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A PREDICTIVE PILOT MODEL FOR

STOL AIRCRAFT LANDING

by

David L. Kleinman and William R. Killingsworth

Systems Control, Inc.

SUMMARY

The optimal control approach to pilot vehicle systems analysis provides the

framework for modeling pilot performance during STOL flare and landing. The

model includes both the terminal time aspects and the short-term open/closed

interrelationship for the landing task, and pilot reaction to ground effect.

Model output predictions include the probability densities of the touchdown time

and velocity, flare path dispersions and pilot control inputs. The model is

used to predict pilot landing performance for three STOL configurations, each

having a different level of automatic control augmentation. Model predictions

are compared with NASA flight simulator data. It is concluded that the model

can be an effective design tool for studying analytically the effects of display

modifications, different stability augmentation systems, and proposed changes

in the landing area geometry.
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UNIT CONVERSION FACTORS

The numerical results presented in this report are in the U.S. system of

units. The conversions between the U.S. units and the S.I. system of units is

given below for those quantities appearing in this report.
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I. INTRODUCTION

Increasing traffic density and resistance to airport expansion have led to

the consideration of short take-off and landing (STOL) aircraft. These aircraft

are designed with special high lift devices that enable them to land at lower

airspeeds with steeper glideslope angles than conventional aircraft. Less

runway is needed and less ground noise is heard. Because of the steeper

approach paths and smaller landing zones, the flare portion of the landing takes

a much shorter time and the pilot is allowed little margine for error. Previous

studies have indicated a high level of difficulty for STOL landing and wide

dispersions in the touchdown data. Much of the difficulty is caused by adverse

ground effects to which the pilot must adapt very quickly.

This study addresses pilot performance for instrument approach and landing

of a STOL aircraft, i.e., no external visual cues are available to the pilot,

only the cockpit displays. Pilot models based on modern control theory are

developed and used in conjunction with mathematical models of the STOL to pre-

dict pilot performance in the longitudinal mode of the landing task.

The STOL aircraft design investigated in this effort was a four engine

subsonic jet transport with high-bypass-ratio turbofan engines and a high wing

equipped with an external-flow jet flap. The engines were pod-mounted under

the wing in such a manner that the jet exhaust impinged directly on the trailing-

edge flap system. This arrangement provided the high lift required for short

field operations.

•

This basic aircraft possessed several inherent stability and control prob-

lems. In the approach configuration, the equilibrium trim pitch attitude was

-4.1°. Pilots disliked this condition due to the large change required in

pitch attitude just prior to touchdown. Average pilot rating assigned to the

longitudinal handling qualities of the basic aircraft was 6.5 , with the

major objections being poor airspeed control, sluggish initial pitch response,

large pitch attitude excursions associated with changes in thrust and flaps,

a phugoid of short period that cuased pilot induced oscillations, and low

apparent pitch damping.



In attempting to overcome these control difficulties, several longitudinal

augmentation schemes were investigated by NASA-LRC. One augmentation scheme was

an autospeed system that drove the third segment flap to maintain a desired
i

airspeed. The autospeed system accomplished three objectives. It eliminated
- • . - ' -j'i.

the'phugoid mode that gave rise to many of the basic longitudinal handling

qualities, it provided good speed control, and it relieved the pilot of the

speed control task, thus reducing pilot workload. More importantly, since the

autospeed system moved the flaps to maintain speed, the airplane could be

trimmed to a nose-up attitude on the approach path. However, the pilot still

had to actively control pitch to maintain this attitude.

A second augmentation scheme incorporated a pitch attitude command and

hold system with autospeed. The attitude command system allowed the pilot to

trim the aircraft to the pitch attitude required for touchdown early in the

approach. Once trimmed, no subsequent pitch control was required since the

command system automatically maintained the desired attitude. The longitudinal

piloting task was thus reduced to altitude control with throttles.

In landing the aircraft, the pilot has a standard set of instruments. An

eight-ball was used to display pitch attitude, an altimeter and sink-rate

instrument displayed vertical information, and an airspeed indicator provided

velocity information. A light was automatically turned on at an altitude of

53' to notify the pilot at flare initiation altitude.*

The STOL iarcraft approached the runway on a 6° glideslope at a velocity

of 75 knots. The primary longitudinal requirements for a satisfactory landing

were: touchdown within a prescribed landing zone 450 ft long starting 250 ft

from the runway threshold; and touchdown with an acceptable rate of sink, no

greater than 3 ft/sec. Since flare initiation is a h r = 53 ft touchdown
\s\J

occurs in approximately 5 sec. As a result, the pilot has little time to

correct any errors. The difficulty of the landing task is compounded by adverse

ground effects that arise from the deflected thrust. Specifically, a nose-down

pitching moment, a loss in lift, and a decrease in drag occur as the ground is

An additional "get ready" light came on -5 sec prior to flare initiation.



approached.

In the analytic effort described herein, mathematical models were developed

for the STOL aircraft and for the pilot. These models were then used to predict

pilot performance in the STOL landing task for the basic aircraft, aircraft

with autospeed and the fully augmented STOL. The pilot model was developed using

techniques of modern control and estimation theory, and contains explicit repre-

sentations of the pilot's inherent limitations, information processing and

control behavior. The model extends existing results in man-machine systems

analysis by considering human adaptation to ground effects as well as the

terminal aspects and the open/closed loop interrelationships.

The outline of the report is as follows. In Chapter II, linearized models

for the three different STOL configurations are developed from NASA supplied

wind tunnel data. In Chapter III, the modern control approach to human operator

modeling is outlined, and the extensions necessary to treat the landing task

are presented. Expressions for the touchdown statistics are derived from model

covariance predictions. For the three cases studied, numerical values for the

pilot model parameters are chosen a priori. In Chapter IV, the resulting model

covariance predictions are compared with ensemble averages of actual pilot

response data obtained on the Real Time Dynamic Simulation Facility at NASA

Langley Research Center. The comparisons were favorable. Discrepancies between

the model prediction and the data are discussed, and are used to indicate

potential areas for model improvement. Our conclusions and suggestions for

further work are contained in Chapter V.



II. STOL MODEL DEVELOPMENT

In this chapter, mathematical representations are developed for the STOL

aircraft during approach and landing. In particular, linearized dynamics are

derived from available wind tunnel data. The linear models are needed in the

subsequent development of the optimal control model for pilot response that

includes the terminal control aspects of the landing task.

2.1 BASIC EQUATIONS OF MOTION

The equations of motion for the aircraft can be derived from Newton's

laws of motion,

ZF = 4~ (mV) I (1)

XM - f ] (2)

where the subscript I indicates the time change with respect to inertial space.

Assuming: (a) the mass of the aircraft remains constant during any partic-

ular dynamic analysis; (b) the body fixed axes OX and OZ lie in the plane of

symmetry of the aircraft; (c) the aircraft is a rigid body; and (d) the earth

is an inertial reference, Eqs. (1) and (2) may be expanded to yield

T.F = m(U + WQ - VR)

ZF = m(V + UR - WP) (3)

IF = m(W + VP - UQ)
z



and

ZM = PI - RI + QR(I -I )'- PQI '•:• , ' -i V
x x -KZ z y xz

ZM = QI + PR(I -I ) + (P2-R2)I ' (4)
y y x z' ' xz

ZM = RI - PI + PQ(I -I ) + QRI
z z xz y x xz

These six simultaneous nonlinear equations of motion completely describe

the behavior of a rigid aircraft. In this form, a solution'• :caif "be; obtained

only by use of analog or digital computers. In most cases;-however, by use- of

proper assumptions, the equations can be broken down.into '.two sets of three .'••"

equations each and these linearized to obtain equations amenable to analytic

solutions of sufficient accuracy. The six equations are first broken up into

two sets of three simultaneous equations. To accomplish this, the aircraft is

considered to be in straight arid level unaccelerated flight and then to be

disturbed by deflection of the elevator. This deflection applies a pitching

moment about the OY axis, causing a rotation about this axis which eventually

causes a change in F and F , but does not cause a rolling or yawing moment
X Z

or any change in F ; thus, P=R=V=0 and the ZF , ZM , ZM equations may be

eliminated. This leaves three equations describing the so-called longitudinal

motion: •' r "-' '

ZF = m(U'"+ WQ) • < . --- : (5)

• •-. • • • .1 . ...•; . • • ' . - ,

Z F = m ( W - U Q ) • - . - . - . .•:. ,(6)
Z

ZM = QI . (7)y y . •••i '.•• • • • ' - • : •

The applied forces and moments acting upon the aircraft will next be considered,

and then the equilibrium longitudinal flight conditions will be examined.



2.2 APPLIED FORCES AND MOMENTS

To complete the mathematical representation, it is necessary to expand

the applied forces and moments which are of an aerodynamic or gravitational

origin. For example, the components of gravity along the X and Z axes are

a single function of the angle 9 between the X axis and the horizontal,

F , gravity = mg sin

F , gravity = mg cos
Z

(8)

For the longitudinal.analysis, the forces in the X direction and the Z

direction may be considered to be functions of: (a) the coefficient of thrust,

C ; (b) the angle of attack, a; and (c) the controls 6t = tail deflection,
ri si

and <5fw = flap deflection from 60°. These forces may be expressed as: '

pVaS
Jx WT'1o

C (C_fa)6t + C (CT,a)6f, - mg sin 6

(9)

EFz= — K (CT»a>o '6t
(CT'a)6t

+ mg cos 6

(10)

where the coefficients Cx , Cx~ , etc. , are determined empirically by wind

tunnel testing. (In this testing, thrust variation was studied by blowing

compressed air through the engines of the model. The cpefficients are tabulated

and/or presented graphically in Ref. [1].) The Y-moment equation describing

pitching motion is giveri as

,,a) + C (C ,a)6t 4- C
m6t T

(CT,a)6f
T 3

2 2
P<Sc2

m a
(11)



where the C coefficients are obtained from Ref. [1], The differentialm
equations describing the longitudinal dynamics are .then given as

pv2s r -,
U = -g sin 6 - WQ + ~~- C + C 6t + C 6fJ (12)

2m x Xo x .... 3L o ot of- J
-

W = g cos 9 + UQ + -=r- C + C 6t + C 6f , (13)2m z z - zKc 3o 6t Of- J,

PV2S T

L

2 • ' -2 2-' ' •=
pV Sc T -i pV Sc r

Q = -=f— C + C 6t + C 6f +—7=— C Q + C a (14)
21 m m~ m-,. 3 41 m m*
y L o 6t 6f- J 7 L q a .3

The equilibrium flight conditions that satisfy these equations will next be

determined.

2.3 EQUILIBRIUM FLIGHT CONDITIONS

For steady flight conditions, the rates of change in the dynamic equations

are zero, i.e., U=W=Q=0. For the basic aircraft, we shall consider that the

horizontal tail is the only control used to maintain equilibrium flight condi-

tions and that the flap is set at full 60° deflection, i.e., 6f_ = 0. There-

fore, the equilibrium conditions are described by

0 = -g sin 9 + -f- C + C 6t (15)|C + C 6tl
L Xo X6t J

0 = g1 cos 0 + —£— C + C St (16)
2m L zo Z6t J

pV2Sc
0 = -=f— |C + C 6t| (17)C + C 6t

Lmo m6t JL I 1U 1"JC^y L o ot



2.3.1 Steady Level Flight

For straight and level steady flight, the flight path angle y equals zero.

Thus, since y is defined as

y = 6 - a, (18)

for level flight we have 6 = a. The X force equation is then

pV2S
C (CT,a) + Cx 6t =0 (19)
o St

For straight and level flight prior to initiating the glide slope, V = 75 knots
3

and Thrust = 23,000 Ibs. This yields a coefficient of thrust

CT = -V= 1.71 (20)

In solving for a, C (C = 1.71, a) is approximated as
X i.o

C (C_ = 1.71,0) = C (C =1.71, o=0) + 1-5̂ ] (C =1.71,0=0) (21)
X J, X -1. \ OUl / _Lo o

*
where from curves of C , we obtain

xo

C (C = 1.7.,a=0) - (-.25) C (C = 1.71,ct=0) - 0.0 (22)
xo T xa T

For a within a region near zero, C may also be neglected
X6t

3C
* — x

The notation C = —5— is used.x 3a



Hence

pV2S
- 1.71,0-0) (23)

or

a = (.284)(-.25) = -.071 rad = -4.1 deg = 9 (24)

To maintain constant pitch, it is necessary to introduce.a constant longitudinal

trim 6t. This is calculated using the equilibrium Y-moment equation,

f- Cm (CT'a> + Cm, '
y L o ot

(25)

This requires

or

C (n = 1.71, a = -4.1°) = C (C,,, = 1.71, a = -4.1°)6tm l o m ~ T
o . ., 6t • .

0-15

(26)

Hence, for straight and level flight at V = 75 kts, T = 23,000, the aircraft
3.

is pitched down at -4.1° and the horizontal tail has a trim value of -1.75°.

2.3.2 Steady Flight Down Glideslope

On the glideslope, the velocity is held at 75 knots and the glideslope arid

flight path angle are -6°. The relationship between flight path angle and angle-

of-attack is given by Eq. (18). Thus, 9 = a - .105. The X-force equation is

then given as

0 = -g(a - 0.105) +
2m -x WT'̂ X6t

6t (27)

10



again neglecting C (C ,o=0) and C (C ,05=0),
xa X6t T

a = > 1 0 5 + 2 m f °x (CT>a=0) (28)

Now noting for a range of C about 1.0 that C (C , o=0) is approximately
•L X 1

constant at -.25 yields

a = 0.034 rad = 1.94°
o

and <29>

9 = -4.1°
o

The vertical equation in equilibrium is given as

pv2 f "I
0 = g cos 6 + —J- C (C a ) + C (C a )6t (30)

2m [ o T ° Z6t T ° J

Neglecting the contribution of the tail yields

Cz (CT'ao) = ~4'
o

This condition for C is satisfied at C = 1.32 or T = 17,500. From the
2 ±.
o o

pitch equation, the longitudinal trim, is given by

-Cm (CT '-ao> = Cm, (CT 'aoo o ot o

yielding



These equilibrium points analytically determined agree very closely to those
F91obtained via NASA simulation of the nonlinear equations and relationships.

2.3.3 Steady Pitched-Up Flight Down Glideslope
t • -

In NASA simulations, subject pilots objected to the nose-down attitude

because of the relatively large change in pitch attitude required prior to

landing. In order to fly the plane in a pitched-up attitude, less than 60° of

flap deflection must be used. An equilibrium pitched-up condition with a 6f

input is now calculated. ' . - -

In the approach condition, the thrust is set at 13,200 Ibs and the desired

attitude is 2° pitched up. Since the aircraft is approaching on a 6° glideslope,

the angle-of-attack is therefore 8°. For equilibrium flight, the X force

equation satisfies the relationship

0 = - sin 6 +
pV2Sa
2mg + C 6t -t- C 6fJ (33)

Xo X6t X6f 3

Using coefficients from NASA data, this equation becomes

.00486t + .016 6f. = -.224 .

The moment equation must satisfy

0 =
pV2Sca
2Iy m + C 6t + C 6f_

m6t m6f3
 3J

(34)

or

-.093 6t + .0025 6f = .3 .

Solution of- these simultaneous equations yields 6f = -13.1° and 6t = -3.5'

12



2.4 LINEAR MODEL DEVELOPMENT

Since the general nonlinear longitudinal equations are not amenable, to

analytic study, linear models of the aircraft are now developed. In the analysis

to follow, the aircraft is always considered to be in equilibrium flight before

a disturbance is introduced. The linearized model of the aircraft then describes

the dynamic behavior of the aircraft about the equilibrium operating point.

2.4.1 Linear Equations of Motion

Previously, the components of the total instantaneous values of the linear

and angular velocity resolved into the aircraft axes were designated as U, V,

W, P, Q and R. Since these values include an equilibrium value and the change

from the steady state, they may be expressed as

U = U + u
o

W = WQ + w \ (35)

Q = Q0 + q

where U , W , etc., are the equilibrium values and u, w, etc., are the

changes in these values resulting from some disturbance.

Similarly, the external forces and moments are written as the sum of equi-

librium components and deviation from equilibrium, e.g.,

ZF = EF + ZAF .
X X X

o

For the development of the linear model, a body axes system known as the

"stability axes system" is introduced. This system is widely utilized in air-

craft analysis and introduces several simplifications. For example, the OX

axis could be aligned with the longitudinal axis of the aircraft; however, if

it is originally aligned with the equilibrium direction of the velocity vector

13



of the aircraft, then W = 0. This is illustrated in Figure 1. In Figure 1

the axes X , Y , Z are earth reference axes; the X , Y , Z , are equilibrium

aircraft axes. For any particular problem the aircraft axes, after being

aligned with the X axis into the relative wind, remain fixed to the aircraft

during the study of perturbations from that initial flight condition. Such

a set of aircraft axes are referred to as "stability axes". The stability axes

will be used in all the dynamic analysis to follow. As can be seen from

Figure 1, 0 and y are measured from the horizontal to the stability X

axis. The angle y is often referred to as the "flight path angle" and is

defined as the angle measured, in the vertical plane, between the horizontal

and the velocity vector of the aircraft. By using stability axes, 0 and y

are equal. The definition of attack is standard, that is, the angle between the

velocity vector (or the relative wind) and the wind chord. As the change in 0,

which is equal to 8, is caused by a rotation about the Y axis then q = 0.
• • • •

Under these conditions U.- = U" + u, W = w. and, as U .is constant, U = u
o o

and W = w. As the aircraft is initially in unaccelerated flight, Q must be

zero, thus Q = q. Making these substitutions, the force equations (5) and (6)

become

EAF = m(u + wq) (36)
X

EAF = m(w - U q - uq) (37)
Z O

By restricting the disturbances to small perturbations about the equilibrium

condition, the product of the variations will be small in comparison with the

variations and can be neglected, and the small angle assumptions can be made

relative to the angles between the equilibrium and disturbed axes. This last

assumption somewhat limits the applicability of the equations, but reduces them

to linear equations. Thus, Eqs. (36) and (37) may be written as follows with

the addition of the pitching moment equation

ZAF = m u (38)
X

EAF = m(w - U q) (39)
Z O

EAM = I q (40)y y

14
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FIGURE 1 STABILITY AXIS SYSTEM
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It is now necessary to include the applied forces and moments in the

linearized framework. From Eq. (9), the force in the X direction is given as

- (EF + EAF J = -g sin 0 +
«t I -.r v I °X Xo

pV2S

2m
C (C_,a) + C (C ,a)6t
x 6t

+ C (C a)6f
6f3

(41)

Thus, the force in the X direction may be considered to be a function of

a (angle-of-attack), T (thrust), and 0. Linearization about the equilibrium

operating point yields

- IZF + ZAF J = -
m V x x/

-
SAFx) - -g S±n Go - ^ COS 9o) + 1ST Cx (CT 'al o o

+(2/V )C u+Ca x xo
a + C 6T+ |c (C ,a ) + C a

a X6T X6t To ° X6trt
L. Ot

+ C 6T~] (6t + fit) +x**- °6t6T J

(CT '

a

(42)

6T

where

C ^
xa y

(43)

3C

"fit a

,a ), etc. (44)

16



Then since the equilibrium condition is

PV

= -g sin
c (CT '^ = °
o o

(45)

and neglecting second order terms, the force in the X direction is

1 PV^S (_
- ZAF = -(g cos 0 ) + -r2- < C a + C 6T + C 6t + C
m x o 2m ) xa *6t Xfit >

6f

+ (pV S/m) C u
3. X

o
(46)

where C = C (C_ ,a ), etc.
Xr Xr T * O
ot 6t o

The differential equation describing velocity variation in the X direction is

therefore given as

u + (g cos 0o)6 - -£- C^a - -£- ̂ ĉ T + Ĉ 6t + C^ 6£,

+ (pV S/m) C u
3. X

o
(47)

Similarly, the linear differential equations describing the variations in the

Z direction and the pitching motion may be derived as

2m
C <ST

Z6T
+ C fit + C 6fJ

26t Z6f3
 3J

+ (pV S/m) C u
a z

o
(48)

17



and 2 2

pV Sc _ pV Sc _ pV Sc pV Sc _
q - — TT — C « - -r^— C a = -=f— C 6lM - '-

4Iy m M 41 m- ~_q y a y a y l o T

+ C 6t + C 6f, (49)
m<5t

It should be noted that the coefficients C ,C , C , C , C , and C ,
xa X6t za Z6T ma m6t

are obtained from slope measurements of curves of C , etc. Also note that
X

Sn - Cm (CT '°'0
)

q q o

2.4.2 Short-Period Mode Approximation and Model Validation,

1. Short-Period Mode Analysis; The characteristic modes for nearly all

aircraft in most flight conditions have two oscillations: one of short period

with relatively heavy damping, the other of long period with very light damping.

The "short-period mode" consists primarily of variations in a and 6 with very

little change in the :forward velocity. Therefore, to approximate the short-

period mode, let u = 0 in the equations of motion and also, since forces in

the X direction contribute mostly to changes in forward speed, the X equation

is neglected. The equation may then be put into the following form (using Laplace

variables for this segment of the analysis)

[- ̂L Sq
s - C a(s) + - s + S§ sin 0 9(s) = C 6T + c" 6t

Sq Za/ L Sq Sq °J Z6T Z6t

+ C" 6f ,. (50)
ZXf 3

6f3

18



m - 7 c s 6(s) = C 6T + C 6tm — 2U m m~ m~
a a Sqc q 6T ot

(51)

-
where q = — — , Letting 9 = 0, the determinant of the homogeneous equation

may be put into the form

s (Ds 2 + DS + D) = 0 (52)

where

Sqc/\Sq

D = - C C - - C
0 2U mq za Sq ma

Dividing Eq. (52) by D^ and writing in the standard quadratic form with

and a) , then

Explicitly we obtain

'C C

2 Sc ma.
(55)

19



and

21
=- c + c + —^ c
4 \ m m* 2 z ;\ q a me ay

2
me

/C C
/ m zq c

L y \ 2

2mC \
* ma

pSc /_

(56)

2. Linearized Model Validation; The STOL transport aircraft has been

simulated at NASA-Langley Research Center using the general nonlinear equations

with the aerodynamic coefficients obtained via table look-up. The short-period

dynamic response characteristics of the aircraft have been determined empirically

by measuring the response of the simulated aircraft to simple inputs. Results

for the basic aircraft at 75 knots and T = 23,000 are,

0) = 1.41
n

= 0.71 .

These numbers provide an opportunity to evaluate the linear model developed

herein by calculating to and £ using the derived short-period expressions.

From the aerodynamic data, we obtain

Cm = Cm (CT >V - -27'00q q o

/3C \
: = 1-5-5-) (C ,« ) = -7.45z \3a / v T o
a x ' o

'9Cm
-» \ 3o/ (CT ̂  = -2'1a v ' o

m*a
C (c ,a ) = -11.0m * T oa o

Substituting these values into Eqs. (55) and (56) yields

20



0) =1.44 ? = 0.66n

These results agree very well with those values obtained experimentally with

the nonlinear simulation and lend credence to the linearized model.

2.4.3 Development of State Space STOL Models

The linearized differential equation describing velocity variation in the

X direction given in Eq. (47) may be rewritten as

u' = (2qSC /mV )u' -I- (qS/mVa)a' - (g cos 9 /V )
X 3- O 3
O

+ (qS/mV ) C 6T + C 6t + C 6f
N5T NSt X6f, 3

(57)

the equation describing variation in angle-of-attack as

a' = (2qS/mV ) C uf + (qS/mV )C a1 + q - (g sin 6 /V )9
a z a z o ao a

+ (qS/mV C 6T + C 6t + C Sf
'6T '6t Z6f 3

(58)

and the pitching moment equation as

q + (qSc/I )C a' + (PVaSc
2/4l )C a' + (pV SC

2/4I )C q
* a y a1 y q

= (qSc/I ) C 6T 4- C 6t 4- C 6f,
y I m6T mSt m6f, 3

(59)

where we have introduced the variables

u1 = u/V a' = w/V q = (pV /2)
3. 3. 3,

21



Substituting the expression for a1 given by Eq. (48) into Eq. (59) yields

a' z u (qSc/Iy)C

+ (pV ScZ/4Iv)(qS/mVfl)Cm.C^ [a +a' m« z .a a)

f jq.- |(PVaSc
2/4Iy)(g

"a a

(qSc/I ) C 6T + G 6t + C 6f_,
nip • mr / J I«_

6T
p
6t

(pV
a m«

C 6T + C St + C 6f
'6T Z6f3

 3|
(60)

Now defining a state vector x = col[u', a1, q, 6] and a control vector

u = col[6T, 6t, fif ]. Equations (57), (58) and (60) may be put into the vector

matrix form

x(t) = A x(t) + B u(t) (61)

where the matrix elements a(i,j), b(i,j) are

a (1,1) =. (2qSC /mV )
X 3.
o

a(1,2) = (qS/mV; ).,
a.

a(l,3) = 0.0

a(l,4) = -(g cos 6/V V
O ct

,l) = (2qS/mV.

a(2,2) = (qS/mVQ)C
3. Z _

22



a(2,3) = 1.0

a(2,4) = -(g sin 9 /V )
O 3

,l) = (PV Sc2/4I )(2qS/mV)C
a y - a Z

0

a(3,2) = (qSc/I )C + (pV Sc2/4I KqS/mVjC C
y mct a y a mct za

a(3,3) = (pV Sc2/4I )C + (pV SC
2/4I )C

a y mq a y

a(3,4) = -(pV Sc2/4I )(g sin 8 /V )C
a y o a m •

a(4,l) = 0.0

a(4,2) = 0.0

a(4,3) = 1.0

a(4,4) = 0.0

b(l,l) = (qS/mV )C , etc.
a X6T

The remaining elements of the _B matrix are readily obtained from Equa-

tions (57) - (60). To obtain models for various conditions, the aerodynamic

coefficients are simply evaluated for the particular flight condition of

interest. Stability derivatives such as C are calculated from slope
ma

measurement.

To investigate approach and landing, it is necessary to include altitude

variations within the model. Since the linear model describes variations about

an equilibrium flight condition coming down the glideslope, the altitude

23



perturbation equation will describe altitude variations off the glideslope at

a particular instant. Specifically, the sink rate is given as

h = V sin y (62)

and from the definition of the stability axis system,

h = V sin (0 + 6 - a') ' (63)
o

Assuming small angles, the linear perturbation equation for vertical distance

off the glideslope is given as

Sh = -Va' + V9 + u0 (64)
o ,

or dividing by V,

Sh' = -a1 + 6 + u'0 . (65)
o

One additional variable must be included to model the fact that changes in

throttle do not lead to instantaneous changes in thrust. .The dynamics of the

engines are modeled as a first order lag in our linearized dynamic model of the

STOL. Specifically,

6T = â T + 3̂ 61 (66)
T T c

where ST is the throttle commanded change in thrust level. Curves of 6T

response to step changes in the 6T are given in Ref. [1]. From this data
c _1

an approximate thrust time constant a = .5 sec was selected.

2.4.4 Wind Gusts and Ground Effect Disturbances

Wind Gusts: The STOL aircraft is subject to vertical random turbulence

during the approach phase. This is modeled by passing Gaussian white noise

through a first order shaping filter, i.e.,
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/V \
= -L° w\LW; n(t) (67)

or,

a1 = - -^ a1 + -^ (68)

where w is vertical wind gust velocity, a' is the increment in angle-of-
O O

attack created by the wind gust and where E{n(t)n(x)} = 6(t-t). L is taken
w

to be a nominal value of 500 and a is 2, 4, and 6 for light, moderate, andw
heavy turbulence, respectively. (These numbers are chosen to correspond with

NASA simulation parameters and, as in the simulation, the vertical gusts are

reduced to zero between 100 and 50 feet altitude.) In studying the flare and

landing portion of the flight, the turbulence may be neglected, since flare

begins at h£ * 41 ft. (hQ * 53 ft.).*

Ground Effect; As the externally blown flap STOL approaches the ground,

adverse ground effects arise. Specifically, a nose down pitching moment, a loss

in lift, and a decrease in drag are created. The effects of ground proximity

on C and C begin at an altitude of approximately 60 ft and increase in
o m

severity, almost linearly with (60 - h), to touchdown. The effects of ground

proximity on C begins at a lower altitude and increases rapidly in an almost
J_i

linear manner. The incremental changes in pitching moment, lift, and drag

coefficients due to ground effect are presented in Figure 2.

The dynamic changes in the aircraft states due to the ground effect input

may be expressed as

The turbulence, by acting during approach, does effect the initial conditions
at the flare altitude. This indirect influence of the turbulence is considered
setting up conditions at flare initiation.
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(69)

However, assuming a nominal value for C (h) =.-0.15 and a.nominal flare time

(-5 sec.), the change in airspeed due to ground effect is a small increase of

approximately two and a half feet per second. This small effect is neglected

in the subsequent modeling.

The lift and moment coefficients may be approximated as

CL(h(t))

( 0.0

(.0045)(h(t) - 41.)

L (.014)(h(t) - 32.)

4.1 < h

28. £ h £ 41.

0 < h < 28.

(70)

CM(h(t)) =

0.0

(.004)(h(t) - 60.)

60. < h

0 < h < 60.

(71)

To include the ground effect within the dynamic model, two states are defined as

cL(t)

x0(t) = CM(t)

0 < h < 41.

0 < h < 60.

(72)

Thus, the perturbations due to the ground effect may be expressed as
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V

_ q _
se

mV Xlo

1^ X2
L. v -1

0 < h < 41.

0 < h < 60.

(73)

and the variations in x- and x~ given as

V

A_
=

~m(t)n( t) "

.004 n(t)

0 <_ h < 41

0 £ h £ 60

(74)

where m(t) = .0045 for 28 < h < 41, .014 for 0 < h < 28. The total sink

rate is

h(t) = V Y + V (-a1 + 9 + u'0 )
o o o o

(75)

Equation (74) may be most conveniently modeled as a deterministic time varying

input given as

x(t)

, 9(t),

z(a'(t), 6(t), z(t)

(76)

Equations (76) and (74) may then be used to include ground effects as an external

input disturbance in the STOL model.

2.4.5 Dynamical Models of the STOL ,

Basic Aircraft; An overall dynamic model of the basic STOL aircraft

during flare may be obtained by combining the equations describing the aircraft,

and the ground effects. This model is given as
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x = A x + B u + F z(t) (77)

where x = col[CL, C , u1, a', q, 9, <Sh', 6T], u_ = col[6l , St]

A =

0

0

0

V
0

0

0

0

0

0

0

0

a
SP

0

0

0

0

0

an
S21

a31

0

0

0

0

0

a!2

322

a32

0

-1

0

0

0

0

1

a33

1

0

0

0

0

a!4

a24

a34

0

1

0

0

0

0

0

0

0

0

0

0

0

bll
b21

b31

0

0

~aT

-

0

0

0

0

0

0

0

aT

*«

0

0

b!2

b22

b32

0

0

0

and

F' =
1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0
(78)

where

8P

(79)

z.(t) = .0045[-V y + V (-af + 9 + u'0 )] 28 < h < 41.1 o o o o — —

z.(t) = .014[-V Y + V (-a1 + 9 + u'0 )] 0 < h < 28.1 o o o o — —

z.(t) = .004[-V Y + V (-a1 + 9 + u'0 )] 0 < h < 60.2 o o o o — —
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The coefficients are evaluated for the aircraft in the basic pitched-down

equilibrium condition.

Autospeed; Through simulation experiments, the basic STOL aircraft repre-

sented by Eq. (78) was found to possess several major longitudinal deficiencies:

• sluggish initial pitch response;

• low apparent pitch damping;

• large pitch excursions associated with changes in thrust, flaps, and

spoilers; and

• a phugoid with an unusually short period.

Due to these characteristics, there is poor pilot control of pitch attitude

and, hence, poor control of airspeed. As a result of these difficulties, several

augmentation schemes have been developed to improve the stability and control

characteristics of the aircraft.

The first augmentation system to be considered was an autospeed system

that maintained the desired airspeed by driving the third segment flap. To

neutralize the lift increment resulting from flap deflection, an interconnect

to the symmetric spoilers was provided, thus effectively decoupling the forward

and vertical modes. The autospeed system accomplished three objectives: (1) it

eliminated the phugoid mode which was the source of much of the basic longitu-

dinal handling difficulties, (2) it provided good speed control, and (3) it

relieved the pilot of the speed control task and, hence, considerably reduced

pilot workload. In addition, since the autospeed system moves the flaps to

maintain speed, the pilot is able to trim the STOL in a nose-up attitude (as

described in Section 2.3.3). It should be noted, however, that the pilot must

still control pitch.

A dynamic model describing the state variables of the STOL aircraft with

autospeed is developed by removing forward velocity variation from the model
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presented by (78). This is a justifiable modeling approach because of the

decoupling nature of the autospeed system. This model is given in the form of

Eq. (77) with x = CO![CL, C^ct
1 , q, 9, 6h', 6T]

A =

0 0 0 0 0 0 0

o o o o o o o

agL ° a22 l a24 ° b21

0 agp a32 333 S34 ° b31

0 0 0 1 0 0 0

0 0 - 1 0 1 0 0

0 0 0 0 0 0 -aT

1 =

0 0

0 0

°, b22

o b32

0 0

0 0

aT 0

1 =

1 0

0 1

0 0

0 0

0 0

0 0

0 0

(80)

where the coefficients are evaluated for the pitched up equilibrium position.

Autospeed plus Pitch Command and Hold: Due to continued difficulty in

controlling pitch, a pitch attitude command system was incorporated with the

autospeed. This system allowed the pilot to trim the aircraft to the pitch

attitude required for touchdown early in the approach. No subsequent pitch

changes are necessary since the command system automatically maintains the

attitude throughout the remainder of the approach and landing. This configura-

tion of the aircraft is modeled by removing pitch rate, pitch, and horizontal

tail from Equation (80). This yields the following model for the fully augmented

STOL aircraft

0 0 0 0 0\
a'

6V

6T

22

0 0 -1 0 0 <5h'

0 0 0 0 -aT

+

0

0

0

3T

6T +
c

1

0

0

0

Z;L(t) (81)

31



where the coefficients are evaluated for the pitched-up equilibrium condition.

In this configuration, the pilot's only task is to control altitude and sink

rate with thrust.

In summary, state space models in the form

x(t) = A x(t) + B u(t) + F £(t) (82)

have been developed for three different STOL configurations:

1. Basic Aircraft,

2. Autospeed, and

3. Autospeed plus pitch command and hold.

Numerical values for the A and _B matrices are given in Appendix B. In the

next chapter, a model for the pilot will be developed for the flare task that

can be used to predict pilot response.
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III. PILOT MODEL DEVELOPMENT

A model for the pilot is developed, based on the optimal control model for
f 2-51

human response, that includes the terminal control aspects of the landing

task and pilot adaptation to the ground effect. The treatment of the finite

time aspects and open/closed loop interrelationship is an important extension

of existing results in man-machine systems analysis.

ff

3.1 PILOT MODELING - GENERAL BACKGROUND

The pilot modeling techniques used in this study are rooted in optimal

control and estimation theory. They are based on the assumption that the well-

trained , highly motivated pilot behaves in an optimal manner subject to his

inherent limitations and constraints. This modeling approach is capable of

treating multivariable, and time-varying systems within a single conceptual

framework using state-space and time-domain techniques. It is, therefore, well-

suited to the pilot-STOL system described in the previous sections. The

generalized modeling framework facilitates extensions to cover the terminal

control aspects of pilot response.

The basic operator modeling techniques are documented extensively in the
f 2-51

literature;1 therefore, only the salient features are described below in a

general context. The model extensions necessary to treat the terminal time

aspects of the landing task are developed in the following sections.

3.1.1 System Description

The structure of the optimal control model of human response is shown in

Figure 3. It is assumed that the system dynamics (which also include any per-

tinent noise shaping filters) are described by the linear time-invariant

equations

The time-varying case is discussed in Ref. [5]. T?or the STOL problem studied
here, the linearized system dynamics are time-invariant.
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x(t) = Ax(t) +IJu(t) + .Ew(t) + Fz/t) (83)

x.(0) = given

where the n-vector x.(t) represents the system state, ii(t) = col[u.. ,u~,.. .u ]

are the human's control inputs, and where w(t) represents random input forcing

functions, e.g., wind gusts. w(t) is assumed to be a zero-mean, Gaussian

white noise process (possibly nonstationary) with covariance

E{w(t) w'(0)} = W(t) 6(t-a) (84)

The term ẑ (t) in Eq. (83) is used to generate input forcing functions

that are not stochastic in nature, but are more aptly regarded as "deterministic"

inputs. In the modeling of pilot response, it is assumed that z(t) is the

time rate of change of inputs such as wind shear, ground effect, etc. For example,

the scalar equation

xx(t) = z(t) (85)

can be used to generate a "deterministic" input x-(t). We assume that the pilot

can continuously estimate the quantity x (t) = z(t) from displayed information,

but does not so estimate z(t). Thus, x1(t) must be modeled as a state variable
*

as in Eq. (85).

The human observes a set of outputs y_(t) = col[y ,y?,...,y ] that is

related linearly to the system state and control,

= C x(t) + D u(t) (86)

where the matrices C_ and D^ can be time varying to model gains on display

variables that change with time or altitude. The usual assumption in the model

A generalization to Eq. (85) is x-(t) = x_(t), x2(t) = z(t). This would be

used of x«(t) appeared explicitly in the system equations (83) or contributed

directly to a displayed signal.
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is that if a quantity y. is explicitly displayed to the man, he also derives

the rate of change y.. Thus, (̂t) contains both position and velocity infor-

mation of a displayed signal, but no higher derivative information.

3.1.2 Human Limitations

The human has inherent limitations of time-delay and perceptual noise

(i.e., remnant). These quantities are associated with the observational process

in the man model, so that the human is assumed to perceive y (t), a delayed,

noisy replica of y(t). Thus,

Zp(t) -t) +

The time-delay x is nominally T = . 2 + . 05 sec. The "observation" noises are

white, independent, and have covariance

E{v ±(t) v ±(a)} = V ±(t) 6(t-a) i=l,2,...,m (87)

When directly viewing y.(t), the associated covariance V . is assumed to

scale with the variance of y.(t), i.e.,

Vy±(t) = py.E{yJ(t)} (88)

For full attention on a single display indicator, the noise/signal ratios p .

on position and rate typically have a value of .Olir, i.e., v . (t) has a

-20dB normalized power density level. When there are K > 1 display indicators,

the human must allocate his attention among the various displays. Let n.

denote the attentional allocation to display indicator k. Then, neglecting

the time spent in inter instrument scanning, we have

K
Z n. = 1, 0 <a < 1
k=i k k
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If displayed variable y.(t) is obtained from indicator k, the effect of

attentiorial allocation is to modify the noise/signal ratio p. according to

pyi - p;±/nk (90)

where p°. - . Olir is, the noise/signal ratio that corresponds to full attention

on indicator k. Methods for determining ru within the optimal control model-
1C

ing context are discussed in Refs. [2] and [5]. However, these methods are

difficult to apply, and are generally applicable for steady-state situations

only. In the present STOL effort, we do not attempt to solve the display atten-

tional allocation problem in the time-varying or finite time case. However, in

order to include some effects of attentional allocation, albeit in a crude

manner, we set a = 1/K. Thus, we assume an equal division of pilot attention
, K.

among the primary instruments needed for control.

In addition to time-delay and perceptual noise, we include perceptual/

indifference thresholds on displayed information. Clearly, a pilot will not

react to changes in a displayed variable if the indicator motion is smaller than

his observational thresholds. Thus, in perceiving quantity y.(t), we write

j

ypi(t) = f±(y±(t-T)) + vy±(t-T) (91)

where the threshold nonlinearity f.(«) is

x >_ a

-a £ x £ a (92)

x _< -a

>. . i

The nonlinearity f(•) is replaced in the pilot model by its equivalent

"Random Input Describing Function". This statistical linearization gives

f (x) * I • x (93)
X
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where f is a gain that varies with the mean and standard deviation of x(t).
• X : ' •

Expressions for f are given in [4]. Values for the thresholds a. depend,

in part, on the physiological limitations of the eye in sensing motipn, as well

as on the specific instrument markings used.
i.

3.1.3 Task Definition

It is assumed that the human's control task is adequately reflected in the

choice of a control u(») that minimizes the cost functional

J(u) = lira E
f

Y / [y.1 (t) + u' + u'(t)Q-u(t)]dt (94)

conditioned on the perceived information y (•)• The first term in J(u_) is a

generalized mean-squared error criterion where Q depends on the task specifics.

The control rate term is used to account for the human1s limitation on the rate

of control motion, and introduces "neuro-mbtor" dynamics in the man model.

The selection of the weightings Q = diag [q .], Q = diag [q .] and

Q* = diag [q*.] in J(u) is a non-trivial step in applying the man-model. In

any specific situation, these parameters are dependent on both the human's

objective task requirements and his subjective mode of behavio'f. One useful

q . is by
ui

method for selecting reasonable a priori estimates for q . and

associating these quantities with allowable deviations in the system variables.

Thus, we let

i,max
u
i,max

(9.5)

where y. is the maximum desired, or allowable, value of y.; u. is

the maximum control deflection. This method of choosing weightings has intuitive

appeal. First, maximum or limiting values of system quantities are often easy

to specify, or elicit by pilot questionnaire. Second, the contribution of each
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2
term q .y.(tz) to the total cost depends on how close y. is to its maximum

value. Because of the normalization (95), each y.(t) will not contribute

significantly to J(u) provided ly.| < |y. |. When |y.| > |y. |, the
fy x x,max X— i,max

contribution to J(u_) of q.y.(t) increases rapidly with y.(t). The analogy

to manual control is that there will be little concern over minimizing y.(t)

if this quantity is well within allowable limits.

One method that can be used for selecting the weightings q-. on the

human's control rate is similar to that for q ., i.e., let

(96)
u.i,max

Here, u. is the maximum rate that a human can (or will) input a control
' i,max l

u.. However, we choose to associate the weightings q* with the human limita-

tions directly. Weighting u in the cost functional results in first order

lags being introduced in the man model. There is a first order lag time constant

Tn. that corresponds to each control rate weighting q*.; the smaller one sets

q'., the smaller is the resulting Tn.. In the model, the lags Tn. are

associated with the man's "neuromotor" dynamics, where past modeling efforts
[2]

show typically Tn. - .1 sec. Thus, the weightings q*. are adjusted
1 *

iteratively until each T - .1 sec.

3.1.4 The Pilot Model

The "human's" control input (i.e., the control that minimizes J(u)) is

generated by the feedback law

Ti(t) + u(t) = -L x(t) + v(t) = ut) + vt) (97)

If the resulting q«. weighting is such that l/^/q*. is much greater'than the

physical rate at which one can move control u., then Eq. (96) must be used.
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where x̂ (t) is the best estimate of the system state jc(t). v (t) is a white

"motor-noise" that represents a human's imprecise knowledge of generated control

inputs and has covariance

v (t)v' (0)
u.
X

u. (t) 6(t-a) (98)

where a good approximation to the covariance V (t) is

u = Pu ' E{ui(t)}
i

(99)

The motor noise/signal ratio pu- - ,003ir, i.e., vu (t) has approximately

-25dB normalized power density level.

The feedback gains L^ and the r x r matrix T are given by

T = P Pf
-22 M

(100)

where

P = 1

P1
£12 *22

satisfies the equation

ZnA + A'PU + c'o c

PUB + A'P12 + C'QyD - Zl
> -1 „ = 0 (101)

= 0
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The,estimate x_(t) is obtained.from the cascade combination of a Kalman

filter and predictor that compensate optimally for the human's observation noise

and time-delay, respectively. The filter is defined in terms of the augmented

-state vector % = col [x(t) , _u(t)]. The filter generates _p_(t) = Efx(t-T) |y_(a) ,

a _< t} at time t >_ T of the past state (̂t-f) and control u(t-r) from

£(t) = A £(t) + B - C £(t) ] (102)

where

A =

"A ]J ~

~"-— • •""•—— —

0 -T"1
i _,-, j

5 1 =

- £ -

- — n -

c= r (103)

and V is given by

= diag [V(t)/fyi] (104)

The matrix £(t) , t >L T satisfies the time-varying equation

= A W(t) - (105)

where

W(t) =

EWE' + FZF'

— n
v Tt
— u — n

(106)

and Ẑ (t) = diag [z (t), z (t),...,z (t)] (n = no. of deterministic inputs).
j. ^ n. z

... •• z •
The initial conditions on Eqs. (102) - (105) are
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(107)

where Y is the man's a priori estimate, of the mean state E(x(t)} at t=0.

£ is the man's initial uncertainty in this estimate.

The predictor generates the best estimate of Ŷ (t) denoted by £(t) from

the estimator output js(t) according to

' £(0 = A X(O + I ut) + e£T I C'V1 [(t) - C £<t)]

(108)

B.(T)

The above equations (83) - (108) define completely the input-output model

of the pilot-vehicle system. Note that the model is time-varying since the

matrix _£ varies with time. These equations can be used to predict pilot

response in closed-loop tracking tasks. The model inputs include the vehicle

dynamics, cost functional weightings and human limitation parameters. The model

outputs include statistical predictions of system performance. In steady-state

situations, one may also compute input-output transfer functions and power
T21density spectra.L J

3.2 COVARIANCE EXPRESSIONS AND STATISTICS

Analyzing the behavior of a time-varying system is best accomplished using

covariance propagation methods. This results in predictions of both the mean

system response and the standard deviation in this response. The mean response

is the system response to a specific input ẑ (t) in Eq. (83), and represents

the result one would expect to find by (ensemble) averaging the results of many

trials, each with the same (̂t). The standard deviation results from the

randomness v (t) and v (t) that the human injects into the loop, as well as

from any gust inputs w(t).

* .
If _z/t) -> () and W(t) -»• W = constant, then the man-model reaches a time-
invariant steady-state.



In this section, we present equations for the propagation of %(t~) = mean

state and the covariance X(t) = E{[_£(t) - ]<(t)] • [̂ (t) - X(t)]T). These

expressions give us the capability of analyzing the statistics of the closed-
7 9

loop system response, and are needed to compute E{y.(t)} and E(u.(t)} in

Eqs. (88) and (99). >

The required results are most easily derived using the equations for the

estimation error (see Ref. [4])

ê t) = X(t-T) - £(t) (109)

and the predicted estimate (̂t) . These quantities satisfy

4,(t) = A,6l(t) + K(t)v (t-T) + F z(t-T) + B v (t) (110)
— J. — r — J. — — y i -- -- u

+ (t-T)] an)

where

Af = _A - K C^ = closed-loop filter matrix

A = A^ - ]i L = closed-loop control matrix

K = Z C'V~ = estimator gain at time t- --- y 5

The total state %(t~) at time t is given by

e2(t) (112)

where &_•(*•) is the prediction error,

43



I Afr—n) • ~
e2(t) =1 e^vt u' [F z.(a) + B v (a)] da (113)

J
t-T

The mean-state at time t is obtained by taking the expected value of the above

equations. The results are

X(t) = £(t) + e^T (t) + £(t) (114)

where

= X(t) + e^T M(t) + M'(t) ê 'T + ê T
? ̂ (t) ê '

T + E_2(t)

K(t) C e(t) (116)

e2(t) =/ e^
u ^ F z.(a) da (117)

t-T

XOO = ê  £(T), ̂ (T) = £{̂ (0)} - £(T) (H8>

Expressions for the covariances

X(t) = E{[_£(t) - i(t)] • [£(t) -i(t)]'}

E (t) =E{[e.(t) -I.(t)] • [e.(t) - I.(t)]1} ; i-1,2
"̂  (119)

X(t) = E{[̂ _(t) - x(t)] • [X(t) - ~
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where M(t) is the cross covariance between _̂ (t) and £, (t), are derived by

subtracting Eqs. (115) - (117) from Eqs. (110) - (111) and (113) and taking the

autoco variance. The results are a coupled set of linear matrix equations

+ E-^OA' f + K(t)V (t-T) K' (t) + B

M(t) = Â t) + M(t)Â  + K(t)£ [Ê t) - £(t)] (120)

X(t) = AjUt) + X(t)A£ + K(t)£ M'(t) +M(t)£'K'(t) + K(t)V (t-T)K' (t)

E2(t) =/ e^
vu U'B V.(tf)l' e^vu wda (121)

t-T

where E(t) satisfies Eq. (105). The initial conditions on X, E.. , M, are
1

taken as

X(T) = M(T) = 0, ̂(T) = X(0) = given

Finally, the mean and covariance of _y_(*) at time t are simply

= C x(t) (122)

Y(t) = cov[Z(t)] = C X(tK' (123)

Efficient computer programs have been developed for integrating the mean and

covariance equations (114) - (123) presented above.

The above expressions for the signal means and covariances are of special

interest in predicting the probability densities of system variables. Since

the white noise random inputs w(t) , v (t) and v (t) are assumed to be Gaussian,

and since the closed-loop system is linearized, the system states x.,...,x

are Gaussian random variables. The x. are non-stationary when the Kalman

filter gains K in Eq. (110) are functions of time.
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For a Gaussian variable x, the mean m and variance a are sufficient

statistics for defining the probability density of x,

/ \ 1 I (x-m)'p(x) = —̂  exp - -* '-
/2TT 20*

(124)

Thus, for any state variable x.(t), with mean x.(t) given by Eq. (114), and
2 1 1

variance CJ. (t) = X..(t) given by Eq. (119),

p(xi(t)) =
27T a±(t)

exp <-
[x± - x±(t)r

(125)

is the probability density function of x. at time t. Similar expressions hold

for p(y±(t)) and pCu

Equation (125) is the univariate density of x.(t). Since the x.(t) are

correlated, the multivariate density of x= (x1,x_,...,x ) is given by the
F61 n

general expression,

v - 1
_ exp (126)

where 5£ is the state covariance matrix and |xj = det 3C. The multivariate

distribution of y_ = [y1 ,y ,...,y ] can also be written using the expressions

for £(t) and Y in Eqs. (122) - (123).

3.3 TERMINAL CONTROL

The above section described the pilot model that has been developed to

treat regulation (i.e., tracking) tasks. Modeling pilot response during flare

requires that we treat the terminal control, or finite time aspects, of the

task — namely, to land the aircraft at some intended point on the runway, with

a desired sink rate and attitude.
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. . For. ,the aircraft system defined by , •

x(t) = A jc(t) + 15 v̂ (t) + E w(t) + I? z/t)

(127)

Z(t) = C. x(t) + D u(t)

with

x(t=°) = x(0) = given

it is assumed that a general set of terminal conditions

- H x(T) + c = 0 ' - (128)
d —

must be satisfied where T, is the intended touchdown time.

In order to extend the human operator model to include the terminal control

task, it is assumed that the human generates a control input u (t) such that

the response x (t) of the unforced system,

= A ̂ (t) + B ̂(t), 3̂ (0) = 0

(129)

D

meets the terminal conditions

H x (T) + c = 0 - • • • • - • (130)
-- o d — -. . ,

Clearly, many controls can accomplish this transfer. However, we assume that

the pilot's control is the one generated with least control effort. Thus, we

require u (t). to minimize .

dt
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where the cost functional weightings q*. on control rate are chosen as discussed

in Section 3.1.3. The requirement that u minimize J was motivated by the

fact that a pilot tends to control an aircraft smoothly, minimizing any unneces-

sary rapid control motions.

The control u (t) that meets the terminal constraint (130) while minimizing

the "smoothness" criterion (131) is derived in Appendix A. u (t) is an open-

loop (i.e., feedforward) control given by

u (t) = - Q" B h(t) (132)
— -^ — —

where the time function h_(t) is generated by

n(t) = - A' h(t) (133)
— — o —

with the boundary condition

h(Td) = H^ [HJrfXO, Td)lT r^ (134)

where

W(0,Td) =/ B' ê V'd""' da (135)—O-HJ —o

The matrices A , B , H are
—o —o —o

A more general cost functional

r1"j =/0 J
0

could also be considered. In the present effort, Eq. (131) seemed most reason-
able in view of general pilot technique.
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"A 1"

_ i o.

• H ~

' ^0

' () '

I _

A = ^ H = TH ! o
-° I- ' -

(136)

The control u (t) and the resulting state trajectory x (t) and displayed

outputs y (t) meet the terminal condition (128) only when there are no external

input forcing functions, wind gusts, or pilot randomness entering Eq. (127).

The fact that there are such external disturbances that act on the system give

rise to deviations between the actual (̂t)* as generated by Eq. (127), and the

nominal x (t). Let

6 x = x(t) - x (t)-- — —

j> y_= yjt) -

(137)

denote these deviations. Also, let the pilot's control input be

u(t) = u (t) + 6 u(t) (138)

where 6_ u_(t) is the pilot's corrective control action. The pilot generates

_6 _u(t) to keep variations jS x.(t) from the nominal flight path "small".

From equations (127) - (129), x(t) is given by

j6 x(t) = A jS x(t) + B _5 u(t) + E w(t) + F

5 x(0) = x(0)

(139)

and

6. x(t) + D ̂  u(t) (140)
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We assume that j5 ia(t) minimizes the quadratic corrective cost functional (see

Eq. (94)) , .

6 u(t)

u1 (t) Q6 u(t) ]dt (141)

J(S u) = lim E.

Hence, the human "tracks" the nominal trajectory x , minimizing the deviations

|6_ 3c(t) subject to his inherent limitations. It is assumed tha%-'V (t) is

"known" to the pilot so that ^ £(t) can be obtained from the actual observa-

tions £(t) by Eq. (137). ' . ' ./ . .

. The equations for determining the optimal j5 _u(t) , based on the observed

deviations (140) , are the same as the human operator model equations presented

in Section 3.1. 4. -It is only' necessary .to make the replacements . . ' .

,x(t) +^x(t)» (̂O.̂ lzCt), u(t)

in Eqs. (83) - (108). The result is that the optimal regulating control component

8_ _u(t) is generated ,by . :

u(t) + 6^ u(t) = -L _6 x(t) + Y(t) - (142)

where ^̂ (t) is the best estimate of the deviations ĵc(t). The estimate is

generated by a Kalmari filter-Predictor combination according to equations

(102) - (108) but with X<t) replaced by ^ l(t) - • [ 6_ x(t) , 6^ u.(t) ] , 'etc.

Closed- form expressions for the statistics of the variations &_ x.(t) , &_ vi(t) ,

S_ x(t) are obtained from Eqs. (114) - (123) with the obvious replacements.

Note that the variations &_ jc will contain a mean component _6_* x_ due to the

* - - . . . ' -
The assumption T-x» is most valid when the terminal time T^ is larger than
closed loop system time constants. T-x» conveniently simplifies the model
structure since various feedback gains become constants.
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"deterministic" inputs z_(t) , plus a random component &_ 3C - j$ sc due to wind

gusts and pilot- induced randomness.

The total state 3c(t) at time t is, therefore,

x(t) = x (t) + 6 x(t) .— — o --

The mean, or ensemble average state trajectory is

E{x(t)} = i(t) = (t) + £ x(t) (143)

and the covariance of x(t) is

cov [x(t>] = cov [.6 x(t)J = E{(6 x - AX) (6. x - Ix)1} (144)

By defining u (t) and the resulting x (t) and V (t) in the above

manner, we have tacitly assumed that the pilot is well-trained, i.e., in an

"ideal" situation he c'an control the aircraft to meet the terminal conditions.
•

The decision to omit deterministic inputs (̂t) from the nominal path definition

of x is because otherwise the control u (t) at time t would be a function
-o . -o , -

of the entire future input z(a), t < a < T,. It is unrealistic to assume
- — — — (j

that a pilot has precise a priori knowledge of z(a), t < 0 < T, especially— — — a
since this input is a function of aircraft future attitude. By assuming that

pilot control is dependent on only instantaneous (and past) z_(t), along with

any a priori estimates of z_(t) , the "deterministic" inputs are included

naturally in _§_ Jc(t) . The pilot model then estimates z(t) continuously, along

with the other system state variables, and uses the present estimate of z_(t)

in generating the present control.

3.4 APPLICATION TO THE STOL LANDING PROBLEM

In order to use the model to predict pilot performance in a landing task

it is necessary to prespecify:
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a. the vehicle dynamics and input disturbances,

b. the primary display instruments,

c. the terminal conditions,

d. numerical values for the human response parameters,

e. the cost functional weightings, and

f. initial conditions at the flare window.

For the three different STOL configurations to be studied, the vehicle dynamics

have been developed in Section 2.4 and are presented in the state space format

x(t) = Ax(t) +:Bu(t) + F z(t) (145)

to be compatible with the human operator model. Numerical values for A, JJ are

given in Appendix B. Below, we discuss the display format, the a priori selec-

tion of human response parameters and the cost functional weightings.

3.4.1 Fully Augmented Aircraft

With the autospeed and pitch command-and-hold systems engaged, the pilot's

task is to control altitude using the throttles. The primary displays used are

thus the altimeter and rate-of-sink indicator. Since we assume that a pilot

obtains directly both the position and rate of change of displayed quantities,

the information base is

Z(t) = col [h ft), h(t), h(t)] (146)

where h (t) is obtained from the altimeter and h(t) and h(t) from the rate-
" *

of-sink meter. With the aid of Eq. (81) displayed outputs may be written as,

.
h(t) is also obtained (redundant information) from the altimeter — but not to
the degree of accuracy as from the fi instrument directly.

52



y_(t) = c^ x(t) , t >i o (147)

where, for the augmented aircraft, x. = col [C , a', 6h', 6T] and

0

0

7.9

0

-126

70

126

0

0

0

0

16 .9

(148)

The additional term y(t) = col[53. - 13.2t, -13.2, 0] is included since the

mathematical state 3£ represents deviations from an equilibrium 6° glideslope.

Figure 4 shows the flare geometry. The flare maneuver begins at an altitude

h = 41 ft. (hCG =53'). At this altitude, on a 6° glideslope, the plane is

at R = -140' from the runway threshold. The desired touchdown point is taken

as the center of the touchdown zone. Thus, R_ = 475. Since the airspeed
n

is V =126 ft/sec, the nominal touchdown time is

In the mathematical model, Eq. (145), 126x,. = h is the altitude deviation from

the equilibrium 6° glideslope. In order that h(T,) = 0, we require

Sh(T) = 225 tan 6° = 23.53
d

(149)

Sink rate at touchdown should be no greater than -3 ft/sec. We, therefore,
. . •

choose a nominal h(T,) = -2 ft/sec. Since h = -13.2 + <5h, the boundary
d

condition on 6h(T,) is
d

6h(T,) = 11.2
d

(150)

The boundary conditions (149) - (150) may be put in the form
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H x(T,:) + c = 0d —
(151)

where

H =
0

0

126

0

0

-126
>

-23.53"

-11.2

Nominal values for the human response limitations are chosen on the basis of

past experience with the optimal control model. As discussed in Section 3.1,

these values are

= .2 sec

p = .003ir = -25dB
u

Pyl = Py2 = Py3 =

(152)

° ~17dB

where the observation noise/signal ratios have been adjusted to -17dB in assuming

equal allocation of attention to both instruments. -Any effects of 'pilot monitor-

ing other instruments (e.g., pitch attitude, engine RPM) that are not needed

explicitly for control are neglected. Thresholds, a., for the instruments are

dependent upon display gain and scale markings, and relate to the accuracy

with which one can read a given variable. For the standard type set of instru-

ments used in this study, a priori values

= 5 ft, « = .8 ft/sec, a~ .4 ft/sec (153)

were chosen rather crudely, a., and a~ correspond to one-half the minimal scale

division on the altimeter and rate-of-sink instruments, respectively. By assum-

ing that a signal must move through its threshold in 2 sec in order for motion
2

to be discerned, we obtain a, = .4 ft/sec . Fortunately, model predictions

were not found to be highly sensitive to changes (by a factor of 2) in the

threshold values. Thus, for the STOL landing problem, the numbers a. can be
-*• •

assumed to be (within a factor of 2) representative of the standard h, h

instruments.
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The cost functional weightings in J(5̂  u) are determined a prior as dis-

cussed in Section 3.1.3. These weightings relate to the task of optimal regula-

tion about the nominal flare path. Representative values can be determined in

part from analyzing the approach task, which is totally a regulation task. We

first choose a weighting on altitude deviations 6h. During the approach, it

is assumed that the pilot desires to maintain glideslope error within +.3°. We

assume, therefore,

6y = .3° = .0052 rad
max

Since 6h = R6y> we have at the flare initiation point,

6h = 390*(.0052) = 2.05' .
max

This value of 6h is used for the entire flare path. The weighting q*.

is, therefore, by Eq. (95),

(154)

(2.05)

Since the throttle input is limited in magnitude, 6T is weighted in the

cost functional. On the approach 6T = .98 which corresponds to 13,200 Ibs of

thrust; 6T increases nominally to 1.4 during flare. Since the range of 6T
° 2

is approximately 0-2.4, 6T , max - 1.0. Therefore, the weighting on 6T is

chosen

q5T =1.0 (155)
c

The final weighting to be chosen is the control rate weighting. As discussed

in Section 3.1.3, q,, is chosen to yield a T - .1 sec. For the augmented
c

aircraft, the required weighting was found to be

qfiT = .022 . (156)
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This corresponds to a maximum rate of throttle motion of -7 units of thrust/sec,

or movement through the entire throttle range 0 - 2.4 in approximately .3 sec.

Finally, the initial conditions on the state covariances appropriate to

flare initiation must be specified. These were obtained from the model by

"flying" the aircraft down the approach path and stopping at an altitude of

h,,,, = 53'. The predicted variances of the system state variables at h = 53'
Uvj

were then used as initial conditions for the flare segment of the landing task.

The values used were

, - .005, a5h, = .006, a5T = .06, a5T = .1 (157)
c

These values were subsequently compared with NASA simulator data taken at the

flare initiation window. Generally, model and data results agreed within a

factor of 1.5. Slight errors in these quantitites are relatively unimportant

as regards touchdown, since the effects of the initial model covariances damp

out after approximately 1 sec. Initial conditions on the mean state jc(0) are

zero, since the plane is assumed to be on the glideslope (on the average) and

the C ground effect has not as yet built up.
LI

3.4.2 Aircraft with Autdspeed Only

With the autospeed system, the aircraft can approach the flare initiation

point in the 2° nose-up attitude desired for touchdown. As discussed in

Section 2.3.3, the flaps 6f, must be backed-off -13.1°, and the equilibrium

tail position is 6t = -3.5°. The pilot is required to regulate pitch devia-

tions from 2° through controlling the tail input. Pitch deviations occur

through cross terms in the throttle input, and directly from the CL. ground

effect.

This is necessary to avoid transients in the model response over the first
second of the flare. These might arise if the model were started "cold".
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The equations.of motion for the STOL dynamics with autospeed are given in

Section 2.4.5. For this task, the pilot's major displays are the altimeter and

rate-of-sink meter as well as the pitch attitude indicator on the eight-ball.

The pilot's information base is, therefore,

col [h_(t), h(t), h(t), 6(t), q(t)]
Llj . : ' ' > ' ' "'•

(158)

or

u(t) 0 (159)

where in this case x = col [C , CL, «', q, 9, 6h', 6T], 11 = col [6T , 6t] and
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= col [53-13.2t, -13.2, 0, 2°, 0]

The equation for h(t) is obtained by substituting for 6 - a' = 6h'.

The terminal conditions on 6h and 6h for this problem are given, as

before, by Eqs. (149) - (150). In addition, terminal conditions are placed on

66 (deviation from 2° equilibrium) and q, i.e.,

6(Td) = 0., q(Td) = 0. (160)

The 'four terminal conditions are put in the general form (151) with

58



H =

"0

0

0

0

0

0

0

0

0

-126

0

0

0

0

0

57.3

0

126

57.3

0

126

0

0

0

o"

0

0

0

£ =

"-25.53"

-11.2

0

_ 0

Nominal values for the human response parameters are

T = .2 sec

p = p .0031T = -25dB
ul U2

(161)

TT
.01-rr
.33 =? - 15dB, 1=1,... ,5

The observation noise/signal ratios have been adjusted to -15dB assuming equal

allocation of attention to all three display instruments. The thresholds a.

for the altimeter and rate-of-sink indicator are given by Eq. (153). For the

pitch attitude indicator we assume,

a. = 1.0 deg a = .5 deg/sec. (162)

The cost functional weightings for the autospeed case must reflect the fact

that the pilot is required to regulate both altitude deviations and pitch devia-

tions from the nominal flare path. The cost functional weightings on Sh and

6T are chosen as in the augmented case. Thus,

• 25, q6T
= 1.0 (163)

In the past modeling efforts using the optimal control model, pitch regula-
[3-4]tion was treated by including a cost functional weighting on q. This

assures that pitch erropr corrections are made smoothly, and corresponds with

pilots' subjective control behavior. In the present study, we assume
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6qmax = l deg/SeC

Thus, the cost functional weighting on pitch rate deviations is

For the STOL aircraft under consideration, it was found tha't weighting

q(t) alone resulted in large pitch angle deviations during both approach and

flare. This is due to the poor pitch damping of the aircraft'! ' It is assumed

necessary for the pilot to control pitch angle directly; we assume a maximum ~

tolerance

69 = 2°
max

so that the aircraft would land with 6^0. Hence,

=.25 ' •" (165)

The control weighting on tail deflection 6t is determined from the tail

position limits. The tail is free to move through a total range -10 to +10

degrees. Since the trim position is -3.5°, the maximum allowable deviation is

6.5° = .11 rad. Thus,

= 81. (166)

The control rate weighting on commanded throttle u.. = 6T was chosen to
-*- C

yield a resultant T 1 = .1 sec. The required value was found to be (as in

the augmented case)

q6T = -022 (167)
c
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The control rate weighting on tail position u^ = 6t was chosen to yeild a

resultant T = .1 sec. The required control rate weighting q« was found
nZ ot

to be

= 16. (168)

which corresponds to a maximum tail rate of approximately .25 rad/sec - 15°/sec.

Initial standard deviations for the model states were determined from

prediction at the flare window. For the autospeed case, it was found

6a' = .008, 6q = .003, 69 = .006, 6h' = .003

(169)

6T = .14, 6T = .23, 6t = .004

One simplifying assumption is made in modeling the pitch ground effect in the

autospeed case. The C-. ground effect begins at an altitude of h,r = 60'.

We wish to start the flare model at h = 41'. Prior to flare initiation,
LG

the pilot's major role is to regulate pitch deviations, including those that

arise from C between h = 60 - 41'. We, therefore, assume'that pitch

deviations 69 = 6q = 0 at h = 41', so that it is only necessary to consider
LG

the additional C ground effect that is introduced for h^ £ 41. This

enables us to begin the model propagation at h = 41* (t=0) with 6x(0) = 0.

The equation C = z?(t) for generating C (h(t)) remains as in Eq. (76),

but with CM(41') = 0. The additional pilot tail input at h = 41' is computed

from the average value of (L, between h = 60' and 41' which is C - .05.

From the q equation, the tail deflection necessary to balance this average

moment is -.5°. Thus, since the equilibrium tail position is -3.5°, we have at

flare initiation 6t = -4°.

3.4.3 Unaugmented Aircraft

The basic aircraft approaches flare initiation in a -4.1° nose-down con-

figuration. The pilot must rotate the plane to achieve a 2° nose-up configura-
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tion at touchdown. Since the aircraft is pitched down, a higher equilibrium

thrust (17,500 lb) is needed to generate the required lift to maintain equilib-

rium.

The equations of motion for the basic STOL dynamics are given in Section

2.4.5. For this task, as for the autospeed case, the pilot's main displays

are the altimeter and rate-of-sink meter, and the pitch attitude indicator.

The display information base is, therefore, given by Eq. (158). This may

be written

=.Cx(t) +Du(t) (170)

with x(t) = col [CL, CM, u', a', q, 0, 6h', 6T] and
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(t) = [53 -13.2t, -13.2°, 0, -4.1, 0].

The equation for h is obtained from differentiating <Sh' = -.105u' - a1 + 6

and subsituting for u*, a', q.

The terminal conditions on 6h and 6h are given by Eqs. (149) - (150).

The terminal conditions on 0 (deviations from -4.1°) and q are

0(Td) = +6.1, q(Td) = 0. (171)
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In the general form (151) we have
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For the basic aircraft, we do not assume that the pilot controls speed

directly (indeed speed variations on the flare are small). Thus, we have not

included u1 as a displayed variable, nor is it necessary to include a weight-

ing on u1 in the cost functional. The nominal human response parameters for

this case are, therefore, the same as Eq. (161). The thresholds a. are the

same as those before, namely

2
a = 5 ft, a~ = .8ft/sec, a., = .4 ft/sec , a, = 1.0 deg, a = .5 deg

The cost functional weightings on 6h, 6q and 60 are the same as those

chosen for the augmented case. The cost functional weighting on 6T is

somewhat higher than before since the available throttle range from nominal
*

is smaller than in the autospeed and augmented case. Thus,

6T
(172)

Also, since the equilibrium tail position is -1°, 6t = 9°. Hence,

(173)

The control rate weightings on throttle and tail are adjusted to yield T =.1.
ni

nominal throttle setting is 17,500 Ibs as opposed to 13,200 Ibs.
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The required values are

q£T = .033, qj = 16. (174)
c

The initial standard deviations for j5 x. were determined from model predictions

at the flare window. The values found were

6u' = .02, 6<x' = .01, Sq = .003, 69 = .006

(175)

6h' = .01, 6T = .14, 6T = .23, 6t = .004

As in the autospeed case, the pilot was assumed to have compensated for the C._
M

ground effect over the range h = 60 - 41* so that the model could conveniently

be initialized at t=0 at h = 41'. This introduces an additional tail deflec-

tion at flare initiation of .5°. Thus, initial tail deflection is -1.5°.

3.4.4 Model Initial Estimates

It is necessary, when applying the optimal control model to study problems

involving "deterministic" inputs, to specify the human's a priori estimate

jc(0) of the system state, x.» as in E<1- (107). For the landing task being

studied, the aircraft is nominally on the glideslope at flare initiation. Hence

vehicle states which represent deviations from the equilibrium 6° glide-path

are zero at t=0, and it is reasonable to assume that the pilot's estimate of

these states is also zero. Therefore, it remains necessary to specify the

pilot's a priori estimate of the ground effect terms x- = C , x9 = 6,,.
X LI ^ M

We assume values for the initial a priori estimates C , C equal to 20%

of the maximum values for CT and C...L M

Thus,
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As discussed in Section 3.4.2, the initial estimate on C enables us to intro-

duce a simplification in the model. Since -C increases from 0 to .1

between h = 60' and h = 41' , it can be assumed that the pilot, because of

his initial estimate, has corrected for the C pitching moment during this

time interval. Thus, we assume 69 - 0. and 6q - 0. at h = 41', and it

becomes necessary to consider only the increase C = .1 for h <_ 41'. With
^an initial estimate C,. = -.06, the pilot's estimate of Cw by the time
rl M

h = 41' will be approximately -.1 + .02. Thus, it can be assumed that the

pilot's estimate of the increase C + .1 at h = 41' is zero.
M

As a result, the flare portion of the flight including the pilot reaction

to the ground effect can be modeled as beginning at h - 41', where we set

t=0, with

= -.09; $2 = 0; x± = 0, i=3,...,n

where x0 = C + .1.2. Li

3.5 TOUCHDOWN PREDICTIONS

The independent variable in the pilot model is time. At any time, t, the

model generates predictions of the mean and standard deviation of all system

variables according to the covariance propagation equations derived in

Section 3.2. In addition, as discussed in Section 3.2, these quantities are

used to generate the state and output probability densities as functions of

time. Of prime interest in a landing task are the probability densities and

mean values of key system variables (especially sink-rate) at touchdown. We

have model predictions available as functions of time. The transformation from

the time predictions to the touchdown predictions is complicated because the

touchdown time, T,, is a random variable (E{T,} =4.9 sec). Below it isd d
shown how we can generate touchdown predictions, including the probability

densities of touchdown time (which translates into range dispersions) and sink-

rate.
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For ease of exposition, let z (t) = h_(t) : and let z' (t) be any model
J- Jj(j Z.

output whose mean and/or probability density at touchdown is sought.. Let

m±(t) = E{Zi(t)} _ i=l,2

(176)

- m±)(z.(t) - m.)}

be the mean and covariance at time t of the Gaussian random variables z and

z_. The quantities ra. and a. . are available directly from the results of
* ! ij )
Section 3.2. • • . ' ; - . < • , , . '-. --•• '. TJ ._^>:-/.

The joint probability density p(z (t), z_(t)) is written as

2(1 - p2)
(177)

where

z, =
Z ~

Z2 =
(178)

and

p = (179)

is the correlation coefficient between z (t) and z.(t). The univariate

probability density of z.. (t) is

2air
exp I- (180)

11
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Let T, be the touchdown time and let p(T ), to be determined, be the prob-

ability density of T . The mean of z» at touchdown is given by

=/ E(z2(t)|t = Td> p(Td) dTd (181)

0

where the condition mean is defined as

In the process of integrating Eq. (181), we do not wish to include those trajec-

tories that overflare. The model that has been developed is not appropriate for

predicting pilot response to an overshoot of the landing zone. Thus, in comput-

ing E{z2(T,)} from the model predictions only those flights that land within a

prescribed time T - T may be considered. Flights that have not landed by t=T

are assumed to have overflared. In our analysis, T is taken to be the first

time t ̂ _ T- = 4.9 sec at wh

is to modify Eq. (181), i.e.,

time t >_ Tf = 4.9 sec at which E(h(t)} = 0. The result of considering Td< T

/ E{z2(t)|t = Td}p(Td)dTd

E{z(T) |T < T} = -^ - x - (183)2 d d

p(Td)

It thus remains to compute E{z2|Td) and p(Td)-
 By definition, the condition-

al density P(Z-|TJ) is also given as

p(z2(t)|t = Td) = p(z2(t)|Z;L(t) = 0) (184)
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since ẑ t) = 0 implies t = Td. The Gaussian density p(z (t)|z (t) is

obtained by dividing Eq. (177) by Eq. (180), yielding

1
9 i exp -

[2TO22(1 - P^)]a

r(z2 - pZl)
z'

L 2d -P2) J

Evaluating the conditional mean (182) with z = 0 gives

E{z (t)jt = T } = - 22

"11-1 + m2 =
12 (185)

The density of T is obtained by noting that

Pr {landing between time t and t + dt)

= p(Td)dt

= -p(h(t) = 0)dh

Thus, the required density is

p(Td) = - p(h=0) 1^- = - p(h=0) • E{h(t)} (187)

where

p(h=0) 11
11

(188)

and where E{h(t)} = the mean sink rate at time t is obtained from the model

predictions of Eqs. (114) - (118). Therefore, the mean of z_ at touchdown

may be computed from Eq. (183) upon substituting Eqs. (185) and (188). Note
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that it is possible to carry through the above process to compute any moment

E{Z"(T, )} n ̂ > 2, in addition to the mean z (T ).

The probability density of z9(T.) in general can be computed by first

finding p(T |z ) and then using Bayes rule, or by numerically obtaining a

histogram. Either method is cumbersome. Analytic results are obtainable when

E{Z (t)} is a monotone function of t, i.e., E{3.(t)} has the same sign

for all t > 0. Sink rate z?(t) satisfies this condition. Consider a given

time t. From Eq. (185) we can evaluate E(z_(t)|t = T,} = z; we wish to

'determine p(z(T,)) evaluated at z(T.) = z. The probability that z(T,) lies
d d d

between z and z + dz is equal to the probability that touchdown occurs

between time t and t + dt since z~(t) is monotone in t. Thus,

p(z(Td))

z(Td) = z

_ /rn \P(Td)
dt

dz2

P(Td)

E{z2(t)}
(189)

Eq. (189) will be used to compute the probability density of h at touchdown.
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IV. MODEL RESULTS

In this sectioni model covarian'ce propagation results are compared with

experimental data obtained on the NASA-Langley Research Center Real Time Dynamic

Simulator. Three cases are studied; namely, the fully augmented STOL, the basic

aircraft with autospeed and the unaugmented aircraft. Thus, we will be able to

examine the effects on pilot response of the two augmentation schemes.

4.1 DESCRIPTION OF EXPERIMENTS ' -: - • -' ' ;

The experiments were conducted on the NASA Langley 'Research Center Real
: • - ^ -; •'- I j ' '

Time Dynamic Simulator. The simulation was fixed-base, and only the longitud-

inal flight model was simulated on the CDC 6600 digital computer with table

look-ups used for the various aircraft coefficients and throttle/thrust charac-

teristics. <

The aircraft was positioned initially R = -5000 ft from the runway thresh-

old. The pilot had to acquire the glides3,ope, and then trim the aircraft to ;

maintain equilibrium flight down the 6° glideslope. Flare initiation was at

h = 53', at which point a flare initiation light came on. A "get ready" light
Ct
came on at approximately 5 sec prior to flare initiation. The flare geometry

is shown in Figure 4. The pilot was instructed to land the aircraft, and no

go-arounds were permitted. Only the basic set of instruments were available

for landing the aircraft: pitch attitude indicator, altimeter, sink rate, and

airspeed dials. No external visual cues were provided..

4.1.1 Data Analysis

i . . ,

Ten flights of each of the three conditions ,. . .

• Fully Augmented Aircraft

• Autospeed System Only

. • Basic Aircraft , . ,
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were made in sequence. Flare (and approach) data consisted of the sampled

time histories of all pertinent system variables to touchdown. The sampling

time was . 25 sec during flare. Data from only one pilot was provided for

validating the model developed in the present effort. , •

Ensemble statistics were computed for various flight quantities during

flare. For a given variable, x, the sample mean and standard deviation as

functions of time were computed according to

(190)

-22 (191)
k=l

where xCt) is the k sample path and where N is the total number of sample

paths (N = 10). For convenience, we define t = 0 to be the time at which the

aircraft is at h =53'.
CG

For the augmented STOL, the ensemble mean and RMS were computed for sink-

rate (h) , throttle (T ) , total thrust (T) . For1 the autospeed and unaugtnented
c

cases, additional statistics were also computed for pitch angle (6) and tail

deflection (6t). In the- following section, these human-generated statistics

are compared with the model predictions. However, it should be borne in mind,

when viewing the comparisons, that because of the relatively low number of sample

paths averaged, the variance in x(t.) and <7 (t) is high. Therefore, these
1 X

experimental quantities can only be viewed as approximations to the true en-

semble statistics.

* -\
The variance in the sample mean and RMS decreases as N . Thus, with N = 10,
any one sample path can have a pronounced effect on the resultant ensemble
statistics.
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4.2 MODEL-DATA COMPARISONS

In this section, model covariance propagation results, obtained using the

expressions derived in Section 3.2, are compared with ensemble statistics com-

puted from the pilot-simulator data. In addition, probability densities of

touchdown time and sink-rate at touchdown (Eqs. 187 - 189) are presented. The

model predictions have been generated using the model parameters as chosen

a priori in Section 3.4. Thus, the model results are a .priori predictions, and

not the consequences of model-data matching. After presenting'-'the results for

the three different STOL configurations, model attributes and deficiencies will

be discussed indicating possible changes in the a priori parameter values and

the model structure. • ••' '

4.2.1 Fully Augmented STOL

With both the autospeed and pitch hold systems engaged, it might be expected

that the pilot is capable of controlling the aircraft with minimal flight path

dispersions. Figure 5 shows h (t) for each of the ten data trails, i.e., a
\>v»

scatter diagram of h (t). vs. t. The dashed lines enclose the model's pre-
\_.VI

dieted 95% confidence limits on altitude dispersion,

Ah(t) = [h(t) - 20(t), h(t) + 2a (t)] (192)
95% h h

— 2
where h(t) and (̂t) are the model predictions of mean altitude and variance

** "
at time t. For t > ̂ .9 sec, which is the nominal touchdown time, model

predictions are obtained by setting u (t) = u (4.9) = constant, since
. nonr nonr
u (4.9) = 0.
nom

Indeed, Systems Control, Inc. did not receive the NASA data until after model
predictions were generated.

Since h(t) is assumed to be a Gaussian random variable, the 2(7 band about the
mean is the 95% predicted confidence limit.
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As can be seen in Figure 5, model and data dispersions are in general agree-

ment, with the pilot showing a somewhat greater tendency to overflare. Three

flights have not yet terminated by t = 6 sec, and one trajectory is on the

outer limits of any distribution. The probability density P(T,) of touchdown

time (Eq. (187).) for T, £ 6.5 is superimposed on the dispersion diagram. This

density is non-Gaussian. P(T,) increases rapidly for t > 4 sec and has a

well defined peak between 4.25 < T, < 5.5, indicating a high likelihood of

touchdown in this time interval. As t increases, p(T,) decreases more slowly,

indicating a somewhat greater tendency to land long as opposed to landing short.

Because of the low number of sample runs, a histogram of T, was not computed

for comparison with the predicted p(T ).

The probability of landing prior to t = T sec is given by

(193)Pr {T 1 T} = / p(T,)dT, = P(T)

The value of T such that P(T) = 0.5 is defined as the median touchdown time,

and must coincide with the touchdown time 'of the mean flight path h(t). For

this case the median touchdown time is 5.15 sec. We note that this is not equal

to the average touchdown time due to the asymmetry of p(T,). Evaluating the

integral (193) for T = 5.9 and T = 6.5 yields P(5.9) = 0.69 and P(6.5)=0.73,

respectively. This indicates that approximately 30% of all flights are predicted

to land more than'one second later than the nominal Tf = 4.9, and approximately

25% land more than 1.6 seconds late.' Translation into range at touchdown

(R , = V T,) implies an approximate 0.25 probability of overflaring the touch-
td o d

down zone. It should be emphasized again that model predictions are not valid

much beyond t = 6.0 sec. Once a pilot realizes that he is about to overflare

his (cost functional and) control strategy may change drastically, e.g., diving

for the deck, cutting all power, etc. Thus, although the model predicts that

30% of all flights land at T > 6.0 sec, the existing model cannot predict the

subsequent pilot control inputs.

Since the density of h(t) is Gaussian, it is symmetric about its mean.
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Figures 6 and 7 compare model and data sink rate, throttle input and result-

ant thrust. Model predictions consist of the mean (solid line) and the +la

band about the mean (dashed line). The pilot data consists of the ensemble

mean (Eq. (190)) and the +la ensemble deviation (Eq. (191)) at .25 sec intervals.

The model and pilot data are in reasonable agreement. The pilot's mean response

generally lies within the 1-sigma band of the model predictions. The model and

data standard deviations agree generally within a factor of two. Model and pilot

sink-rates agree within 0.5 ft/sec over the entire flare. Note that the average

pilot sink-rate at r t = 0 is -13.6, which is slightly greater than the assumed

nominal of -13.2. ' • '

Both model and pilot throttle inputs increase rapidly during the first

.5 sec. This is primarily in response to the initial estimate of the C ground
Lt

effect. The pilot's commanded T continues to increase for .5 < t < 1

whereas the model does not show this trend. Possible reasons for this slight

discrepancy include the slightly greater pilot initial sink-rate as noted above,

an initial pilot estimate of C greater than the -.09 assumed in the model,
* *

(or an a priori pilot estimate of both C and an initial rate of change C ),
Li It

or slight differences between the actual throttle/thrust characteristics and

the simplified first-order lag assumed in Eq. (66). On the average, the net

throttle input of the pilot is slightly greater than the model's, yielding a

pilot sink rate approximately .5 ft/sec lower than the model as touchdown

approaches.

The basic assumption in modeling the terminal time aspects of the landing

task was that in the absence of all external disturbances, the pilot would

generate a minimum rate open-loop control input that met the terminal state

conditions. In the presence of external disturbances, the pilot would then try

to regulate about the so-generated nominal flight path. The pilot data provides

an opportunity to validate this hypothesis. Figure 8 shows the sink-rate and

throttle for the nominal flight path (solid curve), mean model predictions that

Section 4.3.1 discusses the effects on model predictions of other characteriza-
tion of CL, specifically allowing the pilot model to continually estimate both
C and its rate of increase. i
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include all external disturbances (dashed curve) and.the pilot data ensemble

average. There is an excellent agreement between-the mean pilot sink rate and

the nominal sink .rate. This indicates that, bur assumption of pilot regulation

about a minimal control rate nominal flight path is most reasonable. Indeed,

the pilot seems to do a better job than the model in regulating disturbances

about the nominal altitude path. This is probably due to the pilot's having a

better internal characterization of C than was assumed in the model. The
Jj

difference between the nominal T and the model/pilot T in Figure 8b is
c c

the additional control- input T applied to correct for C . The pilot appears

to have corrected more precisely, and earlier, than did the model.

,'•'*''"*
'*""*,' •

4.2.2 STOL with Autospeed Only

With the autospeed system engaged, the pilot can still maintain a +2° pitch

attitude on the approach. During flare, it is only necessary for the pilot to

regulate the deviations in 8-2°. Consequently, it might be expected that the

altitude control (i.e., flare) behavior of the pilot would not differ substan-

tially from that observed in the augmented case. Figure 9 shows the altitude

dispersions from of the sample flare paths, .and the 95% model confidence band.

Comparing the pilot data in Figure 9 with that of Figure 5 (discounting the one

or two "strange" runs) shows a noted similarity in altitude dispersions in the

vicinity of touchdown. The tighter clustering of the scatter points in Figure 9

indicates that the pilot's control, strategy has probably become less variable
. " : *

by the time the autospeed experiments were performed. Therefore, external

effects of learning may be biasing the experimental results since the pilot's

control strategy is continuing to stabilize on a run-to-run basis. ,

Comparing the model flight path statistics of Figure 9 with those of

Figure 5, we see an almost identical variance but a mean flight path that lands

The augmented STOL'runs were the first series of 10 experiments, and no warm-up
runs were made. The autospeed case was the third set of 10 experiments actually
performed. An intermediate augmentation scheme involving pitch damping was also
simulated. However, this case is not discussed herein. Thus, a possible ex-
planation of the decreased variability;is that by the time the autospeed-only
runs were made, the pilot had "warmed-up". Obviously, this is a short-term
adjustment phenomenon only.
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sooner at t - 4.7 sec. The scatter points of Figure 9 also indicate that our

prediction of altitude dispersion is reasonable, but the model is slightly low

in its mean altitude and touchdown time predictions. The probability density

p(T,) is also shown in Figure 9. The results are much the same as in Figure 5,

but with a .5 sec shift towards earlier touchdown times. Indeed, integrating

Eq. (193) with T = 6.5 indicates that only 20% of all flights might be expected

to overflare compared with 25% in the augmented case. Unfortunately, the trend

towards lower touchdown times does not appear in the pilot autospeed data.

Comparisons of model vs. data statistics of sink-rate, throttle input and

thrust are shown in Figures 10, lla and lib, respectively. In all cases, the

ensemble standard deviations are much smaller than their counterparts in

Figures 5-6. This is further evidence of the reduced variability in the pilot

response caused in part by underlying adjustment phenomena inherent in the

experimental procedure. The model predictions of the standard deviations a, ,

a and a are noticeably greater than the pilot data. Several reasons for

these discrepancies are:

a. The pilot may be devoting more attention to the sink-rate indicator
•

than we have assumed. More precise estimates of h will result in
•

less throttle variability and more accurate h control.

b. Cost functional weightings, other than the ones chosen, may be more

representative of pilot behavior. For example, weighting y. = 6h

or y = Sh in the cost functional would have a very pronounced

effect on reducing both throttle and sink-rate variability.

c. A lower value of the motor-noise ratio pu may be appropriate. This

will result directly in less control input variability, and, hence,

less closed-loop randomness.

Indeed, with "equal" training in both augmented and autospeed landing tasks,
one would expect the pilot to show a greater variability in the latter since
it is a somewhat more difficult overall\ask. It is implicitly assumed that
the pitch-hold augmentation is working properly (i.e., q - 0), and that adverse
interaction between pitch-hold augmentation and pilot control is minimal during
flare, allowing, in effect, pitch-loop decoupling.
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d. A larger value of T may be appropriate for the specific pilot. This

would lower the bandwidth, and, consequently, the power,' of the injected

motor noise (see Eq. (97)).

Items (c) and (d) suggest that a reexamination of the model's treatment of

motor noise is in order. In fact, other applications of the human modeling teclr

niques to study time-varying problems have arrived at similar conclusions.

Comparison of the model mean with the ensemble average for h, shows a

well-defined difference between model and pilot response. For 1.5 < t~< 3 sec,

the model's sink rate is considerably (.3 - .8 ft/sec) higher than the pilot's.

This difference arises from the higher level of pilot thrust (yielding more lift)

between .75 < t < 2 sec as shown in Figure lib. For t > 2 sec, the model

must correct the compounded effects of the high sink-rate and more thrust is
*

applied to put the aircraft back onto its nominal flare path. The net result,

as seen, is that the model's mean flight path lands somewhat earlier than the

nominal. The cause of the model's behavior can be traced directly to its esti-

mate of the C ground effect. The model corrects for its initial estimate
Li

C = -.09, but does not anticipate a further increase in C until 1 secLi Li ..
later—when the effects of the CT are eventually observed in h, 6h and 6h.

L.ge J

Correction for C is, therefore, applied late. The pilot, on the other
L.ge

hand, seems to be aware earlier of the ground effect. He compensates earlier

and needs to generate less lift nearer the ground.

The comparisons of both the average pilot response and the mean model

response with the nominal sink rate are striking. Figure 12 shows that the

pilot is doing an excellent job of regulating h about the open-loop model-

generated nominal. Our basic assumption that the pilot regulates about a "least
•

workload" (minimum u) nominal flight path is demonstrated convincingly for the

second time. • However, our model for how this regulation task is accomplished,

and how the pilot compensates for C needs modification. In Figure 12b,L»ge

We see here the interplay between the open-loop generation of a "nominal" flare
path, and the closed-loop requirements to minimize deviations from this flight
trajectory.
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the additional throttle inputs ST needed to counterbalance C indicate that
C Ij

the model requires a larger initial estimate of C , or an estimate of C
L L

that increases with time, to generate a control input that would match the pilot's.

The aspects of the pitch regulation task are shown in Figure 13. It is

apparent that the pilot has devoted little, if any, attention to regulating

pitch about the 2° nominal. The elevator input is essentially held constant

during the flare. Pitch excursions are highly variable. The model predictions

also show virtually no elevator input to regulate 0 which is predicted to

decrease to 0.5° at touchdown. The major difference between pilot and model

pitch response lies in the variance. The most plausible reasons why pilot vari-

ability is larger than the model's are the following:

a. The pilot is probably devoting most of his attention to the altimeter

and/or rate-of-sink instruments. Therefore, the observation noise

on 9 and q would be higher than the -15dB assumed, resulting in

poorer estimates of pitch deviations and, consequently, less control

of them. The fact that pilot variability of h, h are lower than

the model, while variability of 9 is greater than model predictions

gives further evidence to greater pilot attention to altitude control.

b. The pilot's strategy in controlling 9 may show a run-to-run vari-

ability. Indeed, the sensitivity of model predictions with respect to
2

changes in the cost functional weighting on 69 is high and can

account for the observed variability. The nominal weighting on q«

is .25. Varying qQ over the range .25+.25 results in pitch angles
U —

at touchdown between 0.5 + 1.0°, yet has little effect on other model

predictions. The high sensitivity of 9 to small variations in pilot

response (caused by the poor inherent pitch damping of the STOL) is

one reason for the poor pilot rating. *

In past applications of the optimal control model to pitch regulation tasks,
only pitch rate was included in the pilot's cost functional. The fact is that
with qfl = 0, pitch deviations are -2.5°, which indicates a serious handling
quality deficiency. Thus, the pilot must adopt a pitch regulation strategy
somewhat different from his "usual".
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4.2.3 Unaugmented STOL

The model predictions and pilot data for the unaugmented STOL are shown in

Figures 14-17. From the results, it is apparent that: (a) the aircraft is

near impossible to fly, or (b) the pilot is not well-trained on this task. The

fact that the model seems to control the aircraft is evidence of the latter.

The flight path dispersions are shown in Figure 14. Only eight trajectories

are shown, yet it is apparent that pilot variability is exceptionally high,

with a marked tendency t'o overflare. The model predicts a higher variability

in altitude dispersions for the basic STOL configuration than in the preceeding

cases. The model's median touchdown time, however, is only 4.65, i.e.; the

model shows a tendency to land early, as in the autospeed case. The probability

of landing at t > 6 sec is only 0.2; this seems low in view of the observed

pilot trajectories.

Sink-rate and throttle inputs are shown in Figures 15-16, respectively.

Pilot variance is extremely high, about twice as great as the model predictions.

The large variance leads to the belief that pilot strategy is highly variable

on a run-to-run basis, so that the effects of learning have not yet stabilized.

Unfortunately, it is not possible, at the current state-of-the-art in man-

machine modeling, to predict the degree of training a, pilot needs before his

control strategy stabilizes. The given pilot data does seem to violate the

underlying assumption in the optimal control model—that the pilot is well-train-

ed.

Comparing the mean sink-rate and throttle input for the pilot and model

shows that the pilot is probably overcorrecting for C , whereas the model is
Ljg6

undercorrecting. This results in larger pilot throttle inputs and lower sink-

rates than the model, and a subsequent tendency for the pilot to overflare.

(Note the rapid pilot attempt to compensate for t > 3 sec.)

',<

Pitch angle and tail input are shown in Figure 17. The basic aircraft

approaches the flare window in a -4° nose-down attitude. The pilot is required

to (try to) land with a positive 2° pitch. Neither the pilot.nor the model

is capable of achieving a nose-up attitude at touchdown. The pilot data shows
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a much higher variability than does the model. The apparent reasons for this

are much the same as in the autospeed case, i.e., run-to-run variability in

pilot strategy and low attentional allocation to the pitch attitude indicator.

The model's pitch response was found to be quite sensitive to changes in q .

For example, qQ= 0 yields a model prediction 0 , - -2°. The mean tail input
o td

for both model and pilot are in close agreement with the pilot input being only

1/4° less on the average for t > 2 sec.

4.2.4 Sink-Rate Predictions at Touchdown

Among the most important predictions generated by the model are the prob-

ability density of the touchdown velocity and the mean touchdown velocity.

These quantities are given by Eqs. (189) and (185), respectively. It should

be re-emphasized that our predictions of touchdown statistics are based only

on those flight paths that terminate within approximately 1 sec of the nominal

touchdown time. The one second "cutoff" has been chosen arbitrarily; for flights

tending to land late, model predictions are probably not highly representative

of pilot actions.

Figure 18 shows the model's prediction of the touchdown velocity probability

density (conditioned on T, £ 5.9 sec) for the three STOL configurations. The

comparisons are interesting. The augmented STOL density shows a well-defined

peak at h - -2.25 ft/sec. In the autospeed case, the density peak has shifted

to -3.25 ft/sec indicating the higher touchdown velocities associated with

earlier landing times (see Figure 9). In addition, the density has broadened,

predicting more variability in touchdown velocity. The unaugmented results show

an even greater flattening of the touchdown density, to correspond with a highly

variable sink-rate at touchdown.

Because of the limited number of experimental runs that terminate prior

to t = 5.9, it is not realistic to compute a probability density or histogram

The sensitivity of 8 to 6t is evident by comparing the mean responses of
Figure 17a and 17b.

** • • •
The density of h increases for -h < 1.5 ft/sec since h -*• constant - 1.35 for
T, > 5.4 sec. Ideally, there would be an impulse at n = -1.35 with area = .2.
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of h • However, it is plausible to compare the average touchdown velocity as

computed by Eq. (183) with the average sink-rate of those data trials that land

prior to t = 5.9. Table 1 shows this comparison. P(5.9) is the predicted

probability of landing prior to t = 5.9. N. is the number of data runs that
i

have landed by this time. The model and data results are in reasonable agree-

ment, despite the low

the data mean.

N. which gives rise to the large standard deviation in

TABLE 1

MEAN SINK-RATE FOR TOUCHDOWN < 5.9 SEC

Condition

Augmented

Auto speed

Unaugmented

MODEL

p(5.9)

.69

.79

.80

\A

2.25

3.10

3.10

DATA

Ni

7

8

5

N.
i
N

.7

.8

.62

*td

3.4

3.3

5.0

S.D.

1.7

1.5

2.0

4.3 POTENTIAL MODEL MODIFICATIONS

When viewed in total, the results of Section 4.3 show that the model has

the capability of predicting pilot performance in a landing task. Certain

aspects of the model (e.g., our treatment of the terminal control aspects of

the landing) were validated by the data. On the other hand, the model was

found to possess certain deficiencies that indicate modifications to the model's

a prior structure and/or parameter values.

95



4.3.1 Estimation of Ground Effect

The data for the three conditions studied showed that as the task became

more difficult, the pilot exhibited a greater tendency to overflare. The model,

on the other hand, indicated a trend towards landing short. The pilot seems to

be overcorrecting for CT while the model is undercorrecting. The under-
L»ge

correction of the optimal control model is evident in the thrust predictions

of Figures 7, 11 and 16. As each condition increases in difficulty, the differ-

ences between pilot and model 6T become more pronounced.

The optimal control model has the ability to estimate CT = xn continu-
' ' • - " . L.ge 1

ously from displayed information given an a priori estimate x,(Q) = -.09.
• . . . . . . m

There is no ability to estimate x.., or to use an initial estimate of x, .

Therefore, as the quality of the pilot's information base decreases and as the

task becomes more difficult, the estimate x1(t) changes less quickly. In

terms of the model elements, the Kalman filter has larger time constants. Fig-

ure 19 shows clearly this trend. In the augmented case, the pilot's estimate

of CT lags the true value with a .05 estimation error. In the unaugmented
L»ge

case, the estimation error has doubled; as a result, pilot compensation for C

is too small.

From the above discussion, and the results of Section 4.2, it is apparent
•

that the model should have the ability to estimate (at least) C . This is
"y 8^

easily accomplished within the model framework by defining two states x = C- ,
• - '

x0 = C , with
 - . . T ,

Z Li • ,

x_L(t) = x2(t)

(194)

= CL(t) = z(t)

The above equation (194) would'then replace the equation for C in the STOL
J_i

model. In this case, z(t) will be a function of h(t). Since the model's

In the limiting case of no display information x.. (t), = x (0) for all t.
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Kalman filter generates estimates of all states x.(t), the filter will continu-
• -J-

ously estimate C (t). The net result would be an estimation of C that is
•L L

closer to the actual value, but showing a tendency to overestimate since the

Kalman fitler would always be expecting C to increase.
J_i

The above discussion is also appropriate to the estimation of the pitching

moment ground effect, C . However, no conclusions can be drawn from the
M, ge

poor pilot pitch data, as regards the need for modifying the estimation of C^.

Better estimation of C will probably produce little effect on the model's

pitch response due to the overwhelming effect of the STOL's poor pitch damping.

4.3.2 Cost Functional Weightings . . .

The cost functional weightings for the optimal control model were chosen as

described in Section 3.3 by considering pilot regulation about a nominal trajec-

tory. With respect to altitude regulation, only a weighting on deviations 6h

was included. The results of Figures 8 and 12 indicate that the pilot is probably
• ••

regulating about h , and possibly h , as well. Therefore, it seems

appropriate that any model modifications should include cost functional weight-
• ••

ings on 6h and (possibly) 6h. It can be shown that if these deviations were
2 2 *

weighted, it becomes unnecessary to include u = 6T in the cost functional.
c

The control input 6T is implicitly kept small by the model in order that 6h

remain small. A reexamination of the data with emphasis on model-data matching

or identification techniques is warranted. This is a relatively important task

as regards further modeling efforts, since one must determine whether a pilot

tends to control altitude deviations directly, or indirectly via control of

sink-rate deviations.

Changes in the cost functional weighting on 6 deviations was found to

induce relatively large changes in the model's resulting pitch response. Since

the model, on the average, controlled pitch somewhat better than the pilot, it

appears that the a priori value of qQ = .25 is too large. Setting qQ = 0U 0

* 2
In most past modeling efforts, it was not necessary to weight u .
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would bring model predictions more in line with the data. However, any attempt

to identify an accurate "value" of qfl is virtually impossible from the avail-

able pitch data. It appears that the qg associated with the pilot response is

variable on a run-to-run basis.

4.3.3 Human Parameter Values

Slight changes in the human response parameters (T, p ., a., T ., etc.)

generally did not have a great effect on the model predictions for the STOL

problem studied. The only parameters for which the data-model trends indicate

potential changes are T . (or p .) and the attentional allocation parameters
ni ui

r\ in Eq. (90). It appears that the pilot is probably devoting more attention

to the sink-rate indicator during the flare. Our assumption that n. = I/(no.

of instruments) is probably somewhat inaccurate. A posteriori analysis of the

data .can be used to indicate the relative values of n.» since the variance

of a given display quantity will be related inversely to the associated r\..

Methods for predicting a priori fractional allocation of attention or scanning

behavior are beyond the scope of the immediate effort. However, this topic is

of central importance for display design and panel layout.

Lower values for the motor noise/signal ratio, or corresponding higher

values for T ., seem to be indicated by the autospeed data. In this case, the

model's control variability is greater than the pilot's. It should be empha-

sized that there is relatively little data available in the manual control field

pertinent to multiple control input tasks. We have assumed values for T . - .1

on the basis of past single-axis task studies. In multiple control situations,

it may be reasonable to expect increased values of T . depending, for example,
ni

on the relative use the pilot makes of each control.*

The concept of pilot control allocation is interesting, and may have a counter-
part to the display allocation problem.
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4.3.4 System Modeling Errors

In developing the human operator model, it was necessary to derive a

linearized state-space model for the vehicle dynamics. These dynamics are

highly nonlinear with respect to angle-of-attack variations, thrust variations,

etc. Thus, slight differences between the model predictions and pilot data

might be attributed to imprecise linearization. For example, changes in the

pitch damping terms in the linearized model have a pronounced effect on the

short period mode; changes in the thrust characteristics will change the manner

in which in which the pilot applies control, etc. In addition to the above,

there are modeling errors introduced in our simple modeling of the autospeed

and pitch command-and-hold systems. When the autospeed system is engaged, we

have set u1 = 0; the pitch hold system implied 60 = 6q = 0 in our model.

In actuality, these augmentation systems are not perfect and introduce changes

in the model states. For example, the pitch hold system in the fully augmented

case was found capable of controlling 6 to within only .5° during flare. A

more extensive model analysis could include the dynamics of the augmentation

systems, but the price to pay is an increased model complexity.
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V. CONCLUSIONS

Optimal control and estimation techniques have been combined with human

response theory to develop a model for the pilot in a STOL landing task. This

model extends previous work in man-machine systems analysis where only the

approach portion of the landing task was considered. The ability to carry model

predictions through flare, to touchdown, now exists.

• . . • - - . - . - v . • • . . • - [ • • • • • .

The model development began with the nonlinear, longitudinal equations of

motion for the aircraft. These equations were linearized about the equilibrium

flight conditions, to. develop a linear model for the STOL dynamics suitable for

analytic investigation. The linear model coefficients were obtained from NASA

wind tunnel measurements. The ground effects, which are an important aspect of

the STOL landing problem, were included in the model equations.

The optimal control approach to human operator modeling provided the basis

for developing the pilot model. The underlying assumption in this approach is
•• • < ' k:- • -

that the well-trained pilot will behave in an optimal manner subject to his

inherent limitations and the task requirement. Thus, the model that has been

developed includes such pilot limitations as time-delay, inherent randomness,

visual threshold effects, display attentional allocation, and "neuro-motor"

dynamics. The terminal control aspects of the landing task were modeled by

assuming that the pilot regulates the aircraft motion about a nominal flight

path that meets the desired touchdown conditions. The nominal path has the

property of being generated with minimal control effort.

The pilot model is time-varying, with the time-variation arising from the

terminal control aspects of the task and the pilot's estimation of, and adapta-

tion to, the ground effects. The model's output predictions are of a covariance

propagation type, i.e., for any system variable, we obtain the mean and standard

deviation as a function of time from flare initiation. The mean and standard

deviation are sufficient statistics for predicting the joint probability density

of the system state at any given time. These probability densities were trans-

lated into probability densities at touchdown to give model predictions of

touchdown time and touchdown velocity.
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The model was applies to predict flare performance for three different

levels of STOL augmentation:

1. autospeed plus pitch'command and hold,

2. autospeed system only, and

J 3. no augmentation.

Parameter values were chosen a priori on the basis of the task requirements and

existing results in human response theory. The same set of model parameter

values were used across the three STOL cases studied. The model predictions

were compared with pilot data obtained on thte NASA-LRC Real-Time Dynamic "Simu-

lator. The comparisons were generally in agreement, with the most accurate

predictions being obtained for the fully augmented aircraft. The data indicated

that certain aspects of the model were valid, e.gl, our method for treating the

terminal control problem, but that other facets require slight modification,

e.g., the pilot's estimation of the ground effect. Some suggested modifications

to the model, that will enhance its predictive capability, were discussed.

The pilot landing model can serve as a very use'ful design tool in analytic

investigation of landing performance. It is relatively easy to study the effects

of changing the display information, display gains, etc., thus obtaining prob-

abilistic predictions associated with different display formats. Adding, or

deleting, vehicle stability augmentation systems can be studied merely by chang-

ing the vehicle parameters; the parameters associated with the pilot (.e.g.,

time-delay, cost functional weightings, etc.) remain the same. Thus, it is

possible to exercise the computer model in a straightforward, repetitive manner

to study' the effects on performance of vehicle' and/or display modifications.

Extensive simulation programs can be eliminated, since the model can serve to

glean the most promising configurations for subsequent pilot simulation tests.

Further efforts in extending the modeling techniques that have been devel-

oped include the following:
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1. Generation of Computer Simulation Flight Trajectories

The predictions generated by the optimal control model are of a prob-

abilistic nature. Thus, with a single computer-run, we generate the

statistics associated with an entire ensemble of trajectories. However,

in certain applications it may be desirable to obtain representative

sample flight paths in order to investigate potential oscillations,

overshoots, etc., that might not be readily apparent from the averaged

statistics. The ability to use the model in a "Monte Carlo" manner

would certainly enhance its flexibility, and is a relatively straight-

forward extension to the present effort.

2. Display Attentional Allocation

As discussed earlier, it is important to include within the pilot model

the capability to predict a pilot's fractional attention allocation

among a set of display indicators. This is a necessary step towards

the eventual use of the pilot model for display design. One method

of approach is to assume that pilot scanning (or attention) strategy

is chosen to minimize the uncertainty in estimating those state
F31variables most important for feedback control. Accurate pilot

scanning data will be necessary for validating any such scanning sub-

model that is eventually developed.

3. Pilot Control in Terminal Areas

The model that has been developed is appropriate for the specific

pilot task of landing approach and flare. However, the methodology

we have used can be extended to model a pilot's ability in following

curved approach paths (or multi-segment paths) appropriate in a

terminal configured vehicle context. Thus, one would have the ability

to determine the degree of pilot error in executing given maneuvers,

including compensation for changes in relative wind, timed arrival

at given waypoints, etc.
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4. Optimization of Display Information

One of the ultimate goals of the pilot model is its application to

optimizing the information content of a display panel. To achieve

this goal, it will be necessary to develop (either via experiment or

analytically) more precise relationships between a display symbol and

related model parameters such as observation noise, perceptual thresh-

olds, etc. A-model can then be used to rank-order proposed display

panel formats, with model predicted performance serving as a figure

of merit.

5. Display Monitoring

The. model!s, information base consists presently of those instruments

used by,the pilot in generating a given control input. There is no

explicit- treatment of pilot monitoring displays that are not directly

appropriate for-control, but may relate'to vehicle "status". It will

prove important to model these peripheral sources of information when

considering pilot identification of.system failures, anc the broader

aspect of total flight management. The model has the capability to

treat such "status" information as discrete information, obtained

periodically, as opposed to "control" information that is processed

continuously. Modifying the model to include continuous and discrete-

time information is an area for further' effort, especially as regards

to pilot monitoring in automated and/or semi-automated systems.
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APPENDIX A

SOLUTION OF THE LINEAR OPTIMAL-.TERMINAL CONTROL PROBLEM

This appendix derives the solution to the linear regulator problem where

it is required to meet prescribed set of terminal conditions.

Problem Formulation

The system dynamics are described by..the linear time-invariant equations

x(t) = Ax(t) + Bu(t) (A.I)

x(t ) = x = given (A.2)
o o

where x = col [x.. ,x_,.. . ,x ]. is the system state and u = col [u,,u_,...u ]

is the control. It is desired to drive the sytem from the initial state x

to a terminal state x(t..) that satisfies the p boundary conditions

HxCt^ + c = 0 (A.3)

where H is a given p x n matrix of full rank p <^ n and c is a p-vector.

In addition, the control that accomplishes the transfer must minimize the cost

functional

f1J(u,XQ,to) =x'(t1)Fx(t1)+ / [x'(t)Qx(t)+u'(t)Ru(t)]dt (A.4)

to

where F and Q are positive semi-definite matrices and R is positive

definite.

It is assumed that there exists at least one control that can drive the

system from x to an x(t ) satisfying (A.3) so that the optimization problem
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posed is non-vacuous. If the system (A.I) is completely controllable, this

assumption will be satisfied.

Problem Solution . - « . . . T - > t

In order to solve the optimization problem, the constraint equation (A. 3)

is appended to the cost function J(u,x ,t ) by introducing a Lagrange multiplie

V. Thus, we define a new cost functional,

J(u,xo,to) = (Hx(tp + c)'v + J(u,"xo,to) ' (A.5)

, * v" • • •
where V will be chosen such that the terminal condition Hx(t..) + c will be

small — hopefully zero.

The minimization of J subject to Eq. (A.I) is easily accomplished using

Hamilton Jacobi theory. Define the Hamiltonian

H(X, |̂ , u) = x'Qx + u'Ru + |̂ ' (Ax + Bu) (A. 6)

where the function J(x,t) of x and t is the optimal cost

J(x,t) = min J(u,x,t) (A. 7)
u

for the system (A.I) with initial state x at time t. Clearly, at t = t ,

J(x,t1) = x'Fx + (Hx + c)'v (A.8)

*
The optimal control, u , must minimize the Hamiltonian. Thus,

S=0 (A. 9)
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which yields

u*

The Hamilton- Jacobi theory then states that the function J(x,t) satisfies the

partial differential equation

" + H(«. fi, „*) - 0 (t.11)

with the boundary condition (A. 8). Substituting Eq. (A. 10) in (A. 11) gives

U + F - Ax + x'Qx - I f BR-V |i = 0 (A.12)
8t dx 4 3x dx '

The solution J(x,t) can be shown to be, by direct substitution,

J(x,t) - x'K(t)x + x'h(t) + r(t) (A.13)

where the matrix K(t) , t <_ t satisfies the Riccati equation

K(t) = - K(t)A + A'K(t) + K(t)BR~1B' K(t) - Q (A. 14)

with boundary condition

) = F (A. 15)

Note that if F = Q = 0, then K(t) = 0.

The function h(t), t £ t is generated by

h(t) = - (A - BR^B1 K(t))' h(t) = - A' (t) h(t) (A. 16)

) = H'V (A. 17)
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Finally, r(t) = v'c. Hence, the optimal control is

u(x,t) = - R'-S'Ktt) x(t) - R^B'hCt) (A.18)

It remains to determine v such that the boundary condition (A. 3) is satis-

fied. We note that the solution for h(t) is given by

h(t) = ?'(t1,t)H'v (A. 19)

where $(t,T) is the state transition matrix corresponding to A(t), i.e.,

*(t,T) = A(t) *(t,T), ?(t,T) = I1" (A. 20)

The state trajectory of Eq. (A.I) is then generated according to

x(t) = (A - BR~ B'K(t)) x(t) - BR~ I

= A(t) x(t) - B R B 1 $'(t1,t)H'v

where

l>to) =/

flf K(t) = 0, f(t,T) = eA(t"T)

(A.21)

is then given by

x(tx) = f(t1,to)xo - W(t1,to)H'v (A.22)

W(t7,t ) =/ $(t, ,T) BR B* $'(t,,T) dt (A.23)
J
t
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The matrix W(t-,t ) is invertible if the system (A.I) is completely control-
[71 l °

lable.l/J

Premultiplying Eq. (A. 22) by H it can be seen that for Hx(t ) = -c,

the vector V should be chosen as

V = [H W(t1,tQ)H'] • [H *(t1,to)xQ + (A. 24)

The required inverse exists if the system is completely controllable, and since

H was assumed to have full rank. This completes the solution to the originally

posed problem.

Extension to Control Rate Weighting

A.

In the optimal control of human response, the cost functional J(u,x ,t ),

Eq. (A.4), is of the (general) form

/"'I . .
J(u,x ,t ) = x1(t ) Fx(t ) + I (x'Qx + u'Ru + u'Gu)dt (A.25)

to

The system dynamics and boundary conditions (A.I) - (A.3) remain unchanged. In

order to apply the above results to solve this problem, we define an augmented

n + r state vector x = co1 [x,u] and define y(t) = u(t). Thus, the equation

(A.I) becomes

X(t) = AQx(t) + BQy(t) (A.26)

X(to) = XG (A-27)

The assumption of full rank is tantamount to having non-conflicting boundary
conditions.
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where

A =

"A |B"
i
i

.0 i o_
, B

0
 =

" 0 '

_ I _
' Xo =

" x "o

0

(A.28)

The cost functional Eq. (A.25) and terminal condition Eq. (A.3) may then be

written as

J(y,X0,t0) = X*(t1
rh
/ (X'Qo + y'Gy)dt (A.29)

HoX(tl) + c
(A.30)

where

= diag diag (A.31)

The derived results of Eqs. (A.14) - (A.24) are now applicable to the prob-

lem of minimizing control rate, with the replacements A - » - A , B - * B , Q - » - Q ,

R-»-G, H-*H , x->"X» u - v y = u, etc.
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APPENDIX B

NUMERICAL SPECIFICATION'OF THE STOL MODELS

The elements of the state space STOL models are functions of velocity,

physical characteristics of the aircraft, and the aerodynamic coefficients. These

elements are analytically specified by Eqs. (57) - (61) in the text. In this

appendix, the numerical values for the A and _B matrices are presented for the

basic aircraft, the aircraft with autospeed, and the aircraft with pitch command

and autospeed.

Basic Aircraft

The basic aircraft approaches at an initial airspeed of 75 knots on a 6°

glideslope. The centerline of the aircraft is initially pitched down -4.1°. The

A and B matrices are given by:

0.0

0.0

0.0

-.063

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

.63

0.0

0.0

0.0

0.0

0.0

-.0373

-.522

.2087

0.0

-.105

0.0

0.0

0.0

.0855

-.566

-1.2

0.0

-1.0

0.0

0.0

0.0

0.0

1.0

-1.47

1.0

0.0

0.0

0.0

0.0

-.255

.0268

-.0107

0.0

1.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

> 0.0

-.134'

-.0212

0.0

0.0

-2.0
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B =

0.0

0.0

0.0

0.0

0.0

0.0

0.0

2.0

0.0

0.0

-.0043

-.096

-3.5

0.0

0.0

0.0

Aircraft With Autospeed

The aircraft with autospeed approaches at an airspeed of 75 knots on a 6°

glideslope. The airspeed is held at 75 knots and the centerline of the aircraft

is initially pitched up 2°. The A and 15 matrices are given as

A =

0.0

0.0

-.063

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

.63

0.0

0.0

0.0

0.0

-.556

-1.2

0.0

-1.0

0.0

0.0

0.0

1.0

-1.47

1.0

0.0

0.0

0.0

0.0

.0268

-.0107

0.0

1.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

0.0

-.134

-.0212

0.0

0.0

-2.0
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B =

0.0

0.0

0.0

0.0

0.0

0.0

2.0

0.0

0.0

-.096

-3.65

0.0

0.0

0.0

Aircraft With Autospeed and Pitch Command and Hold
!

The fully augmented aircraft approaches on the 6° glidelsope. The airspeed

is held at 75 knots and the pitch is held at 2°. The A and B^ matrices are

given as

A =

0.0

-.063

0.0

0.0

0.0

-.556

-1.0

0.0

0.0

0.0

0.0

0.0

0.0

-.134

0.0

-2.0

1 =

0.0

0.0

0.0

2.0

In all cases, the aircraft mass is 1700 slugs and the moment of inertia
5 2

about the y-axis is 2.46 x 10 slug-ft .
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