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DIFFERENTIAL ANALYSIS FOR THE TURBULENT BOUNDARY LAYER ON A

COMPRESSOR BLADE ELEMENT (INCLUDING

BOUNDARY-LAYER SEPARATION)

by James F. Schmidt and Carroll A. Todd

Lewis Research Center

SUMMARY

In order to provide an approximate boundary-layer prediction at the trailing edge of
a compressor blade (especially with separated flow), a two-dimensional differential
analysis is developed for the turbulent boundary layer (including the separated reverse-
flow region). Prandtl's classical mixing-length theory is used with a single eddy-
diffusivity model throughout the boundary-layer region. The use of a new shear-stress
function (instead of a velocity function) for the dependent variable in the momentum equa-
tion makes it possible to calculate mathematically stable solutions into the boundary-
layer separation region.

This analysis is applied to a blade in a cascade with three different inlet-flow angles
for comparison with experimental boundary-layer measurements. The predicted
turbulent-boundary-layer thicknesses and velocity profiles are in good agreement with
experimental data, even in the separated region. For the thickest turbulent boundary
layer on the blade with a separated region, 8 minutes of computing time (Lewis DCS
7094-7044) are necessary for this calculation.

INTRODUCTION

In the analysis of compressor blade performance, many basic flow parameters such
as maximum blade loading, blade loss, and blade stall are primarily related to the
blade-surface boundary layer. Therefore, the need exists for a boundary-layer calcula-
tion procedure to aid in the blade-row flow analysis, especially in the flow-separation
region. To select or develop a suitable boundary-layer calculation technique, some
characteristics of the flow through compressor blade rows must be known.



All compressor blade rows are designed to increase the static pressure of the fluid.
Thus, the blade-surface boundary layer experiences an adverse pressure gradient.
With high blade loading and near-stall operation, these adverse pressure gradients be-
come very strong and a separated boundary-layer flow region often occurs.

In general, the airflow entering the blade rows is very turbulent (high turbulence
intensity level) because it has passed through an upstream blade row and a long inlet.
The shear wakes from the upstream blade row and the strong adverse-pressure-gradient
flow history produce a flow environment of high free-stream turbulence intensity.

Over much of their operating ranges, compressor blades produce large velocity
peaks very close to the nose of the blade (on the suction surface). And thereby, adverse
pressure gradients are expected over almost the entire length of the blade. These
strong adverse pressure gradients (shortly after the leading edge of the blade), as well
as high turbulence intensity levels, tend to cause early transition or separation and
reattachment as a turbulent boundary layer. Therefore, the turbulent boundary layer
effectively exists over the entire blade. Hence, a theoretical analysis is needed which
can calculate the turbulent boundary layer (with high turbulence intensity levels) through
the blade stall flow-separation region. However, a turbulent-boundary-layer calcula-
tion in the separated flow region is not only mathematically very difficult but also de-
pends upon the unknown and unmeasured Reynolds turbulent shear stress. Thus, this
boundary-layer prediction must be considered an approximation.

In the past, either a turbulent-boundary-layer growth correlation or, more recently,
an integral boundary-layer analysis (ref. 1) was used to predict the boundary-layer
growth on a compressor blade element. Most integral analyses, however, do not have
the capability of predicting the boundary-layer growth in the separated reverse-flow
region.

In addition, several differential numerical calculation methods have been developed
for the turbulent boundary layer (refs. 2 to 6). All these calculation methods use an
eddy-diffusivity concept for the unknown turbulent Reynolds shear stress and a finite-
difference calculation procedure which utilizes a velocity function as the prime depend-
ent variable across the boundary layer. Considering that the velocity profile will have
an inflection point at and beyond the separation point, the authors believe the use of a
velocity function as the prime dependent variable may cause large numerical errors and
instabilities in the basic finite-difference differentiation technique.

Presently, very few analytical methods are available for calculating turbulent
separated flows caused by adverse pressure gradients. One such method (ref. 7) pre-
sents an integral turbulent-boundary-layer analysis which was applied to turbulent flows
near and in the separated region. However, a comparison of the integral analysis of
reference 7 with experimental data (near and in the separated region) still shows con-
siderable discrepancies in the boundary-layer thicknesses (ref. 7). In all these



turbulent-boundary-layer analyses (refs. 1 to 7), the free-stream turbulence level is
assumed to be small; and this, in general, is not indicative of the boundary-layer flow
over compressor blades.

This report develops an analysis for the turbulent boundary layer on compressor
blades, including the separated region with reverse flow. The present two-dimensional
analysis is a successive-approximation, nonsimilar calculation (as in ref. 8) of the
turbulent, differential, boundary-layer equations. The calculation system of the present
analysis is suitable for calculating the turbulent boundary layer in strong adverse-
pressure-gradient regions and also in reverse-flow separated regions. The use of a
new shear-stress function for the dependent variable in the momentum equation makes
it possible to calculate mathematically stable solutions into the separated region.

At the separation point and in the reverse-flow separated region, even the complete
boundary-layer equations (ref. 9) may not be valid. In addition, the eddy diffusivity is
presently unknown in the separated boundary-layer region. Also, the momentum equa-
tion normal to the blade surface is not included in the present system of boundary-layer
equations, and the pressure is assumed to be constant across the boundary layer. For
these reasons, the present turbulent-boundary-layer solutions in the separated flow
region should be considered an engineering approximation.

The present analysis also uses the eddy-diffusivity concept for the unknown turbu-
lent Reynolds shear stress, but with a different eddy-diffusivity model than those used
in previous analyses. Since high free-stream turbulence levels as well as extreme,
adverse pressure gradients are characteristic of flows over compressor blades, a large
free-stream shear flow is believed to describe the rotational inviscid flow over com-
pressor blades. Thereby, the large shear stress in the turbulent boundary layer does
not diminish to the usual insignificant value at the edge of the boundary layer. In fact,
the shear stress at the edge of the blade turbulent boundary layer is assumed in this
analysis to be a large significant fraction of the maximum shear stress in the boundary
layer. This large-shear-stress behavior at the edge of the boundary layer has experi-
mentally been measured in a turbulent boundary layer with high levels of free-stream
turbulence intensity (ref. 10). Based on these reasons, Prandtl's mixing-length theory
(ref. 9) for the eddy diffusivity, with Van Driest's damping factor (ref. 11), is used
throughout the entire boundary layer.

The results of this analysis are compared with the experimental turbulent-boundary-
layer measurements of reference 12. Reference 12 gives two- and three-dimensional,
turbulent-boundary-layer measurements on a blade in a cascade for several inlet-flow
angles. These measurements include the turbulent-boundary-layer, flow-separation
region. The turbulence intensity level for this cascade flow is reported to be high
(ref. 12).



ANALYSIS

The present analysis is a nonsimilar differential calculation of the turbulent -
boundary-layer equations.

Assumptions

The analysis is based on the following assumptions:
(1) Surface curvature is neglected in the boundary-layer equations.
(2) Flow is two dimensional and steady.
(3) Normal Reynolds stresses are negligible, even for reverse flow.
(4) Static pressure is constant across the boundary layer.
(5) The eddy-diffusivity concept can be used for the tangential Reynolds shear

stress.
(6) Prandtl's eddy-diffusivity, mixing-length theory is assumed to be applicable for

the turbulent boundary layer on blade surfaces with very strong, adverse pressure gra-
dients and high turbulence levels.

(7) The eddy diffusivity is always positive, even for reverse flow.
(8) The turbulent boundary layer begins at the stagnation point on the blade surface.

Basic Equations

^
In reference 8, the turbulent-boundary-layer equations for axisymmetric steady

flow are presented in terms of the eddy-diffusivity concept. For two-dimensional flow,
the system of boundary-layer equations in reference 8 reduces to

Continuity:

(pU)g + (pV)g' = 0 (1)

Momentum:

PUUS + pvuy = Peue(ue) + [(M + pe)uy] (2)



Energy:

pUHg + M l - (3)

State:

P =p$lt (4)

(All symbols are defined in appendix A.)
The boundary-layer coordinate system along a blade cross section is shown in fig-

ure 1, where S is the boundary-layer coordinate parallel to the blade surface, c is
the chord length, x is the distance coordinate from the nose to the trailing edge of the
airfoil section, and x/c is the percentage-of-chord location (0 to 100).

Eddy-Diffusivity Model

Before the turbulent-boundary-layer equations (1) to (4) can be solved, an expres-
sion for the eddy diffusivity e is needed. As discussed in the INTRODUCTION, a one-
layer model is assumed for the eddy diffusivity. The eddy diffusivity is given by Van
Driest's modification (ref. 11) (viscous damping effect near the wall) of Prandtl's
mixing-length expression (ref. 2):

ay
(5)

where A is (from ref. 2)

(6)

and K is an experimental flow constant (0.40) based on low-speed incompressible data.
The dynamic viscosity of air is approximated by

M = M (7)



Transformed Equations

Using a compressibility type of transformation (ref. 13) yields the following trans-
formation equations, used in solving the boundary-layer equations (1) and (2):

PP(UJ1/2

TJ = —5—^ I -41 dy (8a)

/

y
i

S = S (fib)

The partial derivatives transform as follows :

Os^Og+O^g <8d)

From continuity, the stream function i// is defined such that

PU = (i//)y (8e)

' PV = -(^/)s (8f)

By letting

^/ =(P()^02SUe)
1/2f(T],S) (8g)

Then,

f =— (8h)
^ Ue

Applying the transformation equations (8) to the momentum equation (2) and reducing
give the following form for the momentum equation:



TJTj - 2sf - v (9)

where the parameters in equation (9) are as follows: the density-viscosity ratio C is
defined as

P T
C PM = _£_0 JL

P0M0 P0 t M0

(10)

Using equations (7) and (8f) with the definition of total temperature

T =t
2c

in equation (10) and reducing result in the transformed density-viscosity ratio

/-i c.;
~ P 0

1-d

(11)

and the ratio of kinetic to total energy

U

2c
P

To
(12)

The density ratio P/P can be expressed as

p e_ (13)



The flow coefficients and D2 are

(14)

D = (15)

where the velocity gradient parameter |3 is

u
(16)

And S is the boundary-layer distance coordinate starting at the origin of the turbulent
boundary layer.

In the momentum equation (9), the terms involving the velocity derivatives with
respect to S. 2S%f , and 2Sf (f ) are the nohsimilar terms that were neglected inr ' b TJ7]' Tp T}/g °

the similar-solution calculation of reference 8. The energy equation is transformed and
programmed in the computer program but is not indicated in the present analysis. This
omission is believed to result in a less complex presentation of the theory, especially
since the test cases do not include energy transfer.

With substitution of the transformation equations (8) into equations (5) to (7) and !
reduction, the transformed eddy diffusivity becomes

c _

where y+ is given by

w

P.w

777]

w

(17)

(18)



Grouping the molecular viscosity and eddy diffusivity into one coefficient gives

(19)

Substituting equation (19) into equation (9) yie.lds the following momentum equation:

(20)

Multiplying the momentum equation (20) by the velocity gradient parameter j3, which is
constant across the boundary layer, gives

(^Clf (fD T-'V2 (21)

Now the momentum equation (21) has the proper form such that the following new depend-
ent variable transformation can be used:

(22)

This substitution (eq. (22)) eliminates the need for numerically differentiating the eddy
diffusivity. And more importantly, this transformation is believed to be an important
factor in stabilizing the numerical boundary-layer solutions, especially for the adverse
pressure gradients approaching flow separation and beyond.

When equation (22) is substituted into equation (21), the momentum equation in
terms of the new dependent variable $* has the form of an ordinary differential equation

= h (23)

where



a =
fD2 + 2Sfg

(24)

h - (25)

The following boundary conditions are applied to the momentum equation (23):

€ = f= 0 at TJ = 0
(26)

The nonsimilar streamwise velocity derivatives (fc and (f )_) in equations (24) and
b V TJ/g

(25) are evaluated with a simple two-point numerical derivative formulation. This
simple formulation of the streamwise velocity derivatives reduces the momentum equa-
tion (23) to a linear, ordinary, differential equation (function of TJ only) and is easily
integrated in closed form. The detailed numerical calculation method is given in appen-
dix B.

Skin-Friction Coefficient and Boundary-Layer Thicknesses

The following definitions of various boundary-layer terms are useful for analyzing
the behavior of the boundary layer, as well as for comparison with experimental data:
The shear-stress distribution across the boundary layer is expressed as

r = (27)

When equations (8), (19), and (22) are substituted into equation (27), the nondimensional
shear-stress function becomes

(28)

10



.From equation (28) the shear-stress function & is shown to be the nondimensional
shear-stress distribution across the boundary layer. At the wall, the shear stress re-
duces to

(29)
w 2

Substituting the transformation equations (8) into equation (29) and solving for the skin-
friction coefficient Cf give

(30)

The following boundary-layer thicknesses are very useful for comparison with ex-
perimental measurements and other theoretical analyses:

Thickness Definition

e - r* pu t\- u \dv° I i i i uyJ, w v

s . - fY>->"V/ \ P u /Jo \ e e/

Transformed

/P0P02S\ , ,.77
£ 1 U U I i J e f / 1 f \ ^ » .

_xl/2 pe/ \

t . fof 5} 1 / /I f \d T ]

'I ^ J ^e / L T^
Jo \pe /

TURBULENT REYNOLDS SHEAR-STRESS MODEL

Before a comparison of the present theory with experimental data is made, a de-
scription of the present turbulent Reynolds shear-stress model and how it differs from
other theoretical analyses is helpful. Most theoretical analyses use the eddy-diffusivity
concept which states that the turbulent Reynolds shear stress is equal to the eddy dif-
fusivity times the velocity gradient across the boundary layer.

Several analyses such as references 2 , 3 , and 6 use Prandtl's mixing-length theory
with viscous damping near the wall matched to an outer constant eddy-diffusivity (wake)
region. A slightly different eddy-diffusivity model, as in reference 5, consists of
Prandtl's mixing-length eddy diffusivity for the entire boundary layer (like eq. (5)) but

11



with two different mixing-length regions. The first mixing-length region of reference 5
is Prandtl's classic mixing-length expression (Z = /cy), and the second region is a con-
stant approximated from experimental data, as shown in figure 2. The measured, non-
dimensioned, mixing length 1/5 greatly increases near the edge of the boundary layer
for low free-stream turbulence levels in adverse-pressure-gradient flows (refs. 14 and
15). However, the mixing length in reference 5 was assumed to be a constant in this
region of the boundary layer.

Figure 3 gives a generally good comparison of Prandtl's mixing length with the
general trend of the measured mixing length (ref. 9) for flows with high free-stream
turbulence levels. Because of this favorable comparison of Prandtl mixing-length
theory with data and the fact that flows with high free-stream turbulence levels generally
occur over compressor blades, Prandtl's mixing-length theory is used for the eddy-
diffusivity model in the present analysis.

COMPARISON OF PRESENT THEORY WITH EXPERIMENTAL MEASUREMENTS

The present turbulent-boundary-layer analysis was compared with the experimental
boundary-layer data of reference 12 for a straight cascade at several inlet-flow angles.
The cascade of reference 12 consisted of nine blades with a chord length of 12. 4 centi-
meters, a span of 50. 8 centimeters, and an NACA 65-410 airfoil section. The free-
stream flow properties were calculated from the static-pressure measurements along
the airfoil that are presented in reference 12. The boundary-layer measurements on the
cascade airfoil were compared with the present analysis for the following three different
inlet-flow conditions:

(1) Two-dimensional flow with a cascade inlet-flow angle of 55° (2D-550)
(2) Two-dimensional flow with a cascade inlet-flow angle of 65° (2D-650)
(3) Three-dimensional flow with a cascade inlet-flow angle of 60° (3D-60°)
In the third flow condition (3D-60°), three-dimensional flow was simulated by pro-

ducing an added velocity diffusion near one end of the cascade blades. (Although the
present analysis is strictly a two-dimensional analysis, the present calculation system
was still applied to this simulated three-dimensional flow.) The added velocity diffusion
was artificially produced by placing an obstruction downstream of the span-wise center-
line of the cascade (ref. 11). The turbulence intensity level for this cascade is reported
to be high (ref. 12). For all inlet-flow conditions, the flow over the cascade blades is
incompressible.

12



Boundary-Layer Thicknesses

In figures 4 and 5 the predicted momentum and displacement thicknesses along the
airfoil section are compared with experimental data (ref. 12) for the three cascade
inlet-flow conditions. In general, the predicted momentum and displacement thickness
distributions along the airfoil are in favorable agreement with the experimental data.

For the suction surface with the inlet-flow condition 2D-55°, the greatest discrep-
ancy (10 to 20 percent) between the predicted and measured thicknesses occurred at 80
and 90 percent of chord (fig. 4(a)). This discrepancy is believed to result partially
from an inaccurate velocity gradient /3 distribution along the airfoil. Since the
boundary-layer growth is a strong function of (3, any error in /3 will significantly affect
the boundary-layer thicknesses. The calculation of 0 involves a numerical differentia-
tion of an experimentally determined free-stream velocity distribution. Thereby, two
sources of error are apparent: the reduction of experimental pressure measurements
to a velocity distribution and the numerical differentiation of this velocity distribution.
In addition, reference 12 presents the pressure measurements in graphical form with-
out a grid, which necessitates an interpolation of measured results - another source of
error.

Figure 4(b), for the pressure surface 2D-55°, shows that the predicted thicknesses
reduced more rapidly than measured values as the favorable pressure gradient was en-
countered at the last 25 percent of the chord. Again, this difference between the pre-
dicted and measured thicknesses is believed to be caused primarily by an inaccurate
distribution of (3 along the airfoil.

Although the turbulent boundary layer separated on the suction surface for inlet-flow
conditions of 2D-65° and 3D-60°, the predicted thicknesses still compared favorably
with measured values (figs. 5(a) and (b)). The distribution of the predicted skin-friction
coefficient along the suction surface is also given in figures 5(a) and (b). The point on
the airfoil surface at which the skin-friction coefficient first becomes negative is a good
indication of the location of boundary-layer separation. Figures 5(a) and (b) show that
the turbulent boundary layer separated at about 70 percent of chord for the inlet-flow
condition 2D-65° and at approximately 40 percent of chord for the inlet-flow condition
30-60°.

Velocity Profiles

In figures 6 to 9 the predicted velocity profiles are compared with experimental
data for the three cascade inlet-flow conditions at 20 or 98 percent of chord. These
velocity profiles are presented as a function of the transformation variable rj, which is

13



independent of the skin-friction coefficient. Usually, the velocity profile is presented
as a function of a wall distance variable y+ (ref. 16), which requires a knowledge of
the skin-friction coefficient. Since 77 does not depend upon the skin-friction coefficient,
the present comparison of predicted velocity profiles with experiment data does not con-
tain any error from the experimental or predicted skin-friction coefficients. Also, near
the separated region the skin-friction coefficient becomes very small and experimentally
susceptible to large errors (if determinable at all).

For the first cascade inlet-flow condition (2D-55°), the predicted velocity profile at
20 percent of chord is in excellent agreement with the limited experimental data (fig. 6).
Even at 98 percent of chord, the predicted velocity profile is still in good agreement
with experimental data (fig. 7) for the same inlet-flow condition (2D-55°). For a higher
cascade inlet-flow angle (2D-65°) with increased velocity diffusion, figure 8 shows good
agreement of the predicted velocity profile with experimental data at 98 percent of chord.
Similarly, for even larger velocity diffusion (3D-60°), the predicted velocity profile is
still in good agreement with experimental data at 98 percent of chord (fig. 9). This
good comparison of the predicted with the experimental velocity profiles shown in fig-
ures 8 and 9 is of special interest because the turbulent boundary layer had already
separated upstream of the 98-percent-of-chord station. In fact, for the largest velocity
diffusion case (3D-60°), the predicted turbulent-boundary-layer separation point
occurred at approximately 40 percent of chord. Therefore, the present turbulent-
boundary-layer theory is shown to predict accurate velocity profiles and thereby accu-
rate boundary-layer thicknesses, even for a significantly separated turbulent boundary
layer on this particular cascade blade. However, the present theory has thus far only
been applied to this one set of cascade data for a separated, turbulent, boundary layer.
Additional separated-boundary-layer data over a wider range of flow conditions are
needed to assess the accuracy, generality, and applicability to different flow orienta-
tions of the present analysis.

CONCLUSIONS

In order to provide an approximate boundary-layer prediction at the trailing edge of
a compressor blade (especially with separated flow), a two-dimensional differential
analysis was developed for the turbulent boundary layer (including the separated reverse-
flow region). The use of a new shear-stress function (instead of a velocity function) for
the dependent variable in the momentum equation made it possible to calculate mathe-
matically stable solutions into the boundary-layer separation region. Prandtl's classical
mixing-length theory was used with a single eddy-diffusivity model throughout the
boundary-layer region.

14



This analysis was applied to a blade in a cascade with three different inlet-flow
angles for comparison with existing experimental boundary-layer measurements. The
predicted turbulent-boundary-layer thicknesses and velocity profiles are in good agree-
ment with experimental data, even in the separated region. For the thickest turbulent
boundary layer on the blade with a separated region, 8 minutes of computing time
(Lewis DCS 7094-7044) are necessary for this calculation.

Lewis Research Center,
National Aeronautics and Space Administration,

Cleveland, Ohio, December 20, 1973,
501-24.
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APPENDIX A

SYMBOLS

A constant, eq. (6)

a term in momentum equation, eq. (24)

C density-viscosity ratio, eq. (11)

Cf skin-friction coefficient, eq. (30)

C. transformation parameter, eq. (19)

c chord length

c specific heat at constant pressure

D, flow coefficient, eq. (14)

Dg flow coefficient, eq. (15)

D3 flow coefficient, eq. (12)

dUe velocity derivative at edge of boundary layer
dS

e natural or Naperian base (e - 2. 71828)

f velocity ratio, U/U
tJ

H total enthalpy

h term in momentum equation, eq. (25)

IQ iteration criterion, eq. (B16)

Kj constant of integration, eq. (B15)

K2 constant of integration (K2 = 0)

Ko constant of integration (K« = 0)

I mixing length

P static pressure

@> dependent variable transformation, eq. (22)

PrL laminar Prandtl number

PrT turbulent Prandtl number

(R universal gas constant

S boundary-layer coordinate parallel to blade surface, S = S

16



T total temperature

t static temperature

U velocity parallel to blade surface

V velocity normal to blade surface

x distance coordinate from nose to trailing edge of airfoil section

y boundary-layer coordinate normal to blade surface

y+ wall distance parameter, eq. (18)

|3 velocity gradient parameter, eq. (16)

6 boundary-layer thickness

5* displacement thickness

e eddy diffusivity

7) transformed coordinate in y-direction, eq. (8a)

6 momentum thickness

K empirical constant (0. 40)

M molecular viscosity

p density

T shear stress

fy stream function

co integration factor, eq. (Bll)

Subscripts:

e edge of boundary-layer condition

Q iteration number (increase in TJ )

w wall condition

y, yy derivatives of function with respect to y' or S coordinate

77,7777 derivatives of function with respect to the transformed 77 coordinate

0 reference stagnation condition

Superscript:

d exponent for viscosity variation with temperature (0. 65 for air)

17



APPENDIX B

CALCULATION PROCEDURE

For ease of reference, the transformed momentum-boundary-layer equation and
the boundary conditions are repeated here.

where

. > = h (Bl)

fD 9 +
* (B2)

h = (B3)

with the boundary conditions

f = f^ = 0 at TJ = 0 (B4)
N ,

f^ = 1.0 at TJ = r j e (B5)

where TJ is the boundary-layer thickness in the transformed TJ-coordinate.
The nonsimilar streamwise derivatives fc and (f )_ are approximated in the fol-S V T J / S

lowing manner:

AS

AS

(B6)

(B7)

18



where fc -, and (f W , are the velocity functions at the previous S location. The
o — 1 \ 7// o — 1

nonsimilar derivatives are underrelaxed as follows:

(B8)

(B9)

where the subscript R denotes relaxed derivatives.

Solution of Momentum Equation

The simple two-point formulation of the streamwise velocity derivatives, equa-
tions (B6) and (B7), reduce the momentum equation (Bl) to a linear, ordinary, differen-
tial equation (function of r\ only). This linear, ordinary, differential equation (Bl) of
the first order can readily be solved in the following manner:

-rCO I
Jo

Klcoh dry + —
co

(BIO)

where

co = exp I I a drj
0 I

and

(Bll)

f -£- (B12)

r= Jo
(B13)

f = (B14)

19



When the boundary conditions (B4) and (B5) are applied to equations (BIO) to (B14),
the constants of integration (Kj, Kg, Kg) become

- /"WfI wCjl I
«/o y/o

wh dm drj

/

^ee_dj_
wC11

(B15)

The general procedure for determining the edge of the boundary layer (correct 77 ), . • c
is to compare the velocity derivative at the wall (f ) between successive increments

Ww

in 77 . If the iteration criterion for the change in (f \ is met, the edge of the bound-
C \ If il I

ary layer is obtained. In detail, the correct 77 is determined by the following iteration
procedure:

(1) Assume some initial 7?e and increase 77 by ATJ for each outer iteration.
(2) Use the following iteration criterion: Let

(B16)T

Mw
AQ

Q+l

Ww

JH !
Q j

Q^fl

where Q indicates the iteration number (increase in 77 ). If |IQ < 0. 005, the correct
77 and boundary-layer solution are obtained.

General Flow of Program

The general flow of the program is as follows:
(1) Input the total flow conditions (PQ, TQ, jUQ, etc.) and the table of S against

VP0'
(2) For a given distribution of S (interval in S), calculate all free-stream condi-

tions, such as /3, D2, P , D,, U , and Dj.
(3) For the initial 77 and the initial iteration of the first S, estimate the starting

20



profiles of f and f with a 1/7 power law and neglect nonsimilar terms.77 7777
(4) Calculate the coefficients a and h .
(5) Solve equations (B6) to (BIO) to obtain a new approximation for f and f .
(6) Iterate steps 4 and 5 until the magnitudes of a (eq. (B2)) are approximately

equal from successive iterations (maximum of four iterations).
(7) Check IQ to see if |lQ| < 0. 005.
(8) If |ln > 0.005, increase TJO by ATJ and go to step 4.

I \Q£ C C

(9) If |L-J < 0. 005, the boundary-layer profiles, thicknesses, and important param-
eters are printed out and the program proceeds to the next S (step 2).
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Flow

Figure 1. - Boundary-layer coordinate system along blade
cross section.
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Figure 2. - Approximate comparison of measured mixing length with
PrandtPs mixing length for low free-stream turbulence levels.
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Theory Data Parameter
O Displacement thickness
D Momentum thickness

Velocity gradient
Skin-friction coefficient
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(a) Two-dimensional flow with a cascade inlet-flow angle
of 65° (2D-65°).
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(b) Three-dimensional flow with a cascade inlet-flow angle
of 60°(3D-60°>.

Figure 5. - Comparison of predicted displacement and momentum thicknesses
with experimental data (ref. 12) along the suction surface of the cascade
airfoil section for two inlet-flow conditions.
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Figure 6. - Comparison of predicted velocity profile with experimental data at 20 percent of chord for two-
dimensional flow on the suction surface at a inlet-flow angle of 55°.
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Figure 7. - Comparison of predicted velocity profile with experimental data at 98 percent of chord for two-
dimensional flow on the suction surface at an inlet-flow angle of 55°.
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Figure 8. - Comparison of predicted velocity profile with experimental data at 98 percent of chord for two-
dimensional flow on the suction surface at an inlet-flow angle of 65°.

Transformed variable,

Figure 9. - Comparison of predicted velocity profile with experimental data at 98 percent of chord for
three-dimensional flow on the suction surface at an inlet-flow angle of 60°.
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