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Symbol Meaning First Referred In
 
Reflectance of the
 

rgs sunlit soil to the
 

incident direct sun­
light ....... .... eq. (2.3.9)
 

r£ 	 Reflectance of the
 
leaf canopy to the
 
solar and sky radia­
tion ........... Page 2O
 

r(X ,s-s) 	 Reflection distribu­
tion function fyr the
 
direction a to a . . . eq. (2.5.6)
 

S a. 	Direct solar radiant
 
flux density . . . eq. (2.3.5)
 

b. 	Output signal from
 
the spectroradiometer eq. (5.2.1)
 

Radiant flux density
 
of scattered skylight eq. (2.3.5)
 

s 	 denotes the direction 
of the incident radia­
tion .... ........ eq. (2.5.1) 

T a. 	Temperature of the 
target . . . . . . eq. (2.6.3) 

b. 	Total transmission eq. (3.3.7)
 

T1 	 Max T8 (X1 ) . . . . . . eq. (5.5.10) 

TA 	 Temperature of the air page 149
 

TAW, 	 Average temperature of
 

a target .... .... eq. (2.2.3)
 

TB 	 Temperature of the

blighted spot of the
 
leaf ......... . Page 149
 

TH 	 Temperature of the
 
healthy spot of the 
leaf ...... ,. Page 149 

Th.l.b. 	 High lower bound of T eq. (5.5.12) 

7£ 	 -Leaf temperature in
 
ab&olute scale .... eq. (273.6) 
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xxi 

Symbol 	 Meaning First Referred In 
Ts(,)AG 	 Average spectral
 

radiance temperature . . . Page 144
 

Tot 	 Transmission parallel 
to the plane of incidence * eq. (3.3.5) 

T. Transmission perpendi­
cular to the plane of 
incidence ........ 	eq. (3.3.6)
... 


t£ 	 Transmittance of the 
leaf canopy to the 
solar and sky radiation . . Page 20 

tZS 	 Transmittance of the 
leaf canopy to direct 
solar radiation . . . . . eq. (2.3.11) 

t Is 	 Transmittance of the 

leaf canopy to the sky
 
radiation . . . . . .. . eq. (2.3.11)
 

T 	 Temperature of the 
blackbody .......... ... eq. (5.2.1) 

T 	 Temperature of the
 
r 	 reference blackbody . . . eq. (5.2.1) 

T Full radiator temperature Page 9
 

T (8-14 um) Radiance temperature in
 
s 	 the wavelength range
 

8 to 14 ......... (5.7.2)
.im eq. 

T (X) Spectral radiance 
temperature . . . . . . Page 9 

Ts(XI-x2) Band radiance temperature Page 9 

T (Xi) Spectral radiance tem­
perature at wavelength 

X .. . . . . ..eq. (5.5.2) 

T' Constant ... ....... ... eq. (5.5.8) 

t Denotes the time ... .. eq. (2.2.4) 

V7 Weight between kth spectralikiL 	 class of blight level i and
 

Lth spectral class of blight 
level j ..... ...... .eq. (6.3.3) 



xxii 

Symbol 	 Meaning First Referred In 

w 	 Mass flow per unit time . . eq. (2.3.1) 

w(a) 	 Weight taken at area a . . eq. (2.2.3)
 

y 	 S . . . ........... eq. (5.2.3)
 

GREEK SYMBOLS1 

Symbol 	 Meaning First Referred In
 

a(s) 	 Total directional
 
absorptance in the 
direction s ........ 	 eq. (2.2.8)
 

a(X) 	 Spectral hemispherical
 
absorptance ... ....... Page 13
 

a(X,s) 	 Spectral directional
 
absorptanc in the 
direction a ........... 	eq. (2.2.8)
 

AT 	 Difference between
 
leaf temperature and
 
air temperature . . ... 	 eq. (2.4.1) 

6Fd 	 Error in the measure­
ment of F. ... ..... . eq. (2.6.9) 

6LXb 	 Error in the blackbody
 

spectral radiance due 
to the stray radiation when 
the spectroradionater is 
looking at the target 
blackbody ... ....... .eq. (5.2.1) 

6LAb ref 	 Error in reference black­
body spectral radiance due 
to stray radiation when the
 
spectroradiomater is looking
 
at the reference blackbody eq. (5.2.1)
 

ST 	 Error in the measurement
 
of temperature . . ... 	 eq. (2.6.9)
 

SF 	 Error in the determination
 
of emittance ......... (2.6.9)
... eq. 


Total hemispherical
 
emittance ........... .eq. (2.6.1)
 

C 
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GREEK SYMBOLS (Continued) 

Symbol Meaning First Referred In 

e(t) Emittance of the leaf . . . eq. (4.2.1) 

e () Total directional 
emittance n the 
direction a............. Sec. 2.2 

c gEmittance 
gt 

of the soil 
to longwave thermal 
radiation (i.e.,X>4vm) . . Page 20 

Emttance of the leaf 
canopy to longwave ther­
mal radiation (i.e.,A>m) eq. (2.3.10) 

St
t 

Emittance of the leaf 
to longave thermal 

radiation (i.e., X>4pm) . . eq. (2.3.6) 

E(X) Spectral emittance at 
wavelength X..........Page 13 

E(X"s) Spectral directional 
Vmittance in direction 
a .... ............. . eq. (2.2.7) 

E(i) Spectral emittance of 
the target at wavelength 
xi .. .. . . .... . eq. (5.5.1) 

c(Ai l.u~b. Low upper bound on the 

spectral emittance c(Xi) eq. (5.5.13) 

s(8-14um) Emittance in the wave­
length region 8 to 14m . . eq. (5.7.2) 

0 Angle of normal n to 
the surface with the 
direction a ....... . eq. (2.2.4) 

0i Angle of incidence . . . eq. (3.3.1) 

Or Angle of refraction . . . eq. (3.3.1) 

OS Angle subtended bythe sun with the z axis . • eq. (2.5.4) 
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GREEK SYMBOLS (continued) 

Symbol Meaning First Referred In 

ARefers to the wavelength 
of radiation ...........See. 2.2 

A Predicted value of the 
-wavelength by a straight 
line least square fit . . . eq. (5.2.6) 

Jm Denotes micrometers . . . . Chapter T 

p() Spectral hemispherical 
reflectance ... ...... .Page 11 

p(X,s) 

p(Xs-s) 

Spectral hemispherical 
directional reflectance 
in direction a ... ......Page 11 

Spectral bidirectional 
-eflection from direction 
a to direction a . . . . eq. (2.5.7) 

Stefan-Boltzmann Constant eq. (2.3.6) 

T (X,s)
a 

Spectral transmission 
characteristics of the 

Itmosnhere in the direction 
a ...... ........ . eq. (2.5.2) 

Azimuthal angle ......... Figure 2.2.1 

Solid angle ........... eq. (2.2.1) 

9S Solid angle subtended 
by the leaves, viiible 
from the sunlit soil, at 
the sunlit soil .......Page 20 

92 Solid augle subtcnded bythe lcavea, visible from 

the shaded soil, at theshaded soil ... .......Page 20 

Q' Solid angle subtended by 
the sun at the earth's 
surface............ .... eq. (2.5.3) 
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SUBSCRIPTS
 

Symbol 	 Meaning First Referred In 

A 	 Refers to the wavelength . *Sec. 2.2 

3 	 Denotes the ground or 
soil . . .. . ........ eq. (2.3.5) 

a 	 Denotes the atmosphere . . eq. (2.3.5)
 

I 	 a. Denotes the leaf . . . eq. (2.3.6) 
b. Denotes the leaf
 

canopy ........ ... Sec. 	 2.3
 

t Denotes thermal radiation 
(i.e., X>4pm) .... .... eq. (2.3.5) 

S 	 Denotes the scattered 
skylight ... ....... ... eq. (2.3.5) 

S 	 Denotes the direct sun­
light ... ........... eq. (2.3.5) 

* 	 Denotes the quantities 
for the stem corresponding 
to the quantities for the 
leaves with subscript Z . . eq. (4.2.3) 

g 	 Denotes the quantities
 
for the soil corresponding
 
to the quantities for the
 
leaves with subscript i • eq. (4.2.4)
 

SUPERSCRIPTS
 

Symbol 	 Meaning First Referred In
 

n 	 Denotes the nvmber of
 
spectral channels . . .	 eq. (6.3.3) 

* 	 Denotes the quantities
 
for the stem corrosponding
 
to the quantities for the
 
leaves writh subscript I . . eq. (h.2.3)
 

Denotes the quantities for 

the incident radiation - . Page 29 
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ABSTRACT
 

The purpose of this research is to study the emission and reflection 

from healthy and stressed (systemic-stress and non-systemic stress) natu­

rnl targets, with special emphasis on corn plants, and to differentiate 

the healthy targets from stressed ones by remote sensing. 

Infrared radiometry of plants is reviewed thoroughly with emphasis
 

on agricultural crops. Theory and error analysis of the determLnation of 

emittance of a natural target by radiometer is discussed.
 

A light ray, incident at about 50 to the normal, is geometrically
 

plotted through the drawing of the cross section of a soybean (Clycine 

max (L.) Mferrill) leaf using Fresnel's Equations and Snell's Law. The
 

optical mediums considered are: air, cell san, chloroplast and cell
 

wall. The values of the reflection and transmission found from ray
 

tracing agree closely with the experimental results. Ray tracing, con­

sidering cell wall and air as the only optical mediums gives reflection
 

considerably lower than the experimental results. A light ray, incident 

at about 600 to the normal, is also dra, n through the palisade cells 

for illustrative purposes. 

Thermal emission model of a plant canopy is proposed. Exotech Model 

20C Spectroradiometer is described briefly. Wavelength calibration and the
 

the spectral radiance calibration of the long wavelength spectroradiometer 

(wavelength ranges 2.8 to 5.6 "m and 7 to 14 pm)is done. Calibration 

of the Precision Thermist6r Thermometer Probes and PRT-5 is described. 

Ground truth variables useful for experiments with long wavelength 

spectroradiometer are described. A spectroradiometric method for
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determining the temperature and spectral emittance of a natural target 

is proposed and discussed.
 

Experiments were conducted on corn (Zea mays L.) plants with 

long wavelength spectroradiometer under field conditions. -An a
 

level of 0.05 was taken for statistical analysis. Average spectral
 

radiance temperatures (Ts(A)AVG), average being taken over certain­

selected wavelength bands for the four healthy corn plant populations ­

(15, 30, 60 and 90 thousand per hectare) were found to be statistically 

significantlv different in 3.6 to 5.40 jim wavelength range. In iorn 

blight experiment, TB (A)AVC of the corn plants increased with the 

increase of blight severity in 3.6 to 5.40 pm and 7.5 to 12.40 pim. 

The contact temperatures of the healthy spots and the blighted spots of 

corn leaves were not found to be statistically significantly different. 

A tentative conclusion is that the percentage of the soil, especially 

sunlit soil visible from the spectroradiometer, is the predominant 

factor causing differences between T (X)AVG of the healthy and blighted
a AV 
corn plants. T()AVG of the corn plants having different rates of 

nitrogen applicatfon(O kg/hectare, 67 kg/hectare and 201 kg/hectare) were 
found to be statistically significantly different. Also, the difference 

between T (X)AVG and the air temperature decreased with the increase of 

nitrogen dificiency. 

Analysis of multispectral scanner data of ten selected flightlines 

of Corn Blight-Watch Experiment of 1971 indicated: 

1.) There was no regular pattern of the mean response of the higher 

level/levels blighted corn vs. lower level/levels blighted corn in any 

of the spectral channels. 

2.) The greater the difference between the blight levels, the more sta­

tistically sepprable they usually were in subsets of one, two, three 

and four spectral channels.
 



CHAPTER I
 

INTRODUCTION
 

Remote multispectral sensing62 may be defined as "the sensing, from
 

a remote location, of electromagnetic radiation - either reflected or 

emitted - in many discrete, usually relatively narrow spectral bands 

between wavelengths of 0.3 pm and 15 pm and also in radar bands from 

about 0.86 to 3.0 centimeters."-

The purpose of this research is to study the emission and reflection 

from healthy end stressed natural targets and to differentiate them 

(healthy and stressed ones) by remote sensing. A good part of the study
 

is confined to corn plants for corn (Zea mays L.) is one of the major
 

agricultural crops.
 

While doing the literature review of 'Infrared Radiometry of Plants', 

it was felt that the articles related to it were scattered in a number 

of different journals like Applied Optics, Agronomy Journal, American 

Journal of Botany, Plant Physiology, Bioscience, Science, American 

Scientist, Ecology, Journal of Applied Hfeteorology, Remote Sensing 

of Envirerment etc. Many biblogical scientists and a few physicists 

have contributed to the 'Infrared Radiometry of Plants'. Some of the 

statements in the literathre are not true. For example, Monteith and 

Szeicz70 (1962) estimate that assuming the emittance of the plant 

surfaces equal to one may 'cause errors of at most 0.2 C in the measure­

ment of their temperature. The above Statement is not consistent with 

the experiment. (Section 2.6). The need of review of 'Infrared Radiometry 
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of Plants' was felt and hence -an extensive literature review of
 

the same is given in Chapter II.
 

Willsttter and Stoll 10 7 (W-S) in 1918 proposed a theory to
 

explain reflectance from a leaf on the basis of critical reflection of
 

visible light at spongy mesophyll cell wall - air interfaces. Their
 

theory is commonly accepted even today. The pathway of light rays as 

envisioned by Willstatter and Stoll (Figure 3.3.3) shows that the
 

light rays pass through the epidermis and palisade cells without any 

deviation, which is unrealistic. The author strongly felt the need for
 

a better illustration to show the pathway of light through a leaf cross 

section than shown by Willstftter and Stoll and hence, reflectance
 

model of a leaf is proposed in Chapter III.
 

In the analysis of multlspectral scanner data of the Corn Blight
 

Watch Experiment, almost all the analysts of the Laboratory for 

Applications of Remote Sensing (LARS) found thermal channel (9.30 

to 11.70 um) as one of the best four channels using feature selection
 

algorithm. This created an interest among the staff members of LARS 
to find the reasons of thermal channel being as one of the best four
 

channels, Prior to the summer of 1971, signal to noise ratio of the 

thermal channel of the multispectral scanner of Environmental Research 

Institute of Michigan (formerly called Willow -tui Laboratory, University 

of Michigan) was relatively low and hence, the value of the thermal 

channel in differentiating various crop species was not known. Thus, 

it was decided to do field experiments with longwavelength (2.8 to 
5.6 pm and 7 to 14 pm) spectroradiometer under field conditions. The 

spectral data under field conditions would help the proper interpretation 

of multispectral scanner data in the thermal channel. Three experiments 
were done with the longwavelength spectroradiometer: ground cover
 

experiment, experiment on non-systemic stressed corn plants, and
 

experiments on the systemic-stressed corn plants. The ground cover
 

experiment was done to find the spectral response of the plants vs. 

percentage ground cover in the longwavelength thermal infrared wave­

length region because percentage ground cover is likely to be an
 

important factor causing differences between the healthy and non-systemic
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stressed plants (Chapter VI). The experiments were done on the non­

systemic stregsed corn plants and systemic stressed corn plants because
 

one of the major interests of LARS is to differentiate stressed plants
 

from healthy ones by multispectral remote sensing. The expressions for
 

the radiant flux density emitted by a plant canopy reaching the sensor
 

(of aircraft or satellite or spectroradiometer) are given in Chapter IV
 

to help explain the causes of spectral variability between the targets
 

of interest in the longwavelength thermal infrared wavelength region.
 

The analysis of multispectral scanner data of selected flightlines 

of Corn Blight Watch Experiment of 1971 is done in Chapter VI to determine 

statistical separability of the spectral classes of blighted corn. The 

analysis presented has much practical application, for it gives the 

maximum average transformed divergence between the spectral class pairs 

of blight levels, from which hopefully in the near future, classification 

accuracy will be reasonably predicted. ­
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CHAPTER II 

INFRARED RADIOMETRY OF PLANTS 

2.1 Introduction 

A plant is exposed to electromagnetic radiation from, surroundings 

such as soil, rocksplants and so forth and from environment like sun, 

sky, clouds, atmosphere, etc. It is important to un'derstand the inter­

action of a plant with its environment in order to properly and meaning­

fully interpret the data of plants secured by remote sensing. The radia­

tion radiometer is a good and commonly used instrument for measuring the 

radiant temperature of plants. Infrared radiometry is quite useful in 

many fields.* 

It should -bepointed out that- thermoeoupies and thermi'stors--attaEhed­

to leaves for the purpose of measuring surface temperatures have certain 

disadvantages 1 9 . Their material usually has different spectral emit­

tance than the leaf and thus experiences a different radiant energy re­

gime. In addition, they have different heat dissipation mechanisms than 

the leaf material - having wire leads to carry heat but no evaporating 

surface. The extent to which these factors influence the temperature 

a'nasured by these sensors must be considered in addition to other factors 

when Judging the effectiveness of radiometrically determined temperatures. 

* Infrared radiometry is quite useful in many fields like ecology, 
botany, zoologyr, forestry, agriculture, agronomy, hydrology, meteorology, 
climatology, atmospheric sciences, medical diagnosis, engineering, geolo­
gy, etc. 
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The main purpose of this chapter is to review infrared radiometry 

of plants with emphasis on agricultural crops. This review is not com­

pletely exhaustive since the space is limited. For the same radiometric 

quantities, a number of different names and different symbols have been 

used in the literature which creates confusion for the readers. The 

author sought to use the nomenclature recommended by the International 

Commission on Illumination50 throughout this thesis. As many references 

as possible are included, especially the recent ones.
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2.2 Definitions
 

Definitions of the terms which will be commonly referred to in this
 

thesis are given below for the convenience of the readers.
 

Spherical Co-ordinate System:
 

Spherical co-ordinate system is shown in Figure 2.2.1. 

Direction Cosines:
 

Direction cosines of a direction are the projections of the unit direc­

tion on the co-ordinate axes. 

Solid Angle: 

Solid angle subtended by a differential element of a spherical surface 

of area dAs at point P is given by 

dAs 

dD = d-s= sineded (Figure 2.2.2) (2.2.1) 

The solid angle subtended by a finite area, A, at point P is given by 

integrating the solid angle subtended by each differential element of 

the area over the entire area, A, i.e., 

-=As (2.2.2) 

where 

A = area of the surface 

Thermodynamic Equilibrium: -


A thermodynamic system is said to be in thermodynamic equilibrium if it
 

is simultaneously in thermal, mechanical and chemical equilibrium. In
 

thermodynamic equilibrium, the properties of the system do not change
 

either in space or time. Time does not enter as a fundamental notion in
 

the classical science of thermodynamics.
 

Blackbody
 

A blackbody is one which absorbs all of the radiation incident on it.
 

There is no substance, which is perfectly black in this sense, but some
 

substances approach this ideal closely. At a given wavelength and
 

temperature, the spectral radiance of emitted radiation of a blackbody
 

is maximum. Blackbody has an absorptivity and emissivity equal to one.
 



Z 

Point P(r1 8, #) 
r=OP 
9 = Angle of OP from Z axis p 

=Azimuthal angle 

X 

Figure 2.2.1 Spherical Co-ordinate System 



- (Reference direction) 

'dAt S 

Figure 2.2.2 Definition of Solid Angle 
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Temperature T:
 

It is a measure of the average kinetic energy of the molecules. It is
 

the quantity that would be measured by an ideal contact thermometer.
 

It has also been called actual temperature, true temperature, real
 

temperature, etc. in the literature.
 

Average Temperature T
AVG'
 

The temperature of a natural target is not uniform over the whole tar­

get, in general. So, a meaningful temperature, TAVG, of a natural tar­

get can be defined as the weighted average of local temperature, T, of 

the target over its entire area, as follows. 

Afw(a)T(a)da

AVG AIW(a)da (2.2.3)
 

where
 

T(a) = temperature at area a
 

w(a) = weight taken at area a
 

A = total area of the target, fAda
 

If all the portions of the area of the target are given equal importance 

in determination of the temperature of the target, weight w(a) may be
 

taken equal to one over the entire area. 

Fuil Radiator Temperature T : 

Full radiator temperature of a target is the temperature of a blackbody 

which emits the sane amount of radiant energy as the target in entire 

range of wavelengths. It has also been called equivalent blackbody 

temperature, blackbody equivalent temperature, apparent temperature, 

radiant temperature, brightness temperature, etc.
 

Spectral Radiance Temperature T (A): 

Spectral radiance temperature of a target at a specified wavelength, A,
 

is the temperature of a blackbody which emits the same amount of radiant
 

energy as the target in the wavelength range X to X+dX.
 

Band Radiance Temperature Ts (X1 - X2):
 

Band radiance temperature of a target in wavelength range X1 to X2 is 

the temperature of a blackbody which emits the same amount of radiant 

energy as the target in the wavelength range Al to 2 . 
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Kirehhoff's Laws:
 

It was proved by Kirchhoff 8 7 that the cavity and the radiation inside
 

it constitute a thermodynamic system which is independent of the par­

ticular physical processes of emission and absorption taking place in
 

the walls. When the system is in thermodynamic equilibrium with its 

surroundings, then the spectral absorptivity a(X) = spectral emissivity 

cc(). This relation is also true on the directional as well as on the 

total basis.
 

Total Radiation Properties:
 

The designation 'total' is employed to describe radiation quantities
 

that pertain to the entire range of wavelengths. When it is obvious
 

that a radiation quantity pertains to the entire range of wavelengths,
 

the designation 'total' may be omitted.
 

Spectral Radiation Proerties :
 

The designation spectral is employed to describe radiation quantities
 

for monochromatic radiation. When it is obvious that a radiation quan­

tity pertains to the monochromatic radiation, the designation 'spectral'
 

may be omitted.
 

In this Section, only spectral radiation quantities are defined.
 

Total radiation quantities can be defined similar to the spectral ra­

diation quantities as that pertaining to the entire range of wavelength4T 

Spectral Radiance:
 

The fundamental quantity that governs the radiation field is the spec­

tral 	 radiance. It is defined as follows. 

Let dQA be the amfount of radiant energy in the wavelength interval 

X and X+dX transported across an arbitrary oriented imaginary element 

of area dA at a point P (Figure 2.2.2) during a time interval dt and 

confined to an element of soild angle df about the direction s. The 

apex of the elementary cone is on the surface dA and the outward 

normal n to the surface makes an angle 8 with the direction t. Exper­

iment shows that the ratio dQ /cosedAdadxddt tends to a definite limit 

as dA, dQ, dX, dt 0 in any manner provided that the point P and the 

direction s are kept fixed9 9 . We denote this limit by L and call it 
spectral radiance at point P in direction t:	 A 



LX =lim dQX (2.2.4)S-cosOdAdldldt 

dA, dfl, dA, dt + 0 

Spectral Radiant Flux (surface) Density (at a point of a surface) F X 

Spectral radiant flux density is the amount of radiant energy in the 

wavelength interval I and X+dA transported across an arbitrary oriented 

imaginary element of area dA at a point P (Figure 2.2.2) during a time 

interval dt and confined to an element of soild angle dl about the 

direction a.
 

F = -sdd = L do (2.2.5)
X cos~dAd~dt X
 

Radiant Flux Density F = fF dX = da fL d (2.2.6) 

Spectral Irradiance (at a point of a surface) E
 

It is the same as spectral radiant flux density except that it refers 

to the incident radiant energy, 

Spectral Hemispherical Reflectence p(A):
 

Spectral hemispherical reflectance is defined as the ratio of radiant 

energy, in the wavelength interval A and L+dX, reflected hemispherically 

by the surface to the radiant energy in the hemispherically incident 

beam. 

Spectral Hemispherical Directional Reflectance n(As ): 

Spectral hemispherical directional reflectance in the direction S is 

defined as the ratio of radiant energy, in the wavelength interval A 

and +dA, reflected by the surface into direction (, do) to the radiant 

energy in the hemispherical2y incident beam (Figure 2.2.3). 

Directional Hemispherical Reflectance: 

See Section 2.5(C), Equation (2.5.9).
 

Bidirectional Reflectance:
 

See Section 2.5(C), Equation (2.5.7).
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n (Normal to the surfme)
 

Solid angle dS2 

Figure 2.2.3 Definition of Hemispherical Directional Reflectance 
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Sectral Directitnal imitant £(x t). 

The spectral directional emltince e(A, S) id the ratio of the eihitted 

spectral radiance of the objebt in direction s to the emitted 9pectrhi
 

radiance of the blackbody at the samd temperature. 
)
4., Lx(T, "s

(X, 6) = (2.2.7) 

LX,b(X,T) 

where 

L (T,s) = spectral emitted radiance of the object at wavelength 

X and temperature T in direction a 

L X,b(XT) = spectral radiance of the blackbody at wavelength X 

and temperature T 

Spectral Directional Absorptance a(X. s):
 

Spectral absorptance in the direction a is the fraction of the radiant 

energy in the wavelength interval X and X+dA, incident on the surface 

from direction s that is absorbed. In accordance with Kirchhoff's La;, 

the directional spectral absorptance and directional bpectral emittance 

are equal provided that the incident beam is uniformly polarized ­

that is, 

a(X, 8) = C(x, s) (2.2.8) 

The total directional absorptence, a(s), can be deduced from the total 

directional emittance s(s) in a simple manner for some of the cases 

enumerated in reference [87] 

Spectral Hemispherical Absorntance a(x) 

The spectral hemispherical absorptance, a(A), is the fraction of the 

hemispherically incident radiant energy in the wavelength interval X 

and X+dX, that is absorbed by the surface. 

Spectral Hemispherical B]mittance s(X): 
Spectral hemispherical emittance, E(f), of an object at temperature T 

is the ratio of the hemispherically emitted radiant energy by the object 

in the wavelength interval x and X+dx to the radiant energy emitted by 



ii' 

the blackbody at the samd temrattire and wavelength interval. The word 
'emissivity' has also been udbd in the literature in place of lemittance. 

Actually, emissivity refers to the property of an ideal surface (i.e., 

free of dust, surface impuriths, etc.), whereas emdttance refers to the 

property of a real surface. The words 'emissivity' and 'emittance' have 

been used interchangeably in the literature. 
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2.3 EnerrY Balance 

(A) Energy Balance on a Plant Leaf
 

The energy balance on a plan. leaf is considered since a leaf consti­

tutes a dominant energy exchange part of the plant. Conservation of 

energy exists on the leaf because it cannot store up energy indefinitely 

as it will get too hot, nor can it lose energy indefinitely for it will 

become too cold. However, a leaf may warm or cool, usually within a few 

seconds 	or, at most, a few minutes in the transient state. Aston et al.5 

(1969), from an experimental study of the energy balance of a dry arti­

ficial leaf under controlled radiative and convective heat loads, indi­

cated the need for study of transient coupled exchange phenomenon; but
 

this study shall be confined to the steady state only. A good part of
 
this Section is reproduced from Cook 21 (1963) and Gates 34 (196h) . 

21 
The equation of the energy balance on a leaflet, given by Cook 

(1963) is partly reproduced here. Figure 2.3.1 shows the leaflet activity 

which must be taken into account, neglecting movement of the leaflet. 

Thus, taking an, energy balance on the leaflet, the following equation 

results2 

+	 + + gas + (hw)QUAD 	 QCOND QCONV QCHEM = (hw) 02 gas + (hv) 120 

CO2 gas 	+ (hw) liquid out - (hw) liquid in 

- (hw) CO2 in - (hw) 02 in (2.3.1) 

where
 

h = enthalpy of a gas or liquid per unit mass 

w = mass flow per unit time 

qTRAD = 	net heat radiated to the leaf per unit time 

QC0ND = 	net heat added to the leaf per unit time by conduction 

QCONV = 	net heat added to the leaf per unit time by convection 

leaf per unit time by chemicalQCHEM = 	net heat added to the 
processes taking place in the plant (excluding transpiration) 
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INCIDENT RADIATION PROVIDING 
ENERGY FOR PHOTOSYNTHESIS 

ENERGY RERADIATED AND RADIANT HEATING 
BY LEAF
 

/ 	 02 FOR
 
HEAT EXCHANGE
 
DUE TO 
CONVEOTIO 

SYNTHESIS OF PHOTO­
PLASM,CELL WALL 
MATERIAL, AND FAT 02FROM 

FROM SUGARS PHOTO-

PHOTOSYNTHESIS 

...... 	 :0_ -FROM-C2 -
RESPIRATION 

COZ FOR 

HEAT CONDUCTION PHOTOSYNTHESIS 
ALONG MIDRIB EVAPORATION 

/1 OF WATER 

LIQUID H20 CONTAINING 
MINERALS AND SUGAR 

Figure 2.3.1 	 A Diagrammatic Representation of Leaf Activity
Necessary for an Energy Balance on the Leaf 

(Taken from ref. 21, p. 56) 



17
 

As can be seen, this equation takes into accotut not only the heat 

transfer modes of cmduction, convection and radiation, but also the chemi­

cal energy due to photosynthesis and respiration, as well as the energy 

changes due to mass transfer. It turns out that the only significant 

energy change due to mass transfer is that due to the liquid (since this 

involves transpiration Y ) , and the changes in energy due to mass transfer 

of oxygen and carbon dioxide can be neglected. It can also be assumed 

that the only significant part of energy change due to the mass transfer 

of the liquid is transpiration, i.e., the energy change due to the li­

quid moving through the mid rib to the leaf is negligible. Finally, it 

can be assumed that the heat transferred by conduction is very small as 

compared with the other energy terms. Making the above mentioned ap­

proximations, Equation 2.3.1 becomes:
 

QTRAD + QCONV + QCHEM = (hw) liquid out - (hir) liquid in 

= QTRANS (2.3.2) 

where
 

the 1eaf per unit time by trrnspiration
TRA1b - net heat added to 

Looking at the total heat radiated to the leaf, it can be said that 

this is equal to the heat radiated to the leaf from the surroundings, 

minus that reradiated by the leaf to the surroundings. Substituting 

this into the Equation (2.3.2) and rearranging:
 

QTRAD = QINCIDENT - QLEAVING = OADSORBED - "EMITTED 

= QTRANS - QCONV - QCHEM (2.3.3) 

The above equation is the basic equation for calculating the net heat 

* Transpiration converts the water in the leaves of a plant from the 

liquid to the gaseous state; the water vapor then passes from the leaf 

into the surrounding atmosphere.
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kS = absorptance to direct solar radiation 

k = absorntance to scattered skylight
 
kktt = absorPtance to longwave thermal radiation
 

Ct = emittance of the leaf to longwave thermal radiation (i.e., 

X> I4im) 

Es = sky radiation reflected by the surroundings, incident on the 

leaf 

ES = solar radiation reflected by the surroundings, incident on the 

leaf 

S = direct solar radiation from a point source
 

s = scattered skylight from an extended source 

Ra = thermal radiation from the atmosphere as an extended source 

R = thermal radiation from the ground as an extended sourceg 
a = Stefan-Boltzmann constant 

TL = leaf temperature in absolute scale 

L = latent heat of vaporization of water at the leaf temperature
 

E = transpiration rate - energy gained or lost by transpiration or
 

evaporation in mass area - ' time- 1 

34 
Gates (1964) took the typical values of these variables as follcwb: 

- 2 - 1(S + s) = 1.20 cal. am min , R = 0.48 cal. cM- 2 .min i- 1 ,a 

Rs = 0.62 cal. cm- 2 min - 1 , Ta (air temperature) = 300 C, 

k S = 0.60, k t = Et = 0.97, relative humidity = 60% 

(3) Energy Balance on a Plant Canopy 

Gates (1964) pointed out that one of the most difficult factors to 

evaluate, in terms of the energy budget of a plant, is the matter of plant 

geometry. It is not so difficult to evaluate the energy budget for a 

single isolated plant without other plants nearby, or to evaluate a dense, 

opaque canopy. When a plant produces only partial cover and some of the 

soil is exposed,the problem becomes more difficult. He3h derived the 

following two relationships: a) the radiation absorbed by a plant as the 

function of the amount of plant cover; and b) the radiation reflected by 
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a plant as a function of the amount of plant cover. He assumed the emit­

tance and absorptance of leaves and soil to be unity in the thermal long wave­

length region, which is not always true, in general (Section 2.6). These 

relationships, taking into account absorptance and emittance of leaves 

and soil in the long wavelength region (i.e., X > 4 In), are derived 

below.
 

Let f be the fraction of the soil surface which is sunlit. Let k<. 

and k be the absorptance of the sunlit soil surface to the donward 

stream of solar and sky radiation, respectively, and let the absorptance 

and emittance of the soil to longwave radiation be kP t and est, resnective­

ly; then the net radiant energy absorbed by the sunlit sil surface will 

be: 

Net Qg abs = f[kgS + k a + k tRa - RS] 	 (2.3.8) 

(see 	Equations (2.3.5) to (2.3.7) for symbols) 

The leaf canopy will receive the downward solar flux, S + s; absorb­

ing a fraction, k£; reflecting a fraction, r£; and transmitting q fraction,
 

t 	 . It will also receive the longwave thermal flux, R, from the atmos­

phere and absorb it with an absorptance of kzt* The underside of 

the leaves receive longwave thermal radiation from the sunlit soil 

and from the shaded surface, Rl6Rs/I, wheresurface, SRS/ir, 


QS = 	solid angle subtended by the leaves, visible from the sunlit 

soil, at the sunlit soil. The solid angle is found at each small 

area of the sunlit soil and is averaged over the entire area of 

sunlit soil. 

Q = solid angle subtended by the leaves, visible from the shaded 

soil, at the shaded soil. The solid angle is found at each
 

small area of the shaded soil and is averaged over the entire 

area 	of the shaded soil.
 

R = 	 longwave radiation emitted by the shaded soil surface 
S 

Neglect the transmission of the leaf canopy in the long wavelzngth 
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(i.e., A> 4 pm) region. Assume that the sunlit soil reflects diffuse­

ly, a fraction, rgS, of the incident direct sunlipht, S. The incident
 

skylight, s, will also be reflected; however, the sunlit soil will only 

view a fraction of the sky, and this small term will be neglected in the 

formulation. Hence, the lower surface of the leaves will receive an 

amount of reflected sunlighUt, Qr S/7w. The leaf canopy will also radi­

ate' longwave radiation, ELtT4 , upward and downward. Hence,the net 

energy absorbed by the leaf canopy will be: 

Net Q abs = (1 - f) [k sS + k sS + Sr gsk S/w + kLt 

(Ra + SRS/w + Q1Rs /w) - 2e tdT14 ] (2.3.9) 

Also, we have 

k = 82.t (Kirchhoff's Law, see Section 2.2) (2.3.10) 

The shaded surface receives a fraction (1 - f) of the downward transmitted 

flux from the canopy, tt (S + s), and of the emitted downward longwave 

flux, sEtaT0 
4 . In turn, the shaded soil surface will emit on a unit area 

basis (1 - f) R ,where R is the thermal radiation flux from the shaded 

soil surface. Hence, the net energy absorbed by the shaded soil surface
 

will be:
 

Net Qs abs= (1 - f) [kstSS + kgstsS + kg9 t T4 - R ] 

(2.3.11)
 

where
 

kgt = the absorptance of the shaded soil to longwave radiation 

The total energy absorbed by a vegetated soil surface, where the 

vegetation covers a fraction (1 - f) of the total surface, will be:
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= + +Net Qabs Qg abs Q1 abs Qs abs QTRANS - QCONV (2.3.12) 

(see Equation (2.3.h))
 

It should be pointed out that it is involved to derive an expres­

sion for absorption, reflection and transmission coefficients of a leaf 

canopyI in general because of its cormlex geometry. 
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2.4 Fuvironnental affects 

on the Plant Leaf Ter.,peratures 

(A) Introduction
 

Basic information regarding the relative temperatures of leaves has 

been available since the work of Askenasy (1875). He observed that
 

thin leaves in sunshine were 4 to 50 C warmer than air, while the thick 

leaves of succulent plants were about 200 C warmer than the surrounding 

air. Since his time there have been a large nmiber of articles published 

in the general area of environmental effects on the plant leaf temperatures. 

Only a part of some of the relatively recently published articles will be
 

summarized in this Section. 

The temperature of a leaf depends on many environmental factors like 

air temperature, relative humidity, wind velocity, solar irradiance, in­

take water temperature, etc. 10 5' 100, 6o These are described briefly 

under the following headings. 

(B) Temerature Variations Over Leaves 

Cook 2 1 (1963) investigated the normal variation in tomato leaflet
 

temperatures and found the extremities of the plant leaflet, where the
 

veins are the smallest and fewest in number, to be the warmest. The max­

imum gradient of 1.8' F eristed across the leaflet due to variation in
 

transpiration. He found no sigaificant temperature variation from leaf­

let to leaflet, from leaf to leaf, or from plant to plant (i.e., the max­

imum deviation was about 0.30 F). Of course, this result is somewhat 

limited, because all the plants used were young growing plants varying in
 

height from about 3" to 12" and it is based on limited experiments of one 

author.
 

(C) Effect of Air Temperature 

Under normal conditions one of the most important parameters in de­

termining leaf temperature is the air temperature. Many measurements of 

leaf temperature have been made by Clum18 (1926), Curtis 25 (1938), Ansari 

and Loomis 3 (1959), Cook 2 1 (1963), Gates 3 2 (1963), Wiegand and Nanken2 0 5 
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(1966), Myers et al. 3 (1966), Gates3 5 (1968), and others. These measure­

ments have shown that the leaves in sunlight may have temperature up to 

20 c21 , 8 to 90 c105 , or 10 bo 150 C31 , but seldom more than 200 C3 36,31 

above air temperature. Gates3 5 (1965) found that on overca;t days, leaf 

temperatures in his yard shifted rapidly from 6 to 80 C above the air 

temperature to 2 to 40 C below it as the clouds alternately obscured the 

sun. Gates 36 has pointed out that in spite of the three primary mechanisms 

by which a plant leaf may prevent its temperature from rising too high 

above air temperature (i.e., low absorptance to incident radiation, free 

transpiration and free convection), there are many pieces of evidence to 

suggest that the plant leaves may get too warm to remain physiologically 

active, or indeed viable. Leaf temperatures often reach 500 C which is 

close to the denaturation temperature for most plant proteins; a few de­

grees higher will destroy the proteins. Thus, there is a need for deter­

mining temperature of leaves accurately. 

The temperatures of leaves can also be lower than the air tempera­

ture. For example, Ansari and Loomis 3 (1959) found temperatures of 

leaves, sometimes at night, about 20 F below the air temperature, when the 

leaves were radiating to cold glass or clear sky. Readings of 50 F below 

air were obtained-ix-one-experiment when plants- from-a-green-house--were­

rapidly moved to a dimly lighted laborstory with a relative humidity of 

25%. Gates 3 6 (1968) found that shade leaves of Populus deltoides were at 

300 C when the air temperature was 32' C. 

(D) Effect of Sunshine 

Ansari and Loomis 3 (1959) reported that the leaves, about 2 - 50 C 

above the air temperature could be heated by sunshine to about 200 C above 

the air temperature and finally cooled back to their original temperature 

by shading. The rate of cooling of leaves was found to be approximately 

linear. Leaves could also be heated 1 or 20 C by radiation from nearby 

heated surfaces. Gates 31 (1963) has given the temperature of Quercus 

macrocarpa leaves in the shade, sun and at cloudy times of the day. 

Loomis 65 (1965) found that leaves in direct sunlight heated rapidly to 

equilibrium temperature of 6 to 100 C above air for thin leaves and to 
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300 C or more for very thick leaves before reaching a steady temperature. 

The heating and cooling curves shown by wilted leaves were not significant­

ly different from those of transpiring leaves. Dried leaves heated less 

and cooled faster than normal, transpiring leaves. Wiegand and Namkenl 05 

(1966) found that a unit increase in solar radiation (from about 0.5 to 

1.5 ly/min) resulted in 9 to 100 C increase in leaf temperature. 

(E) Effect of Intake Water Temoerature 

Cook2 1 (1963) lowered the water temperature taken up by the tomato 

plants at 760 F, to 340 F over the eight hour period, but it hid no effect 

on the tomato leaflet temperature. This result is somewhat limited be­

cause it is based on the experiment of one author on one crop. 

(F) Effect of Free and Forced Convection
 

Leaves lose or gain heat by convection to the air around them. Gates
 

(1968) pointed out that air is only a fairly good insulator, and there­

fore, leaves are only partly decoupled from air temperature. The tempera­

ture gradient from the surface of the leaf to air occurs across a boundary
 

layer of air adhering to its surface which causes the temperature of large
 

I-"q +o %e more decoupled from air temperature than the temperature of 

small leaves.
 

The energy exhange by convection can be expressed by
 

QC0NV = hcAT (2.4.1) 

where
 
h = convection coefficient which depends upon shape, orientation
 

and size of a leaf
 

AT = difference between leaf temperature and air temperature
 

Gates3 4 (1964) has given expressions of convection coefficient for a
 

flat leaf for free and forced convection. He has also given the figures
 

illustrating the energy transferred from a leaf by radiation, free and
 

forced convection, and transpiration as a function cf the departure of
 

leaf temperature and angle of leaf from horizontal.
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Ansari and Loomis 3 (1959) found that wind at 5 m.p.h. decreased the 

value of TL - TA (leaf minus air temperature) to about half of its original
 

value. Cook 21 (1963) found from wind tests on tomato leaflet, that tran­

spiration was the dominant mode of heat transfer from velocities 0 to 

350 feet per minute, that convection was the dominant mode from velocities 

350 - 1100 feet per minute, and that velocities above 1100 feet per minute 

had no effect on leaf temerature. Loomis 6 5 (1965) reported that leavres 

in sunshine were cooled quickly toward air temperature by wind at 5 m.p.h.
 

Aston5 (1969) found that the exchange coefficients for free and forced
 

convection of a vertical leaf agreed with the calculated value.
 

(G) Effect of Transpiration
 

Transpiration is a very important factor affecting the leaf temperature. 

Transpiration converts the water in the leaves to water vapor which is e­

mitted through the stomates, which can be as many as 20,000 per sq. cm. of 
35
 

leaf surface 3 On a hot sunny midday, when heat load is at its peak,
 

transpiration rate is also at its highest and produces maximum cooling ef­

fect, and prevents or at least delays wilting. Gates 33 (1964) indicated
 

that by the mechanism of transpiration, fully sunlit leaves may have their
 

-temperature-depressed-belowair-temperature._ Gates3U19A5) has given a 

remarkable example of temperature control by transpiration. It was found 

that the temperature of sunlit leaves of Mimulus cardinalis- (monkey 

flowers) grown on well watered soil ranged from 30 to 350 C; whereas, the 

temperature of the leaves of a live oak, grown a.few yards away from
 

Mimuls cardinalis, in drier soil ranged from hO to 4B3 C. The sky was
 

clear and the air temperature was about 370 C. Monkey flower plants were
 

also placed in a growth chamber under even and constant illumination. 

He found that when the air temperature was about 300 C or lower, the mon­

key flower leaves were warmer than the surrounding air, when the air temper­

ature was raised above 300 C, the leaves remained cooler than air. 

Knoerr and Gay 57 (1965) found in a green house at air temperature of about
 

410 C that the non-transpiring leaves died almost immediately, and tran­

spiring leaves died after a short period of exposure. Cook and Dixon
 

(1964) reported that a definite and significant temperature gradient
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existed over an area of a tomato leaflet which was apparently due to 

the variations in transpiration across the leaflet. Cook (1967) 
reported an analytical and experimental study of neat transfer and 

transpiration from a leaf. He showed that the variations in the magni­

tude of the convective and stomatal resistances to diffusion were 

critical in determining the overall transpiration. Changes in the
 

environmental conditions were shown to be mainly responsible for 

changes in the stomatal or pore resistance to diffusion rather than 

the convective resistance to diffusion. He pointed out that both resist­

ances, however, must be accounted for in any determination of overall
 

transpiration.
 

*G. D. Cook, Ph.D. Thesis, Purdue University, Indiana, 131., 1967. 
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2.5 Theoretical Aspects in Infrared Radiometry 

(A) Atmosoheric Interference
 

Atmosphere absorbs, scatters and emits radiation. The main atmospheric
 

constituents which absorb and emit radiation in our usual wavelength region 

of interest -- 4 to 14 pm -- are: carbon dioxide, water vapor and ozone. 

Strong absorption by CO2 exists in the 2.7 pm region9 8 , the 4.3 pm 
region and the region between 11.4 and 20 pm. Weaker absorption bands
 

are present at 1.4 pm, 2.0 pm, 4.8 Im, 5.2 pm, 9.4 pm and 10.h prm. Major
 
H20 absorption bands9 8 are at 1.87 pm, 2.70 pm and 6.27 pm. Minor
 

water absorption bands are at 0.94 pm, 1.1 pm, 1.38 pm, and 3.2 pm. Ozone
 
absorbs 9 7 in the narrow band in 9.35 to 9.90 pm; however, 95% of this ab­

sorption occurs above 11 km for most areas (see ref. 58 , p. 102). 
64


Lensehow and Dutton (1964) have pointed out that the effect of atmos­

pheric absorption and emission is negligible if distance of the radio­

meter to the target is less than 100 meters. Bergstrom (Ph.D. Thesis, 

Purdue University, 1972) has done theoretical study of the thermal struc­

ture and dispersion in polluted urban atmospheres. 

(B) Environment Radiation
 

The radiation incident on plant canopy comes from sun, sky, clouds,
 

-atmosphere -and the surroundings. The- solar-radiation in the-h to 14 pm­

thermal infrared region is negligible (Section 2.5(0)). The radiant 

temperature of the clear sky can be as low as -500 C but it usually lies 

between about -300 C to about -10 C; thus, the sky radiation can be 

neglected. Idso and Jacksonh8 (1968) have reported that the absolute 

error in radiometrically determined surface temperatures caused by ne­

glecting the fluctuations of sky radiant emittance over a diurnal period, 

can be as high as 0.550 C, for surfaces with temperatures between 00 C and 

60 C and infrared emittances between 0.90 and 1.00. Jackson and Idso53 

(1969) have given the ambient temperature effects in infrared thermometry. 

Thick cloud are good blackbodies (see ref.[96] p. 98). Because of 

the emission and absorption bands of the atmosphere at 6.3 pm and 15 pm, 

a cloud may not be visible in these regions and the radiation at these 

wavelengths is determined by the temperature of the atmosphere. Hovis 

et al. * (1967) have given the spectra of reflected solar and emitted 

*tW. A. Hovia, Jr., and.M. 'Tobin, Appi. Opt. 6, p. 1399, 1967. 
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thermal radiation from natural surfaces and clouds in the wavelength ranw 

1.6 Pm to 5.4 Pm. Measurements were made, from a jet aircraft, of 

characteristic spectra of a wide variety of surface and cloud conditions 

during day and night flights. It should be pointed out that when the sky 

is overcast with clouds, the radiant energy coming from the target can be
 

significant or even of about the saine magnitude as compared to the emitted 

radiant energy from the target, and thus, the infrared radiometer does not 

sense the true radiant temperature of the target. 

Gates 34 (1964) gave the typical value of total atmospheric radiant 
-flux density on a horizontal leaf to be equal to 0.48 cal. cm- 2 rin , 

most part of which is in the thermal infrared region. The surroundings 

of the plant canopy may be plants, rocks,soil, buildings, etc. The ra­

diation from surroundings of the target depends upon the type of surroundings. 

(C) Contrast Between Reflected and Emitted Radiation 

from a Natural Target 

It has been pointed out by several authors that for wavelengths shorter 

than 2 In the reflected solar energy from a typical plant and/or soil pre­

dominates the radiant energy eitted by it; whereas, for wavelengths larger 

than 11 Um, the emitted energy predoinates the relflected energy. The con­

trast between reflected and emitted radiant energy is low in the spectral 

region 2 to 4 Um (see ref. [621 pp. 84-85; ref.[27] pp. ll14). It is im­

portant to note that we should compare the radiant flux density reflected 

from the target to the radiant flux density emitted by it. An expression 

for the solar radiant flux density reflected from an infintesimal area of 

the target is derived as follois, with the help of ref. [991. 
Consider an element of a target shomn in Figure 2.5.1. On a clear 

day (cloud free) most part of solar radiation comes directly from the sun. 

Let us consider only direct solar energy in this particular case. Let 

LX,i (') be the spectral radiance of direct solar radiation incident on 

dA from direction '. the spectral irradiance or direct solar radiant ener­

gy incident per unit area, time, wavelength and confined within the solid 

angle do' about the direction ' is 
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z 

Incident ds I 

Y
dA 


s =Direction of incident solar radiation 

s = Direction of reflected radiation 
Figure 2.5.1 Diagram Showing Directions of Incident and Reflected
 

Radiation 
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dEx') = LXi(s')ccos'Qt [Figure 2.5.1] (2.5.1) 

where
 

LX,i (') = *a(X, 's)LX, b(55000 K) (2.5.2)
 

Ta(X, a') = spectral transmission of the atmosphere in direction a'. 

LX, b(55000 K) = spectral blackbody radiance at 5500' K (sun's 

temperature). 

Spectral solar irradiance Ex = I, (')oos'd' (2.5.3) 

where
 

I= solid angle subtended by the sun at the earth's surface 

subscript S = refers to direct solar radiation
 

or
 

EXS= LX, i cosa sR' (2.5.4) 

where 

es = angle subtended by the sun with the z axis (Figure 2.5.1) 

We have assumed that the radiation from the stn comes from a very small solid 

angle, n and thus, LA, i and cosa' have been considered to be constant within 

solid angle, S. 
2or { fl

EX, S LX, i d2 cosas (2.5.5) 

where 

RS = radius of sun 

d = distance of sun from the earth 

The spectral radiance of reflected radiation in the direction within the 

solid angle dO is 
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C'r(- S) = r(X, s' - s)dE [by definition] (2.5.6)S 

where 

r(, s' - s) = reflection distribution function for the direction 
t g to S. 

The spectral bidirectional reflectance p(L, s' - s) is defined as the ra­

tio of radiant energy reflected by the surface into the beam (a , d) from
 

the incident beam ('s', d'), to the radiant energy in the incident beam 

(a', dR'), and is given by 

p(X, 'S - 's)= r(X, S' - t?)cosedl (2.5.7) 

The spectral radiance of reflected radiation in all directions is a
 

result of contributions from the radiant energy reflected from the scene 

from all directions (Q' = 2n) and can be obtained by integrating Equation 

(2.5.6) over the hemisphere 

L, f dL (' - s)cosed (o denotes hemisphere) (2.5.8) 

Spectral directional hemispherical reflectance is defined as the ratio 

of radiant energy reflected by the surface into all directions from the 

incident beam (C', d') to the radiant energy in the incident beam. It is 

related to the bidirectional reflectance as 

pC, ti) = r-s, -s)cosed (2.5.9) 

or 

p(N, t') = f df r(X, e', 0';e, *) cosesinede (2.5.10)
0 0 

The incident solar radiation comes hemispherically (from all direc­

tions) when the sky is overcast with clouds. Even when the sky is clear, 

there is some scattered solar radiation coming from all directions. 
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Spectral hemispherical reflectance is a useful quantity for computing re­

flected radiant flux density of hemispherical irradiance. Spectral hemi­

spherical reflectance is given by
 

p(X) = f p(A, tlL C')cose'dQP 	 (2.5.11) 

where 

n = denotes integration over the hemisphere 

The hemispherically incident solar (direct and scattered) irradiance is 

given by 

E L (s')coso'd' 	 (2.5.12)
AM A, 	± 

It turns out that for natural targets -- say plants and soils, hemispheri­

cally emitted radiant flux density e(X, T)LA, b' can be usually neglected 

as compared to the hemispherically reflected radiant flux density, P(A)E,,i, 

in the wavelength range: 0.35 < A < 2 Pm 

where 

4A, T) = 	hemispherical spectral emittance of the natural target at 

temperature T and wavelength X. (See Section 2.2 for defini­

tion of s(X, TI) 

L X, b(T) = blackbody spectral radiance at temperature T and wavelength 

X.
 

p(A)E Xcan usually be neglected as compared to E0, T) L , b in the wave­

length range: 4 c X < 20 pm. p(A)EX is of the sane order as c(XT)LXb(T) 

in the wavelength range: 2 < A < 4 pm. 

Hemispherical directional reflectance is quite useful for applications
 

to machine analysis of remotely sensed data. The direct solar radiation 

comes in a relatively small solid angle but the scattered solar radiation 

comes from all directions. The radiation reflected from the target which 

reaches the detector of multispectral scanner of aircraft or satellite 

comes in a relatively small solid angle. Thus, the bignal received by the 



.multispectral scanner in the spectral channel of wavelength range X1 to A2 

is directly proportional to the solar irradiance in the wavelength range 

XI to X2 and the bad hemispherical directional reflectance of the target 

in the direction of remote sensing in the wavelength range A1 to A2 . 

Reflection distribution function is useful because on a clear (cloud free) 

day, most part of-the solar radiation comes directly from the sun and the 

reflection distribution function can convert direct solar snectral irra­

diance to the spectral reflected radiance of the target. Bidirectional re­

flectance can convert direct solar spectral radiance to the spectral re­

flected radiance of the target.
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2.6 Emittance of Plants 

(A) Introduction
 

All objects above absolute zero radiate energy by virtue of their 

temperature and emittance. At temperatures normally exhibited by 

natural objects at or near the earth's surface, this radiation is 

almost entirely in the infrared wavelength region from approximately 

i'm to 100 Jim. 

Planck's radiation law states that at any given temperature, T, 

and wavelength, X, the maximum possible spectral radiance of emitted 

radiation is the blackbody spectral radiance at that temperature, T, 

and wavelength, X. 

No natural surface emits like a blackbody due to internal reflec­

tion of rays by the surface discontinuity. Therefore, spectral emittance
 

has been defined in Section 2.2. Thus, no instruments can yield a
 
torrect estimate of surface temperature by remote sensing if the
 

not taken into account. Gates and Tantraporn40
 emittance of the surface is 


(1952) have pointed out that accurate knowledge concerning the infrared
 

reflectance, absorptance, and emittance of leaves in the i.0 to 15.0
 

pm region is essential for a detailed understanding of the energy
 

exchange in the biosphere. Accurate knowledge of the infrared emittance
 

of plants is required in many diverse ecological applications. Most
 

researchers recognized this problem, but have neglected to avply the
 

needed corrections, arguing that all plant surfaces have a longwave
 

emittance of 0.95 or greater, most leaf emittances being 0.97 to 0.98.
 

(B) Theory and Error Analysis 

of Measurement by Infrared Radiometer 

Fuchs and Tanner 2 9 (1966) have discussed the theory of remote 

sensing of surface temperatures using infrared radiometer, a part of 
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which is summarized here. They made the following assumptions for 

remote sensing of plants. 

1.) Gray emittance in the wavelength range sensed by the radiometer 

(i.e., 8 um to 20 Pm) or 

e(X) =c(8 pm < A< 20 pm) 	 (2.6.1) 

2.) L() is independent of temperature.
 

3.) Kirchhoff's Law is valid. 

s(X) = a(X) = 1 - p() (2.6.2) 

(transmission 00 in 8 pm < X < 20 um) 

where 

p(X) = the reflectance at wavelength X 

Under these assumptions, the total apparent outward radiant flux denaity
 

measured by the radiometer is given by F0 • 

F = f(T) oT + (1 - e) f(TS ) Fs 	 (2.6.3) 

radiant flux---- radiant flux 
density emitted density reflected
 
by the plant from the plant
 

T = contact temperature of the plant
 

(See Section 5.5 for definition of plant temperature)
 

fCT) = f(X) F (T) dX 7 F (T) dA 	 (2.6.4)
0 X b 0 Ab 

where 

Fxb CT) = the blackbody radiant flux density at temperature T and 

wavelength A 

FS = environment integrated radiant flux density at tempera­

ture TS S
 

f() = 	 filter characteristics for the infrared radiometer (for 

example, for Barnes infrared radiometer: f(X) # 0, 

8 pm < X < 20 pm, f(A) = 0, otherwise). 
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Equation (2.6.3) is the fundamental equation describing the quantity of
 

radiation received at the detector of the radiometer. Since the abso­

lute value of f(T) is not important, but only its form, an assumption
 

is now made that f(T) is constant for the range of biological tempera­

tures encountered. The radiometer is calibrated according to the 

quantity
 

Fd Fo / f(T) (2.6.5)
 

here 

_ denotes that the quantity is defined.
 

Hence, 

F f(TS) s4 (2.6.6)+ ( - 0)
Fd -- e T U T F =(
 

where
 

Ts = full radiator surface temperature as sensed by the radiometer 

The radiometer interprets the contact surface temperature, T, to be full 

-IaL.urface temperatnre T . If E = 1, then T = T. Also, if thes s 

integrated full radiator temperature of the surroundings (TS) is equal 

to the contact surface temperature (T), then T = T. If the surface hass 

an emittance substantially less than unity, and if the surface images 

sun or cold sky, the full radiator surface temperature as measured with 

the IR radiometer may be quite different from the contact temperature. 

Hence, there is a need for determining emittance and the environment 

integrated full radiator temperature, Ts, accurately. Equation (2.6.6) 

can be rewritten as 

F = aT4 + (1 -c) F* (2.6.7)d S 
where f( T)

F* --a- FS 
S f(T)a
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Fuchs and Tanner assumed that F4 is a constant (i.e., indiependent3 
of temnerature T), which in turn assumes that f(T) is constant. f(T) = 

constant is a good approximation for small variations of T. Equation 

(2.6.7) can be rearranged to give
 

£ =.- 1 --.- (2.6.8) 
iT -F S 

Fd and T are experimentally measured values and contain measurement 

error. Let 6Fd and 6T be the reasurement errors in Fd and T respetively. 
Then Equation (2.6.8) can be rewritten as
 

F +S6F F* 
(2.6.9)
-F
+dor(TS d+ 6sT) 4 _F* 

where
 

Se = error in the determination of emittance 

ST 46T oT 

From Equations (2.6.8) and (2.6.9), assuming -< , T T _ F* 

S 

-< -l-andnegleting second--order-and-htger-ordersd-f-- -(i.., 

FT 2 ,T) 3 ,etc.), 
we get 

d 6T - -
(Fd -F)
OT F* 

(2.6.10) 

S 

It should be pointed out that Equation (2.6.7) is not an exact 

equation because of a number of assumptions made in deriving the equation. 

A complete error analysis should also include another term in 6Fd, re­

presenting the error due to the assumptions made. Equation (2.6.10) 

can be rewritten as 

16 I 16st,,' FI I(oW F ) - F) 1(2.6.l1) T -F 6T - hTI (Fd 

http:1(2.6.l1
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where 

I I = denotes the absolute value 

or 

7ITE (using 
-t cFc 16 triangle (2.6.12) 

SI inequality)
 

It should be pointed out that when the environment integrated 
. 14 

radiant flux density, FS = aT , the radiant flux density coming from the 

target is equal to aT (blackbody radiant flux density) irrespective of 

the emittance of the target. Thus, the radiometer cannot be used to 

measure the emittance of the target in this particular case. 

Using Equation (2.6.12), 16el is plotted against F* with the 

para eters s,T, I6TIand 16F.1 in Figures 2.6.1 to 2.6.4. It is clear 

from Figures 2.6.1 to 2.6.4 that the upper bound of 16Iel (absolute 

error in the determination of emittcnce) increases with the increase 

in F. Thus, for determination of emittance of the plant surfaces in 

the field accurately, the experiment should be conducted when the sky 

is relatively clear to have a small value of F* and hence small 16sl.S 
Figure 2.6.1 shows that the emittance of the target, say a leaf, has 

a very little influence on I6cl. Figure 2.6.2 shows that ISEI decreases 

with an increase in temperature. Figures 2.6.3 and 2.6.4 show that 

increasing the error in temperature measurements and radiomtric
 

measurements respectively, results in an increase in error in emittance 
The previous investigators have assumed that the emittance of 

the natural targets to be equal to one for the interpretation of multi­

spectral scanner data in the thermal channel. Neglecting the radiant 

flux density reflected from a target, Figure 2.6.5 shows the difference 

between temperature of the target and the band radiance tevperature 

(i.e., temperature found by assuming the target to be a blackbody) vs.
 

emittance for the thermal channels which have been used in multispectral
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scanner of Environmental Research Institute of Michigan, fornerly called 

Willow Run Laboratory, University of Michigan (4.5 to 5.5 pm, 8 to 13.5 

ukm and 9.3 to 11.7 pm), and Skylab (10.2 to 12.5 11m). Figure 2.6.5 

shows that for a given value of the emittance, the difference between 

temperature and band radiance temperature (see Section 2.2 for the 

definition of band radiance temperature) is least in the 4.5 to 5.5 pm 

thermal channel, as compared to the band radiance temperature in the 

other thermal channels mentioned above. HOcuever, there are certain dis­

advantages of using 4.5 to 5.5 pm thermal channel, given as follows. 

(i) Most natural targets have lower bend emittance in the 4.5 to 

5.5 pm thermal channel as compared to their band, emittance in 

other thermal channels shown in Figure 2.6.5 (Sections 2.6(C) 

and 2.6(D)). 

(ii) Atmosphere is less transparent in the 4.5 to 5,5 pm thermal 

channel as compared to its transmission in other thermal 

channels shown in Figure 2.6.5. 

(iii) 	 The band radiance of a natural target in the temperature range 

00 C to 500 C (temperature range generally encountered in the 

natural targets) is considerably smaller in the 4.5 to 5.5 pm 

thermal channel as compared to its band radiance in other 

thermal channels shown in Figure 2.6.5. 

Thus, signal to noise ratio in the thermal channel 4.5 to 5.5 pm is ex­

pected to be higher than in the other thermal channels shdwn in Figure 

2.6.5 	 (Section 5.2). 

(C) Emittance of Leaves 

The emittance of a surface depends on its roughness as well as its 

temperature, in general. Emittance of leaves given by Falckenberg2 8 

(1928), Gates 34 (1964) and Gates et. al. 3 9 (1965) range from 0.95 to 

0.98. 	 Gubareff et. al..3 (1960), p. 293, indicated the eittanee of 

the leaves to be more than 0.90. Turrell and Austin9 5 (1965) reported 

the emittnce of citrus leaves to be about 0.87, using the data of 

Gates and Tantraporn 4 o (1952). Gates and Tantraporn 4O measured the 

reflectance of upper and lower surfaces of leaves of deciduous trees 
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and herbaceous plants at 3, 5, 7.5, 10, 15 and 25 um, at an angle of 

incidence of 20* and 650. The infrared radiant source was the Globar, 

whose radiation was reflected off the leaf surface at the desired angle 

by means of spherical front-surface mirrors and then focussed upon the 

entrance slit of the infrared spectrometer. Neglecting the transmit­

tance of plants in the infrared region, one can determine the emttance 

using Kirchhoff's Law, i.e.,
 

e(M 	= 1 - ()M 

where
 

c(X) = spectral emittance 

p(X) = spectral reflectance 

It can be seen from their data that the reflectance of most leaves 

in the infrared beyond 2 pm lies between 0 and 10%, and its value varies 

from leaves of one plant to another. Plotting the spectral reflectance vs. 

wavelength from their data the follwing was concluded. 

1. 	The-shape andvalue of the spectral reflectance varied signi­

ficantly from leaves of one plant to another. The reflection 

from a leaf beyond 2 Um is expected to be mainly from the sur­

face because of strong water absorption bands. The author 

believes that the significant differences in spectral reflec­

tance curves may be mainly due to differences in surface 

geometry rather than the differences in the index of re­

fraction of the leaf constituents close to the leaf- sur­

face . Birthll (1971), pp. 13-29, has given diagrams illustra­

ting the reflection of light rays from smooth and rough sur­

faces.nsing Fresnel's equations and Snell's law. 

2. 	The spectral reflectance variation from leaves of one plant to 

another was more significant for an angle of incidence of 650 

as compared to an angle of incidence of 200. 

3. 	 Almost all the spectral reflectance curves had a positive slope 

from 3 to 10 pm. A few of the spectral reflectance curves had 



a negative slope from 10 to 15 pm. 

4. 	 The reflection of verbascum thapsus (Mullen, hairy surface) was 

found to be zero from 3 to 15 Pm. This is probably because the 

light rays got trapped on the hairy leaf surface due to multi­

ple 	surface reflections. The author believes, yet to be con­

firmed by experiments, that the reflection from a leaf in the 

thermal infrared region (i.e., 4-14 pm) is likely to be more 

specular as compared to the reflection in the visible and near 

infrared wavelength region, because a typical light ray has to 

pass through relatively a fewer number of interfaces in the 

leaf before it gets reflected in the thermal infrared region 

as compared to the visible or near infrared wavelength region 

(see 	Chapter III).
 

Gates and Tantraporn 4 0 also found that transmittance of leaves was 

zero in the infrared beyond 1.0 Pn; whereas, Myers and Allen 7 1 (1968) 

found that the transmittance of a mature cotton leaf was similar and of 

the same order of magnitude, as its reflectance in the 0.5 to 2.5p m 

region. This shows that the result of Gates and Tantraporn is not valid, 

in general, for all leaves.
 

Monteith and Szeicz 7 0 (1962) and Gates 32 (1963) estimate that as­

suming the emittance of the plant surfaces equal to one may cause errors
 

of at most 0.20 C in the measurement of their temperature. Fuchs and
 

Tanner 29 (1966) show from a simple calculation that if the incident 

thermal radiation from the sky and surroundings were 300 watts per square 

meter, corresponding to an apparent sky temperature of -40 C, and if the 

surface temperature were 250 C, a change of emittance from 0.95 to 0.98 

would cause a measurement error of 2.20 C. For many detailed investiga­

tions, such discrepancies are intolerable 20 . 

Fuchs and Tanner 2 9 (1966) found the emittance of single leaves of 

snap beans and tobacco to be 0.96 and 0.97, respectively. They covered 

the temperature-controlled anodized surface by the base of a "skewed" 

aluminum cone with a highly polished reflecting surface. The leaf was 

placed at the base of the cone, and the apex of the cone was cut to fit 

the entrance pupil of the infrared thermometer, so that the leaf behaves 



like a blackbody. Idso et al. (1969) described a method for deter­

mining the infrared emittance of individual plant leaves which is rela­

tively simpler than Fuchs and Tanner (F - T) method. Measurements on a 

wide variety of plant surfaces by this method indicated that sigificant
 

differences of emittance exist among the various species. The emittance
 

values ranged from about 0.94 to about 0.995. They pointed out that the
 

values of emittance determined by infrared thermometers of different
 

spectral sensitivity are not uniquely related, therby emphasizing the
 

importance of emittance measurements.
 

The emittance of a single leaf is not representative of the emittance
 

of a plant canopy because of the multiple internal reflections resulting
 

from the plant geometry; therefore, the emittance of a plant canopy has 

to be determined separately29 . For determining the emittance of a plant
 

canopy, one has to define a meaningful temperature of a plant. For exam­

ple, the temperature of a plant canopy can be defined as the average of 

the temperature of its leaves (Section 2.2). It is extremely difficult
 

to measure the temperature of the plant surfaces in the field conditions
 

because the surface temperature varies quite rapidly especially when the 

wind is blowing (Section 5.4). Fuchs and Tanner2 9 determined the radia­

tion emitted by the vegetal surface. Then, they covered the vegetal sur­

face with a bottomless, hemispherical "pop tent"14 covered on the inside
 

with aluminum foil so that vegetal surface behaves approximately like a 

blackbody. They determined the emittance as the ratio of radiant flux
 

density emitted by a vegetal surface to the radiant flux density emitted
 

by it when it is covered with the pop tent. Covering the vegetal surface
 

by the tent changes its energy balance and thus its surface temperature.
 

During daytime, the tent cuts off the solar radiation and sky radiation.
 

It affects the convective heat ,exchange and may also modify the transpi­

ration pattern. They found the emittance of dense canopies of alfalfa 

and sudangrass to be between 0.97 and 0.98 on clear, calm nights when 

surface temperatures are more steady. 

It is believed that the emittance of a wide variety of leaves 

has not been measured carefully in the natural environment in which 

the plants grow. The Laboratory for Applications of Remote Sensing (LARS) 
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at Purdue University has an extensive program to measure the spectral
 

emittance of plant surfaces. LARS has the Exotech Model 20C Spectro­

radiometer which is capable of taking reliable spectral radiometric 

data under rigorous field conditions in the wavelength region 0.38 to
 

14 um (Section 5.1). They have also recently acquired a Nernst Glower
 

capable of operating at temperatures as high as 28000 K, providing 

spectral energy output over the entire spectroradiometer range. A
 

spoked disc is used to chop the output beam. This is an ideal instru­

ment for measuring the reflectance of the leaves and/or plant canopies
 

in the field, because any radiation other than what is provided by the
 

glower is averaged to zero and thus, the surrounding radiation has no 

effect on the measured reflectance. Knowing the spectral reflectance,
 

spectral emittance can be calculated using Kirchhoff's Law on the spec­

tral basis (Section 2.2). The effect of orientation, temperature, 

moisture content, plant diseases, nutrient deficiency, etc., on the
 

leaf and plant spectral emittance shall be studied. This will help in
 

interpreting the remotely sensed data of the thermal channel. For ex­

ample, it was pointed out in a LARS report 63, p. 102, that no definite
 

conclusions concerning the value of the thermal infrared data cou] d be 

assessed.
 

(D) Emittance of Soils
 

With the advent of radiation data now available from the infrared
 

measurements made by the satellite, there is an increasing need to know 

accurately the values of terrestrial surface emittance in order to inter­

pret the data1 3 . Most of the investigators (for example, Wark et. 
al. 1
 

have assumed black earth in interpreting data of the satellite. Buettner 

et al.13 (1964) have pointed out that the other data and28literature are 

quite conflicting and confusing. For example, Falckenberg (1928) 

shows that sand of the Baltic has an emittance of 0.89 at 300' K. While 

al.59  
Kruse at (1962) give a value for "terrain of 0.35 (it is not
 

clear here whether this is the emittance of the whole spectrum or just
 

a portion of it, but presumably the entire spectrum). BarnesT (1963)
 

lists values of emittance of 0.28 to 0.44 for gravel, plowed field, and
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granite. Falckenberg28 (1928) also lists the value for snow emittance
 

as 0.995, while Miller 6 9  (1963) lists the window value (water vapor 

window) as 0.35. 

Buettner et al.13 also reported that infrared signals received in 

the 8 to 12 pm water vapor window by weather satellites and aircraft are 

dependent on surface temperature, surface emittance and atmospheric inter­

ference. Nowhere can variations of surface emittance be neglected in 

order to evaluate the correct surface temperatures. They presented three 

methods of determining surface emittance: (1) reflection data from polished 

samples run on a spectrophotometer, (2) a device constructed by Buettner 
and ern13 itneainredfo 

and Kern 1 3 called an emissivity box, and (3) emittance as inferred from 

the TIROS satellite data. They gave geological interpretations of the 

TIROS satellite data along with the values of emittance determined by the 

above three methods. Emittance of quartz, granite, feldspar, obsidian, 

basalt, dunite, dolomite, sand, water, etc., ranged from about 0.7 to 
0.97. 

In the emissivity box (Buettner and Kern (B - K) Method 1 3 ), the 

radiosity of the soil is first measured when it is exposed to a highly 

reflecting enclosing surface. The soil is then exposed to a highly e­

mitting surface. The emittance of the soil is determined as the ratio 

of the two masurements. Because of the large size of the B - K appara­

tus this method is used almost exclusively for determining infrared 

emittance of bare soils and rocks. On the other hand, the method pre­
2 9
sented by Fuchs and Tanner (F - T Method, see Section 2.6(C)) is
 

well adopted to this use and, in addition, is suitable for measuring 

the infrared emittance of plant leaves, but it requires that the base of 

the cone needed to create the blackbody cavity should be larger than the 

individual leaves of most plants. Fuchs and Tanner 3 0 (1968) recommended 

that aluminum cones with apex angles of 1200 or larger, or shallow 

cylindrical cavities which have smaller apparent emissivities, be used 

to improve accuracy of the measurements. Idso et. al. 49 (1969) pro­

posed a method for determining emittance of plants and soils which over­

comes the dimensional limitations of the methods of Fuchs and Tanner as 

well as Buettner and Kern and it gives results in good agreement to both 



51
 

of them. 

Fuchs and Tanner 30 (1968) pointed out that the computation of back­

ground radiation implies constancy of the spectral emittance in the band 

pass of the infrared thermometer. In the case of quartz, which has a 

strong reflection band near 9 Um, this assumption fails. The resulting
 

error can be minimized if background radiation is small, but in the 
"emissivity box" used by Buettner and Kern background radiation is large 

which results in an overestimate of emittance. Fuchs and Tanner have also
 

found that emittance of Plainfield sand in the 8 to 13 um decreased with
 

moisture content. They have given a typical diurnal trend of temperature 

and emittance of the soil. 

Hovis, Jr.h6 (1966) has given spectral reflectance of some common 

minerals like carbonates , sulfates, nitrates, salt, silica, etc. from 

0.5 to 6 pm. He pointed out that the infrared reflectance spectra of
 

these minerals exhibit spectral absorption band patterns that can be
 

detected in reflection from surface minerals.
 

Hovis, Jr.47 (1966) made the spectral reflectance measurements in
 

the 0.5 to 22 pm, from a number of soils including some beach sands and 

some common surface minerals -- calcium carbonate, calcium sulfate or 

gypsum, sodium chloride, sodium carbonate, and sodium nitrate. He re­

ported that if the measurements are restricted to the windows in the 

atmosphere of earth, the 10 um to 12 pm interval seems to be the best 

choice for radiometry since, in this interval, minerals ae most uniform­

ly black. Lorenz 66 (1966) found the maz reflectances of some natural 

surfaces - sand, concrete, coarse gravel, brick roof tile, finct basaltic 

gravel, asphalt and lawn to be in the range 0.027 -. Gray enit­o 0.062. 


tance can be found from gray reflectance using Kirchhoff's Law (Section
 

2.2).
 

(E) Emittance Changes
 

Gates 35 (1965) has pointed out that plants, like animals, must 

regulate their temperature in order to function et optimum physiological 

efficiency. This is accomplished through three mechanisms: radiation, 

transpiration and convection. The question arises: does a leaf adjust 
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its emittance in order to regulate its temperature? The emittance of a 

leaf can be changed by changing its surface geometry and/or its orienta­

tion. A change in environmental conditions can change the leaf moisture 

content, which in turn changes its surface geometry. The author believes,
 

yet to be confirmed by experiments, that it is unlikely that a leaf ad­

justs its surface geometry in order to regulate its emittance and hence 

temperature, because it is much easier for a leaf to change its orienta­

tion in order to adjust its heat load and hence temperature. For example, 

on a hot sunny day, it can change its orientation vith respect to direct 

sunlight to reduce solar radiation absorbed by it. 

Conway and Van Bave11 9  (1966) reported that their radiometrically 

determined temperatures of the plant canopy could be explained by postu­

lating a widely varying emittance of the plant canopy. They said that the
 

possibility of widely varying emittance of the plant canopy exists since
 

many changes occur in a plant canopy, as factors such as wind speed,
 

solar radiation and water availability vary, but no attempt was made to 

study these.
 

(F) Stresses and Temnerature of Plants
 

No important application of the ifnfrared radiometry of plants has 

been discussed so far in this chapter. Do the stresses caused by-inects, 

plant diseases, physiological disorders, nutrient deficiency and adverse 

environmental effects- cause detectable temperature and/or "emittance 

changes of the plants to be detected by remote means? This statement has 

not received much attention in the past, but it is a promising and a 

very useful field of research. Several authors 73, 105 have pointed
 

out that the measurement of plant leaf temperatures is a technique 

for studying plant-water relations of agricultural crops, for estimating 

soil moisture, and detecting the occurrence and extent of soil salinity. 

It was pointed out in a paper by Myers and Allen 71 that the remote 

sensing of plant canopy temperatures appears feasible in assessing need 

for irrigation, or the extent and severity of drought; in determining 

distribution of precipitation on rangeland; in assessing the effect of 

slope on soil moisture distribution, etc. 
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It is well known that organisms have an optimum temperature for cer­

tain biological activity and that conditions are less favorable toward
 

lower and higher temperatures 31 . These physiological processes are con­

trolled by enzymes and other proteins in a complex manner; nevertheless
 

certain definite reaction rates produce an end result which is temperature 

dependent. At very low temperatures all reactions may cease, and at too 

highi a temperature, total destruction of organic complexes will occur and 

death will ensue. For example, soil temperatures too hot or too cold in­

hibit seed germination 8 . The tolerable temperature regimes for many 

plants is given by Gates 3 1 (1963). 

Gates 38 (1970) has pointed out that the chemical status of plants 

determines normality or abnormality of growth. A chemical deficiency for 

a plant may cause chlorosis, premature yellowing and abscission of leaves, 

burning of leaf tips, bronzing, wilting, mottling, necrosis, water stress,
 

cupping of leaves, flower-color changes, or other abnormalities. Abnor­

malities not only change the visual properties of the leaf surface (color, 

shape, size, pubescence), but also the leaf temperature relation to the 

incident energy absorbed and to the transpiration rate changes. An abnor­

mality affecting the absorptance to incident sunlight will affect the 

energy budget and hence the leaf temperature. Changes in temperature 

are detected radiometrically. Thus, it is quite important to know the 

temperature of natural targets -- say plants -- to detect the subtle 

changes in temperature caused due to stresses. 

Clum 18 (1926) and Curtis 24 (1936) noted that soil moisture stress 

could induce increases in plant leaf temperatures of 2' to 5' C. Gates 

(1963) found the temperature differences as great as 20 to 30 C in cotton 

as a result of moisture stress. Tanner 92 (1963) conducted studies which 

showed that the moisture stress of potatoes could increase their tempera­

ture up to 30 C. He concluded that the plant temperature may be a valua­

ble qualitative index to differences in plant water regimes. Coupled 

with a better understanding of transfer processes at the plant surfaces, 

they may serve to provide quantitative data on plant-water status. The 

instrument used was a Barnes radiation thermometer which has an 8 to 13 

pm spectral band pass filter. Cook and Dixon2 2 (196!) found that a 
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definite and significant temperature gradient existed over an area of a 

tomato leaflet which was apparently due to the variations in transpira­

tion across the leaflet. Leaves in which stomata were allowed to open 

naturally in response to light attained temperature about 50 C lower 

than leaves in which the stomata were forced to remain closed. Wiegand
 

and Nanken 1 0 5 (1966) found that a decrease in relative turgidity from 

83% to 59% resulted in 3.6' C increase in TL - TA (leaf minus air tempera­

ture). They also found that variations in plant moisture stress signi­

ficantly altered leaf temperature and (T - T
L .A 

They gave multiple regression equations and correlations of leaf 

temperature and (TL - TA) with solar radiation, relative turgidity and 

air temperature, at a certain plant height, by moisture treatment. Cox 

and Boersma 2 3 (1967) observed a significant interaction between soil 

water stress and soil temperature for stomatal closures. Stomatal clo­

sure was observed even in the so-called wet range of soil water stress. 

Wear102 (1966) and Wear et. al. 1 0 3 (1966) used infrared remote sensing 

successfully in studies of trees in the forest which were root rotted and 

attacked by insects. They found that the damaged trees without visible 

symptoms had a temperature up to 20 C higher than undamaged trees. 

.yers and Allen 71  (1968) gave four thermograms obtained with a Barnes 

infrared camera during a study of diurnal plant canopy temperature chan­

ges in small, differentially irrigated cotton plants. In each of the 

thermograms, the lighter tones indicated warmer targets. Results from 

two years of salinity -- plant temperature studies showed that the soil 

salinity at a particular site is highly correlated with cotton leaf 

temperature. A regression relationship was established between leaf 

minus ambient temperature and the average soil salinity level in the 

1.6 meter profile 72 .
 

Chang et al. * (1968) gave the relationship of temperature to the 

development of calcium deficiency symptoms in Nicotiana tabacum. Tabacco 

was grown in controlled environmental growth chambers at five different 

temperatures ( 21, 23, 26, 29 and 300 C). Plants grown at 21 and 230 C 

developed no Ca deficiency symptoms, and only a few plants of genetical­

ly susceptible varieties (Burley 21 and Ky Exp. 22) developed Ca defi­

ciency symptoms when grown at 260 C. However, these varieties developed 

* S. Y. Chang, R. H. Lowe and A. J. Hiatt, Ag. J., 60, p. 435, 1968. 
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very severe Ca deficiency symptoms when grown at either 29 or 30' C, be­

cause an increase in temperature resulted in Ca accumulation in the stems 

and failed to reach meristem and terminal leaves. Read and Ashford7 9 

(1968) studied the effects of varying levels of soil and fertilizer 

phosphorus and soil temperature on the growrth and nutrient content of 

bromegrass and reed canarygrass. The study was conducted at three soil 

temperatures, on three soils, differing in levels of available phosphorus 

and applications of four rates of phosphatic fertilizer. Williamson and 
0 6 Splinter (1969) reported that the survival and growth of Nicotiana 

tabacum L. to poor soil aeration was largely dependent on the ambient 

temperature and light intensity. Johannsen 5 5 (1969) did a detailed study 

on the detection of available soil moisture by remote sensing techniques. 

He found that available soil moisture in the root zone area did not show 

a definite relationship with reflective or thermal responses. It was 

determined that an interrelationship of plant cover, plant height and 

soil moisture exists, which is believed to show more positive relations 

to reflective and thermal response. Plant moisture samples taken during 

the September mission showed a progressively cooler thermal response 

with increasing plant moisture content. 

Silva et al.84 (1972) reported that a sulfur deficient corn plant 

in an ambient temperature of 240 C, and a nitrogen deficient corn plant 

in an ambient temperature of 230 C, was 10 C cooler and 20 C cooler, re­

spectively, as compared to the healthy controlled plant when the surface 

located immediately behind the plants in both cases was 16.50 C. The 

preliminary conclusion made was that nutritionally stressed plants are 

not always hotter than a controlled plant, but apparently are influenced 

more strongly by environment. 

Hagner 4 4 (1969) found that AGA thermovision thermal infrared camera 

proved to be well suited for the detection of differences in temperature 

among spruce seedlings (Picea abies (L) Karst) and within the crown of 

one seedling. Temperature varied with the water status of the seedlings, 

thus many types of pathological and physiological phenomena, which influ­

ence the water supply of the whole or parts of a seedling, could be de­

tected by this method. Periferal parts of the seedling had different
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temperatures from the rest of the foliage and succulent shoots, in par­

ticular. Characteristic temperatures of healthy seedlings indicated 

that variations in activity or vigor may result in measurable tempera­

ture differences. The apparatus had earlier been used in the field, 

carried by truck and helicopter, thus it may also be useful for the iden­

tification of insect and fungi attacks. 

Gates 38 (1970) found that leaf temperature of alfalfa growing in 

saline soil to be 20 to 30 C warmer than the alfalfa grown in normal soil. 

He also found the temperatures of potassium-deficient sugarcane leaves to 

be 0.50 C to 1.50 C warmer than normal leaves exposed simultaneously to 

the sunlight. Chapman 16 (1966) has given a thoroughly comprehensive
 

compilation of information' concerning diagnostic criteria for the chemical 

status of plants, but the book makes no references, whatsoever, to spec­

trophotometry or radiometry as useful diagnostic techniques. Carlson1 5 

(1971) has given a thorough discussion on the remote detection of moisture 

stress by field and laboratory experiments. 

Bartholic et al. 8 (1972) used an airplane-mounted thermal scanner 

to measure irradiance in the 8 to 14 pm wavelength interval over an ex­

tensively instrumented agricultural area. The observed irradiances 

-corresponded to-cotton--plant--canopy- tenerature-d-fferences-up-t-6--C­

between the most and least water-stressed plots. They concluded that 

thermal imagery offers potential as a useful aid for delineating water­

stressed and non-stressed fields, evaluating uniformity of irrigation, and 

evaluating surface soil water conditions. 

The author made temperature measurements of healthy and blighted 

spots of the corn leaves alternately in the summer of 1972. These corn 

plants were grown at the Agronomy Farm of Purdue University. The temper­

ature of blighted spots was higher than the healthy spot by an average 

(average of fifty readings) of 0.060 C (Section 5.7). Although the 

measurements were made on the healthy and blighted spots of the corn leaves 

only, the conclusions obtained from it may well be applicable to other 

non-systemic stresses. In conclusion, it must be said that the detection 

of stresses by thermal infrared remote sensing is an extremely useful and 

difficult task, and it requires considerable attention and research effort 

in the years to come. 
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CHAPTER III
 

REFLECTANCE MODEL OF A PLANT LEAF 

3.1 Introduction
 

Willsttter and Stoll (W-S) in 1918 proposed a theory to explainI 0 7 

reflectance from a leaf on the basis of critical reflection of visible 

light at spongy mesophyll cell wall - air interfaces. According to 

several authors (i.e., Gates et al. 39 and Gausman et al. 42 ) their experi­

mental results on reflectance from leaves seem to have supported the 

W-S theory. Sinclair et al. 86 gave an excellent review of the reflec­

tance and transmittance from the leaves. They critically examined the 

.-- l Y ac-epted -S thp"-y and proposed a modttttion, termed t1e 

"diffuse reflectance hypothesis," which is based on diffusing reflecting 

qualities of cell walls oriented at near perpendicular angles. They 

pointed out that the microfibril structure of the cell wall presumably 

induces the scattering necessary to have diffuse reflectance. They 

presented experinental results on both the reflectance and transmittance 

from various species of leaves for both the visible (0.50 to 0.72 im) 

and the reflective infrared (0.72 to 1.3 pm) wavelengths, which could
 

not be satisfactorily explained by the W-S theory, but which they felt
 

could be accounted for on the basis of their hypothesis. 

Myers and Allen7 l explained the K-M (Kubelka - Munk) scattering 

coefficient (of diffuse reflectance) for a typical leaf by Fresnel 

reflections at norual incidence from 35 interfaces along the mean opti­

cal path through the leaf. Gtusnan et al. noted that if oblique re­

flections are considered, fewer interfaces account for the results. 
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Knipling 56 emphasized that the air spaces within the palisade parenchyma 

layer of a leaf mesophyll may be more important in scattering light than 

air spaces in the spongy parenchyma layer. Allen et al. I have proposed 

that the complex structure of the leaf can be simulated by a pile of 

transparent plates with perfectly diffusing surfaces. Birth has given 

an excellent critical review of existing concepts on the reflectance from 

a leaf. He pointed out that the work of Sinclair86 is enlightening in 

that the diffuse character of light in the leaf is shown to start at the 

initial interface. Recently, Kumarfl has reviewed much literature
 

pertaining to reflection from leaves.
 

The purpose of this investigation is to compare the reflectance of
 

a typical leaf found by tracing the ray of light through the leaf with
 

the experimentally determined reflectance values of the same leaf. In
 

addition, the authors would like to investigate if considering only cell
 

wall and air as the optical mediums in ray tracing leads to good pre­

dictions of experimentally determined reflectance of the leaf; and if
 

other optical mediums -- cell sap and chloroplasts -- should also be
 

included in the ray tracing for significantly better prediction of the
 
reflectance. Furthermore, the authors would like to create a more 

realistic illustration to show the pathway-of a light ray through the 

-leaf than shown-by Willstatter-and-Stol-l--(Fpigures-3 -ll-to 3.1.3). 
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61
 

l& 

0;' 

0 ktI 40 0 7 

op col .U.dn,,, C I WOII0,l~o7ts CII SCO C M ACr 

- irtn~ty 07OtLO0 

- ICIWICy00380 05 

Figure 3.1.3 	 Pathway of' Light Ray Through the Leaf Cross Seetion. B 
denotes the reflected ray. Solid lines show the pathway 
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optical mediums.* The numbers along the rays denote their 
total intensity. All the rays whose total intensity is 
more than or equal to 0.018 are shown. Some of the rays 
whose total intensity is less than 0.018 are also shown. 
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3.2 Cross Section of the Soybean Leaf 

The cross section of the soybean (Glycine max (L.) Merrill) leaf 

was taken from Sinclair's thesis. 85 This cross section had been obtained 

by Sinclair by microtome cross-sectioning and a microscopic slide was 

prepared using the techniques outlined by Jensen.54 This cross section
 

was enlarged. An artist, well familiar with the cross section of
 

leaves, drew the above mentioned cross section on a plain paper showing 

explicitly the cell walls, cell sap and chloroplasts, a part of which 

is shown in each of Figures 3.1.1 to 3.1.3. The cross section shown in 

these figures was enlarged in order to do ray tracing conveniently and 

accurately. 

http:Jensen.54
http:thesis.85
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3.3 Reflectance From a Leaf
 

(A) Proposed Leaf Reflectance Model 

The following assumptions are made in the reflectance model of a 

leaf: 

1. The leaf is assumed to consist of homogeneous and 

isotropic media -- cell wall, chloroplasts, cell sap
 

and air. This assumption is made for mathematical
 

simplicity so that Fresnel's Equations can be applied
 

at each interface.
 

2. 	Geometrical Optics is assumed to be valid for the media 

of the leaf mentioned above. This is not quite valid for 

chloroplasts (typical dimensions 5 pm to 8 pm in diameter 

and about 1 pm in width 39) where diffraction is likely 

to be important. 

3. 	The Rayleigh and Mie scattering by the leaf constituents
 

(of the order of wavelength of light or smaller) is ne­

glected. Gates 39 pointed out that cell dimensions of a 

leaf are generally too large for scattering; however, the 

chloroplasts bad grana dimensions are such as to create 

some scattering (i.e., grana is about 0.5 um in length and 

about 0.05 pm in diameter). Scattering could also be 

caused by mitochondria, ribosomes, nuclei, starch grains, 

and other plastids, etc. It is very hard to take scatter­

ing into account because the dimensions, distribution and
 

refractive indices of these particles in the leaf cells
 

are 	extremely complex and unknown. 

4. The absorption of light by the leaf media is neglected. 

This is quite valid for most leaves in about 0.7 to 1.3 Pm
 

wavelength region. Since the leaf media absorb the light
 

in the visible wavelengths, their indices of refraction
 

are complex numbers. The model presented here can also be
 

applied ta the visible wravelengths for Fresnel's Equations 

and Snell's Law are also valid for absorbing media, if one 
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uses the appropriate complex index of refraction. 104 

However, the ray tracing is not done in this chapter 

for the visible wavelengths since the complex
 

indices of refraction of the leaf constituents in these
 

wavelengths are not yet known. Also, the ray tracing in
 

the 	visible wavelengths becomes quite involved because
 

the index of refraction, angle of refraction, etc., are
 

complex numbers.
 

5. 	The two dimensional cross section of a leaf (three
 

dimensional leaf) is used for predicting the reflectance
 

from a leaf.
 

(B) Basic Equations 

Fresnel's Equations, Snell's Law and boundary conditions used for 104 
determining reflection and refraction at an interface 

are given below. 

m1 sin G, = m2 sin 8r 	 (3.3.1)
 

2
 
2 1/2nq2 2 

e. 	 . - - zy . ..--3 3; ­
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C + - sin2j 

Ri [ 2 i /2 1i 0.3.3) 
2 2I-sin2e 1/

Cos 	ei
 

+
R .Rif.. i (3.3.4)
 

2
 



65
 

TI, - III R11 (3.3.5) 

TL - I~i R1 
- R(3.3.6) 

T­ 1 1 Ti.T 2 (3.3.T) 
2 

where
 

mI refractive index of the first medium
 

m2 - refractive index of the second medium
 

oi = angle of incidence
 

or = angle of refraction 

RII - reflection parallel to the plane of incidence 

R, - reflection perpendicular to the plane of incidence 

R - total reflection 

Ioj - incident intensity parallel to the plane of incidence 

I, - incident intensity perpendicular to the plane of 
incidence. 

Ti, - transmission parallel to the plane of incidence 

Tj transmission perpendicular to the plane of incidence 

T - total transmission 

(C) Indices of Refraction of Leaf Constituents
 

The index of refraction of the air spaces in the leaf cells is
 

assiured to be one. The refractive index of a potato cell wall was
 

found to be equal to 1.52 by Renck8 0 in the visible wavelengths by 

Index Matching Technique (i.e., The cell wall was infiltrated with 

various liquids, mostly oils, having varying refractive indices. The 

minimum reflectance was noted visually with a medium having a refractive 

index of 1.52, which was taken to be the best approximation to the 
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refractive index of the potato cell wall.). The value of the index of 

refraction of the cell wall of the soybean leaf was assumed to be equal 

to 1.52 for the purpose of ray tracing, as it is likely to be 

close to the refractive index of the potato cell wall. The values of 

refractive indices for cell sap and chloroplasts were taken from Charney 

and Brackett 1 7  to be equal to 1.36 and 1.42, respectively. The values 

of the index of refraction of the leaf constituents in the 0.7 tim -1.3 urm 

region are not available because it Is quite difficult to measure the 

refractive indices of the leaf constituents by the Index Matching Tech­

nique in the infrared wavelength region as the human eye cannot see in 

that region. The value of the real part of the index of refraction of 

water is roughly the same in the near infrared region52 (i.e., 0.7 Pm 

to 1.3 pm) as in the visible wavelength region within .01. Since water 

is the main constituent of the cell wall, cell sap and chloroplasts, and
 

since none of these absorb light strongly in the 0.7 pm - 1.3 pm region,
 

the refractive indices of these constituents were assumed to be the same 

in the 0.7 Pm - 1.3 pm region as in the visible wavelength region.
 

(D) Method of Ray Tracing
 

The four leaf constituents -- cell wal3, chloroplasts, cell sap and 
-air -- give rise to the following eight optical-iftefaes i-the-alf 

all of which were considered in the ray tracing: 1) air to cell wall,
 

2) cell sap to cell wall, 3) chloroplasts to cell wall, 4) cell sap to
 

chloroplasts, 5) chloroplasts to cell sap, 6) cell wall to chloroplasts, 

7) cell wall to cell sap, and 8) cell wall to air. 

In ray tracing, a ray of light of intensity Ii (intensity parallel 

to the plane of incidence) = 1.000, and II (intensity perpendicular to 

the plane of incidence) = 1.000 at about 50 to the normal was taken. 

The angle was taken 5' to the normal, because in the experimental setup 

with the DK-2A spectroreflectometer the light rays were incident at 
5' to the leaf normal. A tangent and a normal were drawn at the inter­

face. The angle of incidznce of the ray was measured with a drafting 

set which can measure angles up to an accuracy of 5 minutes. Knowing the 

angle of incidence and relative index of refraction at the interface, the 

values of 0r' H , , T , and TL were found using equations given in 



Section 3.3 "Basic Equations", and the refracted and reflected rays were 

drawn. Similar procedure was followed at the subsequent interfaces. 

Each ray was continued until it ended up as reflection or transmission 

from the leaf. The rays whose total intensity became less than 0.018 
were discontinued to reduce the time and efforts required in ray tracing. 

The light ray passed through a total of 253 interfaces out of which 

total internal reflection took place at 18 cell wall - air interfaces,
 

two cell wall - chloroplast interfaces, and one cell wall - cell sap 

interface.
 

Table 3.3.1(A) shows the values of the reflected and transmitted 

intensity of the ray at the interfaces. Only the rays whose intensity
 

is more than 0.05 are shown in Table 3.3.1(A). The pathway of the ray 

in a part of the leaf cross section, as given by this model, is shown by
 

solid lines in Figure 3.1.1. The numbers along the rays represent their
 

total intensity. Only the rays whose total intensity is more than 0.05 

are shown in Figure 3.1.1. Figure 3.1.2 is a more complete version of 

Figure 3.1.1 in that the rays whose total intensity lie between 0.018 

and 0.05 are also shown in Figure 3.1.2. Figure 3.1.3 is a more complete 

version of Figure 3.1.2 in that some of the rays whose total intensity 

is less than 0.018 are also shown in Figure 3.1.3. 

Ray tracing was also done following the same procedure a the one
 

mentioned above for the same original ray of light (Ii = 1.000 and 

I = 1.000) except that only the following two interfaces were consi­

dered: i) air to cell wall and 2) cell wall to air. The light ray 

passed through a total of 144 interfaces out of which total internal 

reflection took place at 13 cell wall - air interfaces. Table 3.3.1(B) 

shows the values of the reflected and transmitted intensity of the ray 

at each interface. The pathway of the ray considering the above two 

interfaces, in a part of the leaf cross section, is shown in Figures
 

3.1.1 to 3.1.3 by dotted lines. It can be seen from Figures 3.1.1 to
 

3.1.3 that the light ray shown by dotted lines follows quite a different 

path than that shown by solid lines. 

Ray tracing was also done through the palisade cells of a part of 

the cross section of a soybean leaf, following exactly the same pro­

cedure reported above. The light ray was taken at an angle of about 
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Figure 3.3.1 Pathway of Light Ray Through the Palisade Cells. R 
denotes the reflected ray. Solid lines show the path­
way of light considering cell wall, chloroplasts, cell 
sap and air as the optical mediums. Dotted lines show 

the pathway of light considering only cell wall and air 
as the optical mediums. The numbers along the rays de­
note their total intensity. The rays whose total inten­
sity is less than 0.05 are not shown. 
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Figure 3.3.2 	 Pathway of Light Ray Through the Palisade Cells. 
R denotes the reflected ray. Solid lines show the 
pathway of light considering cell wall, chloroplasts, 

cell sap and air as the optical mediums. Dotted lines 
show the pathway of light considering only cell wall 
and air as the optical mediums. The numbers along the 
rays denote their total intensity. All the rays whose
 
total intensity is more than or equal to 0.05 are 
shown. Some of the rays whose total intensity is
 
less than 0.05 are also shown.
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600 to the leaf normal. The light ray was not drawn through the complete 

cross section because the only purpose of this ray tracing was to create 
a realistic illustration to show the pathway of a light ray, incident at 

an oblique angle to the leaf normal, through the palisade cells. Tables 

3.3.1(0) and 3.3.1(D) show the values of the reflected and transmitted 

intensity of the ray at the interfaces in the palisade cells con­

sidering all the eight interfaces outlined in Section 3.3(D), and con­

sidering only cell wall - air and air- cell wall interfaces, respectively. 

Only those rays whose intensity is more than 0.05 are shown in the 

Tables 3.3.1(C) and 3.3.1(D). 

Figure 3.3.1 shows the pathway of light through the palisade cells 

exactly similar to the Figure 3.1.1 (which shows the pathway of light 

through oa leaf cross section). Only the rays whose total intensity is
 

more than 0.05 are shown in Figure 3.3.1. Figure 3.3.2 is the same as
 

Figure 3.3.1 except that some of the rays whose total intensity is
 

less than 0.05 are also shown for illustration.
 

It can be understood from Figures 3.1.3 and 3.3.2 that if one takes 

a number of parallel rays incident on the leaf, each ray will encounter 

different geometrical internal surfaces and consequently will be re­

flected and transmitted in different directions. That is how a colli­

mated beam of light incident on the leaf keeps on becoming diffuse 

slowly as it passes through the leaf. The greater the number of inter­

faces the light rays encounter in their path,, the more diffuse the rays
 

are likely to be. The pathway of light rays as envisioned by Willstatter 

and Stoll is shown in Figure 3.3.3. It can be seen from Figure 3.3.3 

that the light rays pass through the epidermis end palisade cells with­

out any deviation, which is unrealistic. Furthermore, Willstatter and 

Stoll did not show the reflection of light at air - cell wall interfaces, 

and cell wall - air interfaces at angles of incidence less than the 
critical angle. The author would like to emphasize that although cell 

wall - air interface causes more deviation of the ray than any other 

single interface for a given angle of incidence, and is perhaps the most 

important interface for contribut3ng to the reflection from the leaf, the 

other interfaces can also contribute significantly to the reflection from
 

a leaf (Figure 3.3.4).
 



72 

m= Relative Index of Refraction 

I0 

090 

0 o 

E E It E E E 

0o 	 Eo F,3 . 
I C 

o 	 o 

0.60­

0.50 

8 
*:0.40 

rn A -Air 
I CS-Cell Sap 

030 C - Chloroplasts 
CW- Cell Wall 

Q20 ­

0.10­

0.05 	 60 10 20 	 30 40 50 &0 70 80 90 
Angle of Incidence in Degrees 

Figure 3.3.4 	 Reflectance vs. Angle of Incidence for Optical 
Interfaces of a Leaf 



73
 

Nomenclature for Tables 3.3.1 (A) to 3.3.1 (D) 

Tables l(a) to l(d) show the intensity of the reflected ray and 

the transmitted ray at each interface. The total intensity of the
 

incident ray is taken to be 1.000. The rays whose total intensity 

(reflected and transmitted) is less than 0.05 are not shown in the 

tables. 

TIN 

INCIDENT LIGHT I -

R = reflection ilto the plane of incidence
 

RL = reflection I to the nlane of incidence
 

T11 = transmission II to the plane of incidence
 

T, = transmission t to the plane of incidence
 

R = denotes that the ray has ended un as reflection 

T = denotes that the ray has ended up as transmission 

t = denotes total internal reflection 

xx = denotes that the ray is discontinued in the table because 

its total intensity is less than 0.05. 

= denotes that the value of intensity is less than 0.0005 

AW Air to Cell Wall
 

SW Cell Sap to Cell Wall
 

CW Chloroplasts to Cell Wall
 

SC Cell Sap to Chloroplasts 

CS Chloroplasts to Cell Sap
 

WC Cell Wall to Chloroplasts 

WS Cell Wall to Cell Sap
 

WA Cell Wall to Air
 



Table 3.3.1(A) The Values of the Reflected and Transmitted Intensity of the 
Ray at Each Interface of the Leaf Cross Section. The ravs
 
whose total intensity (reflected + transmitted) is less than
 
0.05 are not shown in the table. The optical mediums con­
sidered are cell wall, chloroplasts, cell sap and air. The 
pathway of light rays whose intensity is given in this table 
is shown by the solid lines of Figure 3.1.1. 
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Table 3.3.I(B) 	 The Values of the Reflected and Transmitted Intensity of the Ray 
at Each Interface of the Leaf Cross Section. The rays whose total 
intensity (reflected + transmitted) is less than 0.05 are not shown 
in the table. The optical mediums considered are cell wall and air. 
The pathway of light rays whose intensity is given in this table is
 
shown by dotted lines of Figure 3.1.1.
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Table 3.3.1(C) 
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Table 3.3.1(D) 	The Values of the Reflected and Transmitted Intensity of
 
the Ray at Each Interface of the Palisade Cells. The rays
 
whose total intensity (reflected + transmitted) is less
 
than 0.05 are not shown in the table. The optical mediums 
considered are cell wall and air. The pathway of light 
rays whose intensity is given in this table is shown by
 
the dotted lines of Figure 3.3.1.
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It seems that the reflection of light in the near infrared wavelengths
 

(0.7- 1.3 pm) from a typical leaf is likely to be more diffuse than its
 

reflection in the visible wavelengths. This is because the near infrared
 

light rays are likely to pass through many more interfaces of the leaf 

(because of almost no absorption of light in the near infrared wavelengths) 

than the corresponding light rays of the visible wavelengths. Also, ,the 

transmission from a leaf in the visible as well as near infrared wave­

lengths is likely to be fairly diffuse because a typical light ray has 

to pass through a fairly large number of interfaces before it is trans­

mdtted. These qualitative conclusions support the experimental results 

of Breece and Holmes 12 on healthy green soybean and corn leaves. 

(M) Experimental and Ray Tracing Results 

The value of reflection found by Sinclair 8 5 using a Beckman DK-2A 

Spectroreflectometer on the same leaf, whose cross section is shown in 

Figure 3.1.2, in the 0.7- 1.3 Pm region, was h7%. Transmission = 

100 - 47 = 53% (because absorption of a leaf is almost equal to zero in the 

0.7 - 1.3 pm wavelength region). 

Ray Tracing Results. Note. The values of (reflection + transmission) 

found were assumed to be 100%. 

Reflection (using 8 interfaces = 45.6%
 
mentioned in see. 3.3(D))
 

Transmission (using 8 interfaces = 54.4%
 
mentioned in see. 3.3(D))
 

Reflection (using air - cell wall = 30.3%
 
and celJ wall - air
 
interfaces)
 

Transmission (using air - cell wall = 69.7%
 
and cell wall - air
 
interfaces)
 

Experimental results of Woolley9Oon the soybean leaves strongly 
support these ray tracing results. Woolley found the reflectance of a 

soybean leaf in 0.7 - 1.3 Im wavelength region to be about h7 percent. 

But after the soybean leaf ws vacuum infiltrated with oil of refractive 

index 1.48, which essentially eliminated the air to cell wall and cell 
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wall to air interfaces only, its reflectance dropped to about 15 percent. 

This experiment clearly shows that the reflectance caused by the dis­

continuities in the indices of refraction of the geometrical surfaces
 

(of the dimensions much larger than the wavelength of light) is signi­

ficantly more than the reflection caused due to Rayleigh and/or Mie 

scattering by the particles (of the order of wavelength of light or 

smaller) inside the leaf cells because the reflectance caused by 

scattering should essentially remain unchanged after the leaf is vacuum 

infiltrated with oils of different refractive indices. Furthermore, 

it seems to support the author's conclusion "optical interfaces other than 

the cell wall to air and air to cell wall can contribute significantly 

to the reflection from a leaf." 
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3.4 Conclusions 

The preliminary conclusions, yet to be confirmed by further ray 
tracing, and experiments are: considering only cell wall - air and air ­

cell wall interfaces seems to underestimate the reflection and overesti­

mate the transmission from a leaf significantly in this particular case. 

Considering all the eight interfaces mentioned in Section 3.3(D), ray 

tracing seems to give results very close to the experimental results. 

Furthermore, considering only cell wall - air and air - cell wall inter­

faces is likely to give less diffuse reflectance and transmittance than 

that given by considering all the eight interfaces. There is some 

contribution to the reflection from a leaf due to Rayleigh and Mie 

scattering caused by the particles (of the order of the wavelength of 

light or smaller) in the leaf cells but the reflection caused by the 

leaf constituents - cell walls, cell sap, chloroplasts, and air -­

as given by the geometrical optics, is probably more significant than 

the reflection caused by scattering. Gates 39 pointed out that whatever 

scattering does exist is probably more of the Mie type than the Rayleigh 

type because the scattering phenomena is not strongly wavelength depen­

dent. The model presented here can also be applied to the visible 

wavelengths if the appropriate complex indices of refraction of the 

leaf constituents in the visible wavelengths are known. The author 

believes that the model of a leaf presented in this article is more 

complete and realistic than as proposed by Willsttter and Stoll. 

It supports the experimental results of Breece and Holmes,12 and 
109Woofley. 
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CHAPTER IV
 

SIMPLIFIED THEEI4AL EUISSION MODEL OF A PLANT CANOPY
 

4.I Formulation of the Problem 

Consider a plant canopy consisting of leaves, stems etc. on a soil 

background. Let the thermal long wavelength (4 to ih pm) radiation coming 

from the plant canopy which is received by the sensor of the aircraft or 

satellite, be in the direction having direction cosines al s2' 83* 

Direction sl, s2 , s3 is called the direction of the sensor. The expres­

sion for radiant flux density emitted by a nlant canopy of any given 

geometry (orientation and area of leaves, stems, etc.) in the direction 

of the se-sor was derived by Kumar , pp. 62-71. A more simplified but 

reasonably accurate expression of the emitted radiant flux density by a 

plant canopy received by the sensor of the aircraft or satellite is de­

rived here.
 

Assumptions
 

1. We are sensing in the wavelength region 4 to 14 lim. Thus, the solar 

radiation reflected by a typical natural target can be neglected as com­

pared to the radiation emitted by it (Section 2.5(C)).
 

2. The transmission of leaves and stems is assumed to be zero in the 

long wavelength region (i.e., 4 to 14 pm). This is because of the strong 

water absorption bands in the infrared wavelength region5 2 

3. Multiple reflections from the leaves are neglected. Reflection by a 

leaf in the wavelength region 4 to 14 um is usually quite small-(Section 

2.6 (C)) so that multiple reflections from leaves can be safely neglected.
 

Similarly, the radiation reflected by the soil and further reflected by 
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the leaves is neglected.
 

4. Assume that the leaves and soil emit the radiation diffusely. This 

assumption may not be valid. Experiments need to be conducted to check 

the validity of this assumption. However, this assumption is made for 

mathematical simplicity. 
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4.2 Radiation Emitted by a Plant Canopy 

(A) Radiation Emitted by Leaves 

Radiation is reflected and emitted from the leaves. The expression 
for radiation flux emitted by the leaves reaching the sensor (of aircraft 

or satellite) is derived as follows. 

Consider a small element of a leaf of area, da., whose normal makes 

an angle 0 with the direction of the sensor. The radiant flux emitted by 

the leaf reaching the sensor in the limit Sa 4 0 is given by 

(£) aTZh Ad cosO daz 

visible 2 (4.2.1) 

from the r 

sensor 

where 

summation is carried over all the leaves visible from the sensor 

T£Z = temperature of the leaf 

e(i) = emittance of the leaf at temperature T 

a = Stefan-Boltzmann constant 

r = distance of the differential element of the leaf, dap 

from the sensor 

Ad = projected area of the detector receiving radiation, nor­

mal to the direction of the sensor
 

A plant canopy can be considered to be consisting of two parts: sun­

lit and shaded (some shaded areas may not be completely shaded because 

of scattered solar radiation reaching in those areas). The temperature 

of a leaf may vary from one spot of the leaf to another (Section 5.4). 
Also, the temperature of the leaves of the plant canopy may vary from 

one leaf to another. However, for simplification of Equation (4.2.1), 

let us assume that the sunlit leaves are at a mean temperature of T(t,S) 

and the shaded leaves are at a mean temperature of T(Z,s). Let the mean 

emittance of the leaves be -(t). Since the distance of the sensor from 

the plant canopy is much larger than the dimensions of the plant canopy, 



r can be assumed to be a constant. Thus, F of Equation (4.2.1) can be
 

approximated as
 

F1 = Ke(t) [T(t,S) AZA + T(,s) 4 As] (4.2.2)
 

where aA
 

K 2 = constant
 
r
 

ALS = total projected area of the visible (from the sensor) sunlit 

leaves normal to the direction of the sensor 

As = total projected area of the visible (from the sensor) shaded 

leaves normal to the direction of the sensor 

(B) Radiation Emitted by Stems 

Stems have been neglected by most authors in building the model of
 

a plant canopy. However, stem could contribute significantly to the 

spectral properties of a plant canopy 6 l . Consider the stem as a cylinder. 

Let the area of a small longitudinal section (the product of diameter 

and length) of the stem be denoted by 6a*. To obtain an expression for 

the emitted radiant flux density, F*, by the stems, one can replace a. 

by a* in Equation (h.2.1) obtaining an expression similar to Equation 

(4.2.2), i.e., 

F*= KP- [T*(S) 4 AS + T*(s) i A~s] (4.2.3) 

where
 

* = denotes the quantities for the stem corresponding to the 

quantities for the leaves with subscript £ (see Equation 
(4.2.1)) 

AS = total projected longitudinal sectional area of the visible 

(from the sensor) sunlit stems normal to the direction of 

the sensor
 

A.s= same as A S for shaded stems
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(C) Radiation Emitted by Soil 

The radiation emitted by the soil is given by an equation similar to
 

Equation (4.2.2).
 

F = K(g) [T(g,S)4 AS + T(g,s) Ags ] (.2.4) 

vhere
 

g = denotes the quantities for the soil corresponding to the quanti­

ties for the leaves with subscript Z (see Equation (4.2.1))
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4.3 Radiation Reflected from a Plant Canopy 

The radiation incident on the plant canopy comes from sun, sky, 

atmosphere and surrounding objects (Section 2.5(B)). When the sky is 

clear (below -5' F), the solar radiation reflected from a natural target­

say plant canopy - can be neglected as compared to the radiation emitted 

by it (Section 2.5(C)). The reflected radiant flux density from the 

plant canopy is likely to increase with the increase in percentage ground 

cover* because the emittance of a typical soil is generally less than the 

emittance of a typical plant leaf (Section 2.6). Also the reflected ra­

diant flux density from the plant canopy is likely to increase with the
 

increase in number of surrounding objects (especially if the surrounding 

objects are higher than the plant canopy).
 

To derive an expression for the radiant flux density reflected from
 

the plant canopy for a given plant geometry is involved because of the 

complex geometry (orientation of leaves, stems etc.) of the plant canopy. 

Duncan et al2 6 (1967) has developed an elaborate theory for the penetra­

tion of the direct and diffuse sunlight through a foliage composed of ma­

ny layers of leaves with knowm orientation, reflectance and transmittance 

characteristics. Anderson and Denmead 2 (1969) have described a method 

for the easy calculation of the radiant flux densities of direct and dif­

fuse radiation-on inclined leaves in model plant stands. Kumar has 

done much literature review pertaining to the interaction of light with
 

a plant canopy. Recently, Suits9 0 (1972) has calculated the directional
 

reflectance of a vegetative canopy. No attempt will be made in this 

Section to derive an expression for the radiant flux density reflected 

from the plant canopy. Although the equations in this Chater have been 

derived for the wavelength range 4 to 14 pi, they are equally valid 

for the wavelength range 4tto 20 pm. 

The total radiation reaching the detector of the aircraft and/or 

satellite is the sum of the emitted and reflected radiation. All the 

equations derived here for the wavelength range 4 to 14 im are also va­

lid on the spectral basis in the same wavelength region. 

* Percent ground cover-is the percentage of the area of the soil under 

the plant canopy which is directly visible from the sensor. 
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CHAPTER V 

FIELD EXPERIMFNTS WITH LONGWAVELENGTH SPECTRORADIOMETER 

5.1 Description of the Exotech Model 20-C Spectroradiometer
 

(A) Overview 
The Exotech Model 20-C Spectroradiometer is a rugged field instru­

ment which has four circular-variable-filters to provide spectral reso-AX 
lution ( - ) of approximately 2 percent. Most part, of this Section 

(See. 5.1) is reproduced from Silva et. al.83 and Robinson et. a182 

for the convenience of the readers. This instrument is ideally suited 

to the rigors of a field environment, embodying sealed circuits for 

protection against dust and condensation, modular construction modules 

for simplified maintenance, and operational features to reduce the 

time necessary to secure data 2 7 . The instrument may be operated as 
two separate units. The short wavelength (SWL) unit is responsive to 

radiation in the wavelength range 0.38 to 2.5 micrometers and the long 

wavelength unit (LWL) is responsive to radiation in the wavelength range 

2.8 to 5.6 and 7.0 to l4 micrometers. 

The chopper wheel in the instrument is made of polished aluminum 

coated with silicon monoxide. The radiation from the scene passes 

through the foreoptics of the spectroradiometer and is chopped by the 

filter wheel. The arrangement of the detectors is such that each detec­

tor looks alternately at the scene radiation and at an internal black­

body reference. A circular variable filter (C. V. F.) in conjunction 

with a slit and relay optics performs the dispersion and focusing func­

tions in the instrument.
 
Figures 5.1.1 amd 5.1.2 illustrate the radiation sensing and 

gathering systems for the LWL unit. The combined gathering and sensing 

system is referred to as the optical head. The SWL and LWL optical 

heads are fut.ctionally identical, except for the inclusion of a solar 
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TARGET 

FLgure 5.1.1 Schematic of Telescope Showing Viewing 
Arrangement in 3/4° F.O.V.
 



DETECTOR 
' MODULES 
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T VARIABLE 

CVF " FILTER1 ,- MODULES 
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Radiation Sensing System for the Longwavelengtb UnitFigure 5.1.2 



Figure 5.1.3 Short Wavelength Optical Head 
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Figure 5.1.4 Panels for Electronic Processing and Control Circuitry 

besptrovc emoy.
bep avile c ]o 
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reference port on the SWL head. Figure 5.1.3 shows the SWL optical
 
head. The cylinderical colum behind the telescope is the solar
 

reference port. 

Figure 5.1.4 shows the panels for the electronic processing and 

control circuitry. The top two modules connect with the SWL optical 
head to control its operation and process the radiometric data and
 
wavelength position signals. The bottom two 
modules perform a similar 
function for the LWL optical head. The module in the middle is the 

Data Acquisition Control Module, which provides the appropriate sequences 
of sample pulses for digitization of data at repeatable wavelengths. 

(B) Important Specifications
 
Field of View (FoV) - 0.75 or 
150 plane angle remotely selectable (Fig­

ure 5.1.5) 
Spectral Region -

CVF
 

micrometers 	 Detector 

r 38 -	 siliconc2
Short Wavelength . .... . . . Lead Sulfide 

Unit t5jl.3 ­

(2.8:25.6 	 ... ... ti d 
Indium a dmium .Long Wavelength Unit 2.8 i .6 . . . . . . . .
 

IT-0- 140 . .. .Mercury-Cadmium..
.. .
 
Telluride 

Spectral Scan Rate - Selectable 0.5, 1, 2, 4,10 and 30 seconds per scan. 
Spectral Resolution - Short Wavelength Unit 2.5% 

Half Bandwidth 17 nanometers - visible 

Half Bandwidth 32 nanometers - near infrared 
Long Wavelenpth Unit 2% 

Dynamic Range - Linear dynamic range of the system is at least 104. 
Wavelength Accuracy - approximately ± .2%of the value 
Power Ruirenents - 150 watts, 115 ± 20%, 60 Hz ± I Hz 

(C) Description of Function 

(1) Long Wavelength Unit
 
The radiation frot the target scene is folded into the radiation 

processing system by the folding mirror either directly (15* FOV) or
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°from the primary mirror of the Newtonian telescope (3/4 FOV, see Fig­

ure 5.1.1). The folding mirror is rotated by. a motor actuated by the 
FOV switch an the electronic processing and control circuitry front 
panel. A circular variable design has beenfilter (CVF) adopted because 
it is the best way to achieve a simple, rugged, field instrument with
high radiometric efficiency 2 7 . 

A circular variable filter consists of a multilayer dielectric 
coating deposited on a circular substrate (circular substrate of short 
wavelength bead and long wavelength head are germanium, and a composite 
material of glass and quartz respectively) in such a manner that coating 
thickness varies linearly with angle of rotation while remaining constant 
along a radiud7 . The spectral characteristics of such a filter at any 

particular angle are equivalent to a narrow beandpass filter having about 
60 percent transmission with a bandwidth of 1 percent to 2 percent of the 
center wavelength. As the filter is rotated past a point illuminated by 
incident radiation, center frequency so thatthe changes an effective 

spectral scan is obtained. These characteristics are illustrated in 
Figure 5.1.5 which shows the transmission of the filter vs. angular 
rotation, with incident radiation from several sources. 

°When the folding mirror is in the 3/ FOV position, the mirror 
on the back face of the folding mirror directs radiation from'the target 
scene into the boresighting telescope for sighting and photography. 
Since the boresight uses radiation which would normally be lost due to 
the occulting of the folding mirror, this feature does not affect the 

efficiency of the radiometer. 

The folded radiation enters the radiation processing system 
and is directed by the chopper wheel alternately to the two CVF wheels. 
Simultaneously, radiation from the heated reference blackbody whose 
temperature can be selected, is being directed alternately to the two 

CVF wheels (See Figure 5.1.2). 

KRS-5 (thalllu bromide-iodide) optics image the scene on the CVF 
wheels and refocus the stopped image onto the detector. KRS-5 is valua­
ble because it transmits to very long wavelengths -- about 50 Um. 
The transmittance characteristics* of KRS-5, for a thickness of 2 a,, 
are given in Figure 5.1.6. 

R. D. Hudson, Jr., John Wiley & Sons, New York, p. 218, 1969. 
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100 -Note Scale Change 
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E4 Thicknessdo KRS-5 -2mm
 

40
 

0 1 2 510 	 15 20 25 30 3540 450
 
Wavelength in micrometers
 

Figure 5.1.6 Transmittance of ICS-5 (Thallium Brouide-Iodide) 

*Taken from R. D. Hudson Jr., Infrared System Engineering,
 
John Wiley & Sons, New York, p. 218, 1969.
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One CVF wheel is turned at constant speed by a Siemens brushless 

DC motor and the shaft of the other CVF follows, being driven with a 
.
non-slip timing belt system. The speed o the DC motor is selectable
 

on 	the front panel of the electronic processing and control circuitry. 

The CV? position is indicated by an optical shaft angle encoder which 

produces 1000 pulses per revolution. These pulses are the basis of the 

wavelength calibration scheme. These pulses are also integrated in the 

electronic processing and control circuitry module to produce a ramp 

suitable for driving X-Y plotters or recording CVF position information 

on 	strip chart recorders.
 

The detectors are each cooled with a Joule-Thomson cryostat using 

high pressure nitrogen. 

(2) Short Wavelenath Unit 

The short wavelength unit is functionally identical to the long 

wavelength unit except for the following: 

1. 	 The silicon detector is not cooled. 

2. 	 The reference blackbody is not heated. 

3. 	 A solar reference port is positioned so that radiation from 

this diffusely translucent (Coors alumina) plate may be directed 

into the detectors by a mirror whose position is controlled by 

a knob on the front panel of the electronic processing and 

control module. This knob allows selection of the target 

scene, the solar port or an automatic mode which causes the 

instrument to alternate between the two, every two scans. 

Fused silica relay optics are used in place of the KRS-5.
 

The LAPS Hi-Ranger mobile aerial tower is used to lift the optical 

beads to the desired position relative to the target scene (Figure 5.1.7). 

The optical heads may be lifted to a height of 15.3 z above the ground 

and may be susDended as far as 6.4 m from the edge of the Hi-Ranger 

at a height of 9.j5 m. The control electronics, recording equipment, 

and other data recording instruments are located in the instrument van.
 

A power unit towed behind the instrument van provides electrical power
 

for both the instrument van and the spectroradiometer. Normally, a 

technician operates the equipment while the natural scientist directs 

the experiment. Further details of 'The LARS Extended Wavelength 

Spectroradioeter' are available in Robinson at. al.2 
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Typical Setup of the Field Spectroradiometer System 

Figure 5.1.7 
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5.2 Calibration of the Longwavelength Unit 

(A) Basic Equations 

The output signal, S, from the spectroradiometer at wavelength, A, 

blackbody (see ref.[271, eq. (3.6)) at temperature, T,when exposed to a 

can be considered to be 

1b
S = KI (k) [{LX,b(A. T) + SLA - K2 (k) ILA9 b refb(A Tr) 

(5.2.1)
+ 6LX, b red] 

where
 

K (i)= 	 instrument transfer function 

K 
I
(A) - constant for the reference blackbody
 

2
 
T = temperature of the blackbody
 

Tr - temperature of the reference blackbod 

Lb(A,T) = blackbody spectral radiance at temperature, T, and 

wavelength 	 A. 

6LX h = 	 error in blackbody spectral radiance due to the stray 

radiation when the spectroradiometer is looking at the 

target blackbody 

LLA,bre ( Tref,)= reference blackbody spectral radiance at temperature,'r 

Tr, and 	wavelength X. 

in reference blackbody spectral radiance due toSL ,b ref= 	error 

stray radiation when the spectroradiometer is looking 

at the reference blackbody. 

Stray radiation consists of:
 

(i) Radiation emitted by the parts of the spectroradiometer (chopper 

wheel, circular variable filter, lenses, etc.) reaching the detector.
 

onThis depends on the temperature of these parts, which in turn depends 

the instrument temperature. The instrument has been desip.ed so that this 

stray radiation is small and can be neglected. 

(ii) Small 	 amount of reflected and emitted radiation from the unnatural 
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surroundings of the target (for example -- spectroradiometer, man, truck, 

etc.) is incident on the target and finally reaches the detector. This 

is quite small because the reflectance of the targets of our interest 

(i.e., plants, soils, etc.) in the wavelength range 7- i4 i'm is usually 

less than 15% (Section 2.6). 

(iii) The radiation coming from the target and reaching the detector
 

when the spectroradiometer is looking at the reference blackbody, and
 

vice versa, is almost equal to zero and can be neglected (Section 5.1).
 

The spectroradiometer has been designed in such a way as to minimize
 

the stray radiation. Hence, neglecting the stray radiation, Equation
 

(5.2.1) reduces to
 

S = K (A) (L ,b(X,T)} - K2(A) (L ,b ref(XTr)] (5.2.2)
 

If Tr (reference blackbody temperature) is kept constant, Equation
 

(5.2.2) becomes the equation of a straight line for each value of the
 

wavelength A. In other words, it reduces to the form:
 

y = MX + c (5.2.3) 

where 

S = y, K (A) = m = slope of the straight line1
 

K1) K ,b ref(,T r) c = constant
X()L = 

The spectral blackbody radiance at temperature, T, and wavelength, 

X, is given by Planck's Law with usual notations, as follows: 

S2h 2 

Lx,b(XT) 
 (5.2.4)
 
X [exp (hc/kXT) - 1] 

or
 

T he 22 (5.2.5) 

(log ( + Ak (,T)
SX,b( T
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(B) Wavelength Calibration 

The wavelength calibration for both the channels was done by finding 

the pulse number corresponding to the following strong, sharp and ac­

curately known absorption bands of polystyrene, atmospheric carbon (i­

oxide and methyl cyclohexane (liquid), in the infrared wavelength region 

(Figures 5.2.1 and 5.2.2).
 

It can be seen from the Figures 5.2.1 and 5.2.2 that pulse number 

vs. wavelength is almost a straight line. 'A straight line-was fitted 

to these points for each channel by the least square fit, the results 

of which are given below. 

(1) Indium Antimonide Channel 

Avg. Ix- x I 0.014 .n, Max. - p= 0.027 pm (5.2.6) 

wheie 

Avg. = denotes the average value 

Xp = predicted value of the wavelength by a straight line least 

square fit 

X = experimentally determined value of the wavelength 

Approximate Beginning of Wheel = Pulse 1 

Pulse No. Wavelength in Substance Used 

Micrometers For Calibration
 

90 3.3033 Polystyrene, ref. [78] 

116 3.4188 Polystyrene, ref. [78] 

130 3.507 Polystyrene, ref. [78] 

256 h.258 Carbon Dioxide, ref. '78] 

398 5.143 Polystyrene, ref. [10] 

435 5.3447 Polystyrene, ref. [10] 

Approximate End of Wheel = Pulse 500 



o Atmosphere Carbon Dioxide 
A Polystrene 
X Beginning of the Wheel 

EO Approximate End of the Wheel 

500­

400t0 

a-200­

100 

0 5 3,0 35 40 45 &0 55 so 

> Wavelength in Micmamekrs 

Figure 5.2.1 Wavelength Calibration for Indium Antimonide Channel 
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0 Methyl Cyclohexone 
A Polystyrene14 
 X Beginning of the Wheel 
0 Approximate End of the Wheel 

12
 

0E 11
 
0 
2
 

10­

09 

C, 8
 

so0 00 150 200 250 300. 350 400 450 500
 
> Pulse No
 

Figure 5.2.2 Wavelength Calibration for Murcury Cadmium 

Telluride Channel
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(2) Mercury Cadmium Telluride Channel 

=
Avg. IX - XpI 0.007 pm, Max. 1x - X'pI = 0.15 1am 

The nomenclature of Equations (5.2.6) and (5.2.7) is the same. 

Approximate Beginning of Wheel Pulse 30 

Pulse No. Wavelength in Substance Used 

Micrometers For Calibration
 

68 7.268 Methyl Cyclohexane, ref. (78] 

168 8.661 Polystyrene, ref.[0]and 

ret. [771 
216 9.3536 Polystyrene, ref. [i0] 

242 9.725 Polystyrene, ref. [10] 

333 11.027 Polystyrene, ref. [10] 

365 11.475 Methyl Cyclohexane, ref. [78] 

393 11.862 Methyl Cyclohexane, ref. [10] 

Approximate End of Wheel = Pulse 523 

The pulse numbers for above mentioned absorntion bands were checked 

from time to time in the summer of 1972 for indium antimonide channel and 

mercury cadmium telluride channel, and the maximum deviation of the pulse 

number from the originally found pulse number was ± 1 pulse number. 

(C) Spectral Radiance Calibration
 

A uniformly closely controlled source having a high apparent spectral 

emittance of nearly one in the 2.8 to 5.6 pm range (indium antimonide 

channel) and in the 7 to 14 pm rahge (mercury cadmium telluride channel) 

is needed to serve as a blackbody for the spectral radiance calibration. 



(1) Blackbody
 

A copper cone having an apex angle of 150 and diameter of about 6.5"
 

was chosen as the blackbody. Copper was chosen because it is a good con­

ductor of heat and thus can be maintained at an essentially uniform tem­

perature. It was decided to paint the copper cone inside with such a 

paint so as to get the normal spectral emittance of the cone nearly to 

one in 2.8 - 5.6 um and in 7 - 14 pm. The following paints were selected 

for conducting emittance tests on them, as these paints have been 

reported9 4 as having high normal emittance. 

1. Eppley - Parson's Optical Black Lacquer
 

2. Krylon Flat Black Enamel No. 1602
 

.3. Krylon Glossy Black Enamel No. 1601
 

4. 3 M Velvet Black 101 - C 10 

Comparative tests of apparent spectral emittance of these paints 

were conducted by painting each of these paints on a 6" x 6" area of a 

copper sheet. Each sample on the copper sheet was heated to 500 C (±
 

0.02' C) to insure that the emitted radiation by the sample would be much 

larger than the reflected radiation from it; and its spectral response was 

recorded in indium antimonide (InSb) channel as well as mercury cadmium 

telluride (HgCdTe) channel using 3/40 Field of View (FOV). These responses
 

are shown inFigures 5.2.3 and 5.2.4 respectively. If the sample is not
 

heated, it would behave nearly like a blackbody in a closed room for a 
closed room is nearly a blackbody cavity. Thus, the response of the sam­

ple paint in a closed room will be nearly the same irrespective of its 

emittance. This can be further explained by Figure 2.6.2 (Section 2.6) 

which shows that the error in experinentally determined emittance of a 
target with the radiometer decreases with the increase in temperature 

of the target. it is clear from Figures 5.2.3 and 5.2.4 that Parson's
 

Optical Black Lacquer has the highest response and hence emittance at
 

most of the wavelengths. In addition, the Eppley Laboratory confirmed 

the uniformity of the emittance of Parson's Black Lacquer with wavelength 

and it was found to be alwost as good as gold black (heavy coat). In the 

British eteorological Service, the erittance of the paint at 250 C 

(i.e., wavelength maximium of 10 pm) was established at 0.98. For the 
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value of emittance of paint = 0.98, the apparent emittance of the cone of 

150 lies between about 0.995 and 1 (see reference 88). 

The copper cone was painted with Parson's Optical Black Lacquer and 

fitted into a fiberg] as covered foam box of dinensions about 16" length, 

10" width and 14" height, as shown in Figure 5.2.5. The foam box was 

filled with water and the water was constantly stirred by a paint mixer 

driven by an electrical motor to maintain the water at a uniform tempera­

ture. The water was heated and cooled by a heater and ice, respectively 

till the cone attained the desired temperature. It was found that the 

cone could be kept at a uniform temperature (Cithin0.20 C) and held con­

stant (the temperature of the cone dropped less than 1 C per hour with 

no attempt being made to control the temperature). Two such blackbodies 

were used in the field experiments, one to be kept at temperature well 

above the ambient temperature (called hot blackbody) and the other to be 

kept at temperature well below the ambient temperature (called cold black­
bo___ ). 

(2) Method of Spectral Radiance Calibration 

It can be seen from Equation (5.2.3) that the spectral radiance 

varies linearly with the signal for a given reference blackbody tempera­

ture at each wavelength. Calibration is accomplished in the field with 

the spectroradiometer mounted, ready for use, on the mobile aerial tower 

bucket 82 (Hi Ranger, see Figure 5.1.7 ). The hot blackbody temperature 

and the cold blackbody temperature are chosen 2 or 30 C above and 2 or 
30 C below the highest and lowest expected temperatures of the targets 

(i.e., plants, soils, etc.), respectively. The cold blackbody is held
 

snug against the opening of the optics of the spectroradiometer and the
 

field of view of the spectroradiometer is set for 150. The reference 

blackbody temperature is chosen so that the output from the spectroradi­

ometer does not saturate during any portion of the scan, yet it is high 

enough to permit good resolution in the data. The reference blackbody 

temperature is kept constant throughout the experiment. Then a spectral 

scan of the blackbody is accomplished. The process is repeated for the 

hot blackbody. Data are recorded on the same analog tape as the exper­

iment data mid are later processed digitally. This process must be 
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repeated if any parameter of the instrument is altered. The temperature 

of the target, T, was calculated by using Equations (5.2.3) to (5.2.5). 

To determine the accuracy of the calibration, a spectral scan of the 

blackbody was accomplished at temperatures of 17.50 C, 23.1 C and 37.60 

C beside a corn field on the Purdue University Agronomy Farm. The black­

body at temperature 23.10 C was treated as a target at unknown temperature 

and its spectral radianed was computed by linear interpolation of the 

blackbody spectral radiance at 17.50 C and 37.60 C and this computed 

spectral radiance was used to calculate the corresponding temperature 

given by Equation (5.2.5). Figures 5.2.6 and 5.2.7 compare the theoreti­
ical (i.e., blackbody radiance at 23.10 C given by Planck's Law - Equation
 

(5.2.4) and computed values- of the spectral radiance and temperature of 

the target in indium antimonide and mercury cadmium telluride channels 

respectively. The characters 1 and 2 indicate the theoretical and com­

puted values of the spectral radiance respectively. The characters 3 and 

4 indicate the actual and computed values of the temperature respectively. 

The asterisk indicates agreement to within 0.5 per cent of 

the full scale value. It can be seen from Figures 5.2.6 and 5.2.7 that 

except for the wavelengths range 2.7 to 3.4 1am, the temperature usually 

computes to within ± 10 C and the spectral radiance usually computes to 

within ± 1 per cent of the full scale value. The high departure from 

theory in the wavelength range 2.7 to 3.4 pm is due to the relatively 

small values of spectral radiance (less than 100 microwatts/sq. cm./ 

steradian/micrometer) and hence, low signal to noise ratio in this wave­

length region. 

Considering the fact that there are errors involved in this calcula­

tion like tape recorder noise (the signal was recorded on the tape), er­

ror in measurement of temperature, error in wavelength calibration, etc., 

the Figures 5.2.6 and 5.2.7 show that the assumption of linearity of the 

signal with spectral radiance at. each wavelength, for a given reference 

blackbody temperature, is quite good for our purposes in both Indium 

Antimonide and Mercury Cadmium Telluride Channel. Hence, the use of 

Equation (5.2.3) is justified. 

Further work was done to establish the linearity of the signal with 

the spectral radiance following the same procedure described above. The 
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spectral scan of the blackbody was accomplished at temperatures of 18.540 

C, 23.370 C, 27.320 C, 31.970 C and 35.630 C in the mercury cadmium 

telluride channel (Figure 5.2.8). The blackbody at each of temperatures 

23.370 C, 27.320 C and 31.970 C was treated as a target at unknown temper­

ature and its spectral radiance was computed by linear interpolation of 

the blackbody spectral radiance at temperatures of 18.540 C and 35.630 C 

and this computed spectral radiance was used to calculate the correspond­

ing temperature given by Equation (5.2.5). Table 5.2.1 shows the differ­

ence between the real and computed temperatures at 8 um, 9 pm, 10 vm, 11 

pm, 12 Um and 13 pm. 

Table 5.2.1 Difference between Real and Computed
 

Temperatures at Certain Wavelengths
 

Wavelength Error in 'C 

in Micrometers Real Temperature Real Temperature Real Temperature 

23.370 C 27°320 C 31.970 C 
8 -0.13 +0.18 +0.30 

9 -o.1h -0.33 -0.32 

10 +o.16 +0.24 +0-25
 

U - 0.16 +O.06 -0.01
 

12 +0.22 +0.14 +0.17
 

13 +0.12 -O. U +0.06
 

Table 5.2.1 shows that the maximum absolute error in computed temperature 

is 0.33' C, which is accurate enough for our purposes. 

The spectral scan of the blackbody was accomplished at temperatures 

of 17.650 C, 17.880 C, 18.050 C and 18.460 C in the mercury cadmium tel­

luride channel (Figure 5.2.9). It can be seen from Figure 5.2.9 that the
 

minimum differentiable temperature difference of a blackbody visually 

from spectroradiometer scans is about 0.150 C. 



675 so 901 

'35 63 

10 

' 

1I 

L 

Wavelength in Micrometers 
12 13 1375 

, '. 

,27 

Temperatures of 
Blackbody in 

3a 

0370 

185 

Figure 5.2.8 Sean of the Blackbody 
Channel 

at Various Temperatures In Mercury Cadmium Telluride 



1114
 

Wavelength in Micrometers-> 

675 80 90 100 110 120 I30 1375 

Temperatures of Black Body are around 17 75 C 
Minimum Detectable Temperature Difference =0.150C 

Temperatures 
Iin0 C 

0;) 
a18iJ805 

1766 

1765 . 

1788 

Figure 5.2.9 	 Minimum Differentiable Temperature Difference of a Blackbody
in Mercury Cadmium Telluride Channel 



115 

5.3 	 Callbration of Precision Thermistor Thermometer 

Probes and the PRT-5 Portable Radiation Thermometer 

(A) Calibration of Precision Thermistor Thermometer Probes 

The thermistor thermometer is used for ground observations in 

field experiments and general-purpose temperature measurements 8 1 

The thermometer features digital display, battery operation and 0.10 C 

accuracy. For the convenience of the user, the thermometer is trans­

ported in a water-tight case which is safe and easy to handle under 

field conditions (Figure 5.3.1). In addition to protecting the instru­

ment from bumps and dirt, the loaded case will float in fresh water. 

The instrument meets its accuracy specification from 150 C to 400 C. 

Thus, the instrument is ideally suited for measurement of contact 

temperatures of the natural targets (for example, soils, plant leaves, 

etc.) in a field environment, air temperature, temperature of water in 

a river, etc. Further details of the instrument are available 

Precision thermistor thermometer probes are used with the digital 

multimeter and 'temperature to voltage converter' to determine the 

temperature of a target. Probe types 709 and 705, manufactured by 

Yellow Springs Instruments, shown in Figure 5.3.2, were used for 

measuring the contact temperatures of soil and air respectively. Fur­
81

ther details of the instrument are available 

Four thermistor probes, used with the Precision Thermistor Thermo­

meters, were calibrated against Taylor Permafused precision thermometers, 

from 50 C to 50O C at an interval of 0.50 C. The probes and thermometers 

were immersed in a water bath, with thermometer positioned approximately 

in the center of four probes. The water bath had a stirring mechanism 

so that the water could be kept at nearly uniform temperature. The 

temperature of the water in the water bath was increased above the 

ambient temperature by the heating mechanism in the water bath, and 

decreased below the ambient temperature by adding cold water or ice. 

The probes were numbered as follows-

Probe No. 1: Yellow Springs Intruments Company, Inc. Part No. 709 

(color of connecting wire--dtrk tan, used with digital multimeter 
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No. 783 and tenerature to voltage converter No. 1). 

Probe No. 2: Yellow Springs Instrument Company, Inc. Part No. 703 

(color of connecting virevhite, used with digital multimeter No. T83 

and temperature to voltage converter No. 2). 

Probe No. 3: Yellow Springs Instrnent Company, Inc. Part No. 709 

(color of connecting vire-light ton, used with digital multimeter No. 

417 and temperature to voltage converter No. 1). 

Probe No. 4: Yellow Springs Instrument Company, Inc. Part No. 703 

(color of connecting vire-gray, used with digital multimeter No. 4174 

and temperature to voltage converter No. 2). 

(B) Descriztion of the PIr-5 Portable Radiation Thermometer 

The model PRT-5 Portable Radiation Thermometer is a portable, 

battery-overed instrument for determining the effective radiance tem­

perature (also called radiant temperature ) of the objects 6 . It con­

sists of a hand-held optical head and a separate solid-state electronics 
unit (Figure 5.3.3). The instrument is filtered to make =easurements in 

the wavelength range of 8 to 14 micrometers because the atmosphere is 

nearly transparent in this wavelength region. An in-line temerature­

controlled cavity containing the detector and the collecting optics 

lies directly behind a gold plated reflecting chopper. In this way, the 

detector "sees" the cavity as a reference by reflection when the chopper 

is closed. The instrument is powered by rechargeable, self-contained 

batteries. Measurements of targets which fill the field of view are 

independent of distance. The focus range of the optics is one foot to 

infinity. An open sight shows the pointing direction. 

Important Brief Snecifications: 

Temperature Range of Operation a -200 C to +75o C
 

Accuracy = 0.5 C
 

Reference Cavity Temperature = 450 C
 

(C) Field of View of PRT-5
 

The field of view (F.O.V.) of PRT-5 was determined as follows. The 



Figure 5.3.3 PIT-5 Portable Radiation Thermometer p. 



PRT-5 was mounted on a stand so that it was looking vertically downward 

on to a graph paper. A soldering iron was moved from outside its F.O.V. 

to inside its F.O.V., an the graph paper. The points at which the PRT-5 

shoved an increase in response were taken to be boundary points of the 

F.O.Vo These points, as Joined by a smooth curve, are shown in Figure 

5.3.. 

The F.O.V. and solid angle of the instrument were calculated as 

follows.
 

F.O.V. 2 (Area of the graph paper seen by PRT-5) 1 / 2 180 

in degrees (Distance of the graph paper from PRT-5) (w) W 

or 
2x 180 

F.O.V. a - a 9. ° plane angle 
51.5 (T~l/ W 

The solid angle subtended by the target at the PRT-5 is given by: 

Area of the graph paper seen by PRT-5aolid ae 
(Distance of the graph paper from PRT-5) 2 

or 
56.5 

solid angle - .)2 u 0.0212 steradian(S 


(D).. Calibration of PM'-5 

The calibration of PRT-5 vas done using a conical blackbody 

(Figure 5.2.5), over'a temperature range of about 50 C to about 50* C. 

The PRT-5 was set up vertically, aimed at the blackbody directly belov 

it. The temperature of the blackbody was varied frot about 50 C to 

about 500 C at temperature intervals of about 1 to 2" C. The blackbody 

was kept at a uniform temperature by a constant stirring mechanism (see 

Section 5.2 (C). The results of the calibration are given below in 

Table 5.3.1. 
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Area Seen by PRT-5= 56 5 sq. inches 
Height of the Paper from PRT-5 =51.5 inches 

Figure 5.3.4 Field of view of F1Tq5 Portable Rdiation Thermomter 
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Table 5.3.1 Temerature of the Blackbody 

vs. Temperature Indicated by the PRT-5 

Temperature of the Blackbody Temperature Indicated by the PRT-5 

in 0 C in *C 

49.91 50.60 

48.56 49.30 

46.3o 47.05 

45.28 46.00 

43.32 43.50 MScale 
44.00 H Scale 

42.01 42.10 M Scale 

42.60 H Scale 

4o.39 40.60 MScale 
ki.i0 H Scale 

39.08 39.45 

37.44 37.85 

35.64 36.25 

34.o4 34.9o 

32.13 33.00 

31.20 32.10 

29.52 30.60 

27.56 28.90 

26.38 27.80 

24.35 26.00 

23.93 25.05 

23.01 24.50 

22.08 23.4,5 

20.36 21.70 

18.76 20.4o 

16.91 19.10 

15.89 18.30 

15.20 17.50 

13.88' 15.70 

12.63 15.00 
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Table 5.3.1 cont. 

Temperature of the Blackbody Temperature Indicated by the PRT-5 

in °C in 0 C 

IO.96 13.4o
 

10.13 12.95 

8.32 11.10 

7.00 9.50
 

6.06 8.90 

Note: L-Scale and M-Scale gave the same readings from 10 to 150 C. 
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5.4 Ground Truth for Exteriments
 

with Long Wavelength Spectroradiometer
 

The purpose of the ground truth is to help interpret the data pro­
duced by the spectroradiometer properly and to help find.the causes of 

spectral variability within and between the targets of interest. Hoffer 

has given the importance of ground truth data in remote sensing. The 
word 'spectroradiometer' has been used in this and the subsequent Sec­
tions to mean 'Long Wavelength (LWL) spectroradiometer' (i.e., Indium 

Antimonide Channel: 2.8 to 5.6 pm and Mercury Cadmium Tellurlde Channel: 

7 to 14 um). Measurement 'of ground truth variables like radiant sky 
and cloud temperature, 'air temperature, cloud temperature leaf area 

index, etc. is helpful for proper interpretation of the results obtained 

from analysis of the spectroradiometric data. 

(A) Radiance Sky. nd Cloud Temperature 

The values of the sky radiance temperature (also called radiant temper­

ature) and cloud radiance temperature were determined with PRT-5. If 

the temperature of the sky and/or cloud was not uniform over the whole 

sky and/or cloud, both maximum and minimum values of the radiance temper­

atures were recorded. Percentage of cloud cover was roughly estimated
 

by looking at the sky. The minimum and maximum values of the radiance 

temperature of the clear sky were found to be about 'well below - 2 0 ' C' 

(PRT-5 cannot measure radiance temperatures below -200 C) and -100 C 

respectively. The radiance temperature of the clouds were usually 

found to lie between about -5' C to about 200 C depending upon the 

type of clouds. 

(B) Soil and Air Temperature 

The contact temperatures of soil and air were measured using porta­

ble precision thermistor thermometer (Section 5.3(A)). Probe types 

709 and 705 , manufactured by Yellow Springs Instruments, were used 

for measuring the contact temperatures of soil and air respectively. 

These probes, 'prior to their use, were calibrated against Taylor Perma­

fused Precision Thermometers from 5' C to 500 C, as described in Section 

5.3(A). 

There are a number of errors involved in the measurement of the 



125
 

contact temperature of a target by thermistors, thermocouples etc. 9 Their 

material usually has different emittance than the target (leaf, soil etc.) 

and thus experiences a different radiant energy exchange regime. In 

addition, they have different heat dissipation mechanisms than the tar­

get (leaf, soil etc.), having wire leads to carry, but no evaporating 

surface. 

Soil and air temperature measurements were made on the soil on 

which spectroradiometric data was recorded. For each spectral scan of 

the target by the spectroradiometer, the temperatures were measured in 

the following order:
 

i) Sunlit soil temperature was measured at two spots, about 3 

to 4 feet apart. The spots were selected at random. 

Temperature of the soil varies from one spot of the soil to another, 

in general. A reaningful temperature of the soil can be defined as the 

average temperature of the soil, average being taken over the area of 

the soil (Section 2.2). It is questionable if the measurement of the 

temperature of two spots of sunlit soil is nearly equal to the average 

temperature of the sunlit soil. The temperature measurements were made 

at only two spots of the soil because these measurements had to be made 

efficiently with each scan of the spectroradiometer. If the target did 

not have any sunlit soil, the temperature of the shaded soil was measured 

at four spots instead of two.
 

(ii) Air temperature near the target was measured in the shade. 

(iii) 	Same as (i) except that the measurements were made on the 

shaded soil. 
(iv) 	 Air temperature around the target was measured in the shade. 

Unfortunately, the soil and air temperatures could not be measured 

with the spectroradiometer scans of some of the targets because of the 

shortage of personnel. At least two persons are needed to measure the 

soil and air temperatures accurately with each scan of the spectrora­

diometer.
 

(C) Temperature of the Plant Leaves 

It is very difficult to measure a meaningful temperature of a plant 

leaf accurately and efficiently. The effect of environmental variables 
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on the plant leaf temperatures was given in Section 2.4. The change in 

environmental variables causes a change in the temperature of a leaf 

(Section 2.3(A)). The temperature of a leaf in a field environment 

changes rapidly because of a rapid change in the environmental variables. 

In general, the temperature of a leaf varies very rapidly when the wind 

is blowing. Thus, if possible, the field experiments with long wave­

length spectroradiometer should be conducted at a time when the wind is 

relatively steady.
 

The temperature of a leaf also varies from one spot of the leaf 

to another (Section 2.4(B)). A meaningful temperature of a leaf can be 

defined as the average temperature of the leaf over its entire area(Sec­

tion 2.2). Similarly, a meaningful temperature of a plant canopy can 

be defined as the average temperature of its leaves. 

Most part of the radiant flux density of emitted radiation coming 

from a plant canopy, received by the spectroradiometer, comes from the 

leaves and the soil directly visible from the spectroradiometer (see 

Chapter IV). Thus, to help interpret the data' of the long wavelength 

spectroradiometer, it is adequate to measure the temperature of only 

those leaves which are directly seen by the spectroradiometer. However,
 

in actual practice, it is quite tedious and impractical to measure the 

temperature of each small portion of the leaf and average it over the 

leaves directly seen by the spectroradiometer. Hence, the temperature 

of the leaves was not measured. 

(D) Estimation of Other Variables of'Ground Truth 

Other variables like solar radiation, net radiation, minutes of 

sunshine, wind direction, wind velocity, relative humidity, evaporation 

rate etc. are recorded constantly (i.e., 24 hours a day) by the weather 

station at the Purdue Agronomy Farm and can be used, if needed. The 

values of these variables can be assumed to be the same at our experi­

ment site as at the Weather Station since the experiment site was lo­

cated quite close (within a mile) to the Weather Station. It should 

be pointed out that the scan of the targets was accomplished by both 

short wavelength and long wavelength spectroradiometer. The ground 
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truth taken for analyzing the data of short wavelength spectroradiometer, 
given in Appendix B can also be used if needed. 

(E) Recommendations end Concluding Remarks 

The spectroradiometer can record the data as fast as one second per 

spectral scan. In order to collect the ground truth at a time as close 

as possible to the time of accomplishing scan of the target with spectro­

radiometer, only the necessary variables of the ground truth should be 

be measured in a most expedient manner. 

With each scan by the spectroradiometer, the soil temperature should 

be measured at a number of spots of the soil to get true and meaningful 

temperature of the soil. If the soil is partly sunlit and partly shaded, 

temperature measurements should be made on the sunlit as well as on the 

shaded soil. If the value of any ground truth variable -- say soil 

temperature varies rapidly, both minimum and maximum values of the 

variable should be recorded. Probe for the soil temperature measurement 

should be kept in the shade and it should come well in contact with the 

soil.
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5.5 Evaluation of a Snectroradiometric Method
 

for Determining Temoerature and Snectral Emittance 

of a Natural Target 

(A) Introduction 

It is quite important to know the temperature of the natural target -­

say plants -- to detect the subtle changes in their temperature caused 

due to stresses by insects, plant diseases, physiological disorders, 

nutrient deficiency and adverse environment effects. Optimum temperature 

exists for certain biological activity in the organisms. For example, 

soil temperatures too hot or too cold inhibit seed germination 8 . It is 

also necessary to know the temperature of a target for energy balance 

calculations. 

Nutter 7 4 (1972) has given, an excellent review of the radiation 

thermometery. Some authors of the technical literature have given the 

plot of spectral radiance temperature (see Section 2.2 for definition of
 

spectral radiance temperature) vs. wavelength of some natural targets in 

a certain wavelength range but they have not attempted to find a reason­

ably accurate approximation to the temperature of the target from the 

data of spectral radiance temperature. For example, the plot of spectral
 

radiance temperature vs. wavelength from a number of field scenes in the 

wavelength range of 5 to 15 um is given on pp. 47-51 of the LARS Annual 

Report 6 3 . It will be shown that the spectral radiance temperature of a 

target can be considerably less than the target temperature. 

(B-) Snectral Radiance Temperature 

and Average Temperature of a Target 

It was pointed out in Section 2.2 that if the temperature of a nat­

ural target is not constant over the whole target, its meaningful tempera­

ture can be defined as the average temperature of the target over its 

entire area. An example is given below to show that the spectral radi­

ance temperature of a typical natural target having nonuniform tempera­

ture distributton, as measured by a spectroradiometer, is close to its 

average temperature for all practical purposes. 
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Consider a target divided into five parts equal in area. Let the 

temperature of the five equal parts be 200 C, 220 C, 240 C, 260 C and 280
 

C respectively. The average temperature of the target, TAV G = 240 C. 

Let the target fill the field of view of the spectroradiometer. Let T (X)s 

be the spectral radiance temperature of the target, as given by the spec­

troradiometer, assuming emittance of the target equal to one and neglecting 

the experimental errors involved. A plot of T - Ts(X) vs. wavelength
AVG s 

is shown in Figure 5.5.1. Figure 5.5.1 shows that TAVG - Ts (A) is less 

than 0.150 C in the wavelength interval 4 to 114 m, which is within the 

accuracy of measurement of spectral radiance temperature by the Exotech 

Model 20C Spectroradiometer (Section 5.2). 

(C) Definition of Temperature of a Nonblack Target
 

for Applications to Snectroradiometric Measurements
 

In general, the temperature of a natural target is not uniform over 

the whole target. Consider a natural target whose temperature need not
 

be uniform.
 

Let a snectroradiometer whose radiance and wavelength scales have 

been calibrated record the spectral radiance coming from the natural tar­

get at wavelengths A
1

, 
2 ".. AN"X Let the target be opaque (i.e., trans­

mission = a) in the wavelength region X to A Throushout this section, 

i will refer to integers 1, 2, ... 1I;and k will refer to integers 
lying between 1 and N. Let p(Ai) be the spectral hemispherical direc­

tional reflectance8 7 of the natural target in the direction of the 

sensor. 

1(XiJ= i - p(Ai ) (using Kirchhoff's Law) (5.5.1) 

where
 

E(xi) = spectral directional emittance of the target in the direction
 

of the sensor
 

The basic assumption made in this analysis is that the reflected
 

radiation from the target is negligible as compared to the radiation emit­

ted from it. If the sky is clear, this is true for most natural targets
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Figure 5.5.1 Difference Between Average Temperature and Spectral Radiance Temperature 
vs. Wavelengthof a Target 
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for wavelengths longer than approximately- 4 pm (Section 2.5(C)). 

Neglecting the reflected radiation from the target, as explained 

above, and neglecting the scattering, absorption and emission by the 

atmosphere 64 , one gets, using Planck's Lay with usual notations. 

h 1.5.2)

(xi = kA1 xog { 2hc2552
 

i,2,...N ,Ai5_.A
 

where
 

T ) spectral radiance temperature at wavelength Ai
 
s-i II
 

Lx = spectral radiance of radiation coming from the target at
 
wavelength X.
 

±
 
or
 

I, c spectral radiance of radiation emitted by the target at
 

wavelength 

The temperature of a target, for applications to spectroradiometric 

measurements, is. defined using Planck's Law, as follovs. 

l 2he Cx )5 

At5L .. 

It should be pointed out that in actual practice, the values of temperature, 

T, at the wavelengths A1 A2 .. ." may not be equal because of the 

experimental errors involved. Throughout this Section the word "temper­

ature" of a natural target will be used to mean temperature, T, defined 

by Equation (5.5.3).
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(D) Determination of Temperature 

and Spectral Emittance of a Natural Target 

There are N equations in Equation (5.5.2) and N unknowns, Ts(Xi),
 
which can be determined.
 

Lxi b(Ts(XT)) - L i(T) = eCxi) Lxi b(T) (5.5.4)
 

where 

L i9(Ts (Xi )) blackbody spectral radiance at wavelength iand temperature Ts(X i)
 

s(Xi ) = spectral emittance of the target at wavelength Xi 

From Equations (5.5.3) and (5.5.4), one obtains 

Ts (xi) < T, T (X) = T if and only if C(XI) = 1 (5.5.5) 

There are N equations in (5.5-4) and N+l unknowns -- (x i) i = 1,, 

2, ... N, and T. Therefore, Equation (5.5.4) cannot be solved, in general, 

i.e., the temperature, T, of the target cannot be determined without any 

knowledge about its spectral emittance. 

The variables of Equation (5.5.1) are plotted vs. wavelength in 

Figures 5.5.2 to 5.5.7. Although the wavelength range in these Figures 

is taken to be 0.5 to 14 Pm for illustrative purposes, we are concerned 

only with the wavelength range about 4 to 14 unm in this Section. 

Figures 5.5,2 and 5.5.3 show that the difference between the tempera­

ture, T, and spectral radiance temperature, Ts(M, increases almost 

linearly as the wavelength increases for a given value of spectral emit­

tance. Figure 5.5.7 shows that [T - Ts ()]/X vs. wavelength is almost a 

constant for a given value of spectral emittance of about 0.8 to 1. To 

find a good approximation of T, one minimizes [T - TS(X) ] over the wave­

length range of the spectroradiometer. If the target were a gray body 

(i.e., spectral eittance is independent of wavelength), min IT - T (x)] 
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will be found at the shortest wavelength of the wavelength range of the 

spectroradiometer -- X . In actual practice, however, the natural target 

may not be a gray body 4OU7h,4 6 in the wavelength range 4 to 14 pm. 

Therefore, in general, min [T - Ts (A)] can5 lie anywhere between X and1 
X, depending on spectral emittance and spectral radiance temperature of 

the target. Figures 5.5.4 and 5.5.5 show respectively, that the accuracy 

of experimentally determined spectral emittance of a target using a spec­

troradiometer, increases with increasing wavelengths; and the accuracy is 

weakly dependent upon the temperature of the target. As pointed out ear­

lier, Equation (5.5.4) cannot be solved in general. However, the solutions 

of some of the special cases of Equation (5.5.4) are discussed as follows. 

(a) If the target is a blackbody at one or more wavelengths Aj, 1 < J < N, 

one gets
 

T T () 1 N (5.5.6)
max. [T (X )], i 1, 2, ... 

X
i
 

(b) The spectral emittance at some wavelength X3 is a known lunction of 

the spectral emittance at some other wavelength 'k, i.e., 

e(X) = (557) 

Equations (5.5.A) and (5.5.7) have (N+l) equations and (N+l) unknowns -­

C(Xi), i = 1, P, ... N and T. Thus, unknowns can be calculated. 

It should be pointed out that if Ts(A) = T' = constant (i.e., inde­

pendent of wavelength), it does not imply that the target is a blackbody, 

for its spectral er.uttance, c(X), could be given by 

(ehc/l kT _ 1 )/ (ehc/kT'- 1) (5.5.8) 

In actual practice, however, it is very unlikely that the spectral
 

emittance of a natural target is given by Equation (5.5.8). In actual
 

practice, if T (X) = constant ± e, in the wavelength range about 7 to
 s 
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14 im, one could say that the target is probably almost a blackbody with 

spectral emittance greater than approximately 0.98; where e = average of 

absolute value of the error involved in determination of Ts(A) (Figure 

5.5.3). A typical value of e is 0.50 C. 

(c) Let the upper and/or lower bounds on the spectral emittance of the 

target be known in some known wavelength intervals A, I A < . These 

bounds m be determined from the available data of spectral emittance 

in the literature and/or researcher's own exnerience and kowledge. 

(3) Upper Bounds 

min. e(Xi) < M, max. e(Ai ) < Mn (5.5.9)2 

Let 

max. Ts (A) = T (found from spectroradiometric data) 

(5.5.10) 

or max. Ts (X) = T (kAawn value) 

T > T1 .(Equation (5.5.5)) (5.5.11)
 

Let I I denote the assumed value. Assume (TI, = T and determine values 

of (sCi)}1 using Equation (5.5.4) and check if min. C(Xi) < mI. If 

not, then continue taking {T12 = Tj+ AT, {T} = T, + 2AT ... until at 

some [T} = T2 ,min. e(X i ) = m1 within certain prechosen suitable accuracy. 

Here AT is some suitable increment in temperature. For example, one 

can take AT as the average of absolute error involved in the determina­

tion of spectral radiance temperature by spectroradiometer. Simiiarlv, 

one can determine T3 corresponding to the condition max. c(Xi ) = i 2 . 

Let 

max. [T1, T2 , T3 ] = Th.l.b. (5.5.12) 



where 

of the temperature T.
T.l.b. = high lower bound 

If any other lower bound on T is known, it should also be included in E­

quation (5.5.12) to determine T 
i ,V(XAi, h~b'2) .LX Ts).\ 

)l.u.b. L i jA~b ( i Th.l.b. ( 

where 

(Xi)l.u.b. -- low upper bound on the spectral emittance c(X i 

(ii) Lower Bounds 

The same procedure used in "Upper Bounds" (Section D(c)(i)) can be 

followed to determine T and (Ai )h.l.b from the known lower bounds 

on spectral emittance. 

Let the wavelengths at which min. [s(X) l.u.b.] min. [(Xi)h.l.b.],, 

max. [E(Xi)l.u.b I and max. [c(Ai)h.l.b ] minimized/maximized over the , 

wavelength range occur Xa, andXd,X1 to AN be a ', Xa respectively. Then 

min. [EXi)] lies between Aa and X and max. [s(9i) ] lies between Xe and 

Ad respectively. If T (X ) > T a(X) or all A > ", where 1 < J < N, 

1 < k < N, it implies that min. s(Ai ) and max. s(xi ) would occur at 
=wavelengths Xa 'b and X0 = Xd, respectively. 

The author emphasizes that for most of the plant canopies with 

good ground cover (say, ground cover > 0.70), one can take Th.l.b. as 

the approximation to the temperature, 5, of the plant defined by Equa­

tion (5.5.3) because the spectral emittance of most plant canopies with 

good ground cover probably lies between about 0.95 and 1.00 in 7 to 11; 

pm wavelength range (Section 2.6). If no more information on the spec­

tral emittance of the target is available other than upper and/or lower 

bounds of its spectral emittance, which have been used to calculate T
h .l.b. 

and Tl.u.b. respectively, one can take 

T (estimated) = (Th.l.b. + Tl.u.b.)/2.
 

One practical way of determining the temperature of a natural target 
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-- say a plant canopy is to take spectroradiometric data on the plant 

canopy at two different times when the sky is clear (cloud free) so that 

the reflected radiation from the target is negligible as compared to the 

radiation emitted by it (Section 2.5(0)). These times should be selected 

close enough so that the geometry (orientation of the leaves, stems, etc.
 

percent ground cover) of the plant canopy can be assumed to be practical­

ly the same at both times. Wind should be. steady at both of these times 

so that the wind does not change the geometry of the plant. Also, these 

two times should be such that the temperature of the plant at one time 

is likely to be significantly (at least 20 C) different from its temper­

ature at the other time. This can be approximately checked by making 

a few measurements of contact temperature of the leaves directly visible 

from the spectroradiometer by thermistor. Now, an assumption can be 

made that the emittance of the plant canopy is equal at both of these 

times since its geometry is practically the same at both times. This 

gives one additional equation - Equation (5.5.7), and hence, temperature, 

T, of the plant canopy can be determined (Section 5.5D(b)). However, if 
the temperature of the plant canopy at one time is close to its tempera­

ture at another time within the experimental accuracy, then the spectral
 

radiance of the plant canopy recorded by spectroradometer will be equal
 

at two times within experimental accuracy, i.e., two equations of Equa­

tion (5.5.4) are the same within experimental accuracy. So, there are 

only N independent equations in (5.5.4) and N+1 unknowns -- (i ), i = 

1, 2, ... N, and T. Temperature, T, cannot be determined without any 

knowledge of the spectral emittance of the target. 

The same procedure can be followed to determine the temperature of 

a plant canopy by taking spectroradiometric data on two plant canopies 

of the same crop, maturity, geometry (orientation of leaves, stems, etc.) 

soil background, percent ground cover etc. These plant canopies can 

be assumed to have equal spectral emittance in the -wavelength range of 

the spectroradiometer.
 



9 

143 

5.6 Ground Cover Experiment 

(A)Description
 

The amount, of vegetative ground present in an agricultural field or

scene is one of the dominant factors influencing its spectral response 

Still, little quantitative information is now available to aid in under­

standing the interactive effects of the crop canopy and the soil background 

on the spectral characteristics of agricultural fields. The objective 

of this experiment is to determine the effect of amount of ground cover 

on the spectral response of corn in the long wavelength thermal infrared 

region as influenced by the soil background . Russell silt loam soil was 

chosen as it is one of the common soils of Indiana. This experiment was 

designed by Dr. M. Bauer and Dr. J. Cipra of the Laboratory for Appli­

cations of Remote Sensing, Purdue University, and this description of 

the experiment has been written with their help. 
The experiment was conducted on the Purdue University Agronomy 

Farm in the summer of 1972. Corn (Zen mays L.) were grown in the 
plots 6-76 cm rows, 4.6 meters long on May 25, 1972. Fertilizer and 

herbicides were applied prior to planting. The rows were marked by 

tractor and planting was done by hand in order to obtain uniform
 

spacing between the rows. Plots with varying amounts of ground cover
 
were established by having five different plant populations: 0, 15, 30,
 
60 and 90 thousand plants per hectare, each plant population being
 

replicated twice (Figure 5.6.1).
 

Spectroradiometric scan of each of the plot numbers one to ten
 

(Figure 5.6.1) was accomplished in the Indium Antimonide Channel (2,.8 to
 

5.6 um) with the Exotech Model 20C spectroradiometer (Sees. 5.1 and
 

5.2) on August 18, 1972, which was a relatively cloud free day (sky
 

radiant temperature was less than -50C). Unfortunately, Murcury Cad­

mium Telluride Channel (7 to 14 vm) was not in working order on that
 

particular day and hence, no data could be taken in the Murcury Cad­

mium Telluride Channel.
 

(B) Materials and Methods
 

The spectral radiance and spectral radiance temperature of the
 

target (Plot no. 1 to 10) was calculated at wavelength interval of about
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0.03 Pm in Indium Antimonide Channel (2.8 to 5.6 um, see Section 5.2). 

The Indium Antimonide Channel was divided into the following five 
wavelength bands for analyzing the data. 

1. 3.6 to 3.9 um
 

2. 3.9 to 4.15 um
 

3. 4.50 to 4.80 pm
 

4. 4.80 to 5.10 um
 

5. 5.10 to 5.40 pm
 

The data'in the wavelength region 2.6 to 3.6 um were not analyzed be­

cause the value of the spectral radiance of the most natural targets-­

plants, soils etc. is relatively small (less than 100 microwatts/sq. cm./
 
steradian/micrometer) in 2.6 to 3.6 ur; which results in low signal to
 
noise ratio in this wavelength region (See. 5.2). The data in the wave­

length region 4.15 to 4.50 um were not analyzed because of strong absorp­

tion by atmospheric carbon dioxide (Section 2.5(A))in this wavelength
 

region (The data was taken from a height of about 30 ft. from the ground).
 

The data-in the wavelength region 5.40 to 5.60 pm were not analyzed
 
because'of low signal to noise ratio in this wavelength region because this
 

wavelength region is near the wavelength 5.6 pm, which corresponds
 

to the end of the circular variable filter wheel (Section 5.1 & 5.2) and
 

the signal starts dropping near the end of the wheel.
 

The spectral radiance temperature calculated at wavelength interval
 

of about 0.03 Pm in Indium Antimonide Channel was averaged over each of 
the wavelength regions mentioned above, and is denoted by T ()


a AVG*
 
(C)Results and Discussion
 

Bartlett's Test76 was used to test for the homogeneity of the 
variances of the calculated values of the average spectral radiance 

temperature of the four plant populations (15, 30, 60 and 90 thousand 

plants per hectare) in each of the five wavelength regions mentioned 

above individuallv. No evidence was found to reject the hypothesis of 

homogeneous variances for a level of 0.05; hence the means of average 
spectral radiance temperatures of the four plant populations could be 
compared on the same basis. Soil plots (plant population a 0) were not in­

cluded in the statistical analysis because the spectral radiance 
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temperature of the soil throughout 3.60 to 5.40mm was much different 

from the spectral radiance temperature of the other plant populations
 

(Table 5.6.1). 
76 

The analysis of variance was used to test the homogeneity of the 

means of the calculated values of T (A)AVG for four plant populations 

(15, 30, 60, and 90 thousand plants per hectare) in each of the above 

mentioned five wavelength regions individuallv. Means of Ts(X)AVo for the 

four plant populations were found to be statistically significantly 

different for an a level of 0.05. The values of the means of T (0AVG 

for each of the five plant populations (including soil) in each of the
 

five wavelength regions are given in the following Table 5.6.1.
 

Table 5.6.1 Results of the Ground Cover Experiment 

Wavelength Region Plant Population Percentage Average Spectral 

(plant4 per hectae) Ground Cover Radiance Temperature 

3.6 to 3.90 pm 0 (soil) 0 (soil) 43.8P 
" " 15,000 30 37.07 
i It 30o,000 50 34.95 
o it 60,000 75 34.47 

"" o t 90,000 90 34.97 

3.90 to 4.15 um 0 (soil) 0 (soil) 38.62 
of 15,000 30 35.52 

t oI 30,000 50 33.82 

it 60,000 75 33.10 

It I 90,000 90 33.82 

4.50 to 4.80 pm 0 (soil) 0 (soil) 36.17 
" " 15,000 30 34.25 
it i I 30,000 50 33.12 

It " 60,000 75 32.90 

" " " 90,000 90 32.87 
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Wavelength Region Plant Population Percentage Average Spectral
 

(plants per lectare) Ground Cover Radiance Temperature
 

4.80 to 5.10 um 0 (soil) 0 (soil) 36.32 
it I " 15,000 30 34.22 

it" " " 30,000 50 32.97 
. . t to 60,000 75 32.97 

of " " o 90,000 90 32.95 

5.10 to 5.40 um 0 (soil) 0 (soil) 36.05 
it" " " 15,000 30 34.00 
" I i " 30,000 50 33.05 

" " " " 60,000 75 33.02 
o " t " 90V000 90 33.52 

The variables which can cause differences in the spectral radiance 

temperature of one plant population and another plant population are 

given in Table 5.8.3 (although Table 5.8.3 is given for corn blight, it 

can be applied to the ground cover experiment). The temperature 

(contact temperature) measurements of the sunlit soil and the shaded soil 

were made in°the sumer of 1972 (Section 5.4) at the time of taking
 

spectroradiometrtc scans. The temperature of the sunlit bare soil was
 

found to be about 8 to 120C higher than the temperature of the shaded
 

soil under the plant. The temperature of the sunlit soil and the shaded 

soil under the plant canopy consistantly decreased as the author went 

from the plant population 0 to 15,000 to 30,000 to 60,000 to 90,000
 

plants per hectare. This is because the solar radiant flux density
 

reaching the soil under the plant decreases as the plant population in­

creases. Also, most of the soil under the plants of population 30,000
 

and 60,000 plants per hectare was shaded. There was no sunlit soil under
 

the plants of population 90,000 plants per hectare.
 

Table 5.6.1 shows:
 

(1) Average spectral radiance temperature of the soil is much different
 

from the average spectral radiance temperature of the rest of the plant
 

populations (0, 15,000, 30,000, 60,000, and 90,000 plants per hectare).
 



(2) The average spectral radiance temperature of the plants decreases
 

consistently as we go from the plant population zero (soil) to the
 

plant population 30,000 plants per hectare in all the wavelength regions
 

given in Table 5.6.1. In the wavelength regions 4.80 to 5.10 Um and
 

5.10 to 5.40 Vm, the average spectral radiance temperatures of the plant
 

populations 15,000 and 30,000 plants per hectare are equal. The average
 

spectral radiance temperature of the plants increases in the wavelength
 

regions 3.60 to 3.90 um, 3.90 to 4.15 um and 5.10 to 5.40 Um as we go
 

from a plant population of 60,000 plants per hectare to a plant population
 

of 90,000 plants per hectare. Some of the differences in the trend of
 

the average spectral radiance temperature vs. plant population in
 

different wavelength regions may be because of the plant and/or soil
 

emittance being different in different wavelength regions.
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5.7 Temperature and Emttanoe
 

of Healthy and Non-Sytemic Stressed Corn Leaves
 

(A) Temperature of Healthy vs. 

Non-Systemic Stressed Corn Leaves 

Temperature measurements of the healthy spot of the corn leaf, 

blighted spot of the same corn leaf and the air temperature Were made 

consecutively on the blighted corn plants grown in the Agronomy Farm 

of Purdue University on a relatively dry day when the sky was clear (sky 

radiant temperature -- below 50 C). Measurements were made on the 

blighted corn leaves because corn blight is representative of the problems 

of non-systemic stresses. Fifty readings of the temperature of the 

healthy spot of the leaf (TH), blighted spot of the leaf (TB) and air 

temperature near the leaf (TA ) were taken. The temperature of the healthy 

spot and the blighted spot was measured with a calibrated precision 

thermistor used with the digital meter (Section 5.3). The precision 

thermistor was a small thermistor having a resistance of 3000 ohms at 

250 C and time constant (time required to indicate 63% of a new im­

pressed temperature) of one second. A small thermistor was chosen so that 

its effect on the temperature of the leaf is negligible. 

The temperature measurements were made on a day with relatively 

low wind velocity because the temperature of a leaf usually varies 

rapidly when the wind is blowing (Section 5.4(C)). When the temperature 

of the spot of a leaf and/or air was varying, both maximum and minimum 

values of the temperature were recorded and the average of the maximum 

and the minimum temperature was taken. The author found it difficult 

to get a good contact of the thermistor with a blighted spot because 

a blighted spot tends to break when brought in good contact with the 

thermistor. From these measurements, the temperature of healthy spot 

of a leaf minus air temperature (TH - TA ) and the temperature of 

blighted'spot of a leaf minus air temperature (TB - TA) were computed 

and are given in Table 5.7.1. 
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Table 5.7.1 Temperatue of Healthy and Blighted 

Spots of Leaves Minus Air Temperature 

No. TH - TA TB - TA 

01 0.27 0.62 
02 0.23 0.55 
03 o.16 0.78 
o 0.35 0.60 
05 0 .33 1.00 
06 o.42 0.38 
07 0.25 0.18 
08 0 .35 0.22 
09 0.58 -0.34 
10 0.36 o.4o 
fl -0.19 0.01 
12 0.13 0.03 
13 -0.31 0.21 
VI 0.20 0.10 
15 -0.09 0.06 
16 0.13 o.o4 
17 0.37 o.54 
18 -0.21 -0.17 

19 0.52 0.41 
20 0.01 0.31 
21 -0.02 0.02 

22 0.01 0.21 
23 0,17 0.10 
24 -0.18 -0.12 

25 0.24 0.28 
26 0.09 0.21 
27 0.29 0.18 
28 0.08 0.19 
29 0.17 0.10 
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Table 5.7.1 cont. 

No. TH - TA TB - TA
 

30 -0.16 -0.23 

31 0.02 -0.04 

32 0.18 0.29 

33 0.11 0.13 
34 0.33 0.21
 

35 0.02 0.10
 

36 0.06 0.f1 

37 0.29 0.20 

38 0.16 0.23 

39 0.23 0.18 

ho 0.08 0,17 
41 0.08 0.05 

42' 0.09 0.03 

43 -0.09 0.00 
44 -0.o6 0.11 

45 0.13 0 .11 
46 -0.09 0.13 
47 0.31 0.25
 

48 -0.15 0.03 

49 0.12 0.16 
50 -o.o4 0.03 

The mean and the variance of the values of (T - TA) and (T - TA) 

were calculated and are given as follows. 

TH -A TB -A 

Mean 0.127 0.187 

Variance 0.038 0.058
 

Bartlett's Test 7 6 was used to test for the homogeneity of the variances 
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of the data values of (TH - TA) and (TB - TA). No evidence was found 

to reject the hypothesis of homogeneous variances for a level of'o.05; 

hence, the means of (TH - TA) and (TB - TA) could be compared on 

the same basis. The Analysis of Variance 76 was used to test for the 

homogeneity of means of (TH - TA) and (TB - TA). No evidence was found 

to reject the hypothesis of homogeneous means for a level of 0.10. 

The mesa of 

CT1 - T) (TB -T) o.o6 (5.7.1) 

It should be pointed out that a difference of 0.060 C between the 

temperature of the blighted spots and the healthy spots of corn leaves 

is within the experimental accuracy of measurement of temperature by 

the precision thermistor (accuracy of temperature measurement of preci­

sion thermistor = 0.10 C). A very preliminary conclusion, based on the 

results of this experiment, yet to be confirmed by further experiments, 

is that there is no significant difference of temperature between the 
blighted spots and healthy spots of corn leaves. 

(B) Bnttnce of Blighted Corn Leaves 

Completely blighted leaves were plucked from the corn plants on a 

clear day (sky radiant temperature below -200 C) and taken to an open 

space, where there were no objects near by. Thus, the surrounding 

radiation reflected by a blighted leaf was negligible as compared to the 

radiation emitted by it (Section 2.5(C)). The contact temperatures and 

the band radiance temperatures (see Section 2.2 for definition of band 

radiance temperature) in the wavelength range 8 to 14 'm, of a leaf were 

measured alternately with a precision thermisor and the PRT-5 radiation 

thermometer respectively. The measurements were made on ten blighted 

leaves. The emittance, e(8 - 14 pm), of a leaf in the wavelength 

spectrum sensed by the PRT-5 (8 - 14 um), was calculated as follows. 

c(8 - 14 m) = [Ts (8 - 14 pm))4 (5.7.2) 
[T] h
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where 

Ts(8 - 14 Pin) = radiance temperature in the wavelength range 

8 to 14 um, as sensed by PRT-5 

T = contact temperature as measured by precision thermistor 

e (8 - 14 pm) = emittance in the wavelength range 8 to 14 um 

The e(8 - 14 pm) of the blighted leaves was found to lie between about 

0.86 to 0.97. It should be pointed out that these results are very 

preliminary because these are based on a relatively few observations 

and a number of errors are involved in the measurement of contact and 

band radiance temperatures (Sections 5.7(A) and 5.4(c)). The range of 

e(8 - 14 pm) of blighted leaves -- 0.86 to 0.97, is about the same as 

the range of emittance of healthy leaves (Section 2.6(c)). Thus, very 

careful and precise experiments need to be conducted to distinguish the 

subtle differences, if any, between the emittance of healthy and 

blighted leaves. 
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5.8 Experiment on Non-Systemic Ctressed Corn Plants 

(A) Description
 

The purpose of this experiment was to study the effect of non-systemic 

stresses on the spectral response of corn plants in the long wavelength 

thermal infrared wavelength region. The experiment was done for the 

southern corn leaf blight because corn blight is representative of the 

problems of non-systemic stresses. 

The field experiments were conducted on the Purdue University Agrono­

nv Farm in the summer of 1972. Corn plants of row width 76 cm, plant 

population 52500 plants per hectare, were grown on May 18 on the chalmers 

soil having a smooth surface and of silty clay loam texture. 

The experimental design is shown in Figure 5.8.1. The experiment 

was designed by Dr. M. Bauer and Dr. J. Cipra of the Laboratory for Ap­

plications of Remote Sensing, Purdue University. 

Southern corn leaf blight (SCLB) is caused by the fungus Helmintho­

sporium maydis. The disease has been known for many years and is wide 

spread in corn-growing tropical areas of the world67 . Symptoms of SCLB 

are the appearance of brown lesions on the lower leaves; the lesions grow 

in size and spread to upper leaves until the entire plant is prematurely 

killed (Figure 6.1.1). The corn fields were rated from blight level 0 

(healthy corn) to blight level 5 (very severe blight) based on the amount 

of leaf damage 6 7 (Figure 6.1.2). 

Two hybrids Pioneer 3306 and Pioneer 3571 were chosen for growing
 

corn. One of the objectives of the experiment was to determine if there 

was any statistically significant difference in the spectral radiance
 

temperature of the Pioneer 3306 (a type of hybrid) corn and Pioneer 3571 

corn. Texas male-sterile cytoplasm (TI48) and normal cytoplasm versions 

of Pioneer 3306 corn and Pioneer 3571 corn were grown (Figure 5.8.1).
 

Helminthosporium maydis (H. maydis) causes relatively mild infection on 

corn of normal (N) cytoplasm, but it attacks corn in TMS cytoplasm with 

unusual virulence which causes southern corn leaf blight. The TAZ corn 

plots 3, 5, 10 and i1 were inoculated with H. maydis on June 28; whereas 

TIS corn plot- It, 6, 9 and 13 were inoculated with H. maydis on July 



Row width: 76 cm
 
Plant population: 52500 plants per hectare
 
Soil: Chalmers silty clay loam
 

South 

( Early Early Late Late 

o 
*0 

0 3 5 7 9 II 13 15 
00 

-A--B"--D- -C--B--A- -D- -C­

.,,-I 

C W0V 
0 "a 2 4 6 8 10 12 ,14 16 CD 

o o0 Late Late Early Early M 

E = denotes that the plants were inoculated with SCLB on June 28 
L = denotes that the plants were inoculated with SCLB on July i4 
A = Pioneer 3306 - N Cytoplasm, Healthy 
B = Pioneer 3306 - TMS Cytoplasm, Blighted.
 

C = Pioneer 3571 - N Cytoplasm, Healthy
 

D = Pioneer 3571 - TMS Cytoplasm, Blighted 

TMS = denotes Texas male-sterile N = denotes normal 

Figure 5.8.1 Design of the Corn Blight Experiment 
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14 (Table 5.8.1). 

Spectroradiometric scan in each of the Indium Antimonide Channel (2.8 

to 5.6 um) and Mercury Cadmium Telluride Channel was accomplished with 

Exotech Model 20C Spectroradiometer (Sections 5.1 and 5.2) on the plot 

numbers 2, 4, 6, 8, 10, 12, 14, 16, 13, 9, 5 and 3 on August 9, 1972, 

which was a relatively cloud free day (sky radiant temperature less than
 
-5* C). The same experiment was repeated on August 17, 1972, which was
 

also a relatively cloud free (sky radiant temperature less than 00 C day.
 

The experimental design can be illustrated by the following table
 

Table 5.8.1 Experimental Design of Corn Blight Experiment 

August 9 (Date of Spectroradiometric Data)
 

HBeatted Blighted I 
Healthy Late Inoculation Early Inoculation 

(July 14) (June 28)
 

Pi6neer Pioneer Pioneer Pioneer Pioneer Pioneer 
3306 3571 3906 3571 3306 3571 
N N TMS TMS TMS TMS 

Cytoplasm Cyto lasm Cytoplasm Cytoplasm Cytoplasm Cytoplasm 

2 2 2 2 2'j 2 
Replication Replication Replication Replication eplications heplicationPttl ot t lot 
Plot Plot loFlt~o Ploi o Plo lot Plo Plot 
2 12 8 16 4 9 6 13 10 3 14 5 

fPlot 
PPot 

N = denotes normal 

T = denotes Texas male-sterile 

Plot numbers refer to the plots shown in Figure 6.8.1. 

The experimental design for August 17 (date of taking the spectroradiome­

tric data) is the same as the experimental design for August 9 given abuts. 
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(B) Materials and Methods
 

The spectral radiance and the spectral radiance temperature of the 

target was calculated at wavelength interval of about 0.03 1m in Indium 

Antimonide Channel (Section 5.2). The Indium Antimonid6 Channel (InSb) 

was divided into the following five wavelength bands for analyzing the 

data: 

1. 3.6 to 3.9 Pm 

2. 3.9 to 4.15 Pm 
3. 4.50 to 4.8o pm 

4. 4.8o to 5.10 Pm 

5. 5.10 to 5.40 pm 

The reasons for not analyzing the data in the wavelength regions 

2.6 to 3.6 pm, 4.15 to 4.50 pm and 5.40 to 5.60 pm are given in Section 

5.6 (B). 

Similarly, Mercury Cadmium Telluride (HgCdTe) Channel (7 to 14 pm) 

was divided into the following seven wavelength regions for analyzing the 

data: 

1. 7.50 to 8.2 pm
 

2. 8.20 to 8.90 um 

3. 8.90 to 9.60 pm 

4. 9.60 to 10.30 pm
 

5. 10.30 to 11.00 pm 

6. 11.00 to 11.70 P.m
 

7. 11.70 to 12.40 pm
 

The data in the wavelength regions 7.0 to 7.5 pm and 12.)t0 to 14.00 

pm were not analyzed because the signal to noise ratio can be low in these 

wavelength regions as these correspond to near the start and near the end 

of the circular variable filter wheel respectively. 

The spectral radiance and the spectral radiance temperature of the 

target was calculated at wavelength interval of about 0.07 pm in the 

Mercury Cadmium Telluride Channel (see Section 5.2). 
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(C) Results and Dliscussion 
Let the average spectral radiance temperature of a corn plot in a 

certain wavelength region be defined as the average of the spectral ra­

diance temperature (calculated at a wavelength interval of about 0.03 

pm in Indium Antimonide Channel and 0.07 um in Cadmium Telluride Channel) 

of the plot averaged over that wavelength region. Let average spectral 

radiance temperature of the healthy corn in a certain wavelength region 

be defined as the mean of the average spectral radiance temperature of 

the healthy corn plots (plot numbers 2, 8, 12 and 16), on which the spec­

troradiometric data was collected, in that wavelength region (Figure 

5.8.1). -The average spectral radiance temperature of the blighted corn 

(early inoculated with SCLB) and blighted corntlate inoculated with SCLB) 

can be defined similarly, the average being taken over the plots 10, 

14, 3, 5, and the plots 4, 6, 13, 9 respectively. 

Bartlett's TestT6 was used to test for the homogeneity of the 

variances of the calculated values of the average spectral radiance tem­

perature of the healthy, early inoculated (June 28) with SCLB, and late 

inoculated (July 14) with SCLB, corn in each of the wavelength regions 

of the Indium Antimonide (InSb) Channel and Mercury Cadmium Telluride 

(HgCdTe) Channel, mentioned above. No evidence was found to reject the 

hypothesis of homogeneous variances for an a level of 0.05. Data of 

both dates (August 9 and August 17) were included in the analysis. 

Analysis of Variance for factorial design89 was used to test for the 

homogeneity of the means of the average spectral radiance temperature 

of the healthy, early inoculated (June 28) with SCLB, and late inoculated 

(July 14) with SCLB corn in each of the wavelength regions of InSb
 

and HgCdTe Channels mentioned above individually. The following con­

clusions were obtained: 

1.) No evidence was found to reject the hypothesis of homogeneous means 

of the average spectral radiance temperature of corn Pioneer 3306 and 

corn Pioneer 3571 for an a ivel of 0.05 in each of the wavelength regions 

of In Sb Channel and 1fgCdTe Channel, mentioned above, i.e., the average 

spectral radiance temperature of the corn Pioneer 3306 was not found to 
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be statistically significantly different from the average spectral radi­

ance temperature of the corn .Pioneer 3571 for an a level of 0.05. This 

means that although the experiment was conducted for only two hybrids of 

corn -- Pioneer 3306 and Pioneer 3571; the results obtained from this a­

nalysis may well be applicable to many other corn hybrids. 

2.) The average spectral radiance temperatures of the healthy corn, 

blighted corn inoculated on July 14 (average blight level* - 1.40) and 

blighted corn inoculated on June 28 (average blight level* - 3.4) were
 

found to be statistically significantly different for an a level of 0.05.
 

3.) The average spectral radiance temperature of the corn (healthy and
 

blighted) on August 9 was found to be statistically significantly different
 

from the average spectral radiance temperature of the corn on August 17 

for an a level of 0.05. 

4.) The average spectral radiance temperature of the healthy, late inoc­
ulated (July 14) and early inoculated (June 28) blighted corn is given 

in the following Table 5.8.2. 

Table 5.8.2 Average Spectral Radiance Temperature 

of Healthy vs. Blighted Corn 

Wavelength Average Spectral Radiance Temperature in ' C
 
Band Healthy Corn Blighted Corn Blighted Corn
 

(inoculated July 14, (inoculated June 28, 

average blight level = average blight level 

1.4) -3A) 
Indium Antimonide Channel 

3.60 to 3.9 m 30.45 31.60 32.70
 
3.90 to 4.15 pm 29.31 30.53 31.49
 

4.50 to 4.80 pm 28.56 29.81 30.49
 
4.8o to 5.10 pm 28.31 29.59 30.31
 

5.10 to 5.40 pm 28.21 29.31 30.06
 

* Average blight level of the blighted corn inoculated on July i1 is 
defined as the average of the blight levels of all the plots (plot num­
ber 4, 6, 13 and 9) inoculated on July 14 on which the spectroradiometric 
data was tacen. The average blight level of the blighted corn inoculated 
on June 28 is defined similarly. 
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Table 5.8.2 cont. 

Wavelength Average Spectral Radiance Temperature in 0 C
 
Band Healthy Corn Blighted Corn Blighted Corn
 

(inoculated July 14, (inoculated June 28,
 

average blight level average blight level 
= 1.4) = 3.4) 

Mercury Cadmium.Telluride Channel 

7.5 to 8.2 pm 28.86 30.24 31.22 
8.2 to 8.9 pm 28.67 30.20 31.33 

8.9 to 9.6 Pm 28.42 29.95 30.97 

9.6 to 10.3 pm 28.23 29.73 30.88 
10.3 to 11.00 Pm 28.32 29.75 30.74
 

fl.00 to 11.70 Pm 28.24 29.89 30.88
 

11.70 to 12.40 pm 28.52 30.05 31.00
 

Table 5.8.2 shows that the average spectral radiance temperature of 
the corn increases as the blight severity increases in each of the 
wavelength regions given in the Table. It also shows that for healthy 
corn as well as blighted (early inoculated as well as late inoculated) 
corn, the average spectral radiance temperature decreases as the wavelength 
increases in InSb Channel. In HgCdTe Channel also, the average spectral 
radiance temperature of the healthy as well as blighted corn generally 
decreases as the wavelength increases. 

In this experiment, the variables which can cause differences in 
the average spectral radiance temperature of the healthy corn and the 
blighted corn are given in the following Table 5.8.3 (see Chapter IV). 



Table 5.8.3 Variables that Can Cause Difrere.ces in the 
Average Spectral Radiance Terperature of the IVealthy and bliphted Corn 

Sp ectral Radiance Spect rfl Rladiance 
ure of the Te the 
 t Spectral Padiance
leaves Visible from the teTemperature of theSoil Visible from the Stems Visible from the 

Spectroradliometer Spectroradiometer Spetroradiometer 

I I'I ' 
spectral temperature Perceratur perntge cpectra& temperature percentageecittance of of the of leaves emittance of the soil of soil etae o teera otthentage

emittance of the stem of'ihe stemn 
the leaves leaves of the e

soilse 

Sunlit shaded Sunlit shaded sunlit ahade4 sunlit shaded sunlit shaded sunlit Shaded 
leaves leaves leaven leanes si ol si olsen SeaSeCSa 
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The important variables of Table 5.8.3 are discussed briefly as fol­

lows. Average spectral radiance temperature of the stems is not expected 

to be a predominant factor causing differences in the average spectral ra­

diance temperature of the healthy and blighted corn. Hence, spectral ra­

diance temperature of the stems is not discussed. 

Based on a very limited number of observations, it was concluded in 

Section 5.7 that the band emittance of the blighted leaves in the wave­

length range 8 to 14 pm was found to lie betweeen about 0.86 and 0.97, 

which is about the same as the range of emittnce of the healthy leaves 

(Section 2.6(c)). Thus, there are perhaps subtle differences, if any, 

between the emittance of the healthy and blighted corn leaves. Hence, 

a very preliminary conclusion, yet to be confirmed by further experiments, 

is that the difference between the spectral emittance of the blighted and 

healthy corn leaves is not the predominant factor causing difference be­

tween the average spectral radiance temperature of the healthy and blighted 

corn plants. 

It was reported in Section 5.7 that there was no statistically sig­

nificant difference between the blighted and the healthy spots of the 

corn leaves. Hence a preliminary conclusion, yet to be confirmed by 

further experiments,. is that the temperature differences, if any, between 

the leaves of the healthy and blighted corn plants do not contribute 

significantly to the difference between the average spectral radiance 

temperature of the healthy and blighted corn plants. 

It should be pointed out that the blighted leaf is essentially dead. 

Its steady state temperature can be found by substituting QClIF24 (net heat 

added to the leaf per unit time by chemical processes taking place in the
 
=leaf) = 0 and QTRANS 0 in Equation (2.3.3). On a very hot sunny day, a 

healthy corn leaf can curl to reduce solar radiant energy per unit time 

incident on the leaf to prevent or at least delay wilting; whereas, a
 

blighted leaf being essentially dead, cannot change its orientation to 

reduce the solar radiant energy per unit time incident on it. Hence, on 

a very hot sunny day, the temperature of the blighted leaf might be 

significantly higher than the temperature of a healthy leaf which would 

probably result in the difference between average spectral radiance 
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temperature of the blighted plants and healthy plants significantly
 

greater than what is reported in this Section.
 

Healthy and blighted leaves were grown on the same soil. Hence,
 

the spectral emittance of the soil of healthy and blighted corn plants
 

is expected to be the same.
 

The percentage ground cover of a corn plant decreases as the blight
 

level increases9. Also, itwas reported in Section 5.6(C) that the
 

temperature of the shaded as well as sunlit soil decreases as the per­

centage ground cover increases. The author believes, yet to be confirmed
 

by further experiments, that the percentage of the soil, especially the 

sunlit soil, visible from the spectroradiometer, is perhaps the predominant 

factor causing the differences in average spectral radiance temperature of 

the healthy and blighted corn plants. The average spectral radiance 

temperature of the blighted corn plants wah found to be higher than the 

average spectral temperature of the healthy corn plants because there was 

relatively more percentage of the sail visible from the blighted plants 

than from the healthy plants and the average spectral radiance temperature 

of the soil was higher than that of the leaves. This is supported by 

the following conclusions: 

1.) The average spectral radiance temperature of the bare coil was much 

higher-than the average spectral radiance temperature of the corn plants 

of population 15,00, 30,000 60,000 and 90,000 plants per hectare (Section 

5.6). 

2.) The average spectral radiance temperatures of the four plant popula­

tions (15,000, 30,000, 60,000 and 90,000 plants per hectare) were found 

to be statistically significantly different and the average spectral 

radiance temperature generally decreased with an increase in plant 

population (Section 5.6). 
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5.9 Experiment onSystemic Stressed Corn Plants 

(A) Description 

The purpose of this experiment was to study the effect of systemic 

stresses on the spectral response of corn plants in the long wavelength 

thermal infrared wavelength region. The experiment was done for the 

nitrogen deficient plants because nitrogen deficiency is representative 

of the problems of systemic stresses. 

Nitrogen is a vitally important plant nutrient, the supply of which 

can be controlled by man 9 3 . This element, to be absorbed by most plants 

(legumes excepted), must be in a form other than the elemental nitrogen.
 

The forms most commonly assimilated by plants are: the nitrate (NO) and 

the ammonium (NH+) ions. When the nitrogen fertilizers are used in con-

Junction with other plant nutrients in a sound crop management program, 

they greatly increase crop yields. 

Carbon, hydrogen,, oxygen, nitrogen, phosphorus and sulfur of which 

proteins and hence protoplasm are composed 9 3 . In addition to these six, 

there are fourteen other elements which are essential to the growth of
 

some plant or plants: calcium, magnesium, potassium, iron, manganese, 

molybdenum, copperyboron, zinc, chlorine, sodium, cobalt, vanadium and 

silicon. Not all are required for all plants but all have been found 

to be essential to some.
 

When the plants are deficient in nitrogen, they become stunted and 

yellow in appearance 993 * This yellowing, or chlorosis, usually appears 

first on the lower leaves; the upper leaves remain green. In cases of 

severe nitrogen shortage, the leaves turn brown and die. 

The field experiments were conducted on the Purdue University Agron­

omy Farm where long term fertility experiments are available. These are 

replicated experiments with varying rates of nutrient application.
 

Corn plants of row width 71 cm, plant population 54,500 plants per hectare,
 

were grown on May 18, 1972, on the chalmers soil having a smooth surface
 

and a silty clay loam texture. The experimental design is shown in
 

Figure 5.9.1. The experiment was conducted on three rates of nitrogen
 

application: (the nitrogen application was given in the form of ammonium
 

nitrate in spring) 0 kg/hectare, 67 kg/hectare and 201 kg/hectare (healthy).
 



corn plants of row width = Ti cm 
plant population = 54500 plants per hectare
 
soil: chalmers silty clay loam 

Nitrogen Nitrogen Nitrogen 
0kg/ha 67kg/ha 201 kg/ha 

(healthy) 

PLOT I PLOT 2 PLOT 3 

Figure 5.9.1 Experimental Design of Nitrogen Deficiency Experiment 
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The spectroradiometric scan of two different spots of each of the 

plot numbers - one to three (Figure 5.9.1) was accomplished in the Indium 

Antimonide Channel (2.8 to 5.6 pm) with the Exotech Model 20C Spectroradi­

ometer (Sections 5.1 and 5.2) on August 18, which was a relatively cloud 

free day (sky radiant temperature was less than 00 C). Unfortunately, 

the Mercury Cadmium Telluride Channel (7 to 14 pm) was not in working 

order on that particular day and hence, no data could be taken in the 

Mercury Cadmium Telluride Channel. 

(B) Materials and Methods 

The speqtral radiance and the spectral radiance temperature of the
 

target (Plot no. 1 to 3) was calculated at a wavelength interval of about
 

0.03 pm in Indium Antinonide Channel (2.8 to 5.6 um, see Section 5.2).
 

The Indium Antimonide Channel was divided into the following four wave­

length bands for analyzing the data:
 

1. 3.6 to 3.9 pm 

2. 3.9 to 4.15 Pm 

3. 4.50 to 4.8o pm 

4. 4.80 to 5.10 Pm 

The data in the wavelength region 5.10 to 5.40 pm was not analyzed because 

for some of the spectroradiometric scans, the signal started dropping in 

this wavelength region. The reasons for not analyzing the data in the
 

wavelength regions 2.6 to 3.6 pm, 4.15 to 4.50 Vm, and 5.40 to 5.60 pm
 

are given in Section 5.6(B).
 

(C) Results and Discussion
 

Two different spots of the same nlot were treated as replications for 

statistical analysis of the data. Bartlett's Test76 was used to test for 

the homogeneity of the variances of the calculated values of the average 

spectral radiance temperature of the three plots (0 kg/hectare, 67 kg/hectare 

and 201 kg/hectare, see Figure 5.9.1) in each of the four wavelength 

regions mentioned above individually. No evidence was found to reject the 

hypothesis of homogeneous variances for an a level of 0.05; hence the 

means of average spectral radiance temperatures of the three corn plots 

could be compared on the same basis. 
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The analysis of variance7 6 was used to test for the homogeneity of 

the means of the calculated values of Ts(OAVG of the three corn plots 

(0, 67, and 2Olkg/heetare) in each of the above mentioned four wavelength 

regions individuall., Means of T a)AVG for the three nitrogen applica­

tdons were found to be statistically significantly different for an a
 

level of 0.05 and are given in Table 5.9.1 on the following page.
 

Variables of ground truth (see Section 5.4) -- air temperature, sunlit
 

soil temperature and shaded soil temperature are also given in Table 5.9.1.
 

Table 5.9.1 shows:
 

1.) As the nitrogen deficiency increases, the sunlit and shaded soil
 

temperature increases. This is because the percentage ground cover
 

decreases as-'the nitrogen deficiency increases (see Section 5.6). This
 

trend was also found in the ground cover experiment (Section 5.6), i.e.,
 

the temoerature of the sunlit soil and the shaded soil decreases as the
 

percentage ground cover increases.
 

2.) T.(X)A,of the plot no. 1 (nitrogen application Okg/hectare) is
 

lowerthan T )AVG of the plot no.2 (nitrogen application 67kg/hectare);
 

wherea, ii is higher than the T (a)AVG of the plot no. 3 (nitrogen 

application '201kg/hectare). A preliminary conclusion, yet to be confirmed 

by further experiments, is that the spectral radiance temperature of the 

plant in the long wavelength thermal infrared wavelength region is not 

necessaiily higher for the more nitrogen deficient corn plant. 

3.) The difference between the TsaWAVG and the air temperature decreases 

as the nitrogen deficiency increases. This seems to support the results 

of Silva et al. 84 that nutritionally stressed plants are not always hot­

ter than a control plant, but apparently are influenced more strongly 

by the environment. 

The variables which can cause differences between the average spec­

tral radiance temperature of the healthy plant and a stressed plant are
 

given in Table-5.8.3 (although Table 5.8.3 is given for corn blight, it
 

can also be applied to nitrogen deficient plants).
 

A tentative conciusion is that both percentage ground cover and the 

air temperature are important variables causing the differences in 

T()AVG of the healthy and nitrogen deficient corn plants. Although 

the experiment was done on nitrogen deficient plants only, the results 



Table 5.9.1 Results of the Nitrogen Deficiency Experiment, 

Wavelength Region Nitrogen Percent Air Sunlit Soil Shaded Soil Average Spectral 

Application 
(kg/hectare,) 

Ground 
Cover 

Temperature 
in TC 

Temperature 
in TC 

Temperature, 
in 0C 

Radiance Temperature 
of plants in 0 C 

3.60 to 3.90 m 0 40 33.89 37.50 32.10 36.72 
it IT IT It 6T 50 34.13 37.38 31.72 36.95 
it It It I 201 (healthy) 80 32.25 36.60 29.95 35.40 

3.90 to 4.15 Pm 0 4o 33.89 37.50 32.10 35.42 
It It I 67 50 31.13 37.38 31.72 35.87 

" " " " 201 (healthy) 80 32.25 36.60 29.95 34.47 
4.50 to 4.8 pi 0 40 33.89 37.50 32.10 34.75 

" " 67 50 34.13 37.38 31.72 34.77 

" 201 (healthy) 80 32.25 36.60 29.95 33.62 

4.80 to 5.10 pm 0 4o 33.89 37.50 32.10 34.60 
It " " 6T 50 34.13 37.38 31.72 34.70 

IT t it 201 (healthy) 80 32.25 36.60 29.95 33.52 
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obtained from it may well be applicable to the other systemic-stre sed
 

plants for nitrogen deficiency is representative of the problems
 

of many systemic stresses.
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CHAPTER VI 

ANALYSIS OF MULTISPECTRAL SCANNER 
DATA OF NON-SYSTEMIC STRESSED CORN PLANTS 

IN SELECTED FLIGTLINES 

6.1 Introduction
 

The purpose of this study was to study mean response and determine 

the statistical separability of multispectral measurements from corn 

having varying levels of non-systemic stress severity. The analysis was 

done for southern corn leaf blight because corn blight is representative 

of the problems of many plant stresses, especially non-systemic stresses. 

The data were analyzed in one, two, three and four spectral channels for 

selected flightlines-in the 1971 Corn Blight Watch Experiment (CBWfTl). 

Multispectral scanner data in twelve spectral channels in the range 0.4 
to 11.7 Pm, collected with an optical-mechanical scanner at altitudes
 

of 915 to 2135 meters were analyzed by applying automatic pattern recogni­

tion techniques. The key persons involved in the C3WETi were consulted 

and ten flightlines were selected with their help(given in Appendi.x A), 
for analyzing the data. Only those flightlines were selected which had 

a fair or good number of fields of blighted corn. Furthermore, these 

flightlines were relatively free of the problems like fair percentage of 

cloud cover, lack of sufficient ground truth information, etc. 

Southern corn leaf blight (SCLB) is caused by the fungus Helmintho­

sporium maydis. The disease has been known for many years and is wide 

spread in corn-growing tropical areas of the world6 7 . Symptoms of SCLD 

are the appearance of brown lesions on the lower leaves; the lesions grow 

in s ze and spread to upper leaves until the entire plant is prematurely 



Figure 6.1.1 Southern Corn leaf Blight. The disease is characterized 

by small, brown lesions which increase rapidly in size and number. 

eproduc from
best available co 
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Figure 6.1.2 Scale for Estimating Southern Corn Leaf Blight Severity. 
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"killed67 (Figure 6.1.i). Only those corn fields were analyzed for 

which blight rating information from blight level 0 (healthy corn) to 

blight level 5 (very severe blight) based on the amount of leaf 

damage 6 7 were available (Figure 6.1.2). A total of 168 fields having 

18804 sample points taken from ten flightlines were analyzed. 

Black and white photography and gray scale printouts of spectral
 

channels of the flightlines were used to aid in locating the boundaries 

of the corn fields on the LARS Digital Display.* The LARSYS Cluster 

Algorithm91 was then used to find the spectrally distinct classes in
 

six spectral channels. There could be more than one spectral class in 

one blight level but no more than one blight level was ever put in the
 

same spectral class. A key assumption made in the cluster algorithm, 
statistics algorithm and feature selection algorithm is that the 

distributions of the classes are Gaussian. Histograms of the spectral 

classes defined above were used to check unimodality of the statistical
 

distributions in individual channels. The spectral classes were re­

defined to eliminate distinct multiple modes. This analysis was
 

done by various analysts at the Laboratory for Applications of Remote
 

Sensing in 1971. The author used the spectral classes defined by the
 

analysts and checked the class unimodality. Further details of the 1971
 

Corn Blight Wat-c-Experiment can be found in reference (67). 

The LARS Digital Display is a hardware system linked to an IBM 
360/Model 67 using a cathode ray tube as the pictorial medium for grav 
scale multispectral imagery.
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6.2 Mean Resnonse of Corn Bli~t Levels 

in Each Spectral Channel
 

As discussed in the Introduction (Section 6.1), multispectral scan­
ner data in twelve spectral channels in the wavelength range 0.4 to 

11.1 tim were analyzed. The wavelength bands of each of the spectral 

channels are given below. 

Table 6.2.1 Wavelength Bands 

of the Spectral Channels 

Channel No. Wavelength Band in Micrometers 

1 o.46 - o.49 
2 o.48- 0.51 
3 0.50- 0.54 

4 0.52 - 0.5 
5 o.54 - o.60 
6 0.58- o.65 
7 o.61 - 0.7o 
8 0.72- 0.92 

9 1.00 - 1.40 

10 1.50 - 1.80 

11 2.00 - 2.60 

12 9.30 ­ 11.70 

Symptoms of Southern Corn Leaf Blight are the appearance of brown 

lesions on the lower leaves of the corn plant. Since in moderate blight 

(blight levels I and 2), the broom lesions are on the lower leaves 

(Figure 6.2.1), it makes it extremely hard to differentiate mildly 

blighted corn (blight levels 1 and 2) from healthy corn by remotely 

sensed aircraft data. As the blight progresses from blight level i 

(i = 0, 1, 2, 3, 4)- to a blight level i+l, it is likely to cause only 

subtle changes in the reflection and emission of the corn plant. In 

general, there are variables other than the blight in corn plants having 

the same blight level -- soil variables, plant variables (percent ground 

cover is likely to be very important) and environmental variables -­
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which 	 can cause sigaificant differences in reflection and emission from 

a corn plant. Thus, it is extremely difficult to differentiate all the 

blight levels from remotely sensed aircraft data. Therefore, certain 

blight levels have been pooled (i.e., combined together to form a class) 

in this Section. The reasons for pooling certain blight levels together 

will be explained. 

The statistics algorithm was used to find the mean response and 

standard deviation of each of the following corn blight classes in each 

of the twelve spectral channels for each of the ten flightlines given 

in Appendix A. 

(a) 	 Blight level 0 

(b) 	Blight level 3
 

(c) 	 Blight level 4 

(d) 	 Blight level 5 

(e) 	 Blight levels 0, 1 and 2 pooled together 

(f) 	 Blight levels 3, 4 and 5 pooled together 

(g) 	 Blight levels 0, 1, 2 and 3 pooled together 

(h) 	 Blight levels 4 and 5 pooled together 

The corn blight severity was divided into two groups -- moderate 

blight and severe blight. This division was done in two ways as follows. 

(i) 	 Moderate blight consisted of blight levels 0, 1 and 2 pooled 

together and severe blight consisted of blight levels 3, 4 and 

5 pooled together.
 

(ii) 	 Moderate blight consisted of blight levels 0, 1, 2 and 3 

pooled together and severe blight consisted of blight levels 

4 and 	5 pooled together.
 

The corn blight was divided into two groups -- moderate blight and 

severe blight on the assumption that the variables other than blight 

within and between the flightlines (i.e., soil variables, plant variables 

and environmental variables) can cause the same order of differences in 

reflection and emission from the corn plant as the differences in reflec­

tion and emission caused due to differences in blight severity within 

the moderate and within the severe blight. 

The 	 author compared the mean response of blight level 3 vs. blight 
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level 0; blight level 4 vs. blight level 0; blight level 5 vs. blight 

level 0; blight levels 3, 4, 5 pooled vs. blight levels 0, 1, 2 pooled; 

and blight levels 4, 5 pooled vs. blight levels 0, 1, 2, 3 pooled in 

each of the twelve spectral channels but could not find any regular 

pattern of the mean response of higher level/levels blighted corn VS. 

lower level/levels blighted corn in any of the spectral channels, i.e., 

for some of the flightlines, the mean response of the higher level/levels 

blighted corn was greater thon the mean response of the lower level/levels 

blighted corn (including healthy corn -- blight level 0); whereas, for 

other flightlines, it was just the opposite. It is emphasised that 

the mean response of the blighted corn was not necessarily greater than 

the mean response of the healthy corn in the thermal channel (9.30 to 

11.70 Pm). 
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6.3 Statistical Senarability of Spectral Classes
 

of Blighted Corn 

(A) Basic Equations
 

The method of obtaining spectral classes of blighted corn used
 

in this analysis is given in Section 6.1. As pointed out in Section 6.1,
 
a total of 168 fields having 18804 sample points taken from ten flight­

lines were analyzed.
 

For a pair of Gaussian distribution patterns, the divergence in n
 

channels Cl C2 ... Cn, for the case of normal variables with unequal
 

covariance matrices is given 68 by
 

-
D(i,3 I CI , C2 ... C) = 1/2 tr [(E - Z) (E - Z-)] 
ii 

-
+ 1/2 tr ((E (U - U) (U U)T] (6.3.1) 
i J , 

where
 

U and Z represent the mean vector and covariance matrix,
 

respectively;
 

tr[A] (trace A) is the sum of the diagonal elements of A.
 

A modified form of the divergence DT, referred to as the "trans­

formed divergence," has a behavior more like probability of correct 

classification )I than D (Figure 6.3.1). 

--2[1 - exp (-D/8)] (6.3.2) 

Transformed divergence has been used throughout this study.
 

Let i and J denote the blight levels i and J. Let W jt denote the 

weight between kth spectral class of blight level i and tth spectral 

class of blight level J, for computing the weighted average of trans­

formed divergence over the pairs of spectral classes. Throughout this 

analysis, Wikj was taken either = 0 or = 1. The weights which were
 

taken = 0 and the weights which were taken = 1 shall be specified in 
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P = 	Probability of CorrectC Classification of a pair 

of classes
 

D = Divergence between a
 
pair 	of classes 

DT 	 Transformed divergence 
between a pair of classes 

P1.0. 


0..S­

(a)
 

Separability
 

D
T
 

Separabili 7t 	 Separab'ility
 

Figure 6.3.1 Relationship of Separability and 
(a) Probability of Correct Classification, 
(b) Divergence, (c) Transformed Divergence.
 

(Taken from Swain 91 (1972))
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each individual case. 

5 5 nn 

Le'& S, i ' k9 t I 12 c)n (-33TAV -IN J=i k=l =lWi k T 

where 

ni = no. of spectral classes in blight level i 

nj = no. of spectral classes in blight level j 

N = total no. of spectral class pairs whose weights W were 
iki£taken = 1. 

n(k , J I CI , 02 ... Cn ) = transformed divergence between kth 

spectral class of blight level i and Xth spectral class of 

blight level j in n spectral channels - CI, C2 ... Cn n n 

Let D, AVG denote maximum of DTAVG' maximized over a set of n spec­

tral channels. 

Throughout thi's analysis, W0ij =,0 when i=J and k=t. 

(B) Maximum Average Statistical Senarability 

S. Between the Snectral Class Pairs
 

of Mild, Intermediate and Severe Bliht 

The corn blight severity was divided into three groups - mild 

blight (blight levels 0 and 1), intermediate blight (blight levels 2 and 
3) and very severe blight (blight levels 4 and 5). 

The subset of each of one, two, three and four spectral channels 

which maximized the average transformed divergence given by Equation 

(6.3.3) was selected and the maximum average transformed divergence (max­

imized ovr a subset of channels) was tabulated. Let {D n GI denote 

vector whose component (where p = 1, 2p2 ... i0) represents DTMAVG 
flightline. of {D1 fin p Each , TD Y {, 0} and {D4 I 

T{VG DTMAVG 3MAVG} AVG, 
was computed using Equation (6.3.3) for the following Sections 6.3(B)(1) to
 

6.3(B)(h). The values of WikJjgiven below for Sections 6.3(B)(1)
 

to 6.3(B)(4) hold true for all values of k and t.
 

(1) Maximum 'AverageStatistical Separability Between all Spectral
 

Class Pairs
 

Spectral classes were found with the help of the LARSYS Cluster 
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Processor91  (See. 6.1). Between all spectral class pairs, weights are 

set equal to onu, i.e., W k = 1 for all i, J, k and Z. In all 

Sections 6.3(B)(2) to 6.3(B)(4) given below, Wika 0 for i=J, and the 

weights whose values are not specified are taken = 1. 

(2) Maximum Average Statistical Separability Between All Spectral Class 

Pairs of Mild Blight (Blight Levels 0 and 1), Intermediate Blight (Blight 

Levels 2 and 3) and Very Severe Blight (Blight Levels 4 and 5) 

Between all'spectral class pairs of blight levels 0 and 1, blight
 

levels 2 and 3, blight levels 4 and 5,weights are set equal to zero,
 

i.e., Woklt 0, W2k3t 0, W401 =0.
 

(3) Maximum Average Statistical Separability Between the Spectral Class 

Pairs of Moderate (Blight Levels 0, 1 and 2) and Severe (Blight Levels 

3, 4 and 5)Blight. 

The southern corn leaf blight severity was divided into two groups-­

moderate blight (blight levels 0, 1 and 2) and severe blight (blight 

levels 3, 4 and 5). Between all spectral class pairs of blight levels 

0, 1 and 2, weights are set equal to zero. Similarly, between all spec­
tral class pairs of blight levels 3, 4 and 5, weights are set equal to 

zero, i.e., W = l= 0$W3k4 0, 0,01 _= Wk2j 0, = V 

W =kt-0. kZ3~ 

(4) Maximum Average Statistical Separability Between Spectral Class 
Pairs of Mild Blight (Blight Levels 0 and 1) and Very Severe Blight 

(Blight Levels h and 5) 

Between all spectral class pairs of blight levels 0 and 1, blight 

levels 4 and 5, weights are set equal to zero, i.e., W0k1 = 0, 

Wk5 £ = 0. Spectral classes of blight levels 2 and 3 were not included 

in the analysis. 

Let {DV lV nn {DTA and {(D denote the valuesTMAG T.IAG)2 (TMAVG 3 ad(T14AV0114 
of {DnTMAVGI in Sections 6.3(B)(1), 6.3(B)(2), 6.3(B)(3) and 6.3(B)(4). 
Bartlett's Test was used to test for the homogeneity of variances
 

T4AVGI n 2' {D1G)of {D1 1 1 IGnd TV and DATMAVG.14VG}3No evidence wasw 
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found to reject the hypothesis of homogeneous variances for a level of 

0.001; hence, means of {D1 I {,'I {fl1 I and (DI I
TMAVG DT'4AVG 2 TMAVG 3 TMAVG 4 

could be compared on the same basis. A low value of a was taken to 

guard against rejecting the hypothesis when it is actually true. The 

same analysis was done for each n (no. of spectral channels) = 2, 3 

and 4, individually, and the same results were obtained as for n = 1. 

Let DnVdenote the mean of the comnonents (i.e., p = 1, 2 ... i0)
THAWG 

of {DT V. It was found that each of D1_ DRAVG' DT and 
TA GT4AVG' 	 TMAYG' TMA.YG 

f4V individually, increased consistently as the author went from 
T14AVG 

Section 6.3(A-)(1) to Section 6.3(A)(2) .... to Section 6.3(A)(4), as 

shown in Figure 6.3.2. Also, this trend was generally found in most of 

the flightlines. Since the average transformed divergence between 

spectral class pairs is the measure of average separability between them, 

this trend shows that the greater the difference between the severity 

of spectral blight classes, the more separable they are.
 

(C) 	Maximum Average Statistical Separability
 

Between the Spectral Class Pairs
 

of All Possible Pairs of Blicht Levels 

A more detailed analysis of the statistical separability of spec­

tral classes of blighted corn is done in this Section, than in Section 

6.3(B) using the same data as in Section 6.3(B). A subset of each of one, 

two, three and four spectral channels which maximized the average trans­

formed divergence given by Equation (6.3.4) was selected and the maximum 

average transformed divergence (maximized over a subset of channels) was 

tabulated. 

n nina 	 Cn)4,LetDTAVG 	iJ Z- EW DT (k' Jt.[, 2 fC (6"3"4)
]c~1 t=1 ikt, 	 2
 

where
 
n 

DTAVG i 	 denotes average transformed divergence between spectral 

class pairs of blight level i and blight level j in n 

spectral channels C1, C2 ...Cn.
 

The rest of the notation is the same as in Equation (6.3.3). 
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No. of flihtlines analyzed = 10 

ano 

1900o Weights between spectral class pairs
of 

1800 o Ail blight lveS5'I 
aBlight levels (0,1), (2,3) 

and (4,5)'0 

Ioo C] eight levels (0,42) and 
D= ( ,4.5)u0 

Q 1600 Slight levels (0,1] and 
(4,5)-0 Slight levels 
5 and 4 not included 

500­

a1400 

1200 

1100 -
ONE TWO THREE FOUR 

- Number of Spectral Channels 

Figure 6.3.2 	Statitical Separability Between the Spectral 
Class Pairs 

of Mild, Intermediate and Severe Blight 
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n 

let AVG ij denote maximm of DTAVG ±3' maximized over a set of n 

spectral channels. Note that unlike Equation (6.3.3), summation over 
indices _i and 3 (which denote the blight levels) -is not done in Equation 

(6.3.h) 
The maximum average transformed divergence between spectral class 

pairs of. all possible pairs of blight levels, in n spectral channels 

of pth flightline can be conveniently represented by a triangular 

matrix, as follows. 

t[D vG TAjpn i = 0, ... 4 and j = i+l, ...5, denote a 5 x 5thn
 
triangular matrix with elements DTMAVG iJ in p flightline. [DTMAVG iJ p 

was computed for n = 1, 2, 3, 4 using Equation (6.3.4) with Wik 1 

for all values of i, J, k and L, in each of the ten flightlines individu­

ally (p = -1, 2... 10), i.e., maximum average transformed divergence 

between ape6tral class pairs of all possible pairs of blight levels in 
92'
 

one, two, thre and four spectral channels was calculated in each of 

ten flightlines individually. 

Meanand variance of each of the elements of (DI over all
TMAVG p 

the flightlines (p = 1, 2 ... 10) were calculated. Bartlett's Test 7 6 

was used to test for the homogeneity of variances of the elements of 

[DI Gi found above. No evidence was found to reject the hypothesis
TMAVG 13 

of homogeneous variances for a level of 0.001; hence, the means of 

elements of [DV - I p = 1, 2 ... 10, could be compared on the same 1 T M A V G in DifJ[p 

basis. The same analysis was done on the elements of [D.VG U for 

each of n = 2, 3 and 4, individuall, and the same results were found 

as for n = 1. -n 
Let the elements of [DTMAVG j] denote the average of the corres­

ponding elements of [D4AV I all It foundn over flightlines. was 

'Athat D MAVG.G i;3+,l was greater than (in most cases) or almost equal to (in some 

cases) n" for i = 0, 1 ... 4 and j = i+l, ... 5 for each of 

n = 1, 2, 3 and 4 spectral channeJs individually, i.e. , it means that 

the greater the, differencebetween the blight levels, the greater the 

maximum avrage'transformed divergince between their spectral class 

pairs, and,' hence, more separable the blight levels are (Figure 6.3.3). 

This trend wn also generally found in most of the flightlines (Figures 

6.3.4 to 6.3.13). 
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Figure 6.3.3 	 Statistical Separability Between the Spectral Class 
Pairs of All Possible Pairs of Blight Levels. 
All of the Ten Flightlines are Included. 
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Dj =Maximum average transformed divergence between 
spectral class pairs of blight levels i and j 

Run No 71053500 Flightirne 206 Missron 43 

2000- Do3 0023 

900 bI Do2Q DoiD 
D03 DoiID 3
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Number of speeci Channels 
BLIGHT LEVEL- > 

Figure 6.3.h Statistical Separability Between the Spectral Class Pairs 
of All Possible Pairs of Blight Levels. 
Flightline: 206 Mission: 43M 
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Dij =Maximum average transformed divergence between
 
spectral class pairs of blight levels I and 1
 

Run No 71070001 Flightlme 206 Mission 45
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Figure 6.3.5 	 Statistical Separability Between the Spectral Class 
Pairs of All Possible Pairs of Blight Levels. 
Flightline: 206 Mission: h5M 
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DowMaximum average transformed divergence-between 
spectral class pairs of blight levels i and I 

Run No 71053600 Flightltne 207 Mission 43 
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Figure 6.3.6 	 Statistical Separability Between the Spectral Class 
Pairs of All Possible Pairs of Blight Levels. 
Plightline: 207 Mission 43M 
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Dij =Maximum average transformed divergence between 
spectral class pairs of blight levels i and I 

Run No 71062601 Fightline 207 Mission 44 
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Figure 6.3.7 Statistical Separability Between the Spectral Class 
Pairs of All Possible Pairs of Blight Levels. 
Flightline: 207 Mission: 44M
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Di =Maximum average transformed divergence between 
spectral class pairs of blight levels i and j 

Run No 71069501 Flightline 207 Mission 45 
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Figure 6.3.8 	 Statistical Separability Between the Spectral Class 
Pairs of All Possible Pairs of Blight Levels. 
Flightline: 207 Mission: 45M 
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Dij =Maximum average tmnsformed divergence between 
spectral class pairs of blight levels aand I 

Run No 71053800 Flightime 209 Mission 43 

Dot2000 
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Figure 6.3.9 Statistical Separability Between the Spectral Class
 

Pairs of All Possible Pairs of 'Blight Levels. 
Flightline: 209 Mlission: 43M 



191
 

)Ij =Maximum overage transformed divergence between 
spectral class pairs of blight levels i and I 

Divergence Between All Pairs of Blight Levels 
Run No 71069701 Fightline 209 Mission 4S 
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Figure 6.3.10 Statistical Separability Betveen the Spectral Class 
Pairs of All Possible Pairs of Blight Levels. 
Flihtline 209 Mission: 1'5M 
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Dij =Maximum average transformed divergence between 

3pectral class pairs of blight levels i and I 

Run No 71053200 Flrghtline 230 Mission 43 
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Figure 6.3.11 Statistical Separability Between the Spectral Class
 

Pairs of All Possible Pairs of Blight Levels. 

Flightline: 230 Mission 43M
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Dq =Maximum average transformed divergence between 
spectral class pairs of blight levels i and I 

Run No 71062401 Flrghtline 230 Mission 44 
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Figure 6.3.12 	Statistical Separability Between the Spectral Class 

Pairs of All Possible Pairs of Blight Levels. 

Flightline: 230 Mission hhM 
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Dij =Maximum average transtormed divergence between 
spectral class pairs of blight levels i and j 

Run No 71054101 Flightline 212 Mission 43 
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Figure 6.3.13 	 Statistical Separability Between the Spectral Class 
Pairs of All Possible Pairs of Blight Levels. 

Flightline: 212 Mission: 43M
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(D) Conclusions 

The conclusions based on the analysis of limited amunt of data of 

ten flightlines are: 

The greater the difference between blight levels, the more statisti­

cally separable they usually are. This result is encouraging considering 

the fact that there are other variables within and between the flightlines-­

soil variables, plant variables (percent ground cover is likely to be 

very important) and environmental variables -- which can cause signifi­

cant differences in reflection and emission from the plant canopy (where­

as blight levels 1 and 2 cause brown lesions on the lower leaves which 

is likely to cause only relatively subtle changes in the reflection and 

emission from the healthy plant canopy). In addition, a number of 

human decisions and errors are involved in this analysis. For example, 

errors in rating the blight level in ground observations, Scanner 

errors (geometric distortion, detector and system noise, calibration 

uncertainty, etc.). The analysis presented here has much practical 

application for it gives the maximum average transformed divergence be­

tween the spectral class pairs of blight levels, from which hopefully 

in the near future, classification accuracy will be reasonably predicted. 

The statistical separability of spectral classes of blighted corn has 
been presented here in much detail, data quantity (168 fields having 18804
 

sample points) and depth. Although the analysis was done for corn blight 

only, the conclusions obtained from this analysis ay well be 

applicable to other cro stresse , because corn blight is representA­

tive of the problems of iany plant stresses, 6speciall non-systemic 

stresses.
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6.4 Statistical Separability of Spectral Classes of Blighted
 

Corn in Each Spectral Channel 

The average transformed divergence (averaged over all possible
 

pairs of all spectral classes), DTAVG' was found in eich of the twelve 

spectral channels given in Sec. 6.2 for each of ten flightlines given 

in Appendix A (see Sec 6.2). Bartlett's76 test was used to test for the 

homogeneity of the variances of the values of the average transformed 

divergence for ten flightlines in the twelve spectral channels. No 

evidence was found to reject the hypothesis of homogeneous variances for 

c level of 0.05, and hence, the means fo the average transfbrmed 

divergence in the spectral channels could be compared on the same basis. 

The average of DTnf , averaged over ten flightlines is shown in
TAVO' 

Figure 6.4.1. Figure 6.4.1 shows that DTAVG is highest in spectral
TAV 

channel of wavelength range 1.00 to 1.40 in. Since the average trans­

formed divergence between the spectral class pairs is the measure of 

average separability between them. this trend shows that the spectral 

classes of corn (healthy and blighted) are most separable in the wave­

length range l..00 to l.O pm. This may be because the percentage of 

the soil visible from the sensor is a predominent factor causing the
 

difference in the spectral response of the healthy and blighted plants 
and there is much contrast between the reflectance of the soil and the 

corn plant leaves in the wavelength range 1.00 to 1.40 um (the reflectance 

of the leaves is much higher than the soil). 
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CHAPTER VII
 

RECOMMENDATIONS AND CONCLUDING REMARKS
 

The spectral emittance of a wide variety of leaves and soils should 

be measured in the natural environment in which the plants grow. There 

may be more differences in the spectral emittance of the natural tar­

gets -- leaves, soils etc. in the wavelength region 2.8 to 5.6 Um (Indi­

um Antimonide Channel of Exotech Model 20C Spectroradiometer, see
 

Section 5.1) than in the wavelength region 7 to 14 pm (Mercury Cadmium
 

Telluride Channel) (Section 2.6). For measuring reflectance of the
 

target, one should-use a source of radiation whose output beam is chopped 

so that the surrounding radiation has no effect on the measured reflect­

ance. Knowing the spectral reflectance, spectral emittance can be
 

determined using Kirchhoff's Law (Section 2.2).
 

Field temperature measurements should be taken in the most expedient 

way possible because temperature-of -be leaves, soil, air etc. (especially 

leaves) changes quite raridly depending on the environmental conditions. 

To determine the effect of air temperature on the temperature of the 

natural target of interest (leaves, soil ete, under field conditions), 

one should record the temperature of the target and the air w.r.t. time 

consecutively. For proper interpretation of the long wavelength spectro­

radiometric data, it will be helpful to record, in addition to the other 

variables of ground truth given in Section 5.4, the percentage of sunlit 

soil (visible from the spectroradiometer), percentage of shaded soil, 

percentage of sunlit leaves and percentage of shaded leaves. 



199
 

Further experiments need to be conducted to confirm the preliminary
 

conclusions of Sections 5.6 to 5.9, obtained from the experiments
 

conducted with the long vavelength spectroradiometer. These experiments 

should be conducted in a variety of environmental conditions (for example: 

when sky is relatively clear, when sky is overcast with clouds, at 

night etc.).
 

In conclusion, it should be said that the spectroradiometric data 

on the targets on which multisDectral scanner data (aircraft and/or 

satellite) is collected, will prove to be helpful in interpreting the 

multispectral scanner data properly. In addition, it will help explain 

causes of spectral variability within and between the targets of interest. 
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APPENDIX A 

Flightlines Selected for Analyzing Multisectral Scanner Data 

of 1971 Corn Blihit Watch Experiment 

Flightline Mission No. Run No. 

206 43m 71053500 

206 45M 71070001 

207 13M 71053600 

207 44M 71062601 
207 45M 71069501 

209 h3M 71053800 

209 45m 71069701 

230 43m 71053200 

230 4M 710622i01 
232 243m - 71054,10 
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APPENDIX B
 

Ground Truth Variables Recorded with the Experiments
 

with Short Wavelength Spectroraddometer
 

An example of the ground truth variables recorded with the experi­

ments under field conditions with the short wavelength head of the 

Exotech Model 20C spectroradiometer is given on the following page. 

These variables were recorded by Dr. M. Hauer and Dr. J. Cipra of 

Laboratory of Applications of Remote Sensing, Purdue University. * de­

notes that the variables were not recorded in that particular experiment. 

Although these ground truth variables were recorded with experiments
 

with short wavelength unit, these can also be used to interpret the
 

data of longwavelength unit if needed.
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- PfL-1101 C-I-PjY-SlJ I LL!IJwR-0F_TZT__	 P DETFCT...... DP TCI -­

-2"AN;E 

_SI 


vfCS 
PB S 


RA IGE EOUILIZATION 

3 -. ".25 

I .OC '.25 	 4 
1.00C) 0.25 


U1 NUrOEP. . ... ... .. , ,2013609CUBSERVAIlON Ntl . 729±6
 
DPTE DATA COLLrCTED ..... 7/29/172

FyP-KIhL:JT NAME ....... Gi(OUND COVER
 
SCCIVE TYPF ... ___
 

AIR TEMPERATUlE.......... ..... .. '26.6
 
RELATIVE HUMIDITY ................

Wl M SPEED .... ... o ................. 41
Typr AN) ALT 1'l UDC ttt'*v4 * __, 
R9 DATE 	 "31/73(FIP.11ATTING ............. 


SIC- *!;GLE .......................... 	 00
 
F(,RVAPD DIRECTIN ................. 225
 

- FOCAL 	 )ISTA'JCE ..... .............. *...* ... ..
 
LPCATIUN LATITUDE ..... ...... 0402813q 
FLIblIT L!E ............ o 
rUymt O*tF SAMPLE GROUPS ...............
 
TPrAT:;Fr:T CODE 2 ...... o ....... , 3 


.igTL'-Lrt CDI: 4 .................
 

St 00OT1flPIInl ;AtE CLASS ..................... *9'
 
A *;Ptj:A Ei ..............v*
41F PIIOTUGRAPIS 

--* iAwf TAR, T TEAPvRATURE .................- " 

RFPLICATIUN r4UVPER o,.,,..,,.,,,,,, 	 2 
SPCI-S o.,.., ............... CORN
 
MAT ITY ............ .. PRL:-aLISf6R
 

F. WIlJTH ... ......................... 	 0.76
 
PEMCE,.. CRDUT CUV4 ........... o... 30
PR A I9DeX ................... 2.14
 
I UTPE 1I lEFI C I CY 

IESEASE INFECTI0t4 -" 

HAIL OR~ WIND C4MAGE -- *C ~~~. 
LATEST I0 UPDATE D'E ......... 

PthCl:hJI SAt-lu Cld14T-41'.............. '*
 
PERCF'4I CLAY CIFNTE..r ............. * *",y 
MU'4SELL COLOIR ......... 10.YR I 
"4CISTUr: ILARBi'ATUR.Y) CLINTE4T .... 

SAMPLES 

465 - . 
4O 

443 


WAVE BAND COEFFICIENTS 

A a C D 
----------------

.374 G.CO1 
t.747 0.001 

j.0
.0O 

C.C 
0.0 

1.289 0.C03 0.0 0.C 

SAMPLE -

GROUP
 

I
 
2
 
3
 

-

P 

_1_31173 

_____. 

http:TRt-ATvE.lT

