the large effort that has been expended in the past i1n the development
of empirical diffuser design methods, sufficiently generalized methods have not been
forthcoming. Considering the vast number of geometric parameters, such as area
ratio, length, wall curvature, and support struts, together with the physical flow
parameters, such as Mach number, Reynolds number, swirl angle, and inlet flow distor-
tion, it is evident that the development of such methods will be extremely time ’
consuming and very costly. C(Clearly, the avallability of accurate analytical design
tools would enable the engineer to arrive at an efficient design for a specialized
diffuser in a much shorter period of time at less cost while at the same time
providing a better understanding of the diffuser flow processes.

The development of analytical diffuser design methods has generally not kept
pace with empirical studies. The conventional solutions, such as that used by
Sovran (Ref. 2), divide the flow field into an irrotationel free-stream flow and a
boundary layer flow. These methods, which require an iteration between the potential
flow pressure field and the boundary layer displacement thickness, frequently fall
to converge when the boundary layers merge and cannot account for such problems es
.inlet swirl and flow distortion. Recently, however, Anderson introduced a new method
(Refs. 6 and 7) for-solving the diffuser flow problem:. This method involves
numerically solving the equations of motion for the entire flow in the diffuser
thereby enabling compatibility between the inviscid flow and boundary layer to be
achieved without the need for matching a boundary layer solution to an inviseld flow




solution. The method provides the accurate analytical design tool required to define
optimum diffuser designs for a wide range of applications in & short period of time
at & minimum of cost. Good agreement in the prediction of pressure rise coefficient
and stall has been demonstrated for both straight-wall and curved-wall ungeparated
diffusers, In addition, Anderson has demonstrated the epplicability of the method
to the treatment of the effects of inlet distortion and inlet swirl,

This user's manual describes an extension of the method of Ref. 6, to enable the

©.- caleulation of swirling, turbulent compressible flows in axisymmetric ducts. A

generalization of the method to include treatment of arbitrary distributions of heat
end mags transfer at the boundarles and the effects of struts or blades in the
diffuser passage 1s also described.



3.0 ANALYSIS
~ The present anelysis represents an extenSLOn to compress1ble flow of the analysis
presented in Refs. 6 and 7 for computing incompressible swirling flows in axisymmetric
ducts. The unique feature of the analysis is that a conceptual division of the flow
into an inviscid, irrotational flow and boundary layer is not made but rather the
analysis solves for the entire flow across the duct at each streamwise station. The
ﬁxoblems of matching solutions for the inviscid flow and boundary layer are thereby
eliminated and no difficulties exist when the boundary layers on the duct walls merge.
The analysis supposes that the streamlines of the actual flow through the duct will
not be appreciably different from the potential flow streamlines; an assumption which
from simple physical considerations must remein valid for internal duct flows with
only small regions of separation. Thus it is possible to make boundary layer-type
approximations, such as supposing the transverse velocity is small, in a coordinate
system based upon the stream functlon and velocity potential of the potential flow.
In this manner, the viscous effects can be treated as a perturbation upon the inviscid
field and, as such, governed by a parabolic partial differential equation. The
elliptic properties of the flow (i.e., downstream conditions affecting the upstream
flow), are retained through the choice of the potential flow streamlines as the
coordinate system for the parabolic partial differential equation. Included in the
present analysis is the capability for treating the effect of struts, inlet guide
vanes, and flow straightening vanes, as well as the effect of distributed wall bleed.

A description of the various components of the analysis 18 presented in the
following subsections. :




3.1 Streamline Coordinate System

The orthogonal streamline coordinate system used in the present analysis is a
simplified version of the coordinate system described in Ref. 7. The coordinate
system of Ref. 7 was obtained from the solution of the plane potential flow through
the duct in question where the stream function formed the normal coordinate and
the velocity potential S formed the streamwise coordinate. Rotation of this solution
about the axis of symmetry provides the third coordinate (see Fig. 3.1.1). As
“demonstrated in Ref. 7, use of this coordinate system provides a means of reduc1ng
the general equations of motion for the diffuser from an elliptic set of equations
to a parabolic set of equations by making the well-justified assumption, for unstalled
diffusers, that the flow normal to the streamwise coordinate is small. A second
'adyantage is that since the equations of motion are written in generalized curvi-
linear coordinates, more general curved wall duct geometries can be treated.

 The stream function n and velocity potentlal S used to generate thls potentlal
 flow coordlnate system satisfy Laplace s equatlon, that is

~

o A ‘ Y Y ‘
. -a—RE‘ + ? =0 (3.1.1)
2 2
_5_57 + ‘3_52 =0 ©(3.1.2)
JR 0z

In addition to the wall boundary condition, n =0 along the inner wall and n=|

along the outer wall, the condition of no normal pressure gradients at the inlet and
exit of the duct (9v/dn = Q) must be satisfied where V is the potential flow velocity
or metric scale coefficient. Thus from orthogonality conditions, the angle that the
potential flow streamline mekes with the axis of symmetry (see Fig. 3.1.1) becomes

oR az ‘

- g - ol .1l.
cosg8 =V 7 -V 3s A(3 3)
ng=y OR . _, 9% 3.1.4
sing = v 35 Vv 7 ( )



The- curvature of the cocrdinapes are. given by

SN R . 1.5)

Ps . on o (3 5\.)

.-}- l av . [ Lo

E —_— = — =X . 3 1.6)

Distances along the three coordinates are determined from the metric scale coefficients.,

y = deﬂ | (3.1.7)
X = fg\7§. (3-1.8)

R¢ = [Rdg (3.1.9)

It should be noted that this coordinate system is not.the only orthogonal
coordinate system that can be constructed from the plene potential flow solution.
The solution is made unique only with the boundary condition dv/dn=0Q at the inlet
and exit of the duct. This boundary condition, as shown in Ref. 7, implies a zero
normal static pressure gradient at the inlet and exit of the duct in the absence of

swirl. Ducts with normal pressure gradients at the inlet and exit can be treated
by extending the duct with the required curvature.

Because of the requirement that the n and s coordinates be accurately determined
up to third derivatives, extreme care must be exercised in obtaining the potential
flow solution by numericelly solving Egs. (3.1.1) and (3.1.2) as described in Ref. 7.
In addition, such a numerical solution requires significant computer time.
Accordingly, for the present analysis a method of approximating the potential flow
coordinate system which yields accurate coordinate derivatives and saves computer



time was used. This approximate method  has proven adequate providing the .diffuser- .
wall does not have rapid changes in wall curvature or large diffusion angles. Since
these conditions would generally lead to separation, which the analysis is presently
not capable of handling, use of this approximate method represents little additional
sacrifice in generality. The approximate potential flow coordinate system is obtained
as follows.

Assuming that the curvatures‘are small, it is possible to construct a circular
arc of radius p, (see Fig. 3.1.2), such that it satisfies the orthogonality relations,
Egs. (3.1.3) and (3.1.4), on the duct walls and mean line. Then from Eq. (3.1.5)

AV _ _ I
. ‘ W' (‘VT VH) . p-S A - (3'1'10)
and, -
Ve +V -
vz_Tz_H +(V7-VH)(0"/2)=VM"n—/3ZZ— (3.1.11)
s

The radius of the circular arc, from Eq. (3.1.6), is given by

L __ v
. —-ﬁLdS (3.1.12)

where second order terms in l(ﬁ; are neglected. The distances along the arc, which
approximates ;a -potential line is given by ‘ :
Y=E g o ‘ (3.1.13)

l

and the distance along the chord in terms of the diffusion angle @& ié,

R - ) b8

-

Y=é;s'_ sin9/2>~v-.0(83%) - (3.1.14)



Hence for small diffusion angles, §<<! , the distance along the arc can be
represented by the distance along the chord line. The potential line nust now
satisfy the orthogonality relations. On the wall, from Egs. (3.1.3) and (3.1.8),

4 .-t dz _ dX
Vo Vi4(dR)2 ds ~ ds (3.1.15)
dt
Hence, for two adjacent potenﬁial lines
VH AXT
W = AXH . (3-1.16)
and from Eq. (3.1.7)
Y™ Yr = | A A (3.1.17)

The metric scale coefficient can be found from Egqs. (3.1.16) and (3.1.17), once the
potential lines are determined. These potential lines are described by chord lines
(see Fig: 3.1.2) which are perpendicular to the mean line of the duct

Ry = (Ry+ Ry)/2 f (3.1.18)
satisfying the relation
dRM _ | dRH dRT __ ZT-ZH (3 1 19)
dz "2 [ iz | a4z ]-' Rt - Ry )

In summary, the streamline coordinate system is constructed by first locating
the chord lines according to Eq. (3.1.19), calculating the metric scale coefficients
along the wall from Egqs. (3.1.16), (3.1.17), and, finally, determining the curvatures
from Eqs. (3.1.10) and (3.1.12). :
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FIG. 3.1.1-ORTHOGONAL STREAMLINE COORDINATE SYSTEM.



FIG. 3.1.2-CONSTRUCTION OF STREAMLINE COORDINATES.
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3.2 Equations of Motion

The equations of motion for a compressible flow in a general orthogonal curvi-
linear coordinate system have been derived by Pai-(Ref. 8). Substitution of the
metric scale coefficients (I/V,I/V,R) into the equatiens derived in Ref. 8 produce
the following equations of motion in the streamline coordinate system described in
Section 3.1. 3

Continuity Equation

9P . NP8 (IUsy 0 (U L o (Vg .
af +‘ T [55( v ) + an ( V ) + 0q_’; (vé')]-o (3.2.1)
S Momentum Equation e ’ V’i“f‘:‘f~¢¢f‘_‘iﬁ“'
du Ju du e u 2
—5 v 2254 v Zis 4 PUP Jug _ PYUn
P 3t + pug 35 pun N - a; s
, o
_ PY% sin g+ PYstn __VOP + Ve { d_( [Tss (3.2.2)
0Ty, 0 (B T e Tsn
o () g (RE) ] - sin § + .
n Momentum Equation
2
du, du dun pU¢p Odup pYsg
P a7 + pug V 35 + pUp V an 7 3% - 'DS
2 : .2.3)
pUp Uugl, P vZ ¢ re A (3
S I oot v T L [
o ;
9 ([Tn 9 Tng 4] - Tss | 1P Tsn
+ an ( v ) ad’ ( Y )} ps r COS g + pn

11



f Momentum Equation

dug - o AU ug ou Upu
P + pug VTUS‘P s pun vER 4 p2 2R 4 ¢

ot r o¢
+ ugu . - _L ap ‘2 I 9 rTs¢ ) (3'2')4')
cos 8 p——tr sin g =-J a—"'T[b—S( v

. aan (_rrcg)_,_ ?#(T‘ﬁ‘ﬁ] Tne cosQ+1§£sin0

‘Energy Equation

U
'r{ + UV ans':"'“an:,[,+r¢ gi}

r q
P AT e Sk 025)

+ Tgs G35 + Topop 9¢¢} + Tns nst Tgn €¢n + Tps b¢s

Where the stress, strain, and heat flux vectors are given by

Strain
v ds g (3.2.6)
LS R S
S T



Stress

where the stresses include the Reynolds stresses and the dilitetion ¥ is given

=L 0 9
€s¢ " iy 33 (ugV) + rv 35 (7

5
€ns= 33 (upV) + % (ugV)

TS$= /’LQSS_P us'uSl - —%—#v

2

Tan = - @nn - p Unun - _3..;;\7

4 <k Uiy - 5 KT

an& =#9n¢-pu},u$

Tsgp = M @5 = p Us Ugh

- A "o
Tsn "M 8n - P UsUn

o]
[& (2 * 97 () + 5g ¢
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Heat Flux

HE 0
Qn Pre ¥ On (CpT) (3.2.19)
o He 3 ' '
Qg Pre V3s (CpT) | (3.2.20)

9 _(CpT) (3.2.21)

Since flow losses are of speclal interest in diffusers, the energy equation, in the
present analysis, was written in terms of the entropy, that is

DT '
p _%%—:PCP—ﬁT_%?=Q+¢ (3.2.22)

It can be seen from Eq. (3.2.22) that the change in entropy is the small difference
between two large terms and involves only dissipation and heat transfer. The
thermodynamic variables can be recovered from the gntropy by the relation

I-1,:= Cp ln(%wm(—;’;)g (3.2.23)

With struts in gteady flow, cilrcumferential variationé of the flow variables
exist. 1In the present analysis, these variations were averaged according to the
general relation :

_ - ¢ . '
f(n,s) = — 2 f(n,s,)d (3.2.24)
¢§_'¢% l% ¢ ¢) ) ;

1k



. . ' 1 ..
Writing the dependent variables in terms of the mean f and deviation f as (see’’
Fig. 3.2.1)

Fn,s,¢) = Fln,s)+f(n,s,q) (3.2.25)
aﬁd then integrating
® 9f .. . d(6 I¢ O,
Lot nalwil gy gy G2
. ¢2 af - P - -
Al B (e

where for the case of no struts

fo = f) R R X

These above rules of averaging are similar to those used in obtain’ag the
Reynolds stresses from the Navier-Stokes equations (Ref. §) and are appi.zd to the
present equations of motion accordingly. With the assumption‘that

§'/5 << 7 (3.2.29)

all double and triple correlations can be neglécted except those terms involving the
stresses in the strut boundary layers and the stresses produced by the mean flow which
produce the annulus boundary layer. Since the equations of motion are written in a
coordinate system approximating the real streamlines, the additional simplifying
assumption can be made that

15



Up /Ug<< | (3’.2.3‘0")
A , A
and that only the shear stress terms zns and zn¢ and straln terms Ens and E“¢' need
be retalned.

Application of the above avereging procedures and simplifications results in
the following baslc equations of motion in which Hs, H, are terms identified as
strut forces and &g as the dissipation function for the strut boundary layer.

Continuity Equation

P AN . - 2 (¢)
< > Us"—s— vP—-PUsa—— - (3.2.31)

S Momentum Equetion

-

Y
‘ (3.2.32)
2
voo [$Zns] _ Zes ov  Hs o Us or
G V Y, on \ R S
2 Momentum Equation
1
po. % v 9%y o [ Gz”ﬂ
$%9s G 3 s G on Vv (3.2.33)
+ zn¢ OR H¢_P Us Vg 3R
R on \% R o}

16



M Momentum Equation

|9 (om\ , Pus v dus _,PY o Vs
)’Mr2 0% \ oS v 4 S R 0 0S
234
Y RV O L [ [ TR VT (3-2.34)
V o ST R enm ~#170s sLv mas vZ 07 35S
+PU2[—I- __az_R_._L _Qg_a_R_j]
R 9205 R® 97 oS
Energy Eguation
a1 v ol ¥ . 1 f-r V¥ 9 (oo
PUs3s~ T an a5 ~ V®{a-l G on [ v] (3.2.35)
2
t yMr [ZnsEns+ zncj)EnqS + g ]}
where the stream function is expressed as
oy _ G )
Sn v PUs (3.2.36)
oV -6  (3.2.37)
3s Pun ‘ .
and the gap G is expressed as
G = R(¢2—¢I) (3.2.38)

" The continuity equation and the s and qb momentum equation and energy equation follow
directly from the equations of motion in the streamline coordinate system. Egquation
(3.2.34) was obtained by differentiation of the n momentum equation given by

17



all 2 Pov 2, P 3R 2
ool R 57 ) (3.2.39)

Equation (3.2.39) illustrates the significance of the approximations used in the
streamline coordinate system; namely that the pressure field and particularly the
normal’ pressure gradient is determined by the radius of curvature of the streamline
coordinate system rather than the radius of curvature of the real streamlines.

To complete the set of equations for the number of unknowns the equation of state,
definition of entropy, and the definition of the stress strain relations and heat
flux given below, are used. (The equation of state and entropy equation, (i.e., Eq.
(3.2.23)), are differentiated in the s direction for direct appllcatlon of the exp11c1t
numerical integration method.)

Equation of State

diSII _ g_ﬁs*)_ _ ®%—§ =0 (3.2.%0)
Entropy Eaquation
E i (3.2
Stress, Strain Components, Heat Flux
Ene= v%%s# us%—vif (3.2.42)

Eng" Vo7 "V R T2 (3.2.43)
s (1) Eas S (3.2.Lb)
ns Hr Nr

18



g (o) F@f o (3.2.45)
e <%f~> V—g% (3.2.146)

Ng Pre

In addition the following thermodynamic relations such as the isentropic flow
relations, and definitions of engineering parameters are used.

Thermodynamic Rélations

m=PrPO (3.2.47)
Y

] n®- In I (3.2.48)
M = M, U/C (3.2.49)
c=./0 (3.2.50)

ﬁ y- 1 e
HO = [| + Mz]y—l (3.2.51)
& _ H_XZ-_' W2 (3.2.52)

19



Additional Relations

2%

’ ,
Cs = 5 Uc% (wall friction coefficient) (3.2.53)
© , S
) - _
Re = @, /Op - 1)/ <Za_ Mé) - (recovery factor) - (3.2.54)
Qw T _
Sy = Pwa(@q)_@A) (S_jtanton number ) :, : (3.2.55)
Sy = Q{/(ZSA) * (Reynolds analogy ‘factor) : (3.2.56)

These equations of motion form a complete.set of equations for the solution of a
flow problem provided a priori knowledge is Obta'j:néd for the blade forces HS . H¢ )
and for the blade losses ch' This information is obtained from the blade section
1lift and drag coefficients and is described in Section 3.3.

20



FIG. 3.2.1-CIRCUMFERENTIAL AVERGE BETWEEN STRUTS.
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3.3 Blade Element Forces and Losses

The ‘blade element forces are obtained by collecting those terms from the
equations of motion derived in Sectlion 3.2 that do not cancel out at the strut
surface. These terms are

LIV o 9% A 0%2 0% -
779 [P 55 P35 ) (Tw2 35 " Tesi Tos (3.3.1)
6452 a¢ . Tgpe -Tspr 1.
+ (tTsn2 730 ™ Tsn) I )+ rv ]
rv 0% 09, 9, 9¢,
fof g [P5rt P an ) " (Tnz 35 T as ) (338
a¢2 5¢| Tn¢2 - Tn¢|
“(Tane “an Tnni Tgpn '/ ¢t Y] ]“
rv. 1 P-h - 9% %
fo = 5 [ er l “(Tsg2 35 " Tagpr as ) (3.3.3)
5¢2 9¢, Tpp2-Tp i
(Tn¢2 “The an )+ —_-FT/—]

It can be seen that these terms contain all the skin friction forces and the normal
forces produced by the static pressure at the strut surface.

To demonstrate that the above terms are precisely the forces acting per unit
volume on the flow, consider an element of volume (see Fig. 3.3.1) given by,

ds dn
d% =g~ v (3.3.4)
and an element of area on surface (1) by
_ds dn ' S
dA, = = «/l+(rv a¢' «[;'(rvi’;!’?“)2 (3.3.5)

such that the direction cosines of the blade surface vectar;?” normal to the blade
surface (1) are

- 22



09,

‘ -rv
Pvan Js
Y, i T :
S Yy Bz Vieey GRLE (3.3.6)

7 g (3.3.7)
Y '¢ ‘\/H' (rV._a_¢f_L)2 /l+(rV%L)2
: on as
09,
- — —rv—sﬁ—
e 7 (3.3.8)
64)] 2 ‘\/ d¢l 2
. o |+(rV-W |+(‘r‘v_a§_) |
Then the force acting on an area dA, for surface (1) is given by
vf|=,{[(~PfTss)‘l's+ TsnTn+Ts¢_|‘;>]c )’l _I..S -
+ {[Tns_i.s + (=P +.Tnn) in + Tno T¢} ey {in (3.3.9)

. +{T¢s is + T in + T iqb] . —77|}i¢>
Lo . {
This produces a force per unit volume acting on the flow from both surfaces

f, dA, - f, dA, -

?: dv — fsis+ fn Tn + f¢, Tcp (3.3.10)

where fg , f, , f¢ are precisely the terms defined by Egs. (3.3.1) through (3.3.3).

The total blade force is obtained by integrating over the volume to obtain

. FefFgdn g8 (3.3.11)
V

23
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Hence the blade force per unit span is given by

y8 T 7S
f=v F fsng | (3.3.12)

and the bléde force per volume is related to the section blade force by

f:gi of | (3.3.13)

S

In the present analysis provision is made for obteining the blade force from
either the section lift or drag coefficients of isolated airfoils (the case for
struts with low solidity) or from loss coefficient and turning angle correlations
(e.g., Refs. 10, 11, and 12) (the case of closely spaced struts or blades). Before
the blade force can be obtained by either method it is first necessary to determine
the streamwise static pressure differentistion (back pressure) across the struts,
which can be significant, particularly if the flow is swirling. Since the back
pressure depends upon knowledge of the blade forces, (however, an iteration between
back pressure and blade forces) is required. This iterative solution is obtained in
-the following manner using methods developed in Ref. 12,

To develop the required iterative solution it is first necessary to develop
relations for determining the blade forces fs and f¢p and the blade dissipation °E
(or, in dimensionless form, & ,E?¢, andcbs) in terms of the flow variables
entering (station 2) and leaving (station 3) the blade row (see Fig. 3.3.2).
Considering the flow in a blade element strip AY=An/v , as shown in Fig. 3.3.2,
and assuming that Up is small, and the walls are adiabatic, the S and ¢>momentum
equation, with the additional assumption that the shear stresses can be neglected,
and the energy equation in dimensionless form (Egs. (3.2.32), (3.2.33), and (3.2.35))
become '

. v _ ol 9Ys 1L
Hs * __TyMr 5 * PUsV 55 (3.3.14)
, ou :
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@PUs (A4

CPB = 7Mr2 as

(3.3.16)

Allowing for small spanwise flows so that the back pressure can be in equilibrium,
- Ug3z need not equal Usp, and the solution for the blade element force will be a
function of the mass flow ratio. Making the approximation

(Pug), +(PUg) o R
(PUg)y = ——=2 >3 (3.3.17)

2

the forces Hgand H¢ may be integrated over the chord usihg Eq. (3.3.13), to yield

. ds . I,-TI, (PUg),+(Pug), . S
Hg = Gsst v Ga{ 3M22 +. 32 2 [Us3'Usz]} (3.3.18)
o YHr o ‘

\

- (Pug). + (PUg) '
n: - ds = = 53 S 2 - ! . . .
Hp 208 [Hy T = Ga——5—2 [Uga-ugd (3:3:29)

Differentiating Eqs. (3.3.18) and (3.3.19) yields ‘for the local blade force

Hg = v a_a_<f_s_> (3.3.20)
iy v 4 () - B

The blade dissipation function Cbs can be determined from the entropy change
through tl}e blade row. Defining the loss coefficient as
: Mg, - |
Zg = 02 _"03 (3.3.22)
Moz - M2 .
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the entropy rise becomes, using the isentropic flow relations, Egs. (3.2.51) and
(3.2. .52), as well a§ the’ assumption that the total temperature 1s conserved s1nce
no work is done,

)4
AT __'n{ ®2 —7—_[“02 _ZB(P_O_Z_')]} (3-3.23)

®o2 T2

From Egs. (3 3.18), (3.3. 19) and (3. 3. 23)H5’H¢>’ and _@8 or Ms,,_,qs, AIB, are
known in terms of the 'flow variables upstréam and downstream of the strut. Having
developed relations between the blade forces and dissipation function in terms of the
upstream and downstream flow variables, it 1s now necessary to develop additional
relations for computing the downstream flow variables given the upstream flow.

Assuming that the blade force in the &annulus boundery layer 1s the same as the
blade force at a distance from the wall equal to the displacement thickness of the
boundary layer, the flow variables at station (2) and station (3) can be calculated
as though the flow were inviscid. This is accomplished in the preéent analysis by
setting all the flow variables in the annulus boundary layer between the wall and
the boundary layer displacement height equal to their value at the displacement
height, that is

TEEI E (8N for o< v < 8%,
$(Y =¢,‘(Y) ShH< Y < Yr _3.: (3.3.'2u)
R C y-stevisy

The solution of this inviscid flow problem requires that the flow satisfy the
equations of motion (Egs. (3.2.31), (3.2.32), (3.2.33), (3.2.35), and (3.2.39)) with
the viscous terms deleted. .The S and ¢ momentum equations.(Egs. (3.2.32) and ‘
(3.2.33)) are satisfied By introducing 1ift and drag coefficient correlations, or
turning angle and loss coefficient correlations depending on which is known,

1f C| and C are known thgn 2;5 and 53¢,a;g»d¢termin§d by a simple resolution
of forces - T

S : . '
,Ea=-4-':G.‘ P, Uz c[ c sma +C cosae] } (3;2.25) )
A A
E¢--GBP2U20[—C cosa_ + C.sin 02] (3.2.26)
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and Eq. (3. 3 18) and Eq. (3.3.19) may be used to solve for Uy, andlh¢3. The energy
equation (Eq. (3.2.35)) in this case reduces simply to .

@3 @, (3.3.27).

since no work is done by the blades. The remaining equations to be solved are the
continuity equation, Eq. (3 2.36), and the normal pressure gradient equation,
Eq. (3.2.39), which are expressed as

dv _ GPug ' (3.3.28)
on LV

I OV _ 2 |

. - 1 9R (3.3.29)
on VM'{vanPUS+ P¢}

If the exit flow angle a and loss coefficient Zg are known, Egs. (3.3.28) and
(3.3.29) may be reduced to

Y-y Y-
a\I/ “Gﬂcsi/cio 2—| (Hr;, y 7 [(Qng) Y 1]} (3.3.30)
|
on { -1V 2 ! %
Rl s g g el (B [T ) v

where Eq. (3.3.22) is used to determine Ilofrom Zg.

It is evident from the above discussion that for both the case where C and C
are specified and the case where @ and Zg are specified, there are two differential
equhtions relating the blade foces and dissipation to the back pressure; that is,
Egs. (3.3.28) and (3.3.29), or Egs. (3.3.20) and (3.3.31). These equations are solved
iteratively using the boundary conditions.

(3.3.32)
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AXIS OF SYMMETRY

b4

W=/rd¢' . N0 (acp,)ds
~ds

oy

W=/rd¢i

FIG. 3.3.1. — RESOLUTION OF BLADE FORCES.
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FIG. 3.3.2-BLADE ELEMENT FORCES.
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3;4 Turbulence Model PRI

The 'tirbulence model used in the present analy51s is the same as that used in
Ref. i3 with the inner 1ayer region governed by Prandtl s mixing length theory .
(Ref. 14) with a Van Driest damping factor ahd the outer layer region governed’ by an
eddy viscosity model proposed by Clauser (Ref 15) The inner layer solution is
obtained analytically using the method of Spalding (Ref.. 16). and the outer layer
solution is obtained numerically. S T L

Quter Layer Solution

“For-Clauser's eddy viscosity model, we have fromlﬁef,’iﬁ'

PSR T

£5XPUOS . L . L (3

4

where Ugp is the velocity at the edge of the boundary: layer and 3% is the boundary
layer displacement thickness. In dimensionless formjthefeddy viscosity can be written

3.4.2)
ke =X NR_PUa)A* . (

In the present analysis Ugp is defined as the maximum velocity in the duct and the
average velocity U and Af are defined as

*. ‘l.Aw dn -A ,_ A R
2,UpdA= j;(uoo—u) ~ '(Uco—U)YT (3.4.3)
Thus the outer layer edd& viscosity is (see Ref. 7),
E -
. O xRy (D) | (3.4.4)

3 - e — e - I e ———- -

Lo -

where for thick boundary layers or for flows with radial total pressure distortion
the mixing length is of the order of the duct width. For thin boundary layers,
Eq. (3.4.4) reduces to Clauser's law of the wake model.
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Inner Iayer Solution

In the region near the wall, the independent variables and their derlvatlves
change rapidly and numerical solutlon is difficult except with a large number of
closely spaced mesh points. Using the numerical method chosen for the present
analysis, the step size in the streamwise dlrectlon must be very small to. obtain a
stable numerical sqlutlon with a large number of closely spaced mesh. p01nts, thereby
resulting in large computational time. However, Spalding (Ref. 16) has shown that .
the solution for the flow near the wall can be computed from analytlcal relations
with reasonable accuracy. -Therefore, Spalding's analytical method was-used for the .
inner layer calculation, to enable larger step sizes to be employed in computing the
diffuser flow. This method, however, may not work well for very high Mach number
flows, or when the temperature and momentum displacement thicknesses are very
different.

According to Ref. 16 the equations of motion for the inner layer in universal
turbulent coordinates are given by,

pe\du' L o, - S o Chey
TRV s ARty e MU - L o (Bs)
( | He > dH: - Q' S 1+ M (3.’4.6)
PRe My dy .

*

| HE\ dHp | \/HE\ d /U2 .
=Qp = (I-— —) = + M7 H 3.4.7
T e G o o A

CORRIREEIE - (3.4.8)

30 e 8 b

PRE Hw
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and for the stream function

For large values of Y', Egs. (3.4.5) through (3.4.9) simplify to

e

du' _ vt

avy* kY’

dH’ _ PRTQ’

dv* . T :
dHn . PprMHY
IER (Prp- U™ + 7

i ' I -
! Ty
which yield the following analytical solutions for the cases of interest.

+ +
CASE IM =p = O(Flat-Plate, No Bleed)

+ |

U= % In (Cgv")

+

w

—L— [Y’ In (CsY’)-Y’] +Cq

i .U .
* - —
Ha = (Re= D) 5 +.C,
+ +
H' = U + Cy

32

(3.4.10)

'(3.u.11)

(3.u.iz)

(3.4.13)

(3.4.14)

(3.4.15)
(3.k.16)

(3.4.17)



+ *
casE 71 P =0, m # O (plat-Plate, With Bleed)

+

.| R M 12
U =?In(C|Y ) + K2 [In‘(C,Y)]

W= —:((— [ne, =] + %%2 {¥[m (c,Y‘)]Z -2y [ln(C,Y’)—lj} + e W) (3.4.19)

Hp =
' +2 + R R o raet 2 (3.4.20)
(Pnr-'){%—+ (1+ MU [I+PRTM u*+ PRT:PRT 0 (M'u*) /2]}+cz(|+m*u’)P“T
- (1= Pgp)(2 ~Pgp M
. | . .
HY = —M:{l—exp [ln(|+M U +CaM ]} (3.4.21)

CASE III _M'=0, P'> 0O (Pressure Gradient, No Bleed)

K

Ue Lnlogr) + 2 [y oi]- Lo [ 2RISR ) (3.h.22)

,
Gepryn? ey - 2 ]

w e [rmear-d + 2 [2

3P

- (3.4.23)
2 . 1+./1+PY* Y. JIEPY — )
—-{Yln——fz——— +————————}+c6

K 2 p*
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(3.k.2k)

s . L o T S WLt s Sl

W = u*+c.3 L L (3.k.25)

Note that for Cases II and III, in the limits as M*—0 and P* =0, Case I is obtained.
The constants of integration in Egs. (3.4, 14) through (3.k4. 25) are obtained by
numerlcally integrating Egqs. (3.4.5) through (3.4.7) out to a value ‘of Y' and eval-
uating the constants by matching with the analytical solutions. It should be noted
that since analytical solutions cannot be found for the general case, Case IIT is
used for flows with pressure gradient and bleed.

The analytical solution is used to compute the flow in the inner layer which is
matched to the numerical solution for the outer flow at some streamline near the ‘
wall. This matching is accomplished by iteratively finding the friction velocity u*
such that Eq. (3.4.18) or Eq. (3.4.22) is satisfied on the streamline where the flow
is matched. Once the friction velocity is found the adiabatic wall tempersture may
be determined by matching the temperatures at the matching streamline using
Eq. (3.4.20) or Eq. (3.4.24). If the wall temperature is specified, Eq. (3.4.25) is
used to determine the heat flux. - .
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3.5 Classification of Equations

In fluid mechanics, the equations of motion are generally classified as elliptic
for inviscid subsonic flow, hyperbolic for inviscid supersonic flow, and parabolic
for boundary layer flows. The classification of the equations being solved in the
present analysls is required to establish the proper boundery conditions and to
evaluate the general properties of the solutions.

The equations of motion to be exemined are Egqs. (3.2.31), (3.2.32), (3.2.33),
(3.2.35), and_(3.2. 39) with the stresses and heat fluxes substituted appropriately.
‘Then we have five equa.tions, continuity, three momentum equations, and the energy
equation for the five variables,. Ug,U ¢ Un,. MM,®. If ais the chara.cteristic
surface, then according to Ref. 17, the follcwing determinant vanishes on the .

characteristic surface.J: o . ' . o
Us U¢». - Un. - n ® e
@, .- 0 .ay . oW -0 oo L
) : . 2 o O ”,o N I ‘ L 4, ‘
EsCag T 0 0 Catg - (3.5.1)
Di=z { = S zf-.‘:'.“' : : = 0 :
S R . Cia,g o - 0 .0 TR
oo el e 0 Tan w0
2 2 i 2
Ciain  Caaiy Y -y/II. Cian
where the subscript notation is used to denote partial derivatives and
Vv = Usa,s + Usai (3.5.2)
HE
C = Vvl—
o)
- 2
Cz = /(yMm")
(3.5.3)
2(He
Cz = yMy Vo [—)/P
2 (# )

c -_'__Z__V__<f_‘s_>
47 T y-1 NgPr \ 4r
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.. Evaluating the.determinaté, we have

- 2 a -
D= c4c,’Pa,n-o - (3.5.4)
Hence all roots éfe real and equal and the equations of motion derived here are
parabolic.

Since the equations of motion are parabolic, the proper boundary conditions can
be prescribed. Along the inner and outer walls

USW:U w:o .
_ ¢ : (3.5.5)

o ) oL

~

For the energy equation we have either adiabatic walls or prescribed temperature

GO o ®:@, .- (35.6)

Finally, the flow entering the duct Ug{n), Ug(n), II(n),®(n)must be specified. -
The exit flow conditions cannot be specified but must be determined by the. solution.

The subcharacteristics (Ref. 18) are determined by the equations of motion
minus the diffusion. terms and the resulting determinate is given by,

.

D= Qs o Qi p/11 “y/®
Py © °.  Cems O (3.5.7)
o Py 0 o }o ,
0. . 0o  _[Py] a0 |
| Y
0 0 _O —\p = y/®

36



where the boundary layer assumption has not been made and the term in the bracket is
the term that will vanish when the boundary layer agssumption is made (i.e., it contains
the acceleration terms in the momentum equation). Evaluating the determinate

p3 3 . L :
= \Il "—7 {E(Mg—l) Q,g +52M5Mnaysa;n+ (EME—'”Q,Zn} (3'5'8)
2 y-|
Y My
where v . _ PR
= [Py] 7 Py (3.5.9)
When the boundary layer assumption is made (&= ); the cherecteristica are real

and equal, If &= 1, the characteristics are imeginary for M <1 and real and
distinct for M >1. Thus, 1t is seen that if the boundary layer assumption is not
made, the subcharacterlstics have the properties that are usually associated with
fluid dynamic flow regimes. It is only the boundary layer assumption which reduces
the equations-to o ‘parabolic system.

Although the equations of motion are parabolic for subsonic flows, the solutions
can be expected to have some propertieé-of-elliptic-flows since the coordinates were
obtained from the solution to én elliptic differential equation (Laplace's eguation).
Thus, normal pressure gradients reQuired to turn the flow are a function of the
curvature of the streamline coordinates and the calculated flow starts to turn
dpstream of a corner. However, the upstream flow cannot start to turn due to-
downstream flow- separation since the streamline coordinates do not have this
information.

L

For supersonic flow, the equations of motion are still parabolic, but the
invisclid portion of the flow should have properties of solutions of hyperbolic
equations. Discontinuities, such as shock waves may exist, and turning of the flow
at a corner due to an expansion fan may exist in hyperbolic flows. These flows
cannot be described well by the present analysis because the streamline coordinate
system currently incorporated into the analysis does not accurately describe the
curvature of the real streamlines. However, in duct flows for which the turning is
more gradual, and for which the Mach number is close to 1.0, reasonable solutions
may be possible with the present analysis since the Mach lines are nearly normal to
the flow and may be approximated by the potential lines, which are the characteristics
of the parabolic equation. In principle; it may be possible to solve the problem
for supersonic flow with expansion waves and weak shocks provided an orthogonal
coordinate system can be constructed from a supersonic inviscid solution. It should
be noted, however, that for strong shock-boundary-layer interaction, the method would

require several iterations because the shock location would depend on the boundary
layer growth.
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3.6 Method of Solution

‘The equations of motion, Eqs (3 2.31) ‘through .(3.2.35) and Egs. (3.2.L0) and
(3.2.41) are solved by the explicit numerical method of Ref. 19. This explicit
method was chosen on the basis of its success on the analogous incompressible flow
Problem described in Ref. 7 after other numerical methods had been tried. With this
method, the solution for the dependent variables and their normal derivatives are
presumed known from previous calculation or input data up to station S. After some
manipulation, these seven equations maey be veduced to two equations of the form

T T S v (3_0_5[_/_ ;. Lo 3 8Tl R * NS
W(as> -y [5E 55 ) (3.6.1).

"i(gﬂ)‘;F oy oLy (3.6.2)
A\ 9s ITLtas ' a8 :

These -edudticns ‘are then linear in the unknown dependent variablesdy/d:Sand J[[/9S: :
Thus- they can-be“‘thought of as two linear ordinary differential: equatlons across::the -

duct which ‘may Bé solved with the boundary conditlons‘¥ IR S
. _ SH motem et oo (_3-.6..3)‘
(as) Vi - M '

° (ﬂ) s (3.6.4)

as Vv

B T PR PO VAR TN I B T

Since Egs. (3.6.1) and (3.6.2) are linear, they may be solved numerically.by: -s.: 7.+
calculating the homogeneous and particular solutions with the boundary conditions

29 J D SwMi o (owy
oS p' VH ! as h_

R : aﬂ> . et w-:rarljm B
Padiaded = O . L === = A, . -
B <08up RO ’(ast S R

and then adding these solutions to obtain the general solution, that is

(3.6.5)



SR N SR

Tl _ (oIl .an> | B
F — = — +' — 3'6°7) .
35 (a) C(as.n - Ben
e i .

The constant of integration C, is obtained by satisfying Eq. (3.6.5) at the tip wall,
that is

6 Mr _ a\p> (oY ay

v <as n=i - (05 ) “\38 ) (3.6.8)

From Egs. (3.6.5) and(3.6.7) it can be seen that the integration constant is equal
to the streamwise, pressure gradient on the hub wall, (It is important to note from.
the -above discussion that in the present method of solution the streamwise pressure
gradient is obtained by satisfying continuity without the need for iteration.)

In the numerical solution of Eqs. (3.6.1) and (3.6.2) normal derivatives are

. distcarted by the transformation

X(N) = dn/on (3.6.9)

For any dependent variable ¢ (K), the normal derivatives are obtained using central
differences, that is

LN

3y plKHN-(K=1)
<5-;11’> . (3.6.10)

2A7 X (K)

where A7 is equally spaced. The integration of Egs. (3 6.1) and (3.6.2) takes
place using the trapazoid rule, that is
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oY\ /9%, AqFylK)  Fy K+
<—->K+I-< >K+ e [X(K)+ x(K+1)]

(36.11)

<é_I'I_) _ <a_r1> . An [F{n(K) N FH(K+|)]
K+ kK 2 XK~ X(Kk+1)

It is noted that F;,(K+ 1) and Fp( K+ 1) are not known; however, they are linear
functions of dy/4sand d[I/9s. Thus

. (3.6.12)

Iy

oy o1l

FW = AW(K) + BW(K)<3§>K+ CW(K)<——OS )K
<6H>

r-'n= AH(K)+ Bn(K)<—a—S->K+CH(K) 35

K

Hehée., substituting Eq. (3.6.12) into Eq. (3.6.11), dy/0dS and 9[1/dSat K=K +1|
are obtained from the relations ’

2A 2AnCy K+ 1)
o nBW(KH) <a4,> .l nCy <5n> |
X(K+ 1) 0S /k+i XK+ 1) - |\ 98 /K+1."

(3.6.13)
' )
() &2 [Fw(* , wﬂ]
S /xk 2 | X(K) - X(k+1)
2B (K+1) 0y 2Anc\p(K+|) <6H>
T XK+ D) '<0$'>K+'+ T TRk N S /K+!
- (3.6.14)

=<_a_11> . 47 FH(K)+AH(K+1)
s /k 2 X(K) XIK+1)

The homogeneous solution is then obtained by setting -A‘P = An= O‘. .

Lo



Once 0y /0S and dIl/9sare determined across the duct, the streamwise derivatives
of the other variables are found, and integration in the streamwise direction takes
place using the second order formula

[1(s+ds) = TI(s-ds) + 2A5<-‘3-—> (3.6.15)
S

I
gs

" A special case exists for the boundary condition evaluated at the axis of
symmetry since the equations of motion are singular at the origin. For this case,
the solution may be expanded in & series about the origin and evaluated at a control

surface with a small radii, that is

Us = Ug (0) + ¢, RZ

Up = CaR (3.6.16)

TS T

® = ®(0) + C3R?

where C,, Cp, Cs’ ¢8n be evaluated at thé first two mesh points.:
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L.0 GENERAL DESCRIPTION OF COMPUTER PROGRAM

This section is intended to describe the general features of the computer program
in sufficient detail so that the .program can be run successfully by the average

‘intended user. The first subsection describes what problems can be solved and what
" problems cannot be solved. It ‘also describes any special care which should be used

in exercising the various optlons. The second and third subsections present 8
detailed description ‘of the 1nput which is required in the operation of the computer

ﬂ'program and the interpretation of the printed output. Since any compllcated computer

program may fail due to inconsistencies in the input or failure of the, theory, the
computer program is provided with self-diagnostics which notify the user of the type
of failure. The last subsection deals with these program dlagnostics as well as

'helpful hints to correct problems which may be encountered.
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4.1 General Features of. Program

Program Language

The computer _progran was wrltten ‘and developed in F¢RTRAN \' computer language
for usé on a UNIVAC 1108 computer. A spec1a1 UARL INCLUDER code was used to generate
a new source flle “to facilltate conversion of the program for, operation on .an IBM 360
computer.. The actual conversion was done by the UARL C¢NCUR code which prOV1des a .
means for convertlng UNIVAC 1108° CUR tape Source elements into IBM 360 card 1mage f
wform.' The program was then complled in F¢RTRAN v and executed on an IBM 360 computer.

ot

ijes of'Fluidéf

oy

“The fluid may be any compreSSLble gas as deflned by 1ts thermodynamlc propertles
R, Cp, Cu, 4, Fh s Frr+ If not otherwise specified, the gas is assumed to be air.
The reference conditions for the gas properties must be specified at standard. sea
level conditions.

Types of Flow Situations

Subsonic, turbulent, swirling, or nonswirling flows in axisymmetric ducts may
be calculated including flows with radial total pressure distortion. Two-dimensional
flows may be calculated by constructing an annular duct in which the inner to outer
radius approaches 1.0. When struts are included in the duct, the solution is given
for the circumferential average of the flow contained between two adjacent struts.

Duct Geometry Options (IPPT3)

The flow through any axisymmetric duct may be calculated provided that the flow
is generally in the axial direction. Duct flows normal to the axis of symmetry, or
which reverse direction camnot be calculated due to logic limitations in Subroutine
CPHPR. Ducts with sharp discontinuities, such as a step, which produce separation
also cannot be calculated.

Provision is made in the program to either read the duct coordinates from input
data cards (IPPT3=2), or to calculate the duct coordinates analytically (I@PT3=>L)
from a few input duct shape parameters. If the duct coordinates are read from input
cards, care should be taken that the input coordinates have sufficient smoothness to
calculate the first and second derivatives using numerical finite-difference equa-
tions. When the second option is used (IPPT3>L4), the user must program his own
‘calculation in Subroutine GDUCT. Sample programs (I@PT3=l, 3, 4) are given in
Subroutine GDUCT for the users reference. For ducts with no centerbody a zero radius
must be specified. . :
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An important restriction to the computer program is that the ihlet and exit . -’
flow must have no normal pressure gradients produced by streamline curvature although
it may have normal pressure gradients due to swirl. -Many ducts dé' not satisfy this
requirement; however, these ducts can $till be treated if the duct is extended. For
gurved annular ducts exhausting to atmosphere, the exit' flow may havecurvature.

This phenomena may be simulated by extending the duct to approx1mate ‘the curvature‘
of the exit flow, S E

Lnlet Flow Options (IQPTl) e o ar

The computer program is provided with two methods to deseribe- thé inlet: flow.’
When I@PT1=1, the inlet flow is calculated by prescribing thé“stagnation conditions’
(F%, To), the inlet Mach number M, the “swirl angle ‘@), and- the boundary leyer %
parameters 8" and n which are the boundary layer displacement’ thickne'ss and power ¥
law- velocity profile exponent, respectively. The core flow is then calculated fiom-
isentropic flow relations, and boundary layers added using power law velocity profile
relations. When stagnation conditions are not specified the calculation assumes
sea 1eve1 conditions. : Ly : -

When' I¢PT1-2‘ the inlet flow is preséribed from input data cerds which specify
the stagnetion pressure &” static pressure ‘P, swirl angle a, and’ stagnation fem-
perature To, as a function of the fractional distance across the inlet.: This data
need not be specified at equidistant points since a linear interpolation is used:. to”
specify the data at the mesh points used in the calculation.’ If éxperimental data is
not used, care should be taken that the data is self-consistent and that it satisfies
the radial equilibrium equation. Since the initial growth'of the boundary layer is
sensitive to the wall shear stress, data describing the bouhdary Yayers should be
accurately specified. When this is not possible, boundary layers ‘may be added to
each wall by spe01ﬂy1ng 8* and n. Special care should be exercised in using I@PT1=2
option, with or without the feature of adding in the wall boundary layers. If the
stress distribution across the duct is not smeooth and realistic, numerical instabil-
ities ‘might originate in the inlet flow and grow rapidly to a point where the calcu-
lation is terminated. This may take the form of an unrealistically -early separation.

Boundary Conditions (Tu;_nl

Either the adiabatic wall or the heat transfer case may be calculated. The
program assumes adiabatic walls unless the wall temperature 1s specified. Any wall
temperature distribution may be specified, either on input cards when the duct
coordinates are read, or calculated when the duct coordinates are calculated. The
case of wall bleed may also be treated in a similar manner wall bleed flow rate is
zero, unless otherw1se specified: - — - - S ST
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Force ions (TQPT2
Subroutine FPRCE is provided with four options (see Flow Chart 7.2.7.1) for
calculating the strut force. For I¢PT2=1, the strut force is calculated from
experimental data in the form of R, P, a, T, across a control surface Jjust upstream
and downstream.of the blades. This mode of calculation should be very useful in
evaluating the irnfluence of struts on duct flows using experimental measurements.
For IPgpT2=4, the strut forces are again calculated from experimental data, but this
time from exit angle, a3, and loss coefficient, Zg, data. Experimental data for
turning vanes are more Likely to be presented in this form and this option should be
useful in evaluating experimental data and developing empirical coefficients. For
I¢pPT2=2, the blade force is calculated from empirical relations contained in
Subroutine CASG.; For this option, Subroutine CASC produces the section 1ift and
drag coefficients of the strut. For I@PT2=3, the blade force is also predicted from
Subroutine. CASC. , In this case, however, CASC produces the exit turning angle, s,
-and the loss coefficient, Zp.

Blade Shape Option (ISHAPE)

- The blade section 1lift and drag coefficients, or exit flow angle and loss
coefficient, are calculated in Subroutine CASC according to the blade shape index
ISHAPE, Since hundreds of blade shapes and turning vanes exist and cannot all be
programmed, the user must modify Subroutine CASC for his use. However, as an ald to
the user in developing this subroutine, two options have been programmed. For
. ISHAPE=1, the struts are NACA 5 digit series uncambered airfolls. The output for
this option 1s in the form of section 1ift and drag coefficients. For ISHAPE=2,
empirical relations for turning vanes are programmed., In this case the output of
Subroutine CASC is the exit flow angle and loss coefficient.

Failure Modes

In the event of failure in the calculation, the program prints an error message
..called "diagnostic". These "diagnostics" are in addition to the computer diagnostics
and are clearly labeled as such. These "diagnostics' terminate the calculation only
when very serious. A list of these "diagnostics” appear in Section 4.4, . Included
with this list is an identifying number for the "diagnostics", the location
(Subroutine), and the immediate cause of the failure. Where possible, suggestions
are made to correct the calculation.

5

Debug Options (IDBGN) .

S ) .

Auxiliary printout which was originally used to debug the computer program is
available to the user by setting the appropriate IDBGN option. However, the user
must refer to the program listing or compilation to determine the meaning of this
printout.
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Grid Selection

The grid selection parameters appear on the third input card and are given by
DDS, KL, . JL, KDS. The number of streamlines including the wall bounderies is glven
by KL. Good numerical results are obtained with KL = 26. The maximum number of
streamlines which can be used is KL=100. The number of streamwise stations is N
divided into a coarse grid JL and a fine grid which is JL*KDS. The: maximum number of
streamwise stations in the coasrse grid is given by JL=51. There is no limit to the
size of the fine grid. Since the numerical method used to integrate the equations of
motion is conditionally stable, KDS is an important stability parameter. Good results
are obtained with KDS=5. If the solution is numerically unstable KDS should be
increased. It should be noted that computing time is directly proportional to KDS.~
The parameter DDS, distorts the normel coordinate by placing more streamlines near
the wall. Increasing DDS, moves the streamline closer to the wall. Good results have
been obtained by setting DDS=10,.

Separation

Separation 1s determined when the streamwise component of the wall stress goes
to zero. Since the equations become numerically unsteble as the wall stress
approaches zero, the wall stress is extrapolated ahead two stations. When the
extrapolated value of wall stress is less than zero, the calculation is terminated
and an appropriate message is printed. .
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4,2 Description of Input

T
This subsection describes the loading of input data cards for running the
computer program. Care should be taken in loading the program because the input -
changes depending on the options chosen on the second data card. Multiple cases
can be run simbly by stacking the cases in order. The last case is followed by
two blank cards. '

. Card No. 1: Title Card
Name © Ccol. ~ Format  Comments:’
_TITIE 1-72 °  12A6*  Any alpha ndmeric charscters.

card No, 2: Option Card

Name Col. Format Comments :

IFPTL 1-2 . I2 * (FL@WIN Option)

- IPPT=1 The inlet flow is computed by spécifying the '
data on card 5. A v T
I¢PT=2 The inlet flow is read from 2 x KLL data cards
following card 5. .

1¢PT2 2-4 12 (FPRCE Option) '
IPPT2=0 No blades or struts exist in the duct and
these cards are not loaded.
IfPT2=1 The strut forces are calculated from
experimental data on cards 2 x KLL cards following
card 9. If IPPTL=2 data cards must be separately
loaded.
IfPT2=2 The blade force is calculated fromCland CD
in Subroutine CASC. .
IPPT2=3 The blade force is calculated from &, and Z
in Subroutine CASC.
I¢PT2=4 The blade force is calculated from KLL input
data cards following card 9 with 6\3 and ZB given.

1)

I3PTR 5-6 12 {(GDUCT Option)
IgPT3=1 Calculate a straight annular duct
IPPT3=2 Read duct coordinates ) '
IPPT3=3 Calculate a straight wall annular diffuser
I@PT3=4 Calculate NACA curved wall annular diffuser

%1244 TNIVAC 1108
123-  IRM 360
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Card No. 2: .

Name Col. Format
I@PTL 7-8 12
14PTS 9-10 12
14PT6 11-12 - I2
1¢§T7 13-4 2
Card No. 3: Mesh Parameters
Name Col. ‘Format
DDS 1-10 F10.3
KL . 11-13 I3

JL 1Lk-16 13

KDS 17-19 I3
KLL 20-22 I3
Card No. L4: @gDUCT

Néme Col. Format

Option Card (Continued) ' s

Comments : = L SRR

Print solution every IOPT4 stations. { -

Blade force data input (see IFPT2=1)

Matching point. ' : S
If not specified, the matching p01nt for SPaldlng s
solutions is the second mesh point from the wall; .U

otherwise, it is the I¢PT6th point from the wall.

If IPPTT=0, the gas is assumed to be air.
if I¢PT7#O, input gas parameters. « . 'n

Comments :

Mesh distortion parameter (see Sedétion 7.6)
Goad results are obtained 5 = DDS <10.

Number of streamllnes includlng wall 2‘<KL‘=100
Number of streamwise stat:.ons, JL= 51

: < RS IR
Number of steps per streamwise station (see Section 7.6)

. Number of streamlines of data input (see IPPTL, IPPT2)

Cbmments:

These input cards are read in subroutlne GDUCT as
programmed by the user.
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The following duct geometries (designated as IPPT3=1,2,3, and 4) have been programmed :

Card.No. L: (1gPm3=1)

Nane Col. - Format Comments :

RH1 1-10 ° F10.0 Hub radius (ft)

“RT1 11-20 F10.0 Tip nadius (£t)
n 21-30 . F10.0  Length (£t)

TWH » 31-&5 F10.0 Hub wall temperature (deg R)

TWT hl-;o F10.0 Tip wall teméerature (deg R) .
AMAH 51-60 F10.0  Hub wall bleed (1b/£t2/sec) :

AMAT 61-70 F10.0 Tip wall bleed (1b/ft2/sec)
Card No. 4: (I =2 ‘
Name Col, Format ' Commenés:

Z1 1-10 F10.0 Ddct length (ft)

Cards Following Card No. b4: (I@PT3=2)

Name Col. Format Comments :

R(1,1,J) 1-80 8F10.0 Tip radius (ft)
R(2,1,5) 1-80 8F10.0°  Hub redius (ft)

card No. b: (IdPT3=

Name Col. Format Comments

RHL 1-10 F10.0 Hub radius (ft)

RTL 10-11  F10.0 Tip redius (ft)

71 11-20 F10.0 Duct length (ft)
ZTHRO 20-30  F10.0 Length to throat (ft)

49
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Cerd No. 4: (I#pT3=3) (Continued).

Name Coi. Format Comments : ;
ANGH 30-k0 . F10.0 .Hub wall .angle (deg) . -

ANGT 30-50 , F10.0 Tip wall engle (deg)

Cerd No. k: (Ifpr3)

Neme col. Format  Comments: C e o
TWH 1-10 F10.0 Hub wall temperature (deg R)..

™T - 11-20 F10.0 Tip‘wall temperature (deg R) -

AMVH 21-30 F10.0 Hub wall bleed (ib/ffz]sec)

AMAT 3140  F10.0 Tip wall bleed (10/£42 Jsec)

Card No. 5: Inlet Flow Distribution

Name col. Format Commentsﬁ B

AMS1 1-10 F10.0  Nominal inlet Mach umbey -+ " < ot
ALPL . 11-20 F10.0  Nominal swirl angle at hub (deg to axis)
DSH 21-30" FlOQO Boundary léyefbdiéblacement ;hiékness dnzﬁﬁb wall”(f%)
DST 31-40 - Fl0.0 Boundéry iayér dispiécement %ﬁiéknessrén tip walir(fés
ANH 41-50 F10.0 Power law exponent for hub éoﬁﬁdéry 1£&ei B

" ANT 51-60 F10.0 Power law éxbonent fbf tip ﬂbﬁﬁa;ry léjef

’ . N . AL .
2 x KLL Inlet Flow Cards Following Card 5 (Only if I@PT1=2)

f y

Name col. Format Comments :
Y 1-10 fl0.0 Fractional distance ecross dﬁé%»
P, 11-20  Fl0.0 Total pressure (1b/et? avs)
P 21-30 F10.0 Static pressure (1b/ft2 abs) ts
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a 31-40
To 41-50

F10.0

F10.0

Swirl angle to axis (deg)

Total temperature (deg R)

The first KLL cards describe the inlet flow. The
second KLL cards describe the exit flow. If the exit
flow is not known, KLL blank data cards must be used.
If 8:>O on Card 5.0, boundary layers are added
according to card 5.0.

Card No. 6: Blade Data (Only if I$PT2#0)

Name Col.
ZCL 1-10
NB 11-13

ISHAPE 14-16

Format

F10.0

13

13

Comments ¢

‘Axial location of strut centerline (ft)

(see Fig. (7.2.8.1))

r

~ Number of struts

Blade shape index
ISHAPE=1 NACA 5 digit series blade
ISHAPE=2 Swirl vane

'

Card No. 7: Blade Row Geometry Hub (Only if I@PT2#0)

Name Col.
RCLH 1-10
ALPSH 11-20

CH@RDH 21-30
THICKH 31-40

PHICH L1-50

LS

Formgt
F10.0

F10.0

~ F10.0
F10.0

F10.0

Comments

Hub radius at blade centerline (ft)

]
Chord angle to blade face (deg)
Chord (ft)
Thickness/chord
i

Camber angle (deg) (see Fig. (7.2.2.1))

Card No. 8: Blade Row Geometry Midpoint (Only if I@PT2#0)

Name Col.
RCIM 1-10°
ALPSM 11-20

CH@RDM 21-30

Format

N

F10.0

F10.0

F10.0

Comments :
Midpoint radius at blade centerline (ft)

Chord angle to blade face (deg)

Chord (ft)
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Card No. 8 (Continued)

H
A
i

Name , Col. Format Comments:
THICKM 31-Lko F10.0 Thickness/chord
PHICM 41-50 F10.0 Camber angle (deg) (see Fig. (7.2.2.1))

Card No. 9: Blade Row Geometry Tip (Only if IPPT240)

Neame Col. Format ' Comments:
RCLT 1-10 F10.0 Tip radius at blade qenterl}ne (£t)
ALPST 11-20 F10.0 Chord angle to blade.face (deg)

CH@RDT 21-30 F10.0 Chord (f£t)
THICKT- 31-k0  F10.0 .Thickness/chord

PHICT - L41-50 F10.0 Camber angle (deg) (see Fig. (7 2.2, 1))

2 x KIL Strut Date Cerds Following Card 9 (IPIS#O, 1¢PT2=1)_

Name Col. ’ Format Comments :

Y 1-10 F10.0 Fractional‘distangqrgcrossvggct

P 11-20 F10.0 Stagnation pressure (1b/ft? abs)

P 21-30  F10.0  Static pressure (1b/ft> abs) B

a R 31-4o F10.0 Swirl angle to axis (deg) - ;
- T 41-50 F10.0 Stagnation temperature (&eg R) _

The first KLL cards describe the inlet flow to strut.
row. The second KLL cards describe the exit flow.
(see Card 2).
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KLL Blade Data Cards Following Card 9 (I@PTS#0, IgPT2=h)

Name ° ‘Col. Format Comments :

Y 1-10 F10.0 Fractional distéﬁce ‘across duct
a 1180 © Fio.o | Swi£1‘ang1e at exit (deg)

Z, 2130 F10.0  Loss coefficient

Card No. 10: Performance Point

Name Col. ° Format Comments :

PRESO 1-10 F10.0 Inlet stagnation ﬁressure'(ib/ft2:abs) :

TEMPO 11-20 Fl10.0 Inlet stagnétibri -te-ml;erature (deg R) :
"~ ACT 21-30 F10.0 'Clausef éonstant (0.016)

AKT 31—h;04°: 'F10.0 Von Karman constant (0.41)

APT 41-50 F10.0 Van Driest constant (26.0)

PRTI 51-60 F10.0 Turbulent prandti'number

PRLI 61-70 F10.0 Laminar Prandtl number

Card No. 11: Specify Gss (Only if IPPT7=1)

Name Col. Format. bomments :

: 2
CPR 1-10 F10.0 Specific heat at constant pressure (ftelsec )
CVR 11-20 F10.0  Specific heat at constant volume (ft2/sec?)
VISCR  21-30  F10.0 Viscosity (b sec/ft2)
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4.3 Description of Output
Title Page
i ) !
The output presented on this page 1s self-explanatory except for ‘c.he follcwing
variables .

o fTwe e

P = Wé'Tf:;Tgﬂ-pus.Pl dr = PRESI | (4:3.3).

q = '\%/;,:Tga PUsgn/z p UE dr = D_YNP‘I | (M-B-ﬁ')
M = T'A-, j;:gepusltﬁ,dr = MACHI (4.3.5)
WFL$ = 32.2 NgM . ' (4.3.6)

USR = M, /o, /0, (4.3.7)

REY = r, Upr /pr (4.3.8)

Wall Conditions Page

This page presents a table of Z, R,,“r\'\N,C»_i),_‘,Fz.‘.,n";‘l.,@)‘r which was calculated
in Subroutine GDUCT.
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Strut Data Pages(2) (If I@PT2=1)

" These pages present the strut data that were read into the program with
IfPT2=1. It is written with the same format as the input (see Section L4.2).

Blade Force Variables Pages(2) (If IPT2#0)
A A A AN A A A A A
These pages present the variables Y,Us,Ug,a, II, @M, n, 8., P across the
flow passage at the upstream (station 2) and downstream (station 3) contrdél surface.
These flow variables are used to calculate the blade force.

Blade Force Page (If I$PT2#0)

This page presents a summary of the blade force calculation Y, Gg, ES,E¢,CL,
Cp:2p, I across the duct.

Gap Average Flow Page

This page presents the solution for the flow variables across the duct at
selected streamwise stations depending on IPPT4. A table of values for Y, Us,U¢,
a,l1,@, M,Ho,@o,Cp are given where

Cp= (M- 11(0,00) /T, (4.3.9)

In addition, the wall values for Z, r?\,Cf¢ ,Cfs,Q are printed, where quS and

Cfs are defined by

Cso = Tnp’ T, (4.3.10)

Css = Tns /3, (4+.3.11)

The one-~dimensional characteristics of the flow are also givén; area ratio (1/0I ,
Mach number (isentropic flow)M, , incompressible and compressible flow pressure
coefficient CPINC and CPC@MP.

e
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Finelly, the following quaesi-two-dimensional boundary layer informetion is
given: )
{

THET = 9*/rr , Momentum thickness (dimensionless)

Hl2 = 876" , Shape factor (dimensionless)

REYTH = PaaUaSBﬁﬁiao , Reynolds number baséd on momentum. thickness (dimensionless):
CF = 1,/9p , Wall friction coefficient (dimensionless)

REC = Re , Recovery factor (dimensionless)

STAN = St ,. Stanton number (dimensionless)

These variables are based on boundary layer thickness defined by the meximum
velocity in the duct and, therefore, may not be meaningful if swirl, flow distortion,
or large normal pressure gradients exist.

IDBG@ Pages.

Intermediate printouts which were used to debug the program may be called by
setting the debug options IDBG@=1l. IDRBGP mey be specified on the option input card.
The user should refer to the program listing in each subroutine to determine the. °
printout variables.

IDBGH Subroutine Printout
. IDBGL SPLDC Tables of U (Y*),HA(Y*),H (Y*),w*(¥*)
IDBG2 SPIDC Table of Cy(m*), ¢\ (P*)
IDBG3 FLOWIN Flow input variables and parameters
IDBGh STRESS Table of G(K) and parameters
IDBGS SPLVE Tables of DF(K), DHF(XK), DPF(K)
1DBG6 CHER Tables of Q(X), RH(J), RT(J)
IDBGT F@PRCE Table of FF(K)
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.t - b.,L4 Dpescription of Failure Modes

The computer program can diagnose the cause of certain failure modes and a
printed message of the following form is given. .

*¥DIAGNOSTIC NO. ¢ FOR ANNULAR DIFFUSER DECK**
The number ¢ identifies the type of failure from the list below.
(1) AMPLUS OR PPLUS OUTSIDE RANGE OF TABLE

This fellure occurs in Subroutine CINTP. In attempting to interpolate a value
of c{m") or C(p*) from the table, a value of m* or p* is encountered which is outside
the tabulated values. Calculation is then terminated. This failure may occur for
small values of U* as the flow approaches separation. '

(2) " ITERATION IN FUNCTION USTAR FAILED TO CONVERGE'

This failure occurs in Function USTAR and means that Newton's iteration does not
converge. Since U'(Y') 1is a well behaved function with no saddle points or )
singularities except & logrithmic singularity at Y*=z0 , Newton's method should
converge if the iInput 1s correct.. The possibllity of extrapolating to a negative
value of U* has been enticipated and corrective measures applied, Failure, however,
may occur when the numerical integration is numerically unstable, or if Y*< IO .

(3) AMPLUS CANNOT BE IESS THAN -0.06

This failure mode occurs in Subroutine SPLD because asymptotic solutions do not
exist for m*<~0.06. Calculation is terminated.

(4) ADD STRAIGHT ANNULAR CHANNEL INLET
1
This failure mode occurs in Subroutine CAPR and représents a warning that the
inlet flow must not have a normal pressure gradient. For better results add a .
straight annular channel inlet. The calculation, however, is not terminated by this
failure mode.

(5) WALL CURVATURE TOO LARGE AT STATION (I)
This failure mode occurs in Subroutine C@@R when the wall curvature is too large

and the calculation is terminated. This failure frequently occurs when the duct
coordinates are discontinuous. Check the calculation in Subroutine GDUCT.
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(6) SOLUTION UNSTABLE AT S = (XXX.)

This failure mode occurs in Subroutine S@LVE when the streamwise velocity is
negative resulting from numerical instability. The calculation is then terminated.
Decreasing the “step size (increasing KDS) may improve stebility.

(7) BLADE DATA IN ERROR IN FORCE INTERPOLATION ROUTINE

Tnis failure mode occursvin Subroutine .FERCE from failure of the interpolation
procedure, This failure can only occur if the input data is wrong.

(8) 'ITERATION OF BACK PRESSURE CALCULATION FAILS TO CONVERGE

This failure mode occurs in Subroutine FINVIS when the iteration scheme reguired
to compute the back pressure from radial equilibrium of the downstream flow fails to
converge. This failure frequently occurs when the loss coefficlent is excessively
high. Calculation is terminated.

(9) YPLUS LESS THAN 10. IN FUNCTION FUPLUS

This failure mode occurs in Functlon FUPLUS because the inner layer analytical
solutions are not valid for Y'< 10. Thls failure sets U'2 0 and, therefore, the
calculation must be terminated. The problem may be corrected by increasing Y* at
the matching point, by increasing the Reynolds number, or increasing the mesh . spacing
near the wall,

e

(10) YPLUS AT MATCHING POINT OUTSIDE BOUNDS

For best results, Y* at the matching point must lie between the limits 40
Y* < 500. When the calculation is outside these bounds, y* is printed out but the
calculation is not terminated. z

(11) PROGRAM ASSUMES INLET FLOW HAS CURVATURE S

The analysis assumed that the inletrflow duct has no curvature, hence normel
pressure gradients are produced only by swirl. Calculation, however, is not terminated.

(12) CRITICAL MACH NUMBER INSTABILITY

This failure mode occurs when the critical Mach number is reached too close to )
a mesh point. It can be corrected by changing XDS to move the mesh point.

" (13) ISHAPE= (I) AND I¢P’1‘2 J) ARE NOT CONSIS'I'ENT

The input options are not consistent. See Section k.2,
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6.0 LIST OF SYMBOLS

Area (ftz)

Area, a/rf (dimensionless)

Van Driest constant (26.0) :
Critical area ratio (dimensionless)

Chord‘ (£t)

Chora, b/r, (dimensiohleés)

Speed of sound (ft/sec)

Specifié heat pressure (fte/seca/deg R)

Specific heat volume (ft2/sec®/deg R)

2
" Drag coefficient, 2D/{pgU; b) (dimensionless)

: : 2
Lift coefficient, 2L/(p,U; b) (dimensionless)

Drag/span (1b/ft)

,Streaﬁwisé strain (1/sec)

Tangential strain (1/sec)

Force/ar;a (1b/£t2)

Force/span (1b/ft)

Gap ‘between walls (ft)

Gap between walls, g/r, (dimensionless)
Gap between chord lines (ft)

Gap between chord lines (dimensiénless)

Enthalpy (fte/sece)
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3o

Zo

Universal stagnation enthalpy-,-(how~-ho)pwU*/qw.(dimengionless) o

2

Universal adiabatic stagnation enthalpy, (hoaw -hga) 7(U")": (dimensionless)

Entropy (fte/seca/deg R) . ..

Lift/span (lb/ft) y S

Mass flow (slugs/sec)'

Mass flow, m/(NBrrzpr U,) (dimensionless)

Mass flow/area (slugs/fta/_se_c)t

Universal mass flow parameter, r?ww /{pw U",‘):(d\imensi‘.on]_.ess)

Mass flow/area, '%/(Prur) (dimensionless)

Mach number, U/C (dimensionlesé)

Streamwise Mach number (dimensionless) -

Normal coordinate (dimensionless)

Normal coordinate, n/(ryV,) (dimensionless.) S

Number of struts (dimensionless)

Reynolds number, fr oy Uy/pi, (dimensignl_eissl) .

Pressure (1b/ft?) A,

Universal pres;ure gradient parameter, —&WT - ! 3 —d—E(dimensionless)?-
: Pyl py U dx :

w w
c
Prandtl number, <'L-L—-£> (dimensionless)

-

C
Prandtl number turbulent, #——> (dimensionless)
T .
Heat flux, - ) % (1b/ft/sec)
Average inlet dynamic pressure (1b/ft2 )
Heat flux, q/(p, U, ¢,T,) (dimensionless)

Universal heat flux, q/Qq, (dimensionless)
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oL - . o)
Universal heat flux (adiabatic),

‘Radius (ft)

Recovery factor, Eq. (3.2.35) '(dimensionless)
Radius, r/r; (d‘imensionless)

Gas constant (£t2/sec?/deg R)

Streamwise coordinate (dimensionless)
Streamwise coordinate, s/(r,Vv,) (difnensionless)
Stanton number (dimensionless)

Blade thickness (ft)

Temperature (deg R)

Universal temperature, Cp T/u*? (dimensionless)
Streamwise velocity (ft/sec;)

Normal velocity (ft/sec)

Tangential velocity (ft/sec)

Maénitude of velocity '(ft'/Sec)“'

Blade velocity (ft/sec)

Fric‘ti'bh‘vé‘l'ocity;_ VTu/p, (ft/sec)
Streamwise velocity, Us /U, (dimensionless)
Normal velocity, Un/Uy (dimensionless)
Tangential velocity, Ug/Ur (dimensignless)
Magnitude of velocity, U/U, T(dimensionless) '

Blade velocity, Ug/VUr (dimensionless) ‘
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U Universal velocity, U/U* (dimensionless)

u* Friction veloecity, U*U, (dimensionless)

v Metric scale coefficient (dimensiocnless) ¢
v Metric scale coefficient, v/v; (dimensionless)
w* Stream function inner layer (dimensionless)

h Volume (£t3)

X Distance along streamline (ft)

y Distance normal to wall (ft)

y4 Axial distance (ft)

X Distance along streamline, x/r, (dimensioniess)
Y Distance normel to wall, y/r, (dimensionless)
Y* . Universal distance from wall, ypwu*//;w (dimensionless.)
2 Axial distance, z /vy (dimensionless)

2g Loss coefficient (dimensionless)

a Swirl angle to axis (deg)

Qg Chord angle to axis (deg) C
Y Ratio of specific heats, Cp/Cy (dimensionless)
8 Boundary layer thickness (ft)

8 Displacement thickness (fi)

faY Boundary layer thickness, 38/r, (dimensionless)
Ay Displacement thickness, &7/ry (dimensionless)
Ens Streamwise strain, f, €n¢ /U, (dimensionless)

Enqb Tangential strain, en¢/ur (dimensionless)
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m Transformed normal coordinate (dimensionless)

Blade/force area rrf/(p,u,.z) (dimensionless)

.9 Angle of streamline to axis (deg)

g* Momentun thicknésg (£t) |

® v Temperature ratio, T/ T, (dimenéionless)
®* Momentum thiékness, 3"/Tr (dimensionless)
I Entropy, (I-I,)/® (dimensionless)

K Von Karman constant (0.41)

A Thermal éonductivity (15/s§c/dég R_)

n Viscosity (slugs/ft/sec) -

=] 'Bladg force/lspan,'f/( rrpruf) (dimensionless) |
n ﬁessure ratio, p./pr édimensionless)

p Density (slugs/ft3)

Py Py Radius of curvature (ft)

P Density ratio, p/p, (dixﬂeﬁsionless) :

F,,F, Radius of curvature (dimensionless)

o Soli&ity, b/gg (dimensionless) |

Zns  Streamwise stress, rn;-/(p,u,é) (dimensionless)

Zn¢, Tangential stress, Tn¢>/(PrUr2) (dimensionless)
Ths Streamwise stress (1b/ft2)
Tng Tangential stress (1b/ft°)

T Stress, T / T, (dimensionless)
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¢ Tangential coordinate (radians)
bc Camber angle (deg) e g

qSB . Blade dissipation function (1b/se¢/ft?) o

Py Blade dissipation function (dimensioniesg)

X Clauser constant (0.016) (dimensiqnless)

X Normal coordinate transform, d7/dn (dimensionless)t'
17 Stream function (slugs/ft)

L4 Stream function (dimensionless)

, Subscripts

o Stagnation conditions

[ Inlet conditions

2 - Upstream of strut

3 Downstream of strut

A Adiabatic

E Effective turbulent

H Hub conditions

I Incompressible conditions
M Midspan conditions

r Reference conditions*

*Reference conditions are based on standard sea level afmbsphéfé‘ééﬁditions for all
thermodynamic quantities. The reference radius r, is the inlet outer radius, and
the velocity is the mean inlet velocity.
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T Tip conditions

w Wall conditions
(v} Free stfeam or edge of boundagleayer
Superscripts ‘ -
— Mean or average quantity
A Variables for blade force calculation .
! Deviation from meen quantity



7.0 APPENDIX A: DETAILED PROGRAM DESCRIPTION

A detailed description of the computer program is given in this section. The
subroutines and external functions are described individually. A list of F@RTRAN
varlables and DIMENSION F¢RTRAN variables in blank common are given as well as a
source listing end a set of functional flow charts. ‘

The subroutines and external functions are all described with the same format
using the name of the subroutine with its argument list given as a title. A list of
options and FPRTRAN symbols used only in the named subroutine are. ‘thén given. Any
special or additional theory used in the subroutine is presented but well known
numerical methods are not described. Figures and Flow Charts appear with the

. subroutine. ' ' ’

Subroutine GDUCT, CASC, and FTHIK, which generate the duct shape, and calculate
the strut 1ift and drag coefficient, and blade thickness distribution, respectively,
have speclial status since they must be written by the user. Sample calculations are
given, and the user should examine carefully the flow charts for these subroutines.
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741 Main Program

Object Control input/output.
Options All options described in Section 4.2,
List of Symbols All variables in blank CEMMEN.
Theory

The MAIN progren serves as an executive program'to read input according to '
selected options and write the appropriate output. In addition, it computes or sets
fixed data which 1s used for any case that may be calculated such as calling
Subroutine SPLD which computes the constents for the inner layer solution. Finally,

the MAIN program galls Subroutine S¢LVE which does the actual computation. The flow
chart is shown in Fig. 7.1l.1l.
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READ
OPTIONS

WRITE -
TITLE
,OPTIONS

kS

‘PRUGRAMMED BY USER®
IN SUBROUTINE GDUCT. - . - e

READ DUCT —_— _[
GEOMETRY ‘ o |

READ/WRITE
BLADE DATA

BLADE FORCE

COMPUTED FROM
~—TINLET/EXIT

Y,PO,P,a,TO

WRITE INLET,

READ/WRITE WRITE DUCT
PERFORMANCE SHAPE BLADE FORCE
POINT GEOMETRY Y.Po.PaiTy

SET UP/
CALCULATE
FLOW

FIG. 7.1.1-FLOW CHART MAIN PROGRAM.
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BL2D
- CASC

‘CINTP °

CAgR
FINVIS
FLOWIN
F@RCE
GBLADE
GDUCT
SLETE"
SPLVE
SPLDC
STRESS
VARB

7.2 List and Description of Subroutines

Object

Compute Boundary Layer Parameters
Compute Strut Performance

‘Interpolate Table of Asymptotic Constants

Compute Coordinate Functions
Calculate Strut Back Pressure
Setup Inlet Flow-

Calculate Strut Force
Calculate Blade Geometry
Coﬁpute Duct Shape

Find Strut Control Surfaces
Integrate Equations of Motion
Compute Constants for Inner Layer Solution
Compute Stress and Heat Flux
Compute Blade Force Variables
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Object Compute Boundary Layer Parameters

7.2.1 Subroutine BL2D

Options
IT=1 Calculate Hub Boundary Layer
=2 Calculate Tip Boundary Layer
III=1 Curve Fit Y =PU /(FpUg)
=2 Curve Fit Y =U/Up

List of Symbols

AMF
AN1,AN2
BL@CK
CFl
DSH1
DSTL

D1

D2

H12

Q’F

aQw
RCALC
REYTH
RF.
STAN

TF

=M(D

=Reg

= P

NaNg ’

Be = [AﬁRHf KRyl

= Cg= Z,,/1172 Bpug) ,
AH

_A f |—£l=,§‘]dy s
AT

N [|_.___jL_ dy ,

T .é FEDUGD]

4=A*/A| ,

=®*/A| bl

=H, = AYE ,

. 5 12
= an-llzlzouoo s
=Quw '

Re=[@wBm - ! ]/(7—;,| MSO),

- * , HoO
= RDUG%D /ﬁT— s

/[Roud®y 8]

=OoD

Free stream Mach number (dimensionless)
Velocity_ProfilevPower Lan E;nenent (dinensionless)
Blockage factor (dimensionless)

Wall Friction Coefficient (dimensionless)
Displacement thickness hub (dimensionless)
Displacement thickness tip (dimensionless)
Displacement thickness ratio (dimensionless)
Momentum thickness ratio (dimensionless)
Shape factor (dimensionless)

Free-stream dynamic pressure (dimensionless)
Wall heet flux (dimensionless)‘

Recovery factor (dimensionless)

Reynolds number (dimensionless)
Freesstreamldensity (dimensionless)

Stanton nnmber (dimensionless)

Free-stream temperature (dimensionless)
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THET = @*:fA Pus [| _U—s]dY' , Momentum thickness (dimensionless)
o )

Puol' ™ Vg
™ = Oy , Wall temperature (dimensionless)
™A =@ - [|+ pi3 Y=l 2 ]® Adisbatic wall temperature (dimensionless) '
WA RL 2 ol o pe ns ess) "
Ur = U . 5 Free-stream velocity (dimensionless) * T
XB =X . , Average X (dimensionless)
YB =Y , Average Y (dimensionless) °

Theory

) When the boundary layers are very thin, it is difficult to integrate the flow
"“L{ yariables accurately. Therefore, a power law is fitted to the solution of the form

) I/n| :
PU/(PplUg) = (Y/4,)) (7.2.1.1)
(
and - ’
U/Up = (v7a)""? . (7.2.1.2)
.
which with logrithmic differentiation become
In(y/4,) = 0, In [(PU/Pe Ucol] (7.2.1.3)
or
Inly /A,)=nyin [U/ug)] 1 (7.2.1.0)
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Letting Lo

X =ln(YAAI)orIn(Y/Z§2)(The choice dependent upon III) (7.2.1.5)

and

Y= n[Pug/Bypug] or in[Us/Ugp ] /(7216) T‘_

a least square fit

Y=Y+ b(X—-X) R (7.2.1.7)
is used to determine n ,n,,A,,A,. Finally,
&Y/87 1 /040 " (7.2.1.8)
and )
e, - (L2 '/"'[_ n N ] o - (7.2.1.9)
2°"A ) LT+n; t+ngn7n, i e
T T Tes o D T RS LT o

T



- 7.2.2 Subroutine CASC (Argument List)

Object Compute Strut Performance

LS . . . . R i

Options

ISHAFPE=1 NACA 5 digit Series Airfoil
=2 Flow Turning Vane

| List of Symbols (Argument List)

ALPZ =Gy , Exit Flow ;angle‘ '(derg )'

ALPS = Qg » Chord angle to exis (deg)

ALPl = éz » Inlet flow angie (deg)

AMACH = Qa » Inlet Mach number (dimensionless)
BCHRD =B y Chord (dimensicnlessd

D = Cp » Drag coefficient (dimensionless) -
cL .= C » LLft coefficient (dimensionless )
PHIC = Pe , Camber angié (de'g‘) o

SPLD = o s/sal , Solidity (dimensionlessd

™ =ty , Blade thickness (dimensionless
ZLPss - = 2g , Loss’ _i;é;gfﬁcien{ »-(dimeﬁéijoniess )

Theory

This subroutine computes the blade or strut section performance. Since meny
strut shapes are possible (Refs. 10 and 11), only two shall be described here for
1llustrative purposes. '

ISHAPE=1

The subsonic performancé of isolated airfoils is given in Ref. 1ll. Selecting
the NACA 5 digit uncambered airfoils and applying the Prandtl-Glauert rule
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dc, \ o |
( ")o : 0109 -0.0256 M ——__ (7.2.2.1)

da B -2
. 2 Vot
. N A .'
- <ch\ (@;-ag) (7.2.2.2)
L da /o ‘/IA—I\%% |
Cp = 0.0075 - 0.00382' C2 | : (7.2.2.3)

ISHAPE=2

For turning vanes of high solidity, it is assumed that the exit flow'angle is
equal to the metal angle and that the loss coefficient is given by the stator cascade
losses of Ref. 12. Then

a, = ag-$./2 (7.2.2.4)

A A
[ cosap cos @ A A
) [|_ cos G ] 20 [m" a,-tan Qs] (7.2.2.5)

4.28

&, = 0.005 +0.005 (D/4) (7.2.2.6)
20 cos 32 2
Zs = Po o a5 [cos 63] (7.2.2.7)
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Input [ Output

A ' The input to this subroutine comes in the argument list and is given by éa, A,
Mps B, ¢, ty, o ISHAFE, IPPT2, NPPTS. The output is also in the argument list and
is either Cu Cps» or Q3 , Zg. It is noted that I@PT2 and ISHAPE must be compatable.
The sign convention for determining this force is shown in Fig. 7.2.2.1 and the flow
chart for this subroutine is given in Fig. 7.2.2.2.
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<0
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1. a DECELERATING FLOW
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i

Fg <0
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|

A

R¢
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b/, >0

z
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1. b ACCELERATING FLOW -

1. ¢ DECELERATING FLOW

/G]

z

1. d ACCELERATING FLOW

" FIG. 72.2.1 -SIGN CONVENTION BLADE FORCES.



START

=1 CALCULATE CL" o

ISHAPE - FOR NACA BLADE

o Z =0 g o,
>1 B "3 .

o poms
i .

. . DA s N AN
=2 CALCULATE ZB,a3
— FOR TURNING VANES

CL==CD"=0

ISHAPE

USER MAY PROGRAM ‘
ANY BLADE _
- AS REQUIRED "

IOPT2 =3, '
10PT2 = 2,

[} AND ZB =0 ) DY
R |anoco-o
i ) ;
DIAGNOSTIC
NO. 13
‘ RETURN >
'- —: - . B . R :‘ T 3_‘:“‘.’:_" '~¢

FIG. 7.2.2.2-FLOW CHART FOR SUBROUTINE CASC.
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7.2.3, Subroutin? CINTP
Object Interpolate Table of Asymptotic Constants
Options

IF(1 = L0 = IM-2) Calculate Constants
IF( LO=<1. OR. LO>IM-2) Stop Calculations

List of Symbols

*

. AMPLUO " = Mo , First value of interpolation for m’ (dimensionless)J
Lo , Index of first value of interpolation

PLUSO. = Po _, First value of interpolation for p* (dimensionless)
X> : , Fractionil distance (dimensionless)

Theory

Newton's forward differencing interpolation formula is used since it involves
only tabulated values. Let o oy

X =(m* —mg)/Am y (7.2.3.1)

0 |

=(p" —pg VAp"* ‘ (7.2.3.2)

Y

Then for three successive tabulated points (fo,fl,fz) for any tabulated funétion f

fo=fo+ (fi=fo)x + (fo- 2f+ fo)x(x-1)/2 . (7.2.3.3)

with the restiction for best accuracy that

k<t (7.2.3.4)
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Object

ons

7.2.4 Subroutine CPPR(KSS,JSS)

Compute Coordinate Functions

N@PT3=1 ‘Compute and Store Coordinates

=2 (Compute Coordinate Functions

List of Symbols

Al
A2
A5
A6
Bl
B2

c

c1

c2
c3
Ch
Dl
D2
D3
D4

D7,

=RylU+N=R =)

= RylJ+ = 2R+ R (=D

YH+ YT

VH/VT

=R J+N-R (=1

=RJJ+”—2RJM+RJJ+”

H

Sum of metric scale coefficients (dimensiomless)

Ratio of metric scale coefficlents (dimensionless)

Constant in x transformation (dimensionless)
Mean wall slope at J-1 (dimensionless)

at J-1 (dimensionless)

at J-1 (dimensionless)

Slope difference at J-1 (dimensionless)

at J+1 (dimensionless)

at J+1 (dimensionless)

at J+1 (dimensionless)

Slope difference at J+1 (dimensionless)

Step size (dimensionless) -

Wall radius at s hub (dimensionless)
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RH2 = dRy/dz . » Wall slope at s hub (dimensionless). - e m

| RH3 = dzRH/dZ2 » Wall second derivative at s hub (dimensionless)
RTl = R, , Wall radius at s tip (dimensionless) \
RT2 = dR,/dZ , Wall élope at s tip (dimensionless)
RT3 = dleT/dza s Wall second derivéfive‘aé;s tiél(diﬁéﬁsioﬁle;é5,;drﬁl
YT =Yy » Duct height at s (dimensionless) ‘
ZH =2y , Axial location qf"hub w;ll at s (dimensionless)
A =27 , Axial lpcation of‘tip wall at s(dimensionless)
Theory

An approximate potential flow solution can be constructed for ducts where the
.meridonal plane curvature and divergence of the duct is not too large (see Section 3.1).
This solution for the coordinates must be known in terms of n and $ rather than R
and Z since these are the independent variables.

_ Through each mesh point on the hub contour a straight line is passed. through
the tip contour such that its slope satisfies the condition

dR “dR dR L Zy-1,
M. L H LI R . 2.4
dz 2 [ az ' 4z ] Rt - Ry 7 )

where Ry and Z; are the intersections as shown in Fig. 7.2.4.1. This straight line
then approximates the potential line. Since the metric scale coefficient is the
potential flow velocity, it follows that ' ‘

o VetVe
W T3 Ty (7.2.4.2)
AX
M (7.2.4.3)
AVT .AXH .
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The streamwise coordinate, from Eq. (3.1.8) is

.
s = _L vdx (7.2.14.14)

The normal coordinate is transformed in the following manner so as to place more
streamlines near the wall :

n = + tan—'[z tan % (2- IT )] —é— (7.2.4.5)

1
2
The constant C is a mesh distortion parameter which can be varied between the limits

o<C<7 (7.2.4.6)

The coordinate functions are constructed as follows

R(n,s) = Ry(s) + [Ry(s) = Ry(s)]'n (7.2.4.7)

and

Z0,8) = Z,(s)+ [ 201~ 2, (s)] m (7.2.4.8)

) t
. )
For the special case of no centerbody, the following transformation is used

n = ﬁh"[(ton c)-q]/c. . 4 (7.2.4.9)
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d°n

d'r)_ c

an ° Tanc cosZen)

anc cos<(cn)

2¢c?  sin {cn)

2C sin

dn?

tanc cos3 (cn)

8L

cos

(7.2.4.10)

(7.2.4.11)



FIG. 7.2.4.1-CONSTRUCTION OF COORDINATES.
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7.2.5 Subroutine FINVIS(L@PT) g
Object Calculate Strut Back Pressure :
tAions
IL¢PT=1 Input Upstrgem Flow
=2 Calculate [J_(p) from 63,28
- =3 (Calculate Downstream Flow

= A
=l Calculate 1,(0) from C,Cp

Iist of Symbols

DFXIC = Al , Increment in back pressure (di_mensionles_sj v .4
EPS =€ , Convergence criteria (dimensionless)

KIMH,KIMT = s Index for end points; hub, tip (dimensionless)
PIHL = 1/'\1(;)(0) , Iterative guess for back pressure (dimansionless)
PIH2 = ﬁ(:"(O) ' , Iterative guess for back pressure (dimensionlesé)
PIMIN = [y . » Minimum total pressure (dimensionless)

PSIHH = \/[\/3(0) -~ , Stream function at hub (dimensionless)

PSTHT - (;)3 0 , Stream function at tip (dimenéionless)

PSIHL = \II\/‘;)U) , Iterative solution of \fz at tip (dimensionless)
PSTH2 = 35 , Tterative solution of § at tip (dimensionless)
Theory

This subroutine calculates the upstream and downstream flow variables needed to
determine the blade force and dissipation function, as shown in the flow chart '
(Fig. 7.2.5.1) '

LOPT=1

The upstream flow is assumed to be equal to the computed flow at the upstream
control surface. In the annulus boundary‘layer, the yariables are set equal to their
value at the boundary layer displacement height (see Section 3.3).
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LoPT=2

A
The downstream back pressure [I3(0), is determined by integrating Eq. (3.3.30)
and Eq. (3.3.31) using a third order Runge-Kutta integration. The initial value
11, (0) must be determined iteratively (see flow chart, Fig. 7.2.5.2). A pressure
inorement Al is estimated from the minimum total pressure [| as follows

A
ATl = TIy /50 : (7.2.5.1)

Then guesses for the hub wall pressure are obtained from

A JAY
N3z (0) = My +(ANINITER) {7.2.5.2)

JA)
Successive guesses are made for H (0) with AIl 1ncrements, until the tip boundary

condition @/3“) is bounded by success1ve guesses w (| ((\,('(]2)’ . Then using
Newton's method .
-0
A A 3T A A
0 = Mo + P [0%0 - 1%o0)] (7.2.5.3)
A A@) A1) :
RO
L
Convergence occurs when
Al2 Al) .
| (n;%o) (')(o)> / H(_?(o)’ <€ (7.2.5.4)

LgPT=

Ahen  TI3(n) is known, then the downstream flow can be determined since [lgz(n)
and @3(mn) is known (Egs. (7.2.7.1) through (7.2.7.7)).
LPPT=4

This option integrates Eq. (3.3.28) and Eq. (3.3.29) using a third order i
Runge-Kutta integration. Subroutine VARB is used to. get the integrands for the

given flow Avariables. An iterative procedure similar to LPPT=2 option is used to
determine [J(0).
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— - =1 =4
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SET ITERATION COMPUTE SET ITERATION
FILL ARRAYS
EXIT FLOW
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SOLUTION
\
COMPUTE RETURN
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RETURN
BACK PRESSURE ITERATION
FIG. 7.2.5.2
INTEGRATE INTEGRATE
EQS. (3.3.30) : 4 EQ. (3.3.28)
(3.3.31) (3.3.29)
>E
Al
i
i
<E

‘ RETURN > RETURN -

‘ FIG. 7.2.51-FLOW CHART FOR SUBROUTING FINVIS.
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ITER =1

ITER = ITER-1
GUESS A ,(0)

EQ. (7.2.5.2)

<ER <=2

BACK PRESSURE ITERATION

ITER =1

GUESS ﬁ (0)
EQ. (7.2.5,3)
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7.2.6 Subroutine FLEWIN

Object Set Up Inlet Flow

-

.gptions'

IfPT1=1 Compute Inlet Flow
IF (Tg=0) R =R and To=T,

IfPT1=2 Read I;alet Flow _
. IF (3" >0) Add boundary. layers speCifiedjT
IF (To >10.) Normalize with Ty and Pf

Iist of Symbols

BINP(I,J,K), Interpolated from BINPUT(IH,J,L)

‘Theory IPPT1=1

For this option the free-stream flow is assumed to be isentropic with a constant
free-stream Mach number Mg and wall boundary layers defined by power law velocity

-profiles. Since the swirling flow tust be in-radial equilibrium, Eq. (3.2.39) must

be satisfied together with the isentropic flow relations, Egs. (3.2.51) and (3.2.52).

Neglecting curvature in the meridonal plane

'GR; n M%’,

Bn

an -RY

where
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Equation (7.2.6.1) can be integrated with

M(0) = Mg/cos(a,) ‘ (7.2.6.4)
and
. y - '
no - y-L .2 - - . :
o - [l + == ’M(g)] 7’ : o (7.2.6.5)

as initial conditions using Runge-Kutta method.

For a given displacement thickness and velocity profile power law, wall boundary
layers can be added, assuming collateral boundary layers, such that a is unchénqu.
Then

. A-(emA*  (12.6.)
L. (%)f/"z (7.2.6.7)
il e

and

gg - |+m 7_;1. Ma‘?[|-(—{j";)2] + Ou ~Ouw [|— Ua)]. (7.2.6.8)

Finally, the inlet mass flow and reference velocity are determined as follows

: Ng r! 6. d .
U, = —A—'j; -\TPUsTn (7.2.6.9)
W = gp,u O A (7.2.6.10)
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Theory - I@PT1=2

" For this option, the input flow is calculated from experimental input data.
The input variables selected are spanwlise location, total pressure, static pressure,
flow angle, and total temperature, since these are the primary measured variables.
A simple linear interpolation is used so that for any variable ¢,

qi(Y(:q)) ¢(Y.)+[¢(Y2 ¢(Y. ][Y(;’]);YI] o (7.2.6.11)

The flow variables are cslculated from Eas. (7.2.7.1) through (7.2.6.7).

If ( To >10), it is assumed that pressure and temperature are given in PSF and
deg R, respectively, and the flow is normalized accordingly. If 8 is given, it is
assumed that boundary layers should be added accordingly to the velocity profile
power law above. ‘Finally, the weight flow and reference veloclty are determined
from-Egqs. (7.2.6.9) and (7.2.6.10).
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START

- s INTERPOLATE
P =P
<0,001 o=Fh INPUT ¥, B, P,
T, T . . e .
0 0
< 0,001

CALCULATE INLET
FREE STREAM
FLOW FROM M, a,

RADIAL EQUILIBRIUM
— | FOR ISENTROPIC
FREE STREAM FLOW

CALCULATE
BOUNDARY LAYER
1 FRoM &% n, Ty

NORMALIZE
INLET FLOW
DATA

&> 0.001
CALCULATE

INLET FLOW

CALCULATE m, ur,
M AND NORMALIZE

RETURN

FIG. 7.2.6.1-

FLOW CHART FOR SUBROUTINE FLOWIN.
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7.2.7 Subroutine FPRCE(LEPT)
Object Compute Blade Force

Options

L@PT=1 Compute Blade Force/Span
=2 Compute Local Blade Force

I@PT2=1 Use Experimental Data
=2 Use Isolated Airfoil Predicted C; and Cp
=3 Use Cascade Predicted Zg and Qj
=4 Use Input Zgand Q3

Iist of Symbols

AINPT(I,J,K),  Interpolated From AIﬁPUT(Iﬂ,J,L)
Theory L@PT=1
‘The theory is given in Section 3.3 qnﬁ'a f;gy chart in Fig. 7.2.7.2.
IgPT2=1
This option computes the strut force from experimental blade element data taken

Just upstream and downstream of the strut. If y, Ily,Il, ®,, a are measured at. the
two locations, we have . . . . T .

BN

N

s, o A«.» N . - .. NP .
A . . 7‘] . - R et e
® - @o <—H—>_f' (7.2.7.2)

(7.2.7.3)

U>
[
fam >3
~
@>

ol



A
0 = ML S : : (7.2.7.4)
. Me

1= Linb-n (7.2.7.5)
Y- . . . ’ [ : .
A A A . .
Ug = Ucosa : - (7.2.7.6)
) O¢ = O'sin & C T (7.2.7.7)

“"The strut'forcé is computed .from Eqs. (3.3.18) end (3.3.19) and the ‘losses from
Eqs. (3.3.22) and (3.3.23). Since the experimental measurements do Hot necessarily
occur on streamlines used for computing, a linear interpolation is used to obtain
AINPT from AINPUT. T

1Q0PT2=2
If the solidity is small, then the blade or strut force can be calculated from

isolated airfoil data in which C_and C, are presented for various blade shapes and
incidence angles. When this is possible we have, from Egs. (3.3.25) and (3.3.26)

. e .

By -GRU, o ["CL sin @z + Cp COS 32] (7.2.7.8)
AN A . ’

E¢= -—GBPZUE o [ -'(;L cos 32+ Co sin 62] (7.2.7.9)
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IgpTe=3

If the solidity is iarge, then the blade forces must be pbtained from cascade
data because the blade or struts no longer act as isolated alrfolls. Since these
correlations are usually given for Zg, end a,, Egs. (3.3.30) and (3.3.31) are used to

satisfy mass flow and radial equilibrium using Subroutine FINVIS. The force 1is
calculated from Eqs. (3.3.18) and (3 3 19).

IgPTo=L .

This option is the same as I¢PT2-3 except that 2 and a2 ere obtained from
experimental data input.

LPPT=2

’

This option provides the local blade force once the blade force per unit span
is calculated. Obtaining the blade force per unit span from Eqs. (3.3. 20) and
(3.3.21), the local blade force is determined as follows.

H, = Hs ' (7.2.7.10)
$ - 6g(Zy-Zy)
E!¢ ,
R T e - (7.2.7.12)
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START

- =2
\LOPT/
'COMPUTESLOCAL | RETURN® )
" 1OPT2 BLADE FORCE
-4
-3
=2
-
INTERPOLATE : INTERPOLATE
] UP/DOWN STREAM]| LOSS AND TURNING'
FLOW INPUT . FROM IR
DATA OM INPUT DATA
COMPUTE COMPUTE COMPUTE

UPSTREAM FLOW
FROM INPUT DATA

UPSTREAM FLOW
FROM SOLUTION

UPSTREAM FLOW
FROM SOLUTION

COMPUTE
UPSTREAM FLOW

FROM SOLUTION

ESTABLISH " ESTABLISH ESTABLISH
{ RADIAL RADIAL RADIAL
EQUILIBRIUM CASC | | EQUILIBRIUM CASC EQUILIBRIUM
(€. Cp) Z,. 8@, (Zg: &5)
|
COMPUTE COMPUTE COMPUTE COMPUTE
DOWNSTREAM DOWNSTREAM FLOW

FLOW FROM DATA

FROM SOLUTION

DOWNSTREAM FLOW
FROM SOLUTION

DOWNSTREAM FLOW
FROM SOLUTION

N

~

COMPUTE BLADE
FORCE PER SPAN

FROM Z, 93

COMPUTE
BLADE FORCE PER

SPAN FROMC , C,

< RETURN ’

FIG. 7.2.7.1-FLOW CHART FOR SUBROUTINE FQRCE.
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7.2.8 Subroutine GBLADE(KK,L@PT)
QObject Compute Blade Geometry

Options

L@PT=1 Compute Blade Centerline Properties
=2 Compute Local Properties

List of Symbols

RR = Yo » Fractional distance along blaee centefline (d;mehsionless)
THICKN = t, , Maximum blade thickness (dimensionless) o
ZBAR = Z , Fractional distance elong:chb;diline (dimensioniese)

KK

Index of spanwise station . ' o

Theory
If three points are giveﬁ for eny blade parameter along the blade centerline,ﬁa
parebolic fit is used to interpolate any intermediate point (see Fig 7 2., 8 1). Thus,

for any parameter ¢

" R-R_, | ».
CLH
Yy = —=—_ (7.2.8.1)
€ ReLr-Rewn .

and

= By + (@3¢, - BV 24, +2dr — )Y, C O (7.2.8.2)

In addition, along the chofd line projected‘to the (r,z) plane a given thickness
distribution may be applied, according to ISHAPE, using Function FTHICK.
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FIG. 72.8.1-BLADE GEOMETRY.
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7.2.9 Subroutine GDUCT
Object. Compute Duct Shape

Options

I¢PT3=1 Straight Annular Duct
: =2 Read Duct Shape
=3 Straight-Wall Diffuser
=i NACA Curved-Wall Diffuser

List of Symbols .

(As needed by user.)

The ory

Thls subroutine is used to prescribe the duct shape ry(z), r}(Z), wall bleed
lnH(Z) HH(Z), and wall temperature T, (Z), T;(Z), as required. Since these functions
are input, the user programmer may write a subroutine for this purpose or read the
" required information according to IPPT3. 1In additlon, the subroutine computes the
reference radius and normalizes the variables r and T. The variable m is normalized
in Subroutine FLPWIN when u, is calculated.

Input[Output

The user may program any duct shape and wall boundary conditions as required.
In addition to any input the programmer may write in this subroutiné, the programmer
has available the number of streamwise mesh points ‘JL. The output of this subroutine
must be’ (R(I,K,J), I=1,3; K=1,2, J=1,JL) and Z1l. Note that all variables are
normalized as shown in the sample subprogram described in the Subroutine GDUCT listing
and that equally spaced spanwise stations are used. The flow chart (Fig. 7.2.9.1)
should be followed in programming.
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(  START >

NULL
DUCT ARRAYS

\\\\\7_1 CALCULATE
I0PT3 D— STRAIGHT
////' WALL DuCT
>1
/READ DUCT z -
OORDINATES
rd
— CALCULATE
3 - INPUT STRAIGHT WALL
PARAMETERS ANNULAR
DIFFUSER
1 ‘
CALCULATE
4 NACA CURVED
WALL ANNULAR
DIFFUSER
USER PROGRAMMER
s = _) mavPRoGRaM any (_ _ __ _—
— DUCT SHAPES AS
REQUIRED .
SET INNER <0.001 NORMALIZE
SURFACE CONTROL) R(2,1,1) INPUT ARRAYS i

BOUNDARY

>0.001

RETURN

FIG. 7.29.1~-FLOW CHART FOR SUBROUTINE GDUCT.
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7.2.10 Subroutine SLETE(KSSLE,KSSTE)

Object Find Strut Control Surfaces

Options A e

None, ‘ . ) R
. 1List of Symbols v o i

KSSLE,KSSTE, Leading edge and trailing edge index

SIE,STE , leading and trailing edge coordinate (dimensionless)
ZLEH,ZLET_(,_Axial distance hub leading and trailing edge (dimensionless); .
ZTEH,ZTET , Axiel distance tip leading and trailing edge (dimensionless)

Theory

The intersection of the leading and trailing edge of the blade with the hub and”
tip casing are obtained from Subroutine GBLADE. Then the coordinates of the hub ‘and -
tip boundaries are searched until the proper value of streamwise coordinate S for
the leading edge and trailing edge of the blade are found. The coordinate index . -

KSSIE is located just upstream of the blade and the coordinate KSSTE is loceted Just
downstream of the blade. )
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7.2.11 - Subroutine SELVE
Object Integrate Equations of Motion ' ‘ o :
Options

I¢PTh, Print every I@PT4 Station ~

List of Symbols

AAR = A/A Yy e v+ | Area ratio (dimensionless)
N R e (Pl TP .
AARS = A/A"= V y-ll X , Criticel area ratio (dimensionless)
b4 X .

ALPHA = @Q 2 , Swirl angle (deg)

AMACHI = My , Inviscid flow Mach number (dimensionless)

c - = 9Moyas - - , Constant of integration (dimensionless)

CFSH = Cyq, = 7,,(0)/7 ' : ", Streamwise wall friction coefficient hub

SR : (dimensionless) : :

CFST = C!s.',.= -rm(l)/q' s Streamwise wall friction coefficient tip
(dimensionless)

CFPFH = C,¢,H= r¢,,,(0)/c'3l s Tangential wall friction coefficient hub
(dimensionless)

CFPT = C,'¢T=C¢n(l)/6' , Tangential wall friction coefficient tip
(dimensionless)

CPINC = Cm:al-(Al/A)2 , Incompressible pressure coefficient
(dimensionless)

CPCOMP = Cp ’[HI‘S)'HI‘°)]/[H01(°>‘HI(0)]7 Compressible pressure coefficient

(dimensionless)
PRCOEF = Cp= (P =P (0)) /3, , Local pressure coefficient (dimensionless)
QKK = q',((I/ZpTuf) s A§erage inlet dynamic pressure (dimensionless)
Theory.

The equations of motion in Section 3.2 are integrated numerically according to
the procedures described in Section 3.6. The flow chart is given in Fig. 7.2.11.1.
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FIND UP/DOWN
START NU:;.::?:CE — STREAM CONTROL
‘ I SURFACE

FIX CONSTANTS
AND PARAMETERS

J DO LOOP

KS DO LOOP : e

CALCULATE CALCULATE . | F1x BOUNDARY.

STRESSES COORDINATES —————— .
CONDITIONS

AND HEAT FLUXES AT STATION S

CALCULATE
BLADE FORCE
PER SPAN

= JSSLE

SEPARATES
ON HUB

#+ JSSLE

| . carcurate . NG .. o]
LOCAL BLADE - » — , ‘
" FORCE = ' : ~ - T e o
. RETURN
SATISFY INTEGRATE FOR _
MASS FLOW ’ HOMOGENE OUS AND.
BOUNDARY . PARTICULAR
CONDITION SOLUTIONS
COMPUTE INTEGRATE IN
STREAMWISE STREAMWISE
DERIVATIVES DIRECTION
UPDATE WRITE
SOLUTION SOLUTION

FIG. 7.211.1-FLOW CHART FOR SUBROUTINE SQLVE.
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7.2.12 Subroutine SPLDC
Object Compute Constants for Inner layer Solution

Options

None.

List of Symbols

Uu(l) = u* , Velocity (dimensionless)
uu(2) = H , Stagnation enthalpy (dimensionless)
uu(3) = HK* , Stagnation enthalpy (dimensionless)

[}

uu(k) Y+ , Length (dimensionless)

ft

uu(s) W' , Mass flow (dimensionless)

Theory

This subroutine numerically integrates Eqs. (3.4.5) through (3.4.7) out to a
value of Yd'using a third order Runge-Kutta method. At the value of Y;, the numerical
solutions are matched to the analytical solutions given in Section 3.4 and the constants
of integration are evaluated.
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Object Compute’ Stress end Heat Flux ' =~ R

Qptions

N@PT2=1
Co=2
N@PT1=1

=2

=3

N@PT6=1

=2

7.2.13

‘Adisbatic Wall

Nonadiabatic Wall

P =m" =0
P*#0, m*'=0
P*=0, m'#0
Centerbody
No centerbody

List of Symbols

AMPH , AMPT
AMUO

AMUM
AVH,AWT
DEIQ

KMM

PPH, PPT
QWH, QWT
RH@M

SKMH , SKMT
SWH, SWT
TWH, TWT -
VM

USTARH, USTART

+ +
my ,M7

(e ur )
W/ prlo

a

a

WH? “WT

N

+
Pu ,Pr

®

WH’

®,WT

ZWH’ZHT

-

-

.

-

LKMHLY (KMT)

' Subroutine STRESS

Mass flow bleed hub, tip (dimensionless)
Free~stream eddy viscosity (aimensionless)
Free-stream molecular viscosity (dimensionless)
Wall swirl angle hub, tip (dimensionless)

Mean displacement thickness (dimensionless)
Index for meximum velocity (dimensionless)
Pressure gradient hub, tip (dimensionless)

Wall heat flux hub, tip (dimensionless)

Mean free-stream density (dimensionless)

Wall stress hub, tip (dimepsionless)

Wall stress matching point (dimensj_on]_ess)

Wall temperature (dimensionless)

Maximum free~stream velocity (dimensionless)

Friction velocity hub, tip (dimensionless)

4
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Theory ;
The inner layer solution 1s & function of U (S).- Since the inner layer solution

does not correct for du'7ds, Ug and ¥ are continuonsly updated to match the inner ‘and
outer layer mess flows,

The normal derivatives, stresses, and heat flux are computed using central
differences in the core flow. For the inner layer solution, oerlvatives are obtained
.analytically from FUPLUS and FHPLUS. )
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7.2.14 Subroutine VARB(FPI3,AX,BX,K,IX)
Object Compute Blade Force Variables

Options

X = 1,2,3 Steps in third order Runge-Kutta method.

List of Symbols . _ .

AX = dﬁ3 /dn° 3 , Normal pressure gradient (dimensionless)

BX = d\ﬁs/dn , Normal mass flow gradient (dimensionless)

X , , Runge-Kutta index_(dimensibnless)

K , Streamwise station (@imensionless)

PI3 = ﬁs , Downstream static pressure (dimensionless)
RHP3 = ﬁg , Downstream density (dimensionless)

TH3 = 63 , Downstream temperature (dimensionless)

UPHI3 = G<#3 ' , Downstream swirl ve;ocity (dimensionléss)

Us3 = 053 , Downstream streamwise velocity (dimensionless)
Theory

When I@PT2=2, the blade force is known, but the loss and exit angle are not.
known. This subroutine calculates the ingsgrands for Runge-Kutta integration of
Egs. (3.3.28) end (3.3.29). For a given Il, we have for iteration i,

My = 1'313(?'” (7.2.14.1)
A A 1 - Ag . oLt
VOB = @,/ [I + 7_2 MZ] j (7.2.14.2)
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Name

FHPLUS
FUPLUS
QWALL
SPLD
TAWALL
USTAR
FTHIK

T.3 List of External Function Subroutines

Object

Compute Molecular Viscoslty

Compute Thermodynamic Functions of Inner Layer
Compute Functions of Inner Layer

Compute Wall Heat Flux

Functions for Calculating Inner Layer

Compute Adiabatic Wall Temperature

Compute Frictioh-Velocity . T
Compute Blade Thickness ‘
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s . 70331 Funetion AMU(T) -~ 2. i

Object Compute Molecular Viscosify i

Options s 0
None . L g M G : Vi, 1, -
ERTEN SR Y N O A AN P
ist of Symbols t»f"{'-"&‘ R R A ~'>'_" PSR RO T R N
AMU =;L/;;r, Ratio of Molecular Viscosityr(dimensionless) M,aL -
sy Ay
T = @ , Static Temperature Ratio (dimensionless)
Theory

The moleculer viscosity is computed according to Sutherland's formula (Ref ).
The working fluid is assumed to be air. Accordingly,

f _ - 3/2 |+|98.0/Tr (7.3'1)
A "® grisso/T, | ‘




7.3.2 Function FHPLUS(YPLUS,UEL,DUPL,T,DT,SQ,LL)

Object Compute Thermodynamic Functions of Inner Layer

Options . et
N@PT1=1 =0, m'=0
=2 *£0,m*=0
0

. P
=3 p+ 0, m"

N@PT2=1 Adisbatic Wall
=2 Nonadiabatic Wall

+

LL =1 FHPLUS = Ty —Toor T

+ +

-7

w
=2 FHPLUS = dT,/dY"or dT/dy’
=3 FHPLUS = Q) or Q RS
=4 FHPLUS = dog/dY’ or dQ'/dY® | T

List of Symbols

DT = dTt*/dvy* , Derivative 'of.tem‘peratu!i.'é'(di.me'ns'ioniess) i
DUPL = duU'/dvy* » Derivative )of ;rélocify (;iil‘ﬁénsionles:’s)
f‘HPLUS ' » See option list (dimensionless)
urL. = Ut ‘, . . Universal »veiogity di;le:ns:;l.lonless)t « : .-

' , Q S iy o .
LSQ. = (}’.-I)M? Pw U‘#s ’ Heat_fblu.x param'etér‘ A‘(a’imezllsion]:esé)
T = T-TH , Temperature difference (dimensionless)
YPLUS = Y' -, Universal distance from wall (dimensionless®

An analytical s_olution exists for the thermodynamic functions for the inner
layer as given in Section 3.4. Therefore, the function and its derivatives are known
analytically according to the appropriate options.
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. _ 7.3.3 Function FUPLUS(UST,YA,LL)

Object Compute Functions of Inner ILayer Solution °

Options

N@PT1=1 p*'=0,m'=0

=R p*#0,m'=0
= pr=0,m'#0

LL =1 FUPLUS = du*/dy*
=2 FUPLUS = U*
=3 FUPLUS = (mg/py
=4 FUPLUS = W'

List of Symbols

- , See Option List (dimensionless)

FUPLUS =

USTA = ,U’ , Friction Velocity (dimensionless)
fA = Y , Distance from Wall (dimensionless)
Theory

An analytical solution for the inner layer U*(Y") is known from Section 3.Lk.
Therefore, the solution and all its derivatives are known analytically. This funetion
subroutine calculates the required functions according to the options listed above.
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7.3.4 Punction QWALL(TW,U,USTA,R@)
Object Compute Wall Heat Flux

Options

N@PT2=1 Adiabatic Wall .
© =2 Nonadiabatic Wall

For Quter WAailis'
For Inner Walls

I
AV

IF (R(1,3,9) >0.001)  N@pr2
IF (R(2,3J) >0.001) NgPT2 =

List of Symbols

T = ® , Static temperature at mastching point (dimensionless)

™ = ®, , Wall static temperature (dimensionless)

QGWALL = ;Qw , Heat flux (dimensionless) @ C i

U = U » Magnitude of absolute velocity at matching point (dimensionless)
USTA = U* , Friction velocity (dimensionless) W,

R&W = P, Density at the wall (dimensionless): .

Theory

If the wall static temperature is specified, then the .program assumes that the
wall heat flux should be calculated. Since the flow conditions are known at the
matching point, and the friction velocity is known, the enthalpy H* can be calculated
from Eq. (3.4.25). The heat flux is then given by "

o [ Y-t 5 P, U* (7.3.4.1)
Qw‘:[®w-(®+—7 M, U-Z)]'——:T- . . e

11k



7.3.5. Function SPLD(Y,U,H,I,AM,AK,AA,PL,PT)

Provide Functions for Calculating Inner Layer

Object
Options
I =1 SLPD =
=2 SLPD =
= SLPD =
=4 SLPD =
=5 SLPD =
List of Symbols
A = A
AK =" K
AM = m* OR
+
H = HA' ~OR
FL = Pg
T =  Pgr
SPLD
U =gt
RS
Y [ l:'é. Y‘+"l'

Theory

du(m" /dy*
dHy /dy*
dHt/dy*

dut (Pt /dyt -

» Van Driest constant (dimensionless)

, Von Karman constant (dimensionless) :

p , Mass flow or pressure gradient depending on I (dimensionless)

H ., Stagnation enthalpy depending on I (dimensionless)

, Laminar Prandtl number (dimensionless)

, Turbulent Prandtl number (dimensionless)
, See option list (dimensionless)
;‘?hiversal vélogity (dimensionless)

," Universal distance (dimensionless)

o

T This‘function subroutine provides the required integrands for integrating
Egs. (3.4.5), (3.4.6), and (3.4.7) using a third order Runge-Kutta method.
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7.3.6 Function TAWALL(T,U,USTA)
Object Find Adiabatic Wall Temperature

Options

N@PT2=1 Adiabatic Wall
=2 Nonadiasbatic Wall

ooi) N@PT2

IiF (R(1,3,J)<0 = 1 For Outer Wall
iF (R(2,3,7)<0.001) = N@PT2 = 1 For Inner Wall
List of Symbols
T =@ , Static temperature at matching point (dimensionless)

TAWALL = ®w , Adiabatic wall static temperature (dimensionless) - B

U = U , Magnitude of velocity at matching point (dimensionless)”
USTA = U™ , Friction velocity (dimensionless)
Theory

If the wall static temperature 1s not specified, then the program assumes that .
the adiadatic wall temperature should be calculated. Since the flow, conditions are
known at the matching point and the friction velocity is kncwn, the wall temperature
is obtained from the relation

Oaw = O+ (y=1) Mra[ Y2 + u*zH’] | . (7.3.631)

2

where H; is determined from Egs. (3.4.16) or (3.4.20).
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7.3.7 Function USTAR(KB,YB)

_ Object Find Frictlon Velocity

Options
NgPTLI=1 P'=0,m*=0
=2 p#0,m'=0
=3 p*= 0, m'#0 .

p*20,IF(p*<0)p'=0"

m*2 —0.06;IF (m*< -0.06) m*= - 0.06

List of Symbols

DFE = df/du* r2. 4 Derivative of error function (dimensionless)
DUPLUS = du*/dy* .+ 5 Derivative of velocity (dimensionless)
EE = F*u » Error (dimensionless)
FE = F* -, Error function (dimensionless)
3 EFs - = - ¢ s Error tolerance (dimensionless)
ITERL _» Maximum number of iterations permitted (dime;nsionless)
KB s Matching point (dimensionless)
UPLUS = U* » Universal veloecity at matc;hing point (dimensionless)
USTA = U*m » Guess for friction velocity (dimensionless)
USTAR = U* s Friction velocity (dimensionless)
YB = Y » Distance from wall (dimensionless)
Theory

The friction velocity is obtained by matching the inner layer analytical
solution to the numerical solution at the point KB at a distance YB from the wall.
This matching requires an iterative procedure since Eqs. (3.k.1k4), (3.4.18), or -
(3.4.22) are too complex to solve for U* The slope of the function ut(y*) is
always known analytically so Newton's method is chosen. Ilet
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ut= u/uJ’

_ Ng Py
" )

u*y

ot e (#w> v (an)
)’NRMrz Hr pwu*3 0S /w

34‘
"
3o

P u*
B, U

Then an error function:is defined as

‘

FP(u*) = U (Y") - u/u*

and

dF* Ng Py du*
= Y + -—U_Z_
du* (ww/pr) dy* u*

The iteration proceeds by setting
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(7.3.7.2)

(7.3.7.3)

(7.3.7.4)

(7.3.7.5)

(7.3.7.6)

(7.3.7.7)



Convergence occurs when

——.-l < .e (7.3.7.8)
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7.3.8 Function FTHIK(Z,IS,L@P)

Object Compute Blade Thickness Distribution

Options
IS=ISHAPE Blade Shape Index
L@PP=1 FTHIK = t/c ‘
=2 FTHIK = d{t/c)/d(x/c) ' v

List of Symbols

Z:=X/C , Fractional Chordwise Distance (dimensionless)

Theory

A parabolic arc thickness distribution of the form

1-a [(_(’;_)_(Jé-)z] , (7.3.8.1)

is assumed for IS=1.
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AINPUT(1,J,K) -

AINPUT(2,J,K) =

AINPUT(3,J,K)

AINPUT(L,J,K) =

AINPUT(5,J,K) =

BINPUT(1,J,K) =

J

J

¥

BINPUT(2,J,X)

BINPUT(3,J,K) =
BINPUT (4,J,K) =

BINPUT(5,J,K) =

C@NST(1,L)
cgusT(2,L)
CNST(3,L)
cgnsT(4,L)
cgNsT(5,L)

C@NST(6,L)

J

J

T.4 List of D%MENSI¢N Variables in Blank C@MM@N

1 ! 1
g 39 <
o

!
Q

| " I
a9 O <
o

|
Q

1
&
B
£

, Spanwise location (dimensionless)

, Total pressure (lb/ft2 abs)

, Static pressure (1b/£t2 abs)

, Swirl angle (deg to axis)

, Total temperature (deg R)

, Upstream 5f blade row (dimensionléss)
, Downstream of blade row (dimensionless)
,Nuﬁber of spanwise stations

, Spanwise location (dimensionless)

, Total préséure (lb/ftz.abg)

, Static pressure (1b/ft° abs) '
, Swirl angle (deg to axis)

, Total temperature (deg R)

, Inlet flow

, Exit flow

, Number of spanwise stations

, Velocity (dimensionless)

N

., Adiabatic stagnation enthalpy (dimensionless)

, Nonadiabatic stagnation enthalpy (dimensionless)
,Stream function (dimensionless)
, Velocity (dimensionless)

, Stream function (dimensionless)
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CNST(I) = CONST(J,L)

‘L =l,20i FE

DF(J,K)

DHF(1,K)’

DHF(2,K)

DPF(1,K)

DPF(2,K)

K

1,KL

fl

L E _,F(l,I,K’)u”

F(2,I,K)

[ ]
[
n

F(3,I,K) =

1 |
a9 C
-

F(4,I,K)

F(s ’Is'K) =

|
—

F(6,I,K)

F(7,1,K) =

i
‘U

I=1

|
~~
'—l
-
]
vl
"l"
g

3
—
N
A
(]
-
]
~
l

FF(5,1,K) = 1l

dF(J,Z,kY/ﬁéa'foféaﬁﬁiééTGéffbafiﬁes (dimeﬁgionless)
@y /os); .
(011 /38
(dy/03)p

(oI /ds)p

T T A T S ST I
, Number of streamlines

‘Intérpolate ‘velies betweén L, L+l ; p
CO SR I T T
Ly

T B AU N N S . e e L T
, Homogéneous "solutién for stream function (dimensionless)
, Homogeneous ‘'solution for static pressure (dimensiodniess)’

-

¥l

..... o

, Particular Solution for stream function (diineﬁsi"&ﬁiés‘s’)"

,Partiéﬁla;'gélﬂfién for static pressure (dimensionless)

Cpent o v Lo e,

R - SR TR g

L TP SN ST 2 K
"7, Stream function (diménsionless)
T

, Stresimise” velocity (dimensionless) T e

-5 Swirl.velocity (dimensionless): . B T

, Static pressure (dimensionless)

, Entropy (dimensionless):-. -, . S
» Static temperature (dimenionless) i

, Density (dimensionless)..- <« Cor
s Inlet conditions ;':_‘ IR T, . ‘_j =

» $=8 SRTR TN PR TP e R

» =S +ds~ Cleld ThRLL Cila o TN

'+ s Number- of -streamlines: ... .- . A TR

PR - EARRN S

i"s:Inviseid :Mach. number (dimensiorless) N S A

5 Inviscid static pressure-(dimensionless) W R,

-9 Inviscid ‘static:temperature: (dimensionless) LTS

.5 Inyiseid total:temperature- (dimensionless) . SV

» Inviscid total pressure (dimensionless) .. = |
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FF(6,I,K) = p » Inviscid density (dimensionless) R
FF(7,I1,K) = Gs » Inviscid streamwise velocity (dimensionless)
FF(8,I,K) = G¢ » Absolute swirl velocity (dimensionkess) =~ = . . - +_ ‘( o
FF(9,I,K) = ' \/A\l¢ R Relative swirl velocity: (d-i_.mensionless') L ;
FF(10,I,K) = _‘Ge , Blade velocity (dimensionless) | .
F’F(ll,]_:,K) = 4 » Absolute angle tcé axis (_d_eg_’)l; . .
FF(12,1,K) = é . » Relative angle »'to'a:'gifs“('dég_) . ;
FF(13,I,K) = i , Inviscid flow éntxi'ppy-(dimegsj,oriiesé).
FF(14,I,K) = U > Magnitude of r'e]'.ati'v“e i'nvisg"i.d flow }ielecitj{_ (d",im?nsionless)
FF(15,1,K) = /Z\B _».Loss coefficient (dime_qsidnless)" o
FF(15,2,K) = A/I\B , Biade-entropy'rise”(dimensionl‘éss) oo L e
FF(16,1,K) = \/l\l s étreamfunction (dimené'ionle'-s;s')‘ | |
FF(17,1,K) = C_ ", Lift coefficient(dimensicriless)
FF(17,2,K) = Cp , Drag coefficient (dimensionless) ]
I=1 » Upstream of blade row  © = -
=2 s> Downstream of blade row -
K=1, KL , N;m_b'er of streamline

FG(1,K) = @ > Inlet swirl angle (deg)
FG(2,K) = I , Inlet stagnation  pressure (dimensionless )
FG(3,K) = @, , Inlet .s.ta_gnation temperature (dimensionless).
F(4,K) = M » Inlet Mach  number (dimensionless) L
FG(S,K)\'(= P » Inlet stagnation density (dimensionless) . S
FG(6,K) = / U *, Inlet magnitude of velocity (dimensionless)-* = . -

'/‘ K = 1, KEL ., Number of streamlines’ ST ‘ .
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FPRC(1,K)

F@RC(2,K)

FERC(3,K

FERC(4,K).

)

FgRC(5,K)

G(1,K)
G(2,K)
G(3,Kk)
G(k,K) .
G(5,X)
G(6,K)
G(7,K)
G(8,x)
G(9,K)
G(10,K)
G(11,K)
G(12,K)
G(14,K)
G(15,K)

G(16,K)
'Q{I:K)=

Q(2:K) =

I}

dUg /o7
AU/
0 ¢n/ON
0% 40O
Ugp—Ug

U

Esn

I3¢n
0@/oN
L /0%

Q

0Q/AN
R

z

, Streamwise fsrce/afeg (dimensionless)

, Swirl force/srea (dimensionless)

, Streamwise force/span (dimensionless)

, Swirl force/spah (dimsnsionless).

, Blade dissié&f{dﬁ"/area (dimensionless)

,Numbsf of streamline (dimensionless)

,Ratio of turbulent to reference molecular viscosity (dimensionless)
,Streaﬁwise stress (dimensionless)

, Tangential stress (dimensionless)

, Normal derivative of streamwise vel ocity (dimensionless)

, Normal derivative of' swirl velocity' (dimensionless)
., Normal derivative of streamwiseistress(dimensionless)

~ ,Normal derivative of tangential stress (dimensionless)

, Relative velocity (dimensionless)

, Magnitude of relative:yelocity (dimensionisss)

» Streamwise rate of strain (dimessioniess)

> Tangential rate of strain (éimensiénless)

»Normal derivative of static temperature (dimensionless)
» Normal derivatfse of eﬁfropy (dimensionless)

» Heat flux (dimensionless)

,Normal derivative of heat flux (dimensionless)

s Radius (dimensionless)

»Axial Distance (dimensionless)
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Q(3,K) = dR/n , Normal derivative of radius (dimensionless)
Q(k,K) = aﬁ /98S , Streamwise derivative of radius (dimensionless)
Q(5,K) = 02R/907/0S > Second derivative of radius (dimensionless)
Q(6,K) = v » Metric scale coefficient (dimensionless)
Q(7,K) =  ov/of - s Curvature of potential line (dimensionless)
o(8,K) = 9v/dsS , Curvature of streamline (-dimensionless})
Q(9,K) = azv[aéz/as » Second derivgtiv'e of metric scale coefficient (dimensiculess)
Q{iO,K) = v s Physical distance across Aduct (dimensionless)
Q(11L,K) = Y/Y¢ » Fractional distance across duct {dimensionless)
Q(12,K) = A s Area between ajacent s'treamline_s (dimensionless)
Q(13,K) = G » Gap between blade surfaces (dimensionless)
Q(1k,K) = 46 /0n > Normal derivative of blade surface (dimen§ionless)
Q(15,K) = 96/8S - » Streamwise derivative of blade surface (dimensionless)
Q(16,K) = on/o7 , Transform of normal coordinate (dimensionless)
Q(17,K) = 0277/@?72 » Second derivative (dimensionless)
Q(18,K) = 7 » Normal coordinate (dimensionless)
Q(19,K) = n > Transformed normal coordina.te (diménsionless)
| K = 1,KL > Number of streamlines (dimensionless) -

R(‘l';l,J) = RT(ZJ) s Radius of hul/) (dimensionless)
R(2,1,J) = Rylzy) » Radius of tip (dimensionless)
R(1,2,J) = r%T(ZT) , Mass flow of tip bleed (dimensionless)
R(2,2,J) = T%H (zy) , Mass flow of hub bleed (dimensionless)

© R(1,3,J) = ®yulzy) , Wall temperature of tip (dimensionless)
R(2,3,3) = @p(2Z,) , Wall temperature of hub (dimensinnless)
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R¢(ll,K) = R , Radius (dimensionless)

R@(2,K) = dR/dz , Derivative of radius (dimensionless)

RP(3,K) = dzR/dZ2 , Second derivgt?:é/e o_fmradj.usA(dimensionless) -
RP(L,K) = Z » Axial distance (_d,imens.ionlesls) ;
RA(5,K) = V ,Metric%, scale coefficient (glimengiqnless)

RH(6,K) = dv/ds .5, Derivative of metric scale coefficient (dimensionless):
RH(7,K) = g » Distance across duct (dimensionless) 4
RH(8,K) = S » Streamwise coordinate (dimensionless)

RP(9,K) = m » Mass flow bleed (dimgnﬁign_le_,s‘s)'

RA(10,K)= @, . »Wall temperature (dimensionless) »
WSRO .

Note: 3 arrays defined where § takes on the value, H, M, T .

¢ = n ,HubWall " -

A - . <) e i, e . LA
M ;Mean 1iné~

T ,Tip wall
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7.5 List of Variables in Blank COMM@N

ACHI = X , Clauser constant (0.016)"

ACHAPPA = K -, von Karman constant (0.41) -

ALﬁ = Q, ' , Hub swirl angle. (deg)

ALPHS = Qag , Stagger angie to axis (deg)

ALPSH = ay , Hub stagger angle to axis (deg)

ALPSM = am - » Midpoint stagger angle to axis (deg)

ALPST = QT | » Tip stagger angle to axis (deg)

AMACH1 o= M| » Average inlet Mach. numbér (dimensionless)
AMACHR = Mr , Reference Mach nuﬁxber‘('dimensinnless)

AMS1 = Mg, » Hub Mz;,ch number for input (dimensionless) ?
AMPLUS = m* » Mass flow bleed parameter (dimensionless)
ANH,;ANT = Ny,Nt , Power law profile (dimensionless)

APLUS = A* » van Driest constant (26.0)

APRESL = 5, 5Average ‘inlet static pressure (dimensionless)
AREAR = ar ., Reference area (ft2)

CHORD = B , Strut chord local (dimensionless)

CHORDH = Bn » Strut chord Hub (dimensionless)

CHORDM = . By > Strut chord midpoint (dimensionless)

CHORDT = By » Strut chord tip (dimensionless)

CPR = Cor » Specific heat at constant pressure (5997.0 fte/secz/de\g R)
CPV = Cov » Specific heat at constant volume (3283.0 ft2/sec2/deg R)
DDS » Mesh distortion parameter (1.< DDS <10.)

DETA = An , Step size in Normal coordinate (dimensionless)
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» Step size in asymptotic constant table (m*) .(dimensionleSS)

DMPLUS = Am'
. DPLUSM = AP* , Step size in asymptotic constant :table (p*) (.'dimensionles_;:)
" PSH,DST = A’:‘,A*T , Displacement thickness hu;o, tip (dimensionless) —
DS = AS , Streamwise step size between stations (dimenéionle;s)-
DSS = ds o ,' Streamiise step' size (dimengioni:;ss)
DYNP1 - q , Average inlet dynamic pressure '(ciimensionless‘)
EP - ,2.7182818
GAMMA - . Y , Ratio of specific heats (1.4) {
GAP = G ©, Gap between.blades (dimensionless)
GASR = ® , Gas constant (171L.0 ftz/sécg/ dég R)
Rl = {y- e A
are = M
GRAVR = g ., Gravitatiériﬁ;i'constants' '(32_.2 ft/secg)
ISHAPE e R Blz‘ide shéji)e paraxﬁéter ’ (vd“imenéi'onless) T
JL ", Number of stfeamwise' stations (dime'hsionlessj
s - | , Number of stresmvise steps/station (dimensionless)
KL . , Number of streamiir;és: ' (diﬁxensiénléss) ’
KLL , Number of input' streamlines (dimensionless)
KIMH , Hub n;atching pbint - inner layer (dimensionless) »
KMT , Tip ﬁxa{téhing point - ix{nér :;cadiug ‘(dimensionleSS) ‘
. s S-J'."zer of tab'rl'e, of coriéfants for ':ir:.nner layer -(di-mensioni‘ess):
MM s Midiao:i.nt of table of éonsfanté for inner layer (diﬁ:ensiox;léés)
NB ‘ , Number of strut"s:'j(d‘;l;ix:;isigniesé') : \
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PHIC

PHICH
PHICM
PHICT

PPLUS

PRESSR
PRL
PRT
RADR
REY
RCLH
RCIM
RCLT
RO
SL
SNDR
SOLD
TEMPR
THICK
THICKH
THICKM

THICK

e

Pen

Gen
er

Rewn

Reum

Reur

Py

v‘cr

, Blade camber (deg)

, Blade camber - hub (deg)

A -

, Blade camber - midpoint (Qeg) .

,Bla&e camber ;l@ip (deg)

,Préssure g?adient parameter (dimensionless)
,3.1415926 7 , o - -
,Reference static pressure (PS¥)

, Prandt] Number lamine# 0.70

, Prandtl numbef'turbniént 0.72‘

,Reference radius (ft)':

' Reynolds number (dimensionless) -

;Hub radius of slade cenferline (dimensionléss)

,Midpoin£ fédiﬁs of blade center (d{mensionless)

,Tip radius gf blade cegferline (dimeésionléss)
,Reférenée Aensity (slugs/ft3)

,Length of duct in.streamline coordinates (dimensionless
,Reference speed of sound 1116.0 (ft/sec)

,Soli@ity (dimensiohless)

, Reference temperat:ire (deg-RANKIN)

,Local blade”thickness (dimensionless)

,Blade thickness hub (dimensionless)

.»Blade thickness midpoint {dimensionless)

»Blade thickness tip (dimensionless)

129



_ THIKM

USR
VISCR
WFLO
YPLﬁsM
zZcl
ZIE
ZTE

yAN

t/8

, Maximum thickness/chord (dimensionless)
, (01745329 radians/deg) o o R

, Reference radius (aimensionless)

» Reference molecular viscosity (O;’37Ox10"‘6)

»Weight flow (1b/sec)

s Matching point for teble of ﬁsy'mpto'tic 'cons.tan'ts_(c.li\me’nsionless)
» Axial distance to blade cen_terl’in'e"’(glimengiénléss)

;Blade leading edge (dimensionless)

. Blade trailing edge (dimensionless)

, Duct axial length (dimensionless)
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7.6 Description of Mesh Geometry

Since the numerical solution of turbulent boundary layer equations is requlred
the mesh points for the normal coordinate ‘are not distributed uniformly across. the
duct, but crowded near the duct walls. Th1s nonuniform distribution of mesh points
is accomplished with the %(n) transformation given by Eq. (7.2.4.5) in Subroutine
C@¢R. Thus the actual calculatlon 1s done 1n an (n(q)s) coordinate system.

The(17,S)coord1nate system is shown in Fig. (7.6.1). It consists of KL
uniformly distributed mesh points on the normal coordinate and JL uniformly distributed

M'_mesh p01nts 1n the streamw1se direction. Since the explicit numerical integration

method used in thls report is ‘conditionally stable, the coordinate in the streamvise
direction usually requlres a finer mesh then speclfled by JL. .Thus the JL mesh points
can further divide’ by KDS. Therefore " L ) T

i

D ebnwen ke (e
and

S =AS (J-1) + dS(KS-1) J=1,JL;KS =1,KDS (7.6.2)

The transformation 7(n) involves a parameter C which can be related to the
distortion of mesh points by

_ I1 ops
~ 1+DDS (7.6.3)
where
- An>
pps = (&0 (7.6.4)
(A"’? w

Finally, it is noted that matching the inner iayer solution with the numerical
solution occurs at KMH and KMT.
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TIP WALL

KL LALLLLLLLL LI LLd il d 1111II/II/III([I//III/IA ‘)l/ LILLLLLL
KL=1 INNER LAYER ANALYTICAL
KL-2 SOLUTION
KMT SRR | Y [ N —
An
f NUMERICAL SOLUTION
(K).
As
ds
KMH P -t —— === 71 - ——
4 INNER LAYER
; ANALYTICAL SOLUTION
] ’] Y
KS—_—] 2 34KDS 777777157 I.IIIIII.IIIITI'TII”IIIII‘ a7 Trrrr7z77 i
HUB WALL
J=1 2 3 4 5 JL-1 JL
S(J, KS)

FIG. 7.6.1-7.5) MESH GEOMETRY.
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8.0 APFENDIX B: SAMPLE TEST CASES

A number of test cases are shown in this section to illustrate the various
options available in the computer program and to test the accuracy of the calcula-
tion by comparison with experimental data where possible. Included with the write-
up is an input date sheet used to set up the problem. '
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8.1 Boundary Layer in Entrance Region 6f Circular Pipe

This case illustrates use of the computer program to obtain the development of
the boundary layer in the inlet region of a circular pipe where the streamwise
pressure gradient is small and the bdundéry layer is thin. The calculated wall
friction coefficients as a function of Reynolds number based on momentum thickness
forlM = 0.1 with dlfferent values for, .von Karman constant x are plotted in
Fig. 8 1.1 and compared with the wall’ friction laws obtained from Ref. 1h. Calculated
wall friction coefficients and recovery -faétors 'as'a function of Reynolds number
based on momentum thickness for a range of Mach numbers are plotted in Fig. 8.1.2.

The computed wall friction coeff1c1ents are compared with the correlations of
Ref. 20, :
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Moo= 0.10

(1) Cf= 0.0256 Re g -

' FROM REF. 14 -

©(2) €4 = 0.0576 [lé’g (4.075 Ra )| =2 . G
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O 0.40
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w
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™
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w
o
o
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W

0.001
102 103 104 105

REYNOLDS NUMBER, Rey

FIG. 8.1.1-VARIATION OF SKIN FRICTION COEFFICIENT WITH REYNOLDS NUMBER.
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3
,

RECOVERY FACTOR,r

SKIN FRICTION COEFFICIENTx10

PRESENT COMPUTATIONS

K = 0,40
" CPrt=09 . .
ST
O 0.1 0
Q 2.0
(m] 4.0
6.0
CORRELATIONS OF REF. 20
M
4,0
2.0
. | - o |
03 - o 104 105
MOMENTUM THICKNESS REYNOLDS NUMBER Reg
1.0
g
- . i O . O ¢/
0.9 66 og®
. (o) »08 a0 0 .
oo O
| : L
0.8 4
10° e -~ 104 105

MOMENTUM THICKNESS REYNOLDS NUMBER,Reg

FIG: 8.1.2-VARIATION OF SKIN FRICTION .COEFFICIENT AND.
RECOVERY FACTOR WITH REYNOLDS NUMBER.
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8.2 Conical Pipe Diffuser

The computed effect of compressibility on the performance of a subsonic conical
pipe diffusgr is shown in Fig. 8.2.1 and compared with the experimental data from
Ref. 21, The solutions are in good agreement with the expérimental data showing the
increase in pressure recovery with increasing Mach number as well as a drop in
pressure at the diffuser throat. This trend is also indicated by the data in Ref. 5.
Shown also on Fig. 8.2.1 is the incompressible solution for this diffuser obtained
from the numerical procedure described in Ref. 6. These results follow the trend in
pressure recovery with Mach numbers; however, the trend in the predicted separation
point with Mach number is not consistent with that fer the present compressible
solutions. This may be partially explained by the fact that the compressible solu-
tion tends to calculate slightly higher wall friction coefficients than measured
experimentally (see Fig. 8.1.1).

138



PRESSURE COEFFICIENT (P - P )Py, ~ PI‘)

0.8
DATA REF. 21

M oL ] . : 0
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FIG. 8.21-EFFECT OF INLET MACH NUMBER ON PRESSURE COEFFICIENT
IN A 10° CONICAL DIFFUSER.
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8.3 Annular Diffuser

The computed pressure coefficients for a curved-wall annular diffuser are
presented in Fig. 8.3.1 for two different inlet Mach numbers (lW,: 0.47 and M, = 0.75)
and compared with the data of Ref. 22. The predicted pressure recoveries are in good
agreement with the experimental data and the trend of increasing pressure recovery
with indreasing inlet Mach number is again demonstrated. It should be noted that
the computed wall pressure coefficients presented in Fig. 8.3.1 are not those obtained
directly from the computer output but were corrected to allow direct comparison with
the experimental data which is based on a dynamic pressure obtained from a free-
stream Mach number rather than a weight-flow-averaged Mach number,
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* FIG. 8.3.1 — EFFECT OF INLET MACH NUMBER ON PRESSURE
COEFFICIENT FOR AN ANNULAR DIFFUSER.
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8.4 Curved-Wall Diffuser With Struts

The computed preéssuré recovery coefficients for the NASA curved~wa11 diffuser
( M;= 0.47) described in Ref. 22 and Section 8.3 were recalculated with the addition
of two streamline struts placed in the dlffuser as -shown in Fig. 8. b;1. These
streamline-struts, vere NASA 5 digit series "uncambered airfoil sections with a one
foot chord and 20 percent thickness-to-chord ratio. The primary effect of these
struts is to lower the static pressure coefficient in the region of the strut due to
the increased flow Mach number. There has also been a slight loss in pressure
coefficient due to the blade loss. It should be noted that the solution does not
account for the slight additional flow blockage due to the strut boundary layer
growth. 1In addition, the increased losses due to the interaction of the strut
boundary layer with the annulus wall boundary layer are not taken into account.
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© 8.5 Curved-Wall Annular Duct With Bleed

In Section 8.3, the flow through an annular diffuser at'hm = 0.47 was found to
separate at a distance X/D = 3.5 (see Fig. 8.3.1). This separation occurred on the
tip.wall. Since blowing tends to promote separation and suction tends to delay
separation, a solution was obtained for blowing on the hub wall and suction on the
tip wall with bleed rates on each wall of 0.02 1b/sec/ft2. Since there is
essentially no net change in mass flow with and without bleed for this diffuser, a
comparison of the velocity distributions can be made without compensating for
differences in mass flow. This comparison, shown in Fig. 8.5.1, indicates that the
hub boundary layer is blown out from the wall and the tip boundary layer is sucked
in towards the wall. In addition, the computations predicted that separation on the
tip wall was delayed to X/D= 3.7. : :

147



my = =0:02

o

m_r=0.02

1.0

0.8 }—
™.
jun )
-~
=
QO
(@]
-l
w
> 0.6 —
[}
\
; NO BLEED -
w
[« 4
(-
W
Q0.4 —
V]
-l
=z
[@]
A SUCTION
z
i
=
8 0.2 .

BLOWING
0 | | I |
0 0.2 0.4 0.6 0.8 1.0

DIMENSIONLESS DISTANCE, Y/Y,

FIG. 8.5.1. - VELOCITY DISTRIBUTIONS. IN A CURVED—WALL DIFFUSER
~ WITH BLOWING AND SUCTION.

148



1hg

Iz 1z zlolo[~ zlolo[- ol° Lal
AR 2o
ST ROk ol [s
gl IEl T
alaEIEl [ETiTRl [EEsrEETal Tivia] (aEaEinp
Q0L BLLLOLELYLELZLIL OL6OBOLOOOEO VD ED 2O 190988 9GLE9CCES VS ECS TS ISOS VBV LY OPSY OV EP ZV IPOVGEEBE LEDESEPEEEZE IEDE 62024 2VZG2P2ZET221202610I1LIQISIPIEIZILIONIEG 8 £ 9 6 ¥ € 2 U
‘ON 'O "M ‘ON "1030V ‘ON 801
40 133HS A1SATYNY 3L
NOISN3LX3I $S34Aav v HIINIONI

€4 WY0d ONIGOD DvnNn



NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
WASHINGTON, D.C. 20546

OFFICIAL BUSINESS
PENALTY FOR PRIVATE USE $300

SPECIAL FOURTH-CLASS RATE o
BOOK 4

POSTAGE AND FEES PAID
NATIONAL AERONAUTICS AND
SPACE ADMINISTRATION

If Undeliverable (Section 158

POSTMASTER : Postal Manunal) Do Not Return

“The aeronautical and space activities of the United States shall be

conducted so as to contribute

... to the expansion of human knowl-

edge of phenomena in the atmosphere and space. The Administration
shall provide for the widest practicable and appropriate dissemination
of information concerning its activities and the results thereof.”

—NATIONAL AERONAUTICS AND SPACE ACT OF 1958

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS: Scientific and
technical information considered important,
complete, and a lasting contribution to existing
knowledge.

TECHNICAL NOTES: Information less broad
in scope but nevertheless of importance as a

contribution to existing knowledge.

TECHNICAL MEMORANDUMS:
Information receiving limited distribution
because of preliminary data, security classifica-

) tion, or other reasons. Also includes conference
proceedings with either limited or unlimited
distribution.

CONTRACTOR REPORTS: Scientific and
technical information generated under a NASA

contract or grant and considered an important
contribution to existing knowledge.

TECHNICAL TRANSLATIONS: Information
published in a foreign language considered
to merit NASA distribution in English.

SPECIAL PUBLICATIONS: Information
derived from or of value to NASA activities.
Publications include final reports of major
projects, monographs, data compilations,
handbooks, sourcebooks, and special
bibliographies.

TECHNOLOGY UTILIZATION
PUBLICATIONS: Information on technology
used by NASA that may be of particular
interest in commercial and other non-aerospace
applications. Publications include Tech Briefs,
Technology Utilization Reports and
Technology Surveys.

Details on the availability of these publications may be obtained from:

SCIENTIFIC AND TECHNICAL INFORMATION OFFICE

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION
Washington, D.C. 20546



