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SUMMARY

This final report consists of two reports concerning analytical tools.

The first report is entitled, "Probability Analysis of the Orbital Distribution of

Events". It was included as an Appendix in AMA Report No. 73-44 (October 1973).

The second report is entitled, "Particle Trajectories for a Repulsive Force Field".

These two reports summarize the work done on Task III of the subject contract.

The work on Task IV was included as a modification to the program re-

ported in AMA Report No. 73-44 (Statistical Information Program, Progress Re-

port, (Task II)), October 1973.

The modification works fully automatically and points out TOF events. The

modified program has been checked thoroughly and delivered to the Technical

Officer. So far, two TOF events were discovered.

The work on Task III and IV of the subject contract has thus been com-

pleted and will be invoiced.
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PROBABILITY ANALYSIS OF THE ORBITAL

DISTRIBUTION OF EVENTS

1. Introduction

The fine structure of the dust flux density may be examined by noting

asymmetries in the event rate. The analysis contained herein permits a dis-

tinction between asymmetries caused by random fluctuations and systematic

variations by calculating the probability of any particular asymmetry. The

analysis is applied to an asymmetry observed in Pioneer 8 and 9 distributions.

2. Analysis.

Let the relative probability of an event occurring in the half orbit HT

as the spacecraft is moving toward the solar apex be p, and in the other half

orbit HA be q, where p +q=l.

If n events are observed altogether, the probabilities of all possible

combinations are given by the terms of the binomial expansion

n n n \n-1 n n-2 2
+q) =p + 1  q+ p q +...

Thus the first term in the expansion gives the probability of all events occurring

in HT, the second term the probability of all except one of the events occurring

in HT' etc. Other probabilities may be obtained by summing appropriate terms

in the expansion (1). For instance, the probability of at least 7 of the events

occurring in HT (i.e., at most n- 7 events in H ) is given by the sum
T n-y A

(n- n n-k k

k=O

It is apparent that for large values of n, the computation of the numerous terms

involved in (2) may be extremely1 ohorious.a However, for nnn > 1 an adequrate

approximation to the binomial distribution is given by:

(n k n-k 1 -(k-*ip)2/2npq
kp - /2?rnpq

(See Reference 1);
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i.e., the binomial distribution may be approximated by a Gaussian distribution

of mean n p and standard deviation n .

Instead of summing the terms involved, in an expression such as (2), we

may use the corresponding extensively tabulated integrals of the normal curve.

3. Application to Actual Orbital Distribution.

The actual distribution for Pioneer 8 events was found to be:

Total number of events analyzed: 230

Events in HT (moving toward s.a.) 139

Events in HA 91

Corresponding numbers for Pioneer 9

Total number of events analyzed: 111

Events in HT  73

Events in HA 38

Combined totals:

Total number 341

in HT 212

in HA  129

As a working hypothesis it is assumed p = q = .5 (i.e., the probability of

an event occurring is the same for each half orbit).

For Pioneer 8. The expected number in each half orbit is then np = 115

and the deviation from this expected number is 139 - 115 = 24, thus for this case

a = =230 • 1 1 = 7.58. Consequently, we have a deviation of 3.17 a, corres-
2 2

ponding to a probability of 0.16%.

2



For Pioneer 9 the deviation from the mean is 17.5 and the standard deviation

is 5.27 resulting in a deviation of 3.32 o. This corresponds to a probability of

0.08%.

It is realized, of course, that the time spent in each of the half orbits is

not the same. Pioneer 8 spends 578 days in HT and 507 days in HA corres-

ponding to a daily event rate of .240/day and .179/day, respectively. If we in-

crease the time in HA by 71 days and hypothesize that the daily event rate holds

this would indicate 13 additional events occurring in the half orbit if A.

So, the new hypothetical distribution would be:

(Pioneer 8)

Total number of events 243

Events in H 139

Events in HA 104

np=121.5

d = 17.5

S= 7.79

Thus d = 2.24 a, corresponding to a probability of 2.5%.

For Pioneer 9, the event rate in HA was .113 and the number of days

spent in HT and HA was 35.- and 335, respectively.

Making a same adjustment as above the additional 20 days would lead

to an additional 2 events in HA . Thus, the new hypothetical distribution would be:

(Pioneer 9)

Total number of events 113

Events in HT  73

Events in HA 40

Expected number, np = 56.5.
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With the deviation d = 16.5, and the standard deviation a= 5. 32, then

d = 3.10 a. This corresponds to a probability of 0.2%.

The combined results are tabulated as:

Hypothetical:

Pioneer 8 and 9

Total number of events: 356

Events in HT 212

Events in HA  144

Expected number of events in each half orbit: 178

d = 212 - 178 = 34

a= 9.43

d = 3.610,

corresponding to a probability of 0.04%.

4. Conclusions.

It is seen that the probability for random variations to produce the

observed asymmetry in the distribution of events is very small. Then, the

observed asymmetry should be attributed to some systematic effect, such as

the presence of interstellar grains.

5. References.

[1] "Probability, Random Variables, and Stochastic Processes",
Athanasios Papoulis (Polytechnic Institute of Brooklyn).
McGraw-Hill Series in Systems Science. Copyright 1965.
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Introduction

Under simple assumptions the force on a particle due to solar radiation

pressure is directed along the particle's radius vector, from the sun, and is in-

versely proportional to its distance from the sun. In addition the force is assumed

proportional to the cross sectional area of the particle. Thus the particle's

acceleration due to radiation pressure is given by:

CeA R
m 3

r
and the equation of motion of the particle subject to both solar radiation pressure

and gravitational attraction is given by:

R CA R Rm 3 - 0(1-8) 3 ()
r r r

where:
R is the radius vector of the particle
r its magnitude (= IR )

,u, the sun's gravitational constant (= K2M )

CO the force due to solar radiation pressure on a particle
of unit cross sectional area at unit distance

A the cross sectional area of the particle

m particle mass

GA= (2)
AO m

If the particle is assumed approximately spherical then

A Tra 2  3
m 4 3 4ap-wa p

3
where

a is the particle radius and

p its density
thus 3C 1 k

Gi (4)
4/( pa (mp2)1/3

defining the constant k as:
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=97 1/3
16/ g

For large, dense particles << 1; consequently the normal Keplerian

orbit for such a particle would only be slightly modified. As the particle radius

or density decrease 0 will increase and may, for sufficiently small, light

particles, exceed 1. In this case the net force will be repulsive.

Kepler's theory may be modified for these cases. The motion then takes

place along the branch of the hyperbola which is convex toward the focus occupied

by the sun.

For situations such as these there will be a "forbidden zone" about the

sun into which these particles may not penetrate. The zone is of course de-

pendent on the "velocity at infinity", the radiation pressure and the angular

momentum of the particle. It is the purpose of this note to develop a sketch

of this "forbidden zone".

The value of the radiation pressure constant used here, has been chosen

to be consistent with that given by Silverberg. (Reference [1]).

The attractive and repulsive cases are separated by = 1; since here the

particle moves in a force free field. For a particle of given mass this gives rise

to a "limiting" density; or, for a particle of given density, to a 'limiting" mass or

diameter. Particles with densities (or masses) smaller than their limiting values

are repelled, others are attracted.

-13
As an example: for a particle of mass 8.9 x 10 grams ( similar to that

for event 20 from Pioneer 8) the limiting density of 0. 953 gr/cc.

For a particle with a (very likely) density (p) of 3 gr/cc, its limiting dia-
-5

meter would be 3.85 x 10 - 5 cm, and it would have a corresponding limiting mass
-14

of 8. 99 x 10 gr.

For the curves plotted and presented herein, a density of 3 gr/cc and an ex-

cess speed (V,) of 20 km/sec (corresponding to the velocity of the solar system)
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has been assumed. (Of course, corresponding curves for other values of these

parameters can readily be obtained).

A word description of the trajectory 'flown" by a test particle in the presence

of the assumed solar mass-radiation influence is given below. In addition, there

is a sketch included here to show several geometric properties of the trajectory.

The flight paths of interest are those which describe hyperbolae in the

vicinity of the sun. These particles are assumed to "arrive" in the solar sys-

tem with an excess speed (V) of 20 km/sec (the assumed value). If these

particles approach the sun not along a direct radius, but at some offset distance

(i.e., with non-zero angular momentum), then they will describe hyperbolic arcs

which can be predicted from the two-body model described above. On the sketch,

below, '1" is the closest solar approach distance; c is the off-set distance

(measured from the solar apex radial), and VC is the approach excess velocity.

Also, as shown on the figure, 8 is an angle locating the hyperbola's axis

measured from the solar apex radial. Due to symmetry, these hyperbolae may

be oriented symmetrically about the radial. Thus there could be mirrored

images of each path on this principal radius.

Computational Sequence

In determining geometric characteristics of these trajectories, and ob-

taining a description of the FORBIDDEN ZONE, the following calculations pro-

cedure has been utilized.

(1). A density of p = 3 gr/cc is assumed; knowing mll m (the limit

mass), choose values for the particle mass (m < mlim)'

(2). With k known, (9.32 * 10 - 5 ) and having chosen p then calculate

a 0 corresponding to each m; i.e., from (4)

-5
(9.32* 10 )3.0).

2 M)1/3 (p 3.0).
(p3m)
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/-

Sketch depicting a particle (P) moving from n, with a velocity V, offset at a
distance c, which has a closest approach (q) to the sun (p), as shown.

This closest approach depends on the quantities A, c, V,.

The path for P is a hyperbola (for this repulsive system); the axis of the hyperbola
is Inclined at an angle from th radial (to C). Here, A is denPndnt on the nPrn-
Li LU ALLAVU eLL CUA CWIZ U a dial

meters p, c, V,.
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Note: Here, 6 1. 0, by definition.

(3). Having obtained B, calculate the equivalent A. (sun value) for the

system:

-4 3-

with 1 =2.959 10 - 4 (AU3/DA2).

(4). Next, assuming V. = 20 km/sec, calculate the parameter, B, where:

B -/c
V2

And, (5). Knowing B define characteristics for the hyperbolic path; e.g.:
2

H tan ( tan

and

_q -1i /c + ( - /c 2 ]1/2
c V 2  VC

=B+ 1i +B2]1/2

These data may be used to plot a boundary defining closest approaches to the sun,

for various system constraints and/or conditions. However, the FORBIDDEN

ZONE, as defined, is not yet obtained. This region of "space" lies on the sun's

side of the geometric envelope for the family of hyperbolae traced out by the

assumed particles. In this regard, then, it is necessary to examine the pro-

blem (mathematically or graphically) and to define the envelope accordingly.

Since the model used for the present investigation leads to analytical re-

sults, the envelope curve can be described mathematcally. For this description
1

the parameter (A) is introduced, wherein A E (see above), and the equations

for the trajectory are rewritten. Making use of the formal operations to deter-

mine an envelope, it can be shown that the pair of parametric cartesian equations

for this curve are:

5



x =(A )21-* 1+A]- y+2 (Ac)[1+ 1A 2 ]
(Ay)[J 1+A -2]

and
and (2 + 3A 2 )[1 + 1A 2 ]+A 2

[1+ A23/2

For these expressions the x-axis parallels the solar-apex radial; and its positive

direction is in the apex direction. The y-axis is normal to x; it may be assigned

signs of ± arbitrarily. (Recall that c is the off-set distance -- for V -- ex-

pressed as a distance, measured in AU. Consequently, the coordinates (x, y) are

similarily dimensioned).

Typical Results

Table I shows: (1), a summary for the calculations outlined above. Here

one will find tabulated, as a function of m, the corresponding values for P and

'(see Eqs. (2) and (3)).

Also, in the table, is a listing of closest approach distance (qmin) for

each of the m values selected. The quantity qmin (in AU) denotes the closest

distance that a particle of mass m can approach the sun under the conditions

assumed. Necessarily, these distances correspond to an offset distance (c) of

zero.

Next, for a unit offset distance (i.e., c = 1.0 AU), typical values of

q(AU) and 0 (deg) are tabulated. These data are illustrative of the results which

may be expected from the calculations procedure outlined earlier.

Lastly, there is a listing of c(AU) values which are required to attain a

q = 2.0 AU (for each value of m defined). Since q = 2 AU has been arbitrarily

chosen as an upper bound of interest, here, then these data define a practical
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upper limit for the present investigation. (Note: when the notation c < 0 is used

herein it infers that these particles cannot have a qmin as small as 2.0 (AU), for

the conditions implied).

Figure I is a graph of qmin and c, as functions of m, for the information

described above.

Figure II is a polar plot of (q (AU), 6o) for values of 1. (or m) based on

a fixed off-set distance (c) of 1 AU. Since the curves are symmetric about 0=0,

then c may be the off-set on either side of the radial (0 ); this is a typical result

for any value of c (within the range of possible q distances allowed).

Figure III shows q, 0 boundaries for several of the values of m used

here. That is, each boundary corresponds to a chosen value of m (! mlim).

This describes a limit in q for the allowable range in c (AU), at a fixed AL. It

should be remembered that q = 2.0 AU represents the arbitrary upper limit for

this quantity. Note that when m < 30 * 10 - 1 5 gr then q > 2.0 AU; i.e., the

particle is subjected to a large enough radiation (back-pressure) so that it does

not. have sufficient kinetic energy to move in as close as 2.0 AU from the sun,

even for a direct radial approach. (The direct solar approach describes the

qmin noted earlier). It should be apparent that if V0 > 20 km/sec then the

corresponding q-values should be smaller; the particles would be able to move

closer to the sun against radiation pressure.

Figure IV graphically depicts the FORBIDDEN ZONE for this problem's

conditions and constraints. Each curve, sketched on the figure, corresponds

to a selected value of m (< mlim). These arcs describe the geometric envelopes

mentioned earlier; they separate regions, in the vicinity of the sun, into which

the particles may move from those in which they cannot (the FORBIDDEN ZONE).

Due to the obvious symmetry of this situation these arcs are mirrored in the

solar (apex) radial line.
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TABLE I. Calculated Data

Representative Data
Assume Compute Compute Closest Approach* (Based on c s 1AU) c(AU)

m(gr) 1 M (AU, DA) qmin (AU) q (AU) o (For q = 2AU)

89.9508 * 1015 1.0 0 1.0 900 2.0

85 * 10-15  1.01905 -5.63685 * 10-6 0.0845 1.043 87.580 1.956

80 10 - 15 1.03985 -1. 17924* 10 - 5  0.1768 1.0923 84.950 1.91

75 * 1015 1.06247 -1. 84834 * 10 - 5  0.2771 1.1481 82.110 1.86

70 * 10-15 1.087182 -2.57973 * 10-5  0.3867 1.2119 79.050 1.80

65 * 10 - 15 1.114373 -3.38430 * 10-5  0.5074 1.2854 75.760 1.73

60 * 10 - 15 1.144506 -4.27593 * 10 - 5  0.641 1.3706 72.230 1.648

55 * 10 - 15 1.178187 -5. 2755 * 10-5  0.7909 1.4708 68.420 1.55

50 * 10 - 1 5  1.216219 -6.39792 * 10 - 5  0.9592 1.5887 64.380 1.448

45 * 10-15  1.259692 -7.68428 * 10-5  1.152 1.730 60.060 1.304

40 * 10 - 1 5  1.310132 -9.17681 * 10 - 5  1.376 1. 9017 55.480 1.12

35 *10 - 15 1.36976 -1.094132 * 10 - 4  1.640 2.1135 50.640 0.85

30 * 10-15  1.44199 -1. 30784 * 10-4  1. 9607 2. 3808 45.570 0.294

25 * 10 - 15 1.53234 -1.57519 * 10 - 4  2.3615 2.7281 40.260 <0

20 * 10 - 1 5  1.65066 -1. 92531 * 10 - 4  2.8865 3.2 34.720 <0

*Closest Approach would correspond to c = 0(AU).
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Figure I. Closest approach (qmin) (on a radial) and offset distance (c), for

q - 2 AU, as a function of mass (gr).
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Figure II. Description of closest solar approach (q, 8) as a function of particle
mass (m) - or equivalently (0 or .) - for a fixed offset distance (c) =
1.0 AU.
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Figure III. A plot of q and 6 for various values of c (c not shown). Note: each
curve corresponds to a value of m, as specified.
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Figure IV. Graphic description of the 'TORBIDDEN ZONE" for a specified
case study.
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