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ON THE THEORY OF COMPLIANT WALL DRAG REDUCTION
IN TURBULENT BOUNDARY LAYERS

by Robert L. Ash1

SUMMARY

A theoretical model has been developed which can explain how the motion of

a compliant wall reduces skin friction drag. The experiments reported by Blick,
et al. (Ref. 1) and Mattout (Ref. 2) have been used to infer that a compliant
surface selectively removes energy from the upper frequency range of the energy
containing turbulent eddies and through resulting surface motions can produce
locally negative Reynolds stresses at the wall. The theory establishes a
preliminary amplitude and frequency criterion as the basis for designing
effective drag reducing compliant surfaces.

INTRODUCTION

M. 0. Kramer (Refs. 3 and 4) has been credited with the original idea of

drag reduction by a flexible or compliant surface. His early experiments with
submerged flexible rubber cylinders indicated potential drag reductions of 50
percent. However, his experiments were not closely controlled (drag was
measured on cylinders towed behind an outboard motor boat) and no one has been
able to duplicate his experimental results. Kramer suggested that the mecha-

nism responsible for drag reduction was a delay in the transition from a laminar
boundary layer to a turbulent boundary layer. Theoretical models proposed by

Benjamin (Refs. 5-7), Kaplan (Ref. 8), Landahl (Ref. 9), Nonweiler (Ref. 10) and
Gyorgyfalvy (Ref. 11) all have indicated it is possible to stabilize a laminar
boundary layer with appropriate flexible wall materials. However, numerous

experiments with compliant wall models in water and air flows have produced

no conclusive data showing a drag reduction due to transition delay (See Refs.
12-14, for example).

Associate Professor of Engineering, School of Engineering, Old Dominion
University, Norfolk, Virginia 23508.



Aside from the transition delay, Kaplan (Ref. 8) and Gyorgyfalvy (Ref. 11)
have indicated it is theoretically possible to produce some drag reduction by
expanding the region of the transition boundary layer. That is, even though a
compliant wall may in fact cause a laminar boundary layer to become unstable
sooner (farther upstream), the rate of amplification of local fluctuations may
be lower, causing the fully turbulent boundary layer to develop more slowly.
Experiments by Karplus (Ref. 15) have shown that simultaneous early instability
and arrested turbulent development can occur on some flexible surfaces.

At the present time, serious questions exist concerning whether any real
material can be employed to either delay transition or retard the development
of a fully turbulent boundary layer in a manner which can significantly reduce
the skin friction drag. Hence, the present state appears to be one in which
theory predicts significant drag reduction, while experiments show no drag
reduction. On the other hand, experiments with fully turbulent boundary layers
have been more encouraging.

In 1966, Fisher and Blick (Ref. 16) reported on preliminary experiments
with low speed turbulent air boundary layers over flexible membrance surfaces.
Their experiments indicated a skin friction drag reduction of nearly 50 percent
was possible under some conditions. Since that time, Blick and his coworkers
at the University of Oklahoma have presented substantial evidence (Refs. 17-22)
to indicate that significant drag reduction is indeed possible. However, their
experiments were not closely controlled and to date no one has isolated the
design parameters required to produce such large drag reductions in other
experiments. A more modest drag reduction of 10 percent has been reported by
Lissaman and Harris (Ref. 23) with essentially the same type experimental
apparatus as Blick although stringers were used to prevent large amplitude
panel flutter.

The purpose of the present report is to explain a preliminary theoretical
model of how a flexible wall can interact with a fully turbulent boundary layer
to reduce skin friction drag. Theoretical studies of the turbulent boundary
layer-compliant wall interaction have been reported by Ffowcs-Williams (Ref. 24),
Blick (Ref. 25) and Semenov (Ref. 26). However, none of the three have isolated
the design parameters sufficiently to allow testing of their theories. The
present model has attempted to concentrate on identifying the important design
parameters without fully exploring the mathematical solutions. A more complete
mathematical model will be the subject of a future report.



At the present time, only the uncoupled fluid and solid equations of
motion have been investigated. Moreover, the investigation has concentrated
primarily on the equations governing the wall motion even though most of the
previous literature has concentrated on the turbulent boundary layer model.
The basis for this change in approach is the fact that the compliancy para-
meters used in the uncoupled fluid flow models have been unable to isolate the
material design parameters needed to select a drag reducing compliant material.
In addition, because of the success of Blick and his coworkers with membrane
surfaces, primary attention has been given to the analysis of a rectangular
membrane.

Ultimately, the turbulent boundary layer equations must be coupled with
the equations governing the surface motion in order to completely understand
the fluid-wall interaction. However, the characteristics of a surface motion
which can potentially produce a drag reduction have not been identified at
this time. The simple phase lag model used so heavily by previous investigators
(Ref. 5-11 and 24-26) appears inadequate due to the random nature of an actual
turbulent wall pressure fluctuation as well as the uncertainty in whether drag
reduction is caused by a local wall motion due to a local pressure fluctuation
or by wall motions driven by pressure fluctuations acting some distance away
from regions where a drag reduction occurs.

During the preliminary phases of this study, an attempt was made to develop
general analytic solutions for membrane and elastic slab surface motions when
subjected to an arbitrarily varying local surface pressure. Solutions have
been developed for a rectangular membrane surface subjected to nonuniform
tension loads (Appendix A) and for a two dimensional elastic slab material
subjected to a sinusoidally varying surface pressure (Appendix B). The elastic
slab solution is not original, and is based on the solution presented by
Nonweiler (Ref. 10). Both solutions allow frequency response analyses, but the
membrane solution is unjustifiably complicated and the elastic slab solution is
too restricted to permit detailed studies of the interaction between a compliant
wall and a turbulent boundary layer.

The present report will concentrate on the compliant wall effect over
membrane surfaces since they are the only ones which have shown large experi-
mentally documented drag reductions.



MOTION OF A RANDOMLY EXCITED,

NONUNIFORMLY LOADED MEMBRANE

Using the experiments of Blick and his coworkers as a guide, it can be
justifiably argued that variations in membrane tension in the direction of flow
due to the local drag force are negligibly small compared to the applied edge
tensions. An attempt was made to use the variable tension solution reported in
Appendix A but was abandoned because the dimension! ess drag force parameter
based on Blick's experiments was so small, the only way eigenvalues could be
calculated was by approximating the Bessel functions with the same trigonometric
functions that result when the drag force was neglected. As a consequence, the
appropriate equation governing the motion of a rectangular membrane subjected
to different (but constant) tensions in the x- and y-directions was:

Tx * + Ty 3 + p(x,y.t) = ph , (1)
* 3x y 3y at2

where T is the tension applied in x- or flow-direction and T is the tensionx y
applied in the y- or transverse-direction (N/m). The local instantaneous
pressure is ^ and p and h are the membrane density and thickness, respec-
tively. For simplicity, it was assumed that the membrane was initially flat
and motionless. As a result, the initial conditions were:

Y(x,y,o) = 21 (x,y,0) = 0. (2)
at

Since the edges of the membrane were anchored, the appropriate boundary conditions
were :

z"(o,y,T.) = I(L,y,t) = z(x,o,t) = I(x,W,t) = 0, (3)

where L was the membrane length in the direction of flow and W was the membrane
width. If dimensionless variables x,y,z,t and p are defined by:

x = f • y = £ (\'l)h> 2 BT • l " ff

and p = L2p/(hTx),



the resulting dimensionless form of equation (1) is:

P(x.y.t.)o*_z. (4)
3t2

where

3x2 3y2 .

The initial conditions have exactly the same form as conditions (2) and the
boundary conditions become:

z(o,y,t,) = z(l,y,t) = z(x,o,t) = z(x,B,t) = 0 (5)

where

. (6)

Assuming the turbulent wall pressure has a Laplace transformation, a
double Fourier transform and a Laplace transformation can be employed on
equation (4), subjected to (2) and (5) to yield

1
<J> = c2 + / IIITT \ j. /n \2 \ r fj\

where e l °°

*mn =/"/"/ p(x,y,t)e'st sin mrx sin^dtdxdy (8)
J0 JV 0

5mn =/ / / z(x,y,t)e"st sin mrx sin ̂ dtdxdy (9)
J n ~ n ~ n

and
inn

'0~ 0" 0

If the wall pressure function is known, equation (7) yields a solution for
which can be inverted to find z. Specifically,

where L"1 { } is the inverse Laplace transformation.



Because no damping has been included in the governing equation (4), the
solution will predict 'sharp resonant peaks when the local pressure p(x,y,t)
has a frequency component given by sin Ymn irt, where

<»>
However, the predicted resonance amplitudes are of secondary interest here
since the actual fluid damping has been omitted from this analysis. It is
more important to realize that inversion of equation (10) will generally yield
a solution in the form:

z(x,y,t) = Amn sin n«c sin *®L sin ymnt. (12)

n=l m=l
This suggests that there will be a band of frequencies (determined by the y )
over which the membrane will exhibit preferential response. This "filter"
idea is discussed by Vaicaitis (Ref. 27) in his analysis of the response of
structual panels when exposed to turbulent boundary layers. However, in his
case of metal panels, the amplitude and frequency response apparently do not
alter appreciably the structure of the turbulent boundary layer.

If the pressure field is approximated by a collection of randomly varying
and randomly distributed pressure pulses, each pulse could be written in the

form

P̂ x.y.t) = Pj 6(x-xQ) «(y-y0) fi(t-t0) (13)

and the response to a single pressure pulse would be given by:

4pi y v i m7ryo
^(x.y.t) = -^ ^ — sin -f sin mrx0 sin -^ sin nirx sin Ymn*(t-t0),

(14)

Because y appears in the denominator, the above solution indicates a
preference for membrane vibration frequencies near its fundamental vibration
mode. The idea of a preferential response will be employed in the later analysis.



COUPLING BETWEEN THE TURBULENT WALL PRESSURE FIELD AND THE VIBRATORY MEMBRANE

Walters (Ref. 28) measured the kinetic energy power spectra exhibited by a

turbulent boundary layer over a rigid surface and over a compliant surface. The
compliant surface was a 0.0254 mm thick polyvinyl-chloride (PVC) skin 3.66 m
long and 0.61 m wide backed by a 0.76 cm thick polyurethane foam with a nominal
porosity of 1.6 pores per mm (40 pores per inch—designated 40 PPI). The flow
velocity was 15.25 m/sec. and the artifically tripped turbulent boundary layer
was approximately 7.6 cm thick. In the vicinity of the wall (y/6 = 0.0033),
he observed the changes in power spectrum over a compliant wall shown in
Figure 1. According to the data, both the high frequency and low frequency
turbulent energy content have decreased over the compliant surface when com-
pared with the rigid wall power spectrum. Simultaneously, the energy contained
in the interval between 4 and 80 Hz(0.1<k<20) has increased. The energy
changes can be accounted for by the filter effect discussed by Vaicaitis.

In order to expand the concept of a filter effect, the characteristic
membrane vibration frequencies must be determined for Walters' experiment.
Since he did not measure the applied tension loads, they must be estimated.
Using Blick's earlier experiments (Ref. 1) as a guide, tensions applied in the
x- or flow-direction on a much smaller membrane varied between 1.9 and 120 N/m,
while tensions in the y-direction varied between 1.9 and 56 N/m. If the tension
in the x-direction was 7 N/m (corresponding to an applied force of 1.3 N) and
the tension in the y-direction was 0.35 N/m (corresponding to applied force of
1.3 N), B from equation (11) would be 0.745, and the first vibration mode
for the membrane would be 3.4 Hz. These tensions appear reasonable since Blick
in his previous work used a PVC skin which was 2.5 times thicker than Walters',
and furthermore Walters' discussion appears to indicate that the membrane was
loosely attached and tension was produced by thermal shrinkage resulting from
an 8°C reduction in temperature.

Since the first fundamental vibration mode was approximately 4 Hz, any
pressure fluctuation which had primary frequencies above 4 Hz and less than a
few hundred Hz could be accomodated readily by the membrane. This accomodation
could conceivably reduce the turbulent streak shedding intensity (Ref. 29)

caused by eddies in that frequency range while simultaneously preserving eddies
with those frequencies. However as the frequency increased, the pressure
fluctuation was associated with eddies of decreasing size and the surface area
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Figure 1.- Effect of a vibrating membrane on the turbulent energy spectrum.
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affected by the high frequency fluctuations associated with the particular eddy
would become small. As the characteristic frequency increased and the area
decreased, the local pressure fluctuations should be well approximated by pulses
of the type given by equation (13). These high frequency, pulse-like distur-
bances could then result in a frequency exchange whereby some of the energy is
extracted from the eddies and is ultimately fed back to the turbulent boundary
layer at the lower frequencies which characterize the membrane vibration.
Examination of the spectral .data indicates that maximum energy removal has
occurred in the high frequency portion of the energy containing eddies. The
simultaneous increase in energy between 4 and 80 Hz may be accounted for by the
excited membrane burst production and by preservation of existing eddies. For
characteristic frequencies below 4 Hz, the eddies are expected to be quite large
and the membrane should perceive a quasi-steady applied force, which make it less
prone to vibrate and more likely to simply deflect.

To further expand this idea, the membrane should be easily excited over the
band of frequencies in Figure 1 which show an increase in energy. In addition,
higher frequency pressure fluctuations occurring at the membrane surface should
behave like pressure pulses and can give up energy which is translated by the
membrane into lower frequency surface motions. These lower frequency motions
are communicated throughout the membrane. At the same time, they are dissipated
by viscous interactions between the membrane and the turbulent boundary layer,
as well as any interactions between the membrane and its substrate. The two
dissipation mechanisms will be discussed separately. Because of dissipation,
a continuous supply of energy will be withdrawn from the high frequency fluctua-
tions and fed back to the turbulent boundary layer with frequencies which
characterize the vibrating membrane.

MEMBRANE DAMPING BY THE TURBULENT BOUNDARY LAYER AND

SIMULTANEOUS REDUCTION IN THE REYNOLDS STRESSES

In order to understand the membrane-wall flow region interaction, a brief
discussion of the rigid wall-turbulent boundary layer interface is needed.
Based on the fundamental research of Kline, Reynolds, Schraub and Runstadler
(Ref. 29) at Stanford, the structure of a turbulent boundary layer near a wall
is characterized by alternating streaks of low and high velocity flow as shown



in Figure 2. Kim, Kline and Reynolds (Ref. 30) have shown that Reynolds
stresses and turbulent energy production occur primarily during periods of
"bursting" in which segments of the low speed streaks are ejected up into the
high velocity region. It is important to note that these ejected streaks then
have a positive vertical or v1 velocity fluctuation and because of their low
speed, they simultaneously create a negative longitudinal or u1 velocity
fluctuation which makes a positive contribution to the Reynolds stress and
therefore to turbulent energy production. The instability responsible for the
onset of a burst was not described. However, at virtually the same time,
Grass (Ref. 31) observed in the study of flow over smooth and rough surfaces
that an inrush phase was an equally important part of the bursting process. He
found that a high velocity inflow from the outer regions of the boundary layer
immediately preceded the ejection of a low speed filament. Furthermore, his
measurements indicated that this portion of the bursting process was of nearly
the same importance as the actual ejection in the overall production of
Reynolds stresses and turbulent kinetic energy. The inrush portion of the
bursting process can be characterized by a negative v1 fluctuation due to an
arriving eddy and a positive u1 fluctuation caused by the high velocity entrant
fluid and dictated by conservation of mass—again making a positive contribution
to the Reynolds stress. A simplified sketch of the activity associated with a
single burst is shown in Figure 2.

As long as the amplitude of the membrane oscillations is not large (zm,uITlaX
should be less than the sublayer thickness to prevent roughness effects) the
smooth wall streak shedding process for turbulence generation should continue
to exist (in fact, Grass has shown that it exists even in flow over rough
surfaces). However, an additional shedding mechanism is available and two
negative Reynolds stress contributions are possible. If a high frequency
pressure fluctuation initiates a membrane disturbance, low frequency waves will
be propagated away from that disturbance through the membrane. As those wave
motions propagate into regions where the fluid flow filaments are attached to
the wall, bursting may not occur and the flow field shown in Figure 3 should
exist. Under these conditions, values of the product u'v' would tend to be
positive and the Reynolds stress would be negative. Furthermore, when a burst
is initiated, the vibrating surface may be less selective in ejecting high or
low velocity streaks. Grass has reported that the ejection of high speed

10
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Figure 2b. Interaction between an eddy and a low speed streak
along a rigid wall.
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velocity streaks results in a negative Reynolds stress contribution. On the
other hand, ejected low velocity streaks will still make positive contributions
to the Reynolds stress, and the rigid wall turbulent generation mechanisms will
remain, but the spectrum will be altered due to the ability of the wall to
respond to eddies with characteristic frequencies near the vibration frequencies
of the membrane and to its ability to selectively eject streaks.

The membrane motion and additional streak shedding mechanism does require
energy, and it is proposed that this energy is withdrawn from the small, high
frequency eddies and is converted to low frequency surface motions which are
ultimately dissipated by interaction with the wall flow region. It would also
be expected that the energy contained by the very large, low frequency eddies
would decrease because there is a tendency for the low speed streaks to be
broken up more rapidly due to the additional ejection mechanism. A corresponding
reduction in power spectrum is shown in Figure 1. This single data point may
be questioned, but Walters' experiments showed a persistant decrease in low
frequency energy as his spectra were measured farther away from the wall.

THE ROLE OF BACKING MATERIALS IN COMPLIANT DRAG REDUCTION

One reason for the difficulty in achieving consistent drag reduction data
can be attributed to effects caused by the backing material. If the previous
explanation for compliant drag reduction in a turbulent boundary layer is
correct, then the primary function of the backing material must be to control
the amplitude of membrane oscillations. Compliant drag reduction can be des-
cribed by the present theory as a controlled panel flutter phenomenon. The
membrane must oscillate, but the amplitude must be low enough to maintain the
"streaky" character of the wall flow regime with minimal increases in low speed
streak ejection (i.e. without introducing roughness). If the backing material
is fairly rigid, the membrane will oscillate at a very low amplitude. Obviously,
the membrane cannot be attached to the backing material if membrane motions are
the source of drag reduction. Furthermore, any gap between the membrane and the
backing material will be the dominant parameter in controlling the maximum
amplitude of the membrane oscillations.

13



In support of the contention that drag reduction was caused by controlled
amplitude membrane motions and not by elastic substrate motions, the experi-
ments of Walters (Ref. 28) shed further insight. He reported that when the
membrane surface was bonded to the polyurethane substrate no drag reduction
occurred. Furthermore, drag reduction did occur when the surface was not
attached to the Substrate. These observations suggest the backing material
may have effectively prevented large amplitude panel flutter (which should be
controlled in both cases) but it interfered with the frequency response of the

surface.

DISCUSSION

Several points can be made concerning the reported successful drag reduc-
tion experiments which tend to support the proposed theory. First of all,
from Walters' measurements the primary membrane vibration frequencies were
located in the energy containing range of the turbulent boundary layer power
spectrum. The energy containing range is generally considered to include all
frequencies below u (radians/sec.) (Ref. 32) given by:

a)r6R I
kc = Y'1- a 10 . (15)

CO

where k is the critical wave number, UM is the free stream velocity and
6D is the boundary layer thickness. Hence, Walters' fundamental membraneD. L. •
vibration modes were in the energy containing band. Apparently, only under
these conditions can a membrane affect the Reynolds stresses significantly. It
is also significant that Figure 1 indicates a withdrawal of energy from the
high frequency end of the energy containing eddies as was already mentioned.
These two ideas are consistent, since energy is required to drive the membrane
and little energy is available at higher frequencies.

The present theory further suggests that there should be an optimum
vibration frequency band which characterizes maximum compliant drag reduction.
In order to determine whether such an optimum frequency range exists, the data
compiled by Blick et al. (Refs. 1 and 19) in air and Mattout (Ref. 2)
in water have been examined to see if a correlation existed between the drag
reduction and the first fundamental membrane vibration mode. That is, the

14



vibration frequency should have been some fraction of the turbulent peak
power frequency. Employing equation (14), the fundamental membrane
vibration frequency is given by:

The nominal peak frequency in the turbulent boundary layer pressure as suggested
by Bradshaw (Ref. 32) and observed by Bull (Ref. 33) is

U

fpeak .
« L *

The correlation of drag reduction with frequency ratio is -shown in Figure 4.
Due to the scatter, an optimum frequency is difficult to estimate (or refute).
However, minimum skin friction drag appears to occur when the fundamental vibra-
tion frequency is approximately half the nominal peak power frequency. Much of
the scatter can be attributed either directly to roughness effects or indirectly
to roughness through the magnitude of the vibration amplitudes achieved by the
membrane. In addition to roughness due to large amplitude motions, the amplitude
may also have been too low in some cases to achieve appreciable wall-fluid inter-
action.

It has been the author's experience that roughness effects can hide this
compliant effect. Roughness can be directly produced by variations in the
membrane surface as well as nonhomogeneity and thickness variations in the
substrate. It would appear that Blick's dry 25 PPI data shown in Figure 4 have
resulted from a roughness dominated interaction. An optimum vibration ampli-
tude must surely exist for the compliancy effect as well as the previously
suggested optimum frequency. Variations in vibration amplitude could spread
the data similar to that shown in Figure 4. Specifically, if the amplitude was
too large, a roughness dominated interaction would occur, while too small
amplitudes would result in no interactions.

An optimum amplitude can be further implied from some of the previously
reported experiments. Blick et al. (Ref. 1) reported on one set of tests which
were performed with constant, membrane tensions over three different polyurethane
foams. The foams were tested under dry conditions and when saturated with water.

15
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A pseudo modulus of elasticity was measured by measuring the deflection of a
weight supported by the different foam specimens. A compilation of the foam
thickness and deformation moduli are given in Table 1. Because the foams
were of the same polyurethane material, the true modulus of elasticity of
each foam should have been linearly related (at least approximately) to the
pseudo modulus measured by Blick. Furthermore, if each foam was in contact
with the membrane surface, the amplitude of its oscillations was directly pro-
portional to the substrate thickness and inversely proportional to the deforma-
tion modulus. Hence, the membrane amplitude should vary with the deformation
parameter Aef given by

Al = -̂  (18)
hB

where T is the substrate thickness and ED is Blick
1s deformation modulus,s _ o

Large values of Aa indicate large amplitude oscillations while small values
indicate small amplitudes.

Before utilizing the amplitude parameter, its severe limitations must be
emphasized. First of all, it represents a steady-state amplitude estimate,
rather than a dynamic amplitude estimate. However, since all of the foams
were made of polyurethane, they should show the same type of frequency dependence.
Secondly, the water saturated foam is an entirely different structural material.
The vibration amplitude of the water saturated foam most surely exhibits
different frequency dependence than does the dry foam. Finally, if a gap was
present between the membrane and the foam, it would dominate the amplitude of
vibration. However, because of a general lack of controlled test data, it has
been necessary to assume that the water saturated and dry foams exhibit similar
frequency dependent amplitude responses, and that they were in good contact
with the membrane surface. A plot of drag reduction as a function of amplitude
parameter is shown in Figure 5.

As previously mentioned, the 25 PPI dry foam appears to be roughness
dominated. Furthermore, the composite data plot in Figure 4 indicates a poten-
tial drag reduction of 57% when the fundamental vibration mode is 52% of the
peak frequency in the turbulent power spectrum. Omitting the 25 PPI data point
and assuming the trends indicated by the composite data are correct, the curve
connecting the data points in Figure 5 can be drawn.

17



TABLE 1

CHARACTERISTIC PROPERTIES OF POLYURETHANE FOAMS
TESTED BY BLICK et al. (Ref. 1)

Porosity Thickness E^(N/cm2)
Type (pores/nm) (cm) Dry Water/Saturated

27 PPI 1.1 2.5 2.6 1.1

40 PPI 1.6 0.4 0.67 0.56

80 PPI 3.2 2.4 1.7 0.82

18



As has previously been mentioned, a gap may have been present between the
PVC skin and the foam used in Walters' experiments. In the absence of a gap,
the deformation of the foam substrate can be estimated and that estimate
indicates very small amplitudes. The modulus of elasticity for 40 PPI poly-
urethane.foam is approximately 7 x 106 N/m2. If the rms pressure fluctuations
are on the order of O.Olq, where q is the dynamic pressure •* pU^2 L a one
dimensional steady-state estimation of the elastic substrate deformation is
given by

O.Olq T
Aa = ^ (19)

Using Walters' data, the maximum displacement of the membrane allowed by the
substrate would be on the order of 10~3mm, which indicates that Aa/6D , is

D. L.
less than 10~5. On the other hand, if a gap was present and Schlichting's
(Ref. 34) roughness criterion is used as a crude estimate of the maximum
amplitude,

Aa = 100 ̂ - (20)
oo

By this criterion, a gap of up to 0.1 mm could be tolerated without inducing a
roughness drag effect. In fact, a gap would appear to be necessary in order to
produce a large enough amplitude fluctuation to affect the flow. How the
estimated amplitude reported here and the data of Figure 5 are related cannot
be determined until membrane surface displacements are actually measured.

The work of Mattout (Ref. 2) adds a new dimension to the compliant wall
effect. Mattout1s passive compliant wall experiments in water were inconclusive.
The present theory indicates that his difficulty resulted from membrane vibration
frequencies which were too high relative to his turbulent pressure spectrum as
shown in Figure 4. However Mattout found the rather startling result that when
the passive compliant surface was replaced by an active surface in which a
traveling wave was mechanically generated at the membrane surface, it was
possible in some cases to produce a thrust (in one case 5.29 times larger than
the original skin friction drag). The effect of the mechanical wave device
could easily have been to simultaneously control the frequency and amplitude
of the compliant surface oscillations as well as supply the energy necessary for
effective interaction.

19



O

O D

O CO (D
• • • -

— o o o
CM

•

O

CM

3 u

«> II
0 ID

I
O

s
O
•
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Boundary layer thickness measurements were not reported by Mattout.
However, using his total length Reynolds numbers, his average turbulent
boundary layer should have been approximately 3.7 cm thick when the water
tunnel velocity was 1.5 m/sec. He employed an active surface 1 meter long and
achieved his thrust effect when the wave speed was 8 times the tunnel velocity
(12m/sec) in either direction. The amplitude of the wave oscillation was 1 mm
or approximately 6% of the boundary layer thickness and the wave length was
52.5 cm. Using these data, the frequency of the surface wave was 22.9 Hz
which is equivalent to a Strouhal number (2irf6g L /Û ) of 3.55.

The other active wall data reported by Mattout had wave frequencies which
were characterized by lower Strouhal numbers. Furthermore, the considerably
more modest skin friction reduction produced by his other active wall
experiments fall into the band of possible compliant drag reduction shown in
Figure 4.

The author suggests that the thrust achieved by Mattout could have
produced either of two effects consistent with the present theory. (1) A
resonance effect may have occurred in which the wall motion was able to
effectively stop the rigid wall streak shedding-Reynolds stress generation
process in a manner similar to the relaminarization mechanism in rotating
flows discussed by Kline, Reynolds, Schraub and Runstadler (Ref. 29) and
replace it with the undulating wall, negative Reynolds stress generation
process. (2) Or alternatively, the wall motion may have caused massive bursting
of high and low speed streaks in a manner where the high speed streaks dominated
the local Reynolds stresses—thereby causing locally negative Reynolds stresses
as suggested by Grass (Ref. 31). In either case, the more modest drag reduc-
tions (still as high as 27%) induced mechanically by the wave generating equip-
ment seem to agree with the compliant wall idea that energy must be withdrawn
from the turbulent flow in order to cause a drag reduction. That is, the
mechanical energy supplied to achieve drag reduction by the wave mechanism was
in fact an alternate energy supply which produced the same effect as when the
compliant wall removed energy from the high frequency portion of the energy
containing eddies. The reason that such small drag reductions were achieved by
Mattout in his passive wall experiments was due to a lack of energy available
in the very high frequencies required to initiate impulse like membrane response,
(his vibration frequencies were too high relative to the peak in the energy
spectrum).
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CONCLUSIONS

The author has concluded that compliant wall drag reduction in turbulent
boundary layer flow is probably caused by a controlled panel flutter surface
motion. A membrane surface can be excited by turbulent pressure fluctuations
resulting from the higher frequency energy containing eddies, and lower frequency
surface motions can produce locally negative Reynolds stresses either by a
positive u'v1 correlation or by ejection of high velocity streaks. The
magnitude of overall drag reduction depends upon the characteristic vibration
frequencies of the membrane surface and the amplitude of the membrane motion,
which both must be controlled. The vibration frequency can be controlled by
the membrane dimensions, material properties and applied tensions. The
amplitude can be controlled by the same membrane parameters as well as by
properties and dimensions of the backing material and the spacing between the
membrane and its backing. The theory is closely linked with the bursting model
developed by the Stanford group and expanded by Grass. It is based on the
hypothesis that a primary cause of streak shedding is the interaction between
low speed streaks and incident high velocity eddies, as well as the assumption
that streak shedding is primarily responsible for Reynolds stress and turbulent
energy production. Only under these conditions are the active wall experiments
reported by Mattout consistent with the proposed compliant wall mechanism.

In order to verify the proposed theory, detailed studies of the turbulent
near wall flow structure over a compliant wall are needed as well as measure-
ments of the amplitude and frequency of motion exhibited by a successful drag
reducing surface. An experimental study of the frequency and amplitude charac-
teristics of low-speed drag reducing surfaces similar to Blick's is currently
underway at the National Bureau of Standards in Washington, D. C. The Fluid
Mechanics Branch at Langley Research Center is currently engaged in similar
experiments at much higher airspeeds.
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APPENDIX A

RESPONSE OF A NON-UNIFORMLY LOADED RECTANGULAR

MEMBRANE TO UNSTEADY PRESSURE FORCES

In general, a rectangular membrane subjected to aerodynamic forces
can be represented as shown in Figure A-l. If the airflow is in the
x-direction and the membrane is under tension in the y-direction, the applied
loads would be TX(X) and. Ty where TX and T are the tension forces in the x-
and y-directions respectively. It is important to realize that T (x) varies
with x due to the drag force acting in the direction of flow.

If z is the local vertical membrane displacement and it is assumed
that unsteady translational motions of the membrane are negligible, the
membrane displacement is governed by:

-. (Tx 4)ax \ * ax/
+ Ty-^f-+P = ph^ (A-l)J 3y2 3t2

where p, p and h are the local pressure, membrane density, and membrane
thickness, respectively.

Figure A-l. Drag Forces Acting on a Rectangular Membrane.
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If it is assumed that the membrane is initially flat and motionless,
and that it is rigidly anchored at its edges, the appropriate initial and
boundary conditions are:

z(x,y,o) = — (x,y,o) = 0 (A-2)
3t

and
v

z(o,y,t) = z(x,o,t) = z(L,y,t) = z(x,w,t) = 0 (A-3)

where it is assumed that the membrane length in the x-direction is L and
its width in the y-direction is W.

At this point, a particular form for T (x) is needed. As a reasonable
and simple approximation, it is convenient to assume that the local drag
shear stress is a constant and that the applied tension varies linearly with
location in the x-direction. Hence, TX(X) is given by:

-.x
(A-4)

0 L J

where
[l -̂

At this point dimensionless variables can be introduced into the system
of equations. Let

x = p y = £, and z = |-

while

and

t = t /T /(pl^h), p = pL2/(TY h), (A-6)
xo xo

e(x) = T (x)/T
X

Then, the system of equations governing the motion of a rectangular membrane
can be written:

9 32 , 322 . 32Z /. -
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where

subject to:

z(x,y,o) =|| (x,y,o) = 0 (A-8)

and

z(o,y,t) = z(l,y,t) = z(x,o,t) = z(x,g,t) = 0 (A-9)

where
3 = w/L.

From the dimensionless formulation, it can be seen that the motion of
the membrane is affected by the dimensionless parameters a = T /T ,

3 = W/L and fn =
 r /T " °

By substituting the functional form for 0(x) into (A-7) the governing
equation can be written:

That equation can be solved by classical transform methods.

Taking the Laplace transform of the governing equation and boundary
conditions, while simultaneously employing the initial conditions, (A-10)
becomes:

where
oo

C =•/ e'st z(x,y,t) dt (A-12)
o

and
oo

n =/ e'st p(x,y,t) dt (A-13)
o

The transformed boundary conditions are:

?(o,y) = c(l.y) = c(x,o) = dx,3) = 0 (A-14)
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Taking the finite Fourier sine transform of the equation, we get:

where

Cm = /C(x.y) si

and

n(x.y) si

In order to complete the development, it is necessary to modify the
form of - (1 - fx) by employing a coordinate transformation. Let

n2 = 1 - fDx (A-18)

Then

dx
dn _ "fD

and f
dw _ V dw

while 2

d - dw - f° d

If the boundary conditions are at x = 0 and x = l--say

w(o) = w(l) = 0,

the corresponding values of n are:

n = 1 at x = 0
and

n = /I - fD at x = 1

Now equations in the form

have the solution:

w(n) = AJQ(Xn) + BYQ(xn) (A-20)
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where
x = -f- TD

Applying the boundary conditions yields:

wj(n) = Yo(xj'e)Jo(xjn) ' V^V^ (A'21)

where A- is the "jth" zero of:
J

Yo(xjie)Jo(xj)- ' JO(AJ'K)YO(AJ) = ° (A'22)

and

K = /I - f[)

A finite Hankel transform can now be employed to complete the solution
of (A-15). First, the x-coordinate is replaced by n, given by (A-18). Then,
the governing equation becomes:

Next, the equation is multiplied by nN-(rr) where:

Nj(n) = Yo(YjK)Jo(Ajn) - Jofrj-OV^n) (A"24)

and integrated between n = /I - fD and n = 1, which yields:
_2

J.

or (A-25)
"ij

where l

so 3 /"N
and (A-26)

nmj
K
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The inversion of equation (A-25) is given by:

z(x,y,t) =

where

^o oo

EE
m=1 n=l UNJl l2 - Msin^l l2

(A-27)

dy= (A-28)

and i

=/ nNj2(T,) (A-29)

(AjQ - JO(X.K)

Response to a Unit Impulse Function

Since all pressure fluctuations can be constructed from a local impulse
solution, it is only necessary to investigate the pressure field:

p(x,y,t) = fi(x - xQ)6(y - y0)6(t - tQ)

where 6 is the unit impulse function. For this condition,

n = 6(x - xQ)6(y - y0) e"sto

miry t
-

(A-30)

and
(A-31)

Consequently,

(A-32)

and

1f - Vo '
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z(x,y,t) « |

(A-33)miry x '

where

_ o _ niir

In order to evaluate this solution, it is necessary to determine the

dimensionless parameters characterizing Blick's (Ref. 19) data. For reference

purposes, the following equations have been used:

0 = w/L = 0.1825 (A-35)

0.594 Cf (A-36)

fD =
= °-4125/[o.594 + (Tx/Cf)] (A-37)

A computer program has been written to determine the response of membranes

of the type used by Blick. However, the drag force effect has been found
negligibly small in the case of Blick's experiments.
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APPENDIX B

RESPONSE OF A TWO-DIMENSIONAL ELASTIC SLAB TO HARMONIC

PRESSURE FLUCTUATIONS*

Neglecting body forces, the conservation of momentum equations for a
two-dimensional slab can be written:

32u _ 3Txy + 3aX (B-"\)
9t» 3y 3X

and
32v _ 3Tyx + 3gy /B 2)

PlTt2" ax 5y '

where p is the density of the slab material, u and v are the horizontal
and vertical displacements, respectively, of a point in the slab, while
a , a and T are the normal horizontal stress, normal vertical stress, andx y xy
shear stress, respectively.

If the slab is perfectly elastic, the stresses are related to strains by:

r/au . 3v\
T "~ T i "" UI ' I / n i \xy yk yay 3xy (B-3)

(B-4)
A \OA ay i OA

and
_ _ ,/au 3v\ 9P3v , .
O ~ Al rr— + —I + c,(j : , i R — h iy y3x 3y/ ay * '

where \ and G are constants describing the particular material, and are
discussed further at the end of this appendix.

If the front surface of the slab is exposed to a moving, periodic stress
field, a and T can be represented at the surface by:

a (x,o,t) = Gu Re|e
1c^X~C ^| (B-6)

*Based on the work of Nonweiler (Ref. 10)
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and

T (X,0,t) =A.y
(B-7)

where R < >is defined as the real part of -j 1. Hence, the complex
functions of X and Y must satisfy the stress boundary conditions:

11 + 2l\
3x ay/

ia(x-ct)
y=0

and

where

./3X . 3Y\
'\§y 5x/

(B-8)

(B-9)
y=o

u = Re(X} and v = Re(Y} (B-10)

The real parts of X and Y must satisfy the conservation of momentum
equations (B-l) and (B-2). By assuming X and Y obey the same conservation
of momentum equations as u and v, they are governed by:

3x
32X

3y -3y3x (B-ll)

and

3x3y = P
32Y
at2" (B-12)

If the front surface of the slab is exposed continuously to a harmonic
stress field, it is reasonable to assume that the deformations of the slab
will follow similar harmonic paths. That is, X and Y should take the form:

X(x,y,t) = f(y)e1a(x-ct) (

and

Y(x,y,t) = (B-14)

Substituting these functional forms into equations (B-ll) and (B-12),
f and g are governed by:

x(-a2f + iag1) - 2Ga2f + Gf" + iaGg' = - pa2C2f (B-l 5)

and
x(iaf + g") + 26f" + iaGf - a2Gg = - pa2c2g (B-16)
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Or, rearranging:

(pa2c2 - Xa2 - 2Go2)f + Gf" = -ia(G + X)g'

and

(pa2c2 - a2G)g + (2G + X)g" = -ia(G + X)f '

Defining constants Cj and C2 by:

Cx
2 = (X + 2G)/p and C2

2 = G/p (B-17)

the governing equations of f and g can be written:

a2(PC
2 - PC!

2)f + PC2
2f" = -iapCCi2 - C!2)g' (

a2(pC2 - PC2
2)g + pCjV = -iap(C!2 - C2

2)f

Finally, defining rj and r2 by:

Pl2 = ! . _ and r22 = ! . (B.20)

and letting coordinate n be defined:
n = ay (B-21)

The governing equations (B-18) and (B-19) can be rewritten:

f _ ±M rx2 f =-1 ^ >!2- r22 g (B-22)
nn \C2/ L\C2/ J n

and
/Po\2 f / r \ " |

>2 f (-B-23)

These equations can be combined by differentiating (B-22) with respect to
and rewriting (B-23) as:

f =
g - \7^-

2 _n -i

Then, the combined governing equation becomes:

(B-24)
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Or, def in ing D by:

" • -
and rearranging:

D2 - 2r!2r2
2 lg = 0

But

f7 (r2
2 -Dr2

2 = 4ffe (r2
2 -Dr2

2 = (r a
2 -1 )r2

2

and

/r \2
I- w 1 I / O ^ \ 1 / O ^ \ O

IS) (r%1 ^rl = ^2 ^rl

Therefore, the governing equation can be written:

|> - (r:
2 + r2

2)D2 + r1
2r2

21 g = 0

or

(D + r J tD - r:) (D+ r 2 ) ( D - r2) g = 0

The general solution to this equation can be written:

g(n) = a! cosh rir\ + a2 s inh rm + a3 cosh r2n + a^ sinh r2n

The solution for g ( n ) can be used in (B-24) to solve for f ( n ) - That is,

(B-25)

.oe C2
- , . " VCT.

dn " 1 77^ri 2 -

( r 2
2 - D H - (r i 2 -Dr 2

2 g
= i

Substituting in (B-26) and s impl i fying,

(B-26)

(B-27)

(B-28)

j- = i ai cosh r! n+a2 sinh rm + r2
2(a3 cosh r^^ sinh r2n) (B-29)

33



Integrating,

f(n) = i f sinh rm + — cosh rm + r2as sinh r2n

+ r2a4 cosh r2n

If new constants Als A2, A3 and AI+ are defined by:

A} = iaai , A2 = iar2ai,. , A3 = icr™ and A^ = iaa3 ,

then f(n) and g(n) are given by:

f (n) = r~ sinh + — + —cosh rm + A^ sinh r2n + — cosh r2n

and

g(n) = ̂ - cosh rm + ̂ -̂ i sinh rxn + •£ cosh

Consequently, the complex solutions X and Y are given by:

X(x,n,t) = — — sinh rm + A3cosh rma I r^

] . /
ela^X-C

Y(x,n,t) = -r^- A! cosh rm + i"iA3 sinh

(B-30)

(B-31)

(B-32)

+ At, cosh r2n + sinh r2n
"2

el
J

la(x"ct)

Applying the front surface boundary conditions (B-8) and (B-9),

| Ti(A3 + A2) - i(rx2A3 + A2)l -2i(r1
2A3 + A2) = u

or

(\ + 2G- A + 2A =

and

or
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+ r2
2Alt) +. (A! +

+(1 + r2
2)A4 = T

= T

(B-33)

(B-34)

(B-35)

(B-36)

(B-37)



Employing the definitions of rj, r2, GI and C2, equation (B-36) can be
rewritten:

2A2 + (1 + r2
2) A3 = 1u (B-38)

The remaining boundary conditions can be developed by assuming that the
back surface of the slab is motionless. Then,

u(x, -D,t) = v(x, -D,t) = 0 (B-39)

And because of the form of X(x,n»t), Y(x,n,t), these conditions require that:

^^- sinh r^ + A3 cosh rid - r2Ai, sinh r2d + A2 cosh r2d = 0 (B-40)

and

AI cosh rjd - nA3 sinh rid + A^ cosh r2d - -~- sinh r2d = 0 (B-41)
' 2

where d = aD.

The boundary condition requirements on the integration constants can be

written in matrix form as:

2 0 0

0 2 (1 + r2
2)

-sinh rid cosh r2d cosh rjd

cosh r,d -sinh >?.d

Alternatively, the front surface conditions can be used to write

(1 + r22)

0

-r2sinh r2d

cosh r2d

AI

A2

A3

A*

T

ioj

0

0 (B-42)

A -Hl ~

A =

.
+ rz

z 2

(B-43)

and the back surface boundary conditions can be used to generate the 2x2

matrix equation:

-811 612

321 "322

" A I "

_ A 2 _

=
Yl

Y2

(B-44)
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where,
1 4- v«2

Slnh rid + r cosh rid

3i2 = (1 + ra2) cos*1 rad + 2r2 sinh r2d (B-46)

32i = (1 + i"2
2) cosh r^d + 2rl sinh r^ (B-47)

1 + r 2
322 = r'2 sinh r2d + 2 cosh r2d (B-48)

Y = -rr2 sinh r2d - iu> cosh r2d (B-49)

and

Y = ioirj sinh r:d - T cosh r2d (B-50)
i

Solving equation (B-44) and employing relations (B-43), the constants
of integration are given by:

A - £22 Yi + 612 Y9 . (B-51)
1 3i2 32i - 3n 322

A - 321 Yi + Bll Y2 /E
A2 «-- 32i - Bii 322

 (t

321 - 3ll 322) -
1 + rz)(B351 -

(B-53)
Bii322)

= T<Bi2 821 - 311 322) -2(321 Yi + 3n Y2) ( .
_ 32i - Bu 322)

 l '

Now YI and j2
 nave real ancl imaginary parts. As a result, all of the

integration constants are complex and can be written:

A = A + iA (B-55)

Specifically,
n R _ T_r_2 322 sinh r2d - T3ia cosh r2d"

3l2 321 ~ 3ll 322

(B-56)

612 sinh nd - 0)322 cosh rtd
32i - 3n 322
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R _ Tr2 p21 sinh r2d - Tgn cosh r2d
2 " 3i2 B -

t

I _ tar i Bn sinh_
2 " 3i2 621 - Bii 622

.. R _ 2 T Bi2 cosh r2d - 2Tr2 322 s inh r2d
3 ^ f j 2 1 - 3n 622) l '

0)
r z

A R 2T(en cosh r2d - r2 g21 s inh r2d) T
11 0 + r 22)(e 1 2 B2i - . B i i 322) 1 +

and
I _ 2o)(32i c°sh rtd - r! gn sinh

Consequently, the local displacements are given by:

( \ 1 fA iR Ru(x,n,t) = Re<X(x,n, t )> = ^ -^— sinh rin + A3 cosh rm

+ r2A^ sinh r2n + A2
R cosh r2n cos a(x-ct)

•?[«'• sinh r:n + A3 cosh rm + r2Ai( sinh r2n• i

+ A2 cosh r2n sin a(x-ct) (B-60)

v(x,n»t) = Rg Y(x,n,t) = — Ax cosh rm + riA3 sinh rin

R A R 1+ A4 cosh r2n +
 £J*- sinh r2n sin a(x-ct)

2 I

'[A41 cosh rm + f^3 sinh rm + A^1 cosh r2n

1 1
sinh rzn cos a(x-ct) (B-61)
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The motion of the front surface is then given by:

u(x,o,t) = 1 (A3
R + A4

R) cos a(x-ct) - (A3
! + A2

!) sin a(x-ct)

,o,t) = 1 (AjR + A4
R) sin a(x-ct) + (A^ + A,/) cos a(x-ct)

(B-63)
Accordingly, the maximum vertical displacement is given by:

vmax = I[(AIR + ̂ 2 + ̂ i1 + A*')2] 1/2 (B'64)

Application of this solution to representative compliant materials is
currently under investigation.

As a final point of reference, the constants G and X which have been
used to describe the elastic material are related to the modulus of elasticity
(E) and Poisson's ratio (v) by:

X = vE and G = ^ v E . (B-65)

A foam whose modulus of elasticity is 10 psi and Poisson's ratio is 0.3
would have constants

X = 432 psf and G = 504 psf.
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