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SERVICE EVALUATION OF AIRCRAFT COMPOSITE STRUCTURAL COMPONENTS

William A. Brooks, Jr., and Marvin B. Dow
NASA Langley Research Center

Hampton, Virginia

Abstract

The advantages of the use of composite materials in structural applications have
been identified in numerous engineering studies. Technology development pro-
grams are underway to correct known deficiencies and to provide needed improve-
ments. However, in the final analysis, flight service programs are necessary to
develop broader acceptance of, and confidence in, any new class of materials
such as composites. Such flight programs, initiated by NASA Langley Research
Center, will be reviewed in the proposed paper. These programs, which include
the selectively reinforced metal and the all-composite concepts applied to both
secondary and primary aircraft structural components, will be described and
current status will be indicated.

1. INTRODUCTION the recommended action is to increase the pro-

Because of great potential benefits, in the last ducer's and user's confidence in composite

decade a large amount of resources have been structures, to broaden the base of experience, and

expended on the development of technology asso- to obtain meaningful manufacturing data by pro-

ciated with composite structural materials. The ducing enough components of a given type to

NASA Langley Research Center has been involved require the use of pilot production practices.

in this activity, concentrating primarily on the These benefits are expected to be derived from

application of composites to aircraft structural Langley's flight service programs.

components. .The main thrust of Langley's A major deficiency in composites technology is

program is toward flight service programs. the lack of a data base for predicting life cycle

Langley's composite flight service programs are costs. Data are lacking in the areas of opera-

in keeping with one of the major recommenda- tions, maintenance, reliability, inspectability, and

tions, resulting from the recent Project Recast repairability. Appropriate flight service pro-

deliberations, that government agencies should grams, such as those sponsored by Langley, are

sponsor "fly and try" programs on primary and the most meaningful way to obtain the required

secondary (or not critical to flight safety) com- data, although the return is on a somewhat long-

posite structural components. The objective of range basis.

L-9024



The NASA Langley Research Center at present Some of the details are shown in Figure 2.

has many flight service programs underway or Laminated strips of uniaxial boron/epoxy with the

in the advanced planning stages. A summary of required number of plies are bonded to the inner

these flight service programs is given in Table I. surface of the skin panels under each stringer and

These programs involve both primary and to each hat-section stringer on the enclosed crown

secondary structural components. In addition, surface. The area ratio of boron/epoxy to alumi-

the degree of composite utilization varies from num is nominally 1 to 4. This ratio was selected

the reinforcement of conventional metallic com- on the basis of four criteria: weight reduction,

ponents with composites, to the substitution of equivalent ultimate strength, equivalent damage

composites for metal, and to redesigning the tolerance, and equivalent fatigue endurance. An

component specifically for composite utilization, additional requirement is the wing box must sus-

The purpose of this paper is to review the pro- tain 100% of the design limit load without the

grams in sufficient depth to indicate the totality benefit of composite reinforcement.

of activity. Technical details beyond the scope One of the most significant development activities
of this paper are given in suitable references was associated with residual thermal stresses
identified herein. produced when the boron/epoxy laminates were

2. LOCKHEED C-130 CENTER WING BOX bonded to the aluminum structure at an elevated

The NASA Langley Research Center's early temperature. Due to the difference in the thermal

research on composites dealt with the concept of expansion characteristics of aluminum and boron/

selectively reinforcing metal structures with epoxy, significant residual stresses and warping

composites. During this period, a unique oppor- were induced at temperatures different from the

tunity for the application of this concept to air- bonding temperature. Because the potential

craft structures developed when the C-130 weight reduction afforded by use of the composite

transport fleet was retrofitted with strengthened was jeopardized, it was necessary to reduce these

center wing boxes. These aircraft had experi- residual stresses. The result was the develop-

enced a rapid accumulation of fatigue damage as ment of the "cool tool" bonding concept which

the result of exposure to severe flight environ- constrained expansion of the aluminum parts

ments in Southeast Asia. during the bonding process. In this concept, the
tool is thermally insulated from the parts to be

The standard retrofit involved the installation of
bonded and heat is supplied by an electric blanket

strengthened aluminum center wing boxes in
arrangement, rather than by an autoclave.

these aircraft, shown in Figure 1. However, a

study (1 ) performed for NASA indicated that about The composite laminates are stepped out at the

50 pounds of uniaxial boron/epoxy bonded to the junctions with the outboard metal wing boxes and

skins and stiffeners of the wing box would reduce at access holes by progressively stopping individ-

the stress levels and thus increase the fatigue ual plies. Fasteners are used at the ends of the

life as much as the aluminum retrofit design, laminates to prevent peeling, thus providing more

but with a 10% weight saving. The joint NASA/ reliable joints. As the sketch in Figure 2 shows,

U.S. Air Force C-130 composite flight service adequate bearing surface is provided in the

program evolved from that study. fastener penetration areas by titanium doublers



which are inserted and integrally bonded into needed to prevent resonance and would result in

the laminates. a 14% weight saving. NASA Langley and the U.S.

This composite flight service program, which is Army Air Mobility R & D Laboratory jointly

the largest funded by NASA, involves the fabrica- sponsored a contract with Sikorsky to design,

tion of three wing boxes: one for ground testing fabricate, and place into flight service a tail cone

and two for installation in aircraft that will be embodying the reinforced stringer concept. The

flown in regular Air Force service. The wing details of the program are given in References (5)

box for ground testing will be statically tested to and (6).

limit load, fatigue tested to four lifetimes (40,000 The general criteria were that the stiffness of

simulated flight hours), and then statically tested the composite-reinforced tail cone had to be the

to determine the residual strength. same as that of the modified production tail cone

The advanced development and detailed design and that manufacturing changes had to be minimal.

phases have been completed, with results reported In addition, the design static strength requirement

in References (2), (3), and (4). Fabrication is had to be satisfied by the metal structure without

underway and testing is expected to start in composite reinforcement. Thus, the composite

December 1973 with the flight service phase provided the additional increment of stiffness

needed to satisfy the dynamic requirements.
beginning in August 1974. The present arrange-

ment is to fly the wing boxes for 3 years with Some of the details are shown in Figure 4. Five

detailed inspections being scheduled to coincide of the top stringers and seven of the bottom

with regularly phased aircraft inspections. If stringers of the tail cone were reinforced by

no technical problems exist, NASA will likely boron/epoxy laminates as shown by the sketch.

negotiate for an option to continue flight service The laminates (0.75 by 0.25 inch) contained

beyond the initial 3 years. 50 plies of uniaxial boron/epoxy. Use of the

3. SIKORSKY CH-54B HELICOPTER laminates permitted skin gage reductions from

0.140 inch in the modified aluminum production
TAIL CONE version to 0.040 inch in some sections of the

Another flight service program utilizing compos- reinforced tail cone.

ite reinforced metal structures involves the Bonding laminates to the aluminum stringers at
Sikorsky.CH-54B (Fig. 3). During developmental elevated temperature resulted in residual stresses
testing, the original CH-54B airframe was found and warpage. However, the warpage could be
to be in resonance for certain combinations of easily removed by applying hand pressure.

cable sling length and load, resulting in an Furthermore, the residual stresses were not as
undesirable dynamic condition in the tail cone. critical as in the C-130 program because the tail
The production fix was to provide thicker top and cone is rather lightly loaded.
bottom skins for the aluminum tail cone, which

is approximately 3 by 4-by 15 feet in size. In this case, composites were used to meet a

stiffness requirement only and, therefore, it was
A preliminary analysis indicated that uniaxial possible to terminate the composite before reach-
strips of boron/epoxy bonded to the tail cone ing joint areas. This was done by tapering the
stiffeners would provide the extra stiffness laminate by dropping plies The critical aspect



of this approach was keeping the shear stress 30 by 73 inches. This panel is also of Nomex

induced in the bond at an acceptable level. The honeycomb construction with three-ply PRD-49

concept employed was to use a 2-inch-long fiber- face sheets.

glass insert, consisting of two plies of 00 fiber- The lower density of PRD-49 results in signifi-

glass/epoxy, at the beginning of a tapered joint. cant weight savings when this material is substi-
This had the effect of reducing the stiffness of the tuted for fiberglass on a ply-for-ply basis. The

tuted for fiberglass on a ply-for-ply basis.
laminate, thereby reducing the peak shear simple replacement of fiberglass with PRD-49 on
stresses to 50% of the peak stresses in a tapered a ply-for-ply basis in a shipset of these panels

joint without the fiberglass insert. (three left, three right) results in a saving of 27%

The composite-reinforced tail cone was installed of the weight of corresponding fiberglass panels.

in a U.S. Army helicopter and has been in service One of the most troublesome areas in this pro-
since March 1972.since March 1972. gram was the machining of the PRD-49 panels.

4. LOCKHEED L-1011 EXTERNAL FAIRINGS Tooling used for cutting, trimming, drilling, and

In many past applications, the concept of substi- countersinking fiberglass panels was not adequate
for the PRD-49 panels. Tool life was drastically

tuting composites for a metal detail of a conven-

tional structure has been employed. However, in reduced and machined surfaces were badly frayed.

a Lockheed program, sponsored by Langley, com- Therefore, special tools were developed. Details

posites are substituted for composites to obtain of the tooling and other aspects of the program

longtime flight service experience with the are given in Reference (7).

relatively new PRD-49/epoxy material. The com- Three shipsets of these panels (18 panels) have

ponents involved are the external fairing panels been installed on three L-1011 aircraft, one from

on the L-1011 transport shown in Figure 5. each of three airlines. Flight service began in

The particular panels involved are a wing-to- January 1973 and will continue for 5 years.

fuselage fairing, a wing-to-fuselage fillet, and 5. BOEING 737 SPOILERS

a center-engine fairing which were produced by In a company-funded development program, the

making a ply-for-ply substitution of the PRD-49 Boeing Company conducted a study of using com-

for the fiberglass material used in normal pro- posite spoilers on the 737 aircraft at the locations
duction panels. shown in Figure 7. There are three spoilers on

The individual panels are shown in Figure 6. The each side and, although functionally important,

largest panel is a 60- by 67-inch wing-to-fuselage the spoilers are not critical to the safety of the

fairing panel'which has a slight single curvature. aircraft.

The panel is constructed from a Nomex honey- Subsequently, the Boeing Company designed,

comb core with three-ply PRD-49 face sheets. certified, and installed two graphite/epoxy skinned
The wing-to-body fillet is a solid PRD-49/epoxy spoilers on a commercial 737 for flight evaluation.
laminate construction with a thickness of 0.090 A composite spoiler (22 by 52 inches) is shown in
inch tapering to 0.030 inch thick edge closeouts.

Figure 8 and some of the details are shorn in
The center-engine fairing is approximately tri- Figure 9. The aluminum production skin was

angular in shape with maximum dimensions of replaced with cross-plied graphite/epoxy and thereplaced with cross-plied graphite/epoxy and the



aluminum end ribs were replaced with fiberglass/ The second phase of the program involves the

epoxy ribs. The aluminum hinge fittings, spar, development of advanced composite spoilers. The

and the aluminum honeycomb core are the same objective of this phase is to make the maximum

as used in the production spoilers. Use of com- possible effective use of composites in the spoiler.

posites in the spoiler resulted in a 15% weight Possibilities being considered are chopped-fiber

saving, molded parts to replace the hinge fittings and spar,

NASA Langley elected to build on this start and a Nomex or PRD-49 honeycomb core to replace

create a more comprehensive ground and flight- the aluminum honeycomb, and other types of

test program. One objective was to manufacture advanced filaments to replace the graphite used in

a large number of spoilers so that needed data onphase. Ten advanced composite spoilers

manufacturing costs could be obtained. Also, the will be produced for 5-year flight service.

availability of a large number of spoilers allows One of the most significant problems encountered

for flight service with five airlines with world- during the early stages of this program involved

wide route structures. Thus, environmental the graphite/epoxy materials. The suppliers'

exposures will be varied and service experience recommended cure cycles did not produce lami-

with inspection and maintenance can be gained by nates which met specifications and new cycles

several airlines. had to be developed. Furthermore, the quality of

In the first phase of the NASA Langley program, the prepreg tape was not satisfactory in many

114 spoilers will be manufactured from three instances. Considerable effort was expended to

selected graphite/epoxy material systems. obtain prepreg tape with quality measurably better

Generic type-A graphite was specified as having than that available at the start of this program.

the properties to provide stiffness comparable to Results obtained should be beneficial to future

the aluminum production design and a low mate- composites production programs.

rials cost. (The spoiler is a stiffness critical Minor problems were encountered in establishing

component. The composite spoilers are slightly the manufacturing sequences. These were

stiffer than the aluminum spoiler and failed at resolved and the final assembly sequence is shown

240% to 290% of design limit load compared to in Figure 10. First, the metal details (hinge

210% for the aluminum spoiler.) fittings and leading-edge channels) and the fiber-

A total of 108 spoilers will be supplied to the air- glass end ribs are assembled. The machined

lines in sets of four for installation on 27 aircraft. honeycomb core is then bonded to the frame. The

The nominal period of flight service is 5 years. layed-up and cured skins are then bonded to the

frame and honeycomb and finish details are added.Periodically during the 5 years, spoilers will be

removed and tested for possible deterioration At this time, all spoilers except the advanced

resulting from environmental exposure. Inhave been fabricated and delivered.

addition, comparisons will be made from results 6. LOCKHEED YF-12 WING PANELS

from concurrent ground-based environmental The NASA Advanced Supersonic Technology pro-
exposures to determine the reliability of ground gram includes activities related to the development
testing. of advanced materials and structural concepts for



supersonic aircraft. One aspect of this multi- Other concepts will be included as permitted by

faceted program is the manufacturing development available funding.

and flight qualification of selected concepts. As 7. DOUGLAS DC-10 RUDDER

a focal point to this activity, a joint NASA Langley/
The DC-10 rudder program will be the first of the

NASA Flight Research Center/U.S. Air Force
NASA Langley programs in which a commercial

flight service program has been developed using
aircraft component is extensively redesigned for

the YF-12 aircraft shown in Figure 11 as the test
vehicle, composite applications. The rudder (one segment

of the four-segment rudder on the DC-10) is

Figure 11 shows the location of three panels which identified as the upper aft rudder and is located

have been selected for replacement with advanced as shown in Figure 14. The configuration of the

panel concepts. These panels, which are essen- 38- by 158-inch upper aft rudder, in the aluminum

tially flat and located in the dry bay areas of the production version, is shown in Figure 15.

wing, include both primary and secondary struc-
The Douglas Aircraft Company is performing the

tures. The composite panels are designed to
initial work required to certify composite rudders

meet the load envelope of the original panels at
for flight service on DC-10 transports. With the

both room temperature and flight temperatures.

Ground-test exposures of the composite panels to Douglas work as a starting point, the NASA
Langley program will provide for the design,

10,000 hours with simulated flight conditions are
planned in addition to the flight tests. manufacture, ground test, and flight-service

evaluation of composite rudders. Early studies
As shown in Figure 12, each panel has a different by Douglas showed that a 40% weight reduction

critical loading. Panel 1 is a rectangular pri- could be achieved with a composite rudder. How-

mary structural panel (16 by 28 inches), located ever, in the NASA Langley program both struc-

aft of the main landing gear, and is critical for tural configurations and manufacturing methods

shear loads. Panel 2 is a rectangular secondary will be emphasized so that the selected design

structural panel (26 by 40 inches), located over achieves significant weight savings, but at rela-

the main landing gear well, and is critical for tively low cost. The design goal is to make the

pressure loads. Panel 3 is a trapezoidal primary composite rudder cost competitive with the pres-

structural panel (28 inch spanwise width, 14 and ent aluminum rudders.
21 inch parallel sides), located just forward of

SThe components of one concept for a composite
the wving irear beam and ha a critical tension
loading, upper aft rudder are shown in Figure 16. With

the exception of aluminum hinge fittings and
Some of the structural concepts being considered lightning protection straps, this concept consists

for this program are shown in Figure 13. Both entirely of graphite/epoxy and fiberglass. In
skin-stringer and sandwich panels will be inves- addition to the lightning protection identified in
tigated and the composite materials are boron/ Figure 16, the upper aft rudder, because of its
aluminum and graphite/polyimide. At this time, location on the DC-10, will require a lightning
it appears that a boron/aluminum concept designed protection system on the skin of the composite

for the conditions of panel 1 will be the initial rudder. The requirement to provide lightning
selection for development and flight testing. protection for the composite material is another



distinct difference between the DC-10 rudder composite configuration shown has fewer internal

program and the Boeing 737 spoiler program. members than the aluminum version. This is due

Present plans for the program are to manufacture in part to the use of a honeycomb sandwich skin

about 19 composite upper aft rudders in Douglas but also to the better properties of the composite

production facilities. Manufacturing this number materials.

of rudders should provide good definition of the A composite L-1011 aileron is a strong contender

fabrication costs and the cost learning curve. Of for inclusion in the NASA Langley flight service

the 19 rudders, one will be used for ground tests programs. However, whether or not this project

and 18 will be used in flight service evaluations. proceeds to flight service is dependent on the

Six each of the composite rudders will be supplied results of the design study and the existence of

to three airlines for installation on DC-10 air- budgetary constraints.

craft in regular airline service. The nominal 9. SUMMARY AND STATUS OF THE NASA

period of flight service will be 5 years. The LANGLEY FLIGHT SERVICE PROGRAMS
rudders will be regularly inspected by the air-

lines and, periodically during the 5 years, rud- To supplement the general description of the NASA

ders will be removed for comprehensive Langley flight service program, a summary is

inspections and tests to investigate possible presented in Table II. This table identifies the

deterioration due to environmental exposure and number of complete structural components being

flight loads, fabricated in each program, for both ground and

flight testing. Two of the programs, the 737
8. LOCKHEED L-1011 AILERON spoiler program and the YF-12 panel program,

One of the most recent considerations for a flight are associated with a large amount of ground

service program is the aileron of the Lockheed testing of full-scale components.

L-1011 as shown in Figure 17. As is the case for Approximately 25 production composite 737

the DC-10 rudder, the aileron is sufficiently large spoilers will be tested to determine the variability

(48 by 96 inches; see Fig. 18) and complex to One
in properties and performance when loaded. One

permit the examination of alternate structural objective is to ascertain if there is a correlation
configurations and fabrication processes. between the variable materials properties and the
Furthermore, the severity of the environment, performance of the complete component.

which includes acoustical loading, engine exhaust

contaminants, and foreign object damage, is a In the case of the YF-12 program, ground testing

rigorous test for a composite aileron. of flight-qualified panels will be greatly more

extensive than the flight testing. The present plan
At present, NASA Langley is committed to an includes eight panels that will be tested in aincludes eight panels that will be tested in a
engineering design study with the goal of defining variety of load, temperature, and pressure condi-

a composite aileron that is lighter and cheaper tions to investigate thermal aging, thermal

than the aluminum production version. An cycling, and the overall response to simulated
example of a possible configuration is shown in

flight conditions.
Figure 19. To be noted is the use of PRD-49 to

lessen the possibility of impact damage. The Closely coupled to the flight service testing, but
not indicated by Table H, is the testing of many



hundreds of small specimens. The tests, most of the programs involve a sufficiently large number

which will be conducted at Langley, are to obtain of components to develop good manufacturing cost

complete determination of materials properties data.

and the effect of environmental exposure. A recognized deficiency in the present flight serv-

Periodically, the results of these tests will be ice programs is lack of sufficient utilization of

compared with results obtained from specimens composite components in primary aircraft struc-

taken from removed flight service components. tures. Opportunities exist for implementing such

These test results and comparisons should yield programs; however, the associated costs are high.

valuable information regarding possible compos- When budgetary constraints permit, the NASA

ite degradation. Langley Research Center plans to implement

Typically, those programs which involve the use appropriate activity in flight service evaluation

of military aircraft will not accumulate a large of composites in primary aircraft structures.

number of component flight hours. However, Finally, it is becoming increasingly clear that all

those programs based on the use of commercial composites technology programs, whether they

aircraft will produce a large number of flight include flight service or not, should emphasize the

hours. This aspect of the programs is most acquisition costs of the composite components as

attractive as the possibility of obtaining ample well as the total life-cycle costs. The development

and meaningful maintenance data is certainly of technology that allows a composite component to

enhanced. be pricewise competitive with its all-metal

Finally, the estimated start of flight service is counterpart is an attractive addition to the chal-

shown for each program. Flight service has lenge of showing benefits by considering total

already begun on three of the programs (the life-cycle costs of composite structures. Indeed,

CH-54 tail cone, the L-1011 fairing panels, and it may be advisable to sacrifice some of potential

the 737 spoilers). Two of the remaining programs weight saving of composites to approach the cost

(C-130 wing box and YF-12 panels) have the competitive situation. Of course, the extent of

planned start of flight service in the last half of this trade off depends on the relative significance

calendar year 1974. The DC-10 program will of acquisition costs, weight, and the in-service

start flight service in 1975. The last program, costs of composites for the particular application

the L-1011 aileron, is not yet sufficiently advanced of concern.

to make judgments concerning flight service. 11. REFERENCES
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TABLE 1. NASA LANGLEY COMPOSITES FLIGHT SERVICE PROGRAMS

PROGRAM DESCRIPTION DESIGN CONCEPT MATERIAL

C-130 CENTER WING BOX COMPOSITE REINFORCED METAL BORONIEPOXY

CH-54 B TAIL CONE COMPOSITE REINFORCED METAL BORON/EPOXY

737 SPOILER COMPOSITE SUBSTITUTION GRAPHITE/EPOXY
AND CHOPPED
FIBER MOLDINGS

L-1011 FAIRING PANELS COMPOSITE SUBSTITUTION PRD-49/EPOXY

YF-12 PANELS ALL COMPOSITE REDESIGN BORONIALUMINUM
AND GRAPHITE/
POLYIMIDE

DC-10 UPPER AFT RUDDER ALL COMPOSITE REDESIGN GRAPHITE/EPOXY

L-1011 AILERON* ALL COMPOSITE REDESIGN PRD-49, GRAPHITE/
EPOXY

*AT PRESENT, DESIGN STUDY ONLY

TABLE 2. SUMMARY OF COMPONENTS, NUMBER OF AIRCRAFT, AND COMPONENT FLIGHT

SERVICE HOURS FOR THE NASA LANGLEY FLIGHT SERVICE PROGRAMS

NUMBER OF NUMBER ESTIMATED START OF
PROGRAM DESCRIPTION COMPONENTS OF COMPONENT FLIGHT

AIRCRAFT FLIGHT SERVICEGROUND FLIGHT
INVOLVED SERVICE

HOURS

CH-54B TAIL CONE 1 1 1 400 MARCH 1972

C-130 CENTER WING BOX 1 2 2 4800 AUGUST 1974

737 SPOILERS 32 118 27 1632000 JULY 1973

L-1011 FAIRING PANELS 1 18 3 270000 JANUARY 1973

YF-12 PANELS:
B/AL 9 1 1 50 LATE 1974
G/PI 9 1 1 50 LATE 1975

DC-10 RUDDER 1 18 18 261 000 JANUARY 1975
L-1011 AILERON

* AT PRESENT, DESIGN STUDY ONLY
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~"' *BORON/EPOXY

Figure 1. C-130 composite reinforced wing box.

WEIGHT
ALUMINUM: 4940 IbCOMPOSITE-REINFORCED: 4440 Ib

COMPOSITE MATERIAL: 350 lb
6.7 f -

36.7 ft

8 ft

UPPER COVER

COMPOSITE
WING JOINT REINFORCEMENT

INTERAMINACOMPOSITE= 1RLAMINATED METAL = 4

POSITE AND
NIUM SHIMS LOWER COVER

Figure 2. C-130 center wing box.

ALUMIUM: 440 /



BORON/EPOXY
REINFORCED
TAIL CONE

Figure 3. CH-54B helicopter.

STRINGER

BORON-EPOXY

REINFORCEMENT DETAILS
REINFORCEMENT

APPLIED TO:
5 TOP STRINGERS

A A 7 BOTTOM STRINGERS
INTERIOR VIEW OF TAIL CONE

Figure 4. Composite reinforced tail cone for flight service on CH-54B helicopter.



PRD-49/EPOXY PRD-49/EPOXY

Figure 5. Composite panels for L-1011 transport.

CENTER ENGINE PANEL

WING TO BODY PANEL WING TO BODY FILLET

Figure 6. PRD-49/epoxy fairing panels for L-1011 transport.
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Figure 7. Composite spoilers for 737 commercial flight service.

Figure 8. 737 spoiler.
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ALUMINUM FITTINGS
AND SPAR

LENGTH: 52 in.
WIDTH: 22 in.
SURFACE AREA: 15.8 sq. ft.
WEIGHT: 12 lb
WEIGHT SAVING: 15 percent

ALUMINUM MATERIAL GRAPHITE-EPOXY
HONEYCOMB CORE

UPPER AND LOWER SKINS
FIBERGLASS RIB CROSSPLY GRAPHITE-EPOXY

Figure 9. Detail of 737 composite spoiler.

LE
CHANNEL

CENTER
HINGE

FITTING
SLOTTED.

FRAME ASSEMBLYDETAIL PARTS

SECOND-STAGE BOND ASSEMBLY

FIRST-STAGE BOND
ASSEMBLY

(STABILIZED CORE)

COMPLETE SPOILER ASSEMBLY

Figure 10. Construction of 737 composite spoiler.
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PRIMARY STRUCTURE .

SECONDARY STRUCTURE

Figure 11. Structural panels for flight service on YF-12.

DESIGN
PANEL PANEL CRITICAL LOAD LEVEL

NO. SIZE, in. LOADING RT 600F

28 x 16 SHEAR 3885 2425
(RECT.) Iblin. Iblin.

PANEL #3 40 x 26.4 TRANS- -6.7 -4.6
VERSE psi(RECT.) VERSE psi psi

PANEL #1 PRESSURE

PANEL #2 28 x 20.8 8750 5450
3 x 14.2 TENSION Iblin. Iblin.

Figure 12. YF-12 test panel size and cRAP.)

Figure 12. YF-12 test panel size and critical loading.



FAB. METHOD

BIAI S P OT DIFFUSION

CONCEPT 1 - SKIN-STRINGER
BIAI

A BRAZETi-HIC ii ii I ii I ii i AoROR
CORE PI BOND

CONCEPT 2 - HONEYCOMB-CORE SANDWICH
GRIPI

Ti -HIC I I II II II I I II !1 i PI BOND
CORE

CONCEPT 3 - HONEYCOMB-CORE SANDWICH

Figure 13. YF-12 structural panel program - composite panel concepts.

GRAPHITE-EPOXY
UPPER AFT RUDDER

Figure 14. Composite upper aft rudder for DC-10 transport.
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Figure 15. DC-10 upper aft rudder.

RIBS /-TIP ASSY
FRONT SPAR REAR SPAR

DRIVE FITTINGS

LEADING 7
EDGE"

SCONDUCTIVE
SSTRAP

ST.E. ANGLES

SFIBERGLASS

SKIN ALUMINUM

HINGE FITTINGS CLOSING RIB

Figure 16. Composite upper aft rudder components.



COMPOSITE
INBOARD

> :Y AILERON

Figure 17. Composite aileron for L-1011 transport.

Figure 18. L-1011 inboard aileron.



LENGTH: 8 ft
WIDTH: 4 ft
WEIGHT: 120 Ib (AI)
WEIGHT SAVING: 15 percent

GRAPHITE WEBS
S0 Al ANGLE CAPS

EDGE SHROUDS o NOMEX CORE
PRD-49 SKINS

GRAPHITE
AI HIC SANDWICH SPAR

EXISTING HINGE
AND ACTUATOR FITTINGS PRD-49 END RIBS

Figure 19. Composite concept for L-1011 aileron.
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