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I. SUMMARY

Measurements are described here of atmospheric conditions affecting astro-

nomical observations at White Mountain, California. Measurements were made at

more than 1400 times spaced over more than 170 days at the Summit Laboratory and

a small number of days at the Barcroft Laboratory. The recorded quantities were

ten micron sky noise and precipitable water vapor, as requested in the original

communications from NASA, plus wet and dry bulb temperatures, wind speed and

direction, brightness of the sky near the sun, fisheye lens photographs of the sky,

description of cloud cover and other observable parameters, color photographs of

air pollution, astronomical seeing, and occasional determinations of the visible

light brightness of the night sky. Not all those quantities could be measured

simultaneously, of course. Measurements of some of these parameters have been

made for over twenty years at the Barcroft and Crooked Creek Laboratories, and

statistical analyses were made of them. These results and interpretations are

given here in identical form to the prospectus entitled, "An infrared observatory

for White Mountain, California", submitted to NASA in 1973 July. ' ..

On the basis of careful statistical analyses of significance, we compare

the White Mountain data with some available from other sites. In most of the

parameters analyzed, we find White Mountain better than or not significantly

different than the best of other sites.

The bulk of the collected data are statistically analyzed in this report,

and disposition of the detailed data is described. Most of the data are available

in machine readable form.

A detailed discussion of the techniques proposed for operation at White

Mountain is given, showing how to cope with the mountain and climatic problems.

However, the measurements reported were made without those techniques being available.

Therefore it was a major effort to make the measurements, and operational

problems prevented some from being made.
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II. THE WHITE MOUNTAIN SITE

A. Atmospheric and Meteorological Conditions

1. General weather conditions

An early summary of the general meteorological conditions was organized

in 1948 by Commander E. Bollay of the Office of Naval Research. Presumably

he had no commitment to White Mountain, and he concluded that it "is probably

the only location in the United States enjoying so many meteorological advan-

tages and desirable geological characteristics for a high altitude observatory

and laboratory."

Commander Bollay reported that Dr. I. S. Bowen and Dr. Fritz Zwicky had

brought White Mountain to his attention, and Dr. Zwicky wrote, "As far as a

site for observation of celestial objects and of the optical phenomena in the

upper atmosphere is concerned, I consider White Mountain Peak the best on the

North American continent."

The general climate at White Mountain is mild and clear, as compared to

experience at similar altitude in the Sierra Nevada, Cascades, and Rockies.

The distribution of weather with time usually is at worst an alternation of

several days of excellent weather with several days of bad weather. At best

there can be periods of several months of good weather except for afternoon

thunderstorms.

The dominant air masses are maritime polar and continental polar, but

on occasion in summer the maritime tropical air masses from the Gulf of Mexico

slop over White Mountain. The maritime air masses become drier as they move

over land, so the inland location of White Mountain is a considerable advantage.

For example, the maritime tropical air is much drier and less troublesome than

when it passes over the Arizona observatories.

There is some pollution at White Mountain, which seems to originate both

in the San Francisco and Los Angeles areas. The accompanying photographs,

taken on an unusually hazy day, clearly show a colored band above the horizon,

but it should be remembered that it is obvious because the air is generally so

clear. The horizontal visibility in the photographs is over 125 km, and is

limited by a combination of man made and natural materials.

The cloud cover increases in going from south to north in the Inyo Moun-

tains, partly because of increasing elevation and partly because of normal

latitude effects. There are sites with fewer clouds 200 km to the south, but



the greater water vapor due to lower altitude takes away the advantage.

The White Mountain Research Station has collected weather data for

essentially every day, except for long periods when recording anemometers

were out of operation, since the high altitude laboratories were started.

The Crooked Creek data at 3090 m altitude started in 1949 and the Barcroft

data at 3800 m altitude started in 1950. The Barcroft data in table II A-I

are copied from a summary going through 1970, and published in great detail

by the Station (Pace et al., 1971). The individual measurements are availa-

ble in machine readable form going to the present. In addition to the data

shown in the table there are recorded wet bulb temperatures, cloud cover,

and approximate cloud height. Further statistics can very easily be derived

from this data upon request.

The weather at the Summit Station is of course worse than at the lower

stations, but the precipitable water vapor decreases with a scale height of

1.6 km. This more than compensates for the times of bad weather. Lightning

is a serious problem at the Summit during summer afternoon thunderstorms,

and suitable protection must be provided for all structures.



TABLE II A-i

MONTH SUMMARY, BARCROFT LABORATORY, 1953-1970
18 Yr

Mean or Date of

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Extreme Extreme

AV MAX TEMP oF 22.8 22.5 23.5 28.3 35.6 45.3 53.5 52.9 47.6 39.8 31.1 25.2 35.7
HI MAX TEMP OF 46 45 45 50 55 65 72 72 61 62 50 48 72 ++
AV MIN TEMP OF 8.2 7.3 6.8 11.2 19.3 28.8 36.4 35.9 30.4 23.7 16.0 10.2 19.5
LO MIN TEMP 0 F -25 -21 -35 -30 -15 2 12 15 4 -20 -28 -26 -35 10 Mar 64
AV MEAN TEMP OF 15.5 14.9 15.1 19.7 27.4 37.0 45.0 44.4 39.0 31.7 23.6 17.7 27.6
AV DIURNAL DIFF OF 14.6 15.2 16.7 17.2 16.4 16.5 17.1 16.9 17.2 16.1 15.2 15.0 16.2
HI DIUNAL DIFF OF 44 37 47 148 43 49 40 38 37 56 37 39 56 17 Oct 69
LO DTURiJNA DIFF OF 3 2 4 7 4 6 2 7 3 2 2 2 2 ++
TOT DEGPI:E DAYS oF 1512 1110 1533 1344 1157 831 612 623 773 1022 1233 1454 13504

TOT DAYS 330 F OR + 3 4 4 10 21 28 31 31 29 25 15 7 208

AV 8AM RE IHUIIM % 63.7 66.5 64.7 61.6 56.8 50.2 46.9 47.8 47.2 47.4 56.4 58.2 55.6

AV 8AM BAROM mmllg 477.1 476.8 '475.9 476.9 479.1 481.7 485.4 484.8 483.1 481.5 479.5 478.0 480.0
III 8AM BAPOM mmnlg 1189.0 '188.6 487.6 489.6 487.2 490.5 492.5 491.3 490.7 490.0 490.2 491.9 492.5 15 Jul 70
LO BAM BAROM minllg 462.0 464.9 461.3 461.7 466.6 468.6 478.9 474.0 472.7 461.9 465.6 461.7 '461.3 23 Mar 64

AV SNOWFALL in. 20.6 19.4 18.0 20.7 22.6 8.8 1.8 0.8 4.9 10.4 111.4 18.1 160.5
III SNOWFALL in. 30.0 17.0 15.0 38.0 26.0 15.0 12.0 3.0 12.0 19.0 12.0 44.0 44.0 6 Dec 66
AV SNOW DEPTH in. 13.6 21.4 25.4 24.0 17.6 5.1 0.4 0 0.2 1.1 4.3 9.3 10.2
HI SNOW DEPTH in. 81 94 123 106 91 46 15 3 6 28 33 93 123 22 Mar 69
AV SNOW 1120 in. 2.26 1.72 1.82 1.84 2.05 0.96 0.16 0.08 0.62 0.96 1.29 2.49 16.25
AV RAINFALL in. 0 0 0 0 0 0 1.41 0.99 0.19 0 0 0 2.59
HIl RAINFALL in. 0 0 0 0 0 0.02 2.00 1.30 1.15 0 0 0 2.00 9 Jul 70
AV 1120 PRECIP in. 2.26 1.72 1.82 1.84 2.05 0.96 1.57 1.07 0.81 0.96 1.29 2.49 18.84
AV DAYS PRECIP 9.7 9.2 10.3 9.6 9.2 5.9 4.8 4.2 3.4 4.2 7.2 7.8 85.5

AV MAX WIND knots 28.0 28.9 26.4 23.8 21.8 18.4 16.0 16.3 18.0 20.3 23.9 25.8 22.3

HI MAX WIND knots N 82 ++ 70 NW 65 W 72 W 56 W 44 S 46 SW 46 NE 44 W 70 N 58 W 68 N 82 20 Jan 59
LO MAX WIND knots E 5 S 4 S 5 NW 7 NE 4 NE 4 NW 4 S 4 ++ 5 NW 4 E 5 ++ 6 ++ 4 ++
MAX WIND DIR
NORTH % 17 21 18 10 11 7 4 2 7 14 15 17 12
NORTHEAST % 4 4 5 5 9 5 6 4 6 7 7 8 6
EAST % 2 1 3 2 6 4 12 8 7 8 3 1 4
SOUTHEAST % 0 1 1 3 4 12 15 10 7 4 3 1 5
SOLrTH % 3 5 4 4 9 13 23 24 14 6 6 3 9
SOUTHWEST % 11 11 16 17 18 20 19 23 21 11 19 14 17
WEST % 48 46 37 48 36 33 19 26 33 41 33 42 37

NORTHWEST % 15 12 16 11 7 6 3 2 5 10 15 14 10
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2. Sampling and significance

A large part of the work reported here is an extensive set of measure-

ments of atmospheric conditions affecting astronomical observations, which

were made on selected days between 1971 July 1 and 1972 June 30 at the sum-

mit of White Mountain. We attach particular importance to measurements made

at sunrise, which were made on 169 days out of that period. The NASA funded

survey of several sites used only noontime observations of water vapor, how-

ever, which we made on 156 days out of the same period, having 149 days with

both sunrise and noon measurements. This section discusses randomness of

sampling of each of these sets of days out of the year.

A major cause of the difference between the sets of days with sunrise and

noon measurements was a need for the observer to use shop facilities of the

Barcroft Station. He always spent the night at the Summit Station and drove

to and from the Barcroft Station during the middle of the day. At that time

we did not know that some other sites were only making noon measurements, and

we were focussing our effort on nighttime and sunrise measurements. Otherwise

the difference between the sets of noon and sunrise measurements simply is due

to arrival and departure times for runs at the Summit Stations.

We did not occupy the Summit Station continuously during the year for

financial reasons only. We hired people solely to operate the survey at that

Station, since the permanent staff only occupy the Crooked Creek and Barcroft

Stations. The gaps in our observations are due entirely to accumulated time

off by our staff and not to weather.

The tests discussed below show that we did occupy the Summit Station dur-

ing a random sample of weather conditions, which is well attested to by the

anecdotes of the observers who sat out storms. Even travel to the Summit Station

was sometimes done on foot in bad weather.

The times of operation of the ten micron sky noise machine were selected

in a still different manner, being affected by instrumental problems. We have

not yet analyzed the significance of the sampling of the times those measure-

ments were made.

We also discuss measurements of a smaller number of meteorological quanti-

ties, which have been made almost every morning at 8 AM at the Barcroft and

Crooked Creek Stations since 1953 and 1950 respectively. So few days have not

had those measurements, that we assume without further discussion that they are

a random sample.



We determine randomness of sampling and significance of most of our

conclusions by means of the X2 test, about which there are some important

qualifications to be applied throughout this paper. Few of the quantities

we measure have a normal distribution, except for air temperature and pres-

sure at fixed times of day over a limited range of season. Therefore the

powerful tests for significance of mean values and standard deviations are

useless.

We do make manyX2 tests for significance of frequency distributions and

median values, although there are a variety of non-parametric tests for ordi-

nal distributions which are more powerful than the X2 tests. All of the

quantities we discuss here are at least on an ordinal level of measurement,

and the Kolmogorov-Smirnov tests should be useful for them. However, in the

cases where we have made both Kolmogorov-Smirnov and X2 tests, the results are

the same, so we have reported only the X2 results because of their familiarity

to many readers. In addition that test is widely used in the climatological

literature, so our conclusions will have the same basis.

The major limitation to the power of the X 2 test is the small deviation

from strict independence of observations discussed here. We commonly analyze

runs of measurements made once a day, and there is some correlation extending

over two or three days. Our runs are always much longer than that correlation

time and our numbers of observations are always much greater than the minimum

necessary for a test. In comparing distribution functions we have always pooled

the data into categories giving minimum expected frequencies of five, and

usually giving much higher expected frequencies. Therefore we are reasonably

confident that the small deviations from independence are not harmful to the

tests, which is in agreement with the general usage in the meteorological

literature.

The occasions on which a man made measurements at the summit were selected

by many factors in the personal lives of the observers. One might expect that

a man would be on the summit preferentially in good weather, but this section

gives several arguments why that is not so.

Because of availability of a particular observer, we have more observations

per month in summer than in other months. For this reason as well as the distri-

bution of water vapor described below, I have analyzed the data in two periods

of the year only, being summer and not-summer. I define summer as the calendar

months of June, July, and August. These two periods then each contain sufficient



numbers of measurements to enable use of significance tests.

Inspection of the distribution of precipitable water vapor as a function

of date also shows that the year can be divided into two distinct sections.

During June, July, and August the PWV is two to three times higher than in

other months with a maximum in late July. All of the other months appear to

be similar to each other.

Another reason for choosing the breakdown by summer and not-summer is

given by the details of an analysis of expected water vapor by Kuiper (1970).

He calculates this from radiosonde measurements, taking three month averages.

The time I call summer is one of his periods, and the time I call not-summer

is his period of the best nine months for low water vapor.

We are especially interested in an analysis of conditions at night. The

water vapor should be lowest at night, because of low air temperature, low

evaporation of water from the ground, and minimum convection up from the

valleys. The cloud cover is also minimum then, especially in summer when there

is a major buildup of convective clouds during the day. Since we measure water

vapor by its spectral line absorption of sunlight, our best estimate of night-

time values is made shortly after sunrise. We have chosen to make our sunrise

measurements when the sun is ten degrees above the horizon, and the analysis of

all of our different kinds of data is emphasized for that time.

At 8 AM each day weather conditions are recorded at the Barcroft Labora-

tory which is 5.6 km away from the summit and 540 meters lower in

elevation. That was done for each of the 366 days (including a leap year

February) of the year that was analyzed. My statistical analysis of randomness

of weather conditions when we made summit measures is based upon those Barcroft

measurements. The 8 AM Barcroft measurements of cloud cover would be expected

to be well correlated with summit conditions at sunrise, because of their close-

ness in both time and space.

This section demonstrates with high significance that the mornings and noons

on which we made measurements at the summit are separately represented by ran-

dom.samples of cloud conditions at Barcroft. I expect this signifies a random

sample of cloud conditions at the Summit.

During the nine months of not-summer we made measurements on 107 days at sun-

rise and 100 days at noon, being 39% and 37% of the days in that period. During

the three months of summer we made measurements on 62 days at-sunrise and 56

days at noon, being 67% and 61% of the days in that period. Those days when we

made summit measurements we call summit days.
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The Barcroft estimates of cloud cover are recorded in five categories:

1 = clear, 2 = scattered clouds, 3 = broken clouds, 4 = overcast, 5 = obscured

horizontal vision. Frequencies of occurrence of those categories are analyzed

here.

Table II A-2 and Figure II A-i contain the relative frequencies of cloud

categories for several selections of days, with part A for not-summer and part

B for summer. The first line in the table shows the relative frequencies of

cloud categories for all the days in the period. The next two lines refer to

the summit days, and the next twelve lines represent a set of ten random sam-

ples of all days with replacement after sampling. These samples were taken to

approximate the fraction of all days that were summit days. The third and

fourth lines of the table show the means and standard deviations of the sets

of ten samples.

The first columns of each table give the number of days in the periods

analyzed, in which the random samples give some dispersion in the number of

days selected. The remaining five columns give the relative frequencies of

occurrence of the five cloud categories.

Inspection of the first three lines shows that there is no very large

difference between all days and summit days during not-summer, but there may

be a difference in summer in categories 1 and 3. However the random days

show standard deviations in cloud cover such that the summit days are with-

in one standard deviation of the mean of the random days in fourteen out of

twenty cases. The largest difference is 2.8 standard deviations, so there

is probably no significant difference even in summer.

Inspection of the sets of ten random samples shows that, regardless of

any questions about the normality of the distribution of the samples, there

is not much difference between all days, summit days, and random days.

Finally we have taken the X 2 of the distribution of relative frequencies on

the summit days for each of the two periods and for sunrise and noon separately.

The expected frequencies are taken to be the observed frequencies for all days,

and where necessary the cloud categories are further pooled than in table II A-2.

In all cases the X2 tests satisfy the hypothesis that the summit days represent a

random sample of cloud conditions at the usual 0.05 level of significance, and

they even satisfy that hypothesis at the 0.30 level of significance and higher.

In this organization of data the cloud distributions in summer and not-

summer are quite similar. This is because the best weather is in the fall and
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the worst in the winter. When those periods are taken together in the

sampling, they average out to become similar to spring and summer. Never-

theless, the variation of cloud cover between seasons is only two sigma of

the variation within one season.

TABLE II A-2

A. NOT-SUMMER.

Cloud Category

N 1 2 3 4 5

% % % % %

All days 274 57.3 16.4 4.7 12.0 9.5

Summit Days: Sunrise 107 58.9 18.7 5.6 8.4 8.4

Noon 100 63.0 18.0 5.0 5.0 9.0

Mean of Random Days 107.4 56.8 18.0 4.8 11.2 9.2

Standard Deviation 6.5 3.0 2.9 1.5 3.2 2.8
of Random Days

111 54.1 18.0 4.5 16.2 7.2

101 58.4 16.8 5.0 12.9 6.9

105 57.1 23.8 4.8 10.5 3.8

95 55.8 18.9 7.4 5.3 12.6

Random Days 104 58.7 19.2 3.8 6.7 11.5

111 50.5 18.0 7.2 11.7 12.6

110 55.5 20.9 3.6 10.9 9.1

106 60.4 15.1 3.8 12.3 8.5

115 57.4 15.7 5.2 11.3 10.4

116 60.3 13.8 2.6 13.8 9.5
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TABLE II A-2

B. SUMER

Cloud Category

N 1 2 3 4 5

% % % % %

All Days 92 58.7 12.0 20.7 4.3 4.3

Summit Days: Sunrise 62 66.1 14.5 11.3 4.8 3.2

Noon 56 62.5 16.1 12.5 5.4 3.6

Mean of Random Days 61.6 59.9 12.2 20.4 3.9 3.7

Standard Deviation 5.0 4.0 2.6 3.3 1.9 1.2
of Random Days

59 59.3 11.9 20.3 5.1 3.4

67 55.2 14.9 20.9 3.0 6.0

54 68.5 7.4 16.7 5.6 1.9

59 54.2 13.6 27.1 0 5.1

Random Days 58 60.3 13.8 19.0 3.4 3.4

67 58.2 9.0 23.9 6.0 3.0

59 61.0 15.3 15.3 5.1 3.4

59 62.7 11.9 20.3 1.7 3.4

69 60.9 10.1 20.3 4.3 4.3

65 58.5 13.8 20.0 4.6 3.1
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3. Precipitable water vapor measurements

We started making water vapor measurements at White Mountain in 1971

January, using a meter designed, built, and calibrated by Dr. Frank Low.

When the NASA funded water meter supplied by Dr. James Westphal arrived,

our personnel preferred to continue using the Low meter because of famili-

arity. In addition the Low meter appeared to give greater reproducibility

in a series of observations. Accordingly most measurements were made with

that meter until 1972 June, when almost all measurements were made with both

meters. The Westphal meter was used for most measurements made at lower

stations- than the Summit.

These two meters were extensively intercompared to relate their scale

readings in 1971 June and in 1972 May and June. These comparisons were done

at the Summit Station under a variety of cloud conditions and zenith distances.

A numerical fit was made to the comparison of the scale readings, using the

1972 data and 132 points. That fit was then used to calculate equivalent

readings for the Westphal meter, using actual readings with the Low meter.

In the fitting process the standard error of the residual of one Westphal

meter reading from the derived curve was 14 units on the Westphal meter scale,

although the fit was much better than that value at the low water end of the

scale. That standard error of a single meter reading calculation leads to

about a fifteen percent error in the derived value of water vapor. The sta-

tistical parameters of the distribution of water vapor will of course be much

smaller.

After the equivalent Westphal readings were submitted to the NASA survey,

we went back to the 1971 comparison to look for any change over the year, and

found no change.

For the sake of uniformity of comparison with other sites we are stating

the statistical parameters of the water vapor at noontime by measurement from

the plots distributed by Westphal in 1973 July, based on his best calibration.

However, in the discussion of variation of water vapor during the day and be-

tween different stations at White Mountain we calculate the water vapor by first

calculating the equivalent Westphal meter reading and then calculating the water
vapor from an empirical formula provided by Westphal. That formula does indeed
reproduce the value given in his plots, starting with the quantities which we

sent to him and our direct measurement of zenith distance of the sun.
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The quantities of water vapor reported by Westphal are the equivalent

amounts of vapor which would give the observed amount of band absorption at

sea level pressure. The effect of the vapor upon an astronomical observation

depends upon whether the observer is interested in wide band photometry or in

high resolution spectroscopy. In the former case the effect is determined by

the sea level equivalent amount of vapor. In the latter case the effect is

determined by the actual amount of vapor, so it is necessary to correct the

observations for pressure effects.

The absorption by a single, strong spectral line is proportional to the

square root of the pressure, but the measured absorption of many water bands is

proportional to roughly the fourth root of the pressure (Holter et al., 1962).

Since the absorption is proportional to the square root of the amount of water, the

pressure correction for amount of water goes as the square root of the pressure.

After choosing an altitude above observing sites which has a representa-

tive pressure, we derive the following table of pressure corrections. The ap-

parent water vapor is multiplied by these factors to derive the actual water

vapor.

Station Elevation (km) Correction factor

White Mountain Summit 4.34 1.405

Mauna Kea 4.20 1.393

White Mountain Barcroft 3.78 1.357

Mt. Lemmon 2.80 1.276

Kitt Peak 2.06 1.218

In order to evaluate the effect of observing from different stations at

different altitudes on White Mountain, we use the scale height of the density

of water vapor. This can be derived from the Gringorten (1966) Atlas of Atmos-

pheric Humidity, giving 1.85 km at the altitude and geographic location of White

Mountain, using the 50 percentile dew point in April and probably in midday.

Kuiper (1970) suggests a representative value of 1.6 km. Simultaneous noontime

measures of water vapor at the Summit and Barcroft Stations during 1971 June

and July and during 1972 March and April give 2.3 km and 0.6 km respectively,

using the 1973 Westphal calibration and the pressure correction described above.

An attempt to determine scale height from 8 AM wet and dry temperature

readings at the Crooked Creek and Barcroft Stations over twenty years gave
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very high values. This is probably due to a surface layer of water vapor

which lies over the mountain.

Plass and Yates (1965) show the result of calculations of absorption in

a complex model atmosphere, reduced to equivalent amount of water at sea level

pressure. This is exactly the quantity measured directly with the water meters,

and the calculations give a scale height of 1.3 km between 3 and 8 km altitude.

Our direct measurements, uncorrected for pressure, give 2.0 km in summer and

0.6 km in spring.

The greater scale height in summer is probably due to convection bring-

ing up water vapor from lower altitudes. During one afternoon in July a series

of measurements were made at both the Barcroft and Summit Stations. The water

vapor at each station was a maximum at 1530 PST, and the ratio between the

stations was a minimum at the same time, giving a maximum scale height. Since

that time coincides with the well known time of maximum thunderstorm activity,

there is strong support for convection reducing the scale height.

When the summit was occupied we made at least five measurements each day

of water vapor, weather permitting. The first and last measurements were at

800 zenith distance, measurements were at two or three hours each side of noon,

and a measurement was at noon. The maximum amount of water vapor is usually in

mid-afternoon, with more water remaining at sunset than there was at sunrise. The

amount of change is greater in summer than in not-summer, and on a few not-summer

days the water vapor is essentially constant over the day after zenith correction.

These facts about the variation with time give us confidence in applying the

standard zenith distance correction, dividing the observed water vapor by secant z,

which assumes that the water has a uniform horizontal distribution. If the water

distribution was strongly asymmetrical in the east-west direction, and had alter-

nate senses of asymmetry at different times, we would occasionaly expect to see max-

ima before noon. Since we never see that, strong asymmetry probably does not exist.

Mather, Werner, and Richards (1971) have reported on spectral measurements

of the emission of water vapor over the range of 6 to 14 cm-1. These measure-

ments were made in late April and early May at the Barcroft Station, and were

fitted to emission models containing amount of water vapor as a parameter. Be-

cause they superimpose observations made at different times, in order to get

sufficient signal to noise ratio, it is difficult to determine an exact corre-

spondence with measurements made with our water meter. They fit their observa-

tions with models containing between 1 and 1.5 mm of precipitable water vapor
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(actual and not equivalent), which is quite consistent with our measurements

on the same days, at Barcroft, and with the Low meter and calibration.

They report privately that the water vapor along a path to the west with

a 450 zenith distance is about 30 percent higher than along a similar path to

the east. The land there has a slope of 170 down from west to east, so the

angle of the atmospheric path above the ground is 280 to the west and 620 to

the east. This may explain their asymmetry.

The zenith distance correction could give a false result if the majority

of the water is in a blanket wrapped symmetrically around the mountain.

O'Connor, et al (1969) report radiosonde measurements of water vapor above the

Barcroft Station, which show a layer of water a few hundred meters thick. This

could be a blanket which wraps around the mountain, but it appears to contain

only ten or twenty percent of the total water. That small amount cannot ac-

count for the large difference in water vapor between sunrise and noon in sum-

mer, which we describe later.

The above points of (1) some days having constant water vapor (2) maxima

never being before noon and (3) radiosonde measurements showing only a small

fraction of the water in a boundary layer lead us to conclude that there pro-

bably is a uniform horizontal distribution of water. Therefore we accept the

standard zenith distance correction, but of course we apply that only with

zenith distances less than 800.

Figure II-A-2 shows the sunrise and noon water vapor data, broken down by

summer and not-summer, after correction to the zenith and using the 1973 Westphal

calibration. The median at sunrise for summer is 1.3 mm and for not-summer is 0.72 mm.

The X 2 test shows that in not-summer there is no correlation between water

vapor and cloud cover with a significance of .85. Therefore the random sampling

of days insures a random sampling of water measurements, regardless of the im-

possibility of making measurements on heavily overcast days. We expect that

this independence is due to the clouds being mostly ice in not-summer.

However, in summer there is a strong correlation between cloud cover and

water vapor, so our water vapor distribution refers only to days when clouds

were thin or scattered enough so that measurements could be made. This rela-

tionship between water vapor and cloud cover is very important at longer wave-

lengths, where the scattering by clouds is less important than at visible wave-

lengths. This is certainly the case at millimeter wavelengths and it may be

relevant at twenty microns.
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Focussing our attention on the water vapor in the nine months of not-

summer, we see that there is a modest difference between sunrise and noon

as well as no difference between cloud conditions. As we show in other sec-

tions of this document on seeing and wind, wind is not importantly correlated

with seeing nor with cloud cover. This is unfortunate since we would like all

of the bad conditions to occur at the same time, but it does enable simple

calculation of the probability of occurrence of a given set of limiting values

of the atmospheric parameters. That probability is the product of the cumula-

tive relative frequencies of each of the parameters at the chosen limits.

The situation is very different in summer, when most of the conditions

disturbing astronomical observations are caused by convection. Then the nights

are good and the days are bad.

The lowest measured precipitable water vapor at noon was 0.15 mm on 1972

January 29 at 1234 PST. There were 17 days with noon PWV less than or equal

to 0.5 mm, and they were spread out over all of the not-summer months. The

lowest PWV at sunrise was 0.11 mm on 1972 March 11 at 0750 PST and a somewhat

late measurement at 740 zenith distance. There were 28 days with sunrise PWV

less than or equal to 0.5 nmm, and they were spread out over all months includ-

ing summer.

Finally we emphasize that the values of precipitable water vapor given in

this section are the amount which give equivalent absorption at sea level pres-

sure and are calibrated by the 1973 Westphal technique.



18

4. Wind

Wind has been measured at the Crooked Creek and Barcroft Stations most of

the time since 1950 and 1953 respectively, using chart recorders with the ane-

mometers. For each day the maximum sustained windspeed for one hour was read

off of the chart and ultimately recorded on punched cards. We have used some

of the originally punched data and have made extensive use of the climatologi-

cal data summary derived from them. (Pace, Kiepert, and Nissen, 1971). However,

neither of those recorders were operating during the Summit Year.

The mean and standard deviation of the 16 year distribution of the annual

mean maximum wind speeds at the Barcroft Station are 22±1.3 knots. The same

quantities for the mean January maximum wind speeds are 28±4.0 knots. Since

the year to year variation is so small, we will assume that the summit winds

measured.during the Summit Year are representative of normal conditions. This

is decidedly different from the number of clear days per year, where the Sum-

mit Year was unusually good.

Most of the wind measurements at the Summit Station were made with a hand

held precision anemometer, held at eye level at the extreme windward edge .of

the summit, being the highest and most exposed point within 100 km. For forty

days at the end of the Summit Year a permanently installed anemometer about

four meters above the ground was used with a chart recorder. The hand held

anemometer was used as the standard in the cross calibration of the two instru-

ments. Because of the steep cliff at the west edge of White Mountain, the wind

often had an upwards component, and the hand held anemometer was held so as to

measure the-resultant velocity. As with all the measurements we report, the

winds were measured during a random sample of days, by virtue of a man living at

the Summit Station during all kinds of weather.

Median wind speeds were carefully determined from the 40 days of chart

records for the night time intervals 1800 to 0600 PST and for the daytime inter-

vals 0600 to 1800. There is very little correlation between individual night-

time median speeds and the following sunrise handheld anemometer measurements,

but the distribution functions of those quantities are the same at the .25 level

of significance. 'The median of the 40 nighttime median windspeeds is the same

as the median of the spot measurements at the following sunrise, being 11 knots

over parts of April through June.

Therefore we assume that any modest sized sample of sunrise spot measure-

ments has the same distribution as the set of preceding nighttime medians. On

that basis we will compare the White Mountain windspeed measurements with those

from Mauna Kea in section II D.
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Figure II A-3 shows the distribution of windspeed at White Mountain

Summit, using our usual breakdown into summer and not-summer. The hand held

anemometer had a maximum reading of 52 knots, so windspeeds above that value

were determined with limited accuracy. The high speeds were measured on an

existing inexpensive anemometer, but its uncertainties do not affect the

distribution below the 85th percentile in not-summer or at all in summer. Me-

dian windspeeds are 9 knots in summer and 23 knots in not-summer, and all

weather is included.

The only way to measure gust velocities or daily maximum velocities is

with a recording anemometer. The calibration of the recording anemometer was

done below 43 knots, so we are unsure of its extrapolation to higher velocities.

Nevertheless, the highest recorded windspeed on the chart was a gust of 90 knots

during a time when the one hour sustained windspeed was 50 knots. On the basis

of anecdotes by the observers, we believe that there were higher gust velocities

on days before the chart recorder was in operation but we have little idea of

their magnitude.

The winds at the Barcroft Station are more nearly representative of less

exposed regions on White Mountain, where there is some shielding from the pre-

vailing west winds and some drag from the wind blowing across the ground. As

noted above, only the daily maximum one hour sustained windspeed was logged.

A spot check of a few of the original strip chart records indicates a tendency

to log the instantaneous daily maximum instead of the sustained maximum. In

either case the logged quantity is much higher than the median windspeed, which

is analyzed in earlier paragraphs.

Figure II A-4 shows the distribution of these daily maximum windspeeds at the

Barcroft Station for summer and winter, further broken down by 8 AM cloud cover

being less or greater than 50%. The small relationship between windspeed and

cloud cover is statistically significant at the .05 level, because of the

large number of observations, but it is not operationally significant. The

fall and spring distributions fall between those shown, and were left off for

clarity.

There is an important difference in winter between the Summit daily median

winds, as shown in Figure II A-3, and the Barcroft daily maximum winds as shown

in Figure II A-4. The Summit 90th percentile is at 58 knots and the Barcroft

90th percentile is at 42 knots. We expect the relationship between median and

maximum to be in the opposite sense. Therefore the high Summit winds are

overestimated and/or the reduced exposure at Barcroft has a large effect, since
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altitude alone does not have that big an effect. Sites are available with

similar wind shielding as at Barcroft, including places just below the

Summit, so the Barcroft windspeed distribution may be relevant to those

sites.

Over the sixteen years of wind measurements at Barcroft, the maximum

recorded one hour persistent windspeed was 82 knots. We do not know how

much higher the gust velocities were.
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5. Stellar Seeing

Seeing observations have been made at the Summit Station only, using a

telescope patterned after those used by Walker (1965, 1970, 1971) in his see-

ing surveys. The particular telescope we used was built in connection with

the earlier White Mountain survey under the Space Science Lab, but it was

not used before that survey was terminated for lack of funds.

At the beginning of the survey this telescope was temporarily installed

at Mount Hamilton and the linear size of its image at the focal plane was

calibrated against one of Walker's telescopes there. That in turn was cali-

brated against eye estimates of seeing disk size at the Coude focus of the

120 inch telescope. This calibration and the subsequent development and re-

duction of the film with White Mountain seeing measurements were generously

done by Dr. Merle Walker.

I have never even seen any of these films of Mt. Hamilton calibration

or White Mountain seeing, so I can not bias their interpretation. The indi-

vidual seeing measurements should be directly comparable with those from

Walker's earlier surveys, with the critical questions being related to se-

lection effects and statistical interpretation.

Many factors went into selecting the nights on which seeing measure-

ments were made. The nights on which a man was at the Summit Station were

randomly selected out of the year, as discussed in section II.A.2 and a further

random selection of clear nights had seeing measurements. Measurements were

not made because of observer fatigue, alarm clock failure, high wind, low

temperature, and water condensation inside the lens followed by removal for

drying. The number of nights with seeing measurements as a percentage of

number of clear sunrises was 56% insummer and 79% in not-summer.

We test to see if the distribution of wind speed at sunrise after seeing

measurements can be a random sample from the distribution of wind speed for

all clear sunrises. The chi square test shows this is a random sample for

summer and not-summer separately, with a significance of .15 and .50 respec-

tively, so the seeing measurements were not biased toward calm nights.

A possible source of bias could lie in my rejection of observations

where either Walker or the observer reported telescope vibrations due to

wind. All the observations were so rejected on eleven nights scattered over

the period 1972 July through November. During the course of the survey we

several times successively reduced this vibration by piling rocks on and
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around the telescope mount so the wind speed at which the vibration started

varied with date. Vibrations were reported only once after 1972 November. Fig-

ure IIA-5 shows all seeing observations, which were not rejected because of

vibration, plotted against wind speed at the position of the telescope ob-

jective. All rejected measurements are shown at the measured wind speed and

the upper edge of the seeing graph. Since all seeing measurements are shown,

including multiple measurements on many nights, this graph alone does not

give a valid picture of the probability of various categories of seeing or

wind speed.

Inspection of Figure II A-5 shows that there may be a small tendency for

seeing to get worse with wind speed increasing above 25 or 30 knots. Below

25 knots the seeing is independent of wind speed. In view of the median

wind speed in any season being within the region of independence of wind

speed and seeing, I conclude that my statistics of seeing are not signifi-

cantly biased by the rejection of observations when the telescope was vi-

brating. Whatever bias does. exist is in the upper quartile of wind speeds,

and has no effect on the probability of excellent seeing.

There were two adjacent nights:inJanuary and one night in April with

abominable seeing between 10" and 20". The winds were mostly around 50 knots,

but no telescope vibration was recorded. In all of these cases and in no

other cases at night, alto curmulus standing lenticular clouds were recorded.

These were clearly times when the Sierra Wave existed, and the wave apparently

devastates seeing.

Inspection of the log shows that other times when lenticular clouds were

recorded in daytime were adjacent to nights which were too cloudy to make

seeing measurements. The abominable seeing measurements are not shown in Fig-

ure IIA-5 because they represent a radically different domain of atmospheric

conditions. Nevertheless, the nights with abominable seeing are included in

the statistics on seeing given below since no telescope vibration was re-

ported.

After the rejection of measurements when the telescope was vibrating,

there remained 116 seeing measurements on 64 nights. 25 nights had only one

measurement. The average seeing for each night was taken by a simple mean,

regardless of number of measurements per night. The frequency distribution

for simple means was corrected by weighting by number of measurements during

each night, giving about the same frequency distribution as without weighting.
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Although nights with single measurements tended to have them before midnight,

the trends during the night went in both directions, so the averaging tech-

nique is satisfactory.

On one night I did not take a simple mean because of an extreme change

of seeing from 1".2 to 7" between two measurements separated by 4.5 hours.

The winds were below 10 knots all night. In this one case I arbitrarily

assigned 2".0 as the average seeing.

Figure II A-6 shows the average seeing for each night as a function of date

of sunset. It appears that winter and spring have worse seeing than summer

and fall, where median seeing in winter and spring is 1".5 and in summer and

fall is 1".2. First ten percentile seeing is 0".8 in both of those pairs of

seasons. Nevertheless, the difference in medians is not significant, having

about 20% probability of being due to sampling variation. Figure II A-6 also

shows the cloud cover at time of sunrise.

In order to compare White Mountain seeing with that at other sites, we take

our entire year's data together. Table II A-3 shows the frequency distribu-

tion for seeing at several sites, in the format of Walker's Table IX (1971).

Junipero Serra, Cerro Tololo, Kitt Peak, San Pedro Martir, and Piper Moun.-

tain are displayed in the same way as in Walker's table.

TABLE II A-3

Percentage of Observed Nights with Average Seeing as Indicated

Total number
of nights

Location 1."O ''1 to 1'5 1.6 to 2'0 >2270 observed

White Mountain - best 55 20 16 10 64

White Mountain - average 36 31 17 16 64

White Mountain - worst 27 21 17 35 75

Junipero Serra 26 38 13 23 558

Cerro Tololo 24 32 22 22 509

Kitt Peak 15 30 16 39 253

San Pedro Martir 15 25 17 42 52

Piper Mountain 9 30 20 42 164

Although White Mountain heads this table in apparent quality of seeing, that

is not at all significant. X tests of the White Mountain seeing compared
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with the other sites one at a time show no significant difference with

Junipero Serra or Cerro Tololo when possible sampling variations are taken

into account. This decision is made at the threshold significance of .05.

However, White Mountain seeing is significantly better than at Kitt Peak,

San Pedro Martir, or Piper Mountain at the same level of significance. Be-

cause Junipero Serra and Cerro Tololo both have about the same large number

of measurements, the X2 test shows Junipero Serra to be better than Cerro

Tololo.

The distribution of average seeing does not show the spread of seeing

conditions nor is the average necessarily a valid parameter, so Table II A-3

also displays the distribution of best and worst seeing on each night at White

Mountain. The best seeing comes from simple selection. The worst seeing is or-

ganized to give an unreasonably bad description, by assigning seeing greater

than 2.'0 to all times when there was telescope vibration. This includes the

eleven nights which were rejected in formation of average and best seeing

because all of the observations during the night had telescope vibration. Some

of these nights probably had seeing better than the assigned >2".

Again applying X2 tests to find significant differences between White

Mountain and other sites, we find that the best seeing out of each night at

White Mountain is significantly better than the average at any other site.

On-the other hand, the worst possible description of the measurements shows

only Junipero Serra to be significantly better than White Mountain. Table II A-4

shows the relative standing of White Mountain with several other sites, the

decision being made at the .05 level of significance. Best, average, and

worst seeing are displayed, using (+) for White Mountain better, (-) for

White Mountain worse, and using (x) where a decision cannot be made.

TABLE II A-4

White Mountain Seeing Relative to Other Sites

Best out of Average over Worst
Station night night Description

Junipero Serra + x

Cerro Tololo + x x

Kitt Peak + + x

San Pedro Martir + + x

Piper Mountain + + +



30

The distribution of various categories of seeing, using the dubious

technique of averaging over each night, shows White Mountain to be better

than any place measured by Walker except for Junipero Serra and Cerro Tololo.

It is perfectly possible that the seeing could be better or worse than at

those two stations, but a decision cannot be made with the existing number

of observations.

No matter how badly I describe the White Mountain measurements, the

seeing is better than at Piper Mountain, 38 km to the southeast and 2.00 km

lower. This could be due to any of at least three differences, being in

altitude, epoch of measurement, and upwind topography. The latter point

could be quite significant, since the prevailing winds at Piper Mountain

blow over a ridge which is 27 km away and 1 km higher.

The. upwind obstructions at White Mountain range from 40 to 80 km away

in the Sierra Nevada, depending upon direction, and are normally about 600

meters lower. Occasional peaks stick up to the height of White Mountain

but the sum of their angular widths is a few degrees spread over the entire

western semicircle. Both the distribution of wind speed and the distribution

of abominable seeing suggest that the Sierra Nevada affect seeing only about

5% of the time when the sky is clear.
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6. Sky brightness

We have made measurements of the brightness of the sky close to the sun,

using a comparison visual photometer. This was provided by the High Altitude

Observatory and calibrated by the Sacramento Peak Observatory. 377 observa-

tions were made with this instrument over the summit year, but they have not

yet been subjected to careful statistical analysis. The minimum value of

the sky brightness was llxl0 - 6 of the photosphere brightness, which is

identical with the minimum measured by Walker at Junipero Serra. The

analysis of sky brightness will appear in a later report.

On over 100 mornings near sunrise we took Kodachrome photographs from a

standard position and in a standard direction looking down the Owens Valley.

They can be used as a baseline in evaluating any change in haze or smog

close to the horizon. They also show the snow cover on the ground along the

western edge of White Mountain. Visual inspection of these photographs

could not find any time when there was more smog or haze than in the aerial

photographs, which were taken with similar elevation and direction of the sun.
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7. Sky noise

The raw statistics presented in the Westphal report are of limited value

as far as White Mountain is concerned. It will still take considerable effort

to understand the nature of the sample of conditions when we had the machine

in operation. We suspect that sky noise is correlated with seeing when there

are no clouds, and if this is true the sky noise must be very low at White

Mountain. However, we have no statistical basis yet to support that belief.

Unfortunately the sky noise machine does not separate clouds from high sky noise,

so we will in the future go through our records to separate these phenomena. We

will derive the distribution of sky noise during clear hours, which can then be

multiplied by the probability of clear sky to get the overall probability of low

sky noise.
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8. Cloud cover

The twenty years of weather measurements at the Barcroft and Crooked Creek

Stations include an estimate of cloud cover at 8 AM. This ,is categorized as

clear, less than 10% cover; scattered, between 10% and 50% cover; broken between

50% and 90% cover; overcast; and horizontal vision obscured. There is obviously

room for large subjective error in this estimate, but during the times one of

the astronomical survey observers was at a lower station, he reported results

very similar to those from the station maintenance man. However, from 1958

through 1961 the man at the Barcroft Station never reported the sky as overcast,

but as broken or obscured.

In Figure II A-7 we show the cumulative relative frequency of the five cate-

gories of cloud cover, pooling all the observations for each month separately

over the twenty year run. Note that the median cloud cover is clear over five

months and between clear and scattered over the rest of the year. This is cer-

tainly very good weather. However, these 8 AM data do not show the common after-

noon cumulus buildup in summer, although 8 AM is representative of the rest of

the day in not-summer.

In Figure II A-8 we show the same data arranged by year, in order to show

trends in the weather. There are many years where the median cloud cover is

clear, even when pooling all the days in the year. A most serious point is the

trend of the clear contour, however.

The year in which we made measurements at the Summit included the last six

months of 1971, the clearest year out of the entire twenty, so all of our results

must take that into account. Interestingly enough there were somewhat more bro-

ken and overcast days in that year than in most, and there was a typical number

of scattered days. Summer alone does not show so much year to year variation.

In our further discussion of cloud cover we will adjust Summit Year measure-

ments to what they would have been in a normal year. We suggest that other sites

ma-y re similar but unmeasured trends from year to year.

Ai.re is considerably more cloud cover at the Barcroft Station than at the

Crooked Creek Station, especially in winter and spring. Pooling all days in the

twenty year run, it is clear at Barcroft only about 76% of the time it is clear

at Crooked Creek. That certainly would make us expect more clouds still at the

Summit. Going South and downhill from Crooked Creek, cloud cover may not get

appreciably less, on the basis of casual observations from the Owens Valley.

On the 169 mornings in the Summit Year when we observed cloud cover at both

the Summit and Barcroft Stations, it was clear at Barcroft about 10% more than at
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the Summit, with the discrepancy being biggest in winter. After storms there

is a tendency for a cloud cap to hang in at the Summit after it has disappeared

at Barcroft.

When the observer made seeing measurements at night, we have cloud cover

data through the night. With a significance of .20 the clear sunrises are pre-

ceded by nighttime cloud measurements a random sample of the time. 78% of all

clear sunrises have preceding nighttime cloud measures. We define a photometric

night as one with clear sky except for distant clouds appearing near the horizon

over a period of at least six hours. In not-summer there are the same number

of photometric nights as there are clear sunrises, and in summer the number of

photometric nights is 85% of the number of clear sunrises. This is due to occa-

sional delay into the night of the clearing of afternoon cumulus. Taking a

weighted mean over the year, the number of photometric nights is 97% of the num-

ber of clear sunrises.

Now we can calculate the fraction of photometric nights in a year at the

Summit to be the fraction of clear days at 8 AM at Barcroft multiplied by .90

and then by .97, or by .87. Table II A-5 shows the fraction of photometric

nights for several places and periods at White Mountain along with data for other

sites (Walker, 1970, 1971; Morrison, et al, 1973).

It is clear that during the survey year White Mountain is quite comparable

with San Pedro Martir and Mauna Kea. Over the twenty year period it is com-

parable with shorter periods at Junipero Serra and Cerro Tololo. Note that none

of the other sites listed here have the number of cloud observations which have

been made at White Mountain, so their photometric fractions may be less accurately

defined. On the other hand the cloud measurements by astronomers at existing

observatories may be more perceptive than ours.

At the latitude of White Mountain there are an average of 5.7 hours totaldark-

ness in summer and 9.4 hours in not-summer. Taking the 20 year determination of

summer and not-summer probability of clear sky at sunrise at the Summit, there

are 286 hours of clear, dark sky in summer and 855 hours in not-summer, giving a

total of 1141 clear, dark hours in the year. If we include times of scattered

clouds, there are 399 dark hours in summer and 1378 hours in not-summer, giving

a total of 1777 almost clear, dark hours in the year. To evaluate the total num-

ber of clear or scattered hours regardless of darkness, we assume half the day

has sunrise cloud cover and the other half has noon cloud cover, although that
overweights the fraction of a day which is cloudy. That leads to 2650 clear

hours and 4747 clear or scattered hours per year.



36

Table II A-5

Fraction of nights with
N sky clear down to 150

Station (days) above horizon for > 6h

San Pedro Martir 63 .65

VM Crooked Creek
Survey Year 366 .61

Mauna Kea ? in 12 months .56

WM Barcroft
Survey Year 366 .56

WM Crooked Creek
20Y 7222 .55

WM Summit
Survey Year 169 .54
Summit Days

Piper Peak 203 .52

Junipero Serra 402 .46

Cerro Tololo 633 .41

WM Barcroft
20Y 7222 .42

WM Summit
20Y calculated -- .38
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B. Telescope Sites

1. General description of terrain

The general nature of White Mountain is that of a high north-south

ridge with steep sides and a gently sloping crest. The prevailing air

flow is from the west, crossing the Sierra Nevada 50 km away. The Sierra

Nevada collects most of the precipitation, making storms less troublesome,

making ground travel easier because of less snow on the ground, and leaving

less water to evaporate into the air. Over the ten year period 1959 July 1

to 1969 June 30 the mean annual precipitation at two places in the Sierra,

the Owens Valley, and two places on White Mountain was:

Station Elevation (m) Precipitation (cm)

Mammoth Pass, directly on Sierra crest 2900 152

Lake Mary, 4 km east of Mammoth Pass 2720 76

Bishop, 65 km southeast of Mammoth Pass 1250 15

Crooked Creek, 80 km east-southeast 3090 38

Barcroft, 75 km east of Mammoth Pass 3800 53

Eighty six percent of the precipitation at the Barcroft Station is snow, and

the median snow depth at that station in winter-and spring is 25 cm. The

maximum recorded snow depth at the Barcroft Station is 312 cm, occurring on 1969

March 22. Figure II B-1 shows the cumulative relative frequency of snow

depth at the Barcroft Station for each season.

Because of the extremely low humidity snow evaporates rapidly from the

ground. At the preferred telescope site the wind blows away most of the snow

which falls, so that there are many areas with bare rock throughout the winter.

However those same winds pile up snow drifts in some places, which can be a

considerable operational nuisance and a potential source of added water vapor

to the air. We propose to investigate control of those drifts with snow

fences in the area of the telescope. There appears to be considerable experi-

ence with such control in the alpine areas of Europe.

Since the surface soil is quite thin, it does not stay wet for an appre-

ciable time, especially since so little rain falls. The areas of bare shat-

tered rock dry completely in an hour or so.

The longevity of the snow is shown in the photographs, which were taken on

1973 July 15. The preceding winter had the second highest snowfall in the

history of the White Mountain Station, and it can be seen that very little
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remains. Those remaining patches are left from wind blown drifts and they

exist for four to six months in any year. However, areas away from drifts

are clear of snow 90% of the time in summer, 70% in fall, and 20% in winter

and spring at the Barcroft Station.

The nearest trees are 1000 meters below the telescope site, and along

the access ridge to the south they are 12 km away. The tallest plants at

the site are lichens.

The modest total precipitation and the very small rainfall has led to

very little erosion of the crest of the White Mountain ridge. This makes

ground travel unusually easy, since there are no gullies to cross at the

high altitudes.

Because of the low erosion the surface soil has built up to many inches

depth in some places, as can be seen in the photographs. This makes a good

part of the road maintenance much easier than it would be on bare rock. In

addition the places with bare rock are heavily shattered to depths of a foot

or more. There are no places that I am aware of high on the mountain where

there is massive rock at the surface, where it can interfere with roads and

potential telescope sites.

The potential telescope sites are high on the mountain, where the sur-

face soil has long been sifted by the wind to get rid of the smaller parti-

cles. At our preferred site there is a possible upwind source of wind blown

particles which is only about 100 meters long, and further upwind the land

drops off precipitously. However we believe those particles are quite large

and heavy. Therefore we do not expect any problem with wind blown dust or

grit, but measurements should be made to confirm that. We expect that wind

blown snow picked up from the surface will control the limiting wind speed under

which the telescope can be operated.

We do not know much about the subsurface materials, but the photograph of

the north face of our preferred telescope site shows massive rock directly be-

low the shattered surface layer. Since all of the rocks are of granitic or

metamorphic origin, we expect no problem with footings which penetrate the

surface layer.
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2. Specific sites

There are four potential telescope sites at high altitude. The local

names we give to the sites and their altitudes are: Plateau, 4020 meters;

Black Rock, 4176 meters; Upper Saddle, 4267 meters; and Summit, 4342 meters.

The site locations are shown on a topographic map in Figure II B-2.

Access becomes more difficult as we go to the higher sites, but the decrease

in water vapor as we go up has a major effect upon the integration times of

observations which are noise limited.

We calculate integration times relative to the Summit on the basis of

the time being inversely proportional.to the square of the transmission,

assuming the same zenith distance. For an average situation we assume an

optical thickness of one at the Summit and the standard scale height of 1.6

km. For a worst case we assume an optical thickness of two at the Summit

and a winter scale height of 1.0 km. We have often successfully corrected

spectra for atmospheric transmission when the line bottoms had an optical

thickness of more than two, and the winter scale height may be even smaller

than 1.0 km, as described in the section on precipitable water vapor measure-

ments.

The integration times relative to the Summit for the average and worst

cases respectively are: Upper Saddle, 1.1 and 1.3; Black Rock, 1.2 and 1.9;

and Plateau, 1.5 and 3.6. This makes it seem well worth the effort to go to

at least the Upper Saddle. All this assumes that the water vapor difference

that we measured between the Summit and Barcroft Stations is accurately repre-

sented by an exponential distribution.

The Plateau is appealing because of its very easy access from the Barcroft

Station. With only moderate work on the road passenger cars can make the trip

there very easily in summer and fall and trucks can make the trip during a large

fraction of winter and spring conditions. There is a large flat area of about

one by two km and it would be a fine site for our proposed work with infrared

aperture synthesis. Its only disadvantage is the above one on integration

time with measurements pushing to the limit of wavelength where any measurement

at all is an achievement.

The Black Rock is the smallest site except for the very Summit, and its

main advantage is a totally unobstructed view to the south. Access is not too

bad, and in particular there are no cliffs anywhere along the access route.

We expect that a tracked snow vehicle would go directly up the slope to the

site, with no sidehill traverse needed.
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The Upper Saddle is a fine site except for an 80 blockage above the horizon

by the Summit itself and the need for a sidehill traverse in going there from

Black Rock. However, we feel that both of those problems are minimal. This

is our preferred site. The water vapor there is 4% higher than the Summit

with a 1.6 km scale height and 8% higher with a 1.0 km scale height.

The Summit has the disadvantage of a quite difficult piece of road above

the Upper Saddle, which might require major improvements to become suitable

even for tracked vehicles in the winter. The winds are probably a maximum

there, but we were quite able to cope with those problems during the survey.

The Summit is already leveled over an area large enough for our proposed

telescope, but use of that area would require tearing down the Summit

Laboratory. That is a very useful facility, and we are reluctant to destroy

it. Finally, the U. S. Forest Service has requested that we enable hikers to

enjoy the Summit, although there would be room for them alongside the telescope.

Our preferred choice of site is the Upper Saddle, even with the small

increase of integration time relative to the Summit. However, if we found

in a more detailed water vapor survey that the snow banks in the vicinity

of the Upper Saddle had a significant effect upon the water vapor in the air,

there could be reevaluation. The Summit Laboratory will be of value during

the construction of the utility building at the Upper Saddle, and I expect

that it will often continue to serve as an easy and amenable retreat from

the pressures of work.at the Upper Saddle.
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C. Facilities and Logistics

1. Site Location

The White Mountain summit site, at an elevation of 14,250 ft, is located on

White Mountain Peak in.the White Mountain Range of California, approximately 225

airmiles east of San Francisco and 255 airmiles north of Los Angeles. The geogra-

phical location at latitude 37038 ' N, longitude 118015 ' E, is within Mono County

and the Inyo National Forest. A map of the immediate area is shown in Figure II C-l.

2. Relationship to U. S. Forest Service

The Crooked Creek, Barcroft, and Summit Laboratories of the White Mountain

Research Station are located in Inyo National Forest, which is administered from

Bishop, California. Within that National Forest is a 5000 acre tract called the

White Mountain Scientific Area, and the Barcroft and Summit Laboratories are in

that area. The order establishing the Scientific Area states, "Principal values

in the area are for its high elevation scientific purposes and for its represen-

tation of an arid to semi-arid alpine flora and fauna." In further detail in

Forest Service documents and in conferences with Forest Service administrators

it is made clear that astronomical research can be a highly suitable activity

for use of the Scientific Area.

Any major development within the Barcroft and Summit Laboratories and any

development outside of those laboratories will require a use permit from the

Forest Service. In order to protect the natural values of the area, the Forest

Service wants to limit use of the area to programs which require the conditions

there. Any program must be planned in such a way as to minimize ecological

disturbance. The evaluation of proposed programs will be made by the Pacific

Southwest Forest and Range Experiment Station of the Forest Service.

We have discussed our instrumental plans, including plans for millimeter

and ten micron wavelength angle measuring interferometers with kilometer base-

lines, with the Forest Service. They state orally that those plans can very

well be compatible with their management goals, and they will be happy to

receive requests for use permits.

Use agreements between the U. S. Forest Service and the University of

California have long been established to permit the construction and operation

of research laboratories and access roads by the University of California,

White Mountain Research Station, at three locations in the National Forest,

including the summit site.
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3. White Mountain Research Station

The White Mountain Research Station of the University of California

comprises four high-altitude laboratories. The highest, the Summit Laboratory,

occupies the top of White Mountain Peak, and consists of a stone building,

15' x 30', and a helipad. Electric power is provided by engine-driven gener-

ators, housed in an adjacent shed. From the Summit Laboratory an unsurfaced

six-mile road descends south to the Barcroft Laboratory of the UC White

Mountain Research Station, at an elevation of 12,470 ft. This well-equipped

laboratory operates on a year-round basis, providing dormitory, laboratory and

shop services. The Summit and Barcroft Laboratories lie within the White

Mountain Scientific Area.

In addition to the previously mentioned Barcroft and Summit Laboratories

of the White Mountain Research Station, a third high-altitude laboratory is

located in the Inyo National Forest outside the Scientific Area. The Crooked

Creek Laboratory, at an elevation of 10,150 ft, is a fully-equipped, year-round

operating facility, providing dormitory, laboratory, and maintenance shop

services. It is located ten miles south by unsurfaced road from the Barcroft

Laboratory, along the same road to the summit. From this Laboratory the access

road continues for an additional ten miles to Schulman Grove in the Ancient

Bristlecone Pine Forest, and by paved road and highway to Bishop for another

38 miles.

The Owens Valley Laboratory of the University of California's White

Mountain Research Station is located on the outskirts of Bishop, at an elevation

of 4,050 feet. This 580 acre facility contains laboratories, dormitories,

classrooms, and a regularly operating helicopter service to the high-altitude

laboratories.

Altogether, the four laboratories of the White Mountain Research Station

have an estimated capital asset value of $3,000,000. The White Mountain Research

Station high-altitude laboratories have been operated by the University of

California for a period of 23 years. The facilities, interconnecting roads,

helicopter, power and communication systems are maintained by White Mountain

Research Station personnel, supplemented by contracted services. The personnel

of this organization are particularly well qualified in the operation of

facilities in this environment.

4. Adjacent Communities and Facilities

The proposed sites overlook the Owens Valley and nearby city of Bishop,

California, in the valley, at an elevation of 4,147 ft. Bishop is located on
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U. S. Highway 395, which is the primary surface route connecting Los Angeles

and Reno. This community, including adjacent residential area, has a population

of 8,500. An all-weather airport serves Bishop, and is capable of handling

most general aviation aircraft.

An important asset of the Bishop area is the presence of the California

Institute of Technology Owens Valley Radio Observatory. At the very least the

staff at that observatory makes life in Bishop more intellectually interesting,

but in addition there are many opportunities for cooperation, consultation,

and shared use of facilities.

5. Accessibility

The proposed sites are easily accessible, year around, from the metropolitan

areas of San Francisco, Los Angeles and Reno. Several modes of travel are avail-

able for observers, dependent upon the preference of the travelers.

a. Surface transit. Surface travel by car or bus from the metropolitan

areas to Bishop is practical year around on paved roads. In the summer months,

private car travel is practical as far as the Barcroft Laboratory, to within

six road miles of the summit. Due to present road surface and slopes (not over

15%), surface travel over the remaining distance to the summit necessitates the

use of four-wheel drive vehicles. Surface travel in winter (December-May), beyond

Westgard Pass is possible only by tracked snow vehicles at the present time,

because of the unstabilized road surface and lack of snow removal equipment.

The current level of operations of the White Mountain Research Station has not

warranted the expenditures necessary to stabilize the road surface for approxi-

mately 26 miles and acquire and operate snow removal equipment for this purpose.

Logistic support of the high-altitude laboratories, during winter, by helicopter

has proven to be highly successful and more economical than surface vehicles for

the current level of operations.

Table II C-I illustrates various routes and travel times from three metro-

politan areas by surface vehicle.

An alternate road to the summit from Bishop is feasible during the summer

period. This route is more direct than the primary road. However, due to steep

grades and switchbacks, it is not recommended for normal access. This Silver

Canyon route is designated as a "primitive road" but is easily traversed by

four-wheel drive vehicles. The distance by this route, from Bishop to the

summit, is approximately 40 miles.

b. Winter Surface Transit. The primary mode for logistic support of opera-

tions of the proposed infrared telescope observatory, during winter, is by



Table II C-I

Surface Travel to Proposed Site

DISTANCE TRAVEL TIME

FROM TO ROUTE (miles)

Berkeley Bishop Sacramento/Tahoe, via US80, CAL89, CAL28, US50, 393 9:30

US395 (year around)

Sacramento/Reno, via US80, US395 (year around) 414 9:30

Sacramento/Tahoe/Echo Summit, via US80, US50, CAL89, 347 10:00

US395 (summer, winter?)

Lodi/Carson Pass/Monitor Pass, via US50, CAL88, CAL89, 356 10:00

US395 (Summer)

Sonora/Ebbetts Pass/Monitor Pass, via US50, CAL120, CAL108, 363 10:00

CAL49, CAL4, CAL89, US395 (summer)

Sonora/Sonora Pass, via US50, CAL120,CAL108,US395 (summer) 308 9:00

" " Sonora/Tioga Pass, via US50, CAL120, US395 (summer) 287 8:30

Bishop Summit Big Pine/Westgard Pass, via US395, CAL168, Access 64 3:00

(summer - improved road)

TOTAL TRAVEL 351 to 478 11:30-13:00 Hr

Los Angeles Big Pine Palmdale/Lancaster, via US405, CAL14, US395 (year around) 251 5:00

Big Pine Summit Westgard Pass, via CAL168, Access (summer - improved road) 49 2:40

TOTAL TRAVEL 300 7:40

Reno Bishop Via US395 (year around) 206 4:00

Bishop Summit Westgard Pass, Access (summer - improved road) 64 3:00

TOTAL TRAVEL 270 7:00

SCHEDULED BUS SERVICE

Berkeley Bishop Via Reno - Daily -- 11:40 Hrs

Reno Bishop Direct - Daily -- 4:00 "

Los Angeles Bishop Direct - Daily -- 7:00 "
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helicopter. To assure continual year-around logistic support of operations and

construction, surface vehicle access is required, as an alternate mode. This

entails the resurfacing of approximately 26 miles of the existing gravel access

road, to provide for a minimum standard of summer and winter trafficability.

Resurfacing would include the construction of adequate drainage and gravel

surface for travel by all types of vehicles. Further details and costs for

this construction are provided in Section II.C.7.

With such a stabilized road surface, year around travel by surface vehicle

can be accomplished with reliability. Washouts from thaws would be minimized.

The White Mountain Research Station has operated "Weasel" type snow vehicles at

the Laboratories for a number of years. Replacement parts for these military

surplus vehicles are no longer available. Replacement of these vehicles with

newer and higher performance snow vehicles is necessary for reliable winter

surface transportation. Utility type snow vehicles, such as the Thiokol Spryte

models, equipped with hydraulically controlled snow blades, are presently being

utilized successfully by public utility service companies, under worse climatic

and snow conditions in the nearby Sierra mountains. This type of vehicle has

the performance and climbing ability necessary to transit the slopes. The

vehicle carries a 1.900 lb payload of cargo and/or up to six passengers at top

speeds of 14 or 23 miles per hour, as determined by the track width selected.

Low ground pressure of the tracks (0.86 lbs/sq in), permits travel over deep

snow without the necessity of plowing. The self-contained plow and low center

of gravity of this vehicle provides good sidehilling ability, particularly in

drifts along the slopes. Level sidehill travel is sustained by "notching" of

the drifts, with the plow. This self-contained capability effectively eliminates

the need for expensive snow removal maintenance of access roads to the proposed

sites in winter. The track configuration of these vehicles is also satisfactory

for travel on the frequently bare road surfaces.

c. Air Transit. Commercial airline connections from the University of

California, Berkeley, to the vicinity of the proposed site, are scheduled daily

(except weekends). Flights originate from the nearby Oakland Airport and

terminate at Mammoth, California, within 42 miles of Bishop.

Commercial airline connections are also scheduled daily from the Los Angeles

area to Mammoth, departing from Burbank Airport. There are no scheduled

connections from Reno to the proposed site vicinity.

Chartered aircraft service is available on an as-required basis by the

White Mountain Research Station for travel from Oakland to Bishop. This service
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is capable of transporting five people.

The White Mountain Research Station helicopter service, operating from the

Owens Valley Laboratory at Bishop, has provided regular logistic support to the

high-altitude laboratories for a period of 9 years. The Bell helicopter being

utilized at this time operates approximately 150 flying hours per year. It

regularly carries payloads of 540 lbs to and from the high-altitude labora-

tories. In FY 1972/1973, this service transported 294 passengers and 37,950 lbs

of cargo. Larger payloads are feasible by sling. This service has been free

of a major accident since 1966, notwithstanding the mountainous terrain and

frequently severe winter environment of flight operations. The good safety

record, reliability and economy of this logistic support service is attributable

to strict standards established for helicopter maintenance, and pilot operating

procedures.

Development of this highest altitude regularly operating helicopter

service in the United States was a pioneering effort by the White Mountain

Research Station in conjunction with the helicopter manufacturers. Improved

maintenance procedures, operating procedures and equipment have resulted from

this unique development program.

Table II C-2 provides transit times and costs for the several above modes

of air travel.

The feasibility of operation of STOL (Short Takeoff and Landing) aircraft

at the Barcroft Laboratory has been demonstrated by the White Mountain Research

Station. If warranted by traffic requirements, an adequate landing area

within six miles of the Summit is available for logistic support of the

proposed sites by this means.

6. Housing and Support Facilities

a. General. Dormitory type housing for staff and observers is avail-

able at the Summit Laboratory, and at the Barcroft, Crooked Creek and Owens

Valley Laboratories within 6, 16 and 64 miles, respectively of the Summit.

Permanent housing is available in the city of Bishop, within commute time of

the Summit by surface vehicle or helicopter. Support facilities are available

at Barcroft, Crooked Creek and Owens Valley Laboratories.

b. Summit Laboratory. The Summit Laboratory building, approximately

15 x 30 ft, has sleeping accommodations for four people. This building has

oil heat, kitchen facilities and generator-supplied. electric power. There is

no water supply or sewage facilities. Chemical toilets are provided and water

is transported from the Barcroft Laboratory.



Table II C-2

Air Travel to Proposed Site

ONE WAY

FROM TO TRAVEL MODE TRAVEL TIME COST/PERSON

Oakland Mammoth Commercial Airline -- Via Burbank 3:00 Hrs $43.50

Mammoth Summit Helicopter -- Direct :40 38.00*

TOTAL 3:40 Hrs $81.50

Burbank Mammoth Commercial Airline 1:15 Hrs $27.00

Mammoth Summit Helicopter -- Direct :40 38.00*

TOTAL 1:55 Hrs $65.00

Oakland Bishop Chartered Air Service 1:10 Hrs $46.60**

Bishop Summit Helicopter -- Direct :30 29.00*

TOTAL 1:40 Hrs $75.60

* Prorated for 1 passenger (.capacity - 2)

** Prorated for 1 passenger (capacity - 5)
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c. Barcroft Laboratory. Housing at the Barcroft Laboratory is provided

in one of the large Quonset type buildings and one separate smaller building.

The main two-story Quonset building has complete sleeping quarters, library and

recreation rooms, bathroom, dining and kitchen facilities. In addition, this

building includes laboratories, oil heat, water supply, commercial electric

power, and radio communications with the other laboratories. The sleeping

quarters will accommodate 20-25 men. The smaller building has sleeping accommo-

dations for 6-8 women with bathroom facilities. The total facility, consisting

of seven separate and/or attached buildings, has a total floor space of 10,000

square feet. Commercial electric power for the facility is supplemented by

standby, diesel-powered generators. Water is supplied by an intermittent well

during summer and by snow melting tanks in winter. The water supply is supple-

mented in summer by tank truck from a spring source at the Crooked Creek

Laboratory. A 10,900 gallon water storage tank is presently under construction

at Barcroft. Sewage at the Barcroft facility is processed by a 1500 gallon

septic tank.

Work space is available for staff and observers in the main building. The

outlying buildings are also available for work space. Approximately 2000 sq ft

of work space is available in the main building and another 2000 sq ft is

available in the outlying buildings.

d. Crooked Creek Laboratory. Dormitory accommodations for 20 people

are provided in a wood frame and Quonset type building. This 1200 sq ft building

also includes a kitchen and dining area, living room and laboratory. Oil heat,

commercial electric power, a spring-fed water supply, and l000 gallon septic

tank sewage system is also provided. Outlying buildings consist of a large

Quonset type vehicle maintenance shop, of 1200 sq ft. Several smaller buildings

are also located on the facility. Work space in the main building is 710 sq ft.

Telephone and radio communications are also available at this facility.

e. Owens Valley Laboratory. Dormitory space for 28 people at the

Owens Valley Laboratory is provided in a modern, air-conditioned building, with

bathroom facilities. Three travel trailers are also equipped to sleep an

additional six people. Work space is available in a 720 sq ft classroom, and

two separate laboratory buildings of 1140 sq ft and 495 sq ft. A Quonset type

building of 1274 sq ft serves as a helicopter hangar and repair shop. Commercial

electric power, and a year-round well support these facilities. Sewage is

processed through 2500 gallon septic tanks. Radio and telephone communications

facilities are also available.
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f. Bishop. Housing is available for staff and observers in Bishop

and the adjacent residential area in 26 motels and 33 apartments. In addition,

private homes are available for rent, or sale on a more permanent basis. Public

and private schools, from elementary through high school, are also available in

this community, as well as a community hospital.

7. Site Development Needs

a. Road Construction. Stabilization of the existing access road to

the Summit, as previously described, is necessary for year around logistical

ground support of the proposed sites. Road construction and maintenance would

be contracted with the Ecology Corps, Division of Forestry, State of California.

b. Power and Communications. A 12,000 volt, three conductor, pole

line constructed in 1957, provides commercial electric power from a 60,000 volt

power line, approximately 6 miles south of the Crooked Creek Laboratory to the

Barcroft Laboratory. An extension of this 13-1/2 mile line approximately four

miles toward the Summit from Barcroft, has been disconnected due to damage from

winter storms. Although the reliability of this electric power, supplemented by

diesel generators, has been adequate for the purposes of the White Mountain

Research Station, maintenance costs of the power line are high. due to line damage

from the winter storms and summer lightning strikes. This damage occurs

primarily over a 4-3/4 mile portion of the line above the 11,000 ft elevation,

as well as the disconnected 4 mile section above Barcroft.

To assure continuous reliable commercial electric power to the proposed

site, it is necessary to bury the existing power line for this length and

install lightning rods at the transformer locations and diverter lightning rods

on several high peaks in the area adjacent to the power lines. The underground

cable, equipped with grounding wires, would be three conductor, #2 aluminum

A.W.G., power cables having 175 mil high molecular polyethylene 15 KV insulation.

The cable would be buried at least 24 inches, in half-mile lengths, with suitable

terminations and connecting links above ground, to facilitate testing and

location of possible faults.

Existing overhead telephone lines, which are subjected to breakage and

failures from storms, would be buried underground with the power lines. At the

same time, the telephone line capability would be increased to provide for

adequate communications and data transmission. Armored type cable of 100 pairs,

designed to provide lightning and gopher protection, is recommended for this

purpose. Similar to the underground power line, the telephone cable would
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have above-ground terminals at half- or one-mile intervals, dependent upon

reel lengths.

Installation of underground power and communications lines would be

contracted with an installation contractor by the University of California and

the Continental Telephone Company.

c. Water. Enclosed water storage. and snow melting tanks would be

required at the proposed site, to provide a year around water supply for the

observatory. Servicing of the water tanks would be accomplished by tank truck

from Barcroft Laboratory in summer, and supplemented by snow melting in winter.

d. Sewage. The requirement for construction of a sewage disposal

system is not anticipated for the proposed observatory. The use of chemical

toilets and water drain ditches appears to be adequate for the requirements of

this facility. Refuse from the chemical toilets would be transported to

Barcroft Laboratory for disposal.
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8. Costs of Site Development

Road Construction

Construction of road drainage, surface grading and gravel

surfacing of existing roadway.

Construction by: Ecology Corps, Division of Forestry,

State of California.

Costs: Labor, equipment and material, 26 mi @ $2,000/mi $ 52,000

Underground Electric Power Lines and Telephone Cable

Bury underground, two sections of existing overhead

power lines and telephone cable to Summit.

Engineering by: Professional engineer.

Construction work: University of California selected

contractor.

Costs:

Underground electric cable, 9 mi @ $10,650/mi $ 95,850

Cable plowing, 9 mi @ $660/mi $ 5,940

Electrical installation labor, 50 man-days @ $87.50 $ 4,375

Lightning diverters, 12 @ $375 $ 4,500

Telephone cable, 9 mi @ $2500/mi $ 22,500

Terminal boxes, 25 @ $13 ea $ 325

Telephone cable connection labor, 40 man-days @ $130 $ 5,200

Sub-Total $138,690

Contingencies @ 10% $ 13,869

Engineering, design, inspection - 5% $ 6,935

Total $159,494

Snow Vehicles

Acquisition cost:

Thiokql Spryte, 45" track, with plow, radio

1 ea 2 Passenger $ 18,000

1 ea 6 Passenger $ 18,000

Total $ 36,000

TOTAL SITE DEVELOPIEMNT COSTS $247,494
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D. Comparison with other sites

In comparing the precipitable water vapor between White Mountain

Summit and Mauna Kea we use the sea level equivalent amount, since the

altitudes are so similar. By reading the values off the 1973 July plots

sent by Westphal, we derive the following median values for summer and not-

summer noontime, respectively, in mm: White Mountain, 2.36 and .89;

Mauna Kea, 1.84 and 1.92. Using the X2 test, the not-summer difference between

the sites is significant at the less than the .001 level and the summer

difference is not significant at the .2 level.

The ratio of the median water vapor at White Mountain to that at Mauna

Kea is about 0.5 in not-summer and 1.3 in summer, although the latter is

not significant.

As we discussed earlier, the sunrise water vapor at White Mountain in

the summer is .56 that at noon. We tentatively suggest that the convection

which makes this big difference may not exist so strongly at Mauna Kea,

because of the high albedo cloud layer instead of absorbing rocks below the

summit. The summer sunrise water vapor at White Mountain may be well below

that at Mauna Kea, and give a ratio more like that in not-summer.

There is no question that White Mountain has much less water vapor than

Mauna Kea at noon in not-summer, and it is possible that this is true at

other times.

A comparison between the integration times (to achieve the same signal

to noise ratio) at Mauna Kea (MK) and White Mountain (WM) is shown in

Figs. II D-1 to II D-4. The logio ratio of integration times at the two

sites is plotted against hour angle for assumed values of the ratio of

precipitable water vapor (WM/iK) and the zenith optical depth (QZ) at

Mauna Kea. Four curves are plotted on each graph for declinations of

-23 5, 0?0, +23?5 and 40?0.

The zenith optical depth is taken to be proportional to the ratio of

precipitable water vapor, the integration time proportional to the square

of the opacity and the opacity increasing exponentially with the product

of zenith optical depth and the secant of the zenith distance.

Points falling below the ordinate = 0 line favor White Mountain.

It is clear that the White Mountain water vapor during not-summer being

half that at Mauna Kea more than makes up for the zenith distance, even at
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the southern limit of the ecliptic. This advantage is compounded at the

higher values of optical thickness. When the water vapor is the same at

the two sites, as it is during summer noontime, there is no advantage

at White Mountain, even at the northern limit of the ecliptic. If our sug-

gestion above, that the summer nighttime water vapor at White Mountain is

half that at Mauna Kea, is valid, then during all seasons White Mountain is

superior.

Nevertheless, since not-summer is nine months long, even if we did not

observe at all during summer, the integration time advantage for optical

depths greater than one would give more information than twelve months of

observing at Mauna Kea. In addition, the integration time advantage over-

whelms small differences in cloud cover. At these optical depths only water

vapor is significant.

For optical depths less than about 0.1, zenith distance or small

difference in water vapor has little effect. Then only cloud cover is

significant. As we discussed in section II A-8, the cloud cover at White

Mountain is about the same as at Mauna Kea, during the year of the survey.

If we look at that year alone, White Mountain is equivalent to Mauna Kea at

wavelengths where water vapor is not important. Since White Mountain has a

marked variation over 20 years, it is important to know what kind of variation

might exist at Mauna Kea.

The median noontime sea level equivalent precipitable water vapor in not-

summer at Mt. Lemmon and Kitt Peak is 2.19 mm and 2.59 mm respectively, as

taken directly from the Westphal plots of 1973 July. No September data are given

for either place, and the Mt. Lemmon data are given for only 43 days, so sampling

and selection effects need to be considered. In spite of those uncertainties,

it appears that the higher altitudes of White Mountain and Mauna Kea lead to con-

siderably less equivalent water vapor, as expected both from radiosonde distri-

bution of water vapor with altitude and from pressure broadening.

After correction for pressure broadening as described in section II A-3,

the median noontime actual precipitable water vapor in not-summer is: White

Mountain, 1.25 mm; Mauna Kea, 2.67 mm; Mount Lemmon, 2.79 mm; and Kitt Peak, 3.15 mm.

Kuiper (1970) has calculated quantities which can be directly compared with these

pressure corrected measurements, using radiosonde measurements at unspecified but

probably daylight times of day as organized by Gringorten, et al. (1966). A

rough estimate of the not-summer median from Kuiper gives: White Mountain, 1.2 mm;

Mauna Kea, 1.9 mm; Mount Lemmon, about 3 mm, and Kitt Peak, about 5 mm. We suggest
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that these differences between water meter and radiosonde measurements show

that the effects of sampling, water meter calibration, and local effects due

to terrain are still to be understood.

The simplest expectation of the distribution of water vapor is that it

decreases with increasing altitude and latitude. There is no question that

White Mountain has the highest value of both of those quantities, for all of the

sites considered. Therefore we are quite confident that the measurements and

expectations agree that the summit of White Mountain has significantly less

water vapor than any of the sites measured in the NASA funded survey.

As we discussed in the section on potential telescope sites at different

altitudes on White Mountain, if one is pushing as far as possible into normally

obscured regions of the spectrum, low water vapor overwhelms all other consi-

derations.

In section II A-4 we justify using the distribution of sunrise spot mea-

surements of windspeed as being equivalent to the distribution of nighttime

median windspeed. Figure II D-5 compares the White Mountain and Mauna Kea

windspeeds. It is clear that the not-summer winds are much higher than the

summer winds at the summit of White Mountain, and that the corresponding sea-

sonal difference is much smaller at Mauna Kea. However, Mauna Kea winds are

reported with quite different values for 1965-1966 and for 1971-1.972, with the

earlier values considerably higher than the later ones (Morrison, et al, 1973).

This yearly variation at Mauna Kea seems quite large compared with the

yearly variation at the Barcroft Station at White Mountain, so it is difficult

to understand the effects of sampling in comparing the two mountains. Probably

the not-summer winds at White Mountain are higher than at Mauna Kea, but the

amount of difference is unclear.

We have no information on whether Mauna Kea winds were measured under all

conditions or under maximum exposure to the wind, so we cannot compare the

severe winds at the two sites.

We complete this discussion of the White Mountain site with our best esti-

mate of an overall comparison with the other sites in the NASA funded survey.

The outstanding disadvantage of White Mountain is the lesser logistic development

than at the other sites, which are all operating observatories. In addition it

is quite possible that the foul weather at White Mountain is worse than at other

places, because of its higher latitude, the clear weather windspeed may be higher,

and the temperature is lower.
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The outstanding advantage of White Mountain is low water vapor. The

seeing is objectively compared only with Kitt Peak and San Pedro Martir, and

White Mountain is better. Those are the two parameters which finally have major

influence on the integration time to achieve a given signal to noise ratio,

once an observer is at the telescope, everything is working, and the sky is

clear. There is a factor of two integration time advantage of White Mountain

over Mauna Kea for objects at the southern limit of ecliptic. For more

northern objects, more northern obervatories, and observations at wavelengths

with maximum atmospheric opacity, the White Mountain advantage becomes an order

of magnitude. Those advantages are equivalent to having two to ten telescopes,

for the price of one, and the advantage gets even bigger when signal to noise

ratio increases less rapidly than the square root of integration time for all

sorts of practical reasons.

Those advantages far outweigh the modest capital investment in facilities

necessary to make White Mountain more usable. The travel costs at White Mountain

including helicopter operation and charter flights from San Francisco or Los

Angeles to Bishop are no greater than flying to Hilo and driving to Mauna Kea,

and in any case those costs are small compared to other operating costs. Oper-

ation is certainly easier at Mt. Lemmon and Kitt Peak, but we estimate that the

increase in operating cost necessary to take care of all the unique problems at

White Mountain is a few tens of thousands of dollars per year. Again that is

inexpensive compared to the increase in telescope output because of low water

vapor.

There remain the physiological and psychological problems due to hypoxia,

dehydration, remoteness, and travel in less comfortable vehicles than passenger

cars. White Mountain is no worse than Mauna Kea in those respects, but Mt. Lemmon

and Kitt Peak have a great advantage. It is possible that much of the severe

criticism of White Mountain is based on those factors, and if those factors keep

people from achieving their goals, they are certainly highly significant. All

of those problems have partial solutions involving technological and management

techniques. In the 23 years of experience in operating the White Mountain Research

Station it has been possible to clearly identify these problems and solutions,

but the total activity there has been too small to justify the solutions.

Improvement of the road and purchase of better vehicles will make ground

travel more comfortable. Maintenance and partitioning of the dormitories and

improvement of their heating and humidifying systems will make nights more
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comfortable. Easy access to oxygen at the higher stations and maybe in the

vehicles will overcome many of the hypoxia symptoms. Normal telephone

service will remove much of the sense of remoteness. Even as simple a thing

as repainting the interiors of buildings will remove some of the sense of

desolation that some users of the Station complain about.

Finally we would like to investigate the cost and benefits of pressurized

buildings, especially for use during intellectual work and during sleep at

the higher stations. At this time we cannot estimate whether or not such build-

ings would be worthwhile.

The final support of White Mountain on these physiological and psychologi--

cal grounds is that many people have enjoyed working there even under the

existing hardships. Over three hundred scientific papers have been published

on the basis of such work, and many people report that their times there have

been very enjoyable.
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III. DATA DISPOSITION

The measurements of ten micron sky noise were sent directly to

Dr. James Westphal, California Institute of Technology, without any repro-

duction or analysis. The water vapor measurements were also sent to him,

but copies of the data were kept in Berkeley for statistical analysis. These

data plus all the other measurements and codings of the verbal descriptions

are in machine readable form, and were used in the analyses presented above.

A printout of those data has also been sent to Dr. Westphal. Machine readable

or hard copies are available on request.

The photographs of star trails, used for determination of stellar seeing,

'are currently being kept by Dr. Merle Walker, Lick Observatory, who reduced

them to derive the quantities given here. The fisheye lens photographs of

the sky have been used to verify a sample of the verbal descriptions, which

in turn were coded for use in our analyses. Those photographs plus all other

data are in the custody of Dr. Cudaback. Further analyses will appear in a

published paper, and. that may include data from 1971 January through June,

largely accumulated at the Barcroft Laboratory.
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IV. OPERATIONAL EXPERIENCE

The program at the Summit Laboratory was the first one to be operated

there in winter and was far and away the longest program ever there. Accordingly

we had to work out some operational details, which are relevant to future opera-

tions there.

The provision of electricity for the ten micron sky noise instrument turned

out to be straightforward, by operating a gasoline driven generator for two

hours per day. That charged lead-acid storage batteries, which then operated

the instrument continuously through an inverter. The system worked well, and

it showed that gasoline engines can be started readily when cold and at high

altitude.

The one problem involving the electrical system indirectly was damage to

the inverter when lightning struck an ungrounded part of the building and got

into the system. More lightning rods solved that problem.

Lightning was a continuing problem with the anemometer, because we never

got to developing a sufficient cage of conductors around it. It does demonstrate

that careful attention must always be given to lightning protection, but the

techniques for that have been developed at many other places.

Supply of liquid helium proved to be straightforward. Thirty liter, super

insulated dewars. were used, could be carried easily by two people and oc-

casionally by one, and could be carried easily on the outside of the helicopter.

At the start rented dewars were used with helium supplied commercially, and

only a small amount of helium arrived at the Summit. Apparently that was due

to defective dewars or poor practice in filling and cooling, for a new dewar

which we purchased and filled at the University helium plant normally lost only

the helium expected from normal boil off, in being carried all the way to the

Summit.
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The travel facilities at the White Mountain Research Station have been

developed for coping with the altitude and climate problems on the basis of

20 years of experience. In particular the use of a helicopter is very effective

under a wide range of conditions, especially in travelling to the lower labora-

tories on the mountain. For the small amount of traffic there now, the use

of the helicopter is cheaper and easier than maintenance of the road in winter.

At the Summit Laboratory there are more constraints on helicopter opera-

tion, and then ground vehicles become more useful. In addition the terrain

above the Barcroft Laboratory and almost to the Summit Laboratory is considerably

more gentle than the steep and incised slopes at lower altitudes, and the road

distance between those points is only five miles as compared with 33 miles from

the nearest plowed road to Barcroft. Since we do not have suitable tracked

vehicles now, men occasionally walked between the Barcroft and Summit Stations

when helicopter operation was impossible and the road blocked by snow.

For an operating observatory we expect to use the helicopter for carrying

people from Bishop to the Barcroft Laboratory in winter, with slower trips

being made by tracked vehicles for carrying freight. The helicopter would be

used between the Barcroft and Summit Laboratories when possible, with the

expectation that tracked vehicles would be used often.

Because at times there was only one man at the Summit Laboratory, we

chose to hire only men with engineering training and experience and with

serious mountaineering experience. These men coped extremely well with any

problems which arose, and accordingly no problems ever became serious. The

three men who worked at the summit were all close to thirty years old, two

were trained as engineers and, one as a physicist, all had led mountaineering

trips, and all were used to a variety of activities which had to be done
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correctly for safety. They provided their own mountain clothing and equip-

ment, and they were prepared to walk to at least the Barcroft Laboratory if

necessary under any weather conditions.

In future astronomical operations at White Mountain we believe that

there should be usually one man of this experience and caliber with any group

above the Barcroft Laboratory in winter and spring, and men with this combi-

nation of talents are readily available. Such a man would be assigned to each

observing program and care for the needs of the visiting observer in more detail

than a traditional telescope operator. He would operate the telescope, drive

any specialized vehicles being used,and assure that the-operations are safe

for both people and equipment. Finally he would be able to make observations

without the full-time presence of the visitor, to enable the visitor to stay

in a more amenable place. For example the visitor may stay in Bishop, after an

initial check of equipment at a telescope, and monitor the observations via

a video microwave link.


