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PREFACE

This progress report summarizes investigative methods and accomplishments to
date on a project to evaluate the usefulness of ERTS-I imagery as a spectral
geological mapping tool. The investigation concentrates on the geologically
usable imagery over New York State, although major new structural elements
will be studied where they extend into adjacent regions. Work to date indicates
that ERTS-I imagery is particularly well suited to detect topographically-expressed
features, including numerous large-scale structures which would probably never
have been discovered without a regional synoptic cability such as that provided
by ERTS-1o
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1. INTRODUCTION

1.1 A-major objective of this study is to extract a maximum amount ofSnew /geological information from ERTSI imagery, and thus to evaluate-h potential as a spectral-geological mapping tool. Analysis ofthe imagery is being supplemented with remote sensor data acquiredby high, intermediate, and low-level aircraft, in additionto groundstudy. The investigation is being carried out at three scales,
1:1,000,000, 1:500,000 and 1:250,000,with the bulk of the work com-pleted to date having been done at the smaller scale. The lattertwo scales correspond, respectively, to those of Tectonic Atlas mapsfor the State now in progress, and the recently published GeologicMap of New York State (Fisher and others, 1971).

1.2 New York State provides a highly varied test area for evaluatingERTS-I imagery as a source of new geological information not readilyseen at conventional mapping scales. The State covers a number ofwell defined physiographic provinces (Figure 1), and contains litho-
logic units ranging in age from Proterozoic to Pleistocene (Figure 2).It stretches east-west across five tectonic provinces as follows(Figure 3): 1) a continental platform (Platform I) consisting ofLower and Middle Paleozoic strata resting on a Proterozoic basement,2) the Adirondack Dome Mountains which are located on the eastern
edge of this platform and expose Proterozoic basement of the GrenvilleProvince, 3) the Appalachian Foldbelt with its several subdivisionsincluding the Hudson Highlands (reactivated Proterozoic basement) andthe Taconic allocthones, 4) the Triassic Fault Trough (PalisadianTaphrogen) and 5) Cretaceous coastal plain sediments on Paleozoic base-ment (Platform II).

1.3 For a general description of the geology and physiography of the State
the reader is referred to Broughton and others(1966); the tectonicsubdivisions are discussed in Fisher and others (1971).

2. DATA HANDLING AND INVESTIGATIVE PROCEDURE

2.1 The overall procedures for data handling and imagery analysis are shownby flow chart in Figure 4. Incoming imagery, consisting of 9.5 inchpositive transparencies and 70 mm positive and negative transparenciesof New York State and adjacent areas are logged according to scene des-ignation (Figure 5) and other identifying factors, including delineationof cloud-free areas (Figure 6). For convenience, the scene designationsshown in Figure 5 are used throughout this report. Image descriptors
are tabulated at this stage. Diazo paper prints of bands 5 and 7 arethen made for the browse file. Selected cloud-free imagery is set asidefor photographic reprocessing of all bands to produce high contrast posi-
tives for later color-additive viewing.

-1-
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S I Symbol Locality Designation

S/ . AO New Hampshire - Maine
2 Al Rhode Island

4- A2 Long Island
BO No. Vermont - New Hampshire'
B1 So. Vermont- New Hampshire
B2 Connecticut

" JA B/3 New York - Long Island

H/ CO Pontreal East
L. -" C, Lake Champlain

I .C2 Hudson - Mohawk
I; I C3 Catskill - Hudson Highlands

.C4 Philadelphia
D1 Montreal West
D2 Adirondacks

*1 , D3 Utica - Binghamton
S, D4 Scranton

-.. D5 Harrisburg
- -' EO Ottawa

El Kingston
/a.. E2 Finger Lakes

- 1. v' E3 Elmira
, E4 South Mountain - Alleghany Plateau

FO Pembroke
F1 Rochester
F2 Genesee River± -1 -A -F3 Alleghany River

ING1 C Toronto
41- .q' ' G2 Lake Erie East

' c I G3 Pittsburgh - Youngstown
HI Lake Ontario - Lake Huron

SH2 Lake Huron - Lake Simcoe

so 7 7 7Y. 73 7 72

Figure .5, Scene designation for repetitive ERTS-I imagery covering New York State and adjoining

areas, on file at the New York State Geological Survey. The alpha-numeric symbols 
have

been placed in the center of each 115 x 115 mile scene. Note the 40 percent sidelap.



1 2 4 5 6 7 7b 819 10 U 12 13 14

Date el r Cb c S seful Examined via: 1
Bands flown Product 5 6 E ands, in
rec'd Orbit ----- I.D. n o W : ecreasing I X Remarks

rec'd Location o rder SDC
Df trble W sa a settings or

reas a -other

9P _ 0612 5 Sep72 1044- 50 1,2, 4-6 / a number of
4-7 190ct72 15173 9 No Yes 7,5,6,4 useful setting

9PN 0863 
2
3Stp72 1062- 100 all Yes Yes same sme

4-7 31Oct72 15172

9PN_ 1114 11Oct72 1080- 100 all /Yes Yes / same same
4-7 9Fy?72 15174 V _ V

9PN_ _ 1616 16Nov72 1116- 85 all Y es Yes J same same
4-7 2Jan73 15181 V

9P1_ 2118 2Dec 72 1152-
4-7 1Feb 73 15181 0 0 No No

9PN_._ 2369 
9

Jan 73 1,170- Ia number of use
4-7 Iar 73 15175 90 11 . Y Yes 75,6,4 ful settings

9PN 2871 14Feb 73 1206- 85 .all / Yes Yes / 7,5,6,4 same
4-7 16 Mar 73 15182

9PN - 2620 '7Jan 731 1188- 20 5-9 0 No No
4-7 9Har 73 15180 "- - -

9PN 3624 9Apr 73 1260- 90 all / Yes Yes 7,5,6,4
4-7 9Hay 73 15183

9 0N 111 31Jul 72 1008- 55 all No Yes
1-3,7 1-7 21Mar 73 15171 .

Figure 6.. Sample page of log book for ERTS-I data products received from NASA.
(Under Bands rec'd. formats are abbreviated thus: 9 = 9.5 inch
transparency, P = 70 mm positive transparency, N = 70 mm negative
transparency).
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2.2 After completion of these "housekeeping duties", the imagery is sub-
jected to analysis following an investigative procedure which may be
expressed in terms of three stages: I. photogeologic identification
of suspected geological signatures in ERTS-I imagery; II. laboratory
screening of these signatures; III. field investigation of remaining
"ERTS-I anomalies". The investigation is followed by: IV. Preparation
of ERTS-enhanced geological maps; V. .Publication.

2.2.1 Stage I: Identification in the 9.5 inch film positives of
all spectral signatures (points, lines and areas) which may
be geologically-linked. These are traced onto clear acetate
or mylar overlays which may be color-coded according to the
spectral band on which they are best displayed. The overlay
data are then assembled to produce a preliminary, "spectral
geologic work map" of New York State and adjoining areas at
1:1,000,000 (e.g. Isachsen and others, 1973, Figure 2). This
map is continually updated, using both new imagery as it arrives,
and the screening procedures described below. A companion ERTS-I
image mosaic made from diazo paper prints is also assembledfor
each season, using the most cloud-free imagery available. Simi-
lar procedures are now being followed with 1:500,000 and 1:250,000
black and white and color prints of selected ERTS-I imagery.
Multiband color viewing of photographically reprocessed 70 mm
positives, utilizing either a Spectral Data Corporation (SDC)
Model 64 Viewer-Projector, or sandwiched diazo color film posi-
tives on a light table,is being used on an experimental basis
to corroborate or expand the above spectral signatures. Selected
anomalies may be investigated further by electronic ehancement
techniques,using equipment generously made available by.the Rome
Air Development Center and State University of New York at Albany.

2.2.2 Stage II: Evaluation of these suspected geological signatures
in terms of existing information (geological, cultural and
other maps, airfoto mosaics, and other remote sensor data,
particularly that obtained by supportive NASA aircraft) in
order to identify them as one of the following:

a. clearly non-geological (e.g. power transmission lines,
railroads)

b. clearly geological and previously mapped (e.g. faults,
topographic lineaments, formational boundaries)

c. other signatures not previously known, which may be
geologically linked (e.g. tonal discontinuites or lines,
aligned drainage features, straight segments of streams).
These are classified as "ERTS anomalies'L.

3. EXPERIMENTATION WITH VIEWING METHODS

-8-



3.1 ERTS-I imagery received to date totals 267-frames covering 34 scene
areas over New York State and portions of adjacent states and Canada.
An inventory of the imagery on hand through May 1973, in terms of geo-
logical usefulness, is as follows: useful (0-50 percent cloud cover),
55 percent; marginally useful (50-70 percent cloud cover), 12 percent;
useless (70-100 percent cloud cover), 33 percent.

3.2 The entire state is now covered by at least one image having greater
than 70 percent cloud-free area for summer and fall, and 90 percent
cloud-free in winter. Mosaics made from diazo paper prints of the
summer-fall and the winter images at 1:1,000,000 are reproduced as
Figures 7 and 8.

3.3 The 1;:1,000,000 film positives of the usable imagery have been ana-
lyzed in transmitted white light (i.e. Stage I analysis) and the
data have been combined into a statewide "spectral geological map"
at 1:1,000,000 (Isachsen and others, 1973, Figure 2). For the late
summer and fall imagery, it was found that bands 5 and 7 complement
each other and contain all the spectral signatures which appear to
be geologically-linked; no additional data were found on bands 4 and
6. The data referred to above have subsequently received Stage II
analysis, with the resultant ERTS-1 anomaly map shown in Figure 9
which will be discussed later.

3.4 After all the more obvious features of possible geological linkage
were extracted from the standard black and white film positives,
it was decided to experiment with other photogeologic methods as
follows:

1. Experimentation to determine what effect photographic
reprocessing to produce higher contrast prints might
have on the identifiability of linears in ERTS-I, band 5.
A cloud-free C2 image (1079-15122-5) was chosen for the exper-
iment because it includes a variety of geological provinces,
namely: the Adirondack Mountains, consisting of high-grade
metamorphic rocks, the Alleghany Plateau (or Appalachian
Uplands) comprising horizontal Silurian and Devonian strata,
the Mohawk and Hudson Valleys underlain by variably faulted
and folded Cambrian and Ordovician sedimentary rocks, and
the Taconic Mountains which consist of allocthonous Cambrian
and Ordovician sedimentary rocks. The two prints in question
are reproduced as Figures 10 and 11. The photographic re-
processing method used was as follows: from a 70 mm ERTS-I
negative, a Kodalith film positive was prepared by contact
printing. From this positive, a 70 mm high-contrast negative
was made with Kodak Professional Copy film, D-72 developer
was used. Paper enlargements were then made at 1:1,000,000
of both the reprocessed and unreprocessed 70 mm negatives,
and identifiable linears (some 270) were inked on clear
mylar overlays. A comparison showed thatall linears
identifiable on one image were clearly recognizable on
the other, although the expression of linears was greater
on the high-contrast reprocessed image.

-9-



Figure 7. ERTS-I mosaic of New York State and sur-

rounding regions made from the 1:1,000,000 late

summer and fall imagery of 1972, band 7. (Image nos.

1077-15011, 1096-15072, 1096-15074, 1079-15115, 1079-

15122, 1079-15124, 1079-15131, 1080-15174, 1080-15180,
1080-15183, 1080-15185, 1027-15231, 1027-15233, 1027-
15240, 1045-15243, 1046-15292, 1046-15295.



Figure 8. ERTS-I mosaic of New York State and sur-'

rounding region made from the 1:1,000,000 winter

imagery of 1972-73, band 7. (Image nos. 1167-15013,

1168-15065, 1132-15074, 1132-15080, 1169-15121, 1169-

15123, 1205-15132, 1133-15135, 1170-15175, 1170-15182,
1170-15184, 1170-15191, 1243-15242, 1243-15244, 1243-

15251, 1243-15253, 1244-15300, 1244-15303.
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2. Multispectral color-additive viewing of 70 mm positives
of bands 4, 5, 6, and 7, as received from NASA, using
the SDC Viewer-Projector. Despite considerable experi-
mentation with a variety of scenes, no information was
added to that obtained by conventional viewing'in trans-
mitted light. Later attempts, using photographically
reprocessed imagery, are described under 4, below.

3. Pre-formatting of ERTS-I 70 mm film positives for multi-
spectral viewing, to avoid the time consuming task of
separately registering each band in the Viewer every
time a scene is to be viewed. After some experimentation,
a successful method was devised as follows: on a 9.5 x 12
inch piece of 0.005 inch clear mylar, the positions of the
four viewer windows in the 9.5 inch roll film holder are
roughly located. Two perfectly parallel horizontal lines
are then drawn to guide the placement of the upper edge of
the 70 mm film positives. Using these lines, the images
are carefully taped in perfect parallelism. This pre-
formatted array permits rapid registration, requiring only
limited x-y adjustment, the need for rotational adjustment
having been eliminated.

4. Multispectral color-additive viewing of photographically
reprocessed film positives, using a SDC Model 64 Viewer-
Projector or diazo color film sandwiches. Experimentation
with several ERTS scenes using numerous combinations of
spectral bands, color filters, and illumination intensity
produced a variety of striking effects (e.g. Figure 12).
Most of the color patterns produced merely accentuate
tonal differences which are readily observable in the
black and white imagery. Some, however, are subtle and
are not visible in the black and white images. An attempt
was made to determine the cause of these subtly-colored areas
by comparison with numerous different kinds of maps. A cloud-
free image (D2 taken 11 Oct 72, scene no. 1080-15174) was
chosen for the comparisons. This image covers the Adirondack
Highlands which are dominantly forested, and the St. Lawrence
Lowlands which are mainly given over to dairy farming. Koda-
color prints of the SDC image were superimposed on the various
maps, using a Bausch and Lomb Zoom Transfer Scope, model ZT-4.
The maps used were as follows:

a. Geologic Map of New York, Adirondack Sheet, reduced
from Fisher and others (1971)

b. Physiographic diagram of New York State (Figure 1)

c. Pleistocene Geology of the St. Lawrence Lowland
(MacClintock and Stewart, 1965)

d. Map of areas burned by Adirondack forest fires of
1903 (Suter, 1904)

-15-



Figure 12. Kodacolor print of color-additive projection of scene D2 (1080-15174)
with filter-light intensity settings on the SDC Model 64 Viewer-Projector
as follows: band 5, blue 10, band 6, green 1, band 7, white light 3.
Color-distinct areas which could not be detected tonally in black and
white images such as figure 14, are irregularly shaped, and range in
area from 12 to 2500 km2. A dark yellow patch occurs near the southeast
border of the image. The other patches are scattered in a 60 km-wide
belt which extends from the lower edge of the image at left center,
northeasterly for about 100 km. The color anomalous patches are pale
blue immediately surrounding Cranberry Lake (except for several yellow
patches) and extending about 40 km to the east, dark yellow brown south, plus
several other smaller areas of pale blue and yellow.
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e. Forest-type areas map (Stout, 1958)

f. Economic viability of'Farm Areas (Conklin and
Linton, 1969)

g. Soil Association map of New York State (Cline, 1961)

h. Ground Water in New York (Heath, 1964)

In only one instance was any correlation noted with the subtle
color patterns; comparison with the forest-type map indicates
a rough, local delineation (less than 5 percent) of the boundary
between areas of aspen-grey birch-paper birch and spruce-fir-
northern hardwoods northeast of Cranberry Lake. The virtual lack
of correlation with this map was somewhat surprising because
Hoppin (1973) in the Bighorn region found a good correspondence
between false-color patterns and dominant forest types.

5. Multidate color-additive analysis of ERTS-I imagery. An experi-
mental multidate comparison was made of a scene for which there
exists imagery for four essentially cloud-free passes, namely
D 2 for 23Sept72, 110ct72, 18Nov72, and 9Jan72. Photographically
unreprocessed 70 mm film positives of bands 5 and 7 for these
dates were projected in registry using the SDC Model 64 Viewer-
Projector. The most tonally varied and informative image (11Oct72)
was projected in red, and the other images were superimposed, in
turn, using first a blue and then a green filter to determine
what "color features" were added. The results were as follows:

a. the September image, which is a rather flat, light grey
image, added no new information, but merely produced an
overall green wash which was accentuated where the October
image is dense and hence transmitted very little red light.

b. the November image, in which the Adirondackshave an overall
dark grey tone, highlights mines, dry tailings ponds and
unforested summits of some of the jigh peaks. The cause
appears to be snow cover which makes the image more trans-
parent in these areas.

c. the January image, which is very dark grey overall, adds
only frozen, snow-covered lakes, which have an expectable
high albedo.

This experiment will be repeated with photographically reprocessed
film transparencies.

6. Experiment with log e dodged prints of ERTS-I imagery. In the
southern Adirondacks, any tendency for the dominant east-west
arcuate trend of lithological units to reflect characteristic
taln signatures, would be masked by the strong NNE topographic
grain (Figure 7) which is accentuated by the low-angle solar
illumination. We were able to subdue this high density contrast
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through the cooperation of Charles Woodward of Lockwood.
Kessler and Bartlett who provided log e dodged film
negatives for all bands of image no. 1080-15174 for study.
The technique was successful in subduing density contrast
to a limited extent, but no new tonal variations were seen.

7. Experimentation with color-encoded presentation of imagery.
One of the objectives of this project was to experiment with
the electronic image-processing equipment generously made
available at Rome Air Development Center. An afternoon was
therefore spent with Captain James Turinetti, using that
part of the Center's "System 800" made by Spatial Data
Systems, Inc. which converts the grey scale of black and
white film products into a 32-color video display.

ERTS 9.5" film positives of the four spectral bands of the
northern Adirondacks (scene D2, no 1080-15174) were examined,
using a great variety of color combinations in a search for
linear or areal spectral information which had not been detected
by conventional photogeologic analysis. Regardless of instru-
ment manipulation, of the 15 shades on the ERTS grey scale,
only the 11 darker shades were detectable as separate colors.
A mosaic of positive transparencies of the entire Adirondacks
was also examined on the color display (1080-15174, 1080-15180,
1079-15115, 1079-15122). By calibrating only to the grey scale
it was possible to distinguish 11 of the 15 shades.

The principal limitation was not that of density spread,
however, but the low resolution of the SDS display. Although
the resolution would .ppear to be adequate for color enhance-
ment of small-area, high-resolution conventional aerial photog-
raphy, it degrades ERTS imagery to a degree that is not compensated
for by the asset of color visualization. In short, geological
information was diminished in the color display, and no new
potentially-geologic information was seen.

3.5 The experiments described above were intended not as rigorous investi-
gations, but rather as relatively rapid tests to help determine which
methods, beyond the more conventional approaches, would yield a sufficient
amount of new geological information to justify the time involved. From
the largely negative results Obtained, we conclude that, for the region
under study, the most advantageous method of photogeologically analyzing
ERTS-I imagery is to study bands 5 and 7 separately. A small additional
increment of information may be derived by examination of photographically
reprocessed imagery, using color additive methods. Additional experimenta-
tion with electronic enhancement will be attempted using high-resolution
video equipment at SUNY-Albany.

4. ERTS-I AND BEDROCK GEOLOGY

4.1 Regional geological features

4.1.1 The synoptic value of ERTS-I imagery is readily appreciated from a
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single satellite image, but perhaps even more from a mosaic of an
entire State (Figures 7 and 8) where, despite the loss in resolution
due to photo-reduction of the original mosaic, major physiographic,
geologic, and tectonic provinces can be seen (compare with Figures
1, 2, 3). Major tectonic provinces visible in the mosaics include
the Adirondack Dome Mountains, Platform I, the narrow belt of upturned
Silurian-Devonian rocks deformed during the Acadian Orogeny,. the
Appalachian Foldbelt, the Palisadian Taphrogen, and Platform II.
Two physiographic regions which are independent of the tectonic
provinces appear prominently in the imagery, namely the Tug Hill
Upland, which is defined both topographically and by its forested
plateau surface, and the Catskill Mountains. (Both are composed of
erosionally-resistant deltaic rocks, one Ordovician, the other
Devonian).

4.1.2 Outlining the Adirondacks can be seen the major unconformity between
the Grenville basement and the onlapping Paleozoic section which has
at its base the Potsdam Sandstone of Upper Cambrian age. The contact
is accentuated by a topographically-induced land use boundary, namely
forest versus farmland, but it is also well delineated geologically,
particularly along the southwestern, southern and eastern Adirondacks,
by the abrupt termination of the east-west arcuate pattern in the base-
ment at the Potsdam contact. This pattern results from differential
erosion of the basement lithologies.

4.1.3 Along its northern, western, and southwestern borders, the crystalline
Adirondack basement is expressed on ERTS-I imagery as a slightly dissected
planar surface which dips gently away from the central part of the
Adirondack Dome, (Figures 7 and 14). This surface is exposed in a
belt ranging in width from 10 km in the north to about 20 km along
the western perimeter, and corresponds closely to the physiographic
section designated as the "Fall Zone Belt" by Buddington and Leonard
(1968, p. 8). It is doubtless a tilted erosion surface, from which
the Paleozoic units have been stripped by erosion. A striking feature
of this paleoplane in the northern Adirondacks is its abrupt termination
to the southeast, along a topographic lineament which had not previously
been mapped, to produce a pseudo-cuesta. Along the northern border of
the Adirondacks, the contact between this erosion surface and the
Potsdam Sandstone is well displayed as a boundary between forest and
cultivated farmlands. About 10 km to the north, is the contact between
the Potsdam Sandstone and the Theresa sandy dolostone, again marked by
a change in land use influenced by bedrock.

4.1.4 Along the southwestern border of the Adirondacks, the basement-Potsdam
contact is accentuated by the Black River. In the intervening section,
basement exposures are continuous from the Central Highlands, across
the Frontenac Arch of the Northwest Lowlands, into the main Grenville
Province of Canada. Potsdam occurrences are here limited to scattered
relict patches.

4.1.5 Within the Appalachian Foldbelt, major subdivisions can be seen in
the ERTS-I imagery at the original 1:1,000,000 scale, albeit notably
better at 1:500,000. In Figure 22, the Alleghany Plateau with the
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Catskill Mountains as its eastern projection, is readily identified
by its dendritic drainage pattern. The straight eastern edge of
the Catskill Mountains, which has long been referred to as the
"Wall of Manitou", is prominently displayed. A major insight into
its cause has been provided by ERTS-I imagery, as will be discussed
later.

4.1.6 About 20 km south of the Catskills, the Shawangunk Mountains begin,
and extend southwestward into New Jersey where they are known as
the Kittatinny Mountains. They represent a belt of upturned Silurian
and Devonian rocks, dominated by the Shawangunk conglomerate, which
marks the western boundary of the Appalachian Foldbelt.

4.1.7 An angular unconformity between the titled Shawangunk conglomerate
and isoclinally-folded Ordovician shale and graywacke beds is seen
on the imagery as the eastern edge of the Shawangunk Mountains.
These beveled Ordovician rocks extend eastward to the resistant
Proterozoic basement rocks of the Hudson Highlands north of the
Hudson River. Southwest of the river, a synclinal belt of down-
faulted Silurian and Ordovician strata occurs between the beveled
Ordovician rocks and the Highlands. This belt is marked by the
elongate Greenwood Lake at its southern end, and by the isolated
Schunemunk Mountain mass at its northern end located about 10 km
southeast of the point at which the Hudson River enters the gorge
(fiord) through the Hudson Highlands. The Highlands extend north-
eastward,where they appear to merge, in the 1:1,000,000 imagery,
with the more highly-metamorphosed Paleozoic rocks of New England.
(In the 1:500,000 imagery, the northern boundary of the Hudson
Highlands is well delineated). The elongate Housatonic Highlands,
a separate Proterozoic mass, can be seen northeast of the Hudson
Highlands. The belt of Taconic ailocthones north of the Hudson
Highlands are not well delineated in the 1:1,000,000 print, but can
be seen at the 1:500,000 scale.

4.1.8 The Triassic basin borders the Hudson-New Jersey Highlands along
the Ramapo normal fault, and is bounded on the east by the Hudson
River. The Palisades diabase sill forms a vertical escarpment
along the west shore of the river. It can be seen in the imagery
as a faint line parallel to, and within 500 meters of, the shore-
line. The Hudson flows along the onlapping contact between the
Triassic red beds and the high-grade Appalachian basement rocks
to the east. This basement, in turn, forms the substrate for the
Cretaceous and Pleistocene formations of Long Island.

4.1.9 Within the Adirondacks, many previously-mapped geologicalf!structures
in addition to lineaments can be identified. These include the major
east-west arcuate folds extending across the southern Adirondacks
(Figure 7 and 14) and a number of domical structures, plunging folds,
refolds, and other structures which have topographic expression
(Figure 14). However, because the emphasis here is on newly-discovered
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geological features, and because an evaluation of non-linear structure
is better attempted at the 1:500,000 and 1:250,000 scales now under
study, the remaining discussion will center on linear features.

4.1.10 The word "linear" is used in this report in the sense of Dennis (1967,
p. 103), to designate lines of uncertain origin on aerial photographs
or imagery. The term "lineament", on the other hand, is reserved for
a naturally occurring linear feature (e.g. Hobbs, 1904, Lattman, 1958),
i.e. one that has been confirmed to exist on the ground.

4.1.11 The remainder of this section on ERTS-I and bedrock geology will begin
with a comparison between linears seen on imagery from the ERTS-I and
NIMBUS I satellites over New York State. This will be followed by the
results of Stage I, Stage II, and Stage III studies on ERTS-I imagery
in the Adirondack region, a Stage I analysis for southeastern New.York,
a preliminary Stage III study in the Catskill Mountains, and preliminary
analysis of circular features in the State.

4.2 ERTS-I linears in New York State

4.2.1 Without question, the most significant contribution of ERTS-I imagery to
date in New York State has been the location of more than 500 Stage II
linears which had not previously been recognized. This linear-detecting
capability of ERTS-I imagery was the most frequently, cited geological
application at a recent Symposium on Significant Results from the Earth
Resources Satellite, ERTS-I (Short, 1973).

4.2.2 A work map of Stage II linears observed on ERTS-I imagery at 1:1000,000
is shown on Figure 9. They represent those remaining from a Stage I work
map (Isachsen and others, 1973) after the removal of "cultural linears"
such as transmission lines, railroads, abandoned railroad beds, and
highway segments. The Stage II linears range from strongly-developed
topographic lineaments to very subtle linears which are defined by faint
tonal, rather than topographic signatures.

4.2.3 The "subtle" linears shown by open circles in Figure 9 most closely
resemble those visible on the Apollo 9 photographs of east-central Alabama
(Powell and others, 1970). Both regions in question include portions of
the Plateau, Valley and Ridge, and Piedmont Provinces, and both have a
climate sufficiently humid to produce extensive vegetation. A major
difference, however, is that the soils of New York State are, with the
exception of a small area near the Pennsylvania border in western New York,
not residual but transported, i.e. glacial.

4.2.4 The linears in New York State range in length from 5 to 200 km, and the
majority are straight. The combined lengths of these ERTS-I linear
anomalies exceeds 6000 km, not including linear portions of the Hudson
River and the Finger Lakes.

4.3 ERTS-I and NIMBUS-I linears in New York State

4.3.1 Prior to the successful launching of ERTS-I the only orbital imagery
available over New York State was that obtained by APT, ITOS, and NIMBUS-I
satellites. With the exception of one frame of NIMBUS-I imagery, only the
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broadest geomorphological features could be seen at the low-resolution

involved, i.e. the Adirondacks and the Tug Hill-Plateau (e.g. Anderson,

1968).

4.3.2 In our original proposal to NASA we called attention to a long faint

linear visible on a NIMBUS-I image of orbit 254, taken September 14,

1964. This image was taken at an altitude of 308 miles above Lake Ontario

when the satellite malfunctioned, and instead of going into a circular

orbit with a perigee of some 700 miles, went into an elliptical orbit

with a perigee of 266 miles.

4.3.3 C.I. Taggart (1965) noted the close correspondence between tonal varia-

tions on this imagery and the rock units delineated on the 1:250,000

Geologic Map of Pennsylvania, particularly in the Valley and Ridge

Province. Through his generous cooperation, and that of J.R. Kenney

of the National Research Council of Canada, both of whom had noted

linears in the imagery (written communication), we were able to obtain

copies of this image for study (Figure 13).

4.3.4 The linears and circular feature shown in the lower part of Figure 13

were seen independently by two of us (Isachsen and Forster). The photo-

graph is a second generation print of a video display of the signal

received in Ottawa, The linear marked with dots at either end was taken

from an image of the same transmission received and recorded at Frobisher

Bay. It must be emphasized that any or all linears may be "electronic

anomalies" rather than ground features; the absence of another oribital

pass covering the same area precludes a check on this question. Never-

theless, it was decided to compare the NIMBUS-1 anomalies with known

geology and with anomalies seen in ERTS-I imagery.

4.3.5 The results are as follows:

I. The circular feature located just northwest of the St. Lawrence

River near the U.S. - Canadian border has no manifestation whatever

on the ERTS-I imagery, and remains unexplained.

2. The longest NIMBUS-1 linear in the Adirondacks passes through

Tupper Lake and corresponds with a series of roughly aligned

ERTS-I linears and topographic lineaments. It is parallel to

the dominent NNE set of Adirondack lineaments, and is considered

a geologic rather than electronic feature. Tupper Lake is the

large I-shaped lake in the western central part of the southeastern

quadrant of Figure 14.

3, The other NIMBUS-I linears in the Adirondacks have as good or

better ground identification, except for the two that form an

open, west-facing V.

4. Elsewhere in the State, only the long,westernmost NNE linear

corresponds with ERTS-I linears, and that only in the upper

part,where it coincides with the Genesee River south of Rochester.
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Figure 13. Linear and circular features seen on Nimbus I image, orbit 254.
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4,3,6 Future ERTS-I imagery will continue to be scrutinized for the NIMBUS-I

linears.

4.4 ERTS-I linears in the Adirondack region, Stage II investigation

4.4.1 The most spectacular area of linear display in the State, if not in

the whole northeast, is the Adirondack Mountain region (Figures 7 and 9).

The linear features seen in the imagery include the majority of known

faults and topographic lineaments shown on the Geologic Map of New York

at 1:250,000 (Fisher and others, 1971; Isachsen, 1973). Of those not

visible in the imagery at 1:1,000,000 (shown by black lines in Figure 15),

most are short, and may turn out to be discernible at largerscales. The

easternmost group occur in the Champlain Valley, an area of low relief,
and are less likely to be expressed in the imagery.

4.4.2 A numerical summary of the Adirondack linear information shown in

Figures 7 and 14 is tabulated below:

Category Number Combined length km

Previously mapped faults and topo- 232 1890
graphic lineaments seen on ERTS-I
imagery

ERTS-I linear anomalies which have 364 3131
survived Stage II investigation

Total linears seen on ERTS-I imagery 596 5021

Previously mapped faults and topo-, 297 1750
graphic lineaments not discernible
on ERTS-I imagery

4.4.3 The linear data shown in Figure 15 represents unscreened Stage I infor-
mation, whereas that in Figure 9 has had lithologically-controlled and
"cultural linears" removed. Subsequently, each of the ERTS-I linear
anomalies (i.e. Stage II linears) in the Adirondacks was located by inspec-
tion, on 1:62,500 airfoto index mosaics (uncontrolled). They were then

classified as to photogeologic character (see appendix for work sheets
and location map). A summary of the photogeological classification given
in the appendix is as follows:

Cultural "linears" 20

Linears parallel to lithological trends 51

Straight segments of stream courses 96

Straight stream valleys 27

Winding streams 7

Elongate lakes or straight shorelines 7

Ridge crests 3
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Figure 15. Stage I linears and circular features seen on ERTS-I imagery (image not.
1079-15115, 1079-15122, 1080-15174, 1080-15180). Dotted lines represent

unscreened new features, pale solid lines indicate previously-mapped faults
and topographic lineaments seen on the imagery, and heavy solid lines show
previously-mapped faults and topographic lineaments not shown on the imagery.
Large dots and short thick line represent opEnpit mines dry tailings ponds.
Scale: mm = 1 km.
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Edge of topographic high or aligned
segments of same 5

Alignments of vegetation:
dark vegetation strips (may be valleys) 30
vegetation border 7

Combinations of one or more of the above 57

Unexplained 125
TOTAL 435

4.4.4 The ERTS-I linear anomaly data for the Adirondack region are summarized
in the two rose diagrams of Figure 16. The upper diagram is an unweighted

plot of the total number of linears, whereas the lower diagram takes the

lengths of linears into account.

4.4.5 The generally similar appearance of the two diagrams holds up well under

closer scrutiny. The maxima appearing in the weighted diagram can also
be seen in the unweighted one, namely: N75W, N45W, N20W, N-S, N25E, N40E,
N50E, N60-70E, N85-90E. This close correspondence indicates that in
general the lengths of the anomalous linears are proportional to their

frequency for any given azimuth.

4.4.6 When the above diagrams are compared with analagous plots of previously
mapped faults and topographic lineaments (Figure 17), both differences
and similarities appear. The most noteabie difference is that the major
concentration of ERTS-I linear anomalies occurs in the 300 sector (N40E
to N70E), whereas previously-mapped linear structures fall in the 350
span between N15E and N50E. This may reflect differences in the geological
control and expression of these newly discqvered linears. More likely,
however, to the extent that they are topographic linears, they are so well
expressed in this sector because it is essgntially orthonal to the azimuth
of solar illumination in October (1530, 34 elevation). Consistent with
this interpretation is the low incidence of linears parallel to the direc-
tion of illumination (N20-40W), despite the fact that linears in this
direction are fairly abundant on the ground (Figure 17). Wise (1969) has
demonstrated experimentally the critical effect of direction of illumination
on the display of linears, although he used considerably lower elevations
(5 to 20 degrees). The interpretation presented above is consistent with
the conclusions reached by MacDonald and others (1969) from a look-direction
study of side-looking radar images.

4.4.7 Despite the difference in relative magnitudes of the maxima, a very close
correspondence exists for their directions, except for two. The maxima
of Figure 17, which also appear as prominent directions (within degrees)
on the imagery, are as follows: N70W, N45W, N20W, N-S, N40E, N50E, N70E,
and N80E. On the ERTS-I linear diagram, however, a N25E set is prominent
rather than the N15E set mapped on the ground. The most prominent ERTS-I
set (N60E) is very subordinate among the known groundlinear features.
However, its trend is within 30 of being perpendicular to the direction
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of solar illumination and this probably explains its prominence.

4.5 Stage III investigation of ERTS-1 linear anomalies in the Adirondack
Mountains

4.5.1 A major problem associated with field checking of ERTS-I anomalies is
locating them on the ground. As indicated earlier, this is greatly
facilitated by visually transferring data from the ERTS-I photographic
product to another photographic product at a more useful field scale,
namely airfoto index sheets at 1:62,500. It is then relatively easy
to plot the feature in the approximately correct location on 1:62,500
topographic maps, particularly if it is a topographic feature. The
most economical and effective way to locate the feature on the ground
is by viewing and photographing it from low level aircraft.

4.5.2 Photographs taken on such a flight can be seen in Figures 18 and 19. They show
ERTS-I anomaly number 291 (Appendix I) which is located entirely within
the Marcy Massif metanorthosite. The linear, now confirmed as a topo-
graphic lineament, turns out to be a 16 km-long southward extension of
a previously mapped lineament. It extends both north and south of the
portion shown in the photograph.

4.5.3 The contrast in relief between this new lineament and a previously mapped
one (which has of course, a stronger expression in the imagery) can be
seen by comparing Figures 18 and 20. The Ausable Lakes lineament is
marked photogeologically not onlyby topography, but, also by a vegetation
boundary, i.e. conifers on the east slope, deciduous tress on the west.

4.5.4 A far more subtle topographic lineament found in the ERTS-I imagery is
shown in Figure 21. This broad, relatively short (6 km) linear valley
extends WNW, transecting at nearly right angles the North River-Mt. Marcy
range. The northern edge of the North River Mountains appears in the left
middleground. The linear is terminated to the west by a major NNE linear
which passes just east of Popple Hill, the dark mountain in the middle
of the valley. White Lily Pond is in the foreground.

4.6 Geological identification and origin of ERTS-I linears

4.6.1 A considerable literature exists on the nature and origin of lineaments.
Much of it has been assembled in our ERTSLAB and is now being read and
digested in terms of our own experience with ERTS-I linears, faults,
and topographic lineaments in New York.

4.6.2 Although data gathering and collation must dominate our activity for some
time before valid synthesis and interpretation can begin, there is good
reason to suspect that the NNE topographic lineaments will prove to be
traces of high-angle faults and fracture zones. This is based on the experience
of Matt Walton, who made detailed bedrock geological maps of four contiguous
15 minute quadrangles in the eastern Adirondacks where these linear fractures
are so abundant. Walton (oral communication) found that fault breccias and/or
stratigraphic displacement could generally be demonstrated for these structures.
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Figure 18. ERTS-I linear 291, shown here to be a topographic lineament. It
strikes N43E and extends in both directions across Clear Pond in the
foreground. View is northerly. The mountain peaks west of the
linear are McComb (with slide), Hough (sharp peak), Dix, the valley
of Hunters Pass, and Dial. Hunters Pass is part of a topographic
lineament 25 km in length which extends across Elk Lake in the middle-
ground. All bedrock in clear view is metamorphosed anorthosite.

Figure 19. Central and upper portion of linear shown in figure 18. Topographic
expression is slightly enhanced by the contrast between deciduous
trees in the valley and conifers plus rock outcrop along the ridge.
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Figure 20. View looking NNE along Ausable Lake topographic lineament, a
previously mapped feature parallel to and west of the as yet
unexplained ERTS-I linear no. 289; located entirely within
Marcy Massif metanorthsite; slides on Gothics discernible at
1:500,000; Mt. Marcy 15' quadrangle.

Figure 21. ERTS-I linear no. 287, extending N52W from White Lily Pond;
entirely within Marcy Massif metanorthosite; Mt. Marcy'and
Santanoni 15' quadrangles.
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4.6.3 If this relationship can be established for one or two of the new
ERTS-1 lineaments having this trend, it will be possible to concentrate
our field investigations on the less familiar linear directions and on
the subtle tonal linears.

4.7 - Multi-scale analysis of scene C3, Catskill-Hudson Highlands

4.7.1 Introduction

4.7.1.1 A stage-I multi-scale photogeologic analysis has been made of linears
visible on scene C3 (taken 10 Oct 72; 1079-15124) using the following
data sources: at 1:1,000,000, positive transparencies of bands 5 and 7
and a false-color composite print of bands 4, 5, and 7; at 1:500,000
and 1:250,000 black and white prints of band 7; at approximately
1:2,500,000, the mosaics shown in Figures 7 and 8. In addition, linears
were searched for and "mapped" on topographic maps at 1:62,500 of the
Margaretville and Phoenicia Quadrangles in the Catskill Mountains, and
on an aerial mosaic index sheet of the same area at the same scale.

4.7.1.2 Scene C3 (Figure 22) spans a number of physiographic, geologic and
tectonic provinces, as may be seen by comparing it with Figures 1, 2,
and 3. Reference will be made later to the variation in spectral
characteristics of linears as a function of tectonic province.

4.7.1.3 The linear information was recorded on clear acetate overlays for each
of the above data sources. All linear features which were recognizably
lithological or cultural were excluded, but a rigorous Stage II evaluation
remains to be done.

4.7.1.4 After all the images had been analyzed, they were compared by using
scale-changing viewers (Bausch and Lomb Zoom Transfer Scope and an
overhead viewing projector) on which acetate overlays from one scale
were superimposed on those of other scales, and differences recorded
by color notation. Only the 1:1,000,000 composite is reproduced herein,
but comparisons of linear data at the several scales are discussed in
some detail.

4.7.2 General results

4.7.2.1 In the initial compilation, it was found that, of the total number of
linears visible on bands 5, 7, and the false-color composite, more than
97 percent were visible on the band 7 image.

4.7.2.2 All spectral lines are borders between different image tones. However,
because of the low sun angle many tonal boundaries are clearly recognizable
as topographic. These are referred to herein as topographic linears, and
are drawn at the valley bottoms. Another group of tonal boundaries and
lines are not discernibly topographic features; they are more subtle, and
generally occur in low, flat-lying areas. Some may be related to cultural
or botanical featuressuch as farm borders or forest boundaries. These
are designated tonal linears. The two types have been distinguished in
Figures 23 and 24.
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4.7.2.3 Eleven major linear directions were found on image C3 (Figure 25).

The following discussion compares these sets in terms of the following
variables, which are summarized in Figure 26: 1) relative prominence
in the various geologic provinces; 2) whether topographic or tonal in
expression, 3) length, 4) straightness or direction of concavity, 5)
density of occurrence: dense, if generally less than 5 kilometers
apart; moderate, if generally 5 to 10 kilometers apart, and sparse,
if generally more than 10 kilometers apart, 6) regularity of spacing:
regularly spaced, or irregularly.spaced and 7) clarity of expression
on the image: weak, if hard to see; moderate, if generally easy to see,
and strong, if they are the most prominent tonal or topographic feature
on the image.

4.7.3 Nature of linears at various scales

4.7.3.1 The features recorded as linears are simply lines having "sufficient
length" to determine that they are straight. The shortest lines classi-
fied as linears at the various scales were: 1,2,500,000, 5 km; 1:1,000,000,
2 km; 1:500,000, 1 km; 1:250,000, km.

4.7.3.2 This expectable inverse linear relationship between scale of imagery and
length of linears results from the thought that a line must be at least
2 mm long before it could confidently be called a "straight line", and
that numerous short, aligned segments at the larger scales appear to
coalesce into single long linears at the smaller scales, This occurs
as long as the smaller segments lie in a straight line or zone, whether
they strike parallel to that line, en echelon to it, or are conjugate
sets no matter what the strike. As one example, the N65E trending set
of linear segments near the northeast corner of Figure 29, produce at
1:2,500,000 what appears to be a single linear several hundred kilometers
long, at 1:1,000,000 a dashed line (Figure 24), and at 1:500,000 a series
of two sets of en echelon segments lying in a N65E zone. At 1:250,000
the individual linears are no longer recognizable as having a zonal
alignment.

4.7.3.3 Other examples were seen where single linears at small scales appear
as zones of zig-zag and even crossing segments at larger scales.

4.7.3.4 As indicated in Figure 25A, the major length-weighted linears seen at
the 1:1,000,000 scale trend N20W, N15-20E, N20E, and N65E.

4.7.4 Straightness of linears

4.7.4.1 Most topographic and tonal linears are straight, but a number of the
longer tonal linears are gently curved (Figure 24). The directions of
concavity vary, but a consistency exists within some sets (Figure 26).
Stage II and III analyses will be required before anything more can be
said about the cause or significance of the curvatures.

4.7.5 Cross-cutting relationships of linears
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Figure 25. A. Azimuth plot of the linears shown in figure 29. Lengths
are proportional to qualitative estimate of summed lengths
of linears. The N60W direction may represent curved exten-
sions of the N40W direction.

B. Compilation of joint sets observed by Parker (1942) within
the area of scene C3 (figure 29). The three ERTS-I linear
directions not noted as prominent by Parker are shown by
dashed lines.
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AERIAL

BAN D 7 1 1 1,000,000 MOSAIC PRINT 1:500,000 L:20,000) TOPO MAPS PIHOTO

IRECTION PRO INCE LINEAR TYPE LENGTH STRAICITNESS DISTRIBUTION SPACING FALL WINTER

(minor expression in km AND CONCAVITY

In parentheses) DIRECTION

80W all except tonal 10-50 slightly sparse even topo in tonal in poorly prominent, prominent

Atlantic curved to Catskills Appalachian expressed i 1-20 km 1-2 km

Coastal plain N and S Plateau

440O west of topo-tonal 10-50 straight dense in NW even or tope in poorly poorly moderately 1-2 km

Hudson River sparse in uneven Catskills; expressed expressed expressed

south C east In zones tonal In N60E tonal 2-5 km

east 4 linear 30-50 km

prominent in o
Hludson Highlands 0

20W all tonal (topo) 5-40 straight dense even tope In topo in vest poorly expressed prominent mod ely

In Catskills west tonal in tonal (topo) 5-15 km expressed

slightly tonal in east 2-5 km

curved in Sto east
NE, NW 0

N15W west of Hudson tonal 10-40 short-straIght sparse ureven topo in poorly poorly expressed . poorly promnent

Highlands and long-curved to west expressed expressed 1-2 km

Taconlos east 
-. 2-5 km

.S Catskills topo (tonal) 10-50 slightly dense even top In tpe n short topo n moderately rly

Hludson Highlands tonal(topo) 10-50 curved to Catskillls; west Catskills; all s r expressed shown

anhattan Prong tonal 25 east ( west tonal in tonal in other areas 2-5 km

Atlantic C, P. tonal 10 south east tonal _ _

N15E all tope (tonal) 5-30 straight dense in esen to topo in tope in topo in prominent rominent

(tope only all hut ureven Catsklls; vest Catskills; all 2-15 km 5-15 km

in Catskills) Shawangunks topo-tonal tonal in other areas
in east east tonal

20E all topo-tOnal 5-40 straight dense in ureven and topo in topo in NW tope in Hudson * poorly noderately

to slightly all but it zones west; tonal-tope Highlands; all V expressed xpressad

curved to Shawangunks topo-tonal in east other areas -5 km

west in east tonal 1.

's moderately moderately
N25E Catskills topo (tonal) 5-10 straight sparse ureen short tope poorly prominent

Shewahgunks 10 in south + expressed short topo in r expressed expressed

Hudson Highlands 10 Catskills Catskills 5 km -2 km

Taconics 10 0

N4S i Hudson Highlands tonal (topo) 5-15 straight sparse ureen tpo In tope in short tape In prominent moderately

Manhattan Proa 515 Hudson southeast Catskllls; 15-20 km xpresaed

Hiighlands long tornl in 4 -5 km

Hudson Ilighl.

N65E all tope-tonal 5-100 straight dense eaer. and long topo in long topo in short toape moderately irominent

it zones Catskills; Catskills everywhere expressed 2-5 km

short tope in long tonal 5-10 km

Hudson IHighl. in south

N85E Catskills topo (tonal) 5-20 straight sparse uveven in short topo poorly poorly moderately prominent

Hudson Highlands 5-25 zicnls in Catsk ls expressed expressed expressed km

Taconics 5-25 
5km

Figure 26. Chart summarizing the directions and characteristcs of Stage I linear features for scene 
C3

multi-scale study. Abbreviations: C.P. =  Coastal Plain; Highl. =  Highlands; topo. = topographic.

Mosaic Print refers to figures 7 and 8,and Aerial Photo refers to airfoto index sheet.



4.7.5.1 Tonal linears commonly cross both topographic linears and other tonal
linears (Figure 24). Topographic linears, on the other hand, generally
do not cross each other except in parts of the Taconics and Catskills;short topographic linears almost nowhere cross each other. Stage II
and Stage III studies will be needed to explain these relationships,
but two tentative working hypotheses are here advanced.

1. In the Taconics, the two cross-cutting linear sets may
represent the intersection of a prominent joint set with
lithological contacts.

2. In the Catskills, the prominent N65E linear set may because
of its great length, represent a basement feature (fault?)
which is expressed at the surface as a set of closely-spaced
joints; the N15-20E cross-cutting joints may be more local,
stress-related sets. Small-scale displacement has occurred
along at least some linears of the N15-20E set, as will be dis-
cussed in a later section.

4.7.6 Comparison joint studies by Parker and by Nickelsen and Hough

4.7.6.1 The only regionally synthesized joint study which applies to the C3
image area.is that of Parker (1942), whose analysiS is restricted to the
flat-lying sedimentary rocks of the Alleghany Plateau, including the
Catskill Mountains. Parker generally found only two or three joint
sets at any one locality, and noted that the directions of these sets,
do not vary significantly across the area of a single 1:62,500 quadrangle.Across the ni rn rt of the Stat, however, lie found a systematic

ucwr V LLavion or Lne joint directions.

4.7.6.2 A comparison of ERTS-I imagery, Stage I linears and Parker's joint data
for the Catskills shows that almost all of the joint directions are
represented by ERTS-I image linears (compare Figures 25A and B). Two
linear sets seen on the imagery, however, those trending N40W and N20W,
are not represented in his joint diagrams. Parker divided the joint
distribution into Sets I, II and III. Set I, which is generally represented
by two sets (interpreted and conjugate.) averaging 190 apart at any locality,
corresponds to the ERTS-I linear sets between N-S and N20E, Set II corres-
ponds to linear sets between N50W and N88E, and Set III corresponds to thelinear sets between N45E and N67E.

4.7.6.3 The joints of Parker's Set I are generally vertical and remarkably planar.
They cut all sedimentary features in the outcrop and are expressed in all
types of sedimentary rock. They extend from a few centimeters to 60 m in
length, and a-re the most numerous set in any one outcrop, generally accounting
for 50 to 70 percent of all joints present. He interprets this set to have
resulted from shearing.

4.7.6.4 The joints of Parker's Set II are generally irregular, both horizontally
and vertically through arcs of up to 25 degrees, and have rough surfaces.
They constitute about 25 percent of all joints recorded in a given
1:62,500 quadrangle. They are interpreted by Parker as tensional fractures.
Their relative lengths were not specified.
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4.7.6.5 The joints of Parker's Set III are generally long, vertical, and planar,
although many are curved. They generally change character in passing
from one stratigraphic horizon to another. They constitute about 15
percent of the total number of joints recorded in a given 1:62,500
quadrangle. Parker interprets them as tensional.

4.7.6.6 Interpretations of the nature of jointing in New York and Pennsylvania
which differ from Parker's, have been presented by Nickelsen and Hough
(1967). They interpret the joint set pairs of Parker's Set I as an
early set overprinted by a later one, rather than as a conjugate shear
set. Nickelsen and Hough think there may be as many as five, distinctly
different joint sets present throughout New York - Pennsylvania Plateau
iregion rather than a system of three-sets which rotate clockwise across
!the region from west to east.

4.7.6.7 Many of the linear patterns expressed in the ERTS-1 imagery of the
Catskills look surprisingly similar to joint maps of outcrops illustrated
by Parker. However, the five-or-more joint set model of Nickelsen and
Hough wouid also produce a pattern very similar to the regional linear
features observed in the imagery. It seems possible then that this con-
flict of opinions about the nature of jointing may be resolved by field
checking of the linears shown on ERTS-I imagery. If so, some basic ideas
about the structural geology and the tectonic framework of New York and
Pennsylvania would have been focused upon by ERTS-I imagery analysis.
For example, if the joints do gradually rotate across the Plateau, and,
if the joint directions are expressed by linears as is the case in the
Catskill Mountain part of the Plateau, a gradual rotation should be .
demonstratable on an ERfS-I linear made at a suita-ble qcale.

4.7.7 Summary and regional implications of Stage I linears

4.7.7.1 Recognizing once again the preliminary nature of this-Stage I analysis,
the following are offered as tentative generalizations:

1. Linears are abundantly expressed on the ERTS-I imagery of south-
eastern New York, and in general extend across physiographic,
geologic, and tectonic province boundaries.

2. Each linear set has a characteristic expression in the imagery
which is usually consistent within a give geologic province.
These characteristics include whether topographically or tonally
expressed, length,. straightness or concavity, density, spacing,
and cross-cutting relationships.

3. What defines a topographic linear can be very much a matter of the
scale at which viewed.

4. Linears are clustered into eleven major directions at 1:1,000,000,
called linear sets.

5. Linears sets generally correspond to mapped joint sets (Figure 25).
The two exceptions are the N40W and N20W linear sets which are not
represented by mapped joint sets.
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6. Because of their great length, some linear sets, especially the

N65E set seen at the smaller scales may be surface expressions

of deep-seated basement fracture systems with possible plate-

tectonic implications.

7. ERTS-I imagery appears to have the potential for resolving two

diverse current interpretations of regional jointing in the

Alleghany Plateau of New York and Pennsylvania.

4.7.8 Field study of the N20E linear set

4.7.8.1 The eastern edge of the Catskill Mountains is a notably straight steep

escarpment (Figure 22) along which the Mountains rise abruptly for 800 m

from the broad Hudson River Valley to adjacent summits which exceed 1,000 m

in height. This-escarpment, long known as the "Wall of Manitou" extends

south from the latitude of Catskill for a distance of 20 km.

4.7.8.2 West of the "Wall", the Catskill Mountains are eroded to produce prominent,
northwest trending, ranges and valleys. Crossing these ranges at a high

angle are numerous topographic lineaments which trend about N15E, and

parallel the Wall of Manitou. The pervasive nature of this set, extending
westward for at least 25 km, was never recognized before, and its geologic

origin has only received brief mention. Chadwick (1944, p. 17) interpreted

the two prominent valleys which occur 10 km west of the all of Manitou as
being controlled by closely spaced joints along which "the internal settling

known as 'keystone' faulting (Crcsby, 1925)" n.ight have occurred, although
"as yet actual faulting has been demonstrated in only the easternmost of

these lines, namely that which is tangent to the east end of North Lake,"

The fault referred to is located at the northern end of the "Wall" at the

upper break in slope on Chadwick's geological map.

4.7.8.3 The Wall of Manitou and several of the parallel linears were examined and

photographed from small aircraft before the leafing of deciduous trees.
Figure 27 illustrates the straightness of the "Wall," and also shows traces

of an orthogonal N75W set which is not well shown on the ERTS-I imagery.

Figure 28 shows a sag pond developed in the lower part of the "Wall",

a feature which may indicate the trace of a "keystone" or other type fault,

and will be examined in the field.

4.7.8.4 A vertical aerial photograph recently taken by NASA at 24,000 feet altitude

of an area 12 km west of the Wall of Manitou (Figure 29) provides a useful
calibration device to determine how short a linear my be mapped on the ERTS-I

imagery with confidence. As expected, the relatiely long N20E linears are

readily confirmed, a particularly good example being the Stony Clove linear.
More impressive, however, is the fact that the two short N75E linears, spaced
only 1 km apart, with the shorter one being less than 2 km long, can be

discerned on the imagery; we would have been unwilling to identify such

short lines on the imagery as linears without the assurance provided by the

aerial photography. This suggests that, despite the "busy" pattern of linears

on Figure 24, many additional very short linears can be added.

4.7.8.5 Low level aerial reconnaissance of the Stony Clove linear confirms it as a
well defined topographic lineament (Figure 30). A closer view of the Stony

-41-



Figure 27. Aerial oblique view of small segment of Figure 28. Aerial oblique view of suspected sag

"Wall of Manitou" showing its straightness. pond located on the Wall of Manitou.

Note also, perpendicular to the wall, at The apparent inclination of the hori-

least four parallel linears: two tonal and zontal strata is a photographic illusion.

two tonal-topographic. The bedrock consists From color-infrared photo.

of interbedded red and green shales and cross-

bedded sandstones of the Catskill facies.

From color-infrared photo.



Figure 29. Print from color transparency aerial photograph over the eastern
Catskill Mountains. Clove Valley linear extends about NI15E from
the south center of the photo; Hunter Mountain ski area is near
the north edge of the photo. Note the pair of N75E topographic
linears. Photo by NASA, 30 Apr 73. Scale: 1 cm = 4 km.

-43-



Figure 30. Stony Clove topographic lineament, looking Ni5E over

Edgewood (hidden behind hill in foreground), with 
drainage

divide at Clove in middleground; Hunter 7 ' quadrangle.
From color-infrared photo.

Figure 31. Stony Clove drainage divide of figure 30, 
showing possible

vertical offset of the resistant Stony Clove sandstones 
of

the Upper Devonian Lower Walton Formation.
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Clove drainage divide (Figure 31) suggests that vertical displacement
may have taken place, a question of considerable importance in field
evaluation of the prominent N15-20 E set of linears, and one scheduled
for.field study.

4.8 Circular features on ERTS-I imagery

4.8.1 As shown on Figure 9, several circular anomalies have been found in the
ERTS-I imagery: a cluster of three southeast of Rochester, one north of
Oneida Lake, and three in the Adirondacks. Those in the Rochester area
can be seen in Figure 32 where their upper contacts are indicated by
arrows. The three additional circular features visible south and south-
west of Oneida Lake in Figure 32 are not anomalous, because the one in the
center was identified in U-2 aerial photography as a fortuitous arrangement
of urban signatures and those on either side correspond in large part to
lithological contacts along the northern edge of the Alleghany Plateau.

4,8.2 The two circular features southeast of Rochester are well resolved in the
U-2 aerial photograph of Figure 33. Only the central one is well defined
in the U-2 photograph, and results from the combination of a scalloped
drainage pattern forming the upper and lower parts of the circle, and
elongate fields forming the side, The east-west valley that extends
across the photograph beneath the scalloped drainage is an ice-marginal
drainage of glacial Lake Dawson. The valleys which form the circular
anomaly may have a related glacial origin. They remain to be investigated
further. The small circular anomaly north of Oneida Lake is not visible
on airfoto index sheets, so remains unexplained. That located to the NNE
across the Black River is formed in the main by a nossible fortuitous
arrangement of two stream courses.

4.8.3 The most striking of the"circular"'features is the much larger one that
occurs in the west-central Adirondacks, centering on Cranberry Lake, and
here termed the Cranberry Lake anomaly. It is elliptical in outline, and
resembles a deformed, spoked wheel. Seven of the radial valleys are arms
of Cranberry Lake, at least in part. The long axis of the feature measures
about 30 km, the short axis about 22 km. In a very general way it has a
central domal high surrounded by a ring depression, with a lake basin at
the center of the feature. The maximum topographic relief measured from
lake bottom of the higher mountains within the feature is about 830 m.
In the eastern and southern parts of the feature, a suggestion of con-
centric rings can be seen in the imagery (Figures 14 and 34). A recently
published gravity map of the Adirondacks (Simmons and others, 1973) shows
a two milligal simple Bouguer gravity anomaly over the Lake basin. Taken
together, the above observations suggest the possibility that the Cranberry
Lake anomaly may be a cryptoexplosion structure.

4.8.4 The relationship between the topography of the anomaly and bedrock geology
may be seen by comparing Figures 34 and 35. Southwest of Cranberry Lake,
the rim depression coincides with the alluvial-filled (Q) Oswegatchie
River Valley which is cut into hornbtlende-biotite granitic gneiss (hbg).
The strike of foliation in the gneiss differs by 90 degrees on opposite
sides of the valley. The rim valley fails to extend northward across
the northeast-trending antiform of quartzofeldspathic gneisses represented
by units phqs, ffg, and igr. To the south and east, however, the river
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Figure 32. Southern portion of scene E2 (image no. 1027-15233), band 5, showing
circular features by arro.ws; d .shcd arrow indicates sun aziimutll ax
angle. Scale: I mm= 1 km.

Figure 33. Print of high altitude (U2) color infrared aerial photograph showing

circular feature southeast of Rochester. The east-west topographic
low which forms the southern boundary of the feature is an ice-marginal
drainage channel. Photo by NASA, 27 Apr 72. Scale: 1 cm = 2.3 km.
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valley corresponds with that seen in the imagery, until it crosses
Bog River Flow to follow the NNE-trending topographic lineament past
Lake Marian, along Long Tom Mountain, and then directly north through
the Grass River Valley which cuts orthogonally across a mass of resistant
pyroxene syentic gneiss (ps). North of this, the valley merges with the
broad lowland area of alluvium north of Cranberry Lake, and looses defini-
tion. West of Cranberry Lake and north of the resistant quartzofeldspathic
units referred to above, the rim valley corresponds with the narrow belt
of alluvium extending northeastward from Benson Mines, transecting bedrock
lithology (hbg and metasedimentary rocks, mu) at right angles. The rim
valley then disappears again in the same alluvial-filled lowland north
of Cranberry Lake.

4.8.5 In summary, the rim valley parallels bedrock trends along part of its
course,transects it along,, others, and fails to develop at all across an
antiform of quartzofeldspathic units in the southwest.

4.8.6 Aeromagnetic trends in the Cranberry Lake anomaly area (unpublished map
of Zietz) show no anomalous deviation from the mapped lithologic trends.

4.8.7 The major radial valleys, except for Sucker Brook and Sixmile Creek
which are eroded along a thin metasedimentary unit, are probably fracture-
controlled inasmuch as they cross the foliation trends of resistant gneisses.
Buddington and Leonard (1962, p. 130) suggest that Dead Creek Flow is a
probable fault, while noting that "the inquiring geologist cannot reach
out his hand and place it on the fault surface of any one of the major faults
in the district".

4.8.8 To date, only three days have been spent investigating the Cranberry Lake
anomaly on the ground, in a search for criteria indicative of cryptoexplosion
structures (e.g. Short, 1968), particularly shatter cones, megabreccias or
injection breccia veins. An initial road traverse was made to examine all
roadcuts encountered across the feature; outcrop sites visited are shown
on Figure 35. No shatter cones were seen, and no fracturing was observed
beyond normal jointing, except in the second road cut west of Cranberry
Lake village where the rock is much fractured, but lacks evidence of
brecciation or displacement. Rocks encountered on the traverse were all
crystalline gneisses, mainly granitic.

4.8.9 Judging from observations at Sudbury (Bray and others, 1966), such lithologie-
would not be expected to yield good shatter cones, although Dietz (1968, p. 273)
indicates that crude but convincing examples have been found in crystalline
gneisses at several localities. Quartzite is apparently an ideal lithology
for development of shatter cones (Bray and others, 1966), and one remote
quartzite unit (qt) located between Tomar Mountain and Bog Lake will be
visited.

4.8.10 Outcrops of hbg exposed along shorelines and on Islands of Cranberry Lake
have been examined for abnormal fracturing, with negative results; in most
outcrops the granitic gneiss is onlymoderately jointed. The Benson Mines
open pit located along the western periphyry of the anomaly, has received
limited examination, but an additional search for fine-grained lithologies
will be made.

4.8.11 An outcrop of diopside-rich calcsilicate rock collected from the metasedi-
mentary rock unit (mu) at the west end of Inidan Mountain contains large,
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kink-banded pyroxene crystals. Kink-banded pyroxene has been reported
from the Holleford Crater (Short, 1968), but its presence does not prove
shock metamorphism.

4.8.12 In conclusion, it remains possible that the Cranberry Lake anomaly is a
cryptoexplosion feature, but compelling evidence, either field or petro-
graphic remains to be found. The search goes on.

4.8.13 Beginning 15 km north of Childwold is a roughly circular feature 30 km
diameter which is bounded by a narrow valley (Figures 5, 9 and 14). This
feature forms the major part of an irregularly-shaped area which has a
northeasterly elongation. The topography and tone are clearly different
in appearance from any other part of the Adirondacks. The area appears
in the imagery as a broad depression with sparse, irregularly-scattered
hills, suggestive of "broken ground" on a very large scale. The area is,
in regional terms, a terrace (The Childwold Terrace of Buddington and
Leonard, 1962, p. 8) with valley bottoms having elevations of 1200-1300
feet on the northwest and 1600 feet on the southeast. The scattered hills
rise up to a mazimum of 400 feet above the valley floor. This physiographic
belt has an anomalously high percentage of sand plains and swamps, and the
lowest density of bedrock outcrops of any large area in the Adirondacks
(see Fisher and others, 1971). The reason for this is not known. The
area does not show any gravity anomaly (Simmons and others, 1972).

5. ERTS-I AND GLACIAL GEOLOGY

Before .discussing glacial features visible on ERTS-I imagery sone observations
will be ffade with refeeLlce to wiiter imagery which has proved to be particu-

larly informative in terms of glacial geology.

5.1 Although there are impressive instances where partial or even total snow
cover produces topographic enhancement and advantageously reduces terrain
noise (e.g. Wobber, 1972, Gregory, 1972), conventional aerial photography
is rarely taken during the winter months, because the combination of snow
and winter sunlight generally tends to diminish contrasts between different
terrain features. Because of the general unavailability of aerial photography
taken in the winter months, the first such products seen by the present
investigators were the ERTS-I images taken January 8 and 9, 1973 covering
the C and D strips. As expected, snow-covered open fields and lakesappear
white, but it was surprising to find that the extensive forests of the
Adirondacks, the Tug Hill Plateau, the interfluves of the Alleghany Plateau,
and scattered woodlands elsewhere, are dark gray to black in all spectral
bands despite a deep ground cover of dry snow (these were the coldest days
of the month, the maximum temperature reached in Albany being 70F). This
unusually low albedo characterizes not only the conifer forests of the
high peaks area, where it is to be expected, but also the mixed hardwood
forests at lower elevations. The effect is not due to faulty photographic
processing, because all 15 shades in the gray scale are identifiable. It
thus appears that, although in winter at conventional flight elevations
such hardwood forests would have a high or intermediate albedo, at the
lower resolution of satellite imagery the low reflectance of leafless trees
(together with their ground shadows) dominates the spectral response. The
resultant imagery gives the heavily-wooded Adirondack Mountains the appearance
of a carved ebony plaque having both lower reflectance levels and reflectance
contrasts that the imagery of other seasons (compare Figures 7 and 8).
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5.2 If the above explanation is correct, it is unclear why the darkest imagery,

is not that of late fall, when neither broad-leaved vegetation nor snow

cover are present.

5.3 In terms of geological usefulness, the most noteable advantage of the

winter imagery observed at 1:1,000,000 is the supression of terrain noise,

and hence the increased detectability of small-scale topographic features.

The most notable examples are individual drumlins, which can be identified

directly as topographic features rather than indirectly by their control

of agricultural land use patterns. These are discussed below.

5.4 Numerous previously-mapped glacial features can be seen on ERTS-I imagery

at 1:1,000,000. These include more than ten drumlin fields, drumlinoid

glacial streamline forms, glacial lake sand plains and deltaic deposits,

segments of glacial lake shorelines, ice-marginal drainage channels, and

end moraines (Figure 36). No new glacial features have been identified

to date. The search for mapped glacial features on ERTS imagery is greatly

facilitated by using a scale-changing device such as the Bausch and Lomb

Zoom Transferscope model ZT-4.

5.5 Several drumlin fields can be located on the summer and fall imagery due

to the topographic effect of drumlin topography on land use pattern. but

most are obscured. However, when snow cover obliterates land use patterns

and the low sun angle of winter months highlights their relief, drumlin

fields, and even individual-drumlins, can readily be identified. Indeed,

the stoss and lee sides of drumlins can be distinguished in some cases.

Good examples can be seen south of the Mohawk River (1169-15123, 1170-15182)

and in the Finger Lakes region (1243-15244). In the latter area, however,

snow cover is less complete, and field patterns tend to camouflage the

topography. For this reason only portions of the extensive drumlin fields

of the Finger Lakes region can be identified, and of an estimated 10,000

drumlins in central New York State (Flint, 1957) only 228 could be iden-

tified. South of the Mohawk River, 316 drumlins were counted. On the

ground, the drumlins measure 2 km in length, 400 m in width and 25 m in

height. It appears likely that optimum winter imagery could easily be

"calibrated" using topographic map information and then used to make a

rapid, relatively accurate, inexpensive inventory of the drumlins in any

region of the State.

5.6 Numerous glacial features are visible east of Lake Ontario. On the Tug

Hill Plateau, glacial streamline forms or drumlinoids with northwest axes

are extensively developed. In contrast to the drumlin fields mentioned

above,these are best shown on the fall imagery (1080-15180). This is under-

standable because the Plateau is evenly forested, rather than being

camouflaged by agricultural patterns. On a topographic map, the drumlinoids

average 2-4 km in length, about 80 m in width, and 15 m in height. No

published data are available to indicate to what extent they are depositional

landforms or erosional bedrock features.

5.7 A small drumlin field can be seen in the winter imagery on the northwest

slope of the Tug Hill Plateau (1170-15182, 1170-15175). It is not apparent

in earlier imagery. Also visible in the winter image are several glacial

lake drainage channels which roughly parallel the contours around the north

slope of the Plateau. Although these could be seen to some extent in the

fall imagery (1080415180) they are enhanced in the winter imagery due to
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the contrast between shadowed channels (accentuated by low sun angle)

and surrounding snow. On the ground they are 2-17 km long, 200-700 m

wide, and 20-30 m deep.

5.8 Comparison of the imagery with existing glacial maps of the Tug Hill region

(Stewart, 1958; Forster, 1971) revealed no correlation. Farther north,

in the St. Lawrence Lowland, image D 2 (1080-15174) was compared with

the maps of MacClintoch and Stewart 1965 and a rough correlation was noted

between the extensive areas of intermediate gray density located west of

Malone, and areas mapped as peat and muck (swamp). An even better correl-

ation was found when the imagery was compared with the woodland overprint

on the 1:250,000 topographic map of the USGS (N118-11, 1961)--another example

of a.geological signature linked to land use.

5.9 In the Central Highlands of the Adirondacks, numerous segments of eskers

show up in the imagery as narrow ridges bounded by bodies of water. On

the ground these are 200-400 m wide and 15-25 m high.

5.10 At the northernmost part of the State, the Covey Hill drainage channels

for glacial Lake Iroquois can be recognized on image 1079-15115. On the

ground, these channels are 2-4 m long, approximately 300 m wide, and 20 m

deep. On the same image can be seen an area south of Plattsburg which has

a distinct, uniform, tonal density. This area was found to correspond

quite closely with that of a sand plain mapped by Denny (1967) as a deposit

formed in glacial Lake Vermont,

5.11 Farther south, two thirds of the distance to Albany, is a tonally distinct

gray area whose borders were found to have a fair to excellent correspon-

dence with the boundary of stratified drift and deltaic deposits associated

with glacial Lake Albany, as shown on an unpublished 1:250,000 glacial map

of the area prepared by R. Dineen.

5.12 In the southeastern part of the State, a series of moraines mapped by

Connally and Sirkin (1967) in the Wallkill and Hudson Valleys were searched

for on both fall (1079-15124) and winter (1205-15132) imagery. On neither

image was any indication seen for these moraines.

5.13 Imagery of Long Island (1096-15074) was compared with a map of the Harbor

Hill and Rankankam moraines using a direct overlay. A few short segments

of these moraines were detected because of different land use on the

moraine compared with surrounding areas.

5.14 Using a 1:1,000,000 enlargement of the Glacial Map of the United States

east of the Rocky Mountains (Flint et al, 1959) imagery for New Jersey

and Pennsylvania (1205-15135, 1170-15184, 1.243-15251) was searched for

end moraines and other glacial features. As shown on Figure 36, only a

few short segments of moraine are visible.

5.15 For the western part of New York State the imagery (1243-15244, 1243-15251,

1244-15303, 1046-15292, 1244-15305) was compared with a compilation of

moraines and beach ridges (Muller, 1972). Perhaps because of land use

camouflage and low relief of these ridges (10 m), only small sections of

a limited number of each was seen. Moraines searched for include the

Valley Heads, Olean, Almond, Arkport, Clymer, Findley Lake, Gowanda,
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Hamburg, Marilla, Alden, Buffalo, Niagara Falls, Batavia, Barre, Albion,
Colton, Geneva, and Waterloo. Those sections seen are shown on Figure 36.
Glacial lake shorelines of the following lakes were also searched for:
Whittlesey, Warren, and Iroquois; only two sections of the Iroquois
beach ridge were found (Figure 36).

5.16 Because one of us (Fakundiny) has a particular familiarity with the sur-
ficial geology of the-western part of the State it was decided, despite
the inferior quality of the best available imagery at the time of the
study (images 1027-15233, 1046-15292, 1080-15180) to attempt an evaluation
of tonal variations. Comparisons made with generalized soils maps at
1:1,000,000 of Arnold and others (1967) and of the Genesee/Finger Lakes
Region Planning Board (1970) show only a 10 percent correspondence of
soils contacts and tonal boundaries, and that correspondence applies mainly
to valley bottoms; it thus appears to be principally a correlation with
topography.

6. ERTS-I AND MAN-MADE FEATURES

6.1 No attempt is being made to catalog the major works of man which can be
seen on ERTS imagery, The more obvious ones, in some places confused
with linears, include railroads and abandoned railroad beds, the St.
Lawrence Seaway, highways, canals and transmission lines. Point data
include major airports and golf courses (which have a very diagnostic
high albedo in the near infrared imagery of October 10th, image number
(1079-15124) as well as a number of mines and dry tailings ponds in the
Adirondacks (Figure 15): the ilmenite-magnetite open pit of National
Lead Industries at Tahawus is very dark gray on band 6, black on band 7
and indistinguishable on band 5; the Benson Mines open-pit magnetite mine
at Star Lake appears dark gray on band 7, white on bands 4 and 5 and an
indistinguishable medium-gray on band 6; in the Edwards-Balmat-Taleville
area, tailings ponds appear white on bands 4 and 5 but are an indistin-
guishable light gray on bands 6 and 7.

7. CONCLUSIONS

7.1 The overwhelming majority of bedrock features which can be seen in
ERTS-1 imagery are identifiable either by their direct topographic ex-
pression or by differences in land use patterns governed by topography.
Variations in bedrock lithology which lack topographic expression are
only seen where they strongly influence land use. A limited amount of
lithological discrimination has been possible with respect to glacial
deposits, in the delineation of previously-mapped glacial sand deposits.

7.2 By far, the greatest geological contribution of ERTS-I imagery is in the
delineation of hundreds of hitherto unknown linear features, both topo-
graphic and tonal, long (up to 200 km) and short (less than 1.5 kmin).
(It was the 1:55,000, approximate scale, supportive airfoto coverage by
NASA that demonstrated the capability of ERTS-I imagery to detect linears
as short as 1.5 km, and as closely-spaced as 1 km). The new linear in-
formation will, in the short run, be incorporated into a regional tectonic
synthesis now in progress. In the long run, because of its sheer magni-
tude it will doubtless occupy the attention of field geologists for decades.
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7.3 A comparison of ERTS-1 linears with ground structures, indicates that
some linears parallel known major fault trends while others parallel
regional joint sets. There are doubtless a number of other genetic

catagories represented.

7.4 It is anticipated that the ERTS-enhanced fracture map of the State now
in preparation will prove to invaluable in seismic studies now underway
by Lamont-Doherty Geological Observatory and the New York State Geolo-

gical Survey. At present, virtually nothing is known about the relation-

hip between seismically and tectonics in New York. Both theoretical
questions relating to seismicity within the North American Plate, and

practical questions concerning seismic hazard are involved.

7.5 A number of potentially anomalous circular features seen in the imagery

were explained through the use of U-2 aerial photography. An elliptical

anomaly with a radial system of valleys, the Cranberry Lake anomaly,
however, will require additional investigation.
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APPENDIX II

STAGE II IDENTIFICATION OF ERTS-1 ANOMALIES

Ident. Index

# Sheet

# Remarks

1 65 St. Lawrence Seaway, cultural feature

2 Can. river has sinuous course, no continuation west of St. Lawrence fRiver

3 Can. ptobable highway

4a Can. probable highway

4b Can, probable highway

5 96 Allen Brook from St. Chrysostome into New York State

6 96 dark vegetation strip

7 96,80,81 lithologic contact; tonal contrast between Proterzoic and Potsdam ss.
66

8a 65,80 litholigc contact; 40 km. long; between Potsdam ss. and Theresa

8b 96 see Canada 1:250,000 map

9 65 irregular boundary between fields and roads

10 65 transmission line

11 65 border between swamp and farmland

12 65 combination of field borders and roads

13 Can, off air photo indexes

14 Can, off air photo indexes

15 53 southern half is several forest areas aligned and a stream section

16 53 linear wooded area and stream

17 53 road at southern end; rest is unexplained

18 . 53 unexplained

19 65 border of dark vegetation and stream

20 66 doesn't parallel field orientation; may include road in Southern part

21 66 parallelslithology and a road segment and narrow stretch of fields

22 66,80, coincides with several roads
81
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Index
Ident. Sheet

# # Remarks

23 53 coincides with highway

24 53 southernl/3 is Beaver Creek; road and fields are mid 1/3, northern
1/3 is the Grass River

25 66 parallels lithology in southern part; rest is road and unexplained

26 66 transmission line

27 66,67 southern 1/2 is a road; northern 1/2 is field borders

28 665,67 southern 1/2 parallels lithology; northern 1/2 is probably a stream

29 54,67 road segment in center, possible woodland boundary

30 67 possible combination of several roads

31 67 stream valley

31 67 stream and transmission line

32 67 visible on index; explanation uncertain

33 67 unexplained

34 67 combination of road and transmission line

35 55 parallels lithology

36 43,56 northwest 1/2 is a road, southeast 1/2 is unexplained

37 43 transmission line

38 56,44 highway

39 56 unexplained; possible vegetation border

40 56 tree-lined stream valley

41 56 unclear on index; possible vegetation border

42 57 stream valley

43 57 unexplained

44 57 parallels lithology; also short section of river.

45 70 appears to parallel lithology, and stream segment
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Index
Ident. Sheet

# # Remarks

46 71,58 southern /2 is road and stream; northern 1/2 is an elongate woodland.

47 56 highway

48 69 southern2/3 parallels lithology; northern 1/3 is unexplained

49 69 southern 2/3 parallels lithology; northern 1/3 is unexplained

50 69 southern 2/3 parallels lithology; northern 1/3 is unexplained

51 70,57 parallels. lithology

52 70,57 parallels lithology

53 70 lake; and parallels lithology

54 70 parallels lithology

55 69 unexplained

56 69 parallels lithology

57 69 straieht stream

58 69 stream

59 69 northern 3/4 is a road; parallels lithology for entire length

60 69 lithologic controlled stream

61 68 southwest 1/2 is stream, northeast 1/2 is unexplained

62 68 southeast 2/3 is a straight stream; rest is probable stream

63 67 northeast 4/5 is straight stream; southwest 1/5 is unexplained

64 67 straight stream

65 67 mid 1/3 is unexplained; remainder is winding stream

66 67 transmission line

67 67 series of streams with possible lithologic control

68 70 unexplained

69 70,85 mid section is lake-shore; rest is unexplained

70 70,85 valley and lake shore
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Index
Ident. Sheet
# # Remarks

71 70 southern 2/3 is stream; northern 1/3 is apparent dry valley

72 70 straight stream

73 85 straight stream

74 85 ' stream valley

75 85 parallels lithology

76 85 edge of topographically high area

77 85 stream valley

78 85 southern3/4 is stream valley; northern 1/4 is unexplained

79 85 Indian Lake and unexplained

80 85 stream with possible lithologic control

81 85 sub-parallel to stream

82 85 unexplained

83 .85 edge of topographically high area

84 85 winding stream valley

85 85 stream valley

86 85 apparent dry valley

87 85 parallels lithology

88 85 parallels lithology

89 85 parallels lithology

90 85 parallels lithology

91 85 unexplained

92 86 unexplained; parallels several mapped lineaments

93 86 possible vegetation border

94 86 ridge between two valleys

95 86 possibly parallels lithology

96 86 unexplained
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Index
Ident. Sheet

# # Remarks

97 86 straight valley

98 86 lake and stream

99 86,71 stream + unexplained

100 86 unexplained

101 86 parallels lithology

102 86 parallels lithology

103 86 unexplained valley

104 86 winding stream valley

105 .86 unexplained

106 86 highway and stream

107 86,87 northern part is stream; rest is unexplained

103 86 valleys with dark vegetation

109 86 unexplained

110 86 straight valley

111 86 straight valley

112 71,86 straight valley

113 86 straight stream

114 86 stream + unexplained

115 86 parallels lithology

116 86 stream parallels lithology

117 71,86 stream valley

118 71 parallels lithology

119 71 .1/2 length is stream valley; rest is unexplained

120 71 river

121 " 71 mid 1/3 is stream; rest is unexplained
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Index
Ident. Sheet

# # Remarks

122 71 stream

123 71 stream

124 71 stream

125 71 stream

126 71 unexplained

127 71 mostly unexplained, with some short stream segments

128 71 mostly unexplained, with some short stream segments

129 71 stream valley

130 71

131 71 three closely spaced linears: two are streams, the third is unexplained

132 71

133 70,71 stream

134 70 road + lake + unexplained + lake + unexplained

135 70 winding stream

136 70 semi-linear patches of dark vegetation + short stream segment

137 70 stream

138 70 small stream

139 70 lake and dark vegetation

140 70 lake - apparently lithologically controlled

141 70 northern 1/4 is stream; southern 3/4 is a road

142 70 stream - lithologically controlled

143 70 stream - lithologically controlled

144 70 stream - lithologically controlled

145 70 stream - lithologically controlled

146 70 stream - lithologically controlled

147 70 stream - lithologically controlled
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Index
Ident. Sheet
# # Remarks

148 70,85 stream

149 69 stream

150 ' 69 stream

151 69 border of dark vegetation area (also edge of topographic high)

152 69 stream

153 69 lake shoreline

154 69 unexplained

155 69,84 stream

156 69 stream

.157 69 road

158 68,69,84 curvalinear: southern 1/2 parallels lithology; rest is streams and lakes

159 69 lake shoreline and boundary between topographic high and low areas

160 69 stream

161 69 stream segment + unexplained

162 69 stream

163 69 stream and lake

164 68 winding stream

165 68 stream and road

166 68 1/2 is stream; rest is unexplained

167 67,68,69 long linear composed of several streams, lakes and roads

168 68 stream

169 68 stream + lake shoreline

170 68 lake

171 68 unexplained
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Index
Indent. Sheet

# # Remarks

172 68 stream and unexplained low area

173 68 Cranberry Lake shoreline

'174 68,83 stream

175 68 narrow arm of Cranberry Lake

176 68 Cranberry Lake shoreline + Lithologically controlled stream

177 68 portions of two lakes + topographically low area

178 68 stream-lithologically controlled

179 87 lake + dark vegetation patches

180 87 stream + lake + unexplained

181 87 straight stream + lakes + possible lithologic control

182 87 stream + lake shore + dark vegetation area

183 87 road + dark vegetation area + small valley

184 87 road + lake + low areas

185 87 stream + unexplained

186 87 lake + unexplained + stream

187 87 unexplained

188 87 stream + road + unexplained

189 87 unexplained

190 87 dark vegetation strip

191 87 stream + dark vegetation

192 87 parallels lithology

193 87 unexplained + short stream segment

194 86 dark vegetation strip in straight valley

195 86 dark vegetation strip in straight valley
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Ident. Index
# Sheet # Remarks

196 85 curvalinear: stream + dark vegetation area; possibly parallels

lithology

197 84 dark vegetation strip in straight valley

198 84 dark vegetation strip in straight valley

199 84 stream + boundary of topographically high area

200 84 wide dark vegetation strip

201 84 unexplained

202 84 dark vegetation strip

203 84 stream valley with dark vegetation

204 84 stream valley

205 84 stream + low areas with darker vegetation

206 84 stream valley

207 84 stream valley

208 84 stream + lake + stream

209 84 stream valley + unexplained

210 84 dark vegetation strip

211 84,100 valley + lake + road

212 83 stream + small lake

213 83 unexplained

214 83 straight valley

215 83 road + straight valley

217 83 unexplained

218 83 unexplained

219 83 stream valley + lake shoreline

220 83 lake shoreline + edge of topographic high

221 83 streams

222 83 parallels lithology
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Index
Ident. Sheet
# # Remarks

223 83. lake shore + unexplained

224 83 stream valley

225 &3 stream; appears to parallel lithology

226 83 stream, appears to parallel lithology

227 83 parallels lithology

228 83 parallels lithology

229 83 stream

230 82 unexplained

231 82 stream + unexplained + stream

232 81,82 curvalinear - portions of a number of streams

233 82 road + railroad

234 82 stream valley + unexplained. Location only approximate

235 82 unexplained

236 82,97 valley-unexplained

237 81 unexplained

238 . 81 unexplained

239 81 stream

240 81 stream + unexplained + stream

241 81 stream

242 81 stream

243 81 stream + unexplained + stream

244 81 unexplained

245 81 unexplained

246 81 streams

247 81 low areas with dark vegetation
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Index
Ident. Sheet

# - # Remarks

248 81 stream

249 81 stream valley + unexplained

250, 81 dark vegetation patches + unexplained

251 81 dark vegetation patches + stream valley

252 81 stream

253 81 stream

254 81 stream

255 81 dark vegetation strip

256 80,81,96 stream valley +- margin of cultural areas + stream

257 96 several streams

258 96 "cuesta" ridge of northern .Adirondacks; not visable on index

259 97 several ridges; probably lithologically controlled

260 97 stream

261 97 stream + unexplained + stream

262 97 stream

263 97 stream

264 98 stream

265 98 low area with dark vegetation

266 98 unexplained

267 98 dark vegetation strip

268 98 southern 3/4 is stream; northern 1/4 is unexplained

269 98 unexplained

270 99 vegetation border

271 99 unexplained

272 99 vegetation border
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Index
Ident. Sheet
# # Remarks

273 99 unexplained

274 99 unexplained

275 99 unexplained

276 99 stream

277 99 unexplained

278 99 stream + unexplained

279 99 stream + unexplained

280 99 small stream

281 99 stream

282 99 stream

283 99 unexplained + stream

284 99 stream + lakes

285 99 stream

286 99 stream

287 99 stream + unexplained

288 99 stream + lake

289 99 unexplained

290 99 stream + unexplained ridge

291 99 low areawith dark vegetation between two ridges

292 99 unexplained ridge

293 99 unexplained

294 99, 116 dark vegetation strip in sharp valley

295 100 stream

296 100 unexplained

297 100 stream valley
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Index
Ident. Sheet
# # Remarks

298 100 stream + unexplained

299 100,117 stream

300 100,117 ridge top

301 100 stream

302 100,101 stream

303 100 stream + unexplained

304 101 stream + unexplained

305 101 stream + unexplained

306 101 dark vegetation strips in two aligned valleys

307 101 dark vegetation areas around stream

308 101 stream + lake + margin of dark vegetation areas

309 10i stream + unexplained

310 101 stream valley with dark vegetation

311 101 stream

312 101 stream + valley with dark vegetation

313 102 straight stream valley with dark vegetation

314 102 stream

316 102 stream

317 102 stream

318 102 straight stream

319 102 stream + unexplained

320 101,102 stream

321 102 dark vegetation strip

322 102 dark vegetation strip

323 102 dark vegetation strip
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Index
Ident. Sheet
# # Remarks

324 102 stream

325 102 dark vegetation strip

326 103 stream + unexplained

327 103 dark vegetation strip

328 103 stream

329 103 stream

330 114 irregular dark vegetation strip

331 97,114 dark vegetation + unexplained + dark vegetation

332 114 dark vegetation strip

333 114 stream + unexplained + stream

334 114 stream

335 114,116 stream

336 114,115 unexplained

337 115 unexplained + lake

338 115 unexplained

339 115 unexplained

340 115 unexplained

341 115 stream + unexplained

342 115 unexplained

343 115 unexplained

344 115 stream + dark vegetation patch

345 115 dark vegetation area around topographic high

346 115 unexplained

347 115 stream + unexplained

348 115 ridge with lithologic control
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Index
Ident. Sheet
# # Remarks

350 115 unexplained + stream + unexplained

351 115,116 unexplained + stream

352 115,116 stream + stream

353 116 unexplained

354 116 stream

355 116 two stream valleys

356 116 stream valley

357 116 short straight stream

358 117 lake + stream

359 117 lake + stream + dark vegetation area

360 117 stream + unexplained

361 118 unexplained

362 118 unexplained + lake + unexplained

363 118 stream + unexplained

364 118 unexplained

365 118 stream + dark vegetation area

366 118 winding stream + canal

367 118 stream + unexplained

368 119 stream + unexplained

369 119 unexplained

370 119 canal + unexplained

67,81,82371 67,113 stream + unexplained + dark vegetation areas
97,113

372 81,97 edge of topographic high + lake

373 117 road + lake

374 100 stream

375 85 stream
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Index
Ident. Sheet

# # Remarks

376 85 stream

377 85 dark vegetation strip

378 85 stream

379 82 stream + dark vegetation area

380 70 road + topographic high

381 70 parallel lithology

382 56 parallel lithology

383 56 parallel lithology

384 65 combination of stream and vegetation borders

385 65,66 dark vegetation border

386 65 dark vegetation border

387 65 dark vegetation border

388 65 dark vegetation border

389 67 stream valley

390 55,67 parallel lithology + transmission line + stream valley
68

391 68 dark vegetation area + stream valley

392 69 parallels lithology + dark vegetation area

393 69,56 Beaver River

394 54 stream

395 54 parallels lithology + stream + lake

396 54 parallels lithology

397 54,55 parallels lithology

398 55 dark vegetation strip in stream valley

399 53 stream + parallels lithology

400 55 stream + parallels lithology
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Ident. Index
# Sheet

# Remarks

401 55 transmission lines

402 55 railroad + stream

403 55.56 river + dark vegetation area

404 55 stream + dark vegetation area

405 56 unexplained

406 42,43 parallels lithology

407 43 stream + unexplained

408 42,43 road

409 43,43 unexplained

410 43 stream + road

411 43 road

412 43 unexplained

413 43 unexplained

414 43,44 railroad + dark vegetation strip

415 44 stream + dark vegetation strip

416 44 stream + unexplained

417 44 stream + unexplained

418 unassigned number

419 66 unexplained

420 70 stream

421 70 stream + unexplained (half & half)

422 84 - stream with dark vegetation strip

423 83,82 stream

424 69 stream with dark vegetation strip

425 83 unexplained + stream + dark vegetation strip
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Index
Ident. Sheet

# #, Remarks

426 83 lake + stream

427 86 small stream valley

428 87 stream

429 71 stream + lake

430 72 dark vegetation strip which parallels lithology

431 85 stream

432 85 dark vegetation strip

433 85 unexplained

434 72 dark vegetation strip which parallels lithology

435 72 dark vegetation strip which parallels lithology

436 71 parallels lithology
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