DR

O |Research C Corporation

SOFTWARE APPROACH TO AUTCMATIC

DATCHING OF ANALOG COMPUTER |

{HASA-CE~120170) FOTLRALE Agp Ch ©
a - <V 170, B LRASE AL RLACH MO
g?;ﬂﬂﬂflc FATCHING OF AUVALCG CCOHMPULETD
:1nal.ﬁepozt {Codzs cesoarch Lorp.,
Anagheim, Caiilf.) 29 p HC T4.50 C3CL 09B

TT4=19811

_ Hnelas
G338 16001

W

CODE RESEAR
CH CORPORATION = 1363 STATE COLLEGE BLVD. » ANAHEIM, CALIF. 92806 = 714/533-6333

FINAL REPORT

FOR

SOFTWARE APPROACH TC AUTOMATIC

PATCHING OF ANALOCG COMPUTER

PREPARED BY

CODE Research Corporation
1363 8. State College Bivd.
Anaheim, California 92803

UNDER

CONTRACT NUMBER NAS8-28616

November 20, 1973

(o]

TABLE OF CONTENTS

INTRODUCTION
Purpose

General Method

ELEMENTS OF THE APV LANGUAGE

~Constants

Systems Variables
Program Variables

Functions
EXPRESSIONS |

STATEMENTS

Generai

Comments

Setting Potentiometers
Setting DAC's

Testing

DIRECTIVES
CON

MODE

ASN

WAIT

END

1.1

"INTRODUCTION

Purpose

The Automatic Patching Verification program (APV)'perides'
the hybrid computer programmer with a convenient method of

performing a static check of the analog portion of his

study. The static check insures that his program is

patched as he has specified, and that the computing compo-

nents being used are operating correctly.

General Method

The APV language the programmer uses to specify his condi~
tions and interconnections is similar to the Fortran lang-
uage. This similarity is, however, only in syntax; the

two languages have different purposes and, therefore, theilr
meaning is different. The APV control program reads APV
source program statementé from an assigned input device
(normally the card feader). Each source program statement
is processed immediately after it is read. A statement may
select an analog conscle, set an analog mode, set a potenti-
ometer or DAC, or read from the analog console and perform a
test,‘etc. Statements are read and processed seguentially.

If an error condition is detected, an output occurs on an

"assigned output device (normally the line printer). When a

end statement is read, the test is terminated. There is no
restriction on the number of statements in an APV source

program.

ELEMENTS OF THE APV LANGUAGE

Constants

A constant is a string of characters representing a real
number. '

.Examples: 3.7
-5

3872
Q.7

~.382

+7.66

Only the characters 0 thru 9, +, -, and . may be used in a
constant. There must be no blank characters within a
constant. Constants are converted to floating point numbers
in the digital computer. Therefore, a constant must lie
between -10°2 and +1099, and there is up to 12 digits of

pPrecision available,

System Variables

A system variable is a string of characters representing the
value of a particular analog device. The devices and their

names are given in table 1.

Table 1. Analog Devices

3 Letter -1 Letter |

DEVICE Name Name ?

1. Amplifier AMP A

2. Potentiometer POT P

3. Multiplier _ MUZT, M

'4 Resolver RES R

5 Variable Function Gen. FUN F

6 Trunk Line TNK T

7.‘ ADC ADC none

8. Integrator | Nt I
__éfm_bhéumu,, L e
! 10. Potentiometer Coeff. SET S

The general form is: NAME (N), where N is an unsigned

integer between 0 and 1,000,000 written without a decimal

point. N represents the number of the named device.

Examples: AMP9321l) means Amplifier 321
T(67) means Trunk Line 67
DAC(0) means DAC 0

The 3 letter and 1 letter names for the same device may be
used interchangeably. INT(72) means the same as I(72).

There must be no blank characters within a device name or

within the integer number N.

Items 1 thru 7 in table 1 means the following: Whenever
one of these device names occurs in a program the output
of the corresponding device is read and the device name is

replaced by the value of the ratio of the ocutput voltage to

the reference voltage. This ratio is held as a floating

point number in the digital computer.

Example: AMP(47)

When the APV program encounters this symbol, the output
voltage of amplifier 47 is read and the symbol AMP ({47} 1is
replaced by the value of the ratio of this output voltage

to the reference voltage.

Item 8 in table 1 means the following: Whenever an
‘integrator name occurs in a program, this name is replaced
by a value that is the equivalent voltage if it were summing
its inputs. That is, this value is a measure of the
integrand or initial derivative. The value is held as a

floating point number in the digital computer.

Items 9 and 10 in table 1 have two different meanings,
depending on how they are used in a statement. The two

meanings are either:

1. Set the indicated device to a specified wvalue.
Example: DAC(22)

DAC 22 is set to a specified value.

2. The device name is replaced by the last value that
this device was set to.
Example: 5(14) |
This name is replaced by the last wvalue

that potentiometer 14 was set to.

2.3' Program Variables

A program variable is a string of characters representing

a real number wvariable. Tt consists of from one to four

characters of which the first character must be a letter

{A thru 2} and the remaining characters must be either
letters (A thru Z) or digits (0 thru 9). '

Examples: A
Fz
T37
L42M
KFGM
R999
W5

There must be no blank characteré within a variable name.
The maximum number of different program variable names used
throughout an APV source program is dependent upon the size
of the digital computer memory. This number is at least
250, The names of directives may not be used as variable
names. Therefore, CON, MODE, ASN, VFUN, WAIT, and END must

not be used as variable names.

Functions

A function is a string of characters representing the value

of an arithmetic function. The general form is:

NAME (E), where E is any legitimate expression

The APV program recognizes the following functions:

;SINF

COSF

~1<E<+l

,.,_ufg.ﬁrwﬁﬁm_
2
tn
—
=2

acos T -1<p<xl

‘ NAME Argument E

i
T

i
|
1
1
|
I
|

| Value of Functicn
. sine of (E x Scalingucohstant)

cosine of (E x scaling'constant)

tangent of (E X scallng constant)

{arc sine of E in radlans}/scallng
constant, where -7v/2 < arcsin
E<m/2 :

m(arc cosine of E in radlans)/—
scaling constant, where 0O<arccos
E<m

{arc tahgent of E in radians})/

scaling constant, where -m/2
<arctan E<n/2

“square root of E. If E ié-negative
then the result w1ll be - =K.

absolute value of E

?".comparator functlon
i 1 if E »0
0 if E <0
' Variable Function Generator

The scaling constant referred to in the trigonometric

functions is equal to n1/0.9. This value may be easily’

changed by fecompiling the APV program. There must be no

‘blank characters within a function name.

Example:

SQRT (+81.0).

The square root of 81.0 would be taken
and then that value (9) would replace
the symbol SQRT(4+81.0)

EXPRESSIONS

An expression consists of a string of constants, system
variables, program variables, functions, and other expres-

sions separated by arithmetic operators.

The arithmetic operators consist of + (addition), - {(sub-
traction), * {(multiplication}, and / (division). Multi-
level parenthesis may be used within an expression to
clarify the hierarchy of operations. 1In the absence of
clarifying parenthesis, the hierarchy of operations follows
the convention of: Multiplication and Division first, then
Addition and Subtraction. Operations of equal precedence
are evaluated from left to right.

Examples: AX + 5.2 - 7
0.5 * KR * INT(51)
6.1/3INF(8 + A(3))

((A + M5)/3.6) * (1{(7) + COSF(R*6))
K - (=1(5))

Evaluation of an expression results in the finding of a
single real number which replaces the expression. During
expression evaluation the program variables involved will
take on their currently assigned values. System variables
will take on the values of their respective readings from
the devices involved. System vériables SET{N), S(N), and
'DAC(N) will take on the value of their last setting.

1. Limit Option
The value of an expression may he limitéd by
placing limits after the expression. L and U
are constants which stand for the lower and

upper limits respectively. Let E by any

expression. Then: E,LIM(L,U) would mean the

following:

a) 1f L<E<U then E would be

eXpression.

b) if E<L then L would be
expression.

¢} if ExU then U would be
expression.’

U, of course, must be greater

Example: 1.35, LIM{(-1, +1)

The value of this expression would

be equal to +1.

the value of the
the wvalue of the

the wvalue of the

than or egual to

STATEMENTS

General

A statement is a unit of information that is proﬁessed by
the APV program. It consists of a BCD card image which

is broken down as follows:

column 1 ~: C for comment

columns 2~5 : not used by APV program
column 6 : continuation for VFUN
columns 7-72 : statement

columns 73-80: not used by APV program

If card column 1 is not a C character, it is not used by
the APV program. Card columns that are not used by the
APV program may contain any legitimate characters. Card

columns 73-80 may be used for sequencing if desired.

All statements, except comment statements, must begin on
or after card column 7. Blank characters may occur any-
where before or within a statement, however, they must not

appear within a name or a constant. Only the VFUN statement

may have continuation statements,

The card image does not necessarily have to come from a

' card reader. It may come f£rom ancther input device -such

as a paper tape reader.

Comments
A comments statement has the form:

%card column 1 = C

card columns 2-80 = comment to be ocutput

The APV program wili'output the statement on the currently

assigned output device and then continue.

_q-ep.

Program Variable Definitions

A program variable definition statement eguates a program

variable with a value. The general form is:

Program variable name = expresssion

Examples: KR5S = 66,3285 | Defines KRS
ZM = 2.1 * (5 -KR5)+ 0.3 Defines 2ZM
J = KR3*M(4) ,LIM(-8,+6.3) Defines J

The same program variable may be redefined several times
throughout a program. A program variable must always be
defined before it can be used.

Setting Potentiometers

A potentiometer is set by a statement of the form:

SET (N) = expression

or

5 (W) expression

where N is the potentiometer number and the expression is

the value of the potentiometer coefficient to ke used.

Example: SET(1l6) = 13.2 * 1(5)/2
Potentiometer 16 is set with a coeffi-
cient equal to the computed value of
the expression (13.2 * I(5)/2).

The same potentiometer may be reset several times during

a program run.

Setting DAC's

A DAC is set by a statement in the form:

DAC(N) = expression

10

where N is the DAC number and the expression is the value
‘that is to be output to the DAC.

Example: DAC(5) = 3.0 + 0.7 * (-R(3)) '
DAC 5 is set with a value that is egual to
the computed value of the expression
(3.0 + 0.7 * (-R(3)). |

The same DAC may be reset several times during a program.

Testing

A test is performed by a statement of the form:
System variabhle = expression

where the system variable may have any system variable
name except SET(N), S{(N), or DAC(N).

When a test statement is encountered by the APV program,

the following events cccur. The analog device specified by

the system variable is read and the expression is evaluated.
If these two values lie within a certain tolerance, the

test passes and the program continues. If these two values

do not lie within a certain tolerance the test fails, error

comment is output, and the program then continues. Specifi-
cally, if 5 is the ratio read, E is the value of the expres-

sion, and T is the tolerance used for teSting, then the test
.passes if, and only if: E - T < § < E + T.

The tolerance used for testing may be specified in one of

two ways:

1. Bullt-In Tolerances

Built~in tolerances will be used unless a tolerance
is specified by the programmer (see 2. below). A
separate built-in tolerance exists for each arith-

metic operation. They are:

11

Symbolic Name | Arithmetic | value

of Tolerance Operation E
TOL1 + and - i 0.0001
TOL2 {1 * and / . i 0.0002
TOL3 SINF and COSF E 0.0005
TOL4 TANF 0.0005
TOLS ASIN and ACOS 0.0005
TOL6 ATAN 0.0005
TOL7 ABSF 0.0002
TOLS8 SQRT 0.0002
TOLY VFUN 0.0010
TOL10 Minimum limit for 0.0020

reading

TOL11 Minimum tolerance 0.0001

; for testing

The walues of the built-in tolerances may be easily

changed by recompiling the APV program.

When an expression is evaluated, the appropriate values
of the built-in tolerances are added together each time
an arithmetic operation is performed. For example, the
expression (3 * 5 -SQRT(5)) would result in a built-in
tolerance value equal to (TOL2+TOL8+TOLl). If a
program variable is encountered, the previcusly computed
tolerance for that variable will also be added into the

total for the expression.

Specified Tolerances

A tolerance T may also be specified by the programmer

using the form:
System variable = expression, TOL T

or

System variable = expression, LIM(L,U), TOL T

where T 1s a conétant and 0.0001$T£l.0.

The specified tolerance will always override the

built-in tolerances.

Whichever method is used to determine the tolerance, the
following will alwayvs be true. If the tolerance is ever

less than TOL1l, it will automatically be replaced by
TOL11.

Examples:

(a) MUL(7) = 1.03/RES({1)
Multiplier 7 is read and the expression
(1.03/RES (1)) is evaluated. A built-in
tolerance equal to.(TOLZ) will be used to

tast the two wvalues.

{b) POT(2) = 5.5 * POT(8) - 3.3, TOL 0.72
Potentiometer 2 is read and the expression
(5.5 * POT(8) -~ 3.3) is evaluated. A

specified tolerance of 0.72 will be used
to test the two values.

(c}y ADC(5) = 0.07¢
ADC 5 is read and compared to the value
0.076. Since a buiit—in tolerance of 0
is implied by the expression, the tolerance

will automatically be changed to TOL1l.

TCOL10 is a special purpose tolerance. If the ratio of any
reading from an analog device to the reference voltage is
less than TOL10 in absolute value, a warning will be output
and the program will continue. This enables the user to
distinguish whether a wire is missing or whether the voltage

is just too low to actually determine.

13

DIRECTIVES

CON (Console)

This directive allows the programmer to select ah‘analog

console. The form of this statement is:
CCN = N

where N is an unsigned integer between 0 and 1,000. N
represents the number of the analog console. There must

be no blank characters within the integer N.

Once a CON statement is given, all further APV statements
refer to this analog console until another CON statement

which selects another analog console is encountered.
Example: CON = 3

Analog consocle 3 is selected for all
future APV commands. '

MODE

This directive allows the programmer to set an analog

console to a particular mode. The form of the statement
is:

MODE = code

‘where the first character of the code means the following:

o o M.A,M[ﬂ"m_rm_ S
gérizdgharacter E MODE | 1
C ! Compute
H ? Hold
% Initial Condition (or Reset)
| j Potset
5 | Static Test

14

The remaining characters of the code may be any legiti-

.mate characters.
Examples:
(a) MODE = 8

The analog computer is put in the static

‘test mode.
{(b) MODE = INITIAL CONDITION

The analog computer is put in the initial

condition mode.

ASN (Assign)

This directive allows the programmer to replace variables
in his program by other variables. The form of the state-
ment is:

ASN (Uy,Vvy) (U,,V,) (Uy,Vg) —=m=--

where the U; and V. represent variable names. In all
future APV statements the variable Us will be replaced by
the corresponding variable Vi before any action is taken
with the variable. All future statements are affected by
_this, including ASN statements. The variables Ui and Vi
may be either program or system variables and they may be
-intermixed as follows: A program variable may zeplace a
program variable, or a system variable may replace a system
variable, or a system variable may replace a program

variable, or wvice versa.

Example: ASN (A, X3) (B, a(2)).
B=5*2A+ I(9)

The program variable A will be replaced
by the program wvariable X3, and the
program variable B will bhe replaced by
the system variable A(2) in all future
statements. The statement B =5 * A +
I(Q) will be interpreted as the statement
A(2) =5 * X3 + I(9).

The maximum number of replacements which may be made in one
run is dependent upon the size of the digital computer

memory. This number is at least 20.

A variable Ui may only be replaced by one variable v, in

the same run. The following example illustrates this:

(ASN (A, B)
(ASN (A, C)

A will be replaced by B and B will be replaced by C.

TOL _

This directive allows the programmer to change the values
of the built-in tolerances. (Paragraph 4.3.7). The form
of the statement is:

TOL (t, n)

where t is an unsigned positive integer from 1 to 11
written without a decimal point and n is a constant, ¢t
is the number of the built-in tolerance and n is the new

value for that tolerance.

1 .
Built-in tolerances which are not specified by a TOL

statement will be-assigned their standard values as given

1e-

in paragraph 4.3.7. TOL statements may change the value
of a tolerance several times throughout a program.

ouT

This directive allows the programmer to output the current
values of program and system variables.

The form of the statement is:

ouT (Vv \'% Vaoe———=,V_)

1" "2" '3

‘where the V,'s are either program or system variables.

1
Program variables must have been previously defined and

system variables must correspond to devices which really

. exist.

The QUT statement is output first and is followed
immediately by a list of values which correspond to the

respective variables.

Example: OUT(KAS, MUL(20), I{(4))

This statement causes an output of
this statement followed immediately
by the current wvalues of the program
variable KAS and the system variables
MUL (20} and I(4). '

'S

This directive allows the programmer to switch input

control. The form of the statement is:

5

If current input control is located at the primary input

17

device, then input control is switched immediately to

the secondary input device.

If current input control is located at the secondary
input device, then input control is switched immediately

to the primary input device.

Note that switching to a keyboard for input causes the
APV source program to wait until the user has typed in

a statement.

JUMP

This directive allows the programmer to pass over state-
ments from the primary input device without executing
them and go directly to a desired statement to resume

execution. The form of the statement is:

JUMP , n

where n is the statement ﬁumber of another statement.

The jump may be in either the forward or reverse direction.

Example: JUMP , 372

372 k=0.3

When the JUMP, 372 statement is encountered,
the program goes immédiately to the statement
numbered 372. K=0.3 is executed next and the

program continues execution from.that point.

_.18...

The JUMP statement automatically causes input control to
geo to the primary input device when the requested state-

ment has been found.

IF

" This directive allows the programmer to conditionally

pass over statements from the primary input device with-

out executing them and go directly to a desired statement

to resume execution, depending upon whether the last test

passed or failed. The form of the statement is:
IF, n

where n is the statement number of another statement. The
jump may be in either the forward or reverse direction.

If the last test passed, the IF statement does nothing and
the next sequential statement after the IF statement is
executed next. If the last test failed, the IF statement
jumps to the statement indicated by n and execution will
continue from that point. I£f no test statement has yet
been encountered, the next sequential statement after the

IF statement is executed next.

Example: "I(23) = 0.5 * M (6)
| IF
20 K = 0.2

77 J = 0.05

If the test I(23) = 0.5 * M(6) passes,
the program goes directly from the IF
statement to statement 20. If the

_.19....

test I{(23)+0.5*M(6) fails, the program
goes directly from the IF statement
to statement 77.

The IF statement does not have to follow the test state-
ment immediately. It could be placed any number of state-
ments after the test statement.

The IF statement automatically causes input control to
go to the primary input device under the following
circumstances: (1) the IF statement jumps and, {2)

‘the requested statement can be found.

the IF statement allows the program to attempt to

diagnosge a test failure.

MOVE

This directive gives the programmer the ability to move .
a specified number of statements away from the current
statement from the primary input device. The form of the

statement 1is:
MOVE, n

where n 18 a signed or unsigned integer with no imbedded
blank characters. If n>0, the move is forward n state-
ments. If n<0, the move is backward n statements. If
n=0, the last statement executed is executed again. The
statement MOVE without r N is automatically interpreted
as MOVE , 0.

Example MOVE , 3
| X = .3

J = 0.7

28 M = 1(6)

20

.10

.11

when the MOVE , 3 statement is encountered
the program goes directly to statement

28 and continues execution at that point.

The MOVE statement automatically causes input control to
go to the primary input device. An attempt to move back-
ward past the first statement of the APV source program
results in a move to the first statement of the prbgram.
An attempt to move forwérd beyond the end statement of the

APV source program results in a move to the end statement

of the program.

ON
This directive puts the APV control program into the pause-
on mode. The format for the statement is:

ON

If a test failure occurs in the pause-on mode, ilnput
control is switched immediately to the secondary input
device. - If the secondary input dewice happens to be a

211 keyboard, a pause occurs while waiting for input.

The APV control program is automatically put in the pause-

‘on mode,1f no ON or OFF statements are encountered.

OFF

This directive puts the APV control program into the pause-

off mode. The format for the statement is:

OFF

If a test failure occurs in the pause-off mode, input
control remains at the current input device. If the input
device happens to be the INPUT file on the disc¢, no pause
occurs after a test failure. This feature may be used to

diagnose test failures.

21

Example: PIG = 5379 , 1

The P.I.G. is first put in the Reset
mode and then a count of 5379 is set in
the P.I.G. count value register and the

P.I.G. oscillator is set to 1 kC.

5.12 WAIT

This directive allows the program to output a comment to
the user and then wait for a response from him. It should
be used when manual intervention is necessary from the

‘user. The form of the statement is:

WATT

or WAIT , comment

When this statement is encountered, the following happens:
First, the entire WAIT statement (card columns 1-80) is
output on the currently assigned output devices. Input:
control is then given to the secondary input device. If
this device happens to be a keyboard, a pause occurs while
waiting for the input from the user. The user should take
whateﬁer manual action is requested by the walt statement

and then type the "S" statement in order to continue.

Examples: WAIT
WAIT, CHANGE PATCHBOQARD
WAIT, FOR 1 MINUTE

5.13 End

An end statement has the form:

card column 1 = §

card columns 2-80 = REPEAT (optional)

22

This statement tells ‘the APV control program that the
APV source program run is complete. This must be

the last statement of every APV source program. This
statement causes an output on the currently assigned
output devices. ' $ tells the APV control program to
exit back to the operation system monitor. $ REPEAT
tells the APV control program to reinitialize itself

for another APV source program run.

QPERATING PROCEDURES

"The APV program binary load module is on magnetic tape.
It can be loaded under the modified Ames system by a SL

control command on the typewriter.

There are several assigns that need to be made for the

input/output devices used by APV.

Unit 1 is the primary input device normally assigned to.
the card reader. Unit 2 is the secondary input device

normally assigned to the typewriter.

Unit 3 is the primary output device normally assigned to

the line printer.

Unit 4 is the secondary or error listing device normally

assigned to the .typewriter or magnetic tape.

Under the modified Ames system these assignments can be
made by typing a $GO command on the typewriter and reading

the following centrol command from the card reader.

SWO, 122,754,201,

1 = Reader
$wWo., ,123,763,202,, 2 = Typewriter
S$WO,,124,745,203, ; 3 = Printer
$Wo., ,125,763,204,, ‘ 4 = Typewriter

_23...

'AThe APV source statement would follow these control cards.
To start APV a $X control command is typed on the type-
writer and the source statement would be read and
interpreted from the card reader and listed on the line
printer. If the program is operating in the pause mode
each error will cause the program to réguest a typewriter
input.' In the no pause mode the program will process

the source statement and list error on the error device,

PROGRAM EXAMPLE

The following figure illustrates the use of APV in
performing a check on typical analog patching. The
mechanization of the analog problém is shown in figure 1.
No effort has been made to make this a reasonable
mechanization. It has simply been constructed to use
several different types of circuits. The APV program is
shown in figure 2. Comments have been inéerted in the

program to make the source listing self-explanatory.

~24~

;

43.1/-15.0

LIM

DAC?Z

.

SIN
GEN,
T J
MOG \\Jzil
apc
5 06 r—— — - —— - — C@MP

SW - —R

Figure 1 - APV Test Circuit

A

FORTRAN CODING FORM
STATEg STATEMENT | i
NO - |
135 s{7]osnofooraafudis] i ool s szl o o oo Lo 55455 B0 7| 590 1 B9 4 s 6667
L L] Mt T | (PRI 1P RIOIGIRI AN [Flg1R1 S eIk NG (TESITL I IRIGOLIT | 1§ 1Ll Ll i) L
i (A FAE 3TN TR WS- WSV 4LAAF. U S 2 T O T O O R Y N
L1 11 q’gwu":l T U O
KT Isleriviel ITIHEL PIETISL MNIX DAC) | | | S T T A INENENES
O 1= YOG 1 LTI < U Y O O O T T
Lt] oAy 1= B) T T O O o A
S &aan)|=HaQHMﬂ O O B I N U T O O
Pt Si(_LSJ)JJ—'—LLOi.L.zI_udsuHHHluwuaunulluHIHHHHH!UHH:HLL_
IO I T2 VRS ST 3TN T 0 T R O O IR EE RN
|1 DIRG(3 = BET RGN WALl L L L L P e L]
#7171 TITIR(USI ICIMEICIKISL |1INTIEICIRIANDL 1$1F1 (B Pidl (FIRgIN 1PIgTI3, 1 DIAG IANDL BIPIA L 11
Lo | N (a0 = S0)b a3 3 WA QRO L L]
30T Il LS ciEioki s INTieeRiaIND (P iam P31 FIRig M PATIA A DS Lt
| ENEW lleQ&)a = |S!.E|r|(ri|>mbt%q(;_39111|1;1;11|11u.| NERENEEEEEEE RN
T T ST e B1CikIS] RS (o) [TIHIE L UMILTIER] 9] (ANIA (THIE] (SHNE| (GENEIRIATIOR | L L] L]
Li L1} I Ay 1= ISk lNIQ'—-[&LHlH(L?l)I)I«):I' 1Ly (=L 1150109 J.IQJSIII-OII\! S 0 O O
b~ TS| (Gmeiciris] (OHE 1INIROTT T 1AMl (UISIHINGE ILIGIGH ICIAL lqﬁmlﬁ BHUNG 1]l
L e () = =M i CgMPPorme) it SIS Y 1 e L 1)
RS I O I 1T 0L N 0 U A0 T N O U S A
I 1f|lt‘llllnlllliillllIJ_illIlllillIlll[ll!lillllll!ll!l!Lll!if

