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. A STABILITY ANALYSIS OF CYLINDRICAL PANELS
USING A FINITE FLEMENT FORMULATION

by
Richard E. Snyder
ABSTRACT
A cylindrical finite element suitable for the linpear stability
analysis of cylindrical shells is developed. Fnergy principles and vari-
ational methods lead to ; problem formulation which lends itself to
physical interpretations of the governing matrices of the finite element.
By properly grouping the terms which result from taking the second varia-
tion of the potentiél energy of the element, it is possible to identify
three distinct types of matrices. The first matyix is the conventional
stiffness matrix; the second is an "initial stress" stiffness matrix;
and the third 1s an "initiai displacement" stiffness matrix. With the
assumption of linearity, the buckling problem is stated in terms of the
classical linear real eigenvalue equation. 7This problem formulation was
programmed on the CDC 6600 series computer. The computer program is used
to analyze the buckling of a variety of structures. Columns, arches, flat
plates andcurved panels with and without cutouts are considered. Com—
parisons are made between closed form solutions and the results of the
present analysis to establish confidence in the techniques used. Curved
panels with cutouts of varving size are aﬁalyzed for buckling. The in-
fluence of curvature and cutout size on the prebuckling deformationslin a
curved panel are studied and found to be significant. The prebuckling

deformations are shown to have a significant influence on the buckling

strength of curved panels with cutouts.
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CHAPTER 1.
INTRODUCTION

Plate and shell stability analysis and its application to practical
engineering structures has been the subject of extensive structural re-
search efforts. Despite this, many problems still remain in the accurate
prediction of the buckling m&de of failure of many types of practical
plate and shell configurations, particularly those with holes or cutouts.
'For example, reliable procedures for the analysis of a flat plate with a
large cutout are limited. The finite element method provides a means of
analyzing problems such as these. The development of this method has
been prompted by its ability to model complex geometries and loading
conditions. To date, major developments in finite element methods h;ve
concentrated on stress and vibration analysis with only limited attention -
given to stability. The objective of this &issertation is to report the
results of an extension of the finite element method to problems of thin
shell instability. The éXtension will coﬁcentrate on the development
and use of elements which, thus far, have seen only limited application
in finite element technology. Primary emphasis will be placed on the
buckling analysis of curved panels with rectangular cutduté. However,
the method will also be applied to columns, flat plates and arches.

The field of shell stability analysis is one of the most extensively
investigated areas of classical mechanies. The list of references |
associated with classical shell stability is very formidable. References
to classical shell buckling investipations are cited herein only to the

extent that they relate to special aspects of the finite element approach.



Formalized finite element methods generally began with the presenta-
tion of the "direét stiffness" method by Turner, Clough, Martin, and
Topp (ref. 1). Since then, finite elements have been used in the stress
analysis of a wide variety of structures, including frames, arches,
shells, and solids. In recent years, attention has been turned to the
application of finite element technology to the stability of structures.
Expansion of the stiffness method to handle nonlinear, large deflection
problems was first presented in 1960 by Turmer, Dill, Martin and Melosh .
(ref. 2). 1In 1962, Turner, et.al., (ref. 3) enlarged on the nonlinegr'
finite element technique by presenting an eigenvalue procedure to deter-
mine the buckling of columns. Gallagher and Padlog (ref. 4) independent-
ly derived a stability coefficient matrix to predict column buckling.
Summaries of the current state of the art of stability predictions usiﬁg
beam-column elements are contained in refereunces 5, 6 and 7. In these
references, the stability problem is framed in terms of the conventionél
stiffness matrix and what‘is termed thé "seometrical" or "initial stress"
stiffness matrix. The term "initial stress' stiffness matrix will be
adopted in this work. The terminology applied to this new matrix re-
flects its dependence on the initial state of stress and undeformed
geometry of the element.

In reference 8, Gallagher, et.al., extended finite element stability
methods to flat triamgular elements. The explicit formulation of the
initial stress matrix for a recfangular plate in bending is presented .
by Kapur and Hartz in reference 9. The stability of doubly curved shells

of revolution subjected to axisymmetric loading, using the finite element



method, was investigated by Navaratna, Pian and Witmer (ref. 10). The
stability of cylindrical shells using curved finite elements was studied
by Bogner, Fox and Schmit (ref. 11). In reference 11, the problem is
formulated from the standpoing of direct minimization of the total
potential energy as opposed to the development of identifiable stiffness
and initial stress stiffness matrices. In addition, a large number of
degrees of freedom (i.e., 48) are used for each element.

There is limited literature published on the buckling of curved
cylindrical panels. Classical analyses of curved panels typically con-
sider the case of an infinate aspect ratio (ref. 12 and 13). Gerard and
Becker (ref. 14) directly consider "very wide" and "very narrow' curved
panels and then fair a curve between those results to cover panels of
intermediate dimensions. The importance of boundarv conditions in the
detefmination of the buckling of curved panels is established by
Rehfield and Hallaur {(ref. 15).

The. effect oflcutouts in cvlinders has heen the subject of several
experimental investigations (ref. 16. 17 and iS). Brogan and Almroth
(ref. 17) applied a finite difference approximation to the governing
equations and obtained reasonable agreement with experiments. No re-
ferences dealing with the bifurcation buckling of curved panels with

cutouts were found, and indicates a need for data on such problems.



.CHAPTER II.
APPLICATION OF ENERGY PRINCIPLES AND

VARIATIONAL METHODS TO LINEAR STABILITY ANALYSIS

IT.-1 Basic Principles

The principlé of minimum pétential energy establishes that for
equilibrium the total potential energy, T ,for a system must be extremal
or stationary (ref. 19 and'20). Thus for equilibrium, the first varia-
tion of the potential energy vanishes.

6m = 0 (I1-1)
where & 1s the variational symbol.

The stabilitv of the equilibrium state can be investigated by ex-
amining the second variation of the potential energy. lAn equilibrium
state is stable if every neighboring state‘has a larger potential energy
In other words, an equilibrium state is stable if, in addition to satis-
fying equation II-] it also satisfies the condiﬁion 52ﬂ>0. Conversely,
equilibrium is unstable if %1 < o. Therefore, the infinitesimal

stability limit as used herein corresponds to the case of
827 =
T =0 (11-2)

This principle is well-known for continium problems and has been
applied to approximations based on finite element methods in references
4, 5, 21, 22, 23 and 24. A formulation ofrthe second variation‘of the
potential energy that lends itself conveniently to the numerical approxi-
mations found in the finite element method will be presented., In this

chapter, these concepts will be applied to a beam-column to illustfate

the approach. 1In Chapter III, the same methods will be applied to the




more complex curved panel problem.

II.-2 The Beam Column

The beam-column finite.element shown in Figure II-1l éxtehds be-
tween node points 1 and 2, and has a cross sectional area, Ay a
length £; a moment of inertia, I; and a modulus of elasticity, E.-
The forces acting at each end of the beam-column are shown in their
positive directions in F;gure II-1. The displacement in the Z direc-
tion, W, and the displacement in the X direction, u, are also
shown in their positive directions. The ;otal potential energy of the
finite element system is |

L b

%—é EAeZdX + f %% LA 2 o 4% Nju, -Vow -Mlel —N2u2_-v2W2 -M,0, |
where (reference 19) (1I-3)

e = é +-% ¢2 (1I-4)
and

£ = Wy (I1-5)

b= (11-6)

,Here, e is the nonlinear middle surface strain compoéed of the linear
strain € and the rotation ¢ . The first integral on the right hand
. side of equation II-3 is the membrane strain energy and the second in-
tegral is the bending strain energy. The remaining terms represent the

potential energy of the external forces.



Z,w
A
2 .
~
Ny 1
\I / - X,u
... L - M2

E = Modulus of elasticity
A = Area
I = Area moment of inertia

Figure II-1. The Beam Column




Substituting equation II-4 into II-3 and rearranging leads to

L L ' L L 2
m=L1eac2ax + L s Eag?(er 2)ax - L 7 agtax + L s E1w, Zdx
20 Z9 2 20 4 29
- Nlul - VlWl"“ Mlel- NZUZ - V2W2— M282 - (11-7)
The axial force and bending moment may be writtem as
N = AEe = AE (¢ + %_ $2) (I1-8)
M =EL w, : (I1-9)
Substituting II-8 and II-9 into II-7,
: 2 % I )
m=2L 7 paclax + 1 7 no2ax - L 7 Eagtax + L S mw,. dx
20 29 20 3% 29 X
- Nlul - Vlwl - Mlel - N2u2 - VZW2 - M282 ’ (II-].O)

After giving the system a virtual displacement, the total potential

energy becomes

1 % 2 % 2 1 2 4
T+Am == [ EA(e+8e)” dx + L/ (AN) (¢+68)° dx - = J EA(¢+d4) "ax
. 29 20 20 4
1 £ ) .
+ Vi é (M+AM) (w,xx+6w,xx)dx - Nlul - Vlwl - Mlel - N2u2 —_V2W2
where
- 2
AN =Ea ESE + ¢5¢ + -6-59] (11-12)
AM = EI § Wox (I1-13)

Substitﬁting IT-12 and TII-13 into II-11,



o2 X2 2
fEA(%:+2£6r-:+625)dx+5(f)1\1(¢+-21~¢6¢+6¢)dX'
0

T+ AT =

o |

% 2
+1 EA(6e+¢6d> + §—2-°1’-) 02 + 2066 + §2¢)dx

0

A

-2 (6% +49380 + 662629 + 4063¢ + S4¢)ax
(I1I-14)

1 ') 1 2 1 £
+ E‘é M, o dX +‘§-6 MGw,xde + 5-6 EIw,xxﬁw,xde

1 % 2
+ ‘2' 6 EIS W’XXdX - Nlul - Vlwl - M181 - Nzl]z - V2W2 - M292

T + AT may be expressed in the following form (ref. 19)

TT+ATT=TF+5TT+%'521T+——-- fII-15)

By arranging equation II-14 into the form of equation II-15,

the matrix form of the second variation is

. 1007 [ooo 06 0]]{se
§2m = f [6e 66 6w,y J|EA {000 }+{ono | + Ea| 460 {|Yse dx  (II-16)
0 1
00z | {000 00 o]|lew,

Equation 1I-16 may be stated more convenlently as

L : L L .
§2r = f {6e}T [RO]{&E}ax + é (61T [R11 {65} dx + [ {68} [R2}{Se}dx
0 0 ' (1I-17)
" where

_ se
ei=|8¢

Waxx



] = EA

(= = A ]
o o 6

b
o oo

) 10 . 000 )
(k0] = Eajo0 0 , khy=fowo| , IK
00 000

0
0
I
A

Prior to introducing the numerical approximations involved in the
finite element method, severél general stateﬁents pay-be made concerning
the use of equation II—l? for finite element type buckling analyses.

Terms relating to the work of the external forces do not appear
in the second variation of the potential energy.

° [ﬁo] leads to the conventional stiffness matrix for a beam-
column. (See reference 24 and Appendix A)..

e [ﬁl] is a function of the load in the element and leads to a
matrix denoted herein as the "initial stress" stiffness matrix.

@ [ﬁzl is a function of rotational deformations and leads to a
matrix denoted herein as the "initial displacement" stiffness matrix.

® The finite glemeﬁt numerical approximations (i.e., displace-
ment function)need not necessarily be the same when dealing with
[ﬁo], [ﬁl] and [Ez]. However, if convergence is to be.obtained in the
limit, all of the numerical approximations must represent the essential
character of the problem.

° A static solution to the problem must first be accomplished to
establish values of N and ¢ which are required for the evaluation of
[K1] and [K2).

The details of the steps required to develop the conventional,

the initial stress and the initial displacement stiffness matrices for
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both the beam-column and the arch are given in Appendix A. The matrix
formulation of the strain-displacement relations and the assumed dis-—
placement function as well as intermediate matrix products are presented.
The symbols used in Appendix A correspond to those used in this chapter.
For the beam~-column, the strains are related to the displacements,

u and w, through a matrix of differential operators.

{e} = [p] {g} ' (I1-18)
A critical feature of any finite element development is the dis-
placement function chosen to represent the deformation characteristics
of the element in terms of the nodal displacements. A linear variation
of u and a cubic variation of w, as is used in Appendix A, is fre-
quently assumed (ref. 5). Such a set of assumptions stated in matrix

form is
{g} = [B] [I'] {A} (II-19)

The matrix [B] is a function of X and the [T] matrix is a function of

the element geometry. 1A} is the vector of nodal displacements.

Substituting equation II-19 into equation II-18,

{e} = (6] {4} (II-20)

where

{pj [B] [T]

(]

Hence

{(8e’

[c1 {8a}

Equation II-17 may be written

§%n = {4} [[KUE] + kel + [Kze]_] {84} (11-21)



TR R R, .
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where 1L .
(k%) = £ (61" (%) [6) ax

It

L
k1) é (¢1T (k11 [G] dax

[K?,] ! (1T (k%] [G] ax

In general, A, E and I, are functions of the longitudinal
coordinate, X. This is also true of the load, N, and the rotation,
¢ . Before the integration of the terms in equation II-21 may be
carried out, an assumption must be made regarding the variation of these
parameters along the length of the beam-column. The assumption that-
A, E and I are consfants over the length of the element is commonly
made. This assumption will be adopted here. Further, N aéd ¢ will
also be assumed to be constants over the length of the element. The
matrices [Koe], [Kle] and [Kze] given in Appendix A are based
on fhese assumptions.

Applying the neutral stability condition, 8§25 = 0, the buckiing

criterion for the.beam-column element is

dec | (K9] 4+ (K11 + [®%1)=0 (11-22)
The eigenvalue involved in the solution of equation TII-22 is
the ratio of the bifurcation load, Ngr, to the applied load, N.
The load and rotation at buckling are equal to the initial load and
rotation times the eigenvalue. Because of the ¢2_ term in [Kze] s

equation II-22 has the form of a quadratic eigenvalue problem.
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The nonlinear strain displacement relations used in this develop-
ment assume the square of the rotations to be of the same order as the
strains, and the strain to be small compared to unity or € =(5(¢2) <<1.
Thus, a reasonable first épproximation to the solution of equation II-22
for many problems is to assume the ¢2 terms to be negligible compared
to the ¢ terms. With this approximation, equation II-22 becomes a

1
linear eigenvalue problem and is

det | [RO,1 + 2 [[Kle] + [Kze]:] =0 (I1~23)
where
A = Ncr/N
Ner = buckling load

=
I

applied load

The method of assembling element stiffness, initial stress stiff-
ness and initial displacément stiffness matrices to represent a complete
structure will be discussed in Chapter III. The method used in the

determination of the eigenvalues is described in Chapter IV.
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CHAPTER III.

THE CYLINDRICAL, THIN SHELL, FINITE ELEMENT

The following development is an extension of a stiffness formula-
tion by Gallagher (ref. 25) for the doubly curved shell element, shown
in Figure III¥1,.to include elastic instability effects. The Gallagher
shell element was selected as a basis for thié work because it has been
ghown to give reliable results and because it is well documented. An
expression for the strain energy of the doubly curved shell element will
first be derived. Then, prior té introducing an assumed displacement
function, the problem will be specialized to a singly curved ceylindrical
element.

The cylindrical element has wide application in aerospace type
structures. It can be used in the analysis of structures such as
airplane fuselages, rocket motor cases, tanks, and interstage adaptors.
Elliptical cross sections may be represented with cylindfical elements

by allowing the radius of curvature to vary from element to element.

IT1.~1 Basic Assumptions

In this development the shell material is assumed to be-isotropic
and to obey Hooke's Law. The ncutral surface of the shell lies midway
through the thickness. Applying the Kirchhof f-Love hypothesis, it is
further assumed that:

1. The displacements u, and v corresponding to the directions
€1 and &, (Figure III—i) respectively, are linear in the

thickness direction, £&9.
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2. All components of stress normal to the middle surface are
negligible.
3. The displacement normal to the middle surface is a function

only of the middle surface coordinates.

III.-2 Formulation of the Potential Energy

As was illustrated in Chapter 1I, the potential energy of the
external forces applied to an element does not appear in the expression
for the second variation of the potential energy. Hence, consideration
will be directed only to the evaluation of the strain energy of the
element.

Thelgeometry of the doubly curved,thin shell, finite element 1s
depicted in Figure IIT-la. The middle surface of the element is defined
by the curvilinear coordinate £y and £ . The coordinate €4 1s
normal to the middle surface and completes the orthoginal right-handed
system. The radii of curvature Ry and Ry, corresponding to the
coordinate lines &7 and £, respectively, are constants. The equa-
tion for the differential distance, ds, between two poihts on the
middle surface is

| ) |
ds? = o)? dgy? + 0p? g, (I11-1)

where 04 and o, are the Lamé parameters. The linear displacements
u, v, and w, corresponding to the coordinate directions £y, E2

and &4 respectively, are as shown in Figure III-1b.
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b. Linear displacements

Figure III-1, Geometry and displacements of the doubly curved
shell element.
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The nonlinear gtraln displacement relations for small strains
were derived by Sanders in reference 26 and Wili be usad in ihe Foraula-
tion of the strain energy expression. The nonlinear middle surface ex~

tensional and in plane shear strains are:

812
By =gy +'—?—
2
ey = £y + Bg (111-2)
ejs = Y1z + B1Bs
where
1 U ,w
[ = - —_—
1 oy - Bgl Rl

=41 v W
®2 % a; ¥ R

1 8y 13w

1270 oty T ey T,
1 9w u
Bl = -~ = 54— + =
@ 351 Ry
1l Aw v
" E N S
~2 G2 agz ) Rz

The expressions for the beﬁding distortion are:

1 azw + 1 du

Xq = - _ (111-3)
02 92 agRy 8y
Xy = - 12 32w2 4.1 o
A" 9T Ry BE
2 “a ] P M “ ‘L .
IR SPIL e TR A T S TR IS S S A N )
009 3&1352 2 o4 Ry agl. UyRy 852) 2\0&2‘1{2 gy . Ry aib
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The expression for the strain energy for the doubly curved shell
selement of Figure III-la, expressed as integrals over the middle surface

area, is (ref. 19)

- _Eh 2 _ 2 {1-v) 2
b= __——__ fr El +82 + 2\)8192 + 5 elz]aloﬂzdgldgz
2(1-v2) area

(111-4)
Eh3 l 2.2 (1-v) z]
G — 4 dtqd
24(1"V2)a££a X1 4X% + 29X X, 7 Yo | E1dEg

The total strain energy is seen to be the sum of the membrane energy,
given by thé first integral, and the bending energy, given by the second
integral.

The stress components in the shell element are shown in Figure
IIT-2a. The corresponding stress resultants and bending moments are
shown in their positive directions in figures III-2b and ITI-2c.

The following set of equations relate the stress resultants to membrane

strains and the.bending moments to bending distortioms (ref. 19).

Eh
N, = —  (eq + ve,)
¥, =-Eh_ (e, 4 ve,)
- 2
2 1-v2 1
N12 = NZ]_ = Gh ej9 {IEL-5)
3
Mp o= O 4 viy)
12 (1-v2)
Eh3
My = ““““““5“(X2 + VXYY
12(1-v%)
- v Eh3
Mg = Myy = = 34,

24 (1-v)
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a. Stress components

c. Bending Moments

Figure ITi-2. Inteenal Stresses
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By combining equations III-2 and ITI-5 with equation I11-4, the follow-

ing form of the strain energy expression is obtained:

By

B2\
-1 P =
v=3 /I 1-N1 g+ ) RN B el LR PRPIL LY

area _ / | (111-6)

+MpX) F MpXy + My, Xlél o0y dEy d&j

IIT.-3 The Second Variation of the Potential Energy

The strain energy of the shell element after a virtual displace-

ment may be expressed as (ref. 19)
U+ AU =U + 68U +-%' s2u + High Order Terms (111-7)

iﬁ which &U and 62U are the first and second variations, respective-
ly, of the strain energy.. Hence, following the technique used in
Chapter II, the second variation of the strain energy will be determined
by giving the system a virtual displacement and grouping the terms in
the resulting strain energy expression in the form of equation III-7.
Applying a virtual displacement to the terms in equation III-7 produces

the following equation:

| (By+68)% 7 |

U + AU = -E a{éa {(Nl-l'ANl) E1+l5€1+ "——-—E——"— IE +(N2+ﬁN2) (111-8)
- (8,+58,)%1 | R
; €2+<362+ —'"'—2—‘—)“*‘ ‘(N12+AN12)5 Y]_2+6Y12+(B]_+551) (82"'6,82)

o

+O0H0X ) (My+AMy) + (XZ-HSXZ)(M2+AM2)+(X12+GX]_2)(M12+AM1’2)} .

a@,dE dE,
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Fvaluating the incremental stress resultants and moments:

2 2
(B1+681) (B+885)
Ny + ANg Eh {€1+551+ Rl Mhsat Sa > 1”4 u[sz+652+ __%__.2___-}}

1-v2

: 2 2 2
B 6<B v
Eh gl+t5€1+ o1 BlGBl + _1 + VE, + ———-—82
1_v2 . 2 o2 2

o 528
v82682 + v > 2:}

Comparing this with the first of equations III-5, it is determined that:

+

. 828 v82B
ANl = ]E:2 [?€1+81661 + v5€2 + V81581'+ —E—l + 2 2 . (I11-9)

Similarily

. Fh 6282 V6281
‘ ANZ 5 6€1+82662 + VéEl + VBlasl + > + 5 (III“IO)

1-v
o —Eh § gy 4B.SB, + BoSB, + OB, OB (I11-11)
BNy = Srtawy | S22 TR 1 %F -
Eh>
AM) = =t (8%; + v3X,) (I1I-12)
12(1-v3)
13 -
My =~ (85X, + véx] (II1-13)
12(1-v5)
3
Eh
MM, . = ——~— §X
1 2 : ~14
2 aoy L (11I-14)

After substituting equations 111-9 through ITI-14 into equation III-8
and after considerable manipulation, the.second variation of the
potential energy, which 1s equal te the second variation of the strain

energy, may be identified and written in matrix form as:
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area

where

Eh

1-v

+ [f{8e}

area

Eh
1-v2
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area
[R21{6T0,,dE, dE,

(6e)T = | Seq 6By % vy Sep 6By 8% 8Xag |
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=

0
0

[

o oo ©

8% vy
0 0
0o 0

h2. g

2
1-=-v
C =
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(111-15)

<

oo

=
o=
]~
£~ T‘c
<
R

OO0 O0OCO0

o S

Ny




22

" The first term in Equation III-15 leads to the conventional stiffness
matrix; the second term leads to the iniFial stress stiffness matrix;

and the third term leads to the initial displacement stiffness matrix.

III.-4 The Stiffness Matrix

The formulation of a stiffness matrix for the doubly curved shell
element shown in Figure ITI-la is described in detail in reference 25
and will not be repeateé here. The stiffness matrix reported in refer-
ence 25 5pecialized to the case of the element shown in Figure III-3a,
will be used. The felationship of the coordinate axes of the cylindri-

cal element to those of the doubly curved element is:

El = X {I1I1-16)
Ea = &
53 = Z

The radii of curvature for the cylindrical element are:

R]. = oo
(I111-17)
R2 = R
The Lamé parameters for the cylindrical element are:
0(.1 = 1
(1I1-18)
(12 = R :

Figures III;3a and III-3b depict the positive directions for the linear
and angular displacement in the cylindrical element.

Because of the importance of the assumed displacement function in
the development of any finite element stiffness wmatrix} it is worth-

while to briefly discuss the displacement functions used by Gallagher
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a. Element Geometry
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k. Lineay Digplacements ¢ Aaguolar Displacements

Figure MI-3. Geomertry of the cylindrical clawnent and associated
' displacements,
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for the doubly curved shell element. The displacement functions used

by Gallagher in reference 25 are:

L [(x-a) (R6-b)u, - X(R8-b)u, + XROus - RO(X-a)uy]
ab

v = —%—[(X—a)(RB—b)vl - X(R8-b)v, + XRévj - RO(X-a)v,]

S \(a3+2X3—3aK2)[b3+2(R9)3—3b(R8)2]W1+(3aX2-2X3)[b3+2(R9)3
adp3
-3bR6) 2] wy

+ (3aX2-2X3)[3b(RB)Z-Z(R8)3]w3+(a3+2X3—3aX2)[3b(R9)2-2(R8)3]W4
o+ aX(X—a)2[b3-2(R8)3—3b(RG)2}¢X1+a(X3—aX3)[b3+2(RB)3—3b(R9)2]¢X2
+ a(X3—a32)[3b(R8)2*2(R6)3]¢X3+a(x~a)zx[3b(RB)2-2(R6)3]¢X4

+ b(a3+2x3-3ax2)ae{(Re)—b]2¢el‘b(3ax2-2x3)Re{(Re)—b12¢92

+ b(3ax?-2x3) [-(—Re>3-b(Re)2]¢93+b(a3+21'€3-3ax2> [(r8)°-b (R0)21¢g,,
+ abXRB(X—a)2[(RE))—b}2¢X@1+abXRB(X2—aX) [(RE))—b]ztbe,2

+ apxRe(xz-ax)[(RB)2-bR8]¢X63+abXR9(Xwa)2[(RB)Z—bR9]¢XBQ ]

where, as shown in Figure 1II-3,a and b are the element lengths in the

meridinal and hoop directions respectively; u;, vy and wy (i=1,2,3,4)

are the linear displacements at the ith  corner of the element and;

¢

¢e and ¢X8 are the angular displacements at the jth
i i i

corner‘of the element.
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Zienkiewicz'and Cheung in reference 27 list the desirable condi-
tions to be met by a displacement function chosen to represent element
behavior. These conditions are that the displacement function must
properly account for rigid bédy motion and constant strain rates,
and must satisfy inter-element boundaries. -The above displacement
functions meet these conditions in the case of a flat plate but fail to
do so in the case of the curved element.

Previous studies (ref. 28 and 29) indicate that the violation of
the above conditions does not prevent convergence to the classical
solution and does not significantly reduce accuracy for refined idealiza-
tions. Indeed, Gallagher demonstrates the adequacy of his formulation
by showing excellent corelations with known closed form solutions to
several shell problems.

Table III-1 shows the organization of the terms in the conven-
tional, initial stress and initial displacement stiffness matrices,

The explicit statement of the tefms in the element stiffness matrix,
[Koe], obtained by Gallagher and specialized to the cylindrical element

is given in Table III-2.
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5,5

7,1

k10,10

ky11 SYMMETRIC
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18,18
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24,2 24,3 %24, 4] %24, 5{%24, 6 %24, 7| %24, 8] %24, 9[¥24, 10 [¥24, 1 §¥24,02 %24, 190%24, 14] *24, 1624, 1624, 170524, 10|*2¢, 14"24, 20{¥24, 2124, 23[%24, 25[524, 24

W T s [ fe [ Pxe| Y2l Ve | V2|t { %, [®xp | U | Vs | Vs | Oy | %e %oy | Y [ T4 p e | x| 90, | %m,

[TNEEY

Table -1 Arrangement of Terms for the "Conventionsl”, "Initial Stress", and "Initial Displacement” Stiffness Matrices for the Cylindrical Element.
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Table III-2 Elements of [Koe]

Q 0 0 Dm[b—-+ (1_\)2 _a:J

k7 7 = k33,13 = k19,19

3a 6 b
k 0 =k 0 = k 0 = M
14,13 = k20,7 = ¥19,8 3
0 0 0 —-7vbDy,
kg,1 = k19,15 = K21,19 = 7 40r
0 0 0 0

k10,7 = K16,13 T %22,19 T G

0 0 0 -bdupy
k11,1 = k17,13 = k23,13° T 40r

0 0 0 a. 0
kg7 = k24,13 = k19,13 = k5,1

0 b _ (1-v)a
k = - b _
19,137 7 P 5 12b

Dm(1-3v)
LR S A ke
19,2 © “14,7 © 20,13 8
0 0 0 0
k22,13 = k19,16 " ¥7,4 = " k4,1
0 0 0 0
k; 5 = k18,13 = kp4,19 = ~ kg1
0
N k1,1
19,7775
o 0 0 0
k13,2 = kg, 7 = k20,19 = - k2,1
0 0 Q 3vbD,,
kp1,1 = k19,3 = k19,9 = - "4GR”
0 -0 0 - abuDg

k13,4 = k22,7 = k19,10 = T2
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Table I1I-2 (Continued)

2
0 0 0 _ b VD

23,1 13,11 - 13,5  goRr

0 0 0 L0
kl9,6 = k2417 = kl3:12 - § k5,1
0
b a
Kk = Dy | 2 —(1-v)2-
13,7 m[ﬁa (1 \))Gb]
0 o 0o 0
k7,2 = ky3.8'= k19,14 = kg1
0 0 0 0

k19,4 = k16,7 = k43,10 © ~k1g,1

o 0 0 _ 0
ki3 = k18,7 = F19,12 7 7F18,3

o o 0 a 1v b
kg g = K34 14 = ¥20,20 = D¢ 7|1 +"“’
| 3b
0 ~7aDy  (2-3v)
k9,4~ WOR T zar b
2
0 0 0 a Dm VDb
Kog.2 = %9410 16,14 T 7 TR T 2R
0 . 0 0 7ame (Z—v)bDb 7an

kyp,8 = k17,14 = k23,20 = ~ -

240R  12aR 20bR
0 0 0 a me UbDb a Db
k = = k = - -— -
18,8 ~ k14,12 = K24 20 240R 12R  20bR

e
|

0 {a [ Db] : {
=p {-— |1+ (1-v) — | 1+4
20,4 m 2
6b DR . a

k8,3 = - - .

40R 2aR

=




0
10,2

k11,2
12,2
k14,2
15,2
ky7,2
k;s,z
k20,2
ko1,2
kzs?z

k4.2
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Table III - 2 (Continued)

2
A I D3
16,2 14,4 722,14 oy
0 | 0 0 abDy, + (2-v)bDy  3aDy
= =k = - -
kg,s = k23,14 20,17 80R 12aR 20bR
0 0 0 aZoDy  a’Dy
k =k =k = + -
14,6 ~ “24,8 ~ "20,16 7 3602 30bR
0
0 kp 2
k20,8 . 2
0 3ap, (2-v}Dp
ko= - +
21,8 40R 2aR
0 0 0 0
kyg,5 = ka3,8 = kp0,11 =~ K11,2
0 0 0 0
8.6 = k20,12 7 ¥24,14 = 7 *12,2
0 D{;‘ [1 Db‘l (l-v)b[l 4Dp, |
14,8 = Pmy 11 B o 2
%o D,R2 12 a DR
0 7ap, (2-V)Dg
k15,87~ B
* 40R 2 aR
0 0 0 0
kog,5 = k17,8 = k19,11 = ~ Ks5,2
0 0 o 0
kyo,6 = k12,8 = ¥18,14 =7 Ke,2
Q 0 0 156D, | b al| 72 Dy 169abDdy,
kg g = k15,15 = Kp3,21 = SCHY e
35 |a3 b3 25 ab  1225R
kzz’%]_:aE)bF—i E+ 2—2 a 4 L(é._.+ .6,.2 + ..—_1433‘13 Pll'l__
L 135 a3 3503 ables s 7350 R2
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Table ITI-2{Continued)
0 “122b 73 a ( 143ab Dy
K =b —_—— __.__-k-_- —
11,9 {?b 35 a3 35 b3 25 7350 R?
0 11 a 1 v\ 4 12lab Dy
kyg,s = @Dy — 5+ -5 — 2 =~
B 35 a3 35 b3 ab\50 5 44100 R?
0 0
kg 7 = 15,13 21,13 =-ky,
L0 D' 156 b 54 a 72 ], 117ab Dy
21,15 35 a3 35 b3 25ab 2450 R2
0 780 13 a . 6 7| 169ab Dy
k1,16 = -2 4 - -m
35 a3 35 b3 25ab 14700 R2
0 22 b 27 a 1{6 6V 33ab Dy
k95=bDb-“——3-+-“—*§—‘-—"“—+—+——*'——2
> 35 a3  35b> ab\25 5 4900 R
0 11 b _ 12 1 /1 143ab
ko, 15'313{[ 2-22 _(_n_l’:)]- ab Dm
| 35 a3 70 b3 ab \50 1 88200 RZ
0 0 0 0
kis 7 = kgp 7 = k13,9 = = Ki5,1
0 0
kyp.g = " K52
0 ] - 81ab D
Kyp 9= = 5L Db|:E"'+ EMJ + ZE.EE.+ & Tm
’ a5, ad b3 25 ab 4900 R2
. i
. _ufpf37b ,13a 67 _ 39Dy
21,10 b 3 3 5
35 a3 35 b3 25ab | 9800 R
0 1
Kyg9 = b {%b{gg_gm_+ 27a - 6 ]- 39ab Dy
35 a3 35 p3 25a§J 9800 RZ



18,3

k20,3
0
ka1,3
22,3
k23,3

Ko4 .3

Il

13 b 13 a 1 169ab D
k1506 = ab Db - s T + + '—mz
’ 70 a3 70 b3 50ab 176400 R
0
k14,0 = 7 k21,2
0 54 b 156 a 72°]  117ab Dy
K0 = 5T 3T s 2
’ 35 a3 35 b3 25ap| 2450 R?
0 =
ey 0y = almy| b - 222 L _z_+6_v) NELLp
’ 35 a3 35 b3 ab\25 5 4900 R2
0 -
ky; 9 =D Db—lﬂg..'?__+ﬁi_+ 6 _ 169ab Dm
’ 35 a3 35 b3 25ab 14700 R2
0 - 13 b 11 a 1 {1 v 143ab Dp
k15,12= ab{Dp|{ - ——+F = —F — |t — || - —_—
70 a3 35 b3 ab \50 10 88200 RZ
0 D 0 '
- L 2y |52b 4 a 3 13ab
k10,10 'L‘16,L6—1‘~22’22=a ﬁ)b[——— O S -‘+ Pm
| 35 a3 35 b3 25ap{ 3675 RZ
0 “Juie 1ra 1 {1 6w\l 121ab Dpm
koo .. = ab { Dy — =+ = ek | S — ke
17,16 3 3 2
L 135 a 35 b= ab \ 50 5. 44100 R
0 [ 5 N
k S a2pipf22 b 2 e 2 41 vy, 1lab Dy
12,10 b ; 3 5
1105 & 15 b ab \75 15/ 22050 R
AR A
22,8 ~ “og,0 20,16 10,2
0 0
k92,15 = 7 %io,3
° _ .2 26 b 3 a 2 13ab Dy
k22,16 = @74 Dpi— = = — — - o —
|35 a 35 b 25ab] 4900 R* J
0 [ 11w 13 a 1 i v\ 143
1
k23,16 = ab(}% R - I A +“*“Eh
L | 35a3 7003 api\so 10 88200 R?
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TABLE III-2 {(Continued)
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TABLE IITI-2 (Continued)

Lo gb{% 11 b 3 a 1 /1 v\l 1labDy
- =a ———— — T e a— R A —— —— —-— —
12,4 10,6 51105 a3 70 83 b \150 30/ 29400 R?
0 0 0
k15,4 =Ko 9 7Kg g
- T 7]
0 0
’ ’ | 35 a3 3503 25ab 9800 R2
0 0 13b 13 a 1 _ 169ab Dy
k17,4 = kig,5 =@ Pyl —— — - -
70 a3 70 b3 50ab 176400 R
0 0 ({13 b 3 a 1| , 13 D
kig,4 = ko4 10 = a%b Dy~ — - — — - -2
\_ 210 a3 70 b3 150ab 77800 RZ
o ., 0 o . 0 0
k20,4 = k10,5 + 16,8 = ¥22,20 = 7 4,2
0 0 18b 4 a 8 3ab
- a2 _ ab Dp
ky2,6 ~ Kig.10 {Db - + =
35 a3 35 b3 25ab 2450 RZ.
kg0 = kg = b p - b s dla L (1, v 163ab Dy
A _ | 70 a3 35013 50 10/| 88200 RZ,
0 0 13 b 2 a 2] 13ab Dy
kog 4 =k = b —— - —
“ 18,10 {;‘{: 105 a5 35 b3 75ab | 44100 R2
0 0 0 0 4 b, 52
k =k =k = k = p2)p (2P 42228 4 8 3 13ab Dy
5,5 11,11 = k17,17 b
23,23 {; [35 a3 35b3 25ay 3675 RZ
0 0 “l2 b 22
’ ) 35 a3 105 b3 ap \75 15/ 22050 RZ
0 0 0 0 0
k7,5 =ky1,7 = kp3 99 “Kyg 37 = " k5.5
0 0 0
k10,5 = k22,17 = = k31 4
0 0 -
k11 s =k23-l7=b20b _f*__.b_._+£§a_— 8 3ab Dy
’ > 35 a3 5 b3  25ab 2450 RZ2



32

TABLE III-2 (Continued)

L ° 0 2[5 2 b 13 & 2 13ab D
12,5 = %23,28 7 ** \"|35 23 T 105 b3 75ab 44100 R2

kis,5 = kpj 31 = ~ k17 3
Lo o _b2;73b L9 2 2 | 9 D
17,5 23,11 b135 a3 35 b3 25ab | 9800 R2
0 0 q
3 b _13 a 1 13ab Dp
k -k = ab?{Dy 13 a . + Dy
18, 23,12 <g {: 70 a3 210 b3 150abJ 77800 R%}
0 0 A 0
kjg,5 = ky7,7 % k23,7 = k19,11 =-Kkiv1
0 0 0
k21,5 = Ki5.11 = 7 Kgg. 3
0 0 0
kyp.5 = ky7 10 = = k23,4
0 0 —
’ ’ 35 a3 35 b3 25ab 4900 R2

0 0 3 b 11 a 1 1 v _1l1abh D
Ky ) =gy = @b Dy (- Tt o o [ ) | e
’ ’ , 70 a3 105 b3 ab \150 30 29400 R

0 0 0 0 ., T4 v 4 a 8 |, ab b
: = = = = e s F mrm——— —— + _-m
k6.6 = ¥12,127¢18,18724, 2470 0 {Eb[los ad 125 b3 225aJ 11025 Ré}
Q 0 0
kg6 = Kp1,18 = - k12,3

0 0 0
k11,6 = k24,17 = ~ kio5

) 0 . 0 2,2(; "2 b 1 a 2 ab Dy
= = a Y T - " - sy
12,6 24,18 o 105 105 a3 35 b3 225ab 14700 RZ

a 0 0

kig,6 = K22,12 = ~ k18,4
0 o 0
k17,6 = Kas,11 7 ~ k18,5

0 .
kig g = k2&012 = a%b2 Dy |- 1 b _1 a , 1 +-2b _ Dm
’ : 70 a3 70 b3 450ab 19600 RZ



0
k21,6

22,6

k94,6
k10,9
k12,9
k16,9
k24,9
k11,10
k23(,)10
k12,11

k18,11
k15014
k317,15
k20,15
k23(,)15
k18,16

ko416
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TARLE III-2 {Concluded)
0 0

kig.og = = ky43
0o o
kig 10 =
O a
18,12 Y a3 105 b3
0
k1,15 = 4,3
0 0
kog 21 = — kg3
0 0
le,lO =T k22,3
0 - 0
kyy 21 =~ Kig,3
0 0
kyg 22 = - K54
o 0
kp2,11 = 7 ku7,s
0 0
k18,17 = ~ k6,5
0 0
k17,12 = ~ k4 5
0 0
ka1,20 = ~ k32
0 0
kp3 21 = ~ kg 3
o _ 0
kr1,14 = K90
o 0
ky1,17 = ~ k11,3
0 0
Koy 22 = ~ Kg 4
0 0
kyz,18 = T K12,4

2

ab Dp

225ab

74700 R2
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III-5 The Initial Stress and Initial Displacement Stiffness Matrices

The steps involved in the development of the initial stress and

initial displacement stiffness matrices for a cylindrical element will

be outlined in this section. The detailed statement of the significant

intermediate matrices involved in this development is in Appendix B.

The matrix symbols used in this section agree with those in Appendix B.
The desired strain-displacement relations for a cylindrical shell

are obtained from equations TII-2 and III-3 by the direct substitution

of equations III-16, III-17 and III-18. Written in matrix notation, the

equations relating strains to linear displacements are:

{€e} = [a)[D) g} (II1-20)
where

(gt = LexBxXx¥xgfoBaX0Xxo |

{g}T =Lu v wl

The terms in the [A] matrix are all constants and [D] is a matrix of
differential operators.

One of the majpr assumptions involved in the development of the
initial stress and initial displacement stiffness matrices is the form
of the displacement functions to be used. .Three displacement cbmponents,
u, v and w must be characterised. The characterization of the membrane
displacements, u and v, is based on the simple assumption of lineaf edge

displacements. For a flat plate, this assumption insures compatibility
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of displacements along lines bounding the elements. Making use of the
approach taken in references 30 and 31, the displacement functions for

u and v are:

=
|

=1 (¥X-a) (R6~b)uy -X (RE~b)up + XRbBu ~RE(X-a)u, (I11-21)
ab K

<
Il

;%'Ex-a)(RG—b)vl-X(RB—b)vz + XRBVB—RB(X—a)VA] (IT11-22)

In reference 6, Martin discusses the relative merits of linear
versus cubic displacement functions for the case of a beam-column, He
demonstrates that a linear function representing the normal displacement,
w, of the beam-column is the simplest, nontrivial polynomical form con—l
sistent with the problem. The beam-column stability problem is
formulated using a cubic displacement function for w to derive the
conventional stiffness matrix and a linear displacement function for w
to derive the initial stress stiffness matrix. This is effectively a
superposition of a tensicn~compression member and a beam; with no inter-
action between the two. In the case¢ of the beam, this has led to satis-
factory results. In an analogous manner, the displacement function

chasen for w in the case of the cylindrical element is:

1 .
W= 55—Eﬁ—a)(RB—b)wlnx(Bﬁ-b)w2+XROw37R8(X—a)wag] (ITI-23)

The displacement functions, in matrix notation are;

{g} = [B]{A} , , (ITI-24)
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Where:

(1T = [up up up ug vi vy vy vy wp w2 w3 W&J

and [B] is given in Appendix B.

Substituting equation III-24 into equation ILI-20 gives:
€} = [cH{a} (T1I-25)

with [G} being given in Appendix B.

It follows directly that:
{8e} = {G){8a} (ITI-26)

Substituting equation JIT-26 in the second term in equation III-15 and
introducing the notation for rhe cylindrical element produces the fol-

‘ 1
lowing expression for the initial stress stiffness matrix, [Ke].

3 N o~ -
k1 = 55 (a1 eI kM r¢ {80 RdBAX (111-27)
area
T ~ .
The triple matrix product [G]° [Kl} [¢] is desigrated as [H] and is

given in Table B-1 in Appendix B. The terms in Table B-1 are designated
hisj where the 1 and j denote the row and column, respectively,. in
which the term is located in the matrix. The overall arrangement of the
matrix is identical to that shown in Table I1I-1, and the element corner
displacement vector {&A} has been reorded accordingly. Only non-zero
terms are given. The matrix is a2lso symmetrical.

Prior to carrying out the indicated integration, an assumption

must be made with regard to the character of the stress resultants Njp,
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Ny and Ny5. An assumption, consistent with the assumed linear displace-
ment functions, is that these stress resultants are constants. With
this assumption and after carrying out the integration of the right hand
éide of equation III-27, the non-zero terms of the initial stress matrix
are as given in Table II1-3. The arrangement of the terms in the [Ké]
matrix is the same as indicated in Table III-1.

Attention is now turned to the thifd integral in equation III-15.
Since the displacement functions stated in equations ITI-21, III-22 and
ITI-23 are to be used in the development of the initial dispalcement
stiffness matrix, the equation for the initial displacement stiffness
matrix is obtained in exactly the same manner as was the equation for
the initial stress matrix, equation III-27.

Hence:

(k2] = 55 (6aY7161T (K21 [c]{6A)RAOAR (III-28)

area
The triple matrix area product [G]T[ﬁz]{G} is designated as [E] and is
giﬁen in Table B-1 in Appendix B. The terms in Table B-2 are designated
ei,j where the i and j denote the row and column, respectively, in
which the term is located in the matrix. Again, the overall arrangement
of the matrix is the same as that shown in Table T1I-1. The ordering of
the vector of element corner displacements is chanéed accordingly. Since
the matrix is symmetrical, only the diagonal and lower triangul;r terms
are given. Also, only nonzero terms are given.

Before the indicated integration can be carried out, an assump-

tion must be made about the rotations Bl and 82. An assumption that 2y
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and 62 are constants is compatible with the linear displacement functions
assumed for w. The values of Bl and Bz for an element are the
average rotations for that element. The equations used to compute Bl
and 82 are given in Chapter IV. With this assumption, the non-zero
terms of the initial displacement stiffness matrix, obtained from the
term by the term integration of the right hand side of equation I11-28,

are given in Table ILI-4%
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TAELE III-3 Elements of [Ké]
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TABLE III-3 {(Concluded)
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TABLE T1I-4 ELEMENTS OF [KZ]
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TABLE III-4 (Continued) 5
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TABLE ITI-4 (Con tinued)

2 aBy b2, A=) 2], a2
kg 3 = Dm{?R— - '3—5[%1 + T, Bo" | T b RBo

2 2
k133 = kis,1

k1423 = &;%gl D8, + D {El V) ( ) ( ) 2222 th'
+-i%-§ (l+v) BBy + 3%22 4 G- v) ]}
Dm{(lz\)) BB+ _[ (l -v) ] N 6b|:B2 (1-v) \.J) ]}
e (o) (% 222 )
aufog o[22 () -(f- 50 (00 v
+ aE&zz +'_(_1_;_ﬂ 312]}
o 20 (3 022 0] 3+ o))
k77 ok [(l;))' aB, - vbB ]
{2 ()3 )

2 _ ., 2
14,7 = 7F19,2

)

2
k15,3

I

2
k20,3

=
[¥s)
v N
~J

]



4

TABLE III-4 (Continued)
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TABLE III-4 (Continued)
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TABLE III-4 (Continued)
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TABLE I1T-4 (Concluded)
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CHAPTER 1V.

METHOD OF COMPUTATION

In this chapter, the procedures required to solve for the buckling
behavior of a complete cylindrical shell structure will be presented.
Consider the idealization of a complete shell structure to be formed
entirely of the cylindrical elements developed in Chapter IIIL. In order
to assess the buckling behavior of the structure, the second variation
of the strain energy of the structure is formulated in terms of the
element stiffness, initial stress and initial displacement stiffness
matrices developed in Chapter III. The concept of combining element
stiffness matrices to produce a "master stiffness'" matrix for the com-
plete structure is well documented (references 27 and 32).

The second variation of the potential energy for the complete

structure with the boundary conditions applied has the form:
s2r = (saYT[(RO) + [R'] + [R°T){6a} (Tv-1)

where [EO], [Ell and [KZ] are the reduced master stiffness, initial

stress and initial displacement stiffness matrices respectively.
Applying the stability criterion stated by equation II-2 to

equation IV-1, the requirement for neutral stability of the complete

structure is:
(883 [IR°] + (R'] + ®*1 )5} = 0 (1v-2)

In the solution of equation IV-2, consideration will be restricted to
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a linear elastic‘instability analysis. As used herein, linear elastic
instability analysis is defined as the calculation of the condition for
the bifurcation of equilibrium without the need for an iterative deter- .
mination of the internal loads or deformations. Hence, the magnitude

of the initial stress stiffness matrix corresponding to the application
of the critical load is proportional to its magnitude corresponding to
the application of smaller, but otherwise arbitrary, load. More gimply

stated,

-1 -1
K = A[K ; N <N
(K7} INcr [K™] |N or

where the engenvalue, X, is

A = Ner
N
in which Ngy is the load for bifurcation of equilibrium and N is an
arbitrary initial load.

In Chapter II, the reason for neglecting the squares of the rotation
in the [Ki] matrix for the beam column was discussed. The same line of
reasoning, is applicable to the rotations, By and B9, of the cylindrical
shell element. Consequently, the squares of rotations in the [Kzl matrix
will be neglected. The initial displacement stiffness matrix for a
linear elastic stability analysis is

-2 -2
(K] INCr =2 [K'] |N

The linearized, nontrivial solution of equation IV-2 is
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det | [K°1 + A [[E:l] + [122]] | =0 (Iv-3) -

For computational purposes, the above equation is more conveniently

stated as
ger | L my+ R [[Kll s @] | -0 (1V-4)

where [I] is the identity matrix.

The major steps inv;lved in the formulation and solution of
equation IV-4 are:

1. From basic elemental data, compute the element stiffness
matrices and construct the master stiffness matrix,[Ko], for the
structure.

2. Apply the appropriate boundary conditions to [KP] to form the
reduced master stiffness matrix, {KD].

3. Multiply an arbitrary initial loading by the inverse of [K°]
to determine the initial displacements, {A}.

4, Compute the membrane stress resultants, Nj, Ny and Njs for
each element using

{n} = [sg] {Ag}
where [Sp] is the "element stress matrix" which is discussed in detail
and shown in Tables III-7, ILI-8 and III-9 of reference 25, {Ae} are
the nodal displacements for the element under consideration.

5. Compute the "average' rotations about the X and 0 axes, f»

and By respectively, from
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6. Using the results of steps 4 and 5, construct initial stress
and initial displacement, stiffness matrices for each element and con-
struct the master initial stress and master initial displacement stiff-
ness matrices, [K1] and [KZL respectively.

7. Apply the same boundary conditions to [Kl] and [K2] as were
applied to [X°] to determine the reduced master initial stress and
initial displacement stiffness matrices, [ﬁl] and [Ez], respectively.

8. Compute

o) [[ﬁll + [E21]
and compute the eigenvalues of equation IV-4.

A digital computer program has been written to accomplish the eight
steps set out above. The program is coded in Fortran IV language and
has been used on the CDC 6600 digital computer at the NASA Langley
Research Center. A listing of this computer program is given in
Appendix C. The reading of input data; the calculation of element
stiffness, stress, initial stress and initial displacement sti%fness
matrices; the formulation of master and reduced stiffness, initial stress
and initial displacement stiffness matrices; and the printing of output
were all coded directly. Library routines (ref. 33) were used for ma-

trix multiplication, inversion and eigenvalue determinatiom.
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A concise flow chart of the program is shown in Figure IV-1. The
general flow of the program follows the previously diécussed eight solu-
tion steps. The subroutine used for the inversion of [K°] uses Jordan's
method (reference 34) to reduce [K°] to the identity matrix [I] through
a succession of elementary transformafions. ‘When these transformations
are applied simultaneously to [I] and the load vector, the results are
[Eb]il and the displacemént vector. The subroutine REIG of reference 33
finds the eignevalues of a real, square matrix. The original matrix
which, in this case, is [Eb]_qifl] + [Ezj]is transformed to upper
Hessenberg form. The eigenvalues are then found using the QR transform
of J. G. F. Francis (reference 353).

Because of the vast amount of storage required to sélve a problem
of practical interest, an overlav procedure was used. In the first over-
lay, the inverted stiffness matrix; the reduced master initial stress

_stiffness matrix; and the reduced master initial displacement stiffness
matrix are determined. 1In the second overlay, [K'] and {K2] are added.
The resulting matrix is premultiplied by [K°17l. The highest eigenvalue
is then determined for the resulting matrix. Each overlay uses 300,000
octal storage locations. The computing time, of course, varies with the
number of degrees of freedom used. A problem having about 250 degrees

of freedom requires about five minutes of computing time.
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READ

Shell Geometry and Material Properties
Gridwork

Boundary conditions

Applied Load

Form Element Stiffness Matrices, [kgl
Assemble Master Stiffness Matrix, k01
|

Apply Boundary conditions; Invert the
Reduced Master Stiffness Matrix, [EO]and

Solve for the Nodal Displacements, {A}

Evaluate Element Stress Resultants;

N} = [8] {rel
}

Form Element Prestress Stiffness Matrices, [K%]

}

Evaluate Average Rotatipons for the Element,
By and B2

¢

Form Element Prebuckling Deformation Stiffness
Matricies, [K2]

Form Master {Kl]
Form Master [Kz]

Apply Boundary Conditions to [Kl] and [K2]

To Opbtain the reduced Master Matrices [K1J and [K2]

Solve: | %-[IJ + fko]_lﬁ?l] + [Rzi] | =0

i

PRINT

EIGENVALUES

Figure Iv.-1 Elastic instability program flow chart.
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CHAPTER V.

APPLICATIONS OF THE COMPUTER PROGRAM

The procedures described in Chapter II and the finite element
developed in Chapter III were applied to the stability analysis of sev-
eral types of structures by means of the computer program outlined in
Chapter IV. The results of these analyses are delineated in this
chapter. In addition, investigatioms pertaining to the influence of the
initial displacement stiffness matrix and the importance of the non-
linear terms in that matrix are reported. The types of structures
considered were: the beam-column, the arch, the flat plate, and the
curved panel with and without a cutout. The beam-column, flat plate,
arch and curved panel without a cutout were studied for the purpose of
establishing the accuracv of the procedure and the finite element.
Since no information is available on the buckling of curved panels with
cutouts, the accuracy of those results can only be inferred from the
accuracy of the solutions obtained for the other types of structures.

An Euler column with both ends pin-ended was analyzed using the
finite element developed herein. The exact solution to this problem is

{reference 12)°

p_ _ MPEI
cr 9
L

(V-1)

The column was modeled using plate elements having a width and thickness
of 1.0 in., thus giving the proper area moment of inertia for the column

shown in Figure V-1. 1In this figure, the improvement in the accuracy of
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56

the solution is shown as a function of the square of the ratio of the
finite element length (£) to the total length of the column (L). The
percent error forén1<§if of 0.0625 is in agreement with the solution
obtained by H. C. Martin in reference 6 for the same degree of refine-
ment. J

The present finite element was applied to the solution for the
buckling of a square, simply supported flat plate. As indicated in
Figure V-2, the plate was loaded uniaxially with a uniform line load.
By‘utilizing symmetrv, it was possible to coansider only one quadrant of
the plate. The plate was modeled using square elements of length and
width, £, 4, 9, 16 and 25 elements per quadrant were used. The influ-
ence of the mesh size on the solution accuracy is presented in Figure V-2.
As can be seen in that figure, the accuracy of the solution converges

rapidly to the closed form solution which is (ref. 12):

2 3
_ 4me EhT (V-2)

Ney = )
T (-2

Also plotted on Figure V-2 are the results obtained by Kapur and

Hartz in reference 9. Both the stiffness matrix and initial stress
stiffness matrix of the Kapur and Hartz finite element were derived using
the fourth order displacement function for a thin plate in bending which
was first presented by Melosh (referemce 31). The advantage of using
the higher order displacement function is seen in Figure V-2 to diminish
as the mesh size decreases. The results indicate that both solutions

2
have errors of order (t) - Since all prebuckling displacements are in

the plane of the plate, the initial displacement stilfness matrix is
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identically zero and hence plays no role in the solution of the flat
plate buckling problem.

The computer program of Chapter IV was applied to the simply sup-
ported arch depicted in Figure V-3. The solution to the arch brings
into play terms containing the element curvature as well as the initial
displacement stiffness matrix. The exact solution for the buckling of
a simply supported thin shell arch subjected to a uniform line load is

given in references 12 and 36 as:

2 2 .

12(1—\»25 | o?

For the arch shown in Figure V-3, g., = 275 1lb./in. The line load

Qer =

required to buckle the arch was computed to be 273 1b./in. using 12 of.
the present finite elements to represent the arch.

C?lindrical panels of varying curvature were modeled using the
present finite element and the buckling load was computed. The panels
considered had equal dimensions in the circumferential and longitudinal
directions. The panels were simply supported along all four edges and a

uniform compressive line load was applied in the axial direction. The

well known cylindrical shell curvature parameter, 7, was varied between
1.0 and 10.0 by varying the radius of curvature, R.

Classical solutions (references 12, 15 and 37) for the buckiing of
curved panels in the curvature range considered predict a single half
sine wave buckle in both meridional and circumferential directions.
Since only one quadrant of the panels was modeled, it was necessary to

establish that the lowest buckling load did indeed correspond to a single
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Figure V.-3 Simply supported arch with a uniform load.
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half sine wave. This was accomplished by considering two sets of bound-
ary conditions for the interior edges of the panel quadrant analyzed.
Both sets of boundary conditions assumed a single half sine wave in the
circumferential direction but one set assumed symmetry about the midline
in the longitudional direction and the other set assumed asymmetry. In
each case, 25 elements were used to model the quadrant. Table V-1 gives
the results of these analyses. The symmetric solutions give the lower
buckling load in each case, hence, the finite element solution produces

a buckling mode shape which 1s compatible with classical solutions.

%
Z | SYMMETRICAL SQLUTION ASYMMETRICAL SOLUTION
_ 0 4,06 ' 6.52
1 R 4.08 ] 6.53
5 . 4.33 o __6.66
10 5.08 7.02

TABLE V-1 BUCKLING COEFFICLENT FOR CURVED PANELS

As is.established by Rehfield in reference 13, boundary conditions
play an important role in the buckliung éf curved panels in the curvature
range undev consideration. The classical solution of references 12 and
37 for curved panels with simply supported edges invelve boundary con-
ditions for the inplane displacements, u and v, which are incompatible
with the present analysis. Specifically, during buckling, u is;assumed
to be zero along the straight edges of the panel and v is assumed to be
zero along the curved edges. In reference 15, the solution te the
buckling of a curved panel with boundary conditions which permit inplane

boundary displacements which are parallel to the simple supports is
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presented. It is these results which are used as the basis of comparison.
Figure V-4 shows the convergence of the present analysis to the classical
solutions of reference 15 as the number of elements is increased. The
edges of the panels are simply supported. Panels with curvature para-
meters, Z, of 1, 5 and 10 were inveétigated.h In each case, the answer
converges to the classiégl solution rapidly as the number of elements

used is increased above nine per quadrant.

Figure V-5 illustrates the geometry of the simply supported curved
panel with a2 cutout which was analyzed using the present finite element.
The circumferential and axial lengths of the panel are equal. The
cutout is such that its circumferential and axial lengths are also
equal. Panels having curvature parameters of Z = 0, 1, 5 and 10 were
considered. Cutout sizes having ratios of cutout length,'a, to panel
length, 1L, of .1, .25 and .5 were investigated for each panel curvature
parameter value. In each case 21 elements were used to represent the
quadrant analyvzed. Since the stress distribution and deformations of
the panel due to the initial load are the parameters involved in the
initial stress and the initial displacement stiffness matrices, respec-
tively, it is instructive to first consider the stresses and deformations
which result from the application of a unit axial line load to the panel
shown in Figure V-5.

Shown in Figure V-6 are stress distributions between the edge of the
panel and the edge of the cutout along the & axis (i.e., at X = 0). This

is the line of maximum stress concentration. The value of the curvature
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Quadrant Analyzed

7/‘\ A
¥ / >

=

e 07
monoonu
Iml
=
o
it
=

Figure V-5. Geometry of the curved panel with a cutout.



Cutout edges

- 6h -

Z=5.0

— e T —— — — — — — N WD W e o ey e e eEme. G e e e e— w—

-5.0 ™

I

-4.0 —
-3.0

(ur/any’N

-1, 0
0.0
1.0

1.0

0 due to a uniform

Figure V-6. Stress distribution along X

axial load of -1.0 1b. /in.



Skt

65
parameter associated with the stress distributions in Figure V-6 is 5.
However, the plots shown in Figure V-6 are representative of values of
Z from 1 to 10. The change in the stress distribution as a function of
curvature, for the range studied, is negligible. As indicated in
Figure V-6, the influence cf the cutout on the stress field is maximum
st the edge of the cutout and diminishes sharplv at points near the
simply suppqrted edge, The stress distribution shown in Figure V-6 for
the case of :% = .1 and ;25 are in good agreement with the results given
by Savin (ref. 40} for an infinate flat plate with a square cutout. In

reference 41, Savin has shown that the stress distribution is not greatly

influenced by curvature for the range of Z considered herein.

Figures V-7, V-8 and V-9 show the deflections, w, normal to the
middle surface along the X = 0 axis which result from a unit axial line
load applied to a simply supported curved panel with a cutout. Figure V-7
presents the results for the smallest cutout considered, a/. = .1. The
influence of the cutout on the deflections markedly increase as the
curvature of the panel increases. This same trend is very much in
evidence in Figures V-8 and V-9 which show the deformations computed for
the case of cutout sizes of an a/l. = .25 and a/L = .5 respectively.
Thus, while the stress distribution was found to be insensitive to cur-
vature changes, the displacements normal to the panel middle surface are
not. In addition, Figures V-7, V-8 and V-9 show the normal deflection at
the edge of the cutovut increases sharply as the size of the cutout
increases.

Figures V-10, V-11, V-12 and V-13 illustrate the reduction in the

buckling parameter K,  as a function of the cutout size for panels with



- 66 -

20x10°°

Edge of cutout —\4

[y
[=p)

bt
1%

5 12
=
S 10
33
D
g
A 8

Figure V-7, - Normsal defizction along X=0 due to a unifoirm
axial load of -1.0 1b./in.



R e T A ety PR AT T A R B

-,
-

20x1072 Bege of cutont—
{
1
18 %
16 E
{
14 —
~ 19 |
£ z =10 i
oot i
=
,9 10 " n"n} !
B Ve |
& ﬁ
H frmap
g 8 7 = 5 /“" é
. i
6 . i
|
4 |
|
2 Z = 1 . "ﬁ
”pm“(}.«aﬂ"““’ﬂ“ ‘:
&£ | | Y i
Oy .8 T 4 P 0
IR
L.

Figure V-8 Normal deflection along X=0 due toa uniform axial load
of -1.01b./in.



- 68 -

5x10_3 |
r Edge of cutout —_

Deflection {in. )

o e

01.0 86

2RO
Figure V.-9 Normal deflection along X=0 due to a uniform axial load

of -1.01b./in,

o 2 0



69

curvature parameters of 0. (a flat plate), 1., 5. and 10., respectively.
These plots show the influence of increasing the cutout size is progres-—
sively more drastic as the curvature is increased. This increased sensi-
tivity to cutouts as the curvature increases iz directly attributable to
the sharp increase in prebuckling deformation which was shown to occur in
figures V-7, V-8, and V-9. For example, when the curved panel with Z = 10

=2

and a/L = 0.5 was analyzed without using [K 1, NCR was 4.70 1b/in. How-

p

ever, when the problem was resolved, using [Kz], Ncr was 0.439 1b/in.
The larger the prebuckling deformations, the greater the influence of the
initial displacement stiffness matrix. It should be noted that even in
this case, the prebuckling deformation, w, 1is more than an order of
magnitude smaller than the panel thickness.

The data used to plot figures V-10,V-11,V-12, and V-13 was cross;
plotted to produce figure V-14. In this figure, the infiuence of curvature
on the buckling strength of panels with various cutout sizes is shown,
When the cutout is small, the buckling strength of the panel is seen to
ipcrease as the curvature increases. This is the same trend exhibited by
curved panels with no cutout. However, for panels having a larger cutout
(a/L=0.25 and 0.50) this trend is reversed. For the larger cutout sizes,
increasing the curvature reduces the buckling strength. There are two op~
posing trends involved here. On the one hand, curvature tends tp stiffen a
panel, while on the other, curvature increases the magnitude of the pre-

buckling deformations.
It is clear from the preceding that the initial deformation stiff-
ness matrix becomes increasingly important as the hole size and curva-

ture increase. This raises a question as to the importance of the non-

linear terms which occur in that matrix., In order tc explore this
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question, an iterative approach to the problem was taken. This reguired
reformulating the problem. First, all of the terms in the [EQ] matrix

of Chapter III are retained. The [K2] matrix may now be consihered the
“sum of two matrices [EQ'} and [Ezn]; where [EZ'] contains only linear B

terms and [EQH] contains only squared B terms. Equation IV-4 may thus be

rewritten as

Tli (1] + (@) [[Ell + [K2'] + Apq {EE"1}|= 0 (V-4)
where
A3 is the ith solution to equation V-4
Equation V-4 was solved iteratively by making successive computer rums
for the case of a panel having a Z = 10 and a/L = 0.5. This case was
chosen because it produces large values of f; and 82 and hence should
be the most sensitive to the use of the 82 terms. The buckling load
obtained without using the 82 term was 0.43939 1b/in, After three
iterations, the solution had converged to a value of 0,44019 1b/in. This
is a change of 0,182 percent. Hence, the influence of the 82 terms in
the initial deformation stiffness matrix is seen to be relatively small
for the range of parameters considered im this investigation. However,
for cases involving larger initial deformations an iterative solution
would be desirable.

While no test data is available to dirvectlv substantiate the analyt-
ical results obtained for panels with.a square cutout, the test data
obtained by Tennyson {(ref. 18) and the conclusions he drew from it are

in general agreementi with the findings reported in this chapter. For
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example, no reduction in buckling strength is shown for a ratio of cutout
radius, a, to the cvlinder radius, R, of 0.03 but when a/R is increased
to 0.08, a 40 percent reduction in buckling strength is found to occur.
Tennyson cites the prebuékling deformation as being a primary factor in

the reduction of the buckling strength.



77

CHAPTER VI.

CONCLUDING REMARKS

A cylindrical finite element suitable for the linear stability
analysis of cylindrical shells has been developed. Energy principles
and variational methods have led to a pfoblem formulation which lends
itself to physical interpretations of the governing matrices of the
finite element. By properly grouping the terms which result from taking
the second variation of the potential energy of the element, it is pos-
sible to identify three distinct types of matrices. These three matrices
.are: |

1. the conventional stiffness_matrix, [Ko]

2. the "initial stress" stiffness matrix, tKI], which is a function
of the prebuckling stress distribution.

3. the "initial displacement" stiffness matrix, [k2], which is a
function of the prebuckling deformations.

With the assumption of linearity, the buckling problem was stated
in terms of the classical linear real eigenvalue equation. While the
stiffness matrix was previously derived, the formulation of the initial
stress and initial displacement stiffness matrices is orignial. A
computer program coded.in Fortran IV language was developed for use on
the CDC 6600 series computer.

The computer program was used to solve several classes of problems
which have known closed form solutions. Agreement between theoretical

and computer solutions for the column, the flat plate, the arch and the
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curved panel are good. The arch solution bears special note since the
loading in that case is radial. Hence, the'applicabili;y of the tech-
nique to pressure-loaded structures is assured, A major difficulty
encountered in the development of the computer program was providing for
enough degrees of freedom to allow adequate characterization of the -pro-
blem. The computer core storage required by the program is substantial.
In order to accommodate 36 grid points, representing 216 degrees of
freedom, overlay programing procedures had to be followed in addition to
utilizing the entire core storage of 300,000 octal locations. The
analyses presented in Chapter V indicate that better accuracy could be
obtained by using more elements.

The application of the computer program to the buckling of curved
panels with cutouts reveals interesting trends. While test data has
established that, for certain sized cutouts, the buckling strength.of a
cylinder is reduced as the curvature increases; intuition dictates that
for small cutouts, the stiffening effects of increasing curvéture should
outweigh the detremental effects of a cutout. The analytical results
for the case of a/L = .1 confirms intuitioen.

A number of areas for additional research are apparent as a result
of this work. By adding beam elements to the existing program, it would
be possible to evaluate the size of deublers that should be placed
around the cutout in order to develop higher buckling strength. The
convergence of the analysis could be improved in several ways. For

instance, a more complex displacement function could be used in the
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development of the"initial stress' and "initial displacement" stiffness
matricgs. While this is conceptually straightforward, the work involved
is formidable. The utilization of an iterative type of solution similar
to that presented in Chapter V, is another possibility for improving con-
vergence. Since the first variation of the pcfential energy, which is the
basis for the static analysis, actually contains the initial stress and
initiai dispalcement sti%fness matrices, the load could be applied incre-
mentally until bifurcation occurs. These schemes would substantially
increase computing time.

S8ince cylindrical structures witﬁ cutouts frequently occur in the
design of aircraft and space vehicles, it would be highly desirable if

test programs were initiated to substantiate the analytical findings

presented herein.
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CHAPTER X.

APPENDIX A - THE DEVELOPMENT OF THE CONVENTIONAL,

THE INITIAL STRESS AND THE INITIAL DISPLACEMENT STIFFNESS MATRICES

FOR THE BEAM-COLUMN AND ARCH ELEMENTS.

Development of the Stiffness, Initial Stress and Initial Displace-
ment Stiffness Matrices for an beam-column and arch are presented in
this appendix.

X-1 The Beam Column

The equation for the second variation of the potential energy for

the beam-column element shown in Figure II-1 is:

I 100 000 0 ¢ G) [de
8%r = [ |8 8¢ Sw,xgj Ea 000 |+]on ol+ Eale ¢2 O[)(8d  Dax (a-1)
0 00 1/a| looo 00 0ff 6w,y

The strains £, ¢ and w,,, are related to the displacements u and w

3
as follows:
— A=2
) = [a1{a) (A-2)

where

& = e b vagy)

[a] =

oo
QO
|l )

{MT=Emhmwmﬂ

{d} 1is related to u and w through a matrix of differential operators.

{d} = [D]{g} (A=3)
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where

0
d

[Pl =g d/dx
0

A-4)
fe} = [ v ¢

Linear and cubic displacement functions for u and w are written as:

{g}

[B1{y}

where:

[B]

1X000 0 ]
pD01xx2x3
T _
Iy} = vy vo Y3 ¥4 Y5 6]

and {y} is related to the displacements at ends 1 and 2 of the beam~

column element by

(v} = [T1{A} (A-5)
where

M 0 0 0 0 o ]

“1/8 0 0 1/ 0 0

0 1 0 0 0 0

[Tl =1, 0 -1 0 0 0

0 -3/22  2/9 0 3/02  1/%

K 2/23 -179%2 o -2/23 1712



88

Substituting A-3, A-4, and A-5 into A-2
{€} = [Al(DI[B]{T}{A} (A-6)

Thus

{8g} = [c]{84} (A-7)
where
(6] = [A)[DI[B]IT]

Equation A-1 may now be conveniently written as

L L
821 = 5 {6a¥Tre1Txe1c1{sarax + 5 (8a)T(c1Tikl1[G)(8A}ax
0 0 _
L
+ 1 168} 61T k2] [61{8A}ax (A-8)
0

where, as in section VI

. 100 0oo0] . 0 ¢ 0
kK9] = Ealo 0 0 |; (k11 =)o N ol; [K2] = EAl$ 62 O
00 L/A 000 00 0O

Assuming E,A and I to be constants, the first term of equation A-8

becomes

{681 (k8] (6n)



89

where — —
1
[
0 121 SYMMETRIC
s
o 61 41
) AY
(k2] = FA Ak
1 1
T 0 7
, i1 6L u 121
ag3 N as°
o _.6I 21 o 8L 4l
i 72 A, w2 A

This is the stiffness matrix for a two dimensicnal beam-column ele-
ment. This matrix agrees with the stiffness matrix for a beam-column
published in reference 5.

The second term of equation A-8, assuming N a constant, is

CISRITISEETS.

where

M ™

0 l

T

) . SYMMETRIC
1w

R R
[KE] = N

0 0 0 0
6 1 6
—_——— —_ ( —

N T Y
1 e 1 N
4. . A P

0 -5 "w Y T 71
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This is the initial stress stiffness matrix for a two dimensional
beam-column element. This is exactly the matrix obtained in reference 5
for a beam column initial stress stiffness matrix.

Assuming ¢ to be a comstant over the length of the element, the

third matrix of equation A-8 becomes

{6837 [R2] {50}
where
B B
0
o 669 SYMMETRIC
[} )
6 52029
ST 15
2 .
[K,“] = E A .
0 % 0 0
L T S S -1
Y} 10 Y
_9% _ 109° . _o? 242
0 715 30 10 15 _

This i1s the initial displacement stiffness matrix for a two dimen-
sional beam-column element.
X-2 The Arch

The strain displacement relations for the arch element shown in
figure A-1 may be stated in the form of equation A-2 by redefining the

terms on the right hand side of that equation as follows
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Figure A-1, Arch element
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1/R 1 0 0
[A]=fo o 1 o
0 0 0 1

T

-

(=

——
1]

Lw Uy Wyy W,XKJ

The remaining matrices and matrix operations for the arch are
exactly the same as those for the beam-column. The resulting conven—
tional, initial setress and initial displacement stiffness matrices are

as follows:

i
)
1 13 g . 121
S S SYMMETRIC
2R 35 g2 .3
g 11 22 61 33 41
128 210 o2 2 77 AL
R Al 105R
[KS] = EA
1 L _ L 1
[} 3R 12R %
19121 _ 13e% . 6T 1 13% , 121
R g0r? apd so0r? ar? Rogsp? 0,3
St et s—
_1oas? e 2P 21 Lol 2%, 61 B, 41
12R 420R2 aR2 J,&URZ AR 12R 210 2 NY: 105R2 Al

—
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6
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1 28
0 - 2
0 15
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0 0 0 0
o b L o &
58 10 54
0 __l.. _Q:h #] _— g.g.
0 " 30 10 15
0
o _ o, 6602 SYRMETRIC
[ - WY )
2 2
2y _ 92 52028
[Kgl =EA | O 10 15
]
0 - 0 0
2 2
_o o _eeg?  of v b,
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CHAPTER XI.

APPENDIX B.- THE PRINCIPAL MATRICES IN THE DEVELOPMENT

OF THE INITIAI, STRESS AND INITIAL DISPALCEMENT MATRICES

FOR THE CYLINDRICAL ELEMENT

The explicit statement of the principal matrices involved in deriving
the Initial Stress and Initial Displacement Stiffness Matrices is given
in this Appendix. The terminology used herein is consistant with that

used in Chapter III.

0
0
0l o ol o o ‘o |olol-1] o |o
0 olo] L 1 {o |ololo] o |o
[A] = R
oiolXlol o o 1L |ololo| o o | &Y
R R
1 1
o{ii0flo| o o {0 |ofl-xj0] o |o
ololotol o o |5|ololol-Zto
R R2
olojaolo|-_1 3 1o of o] o 0 [_2
22 | 2R K
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0 0 1
9 9 0
0%
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0 9 9
ox
D] = 5 (B-2)
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0 0 ig
36
32
0 0 dx08




6} =

1

ab

—

.
(x-a) (RE-b) |-x(RO-b} | xRO | -RO(x-a) i} 1] 0 0 4] 0 0 0
0 0 0 (x-a) (RB=b) | ~x(RB-b) | xRO | -RO(x~a) 4] 0 0 0
4] 1] 0 O 1] 0 0 1 (x-a) (R8-b) | -x(RO-b) | xRO | -RE(x-a)
RO-b -{RO-b) RO -R8 0 ] 0 0 0 1] 0 0
0 ) o 0 0 0 0 0 ~{RO-b) Ré-b -RE RG
0 [} o] 0 0 0 0 1} 0 0 0 1]
{x-a) -x x | ~-(x-a) RO-b -(RO-b) Rf -RO 0 o 0 0
—(x— Lige 5y | - Zrge-py | XRO |_ RB
4] ] [} 0 (x-a) -X % {x-a) R(x a) (RO=h) R(RB b) el —R-(x-a)
0 a 0 o Lix-a) (Ro-b) | - Zero-p) | XRO[_RA. -(xz-a) x -x (x-a)
R R R R
(x-a _x x | _ {x=a)
o] 0 V] 0 7 X F = 0 4] 0 4]
| o x x| xea) | 3. - e | 3R 3RO - R
2R 2R 2R 2R ZR(RB b ZR(RG b) 2K 2R 2 2 2 z

...96_

(59



97

TABLE B-1 Elements of [G]T[KI][G]

h = (X-a) 2 (RO-b) 2
2,2 = Ny "
hy o = -N (x-a) (R6-b)> _  (x-a)%(RO-b)
’ 12 R 2 R
2
N X(X-a) (R8-b)
§,2 = Nz )
- -p32 - -
h9,2 = Njy (x a)éRe b) +N2 X(x al)g(Re b)
8 (X- -
hig g = Ny B (X a;(RG b)
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hy,3 = Np(RO-b)? +21 5 (x-a) (R8~b) +Ny (x-a)>
RE-b) 2 - -
hg,3 = Ni2 §L—%J3L—+N22§X.E%£E§_hl
h9’3 = —Nl(Re—b)z —N12 f(X-a) (R6-b) + X(RB-b)] -No {(X-a)

_ XR9 (RE-b) RO (X-a)
h14,3 = “Ni2 R N TR
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TABLE B~1 (Continued)

h15,3 = -N7 RO(RO-b) +Njp [RB(X-a) +X(RG-b)] +Ny X(X-a)
RE (X-a) (RO-b) RO (X-a)?2
h20,3 = My - R o R
hpp, 3 = -NiRO(RO-b) -Np2 [(X-a)-2 - (X-a)(R6-b)] -V, (x-a)>
2 2
X4 (R8-b)
hg g = Ny 22
X(R8-b)2 x2(RO-b)
h9,8 = —N12 R —N2 R
. - N X2R8(R6-b)
14,8 R2
XR6 (R8-b) X2 (R6-b)
hl5,8 = Ni2 R +Ny R
XRE (X~a) (R8-b)
h20,8 = N2 5
R
_ XRO(RE-h) X{X-a) (RO8-b)
b21,8 = -M12 R N2 R
hg,g = Np(R8-b)? +N15(RE~b) (X-a) +Np X2
_ XRO (R6-b) <?R8
hi4,9 = N12 . w,

~Ny (R8) (RB-b) ~Njp X[RB+(RO-b)] -N, X2

[

bi15.9
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TABLE B-1 (Concluded)

3 RO (X-a) (R6-b ROX(X-2
hyg,g = -Npp 22 (RED) _y, ROXGCa)

hpj g = NjRE(RE-b) +N; [XRE+ (X-2) (RO-b)] +NyX(X-a)

(R9) 2x2
hys 14 = NZ"":;;““

X(RO)2(X-a)
hag,14 = 'NZ'___:;T“"“"

X(R6)?2 X2R0
Bis,14 = N2 T M2 73

X(8)% Ly, ¥RO(X-a)

hop 14 = N
21,14 = N2 = .
_ 2 2
h15’15 = Nl(Re) + 2N12 XRO + N2 X
- (R6) 2 (X-a) ROX(X-a)
Bo0,15 = Y12 7 ¢ Ny ==

hpy 15 = -Ny(REIZ ~Npp [XRE +RO(X-a)] -Np X(X-a)

2 2
(R8) “(X-a)
hog,20 = Ng ——5——

g%’
(R9)2(X-a) .. RO(X-a)
ha1,20 = “Nyg " Ny =
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TABLE B-2 Elements of [G]T[K2]1[G]

C C
-+ —gl (X-a) (R6-b)2 + —iﬁ (X-a) 2 (R6-b)

-

b

=
I

e3 3 = - (R8-b)[Cy1 (RO-b)+C5y (X-a)] -(X~a)[C33(RE-b)+C53(X-a)]
eg,y = - EEE{J_ X(RO-b)? - Ei—?’ X(X-2) (R6-b)

eg,1 = (RO-b)[Cp1 (RE-b)H+C51X] + (X-a) [Cy3(RE-b) + C53X]

e14,1 =t E%l-XRB(RB—b) + E%Q ZRE (X-a)

ey5 1 = ~(R8-b) [C2)R8+C51X](X-a) [Co3RO+C53X]

C
e20,1 = - —2L RO(X-a) (RO-b) - 22 RB(x-a)2
ep1,1 = (RO-b) [Co1RO+C5) (X-a) | + (X-a) [C23RO+C53(X-a)]
C C
e2,2 = =2 (X-a) (R8-b)” + 2+ (x-a)2(RO-b)

C
+ L (x-a) (R6-b) [C35(RO-b) + C450t-a) + 2> (¥-a) (RO-D) ]

1

83’2 —(RB-b) [C23(R8"‘b) + C53(X*a)] - {X-a) [C24(R8-b)+c54(x-a)]

C
+ £(¥-a) (RO-b) [Cp5 (RO=b) + =2 (X-a) (RB-b) - Css(X-a)]
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TABLE B-2 (Continued)

C
e7,9 = - —gl(x-a) (R8-b)% -Cq, X (%-a) (R6-b)
c C54X
682 = - —5—3— (RO-b)2 - ~2 (x-a) (RO-D)
- -]:;: (X-a) (R8~b) [035(R8 -b) + C45X + 055 (Re b)]
eg,7 = (RO-b) [Co3(RO-b) + Cg4X] + (X-a) [Cp4(RE-b) + C54X]
1
+ E (X—a) (RB—b) [Czs(Re—b) - C45 (Re b) + C55X]
_ 8R X '
e13,2 = C51 ¢ (X-a)(R6-b) + C53 7 (X-a)(RO-b)

XR6 1
e14,2 = C53 552 KRe (R8-b) + C54 3 (X-a)+ % (x—a)(Re-b)[c35Re+c45x+cS5%]

e15, = —(RO=b) [Co3RO+C53X] ~ (X~a) [Cp4RE+C54X]
1 XRO

= C ( B- ...._5...3_ ’ 2

e19,2 = ~Cs1 2 (x- a)(R b) - ~£= (X-a) “(R6-b)

Ry
€20,2 = = Cs3 B2 (X-a) (RO-b) sy %8 (x-a)?

- %(X—a) (R8-b) [C35RO+C,5(X-a) + Cs5 B (x-a) ]
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TABLE B-2 (Continued)

€21,2 T (RB-b) [CqRB+C53(X-a)] + (X-a) [CH4RO+C54(X~a) ]

+ 1 (%-a) (R6-b) [Co3RE-C45 B (R-a) + C55(X-a)]

ey 3 = Cyp(RE-D)Z —Cy % (x-a) (R8-b)? +C5p(X-a) (RO-D) -Cp4 3 (X-a) (RO-Db)?
Cs4 2 C45 2 2

- T (X-a) (Re-‘b) +C25(X—a) (Re-b) - -—-'R— (X-a) (RE)-b) +(355(X-a)
ey 3 = (RO-b)[Cy; (RO-B) +C5y(X-a) ] + [Cy3(RE-b) +C53 (X-a)]
€g,3 ° 023(R9-b)2 +C53(X-a) (RB-b) + Cpy X(RE~b) + C54 X(X-a)

+ Cp5 § (RO-D)? - 45 X (x-2) (re-b)2 + Cs5 X (x-2) (R9-b)

R
2 X 2 C24 2
e9,3 = ~C22(RB-b)* + C4p & (RO-B)® - C5pX(RE-D) + 5~ (X-a) (RE-D)
X

+C54 & (X-2) (R8-b) -Cp5(X-a) (RB-D) +C45 % (%-a) (R8-b) -C55X(X-a)

613’3 = -CleS(RB—b) -C51R8(X'E) -C23 X(RB—b) —C53-X(X—a)

+ §%@{-Cz5(R8—b) +C45-% (X-a) (R6-D) -Csgg(X=a)]
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TABLE B-2 (Continued)

XRO RA _
€15,3 = CopRE(RO-D) -C4p = (RO-b) +C5,X(RO-b) - C24 T (X-a) (R8-b)
: EE—@-(X ) +Ccc X(X-a)
_CSAE (X-a) (Re"b) +C25R8‘(X-—-ﬁ) —C45 R —-a 55 a
€19 3 = Cp RO(RE-b) +C5qRE(X-a) +(¥-a)[Cp3(RH-b) +C53(X-a}]

€30,3 = C73RB(R -b) +Cg53RO(X~a) +Co4 (X-a) (RB-b)+ C54(X-a)2

RB

+Cgs‘%g (X-a) (R8-b) -C45 3

(x-2)2(RO-B) +Css %%.(X—a)z

e21,3 = ~Co29RO(RO-b) +C42 %fr(X—a)(RB—b) ’CSZ(X‘?)(Re'b) +Cyy, %g (X-a) (RO~b)

C
, Os4

2 RG 2
=5 (X~a)“(R6-b) -CpsRO(X-a) +C4s % (X-a)? ~Cgq(X-a)

Csq 2 x?
2% X(RO- +Ceq 2. (RE-
g X(RO-b) 53 5 (RE-b)

€g,7 =

eg,7 = -(R8-b) [C21 (RE-b) +C51X] -X[C23(RE-b) +C53X]
XOR X20R

e14,7 = -C51 g (RE-b) ~C53 7R

e15,7 = (RO-b) [Cp1RO+C51X] + X[Cp3RO+C53X]

BR ROX
e20,7 = Cs1 g (X-a) (R8-b) +C53 == (X-a)

21,7 © - (RB-b) [C21R0+C51(X—a)] _X[023R8+C53(X-a)]
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TABLE B-2 (Continued)

2
eg 8 = (53 lT (RU- b) +(‘54 = (rRO-h) +C35 [ (RU b)2

X R0ob) 4Cee (RO=b) 2
45 - (RU=b Csy o AR b

eg g = ~Cyy(RO-D)Z =CeyX(KU=D) =CggX(RO-h) —Cs4X? -Cpg % (RO-b) 2

2
s X (RO-b)

2 .
+Cy 1, X (ro-p)? i
: ; A

R

%]

. 2
13,8 = -Csq h—ﬁ—l-{ (RO-1) ~-(51 bl (RO~b)

R
x2
R RO xm)
¢14,8 = ~C53 'X—-— (RO-b) —Cs4 “'];'— = Cyy T (RO-D)
2 ' 2
X2R0
-C45 '5'("— (RO-b) - (“55 ”R‘Z (R)-h)

e15.8 = €29k (RO-b) +C53X(RO-b) +024ROX +C54%% +Cys5 Z{E.l (RO-b)

~Cys --X-i-“‘ (RO-b) +Cos ]—5- (RO=1)

ejy. g = C5] E(—R---- (RO-b) +Cg5q IE {(X-a) (RO-b)

e20,8 = C53 AL (X-a) (R0-b) + 54 *KI (-0 w5 KL (roop)
+Cy45 % {(X=a) (RO-b) +Cyg X'RE(]' (X-a) (RO-b)

[
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TABLE B-2 {(Continued)

€21,8 = -C23RH(RO-b) -C53(X~a) (RE-b) -C24XRI -Cg4X(X~a)
—C25 = XRG (R6-b) +C45 X%f (X-a) (RO-b) ~Cs5 5 (X-a) (RE~b)
R

eg g = C22(R6—b)2 ~Cpo %~(R9—b)2 +C59X(R8~b) -C2y4 (Re—b)2

o

Xz . %2
-Cs4 7;—(Re—b) +Cy5X(RO-b) -Cy5

e13,9 = C21RO(RO-b) +Cs51ROX +Cp3X(RE-b) +C53%2
e14,9 = C23RO(R -b) +C53XRE +C94X(RO-b) +Cs54X 95
-C45 E“Eg (R8-b) +Cg5 z&iﬁi
R?
X% XRE
e15,9 = =C22R (RO-b) +C42 3%9 (R0-b) -Cgo X(RO-b) +Cyy g (RO-D)

2 3
X 2
+Cq4 R (R8-b) —-CESXRB +Cus TR —C55){2

€19,9 < -C21R8(RE~b) -Cq1XOR - (X-a) [C23(RO-b) +C513X]
90,9 = ~C23RB(RB-b) -C53XRO -Cy4(X-a) (RE-b) -C54X(X-a)

~c25 RO (X-a) (RO-b) +C45 KR@ (X-a) (R8-b) -055-——— (X-a)
R
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TABLE B-2? (Continued)
€2).9 = CpaRE(RE-D) —C42 (x-a)(Re b) +Cs59 (X-a)(RE-b) wcz4 (Re -b)
—Cs4 3 X (X-a) (RO~b) +C 25XR0O -Cps5 222 XRG (X-a) +C55X(X-a)

XR2p2 X26R
€14,13 = C51 7 *Cs53 T

e15,13 = -C21R%02 -C51¥RE ~Co3XRO -C53X2

RJ
eg0,13 = ~Cs51 —f (X-a) —C53 XOR (v )

2
71,13 = 218?82 +Cgq (X-2)RO +Cp3XRE +C53X (K-a)

202 2 n2n? ) 259n7
XR=0 X“RQ . XR<B XERE |, XER4B
814,14 = C53 -—-R C54 ——R +\J35 ___I_{_- +045 it +(_'55 z )

2 . i
€15,14 ~ ~Cg3R%6% ~C53XRA ~Cp4XRH fc54*' ~Ca5

XRZG XRE
e19 14 = -C51 4 — =C53 =~ (X-a)
e20,14 = —CSS 5 (X-a) -Csy ~C45 "x (¥-a)



e21,14

15,15

e19,15

€20,15

€21,15

€20,19

€21,19

€20, 20
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TAELE B-2 {Continued)

2,2 XR20%
Co3R70% +CqqRO(X-a) +Co4XRO +C54X(X-a) +Cos -
XR2 e
- Cy5 o (¥-a) +Cs5 2R (x-a)
R?
XR282 :{R262 XZRB

CypR202 -C42

x2 Re 2
~C45 =g +C55XK

C21R292 +C51REX + (X-a) [C23RO +C53X]

22

R
C94R%8% +C53XRE +Co4RO (X~a) +C54X(X-a) +Co5 ——=— (X-a)

R

XR202
0% (x-a) +C55 TRY (x-a)

-C45

292 202
~Cop R%82 + Cyp 3};* (¥~a) ~Csp RO(X-a) + Cyy wﬁEﬁ_

XRH XR
+ Cs54 3~ (X-a) -Ca5 XRE +C4g ~§"'(K a) - CggX(X-a)

R2
Cg1 = - (X-a} +C53 (z{—'i)

~Cp1R?0% ~Cq RE(X-a) - (X~a)[CyqRO +C53(X-2) ]

RZg2 R .12 R20?
C53 R (h-a) +(454 R(X"a) +C35 """" (X-—-a) +C45_'“§”

2g2 2
+Cgg E-Eg—_ (X-a)

(X-a)
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TABLE B-2 (Concluded)

r2p2

i

31,20
R282
+C45 ) - (X—a) "C55 - (X—a)
- o262 R28 5 R262 % o)
€1,21 = C22R -C42 ——--(X a) +CgoRB(X-a) -C24 = (X-a —C54
+Co5RB(X~-a) -C45 w—-(X a)2 +C55(X—a)

where:

Cap = B1; C51 = WBps Cpy = B12 + a-v) “) By?

D
<

1+v
C3z = =7 B3 Caz = V813 Cs2 = =7 Bify

1-v (d-v)

Csq = 5 BLs Cs5 = By° + = ; B1°

~C,3R%6% ~C53RB(X-a) ~Cp4R0(X-a) ~Cs, (X-a) % ~Cys S (x-a)

(X—a)
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CHAPTER XIT

APPENDIX C - COMPUTER PROGRAM LISTING

The computer program used to obtain the results presented in
Chapter V is presented in detail in this Appendix. This program 1s

called STABL. The input data required are as follows;

NC number of cases to be run

Ng number of finite elements

N ¢DE number of nodes

NE number of degrees of freedom to be constrained
AZ(MN) length of the finite element, MN, in the X-direction
BZ(MN) length of the finite element, MN, in the 6-direction
CZ(MN) curvature of the finite eleﬁent, MN

E Z{MN) modulus of elasticity of finite element, MN

TZ (MN) thickness of finite element, MN

XMUZ (MN) Poisson's ratio for finite element, MN

N1(MN), N2(MN) the four mode points of finite element

N3(MN), N&(MN) MN, read counter clockwise, with NI and N2 estab-

lishing the element ¥-axis
JR(I) a list of the degrees of freedom to be restrained
ForC(I,1) the vector of applied forces
A listing of the program follows. Comment cards are included in
the listing to provide clarifications of program functioning and

terminclogy.



OO0 n

1000

1001

OVERLAY (LINK+Ce0) 0
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PROGRAM STABL (INPUT QUTPUT«TAPEZ.TAPES3Y
COMMON/ZZ21 /AZ{30)+BZ(30)+CZ(30)+DMZ30)+DBZ{30)+XMUZ(30)

PZZ2/XKO(24424) o

/ZZ5/JR{150)
2Z6/FORCI(21641)
LEZZT/H{216)
FZZB/S{3+28)
SZ29/5TRSR(3)Y
ZZZ10/XK1 (2924800
ZZZ11/7XE(24)
A2Z12/BTAL «BTA2
LSZEVIIAXKZ2(24424 )
AZZ14 /50

LINK=4LL TNK,

READ 1000 NC+50

FORMAT (I3+sF1244)

NOC=n

CALL OVERLAY(LINK«+1:0s0})

CALL OVERLAY(LINK ¢2+06 0%

NOCsNOC+1T

IF(NOCsLTeNCY GO TO 10601

STOP ‘.

ENC e

OVERLAY (LINK+1401%,

9000 D~IA BN —

AZZI/NI(SC) «N2 (SO INIISO )+ NG (50}

COMMON/ZZ1/AZ(30)+BZ(30)+CZ(30)sDMZ (301 +DBZ(30)+XMUZ(I0)

FIZ2/XR0L24424) '

225/ 0R(150) .
/ZZ6/FORC(21641)
/2ZZT/X(216)
/ZZB/S (34280,
/ZZ9/STRSR(3)
/ZZ10/XK1 (244240
7ZZ11/XE(24)
/ZZ12/BTA1.BTAS
SZZ1B/XK2(24424)
/2Z14/50

OO OVOOBIU BN

FZZ3IANTIS50) N2 (50) « N3 (50 )21 MA(SO)

DIMENSION IPIVOT(216 )+ XMK{2164216) 4 INDEX(21&4254EZ(305TZ(30)
A IS5 LENe iN X DIRs B IS LENs IN THETA DIR

POTSSONS RATIO. XKO IS THE ELEM STIFFe MATRIXa

NO=MUMBER OF ELEMENTS
NODE =HUMBER OF NODES .

C

IS5 CURVATURE s XMU IS5
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C IF 56=0+ BETA SORD TERMS ARE IGNOREDs IF S80=1ls+ BETA SQRD TRMS USEC
C NE=NUMBER OF DOF TO AE RESTRAINED .
1001 READ 101 4NO«NODE « NE .
101 FORMAT (313 .

JDOF =6%MNODE .

C INITTALIZE MASTER STIFFMNESS MATRIX XMK,s TO ZERO
DO St 11=1+JDOF .
DO 51 JJ=1.JDOF 1,
XMK(T[eJdJ)=0.D [}

51 CONTINUE N
DO ‘1 MN=1 4NO N
READ I10S+AZ(MNI sBZI(MN)I+CZ(MN)EZ(MNIsTZIMN) ¢« XMUZ ¢ MN )
105 FORMAT(EETIZ44) -
DMZ{MN)=EZ EMN)#TZ IMNY /(] o ~XMUZ (MN) #¥2)
DEZ(MNY=DMZ (MN)IRTZ (MN)* 2212,
T READ THE NODE NOS IN COUNTER CLOCKWISE DIR. FOR ELEM. MN
READ 109«M1 {MN) N2 (MN) 4N3(MN) ¢ Na (MN )
109 FORMAT (413) .,
: PRINT S53.MN
53 FORMAT (740X RELEMENT NUMBER¥413)
PRINT SA4sAZ(MN) sBZ (MN) ¢CZIMNIvEZ{MNYIsTZIMN) ¢NL CMN} s N2 (MN ) 4 N3 (MN ) +
1TNA (MM )
54 FORMAT (/X RA=H 12 4 e WO 4] 2 et e HCEH \E 2 e GaHEE s E 1244, XT2%,F12e4
TaRN =R 34 ¥NS=¥ o I 34 FN3=¥4 I3 #NG=*,13)
CALL ELEMKO (MN}) .
CALL ADDUP {MN ¢ XMK s XKk0 )
1 CONTINUE ]

C READ IN THE DaQOsFe TO BE ELIMINATED+JRINE
READ 121+ (JR{TY+1=14NE) .
121 FORMAT (2513) .
PRINT S5

55 FORMAT (/40X+#DEGREES OF FREEDOM TO BE ELIMINATEDH)
PRINT 121+{JR(I)s1=1,NE}
ELIMINATE NE DEGREES OF FREEDOM FROM XMK(1.J) TO OBTANTAIN THE
REDUCED MASTER STIFF MATRIX WHICH wiLL STILL 8E CALLED xMK BUT IS
c OF ORPER JDOF=NE '
CALL WASH (JDOF «NE s XM}
JOOFR=JDOF ~NE '
C ZERO OUT APPLIED FORCE JECTOR 4
NO 3 1=t4216
FORC(Te1)=0,0 .
2 CONTINUE N
c READ IM APPLIED FORCFES
READ 2+ {FORC(I41)s1=1¢JDOF

aOn
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2 FORMAT (6F124+41
REDUCE FORCE VECTOR TO CORRESPOND TO REDes MASTER STIFFe MATRIX
CALL REDFORC (JDOF «NE Y4
PRINT REDUCED FORCE VECTOR+STILL CALLING [T FORC
PRINT 133 N
133 FORMAT (/40X +*ECRCES APPLIED TO UNRESTRAINED CW0.F%/)
PRINT 137+t1«FORC(T+1)e1214+JDOFR}
137 FORMAT ( GX¥FORC(¥4134% }=#4E12e8}
SOLVFE ‘FOR DISPLACEMENTS .
CALL MATINV (XMKsJDOFR+FORC 1 +DETERMs IPIVOT+ INDEX«2164 1SCALE)
XMK~[NVERSE 15 NOW STORED [N XMK
NAME DISPLACEMENTSs AT THIS POINT THEY ARE STORED IN FORC
DO S 1=14JDOFR . ‘
X{I)=FORC(I[+1)
5 CONTINUE ‘
RECRPER DISPLACEMENTS TG AGREE WITH NODE NUMBERING
CALL EXPDEF (JDOF+NE Y«
PRINT OUT DISPLACEMENTS ’
PRINT 141 .
PRINT 145,{1eX(1)41=14JIDOF) .
REWIND 24
WRITE TAPE 2+ (( XMK(T+J1+1=141803sJ=10¢180)NO+JOOF 1NE ¢ JOOFR
141 FORMAT (/50X #DISPLACEMENTS®,/)
145 FORMAT ( AXe%X (#5313 #)=%4E12e4) .
DEVELOP THE STRESS MATRIX FOR EACH ELEMENT AND COMPUTE THE.
INPLANE STRESS RESULTANTS AT THE CENTER OF THE ELEMENT.
DO 13 1=142t6 '
DO 13 J=14216
13 XMK(T+JY=00
DO 11 MN=1+NOs
CALL STRESS (MN}.
COMPTE THE ELEMENT PRESTRESS MATRIX«XK1
CALL ELEMK1 (MN), .
COMB INE ELEMENT XK1 MATRACIES IN TO A MASTER PRESTRESS MATRIX
CALL ADDUP (MNXMK+XK1)
COMPUTE ELEMENT PREBUCKLING DEFORMATION MATRIX
CALL ELEMKZ (MN} _
COMBIME ELEMENT XK2 MATRACIES INTO A MASTER K2 MATRIX
CALL ADDUP (MNyXMK s XK2) s
11 CONTINUE
THE MASTER K1 MATRIX IS IN. XMK
REDUCE XMK1 TO PROPER ORDER
CALL WASH (JDOF «NE « XMK )
REWIND 2
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WRITE TAPE 3e ({XMK{I yJ3s1=1 4 JDOFR) 4+ J=14JDOFR)
RETURM

END

SUBROUTINE ELEMKO (MN) .

COMMON/ZZ1 /AZ (303 +BZ{30)+CZ(30)+DMZ (30} DBZL30)+ XMUZ (30}
1 SZZ2/XK0D (248424 '
2 /223/N1(SOI'NE(SO)0N3(50)¢N4(501

A=AZ (MN})

B=BZ (MN}

C=CZ (MNY

DM=DMZ (MM §

DA=DRZ (MN}

XMU=XMUZ (MN )

AB=A /B .

BA=B /A .

ATB=A%*8H ’

ABI=A/B¥*R3

BA3=R/A%%] .

WO al I=XKO(T s TIZXKOU13013)" XKO(l9cl9)=DMI|BA/3-+AB*tlo-xHUlléol
XKO(2e1 1=XKO{14+131=XKO(20+T7I=XKO(19+8)=DM* (1 +4+XMU) /8, *
XKO{Te] 12XKO{De1 ) =XKO (1F415)=XKO(21+19)==TF #XMUNBRDMEC/40.

XKO(4s1)=XKO (104 7)=XKO (16 13)=XKO(22+19)=XKO{3 1 }#ASGe

XKO(541 )=XKO(1]1e1)= xxo¢17.:31‘x&0123.13; AR ZAXMURDMEC 40
XKO(Be]1 )=XKO(12¢T7)1=XKO(24413)=XK0(19+18)=XK0(541)%A/6.

MO [T+ 1 IEXKO (1941 3)==DME{BA/3e={]1+=XMU)I¥AB/12%)

XKO(Ba1 I=XKO(1D:2)=XKO{184 7)1 =XKO(204+13)c—DM¥* (14=32%XMU) /B
NKO(10411=XKD(22+13)=XK0{12116)=XKO(T44)==XKO(4+]1)
XKO(12s11=XKO(74612XKO(18,13)1=XK0(24419)==XKO0(6+1)
XKO(1As1)=XKO(1DeTI==XKO(1s1)/20

XKKO(14¢1)=XKO(313+2)=XKO (B 7)=XK0(20:19)=~XKO(2+¢1)
XKO(18e1)=XKO(21e1)= ExKQO(19¢3)SXKD(1T¢F)I==3#XMUSBHDMRC/40.
AKOC(16e1)=2XKO(13048)= XKO(22¢TI=XKO (19410 ) =ATB¥XMURDM*C /B0
XKOC(1Te1)=XKO(2341 )=XKO(13+11)=XKO(13e¢5)2 BRE2EXMUBDMIC/E0
XKO(18s11=XKO(1946)1=XK0(24+71=XKO(13+121=XKO0(S.1)1%A/0,
XKO{19s13=XKO(13s7)=DM¥ (BA/6a~(1e=XMUI*AB/S0e)
XKO(20e11=XKO(T423=XK0(13¢8)=XKO119418)==XKD{B.1)
XKO(221 1 I=XKO (1 Dva)I=XKO{16471=XK0O(13+10)==XKO(16+1)
XKO({24+1)1=XK0(13+6)=XKO(18:+7)3XKO(19+12)=-XKO[18+1)
XKO{2+2)=XKO(B:B)=XKA{14414)=XK0O(20+20)= DM¥ { {AB/3+ } % (1 ++DB* (CH¥2)
IDMI+ (£ e=XMUIHBA/Gs 1% { ] at+a s 2DBR(CHR2)/0M))

KKO(3e2)I=XKO(GeB)=wT ,HAKDMEC /402 +DB R {20a=Ja ¥ XMU)I#C/ (24 #A)

WKO (42 )=XKO(22:2)= XKO(14-IOJ‘XKD(lés14!‘~A**2*DM*C/40--XMU*DB*C/

12«

KO (S e 2)=XKO{11 4BI=XKO(1 7414 )=XKO(23420)==T+ FATB¥DM#C /2404 ~DBE¥CH#(
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1(2e~XMUIFB/ (124 %A+ T4 *AB/204)
XKO(E+2)ITXKO(IB¢BISXKO(18,12)=XKO(24+20)=—ARATEBRDM*C /240 ~DBRCH [
1XMURR /12 +A#AB /200 }

XKO{R42)= XKOt20-14)'DM*(AB/6o*(l.+DB*C**2/DM)*(1a-XMU)*BA/éa*tle+
14 #DORCER2 /DM )

XKO(Q+2)=XKO (B3 ) =~3 , KFARDMEC /400~ (2e =3 ¥XMU ) RDBRC/ (2o %A}

MO0, 2)=XKO(16¢2)1=XK0 (1444 )3XKO{22+14)=DMEAREZRC /60
XKO(11e2)=XKO(BIS)I=XKO (23,14 1=XKO(20+17)=~ATBRDMHC/B80.+DBRCH{ (2.~
IXMUI¥BA/12.~3.#ABA20, )

KKO(1242)1=XK0(1846)=%XK0(24+831=2XK0 (20+¢18)zA%ATBRDMEC /360« +A¥AB*DB
1%#C/30.

XKO({14¢2)1=XKO(204B)z=-XKO(Z2:2)/2

KKO(15¢2)=XKO (21148123 RARDMEC/AD o+ (2~ XMUIRDBRC/ (24 *A)

XK1 Te2)=XKO(14+5)1=XKO(23+48)=XKO(20.11)=2=XK0(11+2)

XKO (1B 2 }=XKO(B46)1=XKO(20412)1=XK0(284+18)==XKO(1242)

KKO(P0e2ISXKO (14 ¢B)==DM* (AB/ 0¥ (1 a+DB*ECHX2/DMI=BAR (1e=XMUI/12a% (1
144 4 ¥NBRCERZ/DMY) '
XKO(2192)1=XKO (151812 -T+ HPAROMRC /40— (24 —XMUI¥DBRC/ (2a%*A}
XKO(23¢2}=XKO(20451=XKO(17:BI=XKO(14411)==XKO(5+2)
XKO{24+2)=XKO(20¢6)=XK0(1248)=XK0{18+14)1==XK0O(E+2)

YKO (43 I1=XKO{ T D) =XKO(15415)1=XK0 (2142112156 /35« #¥DB* (B/ARRI+AS
1B% %314 72 4 /2S5 ¥DB/ATB+ 1 6. *ATB*OM¥C* %2 /1225,

XKO(4+3I=XKO (22421 )= A¥ (DB (TBa/ 35 4 HB/ARKIL22 o /3G HA/BERIL ] o /ATE*
168 /25e+6e#XMU/S e ) 1+ 143 FATHRDMACREZ /(64%12254) )
XKO(S+3)1=XKO{11 T2 GF (DE¥ {22 ¥B/ (3T ¥AX I )+ TR FA/ (35, ¥BH# T V141 0/
TATB® (6o /250460 5XMU/S, 1 1+143, 5ATEORDMACERZ/ (L4 # 12254 })

MKO(E+B3ISXKO (18152 ARBE(DBR (11 4 ¥B /(5. %¥a%%¥2)+11,5 /35, %A/AH¥34
116 7/ATE# { « 0P+ 2%XMU) ) £ 121 « ¥ATEBXDMECH¥2/ (362 #1225 ) ) .
XKO(T+23I=XKO (94 T7)I=XKN(154131=XKO(21¢1315-XKO(2,41}

XKO(91331=XKO (2] 115)==DB¥(1564/35¢ ¥B/A¥X3-54+ /35 ¥A/B¥RI+T20/ (25 0%
1ATE )Y +T 1 T+ RATBRDOMRCHRZ / (2, %1 225.)

XKO{1042)=XKO(21 4161z AR (DB¥ (T8 /354 ¥B/ARKI~13,/35, HA/BRE3 +6e/(
125 8ATE I 1= 16D e RATBADMICHER /(1 24%1225.))

XKO(11a3)=XKD(G15)= B¥(DB*(=22e/35.%B/A*¥342T e /354 ¥A/B¥ X314 /ATE*
1 (6a/25e+6s%¥XMU/B4) 3433 HATHADMACR R/ (4% 22541 )

MKO(12+3)1XKO (244153 ARBH(DB* (112 /35 #B/ARKI~ 130/ TOe¥A/BHET 4] o/
1 ATB#(2024XMU% 1) )=~1 A3+ FATBROMICRRD/ (T2 %1225 })
XKO(13e3)1=XKO(1547)1=XKO(21 7 3=XKO(1349)1==XKO{1S5s1)

XKO(14¢3)=XKO (204012 XKO(1542)

XKOL1S593)1=2XK0 (2] +F) =54,/ 35 ¥DBX (B/ARKI+A/BARD 1172+ /25 ¥DB/ATE+

1 BledATBHDMECERZ /(4. %1225

XKO(16+31=XKO (21+10)= A (DB* (27e¢/35: #B/AKKT+ 134 /35 ¥ABH¥3=54/

1 (25,%ATB))=39 ,#ATORDMECERZ/ (B * 122541 )

XKO(17e¢3)=XKO(23:9)= B¥(DB¥ {132/ 35 #B/ARKZL 2T o /35, HA/BHX3 6o /
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1 (2S*ATB))I=30,RATBROMECERZ/ (Ba¥]226,))
XKOC1B8eI1=XKO(15+6)= ARBR (DBH (~13¢/70e % (BAI+ABII+a02/ATBI4+16TcH*
1 ATBRDMACH¥2/(1444%1225))
XKO(2043)aXKO{1449)1==XKO{21,2)
XKO(2143)1=XK0(15+9)2 DB (S4./35:#¥0A3- 156/ 35 #AB3=T2¢ /{25, %ATB))
1 +11 7. *ATB*DMRCHR2/ (D, ¥1225)
XKO(2243)2XKO (21 084)= AR (DB¥ {274/ 354 #BA3~22,/35:%AB3=1 « /ATB* (64 /25
1 +6e#XMU/Se ) )1+33 4 FATR¥DMECRR 2/ (4o %1225+ ))
XKO(2343)=XKO.(17¢3)= BR(DBR(=13¢/35. #BA3+TBe /3B ¥AB3+6./ (25 #4T8) )
1 ~16G . HATRRDOMICHAZ/ (1 24¥ 12254 ))
XKO(24+43)aXKOU]15412)= AXBR{DB#(~13./70.%¥BA3+11¢/35.4AB3+1./ATES
11eD2+4s 1 ¥XMU) ) =132 kATEBRDMRCH I/ L TR #12254))
XKO(A44)=XKO(10+10)1=XK0{16416)TXKO(22422)= ARUZH{DBH{S2,,/ 35 #BA3
] +8e/354%AB3+B 4/ (254 ¥ATB) )+ 13 ¥ATRIDMUCHH2/(3,#12250})
XKO(S5+¢4)=XKO(17+16)= AFBH(DB*(11 4 /35 % {BA+AB3I+1 0 ATHH {02 +1.2%
1 XMUYI+12] s ¥ATBHDOMACHE2 /(36 %1225.))
XKOUBed)=XKO (124101 AXRZXBH(DB* (224,105 ¥BA3+2e/35¢%¥ABI+2+ /ATE*
1 {1a/TSe+XMUZ1Se) 1411 « FATRRDMRCERZ /(184%12254))
XKO(B+4)=XKO(224B)1=XK0(20+10)1=XKO{20,16)=-XK0{10+2)
XKO{DeAI=XKO(224151==XKO(10+3)
XKO{10:8)=XKO(224116)= A¥EZR (DB* (264 /35 ¥BAI-34/35: ¥AB3-20 /(25 *ATH
1 Y)=13.*ATO*DMRECHRZ/ (44 #1225 ) )
XKO(11:8)=XK0(23216)= AXBX(DB¥(=114/35#BAR+134/T0a*ABI~] o ATH* (
1 0248 1¥XMUI I+ 143 HATEBRDMICHRRZ/ (72 4%12255 )
KKO(12+8)=XK0(10+6)= ARNZHER(DB* (114 /105 *BAI—3+ /70 ¥AB3=1c FATE®
1 (1a/150e4+XMU/304 1) —1] « RATEXOMNICK X2/ (24 %1525+ )
XKO(1544)=XKO(22+9)==XKO{1643)
XKO(1618)=XKO(22+10)= AR¥2¥ (DE¥(Fa/ 350 %¥BA3+3e/ 35 ¥AB3+2. /1254 ¥ATB)
1 )=O RATE¥DMRCRH2/ (B, *#1225. )
XKOC]TeBI=XKO (16+5)= ARBR(DBH {134/ 70+ ¥ (BAILABI )-202/ATBI-1602 %A TE
VI RDMECHEZ /(144412254 ))
XKO(18+84)=XKO(28410)= ANK2HBH (DB* (~13+/210¥BA3~ 3+/70e%AB3~14r
1 (150*ATB)I I+ 3« XATERDMUCEX2 /(4B #1225, 1))
XKO (2064 )=XKO{10+8)=XKO(16+8)=XKQO(22+20)1==-XKO (442}
XKO(22+4)=XK0{16410)= AKX (DBH(18,/35:%¥BA3~40/35+¥ABI-Ne /(25 %
1 ATB) )+ 3 X¥ATEHOMECHED /(24 #1225 ))
XKO (2344 )=XK0(16411 )= AXBH(DB¥ (=134, 70e%BA3+114/35. %¥AB3+1 4 /ATEH
1 (a02+¢ 1 #XMUY)I=143, #ATBHDMACHER/ (72,%12254))
XKO{284+4)1=XKO({1B410)= ARKPRBR(DB¥ (—13¢/105,¥BAI+20/35:#AB3+20 /1
1 7Se#ATB) )13, #ATERDMECHRD/(364%1225a))
XKO(G+S5)=XKO(I 1411 )=XKO I T2 17 1=XKKO(23+423)= BHiE2R(NB# {42/350 ¥BA3
1 452,/35e %AB3+8e/ (25, 8ATB )+ 1 D HATHROMRCHEZ/ (3122541
XKKO (695 )IXKOL24¢23)= ARBERZH(DB® (2435 #BA3+22./105«%¥ABI+2 /ATE#
1 (1e/75a4XMU/1Ge) )41 10 ¥ATBEDMECH X2/ (1Be*12254+))
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XKOU725)=XK0 (1147 y=XKO(23+19)1=XKOI19+17)==XKO(5u1)
XKO(104S5)=XKO (2241 7)=~XKO(11 +8)
XKOU1145)=XKO(23417)= BRER¥(DB¥(=84/35:%¥BA3+1B8e/ 35+ #ABI =B/ (25 ¥

1 ATB) 143 #¥ATEBRDOMACRE D/ (2, %1 2284 )

XKO(12+45)=XKO(23418)= A¥BEN2¥(DB¥(2+/35s*BA3-13¢ /105 ¥ADI420 /¢

1 7Se#ATB) )~ 1 2o HATBHDMUCHRZ / (36, #1555, ) )

XKO(15¢5)1=XKO(21 11 )==XKO{17+3} .
XKO{1T+S)=XK0 (23411 )= BEN2H (DB (34 /35e¥BA3+9¢ /354 #ABI+24 /(254 #AT2)

I Y= QuRATHBEOMNCHER S (8, %1225} }

XKO(18+S)2XKO(23412)= ANB*¥2% (DB¥ (=34 /70« #BA3-130/210e%¥AB3~1 o/

1 (1S04%ATB) }+1 3 %¥ATBXDMRECERZ /(48 , %1 2254 ) )
XKOC1995)=XKO(17+7)=XKO (2337 )=XKO(10¢11)==XKO(17x1}
KKO(2145)=XKO (15411 )==XKQ(23:3)

XKO{22+5)=XKO (174 10)==XKO(23+4)
XKO{23+5)=XK0(1 7011 )= BYXZH(DB¥(=2e/35e*¥BA3+260/354%AB3I~24/ (254 %

I ATBY)I-13,#ATBRDMECHNZ /(44 %1 2254 3
XKO(2845)=XKO (23461 ANB¥H2H (DB¥ (=34 /70 #BAT+1 12/ 105 ¥ABI=1 « FATES

1 (1a/1500+XMU/3041)~11 + RATEHDMECERD (24, %1225, )1
XKO(65+6)=XKO(12412)=3KO(18118)=XKO0 (244124 )= ARRIABRH 2K (DE* (4 e/ 105 ¥ (

T BA3+ABI 480/ (2254 #ATB) }+ATERDMECR 2/ (G, 1225, } )

XKO (OB I=XKO (2] ¢ 1B )==XKO (1243}

XKO[1146)=XKO (2421 T)==XKO(12+5)

XKO(1216)=XK0 (28418 )= ARKZASRRZR (DD¥ (24 /105 ¥BAZ-1 e /35e% AB3=24

I (225.%ATE))-ATBRDMECH#2,/(12.%]1225, )
XKO(16+6)=XKO(22+,12)==XKO(18+4)

XKO(ITe6I=XKO(28411 ) =—XKO(1B+5)

XKO 1B+ 631sXKO(24412 3= ARIDRBRRZEA(DBH (—f o/ TOW ¥ (BATH+ABI )41 0 /(450 %

1 ATBY)+ATBRDMECHRD /(16,4 225,) )

XKO(2146)=XKO(1B49)=aXKO(2443)

XKO(2246)=XKO(16+12)==XKO(24¢4)

XKO(24:6)=XKO (18412} = AREDKBRRZH (DR* (~14/35e ¥BAZ+2 e/ 1NSe #AB3I=D4 #

1 (225, %ATB) )-ATBADMEC#RD /([ 2,%1225, ) )

XKO(1049)=XKO (1641512~ XKO (4432
XKOC1249)=XKO (24421 )==XKO (64 3)

XKO(16e ) =XKO(1Se102~XKO(22+3) 4
XKO(2A+9)1=XKO{21412)==XKO0O(18+3)

XKO{11410)=XKO(23422)==-XKO(S+4)

XKO{23410)1=XKO (22411 )=~XKO(1Te4)

XKO(12+11)=XKO ({18417 3==XKO(E+5)

XKO(1Be11)1=XKO{1T7e12)==-XKQ(28¢5)

XKO(1Se 14 3=XKO(2] e20 )==XKO(3+2)

XKDCI T IS I=XKO (23421 1==XKO(S3)

XKOC204151=XKO (21418 }==XKOG (D2 )

XKO(P3415)=XKO(2] «173==XKO{11s3)
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XKO{1Be16)1=XKO(24422y==XK0{(6+4}
XKO(24016)=XKO(22+18)==-XK0{12¢4)

MAKE USE OF SYMMETRY TO COMPLETE THE MATRIX
DO S J=1.24 .

K=.J [

DO 5 [=K.24 ’

IF(1.EQest)Y GO TO 5 [}

KOO e 13I=XKD (T4 ) »

CONT INUE .

RETURN

FND .

SUBRNUT INE REDFORC(JNOF «NE ) &
COMMOMN/ZZ5/JR(1150)
5 SZZ26/FORC(216+1 )

THIS SUBROUTINE ELTMINATES FORCES AT REACTIONS
DO &7 IN=1.NE

LL=JR{TN)Y=IN+1

LEF=JUDOF -1

0O 43 N=LL.+LEF

FORC(Nel y=FORC(N+1+1 14

CONT [NUE

RETURN

END

SUBROUTINE ADDUP (MM XMKsXK0O)
COMMOMAZZI/NL (50 aN2(¢(S0)+NII(S50)YeNA(S50)
DIMENSION XMK(216«216)+XKD1Z24+24}
L1I=N1 (MN) .

L2=NP IMN) ]

L3=N3(MN) L}

La=Ng&( MN Y ’
DO a4 I=1,a .
DO & J=1.4 ‘.
NI=6%L1~-5 [}

NJ=6%L 15 .
IF(1.,E£Qs2) NI=6¥2-5
IF(J.EQe2) MNJI=6HLZ-5
IF{IEQe3) NI=6*.3-5
IF(JECQe3) MNI=H*L3-5
IF{1.EQed ) NI=&¥ _4-5
IF(J.EQed) MNJIzH¥L 45
DO 4 Kl=1,6 ’

DO 4 KJ=1+8
KKI=nIT+K =1 ]

KK J=NJ+K S .

- 4 & 4 + a2
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KXIza¥*!=64+KT [l
KXJ=g¥J—-6+KJ) .
XMI (K T+ KIS § = XMK (KK T (KIS Y+ XKO (KX T oKX S}
IF(({kKIsEQa2T71eAND (KK JaEQe2B))Y 244
2 PRINT 22 XMK (KK JKKJ)
3 FORMAT (/A0X+£20e48/)
4 CONTINUE .
RETURN N
END .
SUBROUTINE WASH {JDOF s NE « XMK ) .
COMMON/ZZ5/JR 150
DIMENSTON XMK(21642158)
SET NESIRED ROWS AND COLS TO ZERO
DO 31 N=1NE
LL=JR(N} '
NO 3t 1=1+JDOF .
XM {LLsI)=0,0 '
XM (ToLL Y=040 .
31 CONTTNUE .
COMPACT MATRIX
00 33 IN=14NFE .
LL=JR{INY=IN+1 '
LEF=_JDOF =1 .
DO 33 N=LL+LEF .
DO 32 1=1.+.JDOF .
XMIC (e TI=XMIK(N+L 4 T)
372 CONTINUE
DO 33 1=1+.D0OF -
KMICET o NI=XMK (T aN+1 )
33 CONTINUE
RE TUDN
END
SUBROUTINE EXPDEF (JDOF«NE} s
COMMON/ZZ5/JR(150)
7 ZZ2ZI/XI216
THE PURPOSE OF THIS SUBROUTINE 1S TO ARRANGE THE DISPLACEMENTS I
THE ORDER OF THE NODE NUMBER ING
DO 201 IN=14NE
LF=JNOF~JRIINY
DO 201 N=14LF
X CJDOF=N+1 ) =X { JDOF~N}
201 CONTINUE
DO 203 IT=!WNE
LL=JRITIT Y-



oo

203

DODJMMN
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XILL Y=0a0Dy
CONT INUE
RETURN
END
SUBRNUTINE STRESS (MN) .,
COMMON/ZZ1/AZ(30) «BZ (201« CZ(30)«DMZ(30)1+DBZ{301«XMUZ {30}
AZZA/NT(B0) N2 (SO N3 (S501+NA (SO}
PZZT/ANL216)
SZZB,/S (3424 )
ASZZ9/STRSR(3)
SZZ1II/7XE(24)
7ZZ12/7BTAL «BTAP2 .
THIS SUBROUTINE COMPUTES THE STRESS MATRIXe S +« THE MULTIPLIES
BY THE DISPLACEMENT YECTOR FOR THE ELEMENT .«
COMPUTE EACH TERM OF THE ELEMENT STRESS MATRIX.
A=AZ (MN)
B=BZ (MN)
C=CZ (MNY
nM=nmZ { MN
DR=DRZ (MN)
XMUZWMUZ ( MA §
S0141Y=5(1+12)==DM/ (P %A},
Se1+2)=2S{1+8)==XMUXDM/ (2e¥B) «
S0142)=2501+9)=5(1415)=5{1+21)=XMUNDM*¥C /44«
S{T1+a31=5{1eP21cA%S (1 431/ 9 0un
Se145)=S(1+11)1=B%#5(1,3)/%4»
S{I1aA)I=S{1+18B1=A¥BAS {1431/ 16+
S{1e7)1=5{1+1233==5{1¢1)»
S{1+¢10)1=5(1416)1=-5(1.,4),
S{1+121=5(1+424)5=5(1,61s
S{1¢141=5(1+20)==5(142)
S(1a17)SS(1423)17=5(145})
S(240131=S(2419)1=XMUXS {11 )
S{2+2)=S5{2+815=DM/ (2 ,%B )«
S5{24¢31=5(2+9)=5(2+15155(24211=DM*Crae
S{244)=5(2+22)1=A%¥S(2,3)/4ax
S(2¢53=S5{24111=B#S5(2,:3)/4,4»
S(2e6)=S{2+18)1=A¥B¥S(2+3) /16

S B(R2eTIES(2r13)1=-5(2e1)s

S{2+10)=S5(2+161==5(2,4) s
S(Z4121=5(2+241==5{2,6%+
211835 (2+201==S (22}
S(211T)IES(2+231==S{24S5)s
SI3¢11=5(34 7)== {1 a—XMUI¥DM/ (44 %8 ) 4

ITs



[

- 120 -

S{3+21=5(3420)=—(1 e —XMUIXDM/ (4 %A,

S{3+8)1=5(3+141==5(3+2)s

S{3v13)1=5(3+¢19)==S(3¢1 )

51343)=5(344)=5(345)1=5(3+6)1=5(3+9)=2S(3+41071=5(34113=5(3412)1=5(3415}s

1=5(3416)=5(3e171=5(3,18)=8(3421)1=S5(3422)55(3423)=5(3424)=0CaD0

PRINT OUT ELEMENT STRESS MATRIX.

PRINT 751+ MN,
751 FORMAT {(40X«®*ELEMENT STRESS MATRIX FOR FLEMENT NO ¥.13/),

PRINT 753¢((StlsJd)e Izl +24)s1=1e3),
753 FORMAT (SE20e4101s

CONSTRUCT THE DISPLACEMENT VECTOR FOR THIS ELEMENT.

DO 700 1E=1.24,

IF(IcWaGESLT)Y GO TO 703

NDI=A%® (NI (MN)Y—1 )«

XECIF)I=X(NDI4+TIE ) »

GO To 700
703 IF(IF«GE«13) GO TO 7nS.

ND2=a* { N2 (MN)~1 ).,

XE{IFI=X(ND2+IE-H1,

GO Tn 700.
705 IF{IFaGEL19Y GO TO 7InT,

MD3=a® (NI{MN)~] )

XELIFI=X(NDI+IE-12)

GO To 700.
707 NDA=A*{NA (MN)Y=~1 ),

XECIFY=X(ND4+TIE~18) .
700 CONTINUE,

PRINT 7T09s MN,
709 FORMAT (/40X *DISPLACFMENT VECTOR FOR ELEMENT NO *o[3/1v

PRINT T11+{XE(T1)Ys1=142a})
71t FORMAT (4X4E2D441Y

BTAI=(XE(3)=XE(II+XE(Z1)=-XE(15))/(2%A)

BYA2=(XE(B)-XE(Z21 I+ XE{D)=XE(ISI )/ (2 ¥B)+CH (XE(2)+XE(BI+XE (18 1+XE (2

10)Y174.

PRINT 720
T20 FORMAT (/40X *AVERAGE ROTATIONS ABOUT Y AND X AXES*/)

PRINT 722+BTAl1.BTA2 .
722 FORMAT (40X+S20ad) )

MULTIPLY STRESS MATRIX BY THE DISPLACEMENT VECTOR TO OBTAN THE s

INPLANE STRESS RESULTANTS.ENX+ENY AND ENXY.,

CALL MATRIX(Z04342841+45+34XEs24+STRSR3 )

PRINT 7I13+MNs
713 FORMAT (/40X + ¥STRESS RESULTANTS FOR ELLEMENT NO¥X 4y I3/) .

PRINT 715«(1+5TRSR (1)eI=1e3}s
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715 FORMAT (AX«*STRSR{%+]34#)=%,E12e4 )

RETURAN

END

SUBRAUTINE ELEMKI (MN).

COMMON/221/7AZ{230)+BZ (30)+CZ{30}+DMZ (30} +DBZ(30)+XMUZ(30)
8 /ZZO9/STRSRI3)
9 AZZI0/XKT (28424 )0

A=AZ {MN)

B=RZ (MN )

C=CZ(MN)

PM=OMZ (MN )

NR=PRZ (MN )Y

HMU=wMLIZ (MN )

ZERD OUT XK1

NO 9n0 1=1.24.

D0 SN0 J=1.24.,

XK1(T+J)I=0e00

900 CONTINUE .

SI=STRSR{1)

S2 =aTRSR(2)

$12=26TRSR(3),

XCL(2e2)=XK1 {B4B1TXK) (18+1413XK1 (20420 )=S2RAKBRCRX2/ ey
WK1 (e 3)=XKE (15+15)=C1 %8B/ (Fe¥A1+S12/2++S2HA/ (Be B
WK1 (O+0)=XKl (P1a21 1=C1RB/ (32 %A )I~S12/2+S2¥A/(34%8)
XK1 (24 2)=XK1 {24312 (S12¥B+S2¥AYRC /e

XK1 (He2)=XK] (248)=S22ARBRCRE2 /1By

XK1 (Te2 I=XK] (24D )1=— (1 2H¥B-S2¥A/2e ) HC /6
KKL(14+21=XKL{2+18)=XK1{242) /80
XK1(]15421=XK1{2415)==%K1(342)/ 20+

XK1(20+23= XK[(2.20)‘XK1(1408)‘XK1(8014)‘XK1(20.14)-XK!(140201~-
I3 CANE-TY-8 Vi
XK1(P1s42)2XK1 (2+21 1= (S12%B/2+s=32HA /60

W1 {Ry3)=XK] [3¢B)=(S12¥B+E2¥A/24 1%C e

X1 Oy BIeXKY (349)1S—S1¥B/(DeFAV4S2 A/ (G FB I

XK1 (184 31=XK1{018)==XK1 {1542 )

X1 (15+31=XK1 (3415)=2=51%B/(6+K%A)=S12/2.=SZ#A/(64¥B) s
KKI(DDa3I1=XK] (3220)1=(S312¥P/2++S2RAIRC/Eas

XKT(2T e 3)2XK1 (3421 1=C1#B/ (5« FAI=S2¥A/ (3a%B)

XKL (DeBI=XK] (B4P 15— (S 12¥B=S2¥AI¥C/Ee s

XK1 (1518)1=XK] (Br15)=~(512/2, ¥B+52¥A)1%C/6e s

K (20 By=XK] (Ay20)1=XK1{242) /800

XK1 (P1¢B1=XK1{B421)=(S12HR-S2%XAI*C/ 1240

XK1 (18491 2XK1 (94181 =uXKI (21429
KKI(15+91=XK1(De15)1=XK1 (21 +3 %




e
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XKL (20T =XK1 {Q420)1=XK1(F+8) /2>
XK1 (21 4D3=XK] (9421 )2=S1 2B/ (6 HAV+S12/2e=S2HA/(6*B)
XK1(50,151=XK] (15420 y=—(S12¥B+S2%¥A /24 )¥C/Gu s
XK1(P1+181=XK]1 (14421 )==XK1 (F42)
WL (1S 1AI=XK1 (14415 )2=XK1 (342)0
KK1121+15)1=XK1 (15221 1==S1%#B/ (3« ¥A)+S2%A/ (E¥B)
XK1(2]14203=XXK1 (2021 y==XK1 {342 )
RETURN
ENDe
SUBRNUT INE ELEMK2 (MN)
COMMON/ZZ1/AZ (301482 (301+CZ(30)¢DMZ(30)+DBZ(30)+XMUZ(30)
/ZZ12/BTAl+8TA?
AZZ13/XK2(24.24)
/ZZ184/50
A=AZ (MNY
A=RZ (MN)
CsCZ (MN)
DM=0MZ [ MN '}
DR=DRZ { MN}
KMU=MUZ {MN)
ZFRO OUT XK2(1.2)
po 920 I=1.+24
D0 950 J=14+24
¥EZ2(TediI=00
CONT TNUE
DEFINE COMSTANTS
C1=1,0=XMU
C2=1 04+ XML
C3z1,0=3,D*XMU
DEFINE SECOND ORDER TERMS, A MODULATING FACTOR, SO+ WILL DETERMINE
WHEATHER THE SECOND ORDER TERMS5 WILL BE USED OR NOT
ALFL=SO* (BTAL#¥2+C1%*RTAZ*X2,/2.0)
ALF2=SO¥% ({BTAS*X2+CI1¥RTA1%¥%2/2401}
ALF3=SO®C2*BTALI*BTAP ) ,
XK2(2al I=XK2{142)==CR{«SHCI#AFBTAL+XMUKBEBTAZ)1 /6.0
XKZ (291 )2XKP(1e3)5={ SHCIHAIB+B/AIRBTAL /34—C2¥BTA2/840
XK2(Br1 1=XK2 (1 48)=~Ca{ 25#C 1 HARBTA +XMUXB*¥BTA21/6s0
KK2(Qe 1 1=XK2 (14912~ { ,25#C1 ¥A/B=-B/A)*BTAL/3.,0+C3%BTA2Z/R.0
XKZ(1A¢1)=XK2{1 e 1812 SEXK2(201)
HE2 (1541 )=XK2{1 41512 {+S*¥CI RA/B+B/AYHBTAL /6. 0+C2¥BTAZ/Be
XKZ2(20s1)1=XK2 (1 +20)==CH{CI#AXBTAI+XMUXBRRTAZY /12,
XKZ2(21+11=XK2 (1421 )1=(C1¥A/B=-B/A)Y¥ETA1/6+—CIHBTAZ/B. -
XK2(De2)==CH¥(4SRCI¥BX¥ATAL+A¥BTAZ ) /3 +ANBECRHE2HALF2/
KK2(2e2)2XK2 (243 )z=Co¥BTAL /Bew{ s SHCIFB/A+A/BIHBTAZ/3e+Ch{ JSHBEHALF3
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LHAXAL F2)1 /8. +CHR2HANBRBTAZ/9,
XKZUT7+2)=XK2(247)=~CH (4 25%C1 #ARBTA| ~XMUIB*BTA2 /6
XKZ{R12)=sXK2(2+8)1z=ARRTAIRC /6 +ARBRCRI2RALFZ /18,
XK2(992)=XK2(2+9)=2-Ca¥BTAL /B4 + (C1XB/A-A/BIBTAZ/ 60 —CH (BHALF3~-AR
LALF21/1 2. +A%B*ATAZRC %2 /18, )
XK20131021=XK2(2413)=CH (JSRCIHAMBTAI+XMURBRRTAZ) /12,
XK2U14421sXK2 {2181 =AXBEAL FI2RCHR2 /25,
XKZ2(1542)=XK2(24115)=C2*BTAL/Be+(+SHCIHB/ALA/BI¥BTAZ/6a-CH{sSHE*
TALF34A%ALF2)1 /12 +A¥PBRSTAZHC X2 /36,
XKE(19v2!=XK2(2y19)=C*(CI*A*BTA!—XMU*B*BTQE’/!2-
XKZ2(20421=XKZ(2+20)==CI1HBRBTALHC/ | 2¢+S HAXKBRALFIHCH¥2 r35,
XK2(P1e2)=XKE2 {24121 1=CR2¥BTAL/Be~(C1%B/ (4 #AI-A/BIKBTAZ/ 3o+ CH {4 254BH*
TALF3-A¥ALF2) /6 e+ Sa#AXBRDTAZRCE¥2 /05,
XK2{103)=C*(XMU*B*BTA1+A*BTA2)/3-+ALF3/4.+B*ALF]/(A*S-)+A§ALF2/{B*
134

XKZ(T7e31=XK2{34 7)== (C1 %A/ (4, %8B 1~B/AY*BTAL /1a—C3%#BTAZ/8,
XK2(A+31=XK2{(24B)=C32BTAL /B++ (CINB/A-A/BI¥BTAZ/5.+CH{BRALFI+AXALF2
11712, +A#RXBTAZ*C*¥%2 /18,
XK2(Ge3)1=XK2(34F)1=AXRTAZKC/6+=B¥ALF1/ (3. #A)+AKALF2/ (64%B)
KK2(13431=XK2(34]13)=xK2(151)
XKZ2(14431=XK2(3:114)=C2¥BTA1/Bas+(+SACIXB/A+A/BIABTAZ/H+C% (+S5HEH
LALF 31/l 2. +AXBY¥BTAZRCAH2 /26,

XKZ 1503 )1=XKZ2(3¢15)==ALF /4 ~B¥ALF 1/ (6 ¥AI-ARALFZ/ (E+%B)
XK2(1943)=XK2({3+19)=(C1¥A/B-B/AIFBTAL/6.+CAXBTAZ/8.
XKE(POQE)-XKE(Bol9)=-C3*BTA1/B-—(.ES*Cl*B/A)*BTAZ/B.+C*(¢25*B*
LALF3+A*ALF2) /64 +S+ XARBEBTAZHCH¥ N2 /36,

K221 43)=XK2{3+21 )=XMUXBABTALI *C/E«+BXALF 1 /(64 #AJ=ARALF2/(3.%B)
XK2(BeT7)=XK2(T48)=—CR(CI¥AXBTAL /24, =XMURERBTAZ ) /6
XKZ{De 7 )=XK2(TeF)==(C2¥A/ (2 *BIFB/AIYRBTAL /34 +C2HBTA2/8e
MK2{184sTY=XK2{T418)=XK2(19+2)

XKEZ(15¢T7)1=XK2(7¢15)=xK2(1943)

XKZ2(P0e 7)UK2(T120)=XK2(B+T1/20

XK2021 4 71=XK2(T 421 y=XK2(F+7)

XK2(R«8)= C*(CI*B*BTA1/2.-A*BTA2)/3.+A*B*ALF2*C**2/9.
XK2(048)=XK2(B819)1=C2%#BTAL1 /B~ (+SHCIRB/A+A/BIFBTAZ/ Fe~CH(+ SHBHALF3
1-ARALF2) /6« +AXBRBTAZRCHR2/T,

XK2(134B)1=XKZ2(Be13)=XK2{20+1} ‘
XK2(1448)=XKZ2(Be14)=CI*¥B¥ITALIRC/ 12, +ANBHALF2¥CHEZ /18,
XK2(15+8)3XK2(B415)=~CINBTAL/Ba=(25#CI1*¥B/A-A/BIRATAZ /2a—C* (BHALF3
178« +ARALF2) /6, +ARBRBTAZHCE¥2 /18,

XK201G9+B)=XK2{Bes19)2—uSAXK2 (B, 7)

XK2{204B)=XK2(8420)=3xK2(8,2)
XK2({P14B)=XK2(8421 )=~C2¥BTAL/Be+ (4 S*CILAB/A+A/BIRBTAZ/6e +C% { « 5B
1¥ALF3/2«a=AXALF2) /12 4+ ARBABTAZRCHED /36«
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XK2{949)==C# (XMUNBRBTAL ~ANBTAZ) /3o +ALFI/4 . +BHALF L F (3, HA 1 +ARALFER /1
13,%0, ‘

XK2(1329)=XK2{De131=XK2(21 1)

HK2(18+9)2XK2(T418)1=C*BTAL/Be—(+252CI#B/A-A/BIXBTAZ/2e=C* (1 25%B%
TALF3-A%ALF2) /6« +tARBERTAZHCER2/1B, o -

XK2(15¢9)2XK2(F115)==XMUABHBTAL#C /62 +B¥ALF 1/ (6 ¥A)~ARALF2/(34%B )

XK2(1949)=XK2(D¢19)=XK2(21+7) .

XKZ2(2009)=XK2 (9420 )1s=C2EBTAL/Be+(4SHCINBA/ALA/BIFBTAZ/Ge~C* (BRALF3/
12.=A#ALF2)1 /122 +ABEBTARRONRD /36,

XK2(2119)1=XK2{D121 )= ALF3/4+—BRALF 1 /(S HA)=ARALF2/(54%8 )

XKZ2{14413)1=XK2( 13414 )=~45¥XK2(14,1)

XK2(15+13)1XK2(13+415)=XK2(3011

XK2(20e13)=XKZ{13420)==XK2({B 1)

XK2(21a13)1=XK2 (13421 y=XK2(941}

XK2(142)18)1=Ch{JSHCIRR¥RTAI+ANBTAZ ) /34 +ARBRALFZRCH%2/9,

XK2(15414)=XK2(1441512~C2#BTA1/Be={oSHCI1AB/A+A/BIRBTAR/ Se~CH({ SEB*
LALF34ARALF2) /62 +AXBRATASHCRERD /O,
| OXK2(19314)1=XK2 (18,419 )=-XK2(74+2)

XK2¢P0+14)=XK2{14+20)=ANBTAZHC /6. +ARBRALFRHCHR2 /18,

XKZ2(21e18)1=XK2{14421 )=~CI3¥BTAL/Be+{Cl¥B/A-A/BINBTAD /64 +C* (BHALF3=-
TARALE2 ) /[ 2o +ARBRBTAZRCHH2 /18,

XKZ2{15015)z=CH{NMURBXBTALI+ARBTAZ ) /3¢ +ALF3 /44 +BRALF ] /(234 %A ) +ARALF2/
1(3e%m)

XK2(19415)1=XK2(15¢19)1=XK2(T¢3)

XKZ2(2C0s151=XK2(15.201=CI*BTAI/Be+{CIHB/A=A/BINBTAZ /6o ~CHh{ BRALFI+AR
TALEZ )1 /12 FARBIRBTAZKCR#2 /18,

X2{21415)=XK2({1S+21 )=—A¥BTAZHC/6e—-BRALF) /(32 RAJHAKALFZ2/ (e #B)

XK2(P0s19)1=XKP(19+20)==XK2(8,7)

XKZIP1419)1=XK2(1942] )=XK2({9:+7)

XK2{P0220)==CH(«SHCINBRATAL-AKBTAZ) /3 +ARBRALF2XCH¥2/0,

XKZ2(21220)=XK2(20+21 y=XK2(9+B)

XK2(21 421 1= CH(XMURBRRTAL =ARBTAZ ) /34 =ALF3/6 4 +B#ALF 1 /(3 RA ) +ARALF 2,/
1(3e%m) h S '

DO 960 1=1,.24

DO 950 J=1.24 ,

NK2{ T+ JI=OMEXK2 (T 0 )

980 CONTINUE

RETURN

END

OVERLAY(LINK¢2401)

COMMON/ZZY /8Z(301+BZ{30)1+CZ{30)+DMZ (30) +DBZ (30 4« XMUZ (30
FZZ2/XKO(28e24y 4 CT o
SZZ3I/NT(SO) «N2{BD) eNI(S50) +NA{50)

AZZBAIR(IS0Y T T

PN o



171

173

Lol T B Y R BT I ]
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/ZZ6/FORCI21641 )
FZZT/X(216)
AZZ28/5{3.24 ),
AZZO/STRSR(3Y
FZZI0/XKT (24424 )
FZZIL/XE(24)
72Z12/BTAl+BTA
7ZZ13/7XK2(28,423)
7ZZ14/50
DIMENSION XMK{1B04180)+XMK2({1B0+180),
IRTRUIBOIWRTI(1B0YIRUNTIIBO)IPL180)NDEX(180}
REWIND 2. )
READ TAPE 24 ((XMK2(1,4J)+[=14180)4J=)4i80)eNDO+IDOF +NE + JDOER
ADD xMK1 AND XMK2 ANP STORE 1IN XMK
REWIND 3, i
READ TAPE 3+ ((IXMK{IxJ}a1=1¢JDOFR}Y yJ=1 ¢« JDOFR)
MULT THE MATRIX (XMK]+XMK2) BY XMK-]MVERSE
CALL MATRIX (20+JDOFR+JDOFR+JDOFRs XMKZ2+180¢XMKe 1801 XMKs { 80)
GET FIGEN VALUES FOR BUKL o
NELUS= JDOFR+1
CALL REIG(XMK+JDOFR«2¢3¢RTRRTIs XMKe180+NDEX s IRUN+P ¢NPLUS ¢ XMK2)
PRINT 171 .
FORMAT (/aSX+#E1GEN VALUESH#,)
PRINT 1734(RTR(TY»I=143)
FORMAT (3E2044)
RETURN «
END





