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A STABILITY ANALYSIS OF CYLINDRICAL PANELS

USING A FINITE ELEMENT FORMULATION

by

Richard E. Snyder

ABSTRACT 

A cylindrical finite element suitable for the linear stability

analysis of cylindrical shells is developed. Energy principles and vari-

ational methods lead to a problem formulation which lends itself to

physical interpretations of the governing matrices of the finite element.

By properly grouping the terms which result from taking the second varia-

tion of the potential energy of the element, it is possible to identify

three distinct types of matrices. The first matrix is the conventional

stiffness matrix; the second is an "initial stress" stiffness matrix;

and the third is an "initial displacement" stiffness matrix. With the

assumption of linearity, the buckling problem is stated in terms of the

classical linear real eigenvalue equation. This problem formulation was

programmed on the CDC 6600 series computer. The computer program is used

to analyze the buckling of a variety of structures. Columns, arches, flat

plates andcurved panels with and without cutouts are considered. Com-

parisons are made between closed form solutions and the results of the

present analysis to establish confidence in the techni.ques used. Curved

panels with cutouts of varying size are analyzed for buckling. The in-

fluence of curvature and cutout size on the prebuckling deformations in

curved panel are studied and found to be significant. The prebuckling

deformations are shown to have a significant influence on the buckling

strength of curved panels with cutouts.
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CHAPTER I.

INTRODUCTION

Plate and shell stability analysis and its application to practical

engineering structures has been the subject of extensive structural re-

search efforts. Despite this, many problems still remain in the accurate

prediction of the buckling mode of failure of many types of practical

plate and shell configurations, particularly those with holes or cutouts.

For example, reliable procedures for the analysis of a flat plate with a

large cutout are limited. The finite element method provides a means of

analyzing problems such as these. The development of this method has

been prompted by its ability to model complex geometries and loading

conditions. To date, major developments in finite element methods have

concentrated on stress and vibration analysis with only limited attention

given to stability. The objective of this dissertation is to report the

results of an extension of the finite element method to problems of thin

shell instability. The extension will concentrate on the development

and use of elements which, thus far, have seen only limited application

in finite element technology. Primary emphasis will be placed on the

buckling analysis of curved panels with rectangular cutouts. However,

the method will also be applied to columns, flat plates and arches.

The field of shell stability analysis is one of the most extensively

investigated areas of classical mechanics. The list of references

associated with classical shell stability is very formidable. References

to classical shell buckling investigations are cited herein only to the

extent that they relate to special aspects of the finite element approach.

1
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Formalized finite element methods generally began with the presenta-

tion of the "direct stiffness" method by Turner, Clough, Martin, and

Topp (ref. 1). Since then, finite elements have been used in the stress

analysis of a wide variety of structures, including frames, arches,

shells, and solids. In recent years, attention has been turned to the

application of finite element technology to the stability of structures.

Expansion of the stiffness method to handle nonlinear, large deflection

problems was first presented in 1960 by Turner, Dill, Martin and Melosh

(ref. 2). In 1962, Turner, et.al., (ref. 3) enlarged on the nonlinear

finite element technique by presenting an eigenvalue procedure to deter-

mine the buckling of columns. Gallagher and Padlog (ref. 4) independent-

ly derived a stability coefficient matrix to predict column buckling.

Summaries of the current state of the art of stability predictions using

beam-column elements are contained in references 5, 6 and 7. In these

references, the stability problem is framed in terms of the conventional

stiffness matrix and what is termed the "geometrical" or "initial stress"

stiffness matrix. The term "initial stress" stiffness matrix will be

adopted in this work. The terminology applied to this new matrix re-

flects its dependence on the initial state of stress and undeformed

geometry of the element.

In reference 8, Gallagher, et.al., extended finite element stability

methods to flat triangular elements. The explicit formulation of the

initial stress matrix for a rectangular plate in bending is presented

by Kapur and Hartz in reference 9. The stability of doubly curved shells

of revolution subjected to axisymmetric loading, using the finite element
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method, was investigated by Navaratna, Pian and Witmer (ref. 10). The

stability of cylindrical shells using curved finite elements was 
studied

by Bogner, Fox and Schmit (ref. 11). In reference 11, the problem is

formulated from the standpoint of direct minimization of the total

potential energy as opposed to the development of identifiable stiffness

and initial stress stiffness matrices. In addition, a large number of

degrees of freedom (i.e., 48) are used for each element.

There is limited literature published on the buckling of curved

cylindrical panels. Classical analyses of curved panels typically con-

sider the case of an infinate aspect ratio (ref. 12 and 13). Gerard and

Becker (ref. 14) directly consider "very wide" and "very narrow" curved

panels and then fair a curve between those results to cover panels of

intermediate dimensions. The importance of boundary conditions in the

determination of the buckling of curved panels is established by

Rehfield and Hallaur (ref. 15).

The effect of cutouts in cylinders has been the subject of several

experimental investigations (ref. 16, 17 and 18). Brogan and Almroth

(ref. 17) applied a finite difference approximation to the governing

equations and obtained reasonable agreement with experiments. No re-

ferences dealing with the bifurcation buckling of curved panels with

cutouts were found, and indicates a need for data on such problems.
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CHAPTER II.

APPLICATION OF ENERGY PRINCIPLES AND 

VARIATIONAL METHODS TO LINEAR STABILITY ANALYSIS 

II.-1 Basic Principles 

The principle of minimum potential energy establishes that for

equilibrium the total potential energy, ,for a system must be extremal

or stationary (ref. 19 and'20). Thus for equilibrium, the first varia-

tion of the potential energy vanishes.

611. = 0 (II-1)

where 6 is the variational symbol.

The stability of the equilibrium state can be investigated by ex-

amining the second variation of the potential energy. An equilibrium

state is stable if every neighboring state has a larger potential energy

In other words, an equilibrium state is stable if, in addition to satis-

fying equation II-1 it also satisfies the condition 527>0. Conversely,

equilibrium is unstable if d2w < O. Therefore, the infinitesimal

stability limit as used herein corresponds to the case of

6
2Tr = 0 (11-2)

This principle is well-known for continium problems and has been

applied to approximations based on finite element methods in references

4, 5, 21, 22, 23 and 24. A formulation of the second variation of the

potential energy that lends itself conveniently to the numerical approxi-

mations found in the finite element method will be presented. In this

chapter, these concepts will be applied to a beam-column to illustrate

the approach. In Chapter III, the same methods will be applied to the



where (reference 19)
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more complex curved panel problem.

II.-2 The Beam Column 

The beam-column finite element shown in Figure II-1 extends be-

tween node points 1 and 2, and has a cross sectional area, A; a

length R; a moment of inertia, I; and a Modulus of elasticity, E.

The forces acting at each end of the beam-column are shown in thelr

positive directions in Figure II-1. The displacement in the Z direc-

tion, w, and the displacement in the X direction, u, are also

shown in their positive directions. The total potential energy of the

finite element system is

= 
1 EI f EAe

2
dX + f w'xx

2
dx -N

1
u
1 
-V
1
w
1 
-M
1
0
1 
-N
2
u
2 
-V
2
w
2 
-M
2
e
22

0 0 2

(/I-3)

e E
1 (1)2 (II-4)
-2-

and

C = u,x (II-5)

0 = w,x 
(II-0)

Nere, e is the nonlinear middle surface strain composed of the linear

strain E and the rotation 0 . The first integral on the right hand

side of equation 11-3 is the membrane strain energy and the second in-

tegral is the bending strain energy. The remaining terms represent the

potential energy of the external forces.
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Z,w

E = Modulus of elasticity

A = Area

I = Area moment a inertia

Figure II-1, The Beam Column
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Substituting equation 11-4 into 11-3 and rearranging leads to

1 
f EAE 2d + 1 f EAth2(c+ 

1,2

0 0 
- 2 -y-)dX - 1 EA4.

4
dX + J EIw,x:dX

2 0 4 2
o'

- N u - 11,w - M e — N2u2 V2w2- - M202- 11 11 11

The axial force and bending moment may be written as

N = AEe = AE (c (P2)
2 

(II-8)

M = EI w,xx 
(II-9)

Substituting 11-8 and II-9 into 11-7,

t
7 = 1 f WEAe-dX + 1 f dx - 1 f EA(1)

4
dX + Mw dX

o 2 0 0 2 0 'xx

- N1u1 - V/w1 - M101 - N2u2 - V2w2 - M202

After giving the system a virtual displacement, the total potential

energy becomes

Tr -1- An

where

12
1 EA= f EA(c+602 dX + 1 (N+AN)4+6402 dX

1 - 

2 0 4
(04-4)4dX

2,
+ (M+AM)(w,xx+6w,xx)dX - N1u1 - V1w1 - M101 - N2u2 - V2w2

- M202 - N1du1 - V16w1 - M1601- N26u2 - V28w2 - M2602 (II-11)

2

AN =EA [Se + ¢,6¢, +

AM = EI S w,
xx

Substituting II-12 and 11-13 into II-11,
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k, 2 f N(04+  A6A 2
• = 1 f EA(c +20e + 62c)dX + ° OdX

2 o 2 0 -2-

1
62A)

+ f EA(66+460 + --t
0 2

(4)2 + 204) + 624))dx

k
- 1 f EA 04 +40360 + 60262. + 40630 + 64(p)dx
80

+ 1 J Mw, dX + I f M6w,XXdX + 
EIw

9xx6W'xx"2 0 xx '2 0 2 0

1 r "Tx

J EJ1U2WpxxdX N1u1 - V1w1 - M101 - N2u2 - V2w2 - m2022 0

- N16u1- V1
61,71 - M 601 - N2

6u2 - V26w2 - M2
68
2

A7 may be expressed in the following form (ref. 19)

7 A7 = 7 67 1 627 - - - -
2!

By arranging equation 11-14 into the form of equation 11-15,

the matrix form of the second variation is

0. 0 de

[1001149 +(52IT = f [de 60 6w,xx] EA EA[0020] 16. dx (II-16)

0 oa- 000 oo 0 6w,xx
A

Equation 11-16 may be stated more conveniently as

L _ m L

62Tr = f

2, 
(66}T [0]{6Eldx + I {6c}i [i1]{(ST1dx + f f6ell[i2]{(Sidx

0

where



9

0 0 0 0
:2 g[K0] = EA 0 00 , [Kl] = ONO

[0 ]
[K2] = EA g

[1

0 0 1 0 0 0 0 0 0
A

Prior to introducing the numerical approximations involved in the

finite element method, several general statements mat be made concerning

the use of equation 11-17 for finite element type 
buckling analyses.

Terms relating to the work of the external forces do not appear

in the second variation of the potential energy.

• [kJ] leads to the conventional stiffness matrix for a beam-

column. (See reference 24 and Appendix A).

• [il] is a function of the load in the element and leads to a

matrix denoted herein as the "initial stress" stiffness matrix.

▪ 
[k2] is a function of rotational deformations and leads to a

matrix denoted herein as the "initial displacement" stiffness matrix.

o The finite element numerical approximations (i.e., displace-

ment function)need not necessarily be the same when dealing with

[P], [K1] and [112]. However, if convergence is to be obtained in the

limit, all of the numerical approximations must represent the essential

character of the problem.

• A static solution to the problem must first be accomplished to

establish values of N and I) which are required for the evaluation of

[Kl] and [i2].

The details of the steps required to develop the conventional,

the initial stress and the initial displacement stiffness matrices for
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both the beam-column and the arch are given in 
Appendix A. The matrix

formulation of the strain-displacement relations
 and the assumed dis-

placement function as well as intermediate matrix 
products are presented.

The symbols used in Appendix A correspond to tho
se used in this chapter.

For the beam-column, the strains are related to the
 displacements,

u and w, through a matrix of differential operators.

{E} = [D] {g} (II-18)

A critical feature of any finite element development 
is the dis-

placement function chosen to represent the deformation 
characteristics

of the element in terms of the nodal displacements. A linear variation

of u and a cubic variation of w, as is used in Appendix A, is fre-

quently assumed (ref. 5). Such a set of assumptions stated in matrix

form is

{g} = [B] [F] {A} (II-19)

The matrix [B] is a function of X and the [F] matrix is a function of

the element geometry. fAl is the vector of nodal displacements.

Substituting equation 11-19 into equation 11-18,

where

[C] = [D] [B] [F]

Hence
{6E-) = [G] {6A}

Equation 11-17 may be written

627 
= 

f6A1T 

[ 

[K0e] + [K1e]
 + Wel

(II-20)

{(SA} (II-21)
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L
[K°e] = f

0 
[G]T [in

L

[Kle] = f [G] [14]

L

[K2e] L = 6 r ro. JiT [k2]

[G] dX

[G] dX

[G] dX

In general, A, E and I, are functions of the longitudinal

coordinate, X. This is also true of the load, N, and the rotation,

0 . Before the integration of the terms in equation 11-21 may be

carried out, an assumption must be made regarding the variation of these

parameters along the length of the beam-column. The assumption that

A, E and I are constants over the length of the element is commonly

made. This assumption will be adopted here. Further, N and 0 will

also be assumed to be constants over the length of the element. The

matrices [0e], [Kle] and [K2e] given in Appendix A are based

on these assumptions.

Applying the neutral stability condition, 621r = 0, the buckling

criterion for the beam-column element is

det

The eigenvalue involved in the solution of

the ratio of the bifurcation load, Ncr,

[K0e] [Kle] [K2e] = (11-22)

equation 11-22 is

to the applied load, N.

The load and rotation at buckling are equal to the initial load and

rotation times the eigenvalue. Because of the 02 term in [K2e] ,

equation 11-22 has the form of a quadratic eigenvalue problem.
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The nonlinear strain displacement relations used in this develop-

ment assume the square of the rotations to be of the same order as the

strains, and the strain to be small compared to unity or E =00
2 
) "1.

Thus, a reasonable first approximation to the solution of equation 11-22

for many problems is to assume the
02

terms to be negligible compared

to the 0 terms. With this approximation, equation 11-22 becomes a

linear eigenvalue probleM and is

det

where

[0e] + X [! ] + [K2e] r 0 (11-23)

X Ncr/N

Ncr buckling load

N applied load

The method of assembling element stiffness, initial stress stiff-

ness and initial displacement stiffness matrices to represent a complete

structure will be discussed in Chapter III. The method used in the

determination of the eigenvalues is described in Chapter IV.
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CHAPTER III.

THE CYLINDRICAL, THIN SIIELL, FINITE ELEMENT 

The following development is an extension of a stiffness formula-

tion by Gallagher (ref. 25) for the doubly curved shell element, shown

in Figure III-1, to include elastic instability effects. The Gallagher

shell element was selected as a basis for this work because it has been

shown to give reliable results and because it is well documented. An

expression for the strain energy of the doubly curved shell element will

first be derived. Then, prior to introducing an assumed displacement

function, the problem will be specialized to a singly curved cylindrical

element.

The cylindrical element has wide application in aerospace type

structures. It can be used in the analysis of structures such as

airplane fuselages, rocket motor cases, tanks, and i.nterstage adaptors.

Elliptical cross sections may be represented with cylindrical elements

by allowing the radius of curvature to vary from element to element.

III.-1 Basic Assumptions 

In thi.s development the shell material is assumed to be isotropic

and to obey Hooke's Law. The ncuLrai surface of the shell lies midway

through the thickness. Applying the Kirchhoff-Love hypothesis, it is

further assumed that:

1. The displacements u, and v corresponding to the directions

and 2 (Figure III-1) respectively, are linear in the

thickness direction,
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2. A11 components of stress normal to the 
middle surface are

negligible.

3. The displacement normal to the middle surf
ace is a function

only of the middle surface coordinates.

III.-2 Formulation of the Potential Energy 

As was illustrated in Chapter II, the potentia
l energy of the

external forces applied to an element does not
 appear in the expression

for the second variation of the potential energy.
 Hence, consideration

will be directed only to the evaluation of the st
rain energy of the

element.

The geometry of the doubly curved,thin shell, fin
ite element is

depicted in Figure The middle surface of the element is defined

by the curvilinear coordinate Ci and C2 . The coordinate C3 is

normal to the middle surface and completes the ortho
ginal right-handed

system. The radii of curvature R1 and R2, corresponding to the

coordinate lines Ci and E2 respectively, are constants. The equa-

tion for the differential distance, ds, between two points on the

middle surface is

ds2
 = a12

dc12 4. _ 22
u g2

2 •

where al and a2 are the Lamg parameters. The linear displacements

u , v, and w, corresponding to the coordinate directions Ci, C2

and respectively, are as shown in Figure
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a. Geometry

-116-

b. Linear displacements

Figure III-1. Geometry and displacements off the doubly curved

shell element.
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The nonlinear strain displacement relations for small strains

were derived by Sanders in reference 26.and aili be used in the fornula-

tion of the strain energy expression. The nonlinear middle surface ex-

tensional and in plane shear strains are:

where

S12
= c1 —2-

2
S2

e2 = c2 + 2

e12 = Y12 + S1S2

6 ,a hl
1 

1 
al DE1 R1

E - 1 av w, r I n
- -2 a,2 4".2

1 1 Su
Y12 
. 

al 41 a2 2

al = 1 aw u

al D 1 R1

1 ‘.17

a2 3‘2

The expressions for the bending distortion are:

- a2w_ Du
a
1
2 

1 alR1 aci

x2 = — 92w
a22 aE22

1  v

a2R2 D 2

. X12 = -  2 a2w  + 31 i 7

ala2 aq_K2 21e1R2 a2R1

t Bti .4.  .1  Dv )

2) 2‘,a2R alRi ar'34
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The expression for the strain energy for the doubly curved shell

selement of Figure expressed as integrals over the middle surface

area,

U -

is (ref.

E h

19)

II + 2Vele2 + (1
2
v) 2 a gge 

12 1
a 
2 1 2

el2+e22
-2(1-v2) area

Eh
-v2):ea 2 

3 

24.(1
[12.1.)(22 

+ 2VX
1 
X
2 + (1-v) X 12.. 11a a dE2 1 2

The total strain energy is seen to be the sum of the membrane energy,

given by the first integral, and the bending energy, given by the second

integral.

The stress components in the shell element are shown in Figure

III-2a. The corresponding stress resultants and bending moments are

shown in their positive directions in figures III-2b and III-2c.

The following set of equations relate the stress resultants to membrane

strains and the bending moments to bending distortions (ref. 19).

N Eh
1 

_ 
(el + ve2)

N 
2 
= Eh (e2 + Ve1)

1-v

N12 = N2I = Gh e12

NI -  Eh3  (x1 + vx2)
12(1-V2)

Eh3 
, (X2 + VX1)

_

12(1-Vh)

=Id
21

E113

24 (1-v)
).(12



-

a. Stress components

12
21

b. Stress Resultants

2

co 13ending M s

Figure 111-2. Internal Stresses
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By combining equations 111-2 and 111-5 with equation 111-4, the follow-

ing form of the strain energy expression is obtained:

B22\
U = 1 If 1-14

1 1 2 
+ )+ N

2 2 
+

2-2- area _ j

+ M1X1 1- M2X2 4- M12 X12
1 

c61(12 cg1 dC2

+ N
12
(y
12 

+ B
1
S
2
)

III.-3 The Second Variation of the Potential Energy 

The strain energy of the shell element after a virtual displace-

ment may be expressed as (ref. 19)

U + AU = U + dU + 1 S2U + High Order Terms
I!

in which SU and d
2
U are the first and second variations, respective-

ly, of the strain energy. Hence, following the technique used in

Chapter II, the second variation of the strain energy will be determined

by giving the system a virtual displacement and grouping the terms in

the resulting strain energy expression in the form of equation 111-7.

Applying a virtual displacement to the terms in equation 111-7 produces

the following equation:

U 1 rr+Au - i(N1+AN1)2 afea
e1+6c1+

01+661)2
(III-8)+(N2+AN2)

2
(13
2
-NSS

2
)21

f (N124-AN12)1 Y121-6Y121-(s14-01)(62+5132)2 1

+()(1+6X1)( AN1) + (X2+6X 2)(M2+AM2)+(X12+"12)(M12+AM12)I •

ala2didE2
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Evaluating the incremental stress resultants and 
moments:

N
1 
+ AN1 =  Eh E1+661+ 

(81448
61)2 

\€2÷562+ 
02+552)21)

2 2
1-v2 

_J

Eh

2 
(4.F.: +6E +

1-v

2
131 

62s1 V522
E16131 

2
  + VE2 +

2 2

625

n4

)

VS26132 V
2

Comparing this

AN1

with

Eh

the first of equations 111-5,

6E1+61651 + v6E2 + v(31513 +

it is determined

62(3
1 + 

v62S2 e]

that:

(III-9)

1-u2
2 2

Similarily

AN2
Eh

6E1+1326122 V5E1 4- v81661

628,

- 4 4-

vcs2s11 (III-10)

1-v 2
2 2

AN -
12

Eh
6Y121-81"2 4- 82681 4. "1L - "2

(III-11)
2(1+v)

AM -
Eh3 (6X1 + v6)(2) (III-12)

12(1-v3)1

4614 2
Eh3

[6)(2 + v6)(1] (III-13)

12(1-v
2)

AM12
Eh3 "12 (III-14)

24(1-v)

After substituting equations 111-9 through 111-14 into equation 111-8

and after considerable manipulation, the second variation of the

potential energy, which is equal to the second variation of the strain

energy, may be identified and written in matrix form as:
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- —2ir ff {6-E}
T Eh [K0 WE}ala2gig2 + Iff6et t it Octia2gig2

1
area 

-W2
 

area

+ If{6E} 
Eh [k21forga dr dr

1 2 '1 '2

where

caiiT =

[R2] =

area
i_v2

261 6S1 6X1 6Y12 6E2 6S2 6)(2 
(5X12u

(III-15)

1— 1 
osi isx1 6Y12 isx2 6x12de da

2 
6S

2

0 0 0 v 0 0 0

10 0 0 0 0 0 0 0

h2 vh2 0
O 0 0 0 0 

12 12

1-v
0 0 0 0 0 0

2

O 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0

0 0 1v 2 0 0 0 h2 o
h -v)T4 

__
2 12

0 0 0 0 0 0 0
_

O 0 0 0 0 0 0 0

0 N1 0 0 0 N12 0 0

0 0 0 0 0 0 0 0

O 0 0 0 0 0 0 0

O 0 0 0 0 0 0 0

0 N12 A 0 0 N2 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

__
o Si o 0 0 %'82 o

Si 124131s22 0 (1.-;)(32 vs1 (1)131s2 0

o 0 0 0 0  0 0 0

O 
( 2 ) 

S2 o o o (±
i
..)131 0 0

0 val 0 0 0 32 • 0 0

v82 (t)S182 (4181 82
/1_

C2
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The first term in Equation III-15 leads to the conventional stiffness

matrix; the second term leads to the initial stress stiffness matrix;

and the third term leads to the initial displacement stiffness matrix.

III.-4 The Stiffness Matrix 

The formulation of a stiffness matrix for the doubly curved shell

element shown in Figure III-la is described in detail in reference 25

and will not be repeated here. The stiffness matrix reported in refer-

ence 25 specialized to the case of the element shown in Figure III-3a,

will be used. The relationship of the coordlnate axes of the cylindri-

cal element to those of the doubly curved element is:

E2

x

o

The radii of curvature for the cylindrical element are:

R1
00

R2

The Lame parameters for the cylindrical element are:

al 1

a2 R

(III-17)

(III-18)

Figures III-3a and III-3b depict the posktive directions for the linear

and angular displacement in the cylindrical element.

Because of the importance of the assumed displacement function in

the development of any finite element stiffness matrix; it is worth-

while to briefly discuss the displacement functions used by Gallagher
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a. Element Geometry

h. ar Displacements

(P6

c, Angulpz I,YspPacements

Figure 111-3. Geomertry of the cylindrical element associated

displacements°
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for the doubly curved shell element. The displacement functions used

by Gallagher in reference 25 are:

u = [(X-a)(RO-b)ul - X(R0-b)u2 + XROu3 - RO(X-a)u4]

ab

1
v = [(X-a)(R0-b)v1 

- X(RO-b)v2 + X
ROv3 - R0(X-a)v4

]
ab

w = 1 t(a3+2X3- 3aX2)(b3+2(RO)3-3b(RO)21w1+(3aX2- X3)033
+2(12.03

a3b3

-3bR0)2] w2

+ (3aX2-2X3)[3b(R02-2(RO)3]w3+(a3+2X3-3aX2)[3b(R0
2-2(110)3]w4

+ aX(X-a)2[b3-2(R03-3b(R0)2]Mx1+a(X3-aX3)[b3+2(R0)3-3b(R0)2]0X2

+ a(X3- 2)[3b(RO)2_2(120334x3+a(X-a) 2X[3b(R0)2-2(R0)3l0x4

+ b(a3+2X3-3aX2)ROUR0)-1312001-b(3aX2-2X3)R0KREI)-b12,02

+ b(3aX2-2X3)[(R03-b(RO)21(003+b(a3+2X3-3aX2)[(R0)3-b(")214)(34

AN , ,,
+ abXR0(X-a)

2
[(Ru)-13.1

2 oxe 
1
+abXRE(X

2
-aX) [(Re)-1),

2 
p
X82

abne 0(2...axm (1/02.44/0
Oxe 

-1-abXR0 (X-a) 2 [ (R0)2-bRe ],X04 I3

where, as shown in Figure III-3,a and b are the element lengths in the

curections respectively; ui, vi and wi 
=1,2,3,4)meridinal and hoop

are the linear displacements at the ith corner of the element and;

4)Xi
0 and (1) are the angular displacements at the ith

ui

corner of the element.
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Zienkiewicz and Cheung in reference 27 list the desirable condi-

tions to be met by a displacement function chosen to represent element

behavior. These conditions are that the displacement function must

properly account for rigid body motion and constant strain rates,

and must satisfy inter-element boundaries. .The above displacement

functions meet these conditions in the case of a flat plate but fail to

do so in the case of the curved element.

Previous studies (ref. 28 and 29) indicate that the violation of

the above conditions does not prevent convergence to the classical

solution and does not significantly reduce accuracy for refined idealiza-

tions. Indeed, Gallagher demonstrates the adequacy of his formulation

by showing excellent corelations with known closed form solutions to

several shell problems.

Table III-1 shows the organization of the terms in the conven-

tional, initial stress and initial displacement stiffness matrices.

The explicit statement of the terms in the element stiffness matrix,

[1(Cle], obtained by Gallagher and specialized to the cylindrical element

is given in Table 111-2.



u1

vl

w1

cbe

Osel

v2

w
2

4ke

44e
2

OX
^3

k2 1

k3,1

k4,1

k5, 1

k6, 1

k
7,1

k 5, 1

k9, 1

lc,
0,1

k1;1

k
12,1

SYMblETRIC

k2 2

k33

k4,4

k
h 5

k2,2

1%2
kg,2

k10,10

k11,11

k12,12

kJ k13, 1 k12,13

v3 k
14,1 k14 19

‘13
k
15,1 k15,15

95g3 k
16,1 k16,16

cpka3

k12,

k
18,1

k
17,17

k
18,18

k19,1 k19 19

v4 k20, 1 k20,20
k21, 1 k21,21

4
k22, 1 k22,22

48
4

ka3,
k23,23

.84
k24,1 k

24, 2 k24, 3 k
24, 4

k
24, 5 k24, 6 k24, 7 k

24,8 k24,
k
24,10 k24, 11 k24,12 k24, 13

k
24, 14

k
24,15k2A, 16 k24,17

k
24,18 k24, 1 9k24,20k24,21 k24,22 kV; 23k24,24

u1 v1 w
1 4x1 4)01 cot ''2 v2 w2

Oxfl2 '3 4}83 u4 v4 494 °Al

Table 111-1 Arrangement of Terms tor the tonventional , Stress", and "Initial Displacement' Stlffne s Matrices for the Cylindrical Element.
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0k1,1

Table 111-2 Elements

0 0 0 n
k7,7 - k13,13 " k19,19 = I'm

of [ee]

+ (1-v)

3a- 6

{b.

0 0 , 0 
=
 0 

Dm(l+v)

'‘19,8 - 8k2,1 = k14,13 = r'20,7

0 0 0 0 -7vbDm

k3,1 = k9,1 = k19,15 = k21,19 40R

0 0 0 0 a 0

=41 = k10,7 = k16,13 
= k22,19 T, k3,1

0 0 0 0 -b2vDm
k5 1 = k11,1 = k17,13 = k23,13= 40R

0 0 0 0 a 0

k6,1 = k12,7 = k24,13 = k19,13 = 6 k5,1

0 0 n _ (1 -v):-]k7,1 
= k19,13= - -m L3a 12b

0 0 0  0
k8,1 

= k
19,2 = k14,7 = -20,13 -

Dm(1 -3v)

0 0 0 0 0

8

k10,1

0
k12,1

0
k
13,1

=

=

k22,13

0
k7,6 =

0
k19,7

=

k18,13

-

= kk19,16 7,4

0 0
= k24,19

0
k1,1

= - 
k4,1

0
k6,1

2

0 0 0 0 0

k14,1 = k13,2 = k8,7 = k20,19 = k2,1

0 0 0 0 3vbDm

k15,1 = k21,1 = k19,3 = k19,9 40R

0 0 0 0 abvDm

k16,1 = k13,4 = k22,7 = k19,10 8R
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Table 111-2 (Continued)

O 0 0 b
2
VDm
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 k
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k
17,1 
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o 

k
13,11 

= k
13,5 60R

O 0 0 0 0
= a

k18,1 -
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0 0 0 0 0
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0 0 0 0 0
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0 0 0 0 0
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--E+4
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DmR 6 a Dm112,
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k3,2 9,8 40R 2aR 

Db

2
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a Dm VDb
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.. ...., 

40R 2R

0 0 0 7abDm (2-v)bDb 7aDb

0
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_. 
-

240R 12aR 20bR

0 0 0 0 a
2 
bDm vbDb a

2 
Db

k
6,2 k18,8 - k• 14,12 = k24,20 - 240R - 12R 20bR

O 0

k8,2 
= k

20,4 
= D

m

Db I r- Db
1+ DmR2 - (1-v) 1+4 DmR2

6b 

0 3aDm (2-3v)Db
k9,2 = kpi0.1

• 40R 2aR
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0 0 0 0 Dma

16,2 14,4 
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k
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= k = k
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 - 
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Table III - 2 (Continued)
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40R 2aR

0
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0
=
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Db
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40b -1 A
[sm
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1, 0
=

0

k15.8
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0 0 0 0
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Table III-2(Continued)
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0 0 0 0 0
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TABLE 111-2 (Continued)
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TABLE 111-2 (Continued)
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TABLE 111-2 (Continued)
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TABLE III-2 (Concluded)
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12,11 

= k18,17 k6,5

k18,11 - k17,12 k24,5

, 0 0 0
'15,14 - k21,20 k3,2

O 0 0
k17,15 - k23,21 k5,3

O 0 0
k20,15 - k21,14 - -• k9,2

, 0 0 0
K23,15 k21,17 - - k11,3

0 0 0
k18,16 

= k24,22 - - k6,4

0 0 0
k24,16 

= k
22,18 k12,4

_ 1 b 2 a _

35 a3 105 b3 225ab

ab  Din)

14700 R2
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111-5 The Initial Stress and Initial Displacement Stiffness Matrices 

The steps involved in the development of the initial stress and

initial displacement stiffness matrices for a cylindrical element will

be outlined in this section. The detailed statement of the significant

intermediate matrices involved in this development is in Appendix B.

The matrix symbols used in this section agree with those in Appendix B.

The desired strain-displacement relations for a cylindrical shell

are obtained from equations 111-2 and 111-3 by the direct substitution

of equations 111-16, 111-17 and 111-18. Written in matrix notation, the

equations relating strains to linear displacements are:

where

{E} = [A](Dge

- Lcxlsxxx.Y.-xeEeaexoxxo

tgIT Lu v wJ

(III-20)

The terms in the [A] matrix are all constants and [D] is a matrix of

differential operators.

One of the major assumptions involved in the development of the

initial stress and initial displacement stiffness matrices is the form

of the displacement functions to be used. .Three displacement components,

u, v and w,must be characterised. The characterization of the membrane

displacements, u and v, is based on the simple assumption of linear edge

displacements. For a flat plate, this assumption insures compatibility
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of displacements along lines bounding the elements. Making use of the

approach taken in references 30 and 31, the displacement functions for

u and v are:

u =-1 [X-a)(110-6)ul-X(Re-b)u2 + XR0u -Re(X-a)u4
ab

V = 4X-a)(R0-b)v1-X(R8-b)v2 + XR0v
3
-R6(X-a)v4]

ab

In reference 6, Martin discusses the relative merits of linear

versus cubic displacement functions for the case of a beam-column. He

demonstrates that a linear function representing the normal displacement,

w, of the beam7column is the simplest, nontrivial polynomical form con-

sistent with the problem. The beam-column stability problem is

formulated using a cubic displacement function for w to derive the

conventional stiffness matrix and a linear displacement function for w

to derive the initial stress stiffness matrix. This is effectively a

superposition of a tension-compression member and a beam; with no inter-

action between the two. in the case of the beam, this has led to satis-

factory results. In an analogous manner, the displacement function

chosen for w in the case of the cylindrical element is:

w = A-(X-a)(R0-b)w -X(Re-b)w21-XR0 ifte(X-a)w4] (III-23)

The displacement functions, in matrix notation are:

{g} = [WA} (III-24)
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{A}T u2 u2 u4 vl v2 N73 114 wl w2 w3 w4J
and [B] is given in Appendix B.

Substituting equation III-24 into equation 111-20 gives:

{E} = [WA} (111-25)

with [G] being given in Appendix B.

It follows directly that:

{6D = [G]{SA} (111-26)

Substituting equation 111-26 in the second term in equation 111-15 and

introducing the notation for the cylindrical element produces the fol-

lowing expression for the initial.-stress stiffness matrix, [Ke
1
].

= JI {6A}T[G]T[Kl][G ]i6AiRdOdX

area

The triple matrix product Hi- [1

(111-27)

1 [C] is designated as [H] and is ,

given in Table B-1 in Appendix B. The terms in Table B-1 are designated

193
where the i and j denote the row and column, respectively, in

which the term is located in the matrix. The overall arrangement of the

matrix is identical to that shown in Table III-1, and the element corner

displacement vector frSAI has been reorded accordingly. Only non-zero

terms are given. The matrix in also symmetrical.

Prior to carrying out the indicated integration, an assumption

must be made with regard to the character of the stress resultants N1,



N2 and N12.
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An assumption, consistent with the assumed linear displace-

ment functions, is that these stress resultants are constants. With

this assumption and after carrying out the integration of the right hand

side of equation 111-27, the non-zero terms of the initial stress matrix

are as given in Table 111-3. The arrangement of the terms in the [re]

matrix is the same as indicated in Table III-1.

Attention is now turned to the third integral in equation 111-15.

Since the displacement functions stated in equations 111-21, 111-22 and

111-23 are to be used in the development of the initial dispalcement

stiffness matrix, the equation for the initial displacement stiffness

matrix is obtained in exactly the same manner as was the equation for

the initial stress matrix, equation 111-27.

Hence!

[Ke2] = II fdalT[G]T[K2][G]{6A}Radx (111-28)
area

The triple matrix area product [G]
T 
[K ][G] is designated as [E] and is

given in Table B-1 in Appendix B. The terms in Table B-2 are designated

3
e
1 
. . where the i and j denote the row and column, respectively, in
, 

which the term is located in the matrix. Again, the overall arrangement

of the matrix is the same as that shown in Table III-1. The ordering of

the vector of element corner displacements is changed accordingly. Since

the matrix is symmetrical, only the diagonal and lower triangular terms

are given. Also, only nonzero terms are given.

Before the indicated integration can be carried out, an assump-

tion must be made about the rotations Si and S2. An assumption that S1
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and (32 are constants is compatible with the linear displacement functions

assumed for w. The values of S
1 

and 0
2 

for an element are the

average rotations for that element. The equations used to compute (31

and 5
2 

are given in Chapter IV. With this assumption, the non-zero

terms of the initial displacement stiffness matrix, obtained from the

term by the term integration of the right hand side of equation 111-28,

are given in Table 111-4.
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TABLE 111-3 Elements of [4]

1 1 1 L 1 N2 (al)
k22.= k88 = 14,14 = "20,20 = 9 R2

k312 = 6R N12b N2a

1
k8,2

_ N2 (ab)
18 R2

1 1 m 
N2a

k
9,2 - 6R -12b - 2

l

1 2
1
2

k142 - 4

1 -3
1 
2-

-15,2 2
1

k2,2

k20,2 = k14,8 = k20,14 =

1 N m
k21,2 = 6R 2'

„ 1 
1-3,3 = k15,15 =

N I b)

3 a-

N12 N2

3 g-b)2

k813 =1+121) N2 a
6R 2

t 1
'9,3 

NI

= - 3 a

N2 (\

6 13/

, h 1 1
'14,3- - '15,2

'1/ 
N1 (11) N12 _ N1 2,

- - 6 

a_ 

) 2 lr

1  
_ 1 [I 

2 
u

N12
"20 3 6R 

,- — --- + N2a
1

1" 

1, 
21, 3 

= N1 (b\ N2 /a)
-

6 \,,a) 3 \JD-)
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TABLE 111-3 (Concluded)

k9,
1
9 = 
, 
K21,21 = —

3 
—
a

Nl (by N12 
+ 

N2 (a

3 b

1 N1(b:)- N2 (I)
k21,3 =

6 a 3 b

1 1
k9,8 = a N12b N2a

1 1 [N12
k15,8 - 2

k2038 - 
k212

b + N2

k21,8 = 12RIN12b N2a
LLL 

1 „ 1
k14,9 = -k21,2

h 1 , 1
k15,9 = k21,3

1 k91-8
k20,9 2

, 1
'219 =

_,N12
6

N2

6 b 

(a)
' 2

1 „ 1
k15,14 = -'3,2

, 1
'21,14

k201,-15 -

_ 1 b

'12

N2

a2 6R

1 N1 (b \ (a\
k21,15 - 3 \a/

±N2

6 D/

1k21,20 = -k3,2
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2 Dm

TABLE 111-4 ELEMENTS OF [C]

(1-V)
k
2,1 6R

8 + 1382a 1
2

k 23,1
fa \ill 81

3

(1-v)
- 132)

[(1-v)

2 kb) ka) 8

2
k
8,1

- Dm
6R

(1-v) a 81 + vb82]
_ 4

2
k9,1 = - Dm

2 k2
2

_ ,1
k14,1

2

k
15,1 
2 

= Dm 
r[(1-v) fa \ +03 101.4. (1+v)

2 kb) La 6 8

Tl-V)  (a\ (ill +  (1-3v)

2 6) a 3 8

2
k201 Dm [(1-v) a81 + vb82]

12R

k21,1 k 
= Dm (5- ) 1_v (

b) al 
a\ (1 

U
1 131

6

k22, 2

2
k3,2

2
k72

A-8,
2
2

S2)

(1-3v)

8

= -Dm [
cl:LL 

b81 + 
abDm L3 2 ~

2
3R 

9R2 2

= -Dm

13,)

(1-v) 
2

(1-v) (b + (a 82 4_ Dm b (1+0
S1 - Dm 2 a b 3 6R

+ +22 + (1v) 1 1- 
abD
 m

2 9R2 
2

Dm [(1-v) 

- 6R 4 aS1 - vb8d

Dma81 abDm [ 2 (1-V) 2
2 132 (316R 18R- 2
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TABLE 111-4 (Continued)

2 (1-3v) '362 (1+V)k92 = -Dm + Dm8 P-v)(ii;)

abDm

12R
{lb 12

a [322 + (1-
2
v) si 

2]
) + s2

18R

2 k2,
2
1

k13,2 = -- 2

2 ab 
k14,2 

36R2 1 
422 +

k 2 (1+v) D + D aFl-v) (b)
Dm b (1+v)131132+2 ‘aI5,2 ml m 2

+ ap22 +   1312.1) abDm s2

36R2

kr,-9 2

K, 
20
2
2

Dm
= E.1-v)41 - vbrid

Dmbh 
5Dmab (1-v) aa 2

12R

- (1-‘))
12R 36R2

22

2

2 (1-3y) [(.1-v)(b) (1 02 Dm
-g-ft:

(1+v)
k21,2 Dmpi Dm

4 ko bj 3 -I- 4 1
0
2 
b

5DT,
-- a [ 22 + (3 + - ab82

1
36R2

2
3,3

Dm
3R

v1381 + a8
(l+v)+
4

b DDO (3 
2 
+ — m

1 3a

[3 2 +1 (1-v)02
2]

2

+  m 2 (1-v) s

3b -m "2 2 1

, 2 = _Dmp24?)(6 
-
(1

K73 a

2
1c8,3 - (1-3v) Dm81 + B1-v)( b

8 a/

+ b(l+V)02 a:222
12R L„..

(I-3v) Dm

8 132

_ ( a)] f32 ab 

b 18R2 Din132

21)+ 
(1_Zv) 

81



k 9
2
3

b a 2
P1= 

4a02
D

6R - 3a

2 2
k13,3

= k 15,1

v 2 (1+v)
'14,3 8

D a +
m 1
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TABLE 111-4 (Continued)

(1-V) 2  2 (1-

2

v) 2

2 S2 4- 6b S2 S1
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D .i..v)(b)
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(11132 abDm
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m 2 a b 6 36R4
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12R 
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2 (1+v) S1B2 a B2
2 

(12
v) 

131
;11) 
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K15,3 - - m 4 1 4 6a
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6
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TABLE 111-4 (Continued)

2 2
k15,7 = k19,3
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, 2 D 1+v ,
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TABLE 111-4 (Continued)
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TABLE 111-4 (Continued)

2 k1421
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2 2
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TABLE 111-4 (Concluded)
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CHAPTER IV.

METHOD OF COMPUTATION 

In this chapter, the procedures required to solve for the buckling

behavior of a complete cylindrical shell structure will be presented.

Consider the idealization of a complete shell structure to be formed

entirely of the cylindrical elements developed in Chapter III. In order

to assess the buckling behavior of the structure, the second variation

of the strain energy of the structure is formulated in terms of the

element stiffness, initial stress and initial displacement stiffness

matrices developed in Chapter III. The concept of combining element

stiffness matrices to produce a "master stiffness" matrix for the com-

plete structure is well documented (references 27 and 32).

The second variation of the potential energy for the complete

structure with the boundary conditions applied has the form:

s2ff = toAlTr[RO] + [R1] + [R2T6A}

where [D], [R1] and [K2] are the reduced master stiffness, initial

stress and initial displacement stiffness matrices respectively.

Applying the stability criterion stated by equation 11-2 to

equation IV-1, the requirement for neutral stability of the complete

structure is:

MOTUR0] [171] 4. [R206,0 0
(IV-2)

In the solution of equation IV-2, consideration will be restricted to
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a linear elastic instability analysis. As used herein, linear elastic

instability analysis is defined as the calculation of the condition for

the bifurcation of equilibrium without the need for an iterative deter-

mination of the internal loads or deformations. Hence, the magnitude

of the initial stress stiffness matrix corresponding to the application

of the critical load is proportional to its magnitude corresponding to

the application of smaller, but otherwise arbitrary, load. More simply

stated,

[K
1 
)1 = A[K

1 
;N< NCr

Ncr

where the engenvalue, X, is

Ncr

N

in which Ncr is the load for bifurcation of equilibrium and N is an

arbitrary initial load.

In Chapter II, the reason for neglecting the squares of the rotation

in the [K
2
] latrix for the beam column was discussed. The same line of

reasoning, is applicable to the rotations, 81 and 02, of the cylindrical

2
shell element. Consequently, the squares of rotations in the [K ] matrix

will be neglected. The initial displacement stiffness matrix for a

linear elastic stability analysis is

- -
[K
2 

1 = X [K
2 
] 1

NNcr

The linearized, nontrivial solution of equation IV-2 is
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-
det 1 [K

-o 
] + A [[K

1 
] + [K

2 
I] I = 0 (IV-3)

For computational purposes, the above equation is more conveniently

stated as

det 1 1 [I] + [170 ]-1 [Igi] + [17.2]1 1 =

where [I] is the identity matrix.

The major steps involved in the formulation and solution of

equation IV-4 are:

1. From basic elemental data, compute the element stiffness

matrices and construct the master stiffness matrix,[0], for the

structure.

2. Apply the appropriate boundary conditions to [K°] to form the

reduced master stiffness matrix, [In.

3. Multiply an arbitrary initial loading by the inverse of

to determine the initial disnlacements, {A}.

4. Compute the membrane stress resultants, N1, N2 and N12 for

each element using

{N} = [Se] {Ae}

where [Se] is the "element stress matrix" which is discussed in detail

and shown in Tables 111-7, 111-8 and 111-9 of reference 25. CAel are

the nodal displacements for the element under consideration.

5. Compute the "average" rotations about the X and 0 axes, 132

and h respectively, from
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w2 w4 w3)

C12 - 
1 

/141 w4 w2 
-w3] 

1 r 
'171 1- v2 v3 v4/

6. Using the results of steps 4 and 5, construct initial stress

and initial displacement, stiffness matrices for each element and con-

struct the master initial stress and master initial displacement stiff-

ness matrices, [K1] and [K2], respectively.

7. Apply the same boundary conditions to [K1] and [K2] as were

applied to [K°] to determine the reduced master initial stress and

initial displacement stiffness matrices, [kl] and [E2], respectively.

8. Compute

[e]-1 [[kl] + [K2]]

and compute the eigenvalues of equatidn IV-4.

A digital computer program has been written to accomplish the eight

steps set out above. The program is coded in Fortran IV language and

has been used on the CDC 6600 digital computer at the NASA Langley

Research Center. A listing of this computer program is given in

Appendix C. The reading of input data; the calculation of element

stiffness, stress, initial stress and initial displacement stiffness

matrices; the formulation of master and reduced stiffness, initial stress

and initial displacement stiffness matrices; and the printing of output

were all coded directly. Library routines (ref. 33) were used for ma-

trix multiplication, inversion and eigenvalue determination.
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A concise flow chart of the program is shown in Figure IV-1. The

general flow of the program follows the previously discussed eight solu-

tion steps. The subroutine used for the inversion of [k0] uses Jordan's

method (reference 34) to reduce [K°] to the identity matrix [I] through

a succession of elementary transformations. .When these transformations

are applied simultaneously to [I] and the load vector, the results are

[ko]-1 and the displacement vector. The subroutine REIG of reference 33

finds the eignevalues of a real, square matrix. The original matrix

which, in this case, is rkoripl] + [01]is transformed to upper

Hessenberg form. The eigenvalues are then found using the QR transform

of J. G. F. Francis (reference 35).

Because of the vast amount of storage required to solve a problem

of practical interest, an overlay procedure was used. In the first over-

lay, the inverted stiffness matrix; the reduced master initial stress

stiffness matrix; and the reduced master initial displacement stiffness

matrix are determined. In the second overlay, [K1] and [12] are added.

The resulting matrix is p emultiplied by [ko]-1. The highest eigenvalue

is then determined for the resulting matrix. Each overlay uses 300,000

octal storage locations. The computing time, of course, varies with the

number of degrees of freedom used. A problem having about 250 degrees

of freedom requires about five minutes of computing time.
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READ

1. Shell Geometry and Material Properties

2. Gridwork

3. Boundary conditions

4. Applied Load

Form Element Stiffness Matrices, [4]

Assemble Master Stiffness Matrix, [KO]

Apply Boundary conditions; Invert the

Reduced Master Stiffness Matrix, [RO]and

Solve for the Nodal Displacements, {A}

Evaluate Element Stress Resultants;

{N} = [S] {Ae}

Form Element Prestress Stiffness Matrices, Kl]

Evaluate Average Rotations for the Element,

Si and S2

Form Element Prebuckling Deformation Stiffness

Matricies, [Kg]

Form Master [K1]

Form Master [K2]

Apply Boundary Conditions to [K1] and [K2]

To Obtain the reduced Master Matrices [KI] and [
K2]

Solve: I [J] + [K°]-1i!(11 + [10]1] I = 0

PRINT

EIGENVALUES

Figure IV.-1 Elastic instability program flow chart.
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CHAPTER V.

APPLICATIONS OF THE COMPUTER PROGRAM 

The procedures described in Chapter II and the finite element

developed in Chapter III were applied to the stability analysis of sev-

eral types of structures by means of the computer program outlined in

Chapter IV. The results of these analyses are delineated in this

chapter. In addition, investigations pertaining to the influence of the

initial displacement stiffness matrix and the importance of the non-

linear terms in that matrix are reported. The types of structures

considered were: the beam-column, the arch, the flat plate, and the

curved panel with and without a cutout. The beam-column, flat plate,

arch and curved panel without a cutout were studied for the purpose of

establishing the accuracy of the procedure and the finite element.

Since no information is available on the buckling of curved panels with

cutouts, the accuracy of those results can only be inferred from the

accuracy of the solutions obtained for the other types of structures.

An Euler column with both ends pin-ended was analyzed using the

finite element developed herein. The exact solution to this problem is

(reference 12):

p Ti2EI
Cr L2 (V-1)

The column was modeled using plate elements having a width and thickness

of 1.0 in., thus giving the proper area moment of inertia for the column

shown in Figure V-1. In this figure, the improvement in the accuracy of
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Figure V. -1 Euler column buckling vs. element size.
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the solution is shown as a function of the square of the ratio of the

finite element length (i) to the total length of the column (L). The

2)2
percent error for an(-= of 0.0625 is in agreement with the solution

obtained by H. C. Martin in reference 6 for the same degree of refine-

ment.

The present finite element was applied to the solution for the

buckling of a square, simply supported flat plate. As indicated in

Figure V-2, the plate was loaded uniaxially with a uniform line load.

By utilizing symmetry, it was possible to consider only one quadrant of

the plate. The plate was modeled using square elements of length and

width, 4, 9, 16 and 25 elements per quadrant were used. The influ-

ence of the mesh size on the solution accuracy is presented in Figure V-2.

As can be seen in that figure, the accuracy of the solution converges

rapidly to the closed form solution which is (ref. 12);

4.112 Eh3
Ncr = (V-2)

12(1-v2,)T?

Also plotted on Figure V-2 arc the results obtained by Kapur and

Hartz in reference 9. Both the stiffness matrix and initial stress

stiffness matrix of the Kapur and Hartz finite element were derived using

the fourth order displacement function for a thin plate in bending which

was first presented by Meiosh (reference 31). The advantage of using

the higher order displacement function is seen in Figure V-2 to diminish

as the mesh size decreases. The results indicate that both solutions
2

have errors of order Since all prebuckling displacements are in

the plane of the plate, the initial displacement stiffness matrix is



L = 80. 0 in.

h = 0.1 in.

E = 1. 0 x 107 psi

- 57 -

Quadrant analyzed

--Present analysis

.06

Figure V-2 Buckling of a simply supported flat plate vs. grid size
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identically zero and hence plays no role in the solution of the flat

plate buckling problem.

The computer program of Chapter IV was applied to the simply sup-

ported arch depicted in Figure V-3. The solution to the arch brings

into play terms containing the element curvature as well as the initial

displacement stiffness matrix. The exact solution for the buckling of

a simply supported thin shell arch subjected to a uniform line load is

given in references 1.2 and 36 as:

qcr
Eh2 472

12(1-v
2) 

_a
2

For the arch shown in Figure V-3, qcr = 275 lb./in. The line load

(IX-3)

required to buckle the arch was computed to be 273 lb./in. using 12 of

the present finite elements to represent the arch.

Cylindrical panels of varying curvature were modeled using the

present finite element and the buckling load was computed. The panels

considered had equal dimensions in the circumferential and longitudinal

directions. The panels were simply supported along all four edges and a

uniform compressive line load was applied in the axial direction. The

well known cylindrical shell curvature parameter, Z, was varied between

1.0 and 10.0 by varying the radius of curvature, It-

Classical solutions (references 12, 15 and 37) for the buckling of

curved panels in the curvature range considered predict a single half

sine wave buckle in both meridional and circumferential directions.

Since only one quadrant of the panels was modeled, it was necessary to

establish that the lowest buckling load did indeed correspond to a single
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Figure V. -3 Simply supported arch with a uniform load.
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half sine wave. This was accomplished by considering two sets of bound-

ary conditions for the interior edges of the panel quadrant analyzed.

Both sets of boundary conditions assumed a single half sine wave in the

circumferential direction but one set assumed symmetry about the midline

in the longitudional direction and the other set assumed asymmetry. In

each case, 25 elements were used to model the quadrant. Table V-1 gives

the results of these analyses. The symmetric solutions give the lower

buckling load in each case, hence, the finite element solution produces

a buckling mode shape which is compatible with classical solutions.

Kx

SYMMETRICAL SOLUTION ASYMMETRICAL SOLUTION

0 4.06 6.52

1 4.08
4.33

6.53
5 6.66

10 5.08 7.02

TABLE V-1 BUCKLING COEFFICIENT FOR CURVED PANELS

As is established by Rehfield in reference 15, boundary conditions

play an important role in the buckling of curved panels in the curvature

range under consideration. The classical solution of references 12 and

37 for curved panels with simply supported edges involve boundary con-

ditions for the inplane displacements, u and v, which are incompatible

with the present analysis. Specifically, during buckling, u is.assumed

to be zero along the straight edges of the panel and v is assumed to be

zero along the curved edges. In reference 15, the solution to the

buckling of a curved panel with boundary conditions which permit inplane

boundary displacements which are parallel to the simple supports is
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presented. It is these results which are used as the basi.s of comparis
on.

Figure V-4 shows the convergence of the present analysis to the class
ical

solutions of reference 15 as the number of elements is increased. The

edges of the panels are simply supported. Panels with curvature para-

meters, Z, of 1, 5 and 10 were investigated. In each case, the answer

converges to the classical solution rapidly as the number of elements

used is increased above nine. per quadranb.

Figure V-5 illustrates the geometry of the simply supported curved

panel with a cutout which was analyzed using the present finite element.

The circumferential and axial lengths of the panel are equal. The

cutout is such that its circumferential and axial lengths are also

equal. Panels having curvature parameters of Z = 0, 1, 5 and 10 were

considered. Cutout sizes having ratios of cutout length, a, to panel

length, L, of .1, .25 and .5 were investigated for each panel curvature

parameter value. In each case 21 elements were used to represent the

quadrant analyzed. Since the stress distribution and deformations of

the panel due to the initial load are the parameters involved in the

initial stress and the initial displacement stiffness matrices, respec-

tively, it is instructive to first consider the stresses and deformations

which result from the application of a unit axial line load to the panel

shown in Figure V-5.

Shown in Figure V-6 are stress distributions between the edge of the

panel and the edge of the cutout along the e axis (i.e., at X = 0). This

is the line of maximum stress concentration. The value of the curvature
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Figure V-4. - Buckling of simply supported curved panels vs. grid size.
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Figure V -5. Geometry of the curved panel with a cutout.
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parameter associated with the stress distributions in Figure V-6 is 5.

However, the plots shown in Figure V-6 are representative of values of

Z from 1 to 10. The change in the stress distribution as a function of

curvature, for the range studied, is negligible. As indicated in

Figure V-6, the influence of the cutout on the stress field is maximum

at the edge of the cutout and diminishes sharply at points near the

simply supported edge. The stress distribution shown in Figure V-6 for

the case of 
a 
= .1 and .25 are in good agreement with the results given

by Savin (ref. 40) for an infinate flat plate with a square cutout. In

reference 41, Savin has shown that the stress distribution is not greatly

influenced by curvature for the range of Z considered herein.

Figures V-7, V-8 and V-9 show the deflections, w, normal to the

middle surface along the x = 0 axis which result from a unit axial line

load applied to a simply supported curved panel with a cutout. Figure V-7

presents the results for the smallest cutout considered, a/L = .1. The

influence of the cutout on the deflections markedly increase as the

curvature of the panel increases. This same trend is very much in

evidence in Figures V-8 and V-9 which show the deformations computed for

the case of cutout sizes of an a/L = .25 and a/L = .5 respectively.

Thus, while the stress distribution was found to be insensitive to cur-

vature changes, the displacements normal to the panel middle surface are

not. In addition, Figures V-7, V-8 and V-9 show the normal deflection at

the edge of the cutout increases sharply as the size of the cutout

increases.

Figures V-10, V-11, V-12 and V-13 illustrate the reduction in the

buckling parameter Kx as a function of the cutout size for panels with
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curvature parameters of 0. (a flat plate), 1., 5. and 
10., respectively.

These plots show the influence of increasing the cutou
t size is progres-

sively more drastic as the curvature is increased. This 
increased sensi-

tivity to cutouts as the curvature increases is directly 
attributable to

the sharp increase in prebuckling deformation which was shown to 
occur in

figures V-7, V-8, and V-9. For example, when the curved pane
l with Z = 10

and a/L = 0.5 was analyzed without using [g2], NcR was 4.70 lb/in. How-

ever, when the problem was resolved, using [K I, Ncr was 0.439 lb/in.

The larger the prebuckling deformations, the greater the influence
 of the

initial displacement stiffness matrix. It should be noted that even in

this case, the prebuckling deformation, w, is more than an order of

magnitude smaller than the panel thickness.

The data used to plot figures V-10,V-11,V-12, and V-13 was cross-

plotted to produce figure V-14. In this figure, the influence of curvatu
re

on the buckling strength of panels with various cutout sizes is shown.

When the cutout is small, the buckling strength of the panel is seen to

increase as the curvature increases. This is the same trend exhibited by

curved panels with no cutout. However, for panels having a larger cutout

(a/L=0.25 and 0.50) this trend is reversed. For the larger cutout sizes,

increasing the curvature reduces the buckling strength. There are two op-

posing trends involved here. On the one hand, curvature tends tp stiffen a

panel, while on the other, curvature increases the magnitude of the pre-

buckling deformations.

It is clear from the preceding that the initial deformation stiff-

ness matrix becomes increasingly important as the hole size and curva-

ture increasP. This raises a question as to the importance of the non-

linear terms which occur in that matrix. In order to explore this
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question, an iterative approach to the problem was taken. This required

reformulating the problem. First, all of the terms in the [0] matrix

of Chapter III are retained The [0] matrix may now be considered the

sum of two matrices [01] and [-0"]; where [0-T] contains only linear S

terms and [I(' ] contains only squared S terms. Equation IV-4 may thus be

rewritten as

1 iX

1 [ 

[1(0]

-1 + [kV [K211 = (V-4)

where

Xi is the ith solution to equation V-4

Equation V-4 was solved iteratively by making successive computer runs

for the case of a panel having a Z = 10 and a/L = 0.5. This case was

chosen because it produces large values of SI and S2 and hence should

be the most sensitive to the use of the S2 terms. The buckling load

obtained without using the s2 term was 0.43939 lb/in. After three

iterations, the solution had converged to a value of 0.44019 lb/in. This

is a change of 0.182 percent. Hence, the influence of the S
2 

terms in

the initial deformation stiffness matrix Ls seen to be relatively small

for the range of parameters considered in this investigation. However,

for cases involving larger initial deformations an, iterative solution

would be desirable.

While no test data is available to directly substantiate the analyt-

ical results obtained for panels with a square cutout, the test data

obtained by Tennyson (ref. 18) and the conclusions he drew from it are

in general agreement with the findings reported in this chapter. For



76

example, no reduction in buckling strength is shown for a ratio of cutout

radius, a, to the cvlinder radius, R, of 0.03 but when a/R is increased

to 0.08, a 40 percent reduction in buckling strength is found to occur.

Tennyson cites the prebuckling deformation as being a primary factor in

the reduction of the buckling strength.
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CHAPTER VI.

CONCLUDING REMARKS 

A cylindrical finite element suitable for the linear stability

analysis of cylindrical shells has been developed. Energy principles

and variational methods have led to a problem formulation which lends

itself to physical interpretations of the governing matrices of the

finite element. By properly grouping the terms which result from taking

the second variation of the potential energy of the element, it is pos-

sible to identify three distinct types of matrices. These three matrices

are:

1. the conventional stiffness matrix, [K0]

2. the "initial stress" stiffness matrix, [K1], which is a function

of the prebuckling stress distribution.

3. the "initial displacement" stiffness matrix, [K2], whiCh is a

function of the prebuckling deformations.

With the assumption of linearity, the buckling problem was stated

in terms of the classical linear real eigenvalue equation. While the

stiffness matrix was previously derived, the formulation of the initial

stress and initial displacement stiffness matrices is orignial. A

computer program coded in Fortran IV language was developed for use on

the CDC 6600 series computer.

The computer program was used to solve several classes of problems

which have known closed form solutions. Agreement between theoretical

and computer solutions for the column, the flat plate, the arch and the
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curved panel are good. The arch solution bears special note since the

loading in that case is radial. Hence, the applicability of the tech-

nique to pressure-loaded structures is assured. A major difficulty

encountered in the development of the computer program was providing for

enough degrees of freedom to allow adequate characterization of the pro-

blem. The computer core storage required by the program is substantial.

In order to accommodate 36 grid points, representing 216 degrees of

freedom, overlay programing procedures had to be followed in addition to

utilizing the entire core storage of 300,000 octal locations. The

analyses presented in Chapter V indicate that hetter accuracy could be

obtained by using more elements.

The application of the computer program to the buckling of curved

panels with cutouts reveals interesting trends. While test data has

established that, for certain sized cutouts, the buckling strength of a

cylinder is reduced as the curvature increases; intuition dictates that

for small cutouts, the stiffening effects of increasing curvature should

outweigh the detremental effects of a cutout. The analytical results

for the case of a/L = .1 confirms intuition.

A number of areas for additional research are apparent as a result

of this work. By adding beam elements to the existing program,.it would

be possible to evaluate the size of doublers that should be placed

around the cutout in order to develop higher buckling strength. The

convergence of the analysis could be improved in several ways. For

instance, a more complex displacement function could be used in the
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development of the"initial stress" and "initial displacement" stiffness

matrices. While this is conceptually straightforward, the work involved

is formidable. The utilization of an iterative type of solution similar

to that presented in Chapter V, is another possibility for improving con-

vergence. Since the first variation of the potential energy, which is the

basis for the static analysis, actually contains the initial stress and

initial dispalcement stiffness matrices, the load could be applied incre-

mentally until bifurcation occurs. These schemes would substantially

increase computing time.

Since cylindrical structures with cutouts frequently occur in the

design of aircraft and space vehicles, it would be highly desirable if

test programs were initiated to substantiate the analytical findings

presented herein.
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CHAPTER X.

APPENDIX A - THE DEVELOPMENT OF THE CONVENTIONAL,

THE INITIAL STRESS AND THE INITIAL DISPLACEMENT STIFFNESS MATRICES 

FOR THE BEAM-COLUMN AND ARCH ELEMENTS.

Development of the Stiffness, Initial Stress and Initial Displace-

ment Stiffness Matrices for an beam-column and arch are presented in

this appendix.

X-1 The Beam Column

The equation for the second variation of the potential energy for

the beam-column element shown in Figure II-1 is:

627
L 1 0 0 0 0 c,

= I bc dw,xd EA 000 +ONO+
[6. ]

EA
[3 

4,2 0

0 0 0 I/A 0 0 0 0 0 0
dX (A-1)

The strains E, (I) and w,xx are related to the displacementa u and w

as follows:

{i}-} = 
[A]{d} (A-2)

where

[.0

[A] = 0 1 0
0 0 1.

{d}
T 
= Lu>x w,x w,xxj

{d} is related to u and w through a matrix of differential operators.

{d} = 
[D]{g} (A-3)
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where:

where

[D] =

foT

0
d/dx
0 d/dx
0 d2/dx2

(A-4)

Linear and cubic displacement functions for u and w are written as:

{g} = [B]{y}

[B] ' 
[ix0000
0 0 x x2 xd

fllT = 12(1 Y2 Y3 Y4 Y5 Yed

and {y} is related to the displacements at ends 1 and 2 of the beam-

column element by

where

{y} = PTA} (A-5)

[r] =

1 o o o 0 o 
_

-1/Z 0 0 1/k 0 0
0 1 0 0 0 0
o o -1 o o o
0 -3/k2 2/k 0 3/22 1/Z
0 2/R3 -1/k2 0 -2/Z3 -1/k2

{A}T wl 61 u2 w2 02j
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where
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Substituting A-3, A-4, and A-5 into A-2

frj- = [A][p][B][11(A)

{Se} = [G]{6A)

[G] = [A][D][B][r]

Equation A-1 may now be conveniently written as

2u = 
fL 
 {sA}T[G1T[K0 ][G]{(SA}dx. fL -1 {SA}T[G-jTr[1( ][G]{(SA}dX

0 0

L
{6A}Trtui -,T[K2][Glf(SAIdx
0

where, as in section VI

1 0 0 [0. 0 0

4)
[K°J = EA 0 0 0 ; [0] - 0 N 0 ; [K2] = EA (0 (02 0

0 0 I/A 0 0 0 0 0 0

(A-6)

(A-7)

(A-8)

Assuming E,A and I to be constants, the first term of equation A-8

becomes

{M}T[4](SAI
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where

0 SYKKETRIC121

AE,
3

61 41
0

Ai
2 AE

[K2] = EA
1
T

121 61 121
0 3 2 0 3

0

AE

61

AP, AE

?I 0 61 41

AZ2 AE AE2 AE

This is the stiffness matrix for a two dimensional beam-column ele-

ment. This matrix agrees with the stiffness matrix for a beam-column

published in reference 5.

The second term oE equation A-8, assum ng N a constant, is

where

{SL}T[K]{±it}

0

0 SYPCIETEn C
59.

] 29.

10 15

[K] = N
0 0 0

6 1

52. 10

° TIT 30
0 .

10
_
]5
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This is the initial stress stiffness matrix for a two dimensional

beam-column element. This is exactly the matrix obtained in reference 5

for a beam column initial stress stiffness matrix.

Assuming 4) to be a constant over the length of the element, the

third matrix of equation A-8 becomes

where

{6A}T[KW8A}

0

SYMMETRIC
642
5k

2

-4)
2

0 10
524)2k
15

[Ke j = E A

0 -
R.

_ 66 
2

/2_ 1 664)
2

2, SQ 10 2 5k,

(0
2

_ 1094)2
(02 24)

2

0 10
0

1030 15

This is the initial displacement stiffness matrix for a two dimen-

sional beam-column element.

X-2 The Arch 

The strain displacement relations for the arch element shown in

figure A-1 may be stated in the form of equation A-2 by redefining the

terms on the right hand side of that equation as follows



- 91 -

Figure A-1. Arch element



Eq=
1/R 1 0 0

0 010
0 001

{d}T Lw 1Xxj
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The remaining matrices and matrix operations for the arch are

exactly the same as those for the beam-column. The resulting conven-

tional, initial stress and initial displacement stiffness matrices are

as follows:

[K] = EA

1
9,

1 13 2, .1_ 121 _
2R 35 R2

2, 11
2 

_ 61
12R 210 R2 Ai2

-1
2R

SYMMETRIC

k3 41
2 AZ

105R

12R

1 9 121 13Z
2 61 1 13k 121s

2R
70R

2
A2

3
420R

2
AZ
2 2R 

35R
2 '

1 13k2 61 k
3

21 Z 11 2
2

61 .2-3 41
12R

420R
2 ,

Ak
2

140R
2 A2 12R 210 R2

AZ2 105R2
AQ



[Kiel N

[q] = EA

0

SYMMETRIC

6

5k

2,0 — 1 2—
10 15

0 0 0

0 
6 1 0 6

--
52, 10 52,

93

1 0 22
° — 10  30 10 15

0

664)2
2, R 

+  
52,

0 
52(1)2k

- 10 15

0

SYMMETRIC

0 0

(1) 664)2 t2 66cP2
R 52, 10 R R

0
cp,2 1094)2 

0 _ efl
2

10 30 10
2cP2
15
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CHAPTER XI.

APPENDIX B.- THE PRINCIPAL MATRICES IN THE DEVELOPMENT 

OF THE INITIAL STRESS AND INITIAL DISPALCEMENT MATRICES 

FOR THE CYLINDRICAL ELEMENT

The explicit statement of the principal matrices involved in deriving

the Initial Stress and Initial Displacement Stiffness Matrices is given

in this Appendix. The terminology used herein is consistant with that

used in Chapter 11I.

[A] -

00010 0000000

00000 00-10000

00000 0 0 0 0 -1 0 0

0000
1
R
1000000

00
1
R
00 0 1

R
0 0 0 0 0

0 IT
000 0 0 0

1
-T 0 0 0

00000 0
1
7 0 0 0 1- ,-

124
0

0
—

0 0 0 _ 1
-20-

3
2R

0 0 0 0 0

(B-1)
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[0] =

a
ax

a
BO

0

a
ax

a
ao

o o

o o

o o

o o

o o

1

o

o

o

a
ax



ab

[0] =

(x-a) (Re-b) -x (RO-b) xRe -120(x-a) 0 0 0 0 0 0 0 0

0 0 0 0 (x-a) (Re-b) -x(Re-b) xRe -R0 (x-a) 0 0 0 0

0 0 0 0 0 0 0 • (x-a) (Re-b) -x(RO-b) xRe -120 (x-a)

Re-b -(RO-b) Re -Re 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 -(Re-b) Re-b -Re RO

0 0 0 0 0 0 0 0 0 0 0 0

(x-a) -x x - (x-a) Re-b -(Re-b) Re -Re o o o o

o o o 0 (x-a) -x x - (x-a) 1(x-a) (Re-b)
- i(Re_b) _le - Rile (x_

6)

0 0 0 0 (x-a) (Re-b)# - i(RO-b) - Rite (x-a) -(x-a) x -x (x-a)—xRite

0 0 0 0
(sal

-
R

x
FT

(x-a) 0 0 0 0R R

(x-a) x

2R

x

- 2R

(x-a) 3

2R (R8-b)

3
- —

2R 
(Re-b)

3R0
—
2R

3R0
-2 2 -2 2-

2R 2R
-

2R

(B-4)
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TABLE 8-1 Elements of [G]T[kl][G]

h
2,2 

N
2 

(X-a)2(118-b)2 

R2

h3 2 = -12 
(x-a)(128-b)2 

N
2 
(x-a)

2(R0-b)
, - 

h8,2 - -N2 R2

X(X-a)(RO-b)
2

h9,2 = N12 
(x-a)(R0-1)2 +N

2 
x(x-n)(E8-h) 

h14 2 = "2 
XR0(x-a)(R0-b) 

, 
R
2

h15,2 = N12
Re(x-a)(Re-b) -N2 x(x-a)(Re-b) 

R R

h20,2 = L1
, 
2 

R8(X-a)2(R0-b) 

R
2

_ Re(x-a)(R8-6) (C-a)2(R0-b) 
h21,2 = N12 R +N2

h3,3 = N1(110-b)2 +2N12(X-a)(128-6) +N2 (C-a)2

h8 3 " 
m
12 

x(R
R
e--b) 2  +N2 

a) (Re-b) 
,- R

h9,3 = -N1(RO-b)2 -N12 [(X-s)(118-b) + X(R8-b)] -N2 (1C-a)

XRe(Re-b) RO(X-a)
h14,3 = -N12 R -N2 R
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TABLE B-1 (Continued)

h15,3 = -N1 Re(RO-b) +N12 [MX-a) +X(RO-b)j +N2 X(X-a)

Re(X-a)(RO-b) RO(X-a)2 
h20,3 = N12 +N2

h213 = -NIRO(RO-b) -N12 [(X-a)2 - (X-a)(RO-b)] -N2 (X-a)2

2 ,2X (R0 -b)
hR,R = N2  

R4

x(Re-b)2 x2(Re-b) 
h9,8 = -N12 R -N2

X2RO(RO-b) 
h
148 = -N2

R2

XRO(RO-b) X2(R0-b) 
h15,8 = N12 R +N2 R

XR0(X-a)(R0-b) 
h20,8 - N2

R2

XR8(R8-b) X(X-a)(RO-b)
h21,8 -N12 R "2

h9,9 = N1(R8-b)2 tN12(R0-b)(X-a) +N2 X2

h14 9 = "12 
XR0(R0-b) X2R0

R 
,

+N
2

h15,9 = -N1(R8)(RO-b) -N12 X[120+(R0-b)] -N2 X2
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TABLE B-1 (Concluded)

R6(X-a)(R6-b) 
"2 g 

ROX(X-a) 
h20,9 = -N12 

h21,9 = N1RO(R6-b) +N2 [XR6+ (X-a)(126-b)] +N2X(X-a)

h14,14 = N2 (")2X2 
R

X(R6)2(X-a) 
h20,14 - N2

R
2

h X(R6)2 X2R6
15,14 = -N12 R N2 R

X(120)2 XR6(X-a) 

R R
h21,-14 = - 

m 
12 +N2

= N1(R6)2 + 2N12 XR6 + N2 X
2

h
15,15

(R8)2(X-a) ROX(X-a)
h20,15 = N12 g +N2

= -N1026) -N12 [XR6+RO(X-a)] -N2 X(X-a)h21,15

(R6)2(X-a)2 h20,20 = N2
R
2.

(R6)2(X-a) RO(X-a) 
h21,20 = -N12 R -N2 R

N1(116)2 +2N12 RO(X-a) +N2 (X-a)h21,21
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TABLE B-2 Elements of [G]T[K2][G]

C5 C53
e2,1 R 

1 
(X-a)(RO-b)2 + R (X a)

2
(RO-b)

e3,1 = - (RO-b)1C21(RO-b)+C51(X-a)] -(X-a)1C23(RO-b)+C53(X-a)]

Cc, C53 
e8,1 - - X(RO-b)

2 
- X(X-a)(RO-b)

e9,1 = (R6-b)[C21(Re-b)+C51X] + (X-a)1C23(RO-b) + C53X1

e14,1 
C51 C53

XRe(RO-b) + e(c -a)+ m

e151 = (RO-b)[C2IRO+C51X].(X-a)[C23R0+C53X]

e20,1
C51

RO(X-a)(120-13)
C53 

REI(X-a)2

e21,1 = (Re -b)[c21Re+c51(c-a)l + (x-a)[c23ite+c53(x-a)]

C53 C54
e2,2 = -i- (X a)(RO-b)

2 
+ (X-a)2(RO-b)

(x-a)(RO-b)1C35(RO-b) + C45(X-a) + 
C55

4- 1. (X-a)(RO-b)]

e3,2 = -(RO-b)[C23(RO-b) + C53(X-a)] (X-a)[C24 (RO-b)+C54(X-a)]

1
U 

C45
+ -a)(RO-b)[-C25(RO-b) + (X-a)(RO-b) - C55(X-a)]
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TABLE B-2 (Continued)

e7,2 = - 
C51 

(X a)(RO-b)
2 -C

53 R 
(X-a)(Re-b)

C53X C54X
e8,2 = - R  (RO-b)2 - R (X-a)(RO-b)

- R tY WRA hire (PO h) + C. _45_X + _ C55 R (Re-b)]

e9,2 = (Re-b)[C23(Re-b) + C53X] + (X-a )[c24(Re-b) c54x]

+ 
1 (X-a)(Re-b)[C25(Re-b) - C45 R (RO-b) + C55X]

OR X
e13,2 = C51 -ff- (X-a)(RO-b) + C53 7 (X-a)(RO-b)

C53 xr 
X:0 

el4,2 = (RO-b) + C54 (X-a)+ * (X-a)(Re-b)[C35RO+C45X+C
ssx:e]

e152 = -(RO-b)[C23RO+C53X] - (X-e)[C24Re+C54X]

1 1 (V NOVV k\rr V Sfl XRO
+ — "045    - C55X]

e19,2 = -051 IS 
(X-a)(RO-b) -

C53
(X-a)2(Re-b)

RO
e20,2 = C53 11 (X-a)(RO-b) -054 R (X-a)2

RO- 1.(X-a)(RO-b)[C35REI+C45(x-a) + C55 (A-a)]
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TABLE B-2 (Continued)

e21,2 = (RO-b)[C23R0+C53(X-a)] + (X-a)[C24RO+C54(X-a)]

1 OR
+ (X-a)(RO-b)[C25110-C45 (X-a) + C55(X-a)]

e3,3 = C22(RO-b)2 -C42 R (X-a)(RO-b)2 +C52(X-a)(RO-b) -C24 Ili (X-a)(110-6)2

C
54 C45

(X a)
2
(RO-b) +C25(X-a)(RO-b) - (X a)2(RO-b) +C55(X-a)

2

e7,3 = (Re-b)[c21(Re-b) +C51(X-a)] + [C (RO-b) +C53 (X-a)]

e8 3 = C23(RO-b)2 +C53(X-a)(RO-b) +C24 X(RO-13) +,C54 X(X-a)

X t 1,\2 r X (v )(on kN 2  X fir W00% h\+ C25 -R. - ‘,4c kn-a/knu-u) + C55,_, R2 R

..\2 , X 
C24

e9,3 -C22(Rv
A 
-u) L'42 ("-b)

2 - C52X(Re-b) + R (X-a)(RO-b)
2

X
+C54 it (X-a)(Re-b) -C25(X-a)(RO-b) +C45 K (X-a)(120-b) -055X(X-a)

e
13,3 = -C21110( 

RO-b) -051R0(X-a) -C23 X(RO-b) -053 X(X-a)

e14,3 = - C23 RO(R
O-b) -053R0(X-a) -1/24x(RO-13) -054x(x-a)

XRO 0 ton s r (v \ton T.N 0 (Y '11
[-%-25knu-"J/ m45 \fl-aiknu-ui
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TABLE B-2 (Continued)

e15,3 = C22R0(Re-b) '42 
XRB

(Re-b) +C52X(RO-b) - C24 
113._

(X-a)(Re-b)

-05411- (X-a)(RO-b) +C25R0(X-a) -C45 
XRE) 

(X-a) +C55X(X-a)

e19,3 = C21R0(RO-b) +C51R0(X-a) +(X-a)[C23(RO-b) +C53(X-a)]

e20,3 = C23RE(R -b) +C53Re(X-a) +C24(X-a)(Re-b)+ C54(X-a)2

+C25 Et) (X-a)(RO-b) -C45 
Re 

(X-a)
2
(Re-b) +C55 Re (c-a)2

e21,3 = -C22Re (RO-b) +C42 12 (X-a)(120-b) -052(X-a)(Re-b) +C24 I (X-a)(RO-b)

C54 Re
+ --- (X a)

2
(RO-b) -C25R0(X-a) +C45 -R- (X-a)2 -C55(X-a)

2
12

e8,7 . CR1 X(RO-b)
2 
+C53 LC

!_ 
(Re-b)

e9,7 = -(RO-b)[CTL(RO-b) +C51X] -X[C23(RO-b) +C53X]

XOR X2OR
e14,7 = C51 R (RO-b) -053 R 

el57 = (RO-b)[C21RO+C51X] + X[C23RO+C53X]

e20,7 = C51 
OR ROX 

(X-a)(RO-b) +C53 (X-a)

e21,7 = -(RB-b)[C91R0+c51(X-a)] -X[C23RO+C53(X-a)]
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TAKLE B-2 (Continued)

X2X 
e8,8 = C53 (RO-b)

2 
+C54 (RO-b) +C35 R (RO-b)

2

2 X2
+C45 - (RO-b) +C55 (RO-b)

2

i. .
R-
2

e98 = -C23(R0-02 -053X(R0-1) -C20 (04) -c54x2 -c25 
R 
(R0-02

2 2 X2
+C45 (Ro-b) (RO-b)

R
2

X2e13,8 = -051 MY. (RO-b) -053 -- (RO-b)

XRO „ , X2R0 XRO
e14,8 

r ,
"
„
‘I

-1, 
)) 4:54 - C35 kRu-t);

X2 X 0 2R
-c45 -ir (RO-b) - C55 (RO-b)

P15,8 = C23R (RO-b) +C53X(RO-b) +C24ROX +C54X2 +C25 T. (RO-b)

x2R 
X20

-ce r (RO-b) +c55 (RO-b)+_.) 9

X
el9,8 = C51 

XRO 
(RO-b) +C53 i (X-a)(RO-b)

XRO
e20,8 = C 

RR
O 

3
r3 (X-a) (RO-b) + crz -; T.,

XRO
X-a) +C35 —r (RO-h)

(X-d)(RO-b) +C55 ?C-13-1 (X-a)(RO-b)
X

R2



105

+C54 R  (RB-b) -c25xile +c45 -c55x

TABLE B-2 (Continued)

e21,8 = -C R -23-0(-R0-13) -053(X-a)(RO-b) -C24)(Re -c54x(x-a)

XRO
-C25 .?(

RO (RO-b) +C45 (X a)(RO-b) -055 IC- (X-a)(RO-b)
-11 R2

e9,9 C22(Re-b)2 -C42 217Ci- (110-b)2 
+C52X(RO-b) -C24 '1 (RO-b)2

2 
  n X

2 
  sr v2-054 (Re-b) +C25X(RO-b) (RO-b) +u55A

e13,9 = C21110(RO-b) +C51ROX +C23X(Re-b) +C53X2

e14,9 = c23Re(Re-b) +c53xRe +c24x(Re-b) +c54x2 +c25 XRO (RB-b)

X2RO 
k
in
Au
, 
-o) 
r% 

+u55 
X2

-u45 
R0

R2

X"
 (RO-b) 
„ .7,nn „ XRO

e15,9 = -C22R (RO-b) +u42 R kno -052 ALKV—D) -R- (Re-b)

X2 X2R0 2

e19,9 = -021Re(Re-b) -c51xeR - (x-a)[c22(Re-b) +cs3x]

e20,9 = -023Re(Re-b) -c53xRe -1/24 (X-a)(RO-b) -054X(X-a)

, Re Iv %/ n L .% XR8 e \foal 1.1 XREI 
-L25 

R 
‘,A-adik,Ro-o) +C45 \X-ay ks.,-L,) -055 (X a)

2
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TABLE B-2 (Continued)

RO XR6
e21,9 = C22RO(RO-b) -C42 -IT (X-a)(RO-b) +C52 (X-a)(R9-6) -C24 --IT (RO-b)

-c54 - (X-a)(R6-6) +C25XR0 -C45 xx0 (X-a) +C55X(X-a)

XR262 X20R
e14,13 ' C51 R 4-053 R

e15,13 = -C21R292 -051XR6 -c23fle -053X2

O
e20,13 - -051 

R202 X
R
R 

R (X-a) -053 (X-a)

e21,13 = C21R292 +C51(X-a)R0 +C23XR0 +C53X(X-a)

XR202 X2R0 XR202 , X2R6 x2R2e2

e14,14 CD3 R +C54 R +u35 R -rnu45 R C55  2

2n9 r vn v n „9 XR2O2

615,14 - -C23R u- -̀ -'53AR‘i -L54')- -C25 R

XR202 XR6
e19,14 = -051 -053 (X-a)

R292
e20,14 = -053 -M7

XRe x11202 XR0
X-a) -054 -7- (X-a) -C35 R-- -C45 (X-a)

XR202-055   (X-a)

R
2
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TABLE B-2 (Continued)

n2A2  +C53R0(X-a) XR202 
e21,14 = C23A u  XR0 +C54X(X-a) +C25

- C45 
A11202 

(X-a) +C55 
XR0 

(X a)
R2

R

r
XR262 X2Re2A2 XR202 sr ,

e15,15 = ''22R R md52A„f‘u —C24 
-054 R - +C25XR0

X2Re 0-C45 ---- +C55X'

e19,15 = c21R202 +c51Rex + (x-a)fc23R0 +c53x]

n9n2 w-non in nn
e20,15 = C23n-v m'53An.° tu24av (X—a) +C54X(X—a) +C25 

R2ir_ 
(X-a)

XR 
R
20 2 

XRO-c45 2 (X-a) +C55 (X-a)

g202 xR2o2
e21,15 = -022 R262 C42 -a) -052 RO(X-a) 4. 024 -

XR0 xRe
+ C54 (X-a) -025 XR.O +C45 (X-a) - C55X(X-a)

e20,19 C51 
R2
R
2 Re
(X a) +C53 TET (X-a)2

0 

-e21,19 = -C21R2 02 -051R0(X-a) (X-a)[C23R0 +c53(x-a)1

R202 Re R  02 Re
e20,20 = C53 -7- (X-a) +C54 --R-(X-a)2 +C35 (X-a) +C45 (X-a)2

+C55 It202 (X-a)
2

R
2
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TABLE B-2 (Concluded)

e21,20 = 
242  r DelV \ r (v N2  R202 

C23R -053R0(X-a) -•-50A-a) -C25 (X-a)

R202 RO
+C45  2- (X-a)2 -055 (X-a)

2

, R20 2 R20 2 Re
e21,21 C22"

242 
-u42 R  (x-a) +C52Re(X-a) -C24  R (X-a) -054 (X a)

2

+C25Re(X-a) -C45 RR (X-a)
2 +C55(X-a)

2

where:

-
C21 = 131; C51 = \ 

p

32; C22 = 
2 

' 
_,_ (1 

2
v) 

s2
2

1-v 0  1+v 
C32 - 2 P2; C42 = u131; C52 2 ki32

1-v  0 2 
+ 
(1—v)  2

C54 = 2 pi; C55 p2 2 P1
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CHAPTER XII

APPENDIX C - COMPUTER PROGRAM LISTING 

The computer program used to obtain the results presented in

Chapter V is presented in detail in this Appendix. This program is

called STABL. The input data required are as follows;

NC number of cases to be run

N(6 number of finite elements

NOE number of nodes

NE number of degrees of freedom to be constrained

AZ(MN) length of the finite element, MN, in the X-direction

BZ(MN) length of the finite element, MN, in the 6-direction

CZ(MN) curvature of the finite element, MN

EZ(MN) modulus of elasticity of finite element, MN

TZ(MN) thickness of finite element, MN

XMUZ(MN) Poisson's ratio for finite element, MN

N1(MN), N2(MN) the four mode points of finite element

N3(MN), N4(MN) MN, read counter clockwise, with N1 and N2 estab-

lishing the element X-axis

JR(I) a list of the degrees of freedom to be restrained

FSRC(I,l) the vector of applied forces

A listing of the program follows. Comment cards are included in

the listing to provide clarifications of program functioning and

terminology.
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OVERLAYILINK00.01.
PROGRAM STAHL (INPUTOUTPUT.TAPE2•TAPE0/
COMMON/ZZI/AZ(301,82(30)ICZ(30)vDM2t30).DB2(30).XMU2(30/

1 /ZZ2/XKO(24.24) •

2 /223/N1(50)042(50)vN3(50).N4(50)
4 /Z25/JR(150)
5 /226/FORCI216.1)
6 /ZZ7/X(216)
7 /228/5(3.24)v

8 /229/5TRSR(3).
9 /2210/XKI(24,24/4
9 /2Z11/XE(24)
9 /2212/8TA1v6TAP
9 /2213/XK2(24•24)
9 /Z214/50

LINK=ALLINK.
READ 100004C/S0

1000 FORMAT (13.E12.4)

NOC=O
1001 CALL OVERLAY (LINK. 1 •0•0 ) •

CALL OVERLAY(LINK.2,040),

NOC=N0C+1

IF(NOCoLT•NC) GO TO 1001
STOP

END.
OVERLAY(L/NX4110).

COMMON/221/A2(30),E42(30).C2(30),DM2(30)4082(30),XMO2(30)
1 /ZZ2/XKO(24.24) •
2 /223/N1(50)042(50).N3(50).N4(50/

4 /225/JR(150)
5 /226/FORC(216,1)
6 /ZZ7/X(216)

7 /228/5(3v24),

8 /229/STRSR(1).

9 /2210/XKI(2441241.
9 /2211/XE(24)
9 /2212/8TA1o8TA2

9 /2Z13/XK2(24.24)
9 /2214/50
DIMENSION IPIVOT(216).XMX(216.216)•1NDEXI216.21vE2I30$07(30).

C A 15 LEN. Ph/ X OIR1 p ts LEN. IN THETA DIP, C IS CURVATURE.XMU IS
C POISSONS PAT 100 XKO IS THE ELEM ST IFF• MATPIXa
C NO=NOMEER OF ELEMENTS .

NOOE=NUM8EP OF 
NODeS I



C IF S0=0. BETA SORD TERMS ARE IGNORED, IF S0=1. BETA SORD TRMS USEC
C NE=NUMBER OF DOF TO BE RESTRAINED 9

1001 READ 1010,10•NODE•NE
101 FORMAT (313)

JDOF=6*NODE •
C INITIALIZE MASTER STIFFNESS MATRIX.XMK. TO ZERO

DO 51 11=1•JDOF •
DO 51 JJ=1•JDOF •
XMK(II•JJ)=0•0

51 CONT/NUE 9

DO 1 MN=1,NO •
READ 105•AZ(MN),BZ(MN).(CZ(MMEZ(MN)eTZ(MN),XMUZ(MN)

105 FORMAT(6E12.4)

DMZ(MN)=EZ( MN)*TZ (MN)/( 1 e—XMLIZ (MN)**2
DAZ(MN)=DMZ(MN)*TZ(MN)**2/12.

• READ THE NODE NOS IN COUNTER CLOCKWISE DIR. FOR ELEM. MN
READ 109•NI(MN)oN2(MN),N3(MN)IIN4(MN)

109 FORMAT (413) •

PRINT 53.141N
53 FORMAT (/40X.*ELEMENT NUMBER-1013)

PRINT 54,AZ(MN)0SZ(MN).CZ(MN),EZ(MN)eTZ(MN)oNI(MN),N2(MN),N3(MN).
INA(MN)

54 FORMAT (/1)(0101k=*.E12•4.*B=*,E124.4**C=*.E12•41*E=*,E12.4•*T=*,E12.4
1e*N1=(t•13.*N2=*.13,*N3=*•13,*N4=*•13)
CALL ELEMKO (MN) •
CALL ADDUP (MN.XMK,XXO)

I CONTINUE •
C READ IN THE D.O.F. TO BE ELI MINATED•JR( NE )

READ 121,(JR(1).1=10NE)
121 FORMAT (2513) •

PRINT 55
55 FORMAT (/40)(0113EGREES OF FREEDOM TO SE ELIMINATED*)

PRINT 121.(JR(1).1=1,NE)

C ELIMINATE NE DEGREES OF FREEDOM FROM XMK(I,J) TO OBTANTAIN THE
• REDUCED MASTER STIFF MATRIX WHICH WILL STILL BE CALLED XMK BUT IS
• OF ORDER JDOF—NE

CALL WASH (JDOF.NE•XMK)
JDOFR=JDOF—NE •

C ZERO OUT APPLIED FORCE JECTOR •
00 3 1=1.216
FORC(I•1)=0.0 go

3 CONTINUE •
C READ IN APPLIED FORCES •

READ 20(FORC(1,1),1=1•JDOF )
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2 FORMAT (6E12.4)

C REDUCE FORCE VECTOR TO CORRESPOND TO RED. MASTER STIFF. MATRIX

CALL REDFORC (JDOF,NE),

C PRINT REDUCED FORCE VECTOR•STILL CALLING IT FORC

PRINT 133 •

133 FORMAT I/40X**FORCES APPLIED TO UNRESTRAINED 0•0•F*//

PRINT 137,(I•FORCII.1/0i=1,JDOFR)

137 FORMAT ( 4XOEFORC(*913.*)=*.E12.4)

C SOLVF'FOR DISPLACEMENTS •

CALL MATINV (XMK,JDOFR•FORCrI,DETERM•IPIVOT,INDEX,2115.1SCALE)

C XMK—INVERSE IS NOW STORED IN XMK

C NAME DISPLACEMENTS. AT THIS POINT THEy ARE STORED IN FORC

DO 5 1=1,JDOFR

X(I)=FORCII•1/

5 CONTINUE •

C REORDER DISPLACEMENTS TO AGREE WITH NODE NUMBERING

CALL EXPDEF (JDOF,NE).

C PRINT OUT DISPLACEMENTS r

PRINT 141 •

PRINT 145r(I.X(1),1=1,JDOF)

ppwIND 2.
WRITE TAPE 20II XMK(I,J).1=1,180),J=1,180)•NO,JDOEINEsJDOFRe

141 FORMAT I/50X1*DISPLACEMENTS*//

145 FORMAT ( 4X0IXI*11131*/=*,E12.4)

C DEVELOP THE STRESS MATRIX FOR EACH ELEMENT AND COMPUTE THE,

C INPLANE STRESS RESULTANTS AT THE CENTER OF THE ELEMENT,

DO 11 1=1,216

DO 13 J=1,216

13 XMKII,J)=0.

DO 11 MN=1.NO,

CALL STRESS (MN),

C COMPUTE THE ELEMENT PRESTRESS MATRIX•XKI

CALL ELEMKI(MN),

C COMBINE ELEMENT XKI MATRACIES IN TO A MASTER PRESTRESS MATRIX

CALL AODUP IMN,XMKrXKI/

C COMPUTE ELEMENT PREBUCKLING DEFORMATION MATRIX

CALL ELEMK2 (MN)

C COMBINE ELEMENT XK2 MATRAC!ES INTO A MASTER K2 MATRIX

CALL AIDOUP(MN,XMK,XX2).

11 CONTINUE,

C THE MASTER K1 MATRIX IS IN,XMK

C REDUCE XMK1 TO PROPER ORDER

CALL WASH (JOOF•NE•XMK)

REWIND 3



WRITE TAPE 30(001K(I•J)91=14JDOPR)•JAI•JDOFR)
RETURN.
ENO.
SUBROUTINE ELEMKO (MN) •
COMMON/221/AZ(30)032(30).C2(30)*DMZ(30). OB2(30).KMUZ(30)

/ZZ2/XKO(24.24)
2 /223/N1(50)*N2(50)0IN3(50).N4(50)
A=AZ(MN)
S=BZ(MN)
C=CZ(MN)
om=roz(.N)
os=nnz(m)
xrAtir-niunpoN)
Ae=A/E1 •
BA=21/A
ATB=AAS •
AB3=A/B**3 •
BA3=M/A**2
KKO(Iol)=XKO(7.7)=KKO(13,13)=KKO(19.19)=DMA(BA/3•+ABA(le-XMU)/6•)

KKO(2.1)=KKO(14113)=KKO(20.7)=KKO(1903)=DMA(1.+XMU)/8• •

KKO(S.1)=XKO(910)=KKO(19,15YAKKO(21•19)=-7**XMU*BAOMAC/40.

KKO(4rI)=KKO(10.7)=KKO(16.13) =W0(22.19)AKKO(3.1)*A/6.
KKO(S01)=KKO(11.1)=KKO(17,13)=XKO(23,13)=-B**2*XMUADMAC/40.
XKO(6.I)=KKO(12,7)=KNO(24113)=XKO(19•18)=XKO(5.1)*A/6.
KKO(7.1)=XKO(19.13)=-OM*(BA/3•-(1.-KMU)*AB/12.)
KKO(81.1)=KKO(19.2)=XWO(14•7)=KKO(20.13)=-DMA(10-2•AXMIA/8e
XKO(1011)=KKO(22113)=XKO(19,16)=XKO(7.4)=-XKO(4el1)
KKO(12II)=KKO(7.6)=KKO(18,13)AKKO(24.19)=-KKO(601)
KKO(13,1)=KKO(19,7)=-XKO(1.1)/26
KKO(14.1)=KKO(13,2)=KKO(8,7)=KKO(20.19)=•-XKO(2•I)
KKO(1501)AKKO(21.1)=WK0(19.3)=KKO(19.9)=.-3•AXMV*BADMAC/40•
KKO(160I)=KKO(13.4)=XKO(22.7111KKO(19.10)=ATBAXMU*DMAC/80.
KKO(17,1)=KKO(2301)=WK0(13.11)=KKO(13.5)= B**2*XMU*DM*C/60.

KKO(18.1)=KKO(19,6)=KKO(24,7)=KKO(13,12)=XKO(5el)*A/9.
KKO(19.1I)=KKO(13•7)=OM*(BA/6•-(lo-XMV)*AB/6e)
KKO(20,1)=KKO(7.2)=KKO(13.8)=KKO(19,14)=-KKO(Bol)
KKO(22.1)=KKO(19•4)=XKO(1607)=KKO(13.10)=.-KKO(16,1)
KKO(24,1)AKKO(13.6)=XKO(I8s7)AKKO(19.12)=-KKO(18.1)
KKO(2,2)=KKO(B,8)=KKO(14,14)=KKO(20,20)=DMAUAB/3•)*(1.+08*(C**2)/'

IOM)+((le-KMU)ABA/6•)*(le+4•ADB*(CO2)/OM)11
KKO(3.2)AKKO(918)=-7.*AADMAC/40.+D8*(240-3•AXMU)*C/(2•AA)
KKO(A.2)AKKO(22.2)=KNO(I4,10)=KKO(16,IA)='..A**2ADMAC/400-XMUADBAC/

12.
XKO(5.2)=W0(11,B)=KKO(IT•14)=KKO(23,20)=-7•*ATBADM*C/2408-DEIACAI
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1(2.-XMU)*S/(12.*A)+7.*A15/20.)
XKO(6,2)=XKO(18.&)=XKO(149i2)=XKO(24,20)=-A*AT8*DM*C/240.-DB*C*(

IXMU*A/12.+A*AB/208)
XKO(8,2)=XKO(20,14)=DM*(A8/6**(1.+DB*C**2/DM)-(14-XMW*BA/60*(10+

14.*Dp*C**2/0M))
XKO(9,2)=XKO(8,3)=-3.*A*DM*C(408-(2.-3.*XMU)*DB*C/(2.*A)

XKO(10.2)=XKO(16,2)=XKO(14.4)=XKO(22,14)=DM*A**2*C/60.
WO(11,2)=XKO(8.5)=W0(23•14)=W0(20,17)=-ATS*DM*C/80e+DB*C*((24.-

IXMU1*BA/128-3.*AB/20e)
WO(12.2)=XKO(14.6)=XKO(24.8)=XKO(20.18)=A*ATB*DM*C/360.+A*AB*DB

l*C/30.
WO(14.2)=XKO(20.8)=-XKO(2.2)/2.
WO(15,2)=XKO(2148)=..3.*A*DM*C/4041+(2.-XMV)*013*C/(2.*A)

WO(17,2)=WO(14,5)=XKO(2318)=W0(20,11)=-XKO(11.2)

XKO(18,2)=XKO(8.6)=XKO(20,12)=W0(24.14)=-XKO(12.2)
XKO(20.2)=XKO(14.8)=-DM*(AB/3.*(1.+DB*C**2/DM)-BA*(1.-XMU)/120*(1,

14-44.*M*C**2/DM))
XKO(21,2)=XKO(15.13)=-701A*DM*C/40..“2.-XMU)*D5*C/(2.*A)

XKO(2312)=W0(20.5)=XKO(17.8)=XKO(14,11)=-XKO(5.2)

XKO(24.2)=XKO(20,6)=XKO(12,8)=XKO(18.14)=-XKO(6.2)
XKO(3.3)=XKO(9.9)=*K0(15915)=*0(21.21)=156./35.*DB*(8/A**3+A/

18**3)+72./25.*08/AT84.169.*ATB*DM*C**2/1225.

XKO(4,3)=XKO(22.21)= A*(DB*(78./35.*B/A**3+224./35•*A/B**3+14P/ATB*1

16./205.4-6.*XMU/5.))+143.*ATB*DM*C**2/(6•*12254))

XKO(5.3)=XKO(11.9)= EI*(08*(22e*E1/(35.*A**3)+784.*A/(35,*B**3)+1*/

IATB*(6./25.+6•*XMU/5.))+143•*AT8*DM*C**2/(6.*1225.))

XKO(6.3)=XKO(18..15)= A*B*(DB*(11**(5/(35.*A**3)+11,/3.*A/8**3+

1141/ATB*(410e4.2*XMU))+121.*ATB*DM*C**2/(36**12250))

XKO(7.3)=W0(9.7)=XKO(15913)=XKO(21.13)=-XKO(3,1)

XKO(943)=XKO(21915)=...DB*(156./35.*8/A**3-54./35.*A/B**34-72o/(250*

lATB))+117.*ATS*DM*C**2/(2•*1225.)

XKO(10.3)=XKO(210.16)= A*(08*(7841/35**8/A**3-13./35.*A/B**3 +6./(

125.*AT8)1-169.*ATB*DM*C**2/(12.*1225.))

XKO(11.3)=XKO(9.5)= p*(D8*(-22./35.*B/A**34-276/35**A/e**3-16/ATB*

1 (6./25.+6.*XMU/58)).4-33.*ATB*DM.*C**2/(4•*12254))

WO(12.3)=XK0(24,15)= A*8*(DB*(11./35e*B/A**313./70.*A/8**5+10/

ATB*(.02+XMU*4.1))-143.*ATB*OM*C**2/(72.*1225.))
XKO(13.3)=XKO(15.7)=XKO(21.7)=XKO(13.9)=XKO(1591)

XKO(14.3)=XKO(20.9)=-.XKO(15.2)
XKO(15.3)=XKO(21,9)=-54./35.*DB*(B/A**3+A/8**3)+72./25e*DEWATB+

1 81.*ATB*DM*C**2/(4**12254)

XKO(16.3)=XKO(21.10)= A*(D8*(2741/35.*8/A**3+13./35.*A/8"3--64/

(25.*ATE1))-.39.*ATB*DM*C**2/(8.*12254))
XKO(17.3)=XKO(23.9)=. 13*(08*(13./35.*B/A**34-274/35**A/8**3-60/
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1 (25**ATB))-.-39**ATB*OM*C**2/(841*122541))
WO(18.13)=XKO(I5,6)= A*15*CDB*(-15./70**(BA34-AB31+a02,ATB)41690*

1 ATB*DM*C**2/(144•*1225.))

XKO(20,3)=XKO(1449)=—XKO(2192)

XKO(21.3)=XKO(15,9)= DB*(544./35o*BA3-156./35.*A83-724,/(25o*ATB))

1 +117.*ATB*OM*C**2/(Po*1225)
XKO(22,3)=XKO(21,4)= A*(DB*(274./354.*8A3•.-22./35.*AB3—lo/ATE1*(6./25.

46.*XMU/5.))+334.*ATP*DM*C**2/(441*12254))

XKO(23,3)=XKa(17.9)= 8*(DB*(-130/35o*BA34-780/35**A83+6,/(25o*ATE1))

1 -.169.*ATe*DM*C**2/(12.*1225.))

XKO(24.3)=XKO(15.1.2)= A4-B*(DB*(-130/70w*BA34.11./35.*A83+1o/ATB*

1(4.02+ol*XMU))-143.*ATB*DM*C**2/(72..*12256))
XKO(4,4)=XKO(10.10)=XKO(16.16)=XKO(22422)= A**2*(DB*(528/35e*BA3

1 +4./354.*AB34-84./(25.*ATB))413.*ATB*DM*C**2/(3.0*1225c))

XKO(.5.4)=XKO(17.116)= A*B*(DB*(114./35.*(BA3+A83)+1a/A13*(0024-1.2*

1 XMU))+1210FATEI*DM*C**2/(364*1225.))
XKO(6,4)=XKO(12.10)= A**2*E1*(08*(22./105.*BA3+26/35.*A83+2./AT8*

1 (1./75.+XMU/154))411.*ATB*DM*C**2/(18,*12250))

XKO(8.4)=XKO(22,8)=XKO(204.10)=XKO(20,16)=—XKO(10,2)

XKO(9.4)=XKO(22.15)=—XKO(1013)

XKO(10.4)=XKO(22.16)= A**2*(0B*(264./35.*BA3-3•/35,*A83-20/(250*ATS

1 )1-13.*ATB*DM*C**2/(4.*1225.0)

XKO(11.14)=XKO(23.16)=. A*B*(DB*(-11./354.*BA34130/70e*AB3-1e/ATE1*(

1 .02+.1*XMU))+143.*ATB*DM*C**2/(72.*1225.))
XKO(12,4)=XKO(10.6).= A**2*B*(DB*(114/105.*BA3-36/70.9*A133-16/ATB*

(1./1501.+XMU/30.))-11.*ATB*DM*C**2/(24.*I225.0))

XKO(15.4)=XKO(22.9)=—XKO(1613)
XKO(16.14)=XKO(22.10)= A**2*(De*(9./35.*BA3-1-3.6/35.*AB3+26/(25.*ATB)

)-901-ATB*DM*C**2/(8•*12250))
XKO(17.4)=XKO(16.5)= A*B*(DB*(13./70,0*(6A3+AB31—.02/ATB)-169.*ATS

:1*DM*C**2/(144.411225.))

WO(18.4)=XKO(24.10)= A**2*B*(DB*(-134./210.*BA3— 34./70.*A83-14./

1 (150.*ATB))+13.*ATB*DM*C**2/(48.*12250))
XKO(20.4)=XKO(10,8)=XKO(16,8)=XKO(22,20)=—XKO(4,2)

XKO(22.14)=XKO(16.10)= A**2*(D8*(184./35,*BA3-46/35.*A83-8./(254,*

1 ATB))+3,11-ATB*DM*C**2/(2**12254.))

XKO(23,4)=XKO(16,I1)= A*B*(DB*(-13.1/70.*BA3+11./35.*AB3+1•/ATS*

1 (.021-4.1*XMU))-143e*ATB*DM*C**2/(72,*1225.))
WO(24,4)=XKO(18,10)= A**2*B*(DB*(-136/1051*BA34-2o/350*AB3+20/(

1 75e*ATB))-1.3.*ATB*DM*C**2/(36.*12256))
XKO(5,5)=XKO(Ill11)=XKO(17.17).=XKO(23.23)= 8**2*(013*(4./35e*BA3

1 +52./35.*A83+8./(25.*ATB))+13.*AtB*DM*C**2/(3.*1225.))
XKO(6,5)=XKO(241,23).= A*8**2*(OB*(26,35.*BA3+220/105.*AB3+26/ATB*

1 (1./75.4-XMU/15.))+11o*ATB*DM*C**2/(18**1225.))
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WO(7.5)=XKO(11.7).=XKO(23.19)=XKO(19.17)=-XK0 050)
XKO(1015)=XKO(22.17)=-XKO(11.4)
XKO(11,5)=XKO(231.17)= 13**2*(DB*(-44./35.*BA34-18./35.*AB3-8./(25.*ATB))+30PATB*DM*C**2/(2•*1225.))
XKO(12,5)=XKO(23,181= A*B**2*(138*(2./35.*BA3-134./1054.*A83+2./(1 750tATB))--13.*ATI3*DM*C**2/(36.*1225.))
WO(15.5)flK0(21,11)=-XKO(17.3)
XKO(17.5)=XKO(23,1I)= B**2*(1:18*(3./35**8A3+9./35.*A834-2./(254.*AT3)I )-9.*ATB*OM*C**2/(8.*1225.))
XKO(18,5)=XKO(23412)= A*B**2*(013*(-3./70.*BA3-136/2104,*A83.-1./

I (150.*ATB))+13.*ATB*DM*C**2/(48**1225.))
XKO(19,5)=XKO(1747)=XKO(23,7)=W0(19,11)=-.XKO(17.1)
XKO (21 .5 ) =XKO ( 15 1 1 ) m-XKO ( 23 .3 )
XKO(22,5)=XKO(17,10)=-XKO(23.4)
XKO(23,5)=XKO(17,11)st B**2*(D8*(-340/35e*BA3+266/35.*A83-2./(25e*

I ATB))-13.*ATB*DM*C**2/(4•*1225.))
XKO(24,5)=XKO(23.6)= A*B**2*(D8*(-34/70s*eA3+I1o/105.*A83-141/ATB#
(1•/150.+XMU/30.))-11.*ATB*DM*C**2/(24.*12256))
WO(6,6)=XKO(12.12)=YKO(18,18)=XKO(24.24)=A**2*8**2*(06*(40/105.*(1 BA3+AB3)+8./(225.*ATB))+AT8*DM*C**2/(9•*1225.))XKO(916)=XKO(21,18)=.-XKO(12,3)
XKO ( 1 1 ,15 ) =XKO (24. 1 7 )=-XKO ( 1 2 15 )
XkO ( 1 2,6 )=XKO (24. 18 )= A**2*S**2* (DB* (2./ 1 05.*BA3-1 4./35.* AB3-2. /I (2250-ATB))-ATE1*DM*C**2/(12.*12254))
XKO(16.6)=XKO(22112)=-XKO(18.4)
XKO(17,6)=XKO(24.11)=-XKO(184.5)
XKO(18,6)=XKO(24.12)= A**2*B**2* (08*(-16/70**(BA3+A83)+1./(45041*1 ATB))+ATB*DM*C**2/(16**1225.))
XKO(21,6)=XKO(I8.9)=-XKO(24.3)
XKO('2,6)=XKO(16,12)=.-XKO(24.4)
XKO(24,6)=XKO(18•12)= A**2*B**2*(08*(-14,/35*BA3-1-20/105**AB3-28/

1 (225.*ATB))-ATB*DMife**2/(12.*122541))
XKO(10.9)=XKO(16.115)=-XKO(4,3)
XKO(12.9)=XKO(24.21)=-XKO(6,3)
WO(16.9)=XKO(15,10)=-XKO(2213).
WO(24,9)=XKO(21412)=-W0(18.3)
XKO(I1.10)=XKO(23.22)=-•XKO(5.4)
XKO(23.1l0)=XKO(22.11)=-XKO(17.4)
XKO(12.1.1)=XKO(18,17)=-XKO(645)
XKO(18,11)=XKO(17.12)=-XKO(24.5)
XKO( 15. 14 )=XKO(2 1 1120 )=-XKO (3.2 )
WO(17,15)=XKO(23,21)=-XKO(5.3)
WO(20,151=XKO(21.,04)=-XKO(992)
XKP ( 23, 15 ) =XKO (21 .17)=^XKO(llf3)
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XKO(113,161=XKO(24.22)=—XKO(6,4)
XKO124.161=XKO(22.113)=—XKO(12.4)

C MAKE USE OF SYMMETRY TO COMPLETE THE MATRIX

DO 5 J=I.24 •

K=J 4

DO 5 I=K.24 •

IF(I.EO.J) GO TO 5

XKO(J.))=XKO(I,J1

5 CONT)NUE •

RETURN •

END
SUBROUT/NE REDFORC(JDOF•NE).

COMMON/225/JR(150)

5 /226/FORC(216.))

C THIS SUBROUTINE ELIMINATES FORCES AT REACTIONS

DO 4, IN=I•NE

LL=JRUNI—IN+1
LEF=JDOF—I

DO 43 N=LL.LEF

FORC(N.1)=FORC(N+1.1).

43 CONTFNUE

RETURN

END
SUBROUTINE ADDUP (MNOCMK•XK011
COMMON/ZZ3/N1(50)•N2(50)•N3(50)•N4(_50)

DIMENSION XMK (216.216 ) oXKO ( 24.24 )

LI=NI(MN)

L2=N9(MN) •
L3=N1(MN) •

L4=N4(MN) •

DO 4 1=1,4

DO 4 J=1.4 •

N1=6*L1-5

NJ=6*L)-5 •

IF(I.E0.2) NI=6*L2-5
IF(J.EO.2) NJ=6*L2-5

IF(I.E0•3) NI=6*L3-5
IF(J.E0.3) NJ=6*L3-5
IF1I.E0.4) NI=6*L4-5

IF1J.E0.41 NJ=6*L4-5
DO 4 KI=1,6 •
DO 4 KJ=1,6 •

KKI=NI+KI-1

KKJ=NJ+KJ—I •
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KXJ=6*J-6+KJ •
XMKIKKI•KKJ1=XMKIKKI.KKJ/i-XKO(KXIoKXJ)

IF(WKIDE0.127)•AND•(KKJ.E0.28)/ 2.4

2 PRINT 3,XMK(KKIIKKJ1

3 FORMAT I/40X,E20.4//
4 CONTINUE •

RETURN •
END •
SUBROUTINE W.ASH (JDOPoNE•XMK) 

COMMON/Z25/JR(150)
DIMENSION XMK(216.216)

C SET DESIRED ROWS AND COLS TO ZERO

DO 31 N=IoNIE .
LL=JPIND •

DO 31 1=1•JDOF •
XMKILLo/1=0.0
XMK(I•LL)=0.0

31 CONTTNUE •

C COMPACT MATRIX •

DO 33 IN=1,NE

LL=JR(IN)-1N+1

LEF=„00E-1 •

DO 31 N=LL•LEF •

DO 32 1=1•JDOF •

XMK(NeI)=XMK(N-1-1,1)
32 CONTINUE

DO 33 1=1•JDOE

XMX(IoN)=XMKIIIN-1-11
33 CONTINUE

RETURN

END
SUBROUTINE EXPDEF (JDOF.NE),

COMMON/ZZ5/JR(150)

7 /ZZ7/X(216)
C THE PURPOSE OF THIS SUBROUTINE IS TO ARRANGE THE DISPLACEMENTS IN
C THE ORDER OF THE NODF NUMBERING

DO 201 IN=1,NE

LF=JDOF--JR(IN) 
DO 201 N=1oLF
X(JDOF—N-1-1)=X(JDOF--N)

201 CONTINUE

DO 2n3 11=1•NE

LL=JR(111.



XILL)=0.0,
201 CONTINUE

RETURN

END

SUBROUTINE STRESS (MN).
COMMON/ZZI/AZ(30),BZ(30)9C2(30).DMZ(30).OBZ(30).XMUZ(30)
2 /ZZ3/N1(50),N2(50).N3(50).N4(50)

6 /ZZ7/X(216)
7 /ZZ8/S(3424).

8 /229/STRSR(3).
9 /ZZII/XE(24)
9 /ZZI2/BTAIG5TAP

C THIS SUBROUTINE COMPUTES THE STRESS MATRIX./ S • THE MULTIPLIES IT.
C BY THE DISPLACEMENT VECTOR FOR THE ELEMENT..
C COMPuTE EACH TERM OF THE ELEMENT STRESS MATRIX,

A=AZ(MN)
8=BZ(MN)
C=CZ(MN)
OM=OmZ(MN)

DB=DBZ(MN)
XMU=5(MUZ(MN)
S(1.1)=S(14.19)=—DM/(2•*A).
S(1,2)=S(118)=—XMU*DM/(2.*B).
S(1.1)=S(1,9)=S(1.19)=S(1021)=XMU*DM*C/4“
S(I.4)=S(1.22)=A*S(143)/4“
5(1,5)=5(1,11)=B*S(1,3)/3/49

S ( I ,6 ) 75 ( I I 8 ) =A*B*S ( I e3 )/1 6. •

S ( I 97 )=S(t.13)=—S (19)) •
S ( I • I 0 ) =S ( I 16 ) =—S ( I 0)9
S(11/2)=S(1.24)= S(116).

S(1•14)=S(1020)=."S(102).1

S(1.117)=S(1423)= S(105).

S(29))=S(2119)=XMU*S(1•11)0

S(242)=S(2.8)=—DM/(2.*8).
$(2,1)=S(269/=S(2.15)=5(20.21)=DM*C/4•I
S(2.4)=S(2122)=A*S(2.3)/4“
S(2.5)=S(2,11)=B*S(2.3)/4.•

S ( 2•6 )=S (2 • 18 ) 7A*B4FS (2 .3 )/1 6 •
S(2417)=5(2913)=—S(2.1).

S(2.10)=S(2.!6)=—S(2.4).

S(24/2)=S(2•24)=-..S(2.6).

S (2• 1 4 ) =S (2•2O)=—S (2 92 ) •

S (2, 7) r--S (2 *23)-,—S(2 $5 ) •

S(3• 1 )=S (3.7) =— ( •—XMl./)*DM/ (4•*13 ) •
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S(3121=S(3,20)=-11*—XMUI*DM/(4**A/*
S(3.8)=S(3.14)=-5(3.2)*
S(3,13)=S(3.19)=-..S(3.1).
S(3,3)=S(3.4)=S(315)=S(3.61=.5(3.9)=S(3.10)=S(3111)=S(3,12)=S(3.15),
1=S(3,16)=S(3,17)=S(3,18)=S(3,21)=S(3.122)=S(3,23)=S(3.24).;-0*Oo

C PRINT OUT ELEMENT STRESS MATRIX*
PRINT'751, MN.

751 FORMAT C40X**ELEMENT STRESS MATRIX FOR ELEMENT NO *13/1,
PRINT 753*(IS(IIJ)*J=1,24)*1=1031*

753 FORMAT (6E20.41.
C CONSTRUCT THE DISPLACEMENT VECTOR FOR THIS ELEMENT*

DO 700 IE=1.24*
IF(It*GE.7) GO TO 701*
NDI=6*(NIIMM-1),
XE(IF1=XINDI+IE/*
GO TO 700.

703 IFIIF*GE.13/ GO TO 7n5*
NO2=6*(N2IMN/-1)*
XE(IF)=X(ND2+/E-6)*
GO TM 700.

705 IFIIMeGE*191 GO TO 7n7,
NO3=6*(N3(MN)-1)
XF(IF)=X(ND3+1E-12)*
GO TO 700.

707 ND4=6*(N4(MN1-1/*
XE(IF)=XIND4+1E-181*

700 CONTINUE.
PRINT 709. MN.

709 FORMAT(/40X**DISPLACFMENT VECTOR FOR ELEMENT NO *113/),
PRINT 711*(XE17/01=1.24)*

711 FORMAT (4X.E20.4).
BTA1=(XE(2)—XE(9)+XE(21)—XF(15))/(2*A)
BTA2=IXE(3)—XE(21)4-XF(9)—XE(15/)/(2e*B)+C*(XE(2)4-XE(8)+XE(14)+XEC2
IOWA.
PRINT 720

720 FORMAT(/40X**AVERAGE ROTATIONS ABOUT Y AND X AXES*/)
PRINT 722,BTAI•BTA2

722 FORMAT (40X*520.4)
C MULTIPLY STRESS MATRIX BY THE DISPLACEMENT VECTOR TO OBTAN THE.
C FNPLANE STRESS RESULTANTS*ENX*ENY AND ENXY,

CALL MATRIX(20.3,24.1,So3oXE*24,STRSR.3)*
PRINT 713*MN*

713 FORMAT(/40Xo!STRESS RESULTANTS FOR ELEMENT NO**13/).
PRINT 71.50IIISTRSR (t)*I=1.3/*
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/15 FORMAT (4Xe*STRSR(**13.*)=*.E12.4111

RETURN.
FND.

SUBROUTINE ELEMK1 (MN).

COMMON/ZZ1/AZ(30),8Z(30).CZ(30).DMZ(30).DBZ(30/eXMUZ(30)

8 /ZZ9/STRSR13/.

9 /ZZIO/XKI(24.24)0

A=AZ(MN)

8.ez(MN)
c=cz(mN)
nwrowintoN)
ne=nnzimN)
xmt=ymuz(NIN)

C ZERO OUT XKII

no 900 1=1.24.
DO 900 J=1•244

900 CONTINUE.

51=STRSR(1).

S2 =STRSR(211

S12=STRSR(31.
XKI(2.2)=XKI(BoB)=XKI(14.14)=XKI(20.20)=S2*A*B*C**2/9..

XKI(24.3)=XKI(15.15)=51*B/(3•46A)+512/24.+52*A/(3e*B).

XKI(949)=XK1(21.21)=1*B/(3.*A)—S12/2.+S2*A/(3.*8).

XK1(?.2)=XKI(2.3)=(512*B+S2*A)*C/6•5

XKI(P,2)=XKI(203)=S2*A*B*C**2/18e.

XK1(94.2)=XKI(2.9)=—(512*5-52*A/2.)*C/6••

XKI(14,2)=XKII21141=XK1(2,2)/4e.

XK1(1512)=XKI(2.15)=....XKI(3.21/2.5

W1(70.2)=XKI(2,20)=XK1(14.8)=XKI(8.14)=XKI(20.141=XKI(14.20)=5

1XKI(P.2)/2e.
XKI(21,2)=XKI(2.21)=(S12*B/2.-52*A)*C/6.1

XKI(5,3)=XKI(3.8)=I51211 1+52*A/24.1*C/6ot

XKI(9.3)=XK1(3,9)=—SI*B/(14*A)+52*A/(6.*B).

XKI(14,3)=XKI(3,141=—XKI(15.2).

XKI(15,3)=XKI(3,15)=—S1*B/(6.*A)-512/2.—S2*A/(6.*B).

W1(7043)=XKI(3.20)=(S12*B/24+52*A)*C/6.•

XKI(P1.3)=XK1(3.211=S1*B/(6•*011)—S2*A/(3.*8),

XKI(9.8)=XKI(84.9)=—(S12*8-52*A)*C/6••

XK1(15.8)=XK1(8.15)=-...(512/24.*B+52*A1*C/6e,

XKI(20.8)=XK1(8,20)=XK112,21/4m.

XKI(21.8)=XKI(B.21)=(512*B—S2*A)*C/12.,

XK1(14,9)=XK1(9.14)=..XKI(21.2).

XKI(1549)=XKI(9,151=XKI(210.3),
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XKI(P0.9)=XKI(9.020)=YKII918//2•9

XKI(21.9)=XKI(9.21)=—S1*E4/(6.*A)4.512/2.—S2*A/(66*Blo

XKI(P01.15)=XKI(15.20)=—(S12*8+52*A/28)*C/64. 01

XKI(P1.14)=KKI(14.21)=—KKII942)t

XKI(154.14)=XKI(14•15)=—XKI(3•2).

XK 1 (21e 15)=XKI (15,21 )=-514IB/ (3.*A)+S2*A/(6•418 ) •

xi< 1 (PI 20 )=KKI (20.21 )=—XKI (3.2 )t

RETURN.

END.

SURROUTINE ELEMK2 (MN)
COMMON/ZZI/AZ(30)49Z(30)11CZ(30).DMZ(30)oDSZ(30),KMUZ(30)

9 /ZZ-12/STA1e9TA2

/ZZI3/KK2(24.24)

9 /ZZ14/S0

A=AZ(MN)

StBZ(MN)

C=CZ(MN)
DM=DMZ(MN)

09=DRZIMN/
KMU=YMUZIMNI

C ZERO OUT KK2(14,JI

00 91 0 1=1.24

DO 9K0 J=1.24

KK2(11J)=0•0

950 CONTINUE

c DEFINE CONSTANTS

C1=1 40--KMU

C2=1.0+KMU

C3=1 4.0-3•0*XMU

DEFINE SECOND ORDER TERMS. A MODULATING FACTOR. SO. WILL DETERMINE

WHEATHER THE SECOND ORDER TERM5 WILL BE USED OR NOT

ALEI=50*(BTAI**2+CI*RTA2**2/2.0)

ALE2=SO*IBTA2**2+Cl*PTAI**2/240)

ALF3=SO*C2*BTAI*BTA2
KK2(2.1)=KK2(1,2)=—C*(65*C1*A*BTAI+KMU*B*BTA2)/6.0

XK2 ( no 1 ) =XK2 1 .3 ( .5*Cl*A1 B+B/A )*BTAI /3.—C2*BTA2/8.0

KK2IR.17=KK2(198)=—C*(.25*C1*A*BTAI+KMU*B*BTA2)/6.0

KK2(9.1)=KK2(1.9)=—I e25*C1*A/S—B/MBTAI/3•0+C3*BTA2/8.0

KK2(14,1)=KK2(1.10)=,5*KK2(211)
KK2(15.1)=KK2(1,15)=(.5*C1*A/B+6/A)*BTA1/680+C2*BTA2/86

XIC2(20,01)=KK2(1,20)=-.-C*ICI*A*EITA14-KMU*9*BTA2 1/12.

KK2(PI.1)=KK2(1121)=ICI*A/B-13/A)*BTAI/64,—C3*BTA2/86 •

KK2(2,2)=—C*(pS*C1*8*BTA14-A*BTA2)/3•+A*B*C**2*ALF2/9.

KK2(1,2)=KK2 (2 413 ) =—C2*BTAI /13.•“ .5*Cl*B/A+A/8 /*BTA2/361-C*I •S*8*ALF3
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1+A*ALF2)/66-PC**2*A*S*BTA2/9.
XK2(708)=XK2(2.7)=—C*(.25*C1*A*BTAIXMU*B*BTA2)/64.
XK2(1,2)=XK2(2.8)=—A*STAI*C/6.+A*13*C**2*ALF2/18.
W2(9,2)=XK2(2.9)=—C3*BTA1/13.+(C1*(3/A;.-A/B)*BTA2/6.—C*(B*ALF3,-.A*

IALF2)/121.4-4*B*EITA2*C**2/184
XK2(1312)=XK2(2.13)=r*(.5*C1*A*BTAI+XMU*8*FITA2)/124.
XK?(14,2)=XK2(2.14)=A*B*ALF2*C**2/36.
W2(151.2)=W2(2015)=C2*EITA1/84+(.5*C1*8/A+A/B)*BTA2/6.—C*(4/5*B*

1ALF3+A*ALF2)/124,4-A*8*STA2*C**2/36.
XK2(19,2)=XK2(2.19)=C*(Cl*A*BTAI —XMU*B*EITA2)/12.
XK2(P012)=XK2(2.20)=--CI*8*BTAI*C/12.+5.*A463*ALF2*C**2/364,
XK2(P1,2)=XK2(2921)=C2*BTA1/841—(Cl*B/(4.*A):—A/8)*EiTA2/34.+C*(4.25*B*

IALF3—A*ALF2)/6.0-501A*B*ÐTA2*C**2/36e
XK2(303)=C*(XMU*B*STAI+A*STA2)/3.+ALF3/4.+B*ALF1/(A*34)4A*ALF2/(8*
13.)
XK2(7e3)=XK2(3.17)=—(C1*A/t401-13).-B/A)*BTA 1/36 —C3*STA2/84.
XK2(8.3)=XK2(318)=C3*BTA1/8.4-(CI*B/A—A/B)*BTA2/6.+C*18*ALF3+A*ALF2

11/12.+A*B*BTA2*C**2/18.
XIC2(94,3)=XK2(3,9)=A*RTA2*C/6.-"B*ALF1/(3.*A)+A*ALF2/(6.*B)
XK2(13.3)=XK2(3.13)=W2(15.1)
XK2(14.3)=W2(3414)=C2*BTA1/8.+(.5*CI*13/A+A/B)*BTA2/6.+C*(.5*13*

1ALF3)/12.+A*B*EITA2*C**2/36.
,W2(15,3)=XK2(3,15)=—ALF3/44.-13*ALF1/(6.4A)—A*ALF2/(64*B)
XK2(19.3)=XK2(3.19)=(Cl*A/B—EVA)*BTAI/60+C3*BTA2/86
XK2(20,3)=XK2(3419)=—C3*BTA1/80—(.25*C1*B/A)*STA2/341-C*(.25*0*

1ALF3+A*ALF2)/66+5.*A*B*BTA2itC**2/36.
xl<2(p1,3)=W2(3,21)=XINU*8*BTAl*C/6.+B*ALF1/(6.*A)—A*ALF2/(3**8)
XK2(8.7)=XK2(748).,.—C*(CI*A*BTA1/2.—XMLI*8*STA2)/6.
W2(9.7)=XK2(7.9)=—(e2*A/(241*8)+B/A)*BTA 1/34.+C2*EITA2/8.
W2(14,7)=W2(74114)=2(19.2)
XK2(15,7)=XK2(7.15)=XK2(19.3)
W2(20,07)=XK2(7120)=XK2(8.7)/2.
XK2(2147)=XK2(7,21)=XK2(9.7)
W2(8,8)=C*(Cl*B*STA1/2.—A*EITA2 1/34.+A*B*ALF2*C**2/94.
W2(9108)=XK2(809)=C2*BTA1/8.—(4.5*C1*B/A+A/8)*BTA2/341—C*(.5*B*ALF3

1—A*ALF2)/6.+A*B*BTA2*C**2/94.
XK2(13,8)=XK2(8.13)=....XK2(20,1)
W2(14,8)=XK2(84114)=C1*B*8TAI*C/12.+A*13*ALF2*C**2/184.
W2(15.8)=XK2(8,15)=—Cj*BTA1/8,6—(.25*C1*8/A—A/B)*EITA2/3.—C*(B*ALF3
1/4.+A*ALF2)/6•+A*R*STA2*C**2/18,

W2(19.8)=W2(8.19)=—.5*W2(8,07)
W2(p0.8) =xl<2(8920).ixK2(8,2)
XK2(P148)=XK2(8924)=—C2*BTA1/810+(.5*Ct*B/A+A/13)*BTA2/6.+C*(.5*6

1*ALF3/24—A*ALF2)/12.+A*B*BTA2*C**2/36.
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XK2(8•9)=-<*(XMU*B*ISTAI-A*STA2)/3•+ALF3/4•+8*ALF1/(3•*A)+A*ALF2/(
13•*8)
XK2(13,9)=XK2(9.13)=W2(2101)
W2(I4,9)=XK2(9.14)=C3*BTA1/8.-(•25*C1*8/A-A/B)*8TA2/36-C*(•25*8*
IALF3-A*ALF2)/6.+A*6*ETA2*C**2/18. .
XK2(I.8.9)=W2(9415)=-XMU*B*BTAI*O/6.+B*ALFI/(6.*A)-A*ALF2/(3**8)
XK2(19.9)=XK2(9,019)=XK2(21.7)
XK2(20.9)=XK2(9.20)=-C2*BTA1/8.+(.5*C1*8/A+4/8).*BTA2/641-C*(8*ALF3/

12.-A*ALF87/I2•+4*S*STA2*C**2/364
XK2(21.19)=XK2(9,21)=ALE2/46-13*41-F1/050*Ai-A*ALF2/(60*8)
W2(14,13)=XK2(I3.14)=-4.5*XK2(14•1)
XK2(15•13)=XK2(13•15)=XK2(3•I)
XK2(20.13)=XK2(13.20)=-XK2(8.1)
XK2(21•13)=XK2(13,21)=XK2(941)
XK2(I4•14)=C*(.8*CI*8*8TAI+A*STA2)/3•+A*8*ALF2*C**2/94,
XK2(I5,14)=XK2(I4,15)=-C2*8TAI/8.-(.541C1*8/A+A/8)*ESTA2/3•••C*(455*8*

IALF3+A*ALF2)/6.+A*6*OTA2*C**2/90
XK2(19.14)=XK2(14,09)=-VC2(7.2)
W2(20.14)=XK2(14.20)=A*8T42*C/6•+A*8*ALF2*C**2/180
XK2(21•14)=XK2(14.21)=-C3*EITAI/8•+Itl*B/4.-A/8)*OTA2/6•+C*(8*4LF3-

IA*AL=2)/12•+A*8*RTAP*C**2/18.
XK2(15.15)=-C*(04U*B*8TAI+A*8T42)/3444LF3/44.+B*ALF4/(3**A)+A*ALF2/

1(30E0)
XK2(19•15)=XK2(156I9)=XK2(7.3)
XK2(20•15)=XK2(15.20)=C3*BTAI/8.+(C/118/A-A/B)*BTA2/611C*(B*4LF3+441

IALF2)/12•+A*8*BTA2*C**2/I86
XK2(21,15)=XK2(15021)=-A*8TA2*C/6•-8*ALF1/(3•*A14A*ALF2/(64.*B)
XK2(p0.19)=XK2(19•20)=-XK2(8.7)
XK2(21.19)=XK2(19.21)=XK2(9.7) •
)0C2(20•20)=-C*(4.5*C)*8*STAI-4*8TA2)/3•+440*ALF2*C**2/9.
XK2(21•20)=X1C2(20.21)=XK2(9.87
XK2(21.21)=C*0(MU*841OTAI-A*BTA2)/3•-41-F3/4•+8*4LE1/(3.*A):•A*ALE2/

1(301R)

00 960 1=1.24

no 960 J=1.24
XK2(I,J)=0M*XK2(te,i)

960 CONTINUE
RETURN

END
OVFPLAY(LINK.2.101.
COMMON/221/A2(30),82(301•C2(20);DMZ(20)•D82f30).,XMUZ(30)

/ZZ2/XKO(24.241 
.

2 /223/N1(50).N2(50).N3(80).N4(50)
4 /2ZS/JR(I50)
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5 /ZZ6/FORC(216.1)
6 /ZZ7/X(216)
7 /Z28/5(3024).
8 /ZZ9/STRSR(31r
9 /ZZ10/XKI(24.24).
9 /ZZII/XE(24)
9 /ZZ12/BTA1.BTAP
9 /ZZ13/XK2(24.24)
9 /ZZ14/S0
DIMENSION xmK(180.180).xmK2(180,180).
IRTR(180),R71(180).1RUN(180).P(180).NDEX(180)
REWIND 2.
READ TAPE 2• ( (XMK2(1 ) •I=1. 180 ) .../51 • 180 ) eNO•JDOF.NE•JDOFR.

C ADD XMK1 AND XMK2 ANn STORE IN XMK
REWIND 3r
READ TAPE 3• (XMK ( I •J) • I =1 ,1130FR ) •J=1 .JDOFR)

C MULT THE MATRIX (XMK1+XMK2) BY XMK—INVERSE
CALL MATR/X (20,JDOFRoJDOPR,JDOFRo XMK2.180.XMK.180rXMK.180)

C GET MIGEN VALUES FOP BUKL
NPLUc=JDOFR+1
CALL REIG(XMK,JDOFR.3.3eRTR.RTIo XMK,180,NOEX,IRUN.PINPLUS.XMK2)
PR!NT 171

I71 FORMAT //45)011EIGEN VALUES*/)
PRINT 173r(RTR(11.1=1.3)

173 FORMAT (3E2O.41
RETURN.
EN9




