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ABSTRACT

PHASE-LOCK LOOP CHARACTERISTICS IN THE PRESENCE

OF NON-WHITE NOISE FOR BAND-PASS TYPES OF MODULATING SPECTRA

by

ROBERT R. HENRY, B.S., M.S.

Doctor of Science in Electrical Engineering

New Mexico State University

Las Cruces, New Mexico, 1973

Professor Frank F. Carden, Chairman

Conventional analytical techniques used to determine and opti-

mize phase-lock loop (PLL) characteristics are most often based on

a model which is valid only if the intermediate frequency (IF) fil-

ter bandwidth is large compared to the PLL bandwidth and the phase

error is small. In this paper an improved model (called the Quasi-

Linear Model) is developed which takes into account small IF Filter

bandwidths and the non-linear effects associated with large phase

errors. Results predicted by the Quasi-Linear Model for a second-

order PLL are compared to experimental results to determine the

accuracy of the model.

Due to its simplicity sinusoidal modulation is frequently used

to make measurements on an experimental system. In the Experimental

System used in this paper a more realistic modulating signal is

used. The spectrum of the signal has a band-pass shape with

vi



variable upper and lower break frequencies, with the rolloff rate

determined by a fourth-order Chebyshev Polynominal. A rather com-

plex measurement system utilizing cross-correlation techniques

was required to determine the output signal-to-noise ratio, due

to considerable overlap in the signal and noise spectra.

By comparison of theoretical and experimental results it is

demonstrated that the Quasi-Linear Model accurately predicts PLL

characteristics. This is true even for small IF Filter Bandwidths

and large phase errors where the conventional model is invalid.

The theoretical and experimental results are used to draw conclu-

sions concerning threshold, multiplier output variance, phase error

variance, output signal-to-noise ratio, and signal distortion. The

relationship between these characteristics and IF Filter Bandwidth,

modulating signal spectrum, and rms deviation is also determined.
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Chapter 1

PHASE-LOCK LOOP THEORETICAL ANALYSIS

1.1 Introduction

The overview of a typical Communication System is shown in

Figure 1. The source signal is transformed by the Modulator/

Transmitter into a form suitable for transmission over the com-

communication channel. By the time this transformed signal has

reached the Receiver/Demodulator it has been corrupted by additive

channel noise. The function of the Receiver/Demodulator is to

perform an inverse transformation on the noise corrupted 
trans-

formed signal and obtain a signal closely resembling the original

signal.

This paper is concerned with a system such as in Figure 1, in

which Frequency Modulation (FM) is used to perform the transforma-

tion. The Receiver/Demodulator function is performed by a Phase-

lock loop (PLL). The PLL has become more widely used as an FM de-

modulator in the past several years. This is primarily due to the

superior noise-rejection properties and threshold extension 
exhib-

ited by the PLL. These characteristics are particularly useful in

aerospace FM communication systems where receivers must operate in

low carrier-to-noise ratio (CNR) environments.

In the development of the traditional PLL model, the additive

channel noise is assumed to be "white". This implies that the in-

termediate frequency (IF) Filter bandwidth must be large compared



COMMUNICATION CHANNEL

Channel Noise

SIGNAL MODULATOR/ SIGNAL

SOURCE TRANSMITTER + DEMODULATOR SINK

. Communication System Overview.

Figure t. Communication System Overview.



to the PLL bandwidth. It is also usually assumed that the phase

error is small so that the PLL is operating in the linear region.

In this paper an improved model which takes into account small IF

Filter bandwidths and the non-linear effect is developed.

1.2 The Phase-Lock Loop Model

Figure 2 is a more detailed block diagram of the Receiver/De-

modulator and Communication Channel of Figure 1. The noise process

n(t) is considered to have a spectral density which is "flat" over

the passband of the IF Filter. It is assumed that the noise pro-

cess has a Gaussian amplitude distribution with zero mean. This

allows n(t) to be expressed as given in [1] by

n(t) = v2- [nl(t) sin (wat) + n2 (t) cos(0ot)]. (1-1)

nl(t) and n2 (t) are independent Gaussian processes of zero mean and

identical spectral densities which are the same as the spectral den-

sity of n(t) but translated downward in frequency so that they are

centered about zero frequency. Thus the spectrum of nl(t) and of

n2 (t) are low-pass extending to 8 rad./sec.

The signal input to the multiplier is given by

/2 A sin 6(t) + n(t) = / {A sin [wot + el(t)]

+ nl(t) sin wot + n2 (t) cos WOt} (1-2)

where A is the rms voltage of the carrier, wo the unmodulated car-

rier frequency in rad./sec., and 61 (t) the carrier phase due to the

modulating signal. The Voltage Controlled Oscillator (VCO) output



Noise
Process

Bandwidth = 2Brad/sec Loop Filter

Asin(t) (t)+v/2Asin (t) x(t) e(t)
SIF FILTER I- F(s)

Center Frequency =  0rad/sec

/2K cos' (t) VCO

Figure 2. R ceiver/Demodulator and Channel Block Diagram.
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signal is

/- K1 cos ' (t) = I- K1 cos [wot + e2(t)] (1-3)

where K1 is the rms voltage of the VCO output, and e2 (t) the phase

of the VCO output.

From Equations (1-2) and (1-3) it is straightforward to veri-

fy that the multiplier output is

x(t) = AK1 sin[e1(t) - e2(t)] - K1nl(t) sin 0 2 (t)

+ K1n2 (t) cos 62 (t) + AK1 sin[2wot + 1l(t) + e2 (t)] (1-4)

+ Knl(t) sin[2wot + e 2 (t)] + Kn2(t) cos[2wot + e 2(t)].

By neglecting the double frequency terms in x(t), Equation (1-4) and

Figure 2 yield the following for the VCO input

t
e(t) = K1 f [A sin (u) - nl(u) sin e2 (u) + n2 (u) cos 0 2(u)]

f(t-u)du (1-5)

r, ----s
where f('C) lb CLLr impu i=~i =.. h .r ...- - -

*(t) = 61(t) - 62 (t). (1-6)

Here the PLL is assumed to be locked at t=0 so that e(O) = 0. Let

K2 be the VCO constant (rad./sec./volt), then

de2(t) = K2e(t) + W0. (1-7)
dt

Also define a new constant

K ' 1 K2. (1-8)



Now Equations (1-5) through (1-8) yield the phase model of the PLL

shown in Figure 3.

Now consider the case in which 02 (t) is small (less than 300).

This would be true for a small modulation index and high CNR. Since

n2(t) cos e 2(t) - n (t) sin 02 (t) i- n2(t) A n(t) (1-9)

as e2(t) -- 0, the phase model of Figure 3 becomes that of Figure 4.

The spectrum of n(t) is low-pass with cutoff frequency and spectral

density the same as the noise process as discussed in the noise rep-

resentation given by Equation (1-1). Viterbi [1] shows that the

model of Figure 4 is valid for the case in which the IF filter band-

width is wide compared to the PLL bandwidth. Thus the model given

by Figure 4 is valid for small phase errors and/or wide IF Filter

bandwidth compared to PLL bandwidth.

Since the multiplier output (neglecting double frequency t.rms)

is

x(t) = K,[A sin 4(t) + n(t)1. (1-10)

one finds that

x(t) = K 1 y(t). (i-1i)

One of the difficulties in analyzing the P]..L repres e in

Figure 4 is that a linear analysis is invalid .: .. -

since sin 4(t) = (t) only for 4(t) < 300. O:.... _

difficulty is to replace the non-linearity by an .va-le._: i. a-

gain which depends on #(t), This quasi-linear aw .- as fzis

applied to the PLL by Develet [2]. Replace the ulw-Iinezritv by 2



SL) (t) Asin (t) y(t)

cos( ) sin()

Figure 3. PLL Phase Model.



n(t)

(t) ( t )  sin( ) + y(t)
r A sin( n

2e(t) t F(s)

Figure 4. PLL Phase Model for Small Modulation Indices and/or Wide IF Bandwidths.
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linear gain G so that the expected value of the square of the dif-

ference E {[A sin 4(t) - G c(t)] 2 } is minimized. Assuming that c(t)

is a zero-mean Gaussian process with a2 = E[ 2(t)] it can be shown

[3] that

G = A e-/2 (1-12)

The assumption that 4(t) is Gaussian is justifiable only when the

PLL is operating in the linear region. For large (>300) 4 the Gaus-

sian assumption may no longer be valid, but the above procedure

should be more accurate than replacing A sin p(t) with A (t). The

phase model now becomes that illustrated in Figure 
5. The transfer

function D(s) represents a post-detection filter.

1.3 Steady State Analysis

Assuming that the modulation and additive noise processes are

zero mean and wide sense stationary, it is straightforward to show

[1] that (t), y(t), o(t), 61(t), and e2(t) are zero mean and that

as t + - (steady state) the covariances are independent of t. Thus

the corresponding spectral densities are well defined. Since the

non-linearity is replaced by an equivalent linear gain G, the system

in Figure 5 is linear and the superposition principle holds. This

coupled with the hypothesis that the modulation process 
and the ad-

ditive noise process are independent allows one to compute the ef-

fect of the modulation and of the noise independently and then com-

bine the two.

Let GI(), G2 () w) (W), N(), Y(), and O(w) represent the

spectral densities of e 1 (t), e2(t), p(t), n(t), y(t), and o(t)



n(t)

W 2 /2G  
yt M

o(t)
D(s)

Figure 5. Quasi-Linear PLL Phase Model.



respectively. Throughout this paper it is understood that 
s is

written in place of jw. It can be shown [4] that the frequency

response of the PLL is given by

H(s) A 02(s) GK F(s) (1-13)
01Oi(s) s + GK F(s)

where 02 (s) and 01(s) are the Fourier Transforms of e2 (t) and 01 (t)

respectively.

Equation (1-13) and Figure 5 give (see Appendix I)

(w) = Ii - H(s) 2 1(W) + iH(s )  N(w), (1-14)
G

Y(w) = G2 11 - H(s)j 21(w) + 11 - H(s)I2 N(), (1-15)

and
2

(w) = w2IH(s)12D(uE)O1(W) + IH(s)I D()N(w). (1-16)

From Equation (1-14) the variance of the phase error is

2 2- d

ox= J K Y(w) 2

2 dw

l - H(s) f ( ) + 2 m) -H(s ) N. d (

e (1-17)

From Equation (1-11) and (1-15) the phase variance of the multiplier

output is

2 2 Y() dw

2x = K1 2 jwg

(GKI f 1i H H(s) () dw 2 f 1i - H(s)2N( ) d

(1-18)

Likewise Equation (1-16) gives the output variance 
as
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2 -f dw
a = 0(w)

2 2 dw 2t 2 - dw
= H(s) 2 D(w) O~(w) + - W (s)I D() N(w) 

(1-19)

1.4 Relationship Between 02 and 02

In much of the literature the phase variance is often deter-

mined by measuring a2 and multiplying by the appropriate phase de-
x

tector constant. From Equations (1-17, 1-18) it can be seen that

this is true only for the no noise case (here 2 = (GK2 ). For

the general case with noise

x2 -2 = [(GK) 2 - 1] f - H(s) 51() dw
x 1 J00 STr

+ f Kl - H(s) 2  IH(s)] 2 N( ) .W (1-20)

Using the fact that

11 - H(s) 2 = IH(s) 12  2 2 (1-21)
(GK)2 1F(s)1 2

Equation (1-20) becomes

2 2 doC2 2= [(GK
2  11 2 - dw

x y - 1] - H(s) O (W) --
-0

+ [ W2 2  ] H(s) 2  () _ . (1-22)

Notice that the relationship involves the PLL parameters as well as

the noise spectral density.



Chapter 2

THE EXPERIMENTAL SYSTEM

2.1 System Overview

An overview of the Experimental System is shown in Figure 6.

Both the noise generator used to produce the signal and the one

used to produce the additive channel noise have an essentially

"flat" spectral density over the bandwidth of the corresponding

filters which follow them (B(s) and I(s) respectively). The cen-

ter frequency of the FM transmitter was chosen to be 455 kHz, so

that the IF Filter is centered at 455 kHz. The noncommercial equip-

ment schematics are shown in Figures 7 and 8.

2.2 The Band-pass Filter

The Band-pass Filter used to shape the "white" noise is the

General Radio Type 1952 Universal Filter. The cutoff frequencies

are selectable with the response being that of a 4-pole Chebyshev

filter. Such a response for the low-pass section is given by

G(s) 12 1 2  (2-1)

1 + E T 4c

where T4 is a 4th order Chebyshev Polynominal and the peak-to-peak

ripple is given by

1 - 1 (2-2)

1+ 2

The parameters as determined from comparison of the measured



"White"
To Noise

Analog-to-Digital Generator
Converter

Band-pass Filter I +

"White" s(t) FM +
Noise B(s) Transmitter
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lower break freq. = f2 Hz

To
Analog-to-Digital

Converter

Post-
Detection
Filter Loop Filter IF Filter

o(t) x(t) r(t)
D(s) F(s) I(s)

0(s)
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e(t) VCO 2$ rad/sec

(K2 rad/sec/volt)

Figure 6. Experimental System Overview.
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frequency response and theoretical response (see Figure 9) are:

g2 = 0.07, fl = 1.2 fl,3dB' f2 = 0.895 f2,3dB (2-3)

where fl,3dB is the selected cutoff frequency for the high-pass fil-

ter section, and fl the corresponding theoretical break frequency.

A similar statement applies to f2,3dB' f2 for the low-pass section.

By cascading the low-pass and high-pass sections the desired trans-

fer function for the band-pass filter is obtained. The result is

(see Appendix II)

4
B(s) = 8 7 s (2-4)

g8 s + g7 s +......... + g1 s + g0

The constants go through g8 are functions of the upper and lower

break frequencies and are given by Equations (11-5) and 11-9).

2.3 The FM Transmitter

Consider the effect of applying a sinusoidal signal of fre-

quency fm Hz and zero-to-peak voltage of V to the input of the FM

transmitter. Then the zero-to-peak deviation (Hz) Af of the carrier

is

2TAf = XV. (2-5)

It is straightforward to verify that the zero-to-peak phase devia-

tion is

B = Af/f m = Aw/w m  (2-6)

From Equation (2-5) and (2-6)

2 mr fm rad/sec
X volt (2-7)
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It is well known [5] that for sinusoidal modulation the am-

plitude of the carrier is proportional to Jo(B) 
where J ( ) is

the Bessel function of the first kind of order 
zero. Thus for

S= 2.41 the carrier component vanishes.

The above mentioned modulation was applied to 
the FM Trans-

mitter and V increased until the carrier component 
of the Trans-

mitter vanished as observed on a Spectrum Analyzer. 
The value of

V and f were then recorded. Then Equation (2-7) with B = 2.41 was
m

used to determine X. Values of fm from 400 Hz to 2000 Hz were used

with less than 0.1% difference in the corresponding 
values of X.

X was determined to be

rad/sec (2-8)
X = 2 r(201000) volt

2.4 The IF Filter

The measured frequency response of the four IF 
Filters used in

the Experimental System is shown in Figure 10. The Figure is actu-

ally a plot of I(s) translated down in 
frequency so that the center

frequency becomes zero. It is convenient for future calculations

to define

C(s) A I{j 2n(f - 455000)1 (2-9)

since it is the translated version of I(s) that is needed.

The frequency response of B(s)LP determined in Appendix 
II with

the appropriate break frequency fits the frequency response of C(s)

reasonably well as illustrated in Figure 10. Therefore from

Equation (11-6)
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1 (2-10)
C(s) =  4 3 2

P4s + P3 s + P2s + Pls + fo

where pl = fl/ P3  f/3

P2 = f12/2 P4 4  (2-11)

and is the break frequency in rad/sec. 
The values of B for the

four mechanical filters that could be used 
as the IF filter are

given in Figure 10 along with the theoretical 
and measured frequency

responses.

2.5 The Post-Detection Filter

The Post-Detection Filter used has a 
first order low-pass re-

sponse given by

D(s) b (2-12)
b(s) + s

where b is the break frequency in rad/sec. The filter is used to

eliminate output noise outside of the signal 
spectral characteristic

and thus enhance the output signal-to-noise-ratio.

2.6 The Multiplier

The Multiplier is shown in Figure 7 and 
is part of the EEP XR-

S200 Multifunction Integrated Circuit. -The resistor-capacitor com-

bination Rf-Cf filters out the double frequency 
terms of the multi-

plier output. The multiplier output measurements were 
made at point

Sof Figure 7. With the loop switch set to the 
"open loop" position

and with no noise, the multiplier output 
was observed on an oscil-

loscope for various offsets in frequency 
between the VCO and FM
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transmitter. The observed waveform was sinusoidal with constant

amplitude for offset frequency differences up 
to 5 kHz. Since the

highest modulating frequency used in the system was about 1.5 
kHz,

the multiplier response is essentially flat over the frequencies of

interest. The zero-to-peak voltage output of the multiplier output

was measured to be 1.4 volts. Thus from Equation (1-10) with n(t) 
= 0

K1A = 1.4(volts)
2  (2-13)

The voltage of A measured at(in Figure 7 was found to be 0.776

volts rms. Thus from Equation (2-13)

K 1.4 = 1.8 volts (2-14)
1 0.776

2.7 The Loop Filter and PLL Transfer Function

A very common loop filter used in PLL's is one with an "integral

plus proportional" transfer characteristic. This type filter is

used in the Experimental System and has a transfer function given by

F(s) = 1 + . (2-15)
s

It follows from Equation (1-13) that

GK(s + a) xlS 
+ x0

H(s) = GK(s + a) 0 (2-16)

s + GKs + aGK s + xls + x0

where

x0 - GKa, xl = GK. (2-17)

Since the largest exponent of s in the denominator of Equation

(2-16) is 2 the PLL is classified as second order. The actual loop
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filter is shown in Figure 8. It can be shown [4] that for a large

operational amplifier gain this active 
filter has a transfer function

given by

r T sT + 1 T2
1  2  1 + 1 (2-18)

T1 1s S 1 2s1

where T1 
= RIC, T 2 

= R 2 C 
(2-19)

Comparing Equations (2-15) and (2-18) one finds that

a = l/T2  (2-20)

From Equations (1-13), (2-15) and (2-18) it can be seen that the

loop gain K is modified by the factor 
T2/ 1 . Gardner [4] shows

that

2 GK 2

n = T1 and =- n' (2-21)

where w is the natural frequency and 5 the damping factor for the

second order system. In this system the following values for wn

and r were chosen

wn = 2(860), r = 0.707 (2-22)

The values of R1, R 2, and C were chosen to give 
the approximate

values for wn and . Then the loop gain was changed (by varying R g)

until the measured frequency response agreed closely 
with the the-

oretical response [4].

The Post-Detection filter was chosen so that

b = 27(1300) . (2-23)

The overall measured frequency response of the PLL is shown in Figure

11. Also included for comparison is the theoretical response for
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the parameters given in Equations (2-22) and (2-23).

2.8 CNR, SNR, and Voltage Measurements on the System

CNR measurements were made with a rms voltmeter at point® in

Figure 7. This is equivalent to measuring r(t) in Figure 
6. The

carrier rms voltage (Vc) was measured with no modulation 
applied to

the FM transmitter and no channel noise added. A calibration chart

was then made for each IF Filter which gives the voltage at point®

(V ) for a given voltage at the channel noise 
generator output with

the carrier turned off. From this calibration chart the CNR was

determined by reading the rms voltage at the channel noise 
gener-

ator output. That is

CNR = 20 log 10 (Vc/Vn ) (2-24)

where Vn was determined from the calibration chart and the noise

generator output reading.

The multiplier output voltage was measured with a rms voltmeter

at point("of Figure 7. This point corresponds to the measurement

of x(t) in Figure 6. Thus the rms voltage reading squared gives

the multiplier output variance.

The measurement of the output SNR presented a problem that is

not encountered when the modulating spectrum is narrow compared 
to

the loop bandwidth. The solution required the use of a relatively

complex and powerful measurement device, namely a HP 2116 computer

connected to two analog-to-digital converters via a HP 2115 computer.

Quite often SNR measurements are made by using filters 
to "filter

out" most of the noise or the signal to determine the
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signal-to-noise ratio. The fact that the signal and noise output

spectrum overlap considerably precludes the use of such a technique

in this system. The inherent non-linearity of FM and the PLL also

preclude the use of superposition to measure each effect separately.

Since frequency-domain diversity characteristics could not be

exploited, time-domain differences were utilized. The cross cor-

relation (R so(T)) between the input signal (s(t)) to the FM Trans-

mitter and the output signal (o(t)) was the fundamental characteris-

tic used to determine the SNR. Figure 12 is a block diagram of the

measurement system. The pulse generator was adjusted so that both

s(t) and o(t) were sampled at a 25 kHz rate. Since the highest fre-

quency content of the signal was about 1400 kHz, the sampling rate

was approximately 18 times the highest frequency. The analog-to-

digital converters (ADC) were adjusted to quantize the signals into

a 10 bit word (1024 levels). Since the ADC's required a 0-10 volt

input, the signals were offset by approximately 5 volts and ampli-

fied to cover a dynamic range from about 2 to 8 volts. One thou-

sand samples were transferred to the 2116 computer by first setting

parameters on the experimental system and then running the computer

program.

A block diagram of the computer program used to calculate the

SNR is shown in Figure 13. Due to the IF Filter and PLL character-

istics the output signal is delayed with respect to the input signal.

The approximate delay was determined by observation of the signals

on an oscilloscope. Then two numbers (IDI, and ID2) such that

ID1 < # of samples of delay < ID2
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o(t) PULSE GENERATOR

(one pulse

every 40 us)

analog input

ANALOG-TO-DIGITAL sample
sample

CONVERTER #1 inpu
input

s(t) Delay

= 20 ls

analog input

ANALOG-TO-DIGITAL
sample

CONVERTER #2 "input

o(t ) s(ti)

2115 COMPUTER

(Transfers samples
to the 2116 Computer)

2116 COMPUTER

(stores 1000 samples of s(t)

and 1000 samples of o(t) )

Figure 12. Measurement System Block Diagram.
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START

G = G1,G2

N =1000
COMPUTE,STORE MSE(G) =

N-IDM

[(ti-IDM)-Gs(ti) 
2

i=IDM+1

INPUT: ID1,ID2,

G1,G2

20

READ,STORE ADC SAMPLES FIND GMIN SUCH

THAT MSE(G) IS
MINIMUM FOR

G = GMIN
DO 10

ID = ID1,ID2

N-IDM
COMPUTE,STORE R (ID) = I 2DM

SIG PWR= GMIN s (ti)
N-ID i=IDM+1

1 - s(t )o(t i"N-ID E ti-ID)

i=ID+1

SNR =10LOG[SIG PWR/MSE(GMIN)]--- - 10
FIND IDM SUCH THAT

Rso(ID) IS MAXIMUM STOP
FOR ID =IDM

Figure 13. Measurement System Computer Program Flow Chart.
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were read into the computer. The program then determined the delay

(IDM) for which the cross correlation Rso(T) was maximum, in the

domain IDl to ID2. Next the mean-square-error (MSE(G)) between

s(t) and o(t) was determined for the input signal delayed by IDM

samples and the output signal multiplied by a gain G, for Gl < G

< G2. The values Gl and G2 were previously input into the computer

such that a plot of MSE(G) showed a distinct minimum. The output

SNR was then calculated as shown in Figure 13. In summary then, the

SNR was calculated by delaying the input signal s(t) by IDM samples

such that the cross correlation Rso(T) was maximum, and multiplying

the input signal by a constant G such that the mean-square-error

MSE(G) was minimum.

2.9 Experimental System Measurement Errors

The ideal Experimental System would have components which are

described exactly by their mathematical representation. However,

this is not usually the case. For example, a resistor may not exhibit

a linear relationship between voltage and current although it is

modeled this way. Thus, there are errors introduced by the Experi-

mental System which are not accounted for by the mathematical model.

In well designed systems these errors are kept small so that they

will not interfere with the primary purpose of the system.

The Measurement System illustrated in Figure 12 introduces some

error in the SNR measurement. This is due to the slight differences

between and the quantization errors of the two Analog-to-digital Con-

verters, as well as the finite sampling rate. To determine the
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magnitude of these errors, the same analog signal was applied to the

inputs of both ADC's and the output SNR calculation observed. For

signals in the frequency and amplitude range of those used in this

paper the SNR reading was greater than 30dB. Ideally the reading

would be infinite since the two signals are identical and the mean-

square-error is zero. Thus the "noise" introduced by the measure-

ment system is at least 30dB below the signal being measured.

The main source of error in the Experimental System is the

"phase jitter" introduced by the VCO. With no modulation applied

to the system the phase error should be zero for the ideal system.

However, oscillator instability in the VCO and Transmitter cause

"noise" at the output of the multiplier. The magnitude of these and

other errors were determined as follows. The Transmitter was modu-

lated by the signals with spectra as illustrated in Figure 9 using

a small modulation index so that the PLL was operating in the "linear"

region. The Measurement System was then used to calculate the output

SNR. This value ranged between 18 and 20dB for the various signals.

The combined "noise" of the Measurement and Experimental Systems

is approximately 20dB below the signal being measured. The majority

of this noise is caused by "phase jitter" of the VCO and Transmitter.

Thus SNR measurements below 20dB should be accurate in the sense

that it is the Experimental System characteristics and not system

design errors which are dominant in causing the reading.



Chapter 3

THEORY APPLIED TO THE EXPERIMENTAL SYSTEM

3.1 RMS Deviation and Noise Power

Since the input signal to the FM transmitter is essentially a

white noise process shaped by a band-pass filter, the spectrum of

s(t) assumes the filter spectral shape and is given by (see Equation

(2-4))

S(s) = R B(s) = 8 7Rs (3-1)

g8 s + g7s + "' + gls + g0

where R is a constant which is related to the rms voltage of s(t)

via

v2 =R 2 f B(W) d where B(w) = IB(s) 12 (3-2)
rms 27

Let X be the FM transmitter constant in rad/sec./volt, then

2= 2 dra/e 2
(RMS Deviation) = (XR) B(w) - - (rad/sec) . (3-3)

-00

The phase of the carrier is given by the integral of the frequency

of the carrier with the appropriate initial conditions. Assuming

zero initial conditions, Equation (3-1) gives

01(s) =  S(s) = RX B(s) (3-4)
s x

Thus the spectral density of the carrier phase due to the signal s(t)

is
2

S( ( R X )  B(w)
1 (W) 2 (3-5)



32

The noise process n(t) has a low-pass spectrum with 
cutoff

frequency 8 rad/sec. (see Section 1.2) Since the shape is

determined by the IF Filter one finds from Equation (2-10) that

T (3-6)
N(s) = TC(s) =  4 3 2 (

p4s + P3s + P2s + Pls + fo

T is a constant which is related to the rms noise voltage 
into the

multiplier via

2f - dw
noise power = Vrms 2 ) (3-7)

where

R(w) = IN(s)1 2  . (3-8)

3.2 Polynominal Form of the Spectra

The general equations developed in Chapter 1 for the PLL 
spec-

tral densities are now specialized for the Experimental 
System of

Chapter 2. From Equations (2-16), (2-4), and (3-4)

2 3

[1 - H(s)[i1(s) = 2 + 8 +
Ls + xlS + x 8 s +....+ gls + go

RXs5  (3-9)

hl0sl0+ hs 9 +....+h 1s + h0

where

h0 = x0g0

h I = xlg0 + x0g1

hi gi-2 + xgi- + x0 gi for 2 < i 8

h9 = g7 + xlg8

h 1 0 = 8 (3-10)
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Equations (2-16) and (3-6) yield

[1 - H(s)][N(s)] = [ 2 4
[+ XlS + x0 4 s + .... + pl s + f0

Ts2  (3-11)
e 6 s +....+ els + e 0

where

e0 = x0 f0  e4 = P2 + x1P3 + x0P4

el = xlf 0 + x0 1  e5 = P3 + xlP4

2 + f0 + XlP1 + x OP2 e6 = P4

e3 = P + x1P2 + x0P3  (3-12)

From Equations (2-16) and (3-6)Is xs + xo
H(s) N(s) = 2 4  +. + P

s + x1s + x s +..+ pls + f0

TxlS + Tx0
6 (3-13)

e 6s +....+ els + e0

Using Equation6 (2-16), (2-12), and (3-4)

xs + XOs b RXs
sH(s) D(s) Oi(s) + sx 8+ g

S+ d2 s + d ls + d 8 sx ++.... + gl (3 -

ds + dsd =b

d, = Xlb + x0 d = bx1 . (3-15)
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Further algebraic manipulation of Equation (3-14) gives

RX[d 3 s5 + dos1
s H(s) D(s) 01(s) = 3 5lO +....+ s (3-16)

h s + h 1s +....+ hs + h

where

0 = g 0 d0

h1 = g0dl + gld0

h g 0 d 2 + g1 d1 + g2 d0

hi = i-3 + gi- 2d2  gi-ldl + gid 0  3 < i < 8

h= g6 + g7d2 + g8 dl

h1 0 g7 + g8 d 2

hll= 8 (3-17)

Equations (3-6), and (3-14) give

d3s + d0s T
s H(s) D(s) N(s) = 3 2 4

s H(s) D(s) N(s) + d2 s2 + d s + dQ P4s +....+ p1s + f0

T (d 3 s + dos)
S0 (3-18)

7
e7s +....+ els + e0

where

o = fodo e5 = P2 + P3d2 + P4dl

i = f0d1 + Pld0  e6 
= P3 + P4d2

e2 d2 
+  d + 2d0  e7 = P4

e3 = f 0+ Pld2 + P2dl + P3d0

e4 = p1 + P 2 d 2 + P3 dl + P 4 d 0 (3-19)
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3.3 Simplification of Results

The following definitions are now made to simplify notation.

Recalling that s = jw,
0o

s5 2 dL
INT1 hllOS + .. .+ h 1 s + h0  2

INT2 A 11 2

hlls  + ... + hls + ho

s 2 12 dw
INT3 A 6 2

-NT34 a e6s +. ... + els + e0  2r

INT4 fxs + x 0 + 
2 dw

INT4 A 6 2.
e6s +....+ els + e0

d3s + d0s 2 dw
INT5 A - - -

07
s +....+ els + e0

INT6 A s 2 dw

INT7 -A 2. (3-20)

0T Ps 4 +....+ pls + fo

By combining Equations (1-17), (3-9), (3-13) and (3-20) one
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obtains
2 2

a = (RX) 2(INTI) + 2 (INT4)

(3-21)

2 2

C ,O s O,n

2

In the above a s is the phase error variance due to the signal while

2

ao n is the variance due to the noise.

In a similar manner Equations (1-18), (3-9), (3-11) and (3-20)

give
2 2 2 2

o = (GK1 ) (RX) (INT1) + (K1T) (INT3)

(3-22)

2 2
a a
X,s x,n

while Equations (1-19), (3-14), (3-16), and (3-20) give

2 T 2

0 = (RX) (INT2) + (INT5)

(3-23)

2 2
a a
o,s o,n

2 2 2 2

where ox,s, x,n',s, and ao,n are defined in a manner similar to
2 2

Ga,s and a,n.

From Equations (3-20) and (3-1), Equation (3-3) becomes

(RMS Deviation)2  2 R2 (INT6), (3-24)

while the from Equations (3-7), (3-6), and (3-20) the noise power

at the input to the multiplier is given by

noise power = 2T2 (INT7). (3-25)
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3.4 Computer Implementation of Equations

A Computer Program was written to evaluate the quantities in

Equations (3-22) through (3-25). The block diagram of the Program

is shown in Figure 14. For the input parameters wl, w2 (signal

break frequencies), B(half the IF bandwidth), and DEV (rms voltage

into FM Transmitter), the program calculates the indicated values

for CNR's from 0 to 27dB in 3dB steps. The output values for each

CNR is punched on paper tape for later use.

The value for G was determined by first setting G = A, calculating

2 2
Co, then setting G = A exp(-c~/2) as indicated by Equation (1-12).

2
Then a was re-calculated using the new value of G. This process

was iterated three times to obtain a third-order estimate of G.

The integrals were evaluated by numerical integration (Simpson's

Rule) after much difficulty was encountered with analytical tech-

niques. The equations for the analytical method were quite complex

and often caused overflow and underflow during computer calculations.

The integration increment used for the numerical integration was 60

rad/sec (about 10 Hz). This value was decided on since reducing the

increment 100 times changed the integrals by less than 0.001%. The

lower limit of the integration was zero while the upper limit a fre-

quency which corresponds to the response being 30dB smaller than the

maximum. The 30dB figure was chosen since setting the value to 90dB

caused less than 0.01% change in the value.

The computer used was a HP 2116 programmed using the Fortran IV

language. Typically about 15 minutes was required to obtain a complete
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START I EVALUATE: INT2, INT3,INT5

S=r(860) A = 0.775
S27(860) 1.8E 2-a(201,000 K2 2

X1 1  = (GK RX)2INT1

INPUT: W1,W2 B, 1 2 2
and DEV (rms voltage) axn = (K1T) INT3

2 2 2
o = a +a

x x,s x,n
EVALUATE INT6 INT7

NPUT: PWRN(noise pr.) a = (RX) INT2

2 = (T/G) 2INT5
o,n

T = PWRN/IT 7 2 2 2
o = 0 +0

0 o,S o,n

G =A
I =1

SNR = 10LOG(a2 / )
o,s o,n

EVALUATE INT1, INT4

CNR = 10LOG(A2 /PWRN)

a2 = (RX) 2INT1
Os OUTPUT: W1,W2,,DEV,

2 2 CNR,SNR,and all a2
2 = (T/G) 2INT4

2 2 2
a = a ,S + a PWRN = PWRN/2

NO -CNR4/2 YYES
LG=Ae-a /2 4NO S3 YES 27dB STOP

I = I+1

Figure 14. Flow Chart of Computer Program Used to Calculate
Theoretical Values Based on the Quasi-Linear Model.
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set of output data for a given set of input parameters. Over 95%

of this time was used to evaluate the integrals by the numerical

technique.



Chapter 4

PLL CHARACTERISTICS IN THE ABSENCE OF NOISE

4.1 Signal Distortion Due to the IF Filter and PLL Nonlinearity.

The spectrum of the transmitter output is a function of the

signal and deviation of the carrier. For sinusoidal modulation,

98% of the total power in the FM signal is contained in a band-

width (B) given by Carson's rule [5]:

B = 2(Af + fm) (4-1)

where Af is the zero-to-peak frequency deviation and fm is the

modulating frequency. For a modulating signal with a bandpass

spectrum the corresponding FM signal bandwidth is difficult to

determine. Van Trees (pp. 100-104 of [7]) indicates that a

measure of the bandwidth for a modulating signal with a low-pass

Gaussian spectrum is 2a df where a is the signal rms voltage

and df the Transmitter constant.

From the above it is reasonable to assume that the larger

the rms deviation the larger the bandwidth occupied by the FM sig-

nal. Thus increasing the rms deviation and/or decreasing the IF

Filter Bandwidth causes more of the FM signal to be filtered out

and results in more distortion in the demodulated output. This

effect is illustrated in Figures 15 through 18. Note that a

decrease in IF Bandwidth and/or an increase rms deviation results

in a lower SNR (larger signal distortion).

In addition to the signal distortion caused by the IF Filter,

distortion is also caused by the fact that the PLL is non-linear.
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This distortion is more pronounced for larger a since the non-

linearity sin a is nearly linear for small a but non-linear for

large (>300) a~. Now an increase in the rms deviation "stresses"

the PLL more and results in an increase in a . Thus as the rms

deviation is increased the PLL output SNR decreases (distortion

increases). If the loop "stress" is sufficient a phenomenon known

as "cycle-slipping" will occur [8,12] resulting in impulse noise at

the PLL output. A further increase in the rms deviation will nor-

mally result in a complete loss of phase lock [9]. The "cycle-

slipping" and "loss of lock" phenomenon was observed as the rms

deviation was increased for all four signals and four IF Filters

used in the Experimental System. A summary of distortion due to

PLL Stress and Finite IF Filter bandwidth is presented in Table 1.

Data for this Table was obtained from Figures 15 through 18.

Figures 15 through 18 illustrate that for no IF Filter

(infinitely wide IF bandwidth) an increase in the signal upper cut-

off frequency results in a lower output SNR. In obtaining the data

the deviation was increased until the loop would not maintain lock.

The rms deviation at which loss of lock occurs (obtained from

Figures 15-18) as a function of f2 for fl = 56 Hz is plotted in

Figure 19. A non-linear analysis of the second-order PLL for sinus-

oidal modulation [10,11] has shown that the PLL unlock boundary for

f < 0.85f is given by:

Af (f ) = 1.15 fn2 (4-2)

where Af is the zero-to-peak deviation, fm the modulating frequency,

and f the PLL natural frequency. Since it is the highest modulatingn



46

Table 1

Output Signal Distortion Due to PLL Stress

and Finite IF Filter Bandwidth for No Noise

IF FILTER
ANDWIDTH 5600 HZ 3300 HZ 900 HZ

SIGNAL
(fl - f2 )

1. OdB 1. OdB 1. -8dB,IF

56 HZ -
2. OdB 2. OdB 2. -10dB,IF

440 HZ
3. OdB 3. OdB 3. -15dB,IF

1. -3dB,PLL 1. -5dB,PLL 1. -10dB,IF

56 HZ -

900 HZ 2. -3dB,PLL 2. -5dB,PLL 2. -15dB,IF

3. -6dB,IF 3. -10dB,IF 3. -18dB,IF

1. -6dB,PLL 1. -6dB,PLL 1. -16dB,IF
56 HZ -

2. -6dB,PLL 2. -6dB,PLL 2. -18dB,IF
1250 HZ

3. -O1dB.IF 3. -1ldB,IF 3. -20dB,IF

1. -4dB,PLL 1. -5dB,PLL 1. -14dB,IF

560 HZ -
2. -4dB,PLL 2. -7dB,IF 2. -16dB,IF

900 HZ

3. -12dB,IF 3. -16dB,IF 3. -22dB,IF

Legend:
1. rms deviation equal to 201 Hz
2. rms deviation equal to 402 Hz
3. rms deviation equal to 603 Hz
IF IF Filter dominant cause of distortion
PLL PLL stress dominant cause of distortion

Note: the number indicated is the output SNR in dB relative to the
SNR for the case in which there is no distortion.
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Legend:

- from Equation (4-3) with K(f1) = 1.11
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Figure 19. PLL Unlock Boundary as a Function of f2 for fl = 56 Hz.
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frequency (fm) which determines the boundary it is conjectured that

an approximation to the PLL unlock boundary for the Experimental

System is given by:

2
where Af is the rms deviation, f the PLL natural frequency

rms n

(860 Hz), and K(fl) a function of fl. Equation (4-3) is valid

only for f 2 
< .85 f , and is plotted with K(f ) = 1.11 in Figure 19.

As can be seen there is good agreement between the measured values

and those given by Equation (4-3). It is beyond the scope of this

paper to attempt to derive an analytical expression for the unlock

boundary valid for f2 > 0.85 fn. However, as can be seen in Figure

19, the unlock boundary seems to approach a constant value of f2 C .

In summary then, it is desirable to choose an IF Filter band-

width and rms deviation so that the output signal undergoes negli-

gible distortion. The deviation should be small enough so that the

PLL is not "stressed" excessively. The IF Filter bandwidth should

be wide enough to attenuate only a negligible percentage of the FM

spectrum.

4.2 Comparison of Theoretical and Experimental Results
2

Figure 20 is a plot of o_ as a function of the rms deviation.

S3 and S4 have essentially the same bandwidth, yet S4 which is

centered around a higher frequency causes a larger multiplier out-

put variance. Thus higher frequency components of the signal cause
2

larger ax and are consequently distorted more than are lower frequency

components. There is excellent agreement-between the Experimental
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Figure 20. Multiplier Output Variance as a Function of RMS Deviation for No Noise and B= 5600 Hz.
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and Theoretical values (less than 2% error) for ac < .25. For

2 > .25 the agreement is not as good, probably due to the fact
x

2
that the PLL becomes non-linear for larger a .

x



Chapter 5

PLL CHARACTERISTICS IN THE ABSENCE OF MODULATION

5.1 Introduction

The purpose of this section is to show that the PLL character-

istics predicted by the Quasi-Linear Model agree well (within 10%)

with actual characteristics measured from the Experimental System.

Since Viterbi's model is often used (and misused) in determining

PLL characteristics a comparison is then made between the Quasi-

Linear Model and Viterbi's Model. It is shown that Viterbi's Model

is a special case of the Quasi-Linear Model and the regions in the

PLL parameter space in which each is valid is discussed.

5.2 Comparison of Theoretical and Experimental Results

Since there was no junction in the Experimental System from

which to measure (t), the multiplier output variance (2 ) was mea-

sured and used to compare to the results predicted by the Quasi-

Linear Model. Both the theoretical and experimental results are

plotted in Figures 21 through 23. In each Figure the noise-spectral-

density (NSD) is held constant while the IF Filter Bandwidth is

varied. The corresponding PLL signal-to-noise ratio (SNRloop) for

a wide IF Bandwidth is also indicated as determined from the defi-

nition [3,4]

SNRloop 10 logl0 [A2 /NSD IH(s) 2  ]d (5-1)

This quantity is commonly used as a measure of the noise in the
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Figure 21. Multiplier Output and Phase Variance as a Function of IF Filter Bandwidth for 
No Modulation

and SNRloop = 14.2 dB.
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Figure 22. Multiplier Output and Phase Variance as a Function of IF Filter Bandwidth for No Modulation

and SNRloop = 4.68 dB.
loop
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Figure 23. Multiplier Output and Phase Variance as a 
Function of IF Filter Bandwidth for No Modulation

and SNRloop = 0.2 dB.
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loop for the case in which the IF Filter Bandwidth is large compared

to the PLL Bandwidth. It is emphasized that this quantity is included

just as a matter of convenience and has no meaning when the IF Band-

width is of the same order of magnitude as the PLL Bandwidth. The

important parameter is the NSD which is related to the SNRloop by

Equation (5-1).

In Figure 21 SNRloop = 14.2dB and corresponds to small values

for the NSD and a Thus the PLL is operating in the linear region

and replacing G with A in the Quasi-Linear Model gives almost identi-

cal results. Notice that the error between the experimental and

theoretical data is less than about 5% even for small IF Bandwidth.

For small IF Filter Bandwidth the phase variance (a ) is larger than

multiplier output variance (a ). As the IF Filter Bandwidth is
x

2 2
increased, 2 approaches a constant value while ax increases withoutx

bound. The latter is true since the noise power (variance) increases

without bound as the IF Filter Bandwidth is increased for a constant

NSD. Since the PLL does not "track" noise outside of its bandwidth,

an increase in IF Bandwidth beyond the PLL Bandwidth only adds

frequency components outside this Bandwidth. Thus the former is

true since phase error is caused only by frequencies that the PLL

"tracks."

The result of increasing the NSD is shown in Figures 22 and 23.

As the NSD is increased the values predicted by the Quasi-Linear

Model and the Quasi-Linear Model with G = A differ considerably.

This is due to the increase in a2 causing the PLL to operate in a
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2

non-linear manner. The Experimental results for a agree well with

that predicted by the Quasi-Linear Model while differing considerably

from that predicted by the linear model. This result supports the
2

validity of replacing A by Ae- /2 as developed in Chapter 1. Figures

2
21 through 23 illustrate the complex relationship between ax and

2  2 2
a . In general a is quite different from.a and in order to deter-

2 2
mine a knowing ox, these plots (or the equations used for these

plots) must be used.

2
Figure 24 is a plot of a as a function of CNR for three ofx

the IF Filters used in the Experimental System. As can be seen, the

error between Experimental data and data predicted by the Quasi-

Linear Model is less than about 20% for all cases. In general, error

2
is larger for larger 2 and/or smaller IF Filter Bandwidths. This

x

is consistent with the assumptions made in developing the Quasi-

Linear Model (Section 1).

5.3 Comparison of the Quasi-Linear Model and Viterbi's Model

By replacing the equivalent non-linear gain G in Figure 5 by

A, and allowing the IF bandwidth to become large compared to the

loop bandwidth, the Quasi-Linear PLL Phase Model becomes similar to

the model developed by Viterbi [3]. The main difference is that the

Quasi-Linear Model gives a finite variance for the multiplier out-

put while Viterbi's model yields an infinite variance (which is of

course a physical impossibility). The reason for this discrepancy

is that Viterbi's model does not account for the fact that in an

actual system the IF Filter causes the input noise spectrum to have

a band-pass shape rather than a flat ("white") spectrum. However,



0.8 Legend:
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Figure 24. Multiplier Output Variance as a Function of CNR for No Modulation.
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the two models do agree on the value for the phase error variance,

subject to the above mentioned conditions being satisfied.

Figure 25 illustrates the phase error variance predicted by

the two models as a function of IF Filter bandwidth for G = A in

the Quasi-Linear Model. As can be seen, the two models agree to

within about 2% for BWIF > 10 BPLL. However, the difference becomes

progressively worse as BWIF approaches zero. For BIF = 0 the phase

error variance should be zero since all the noise is filter out by

the IF Filter. The Quasi-Linear Model prediction coincides with this

point while Viterbi's Model does not. As was shown in Section 2.2,

the Quasi-Linear Model predictions agree well with actual experi-

mental data. Thus for small 2 (so that G = A in the Quasi-Linear

Model) and BWIF > 10 BpL L Viterbi's model is essentially equivalent

to the Quasi-Linear Model. The region in the PLL parameter space in

which each model is valid is illustrated in Figure 26. The boundaries

2
illustrated are approximately where the error between ax predicted

by the models and actual experimental data is 10%. As can be seen,

Viterbi's Model is valid in a subspace of the space in which the

Quasi-Linear Model is valid. Although Figure 26 was determined for

no modulation, subsequentdata indicates that it is valid whether a

is due to modulation or noise or a combination of the two.
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Figure 25. Phase Error Variance Due to Additive Noise of Uniform Spectral Density (NSD).
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Chapter 6

PLL CHARACTERISTICS IN THE PRESENCE OF

MODULATION AND NOISE

6.1 Comparison of Theoretical and Experimental Results

Both Experimental and Theoretical Data was obtained for com-

binations of three different IF Filter Bandwidths, four different

signals, and three different deviations. The data obtained is plot-

ted in Figures 27 through 38. In each Figure the IF Filter Bandwidth

and Signal spectrum is held constant while the deviation is changed.

The Figure numbers are listed in Table 2 which may be used as an index.

A summary of the maximum errors is also presented in Table 2. The

first number is the maximum error in dB between the Theoretical

calculation of output SNR (as determined from the Quasi-Linear Model)

and the output SNR measured from the Experimental System. The second

number is the maximum % error between Theoretical and Experimental

values for 02

As indicated in Section 4.1 the finite IF Filter Bandwidth causes

output signal distortion for certain combinations of system parameters.

When such distortion exists it is indicated by an asterisk (*) in

Table 2. Since the effect of IF distortion on the signal was not

incorporated in the Quasi-Linear Model it is reasonable to compare

the Model results to Experimental results when IF distortion does

not exist. As can be seen from Table 2, the maximum error for all

cases in which IF distortion does not exist is 4dB for the output
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Figure 27. SNR and ax as a Function of CNR for a = 5600 Hz, fl = 56 Hz, f2 = 440 Hz.
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Table 2

Comparison of Theoretical (Quasi-Linear Model)

and Experimental Results

IF FILTER
ANDWIDTH 5600 HZ .3300 HZ .900 HZ

SIGNAL
(fl - f 2 )

Figure 27 Figure 28 Figure 29

56 HZ - 1. IdB,10% 1. 0.5dB,5% 1.*2dB,15%

440 HZ 2. IdB,10% 2. 0.5dB,10% 2.*5dB,30%

3. IdB,10% 3. 2dB,10% 3.*10dB,30%

Figure 30 Figure 31 Figure 32

56 HZ - 1. 2dB,10% 1. 0.5dB,5% 1.*2dB,10%

900 HZ 2. 3dB,10% 2. 2dB,15% 2.*5dB,15%

3.*12dB,40% 3.*10dB,30% 3.*12dB,10%

Figure 33 Figure 34 Figure 35

56 HZ - 1. 2dB,5% 1. 0.5dB,5% 1.*5dB,20%

1250 HZ 2. 4dB,15% 2. 3dB,15% 2.*10dB,20%

3.*13dB,30% 3.*12dB,40%

Figure 36 Figure 37 Figure 38

560 HZ - 1. 2dB,10% 1. 0.5dB,15% 1.*3dB,20%

900 HZ 2. 4dB,15% 2.*5dB,40% 2.*5dB,20%

3.*10dB,40% 3.*15dB,40%

Legend:
1. rms deviation equal to 201 Hz
2. rms deviation equal to 402 Hz
3. rms deviation equal to 603 Hz
* indicates IF Filter distortion (see Table 2)

Note: the first number is the maximum difference between theoretical
and experimental SNR in dB, while the second number is the
maximum percent difference between theoretical and
experimental values of a2 .

x
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SNR and 15% for a . It is emphasized that this is the maximum errorx

and that the error is usually much smaller than the above values as

can be seen from Figures 27 through 38. Table 2 also indicates that

the error increases as 0o increases and/or IF Filter Bandwidth
x

increases. This is consistent with the assumptions used in develop-

ing the Quasi-Linear Model (Chapter 1).

6.2 PLL Characteristics as a Function of RMS Deviation

One of the advantages of using FM is that there is a so called

"FM improvement" for large modulation indices. Essentially what this

means is that the output SNR can be improved (increased) by using a

larger modulation index. This of course assumes that the larger mod-

ulation index does not cause IF Filter distortion or PLL distortion

due to loop "stress." Thus there is a "tradeoff" between "FM improve-

ment" and distortion when the modulation index is increased.

Figure 27 illustrates the "FM improvement" effect. In this case

there is no IF or PLL distortion, and an increase in the rms deviation

(modulation index) causes an increase in output SNR. An increase in

the deviation by a factor of 2 causes an increase in SNR by a factor

of 4 (6dB). Figure 37 illustrates the effect of IF Filter Distortion.

In this case an increase in rms deviation causes a decrease in the

output SNR. This is true since IF Filter distortion increases with

an increase in the rms deviation and for this case the IF distortion

dominates over any "FM improvement" effect. It should be noted that

the theoretical values do not conform to the IF Filter distortion

since this effect was not incorporated into the Quasi-Linear Model.
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From the above discussion it is clear that there is an optimum de-

viation for a given IF Filter and PLL in the sense that the output

SNR is maximized.

6.3 PLL Characteristics as a Function of IF Filter Bandwidth

When the IF Filter Bandwidth is of the same order of magnitude

as the PLL Bandwidth, the noise spectrum is within a frequency range

that can be tracked by the PLL. Thus the PLL tracks the noise and

results in a reduced output SNR. As the noise amplitude is increased,

the probability that the carrier will undergo a 27 step in phase

increases [13]. Since the PLL tracks the input noise when such an

event occurs, there is an impulse noise event at the PLL output.

This impulse noise event is referred to as a "Type I click" [12].

This phenomenon was observed during operation of the Experimental

System when the IF Filter Bandwidth was narrow and the CNR was low.

For wider IF bandwidths, the frequency of occurance of these "Type

I clicks" decreases which agrees with previous work [12,13].

From Figures 27, 28, and 29 it can be seen that a decrease in

2
IF Filter Bandwidth results in a larger value for a and a lowerx

value for the SNR if the CNR is kept constant. This is consistent

with the above mentioned fact that the PLL tracks the noise frequency

components.within the PLL Bandwidth.

6.4 PLL Characteristics as a Function of the Signal Spectrum

By comparing the results in Figure 27 with the results in Figure

36, it can be seen that higher frequency components of the signal
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undergo more IF and PLL distortion than do lower frequency components.

This can also be seen by comparing Figures 27, 31, and 33 in which

the upper cutoff frequency (f2) is increased. Equation (1-19) indi-

cates that the output NSD is parabolic (i.e. increases in proportion

to w2). Therefore, the higher frequency signal components are "imbedded"

in more noise than are lower frequency components. Both the parabolic

NSD and the IF Filter and PLL distortion effects mentioned above con-

tribute to the characteristic that in general low frequency signal

components are demodulated with greater fidelity than are high-

frequency signal components.

6.5 PLL Threshold Characteristics

If the PLL were a linear device the plot of SNR as a function of

CNR shown in Figures 27 through 38 would be linear. However, due to

the non-linearity of the PLL the plot departs from that given by the

linear model for sufficiently small CNR. The point at which the

actual output SNR is idB less than the SNR predicted by the linear

model is termed "threshold" [5]. As can be seen from Figures 27

through 38 the "threshold" effect is more pronounced for certain con-

ditions. In general the "threshold" effect is more pronounced (has

a sharper "bend" in the SNR/CNR plot) for larger deviations, smaller

IF Filter Bandwidths, and smaller Signal Bandwidths.

Quite often an attempt to predict threshold is made by setting

a equal to some value [1,4,7] and determining the corresponding CNR

for the linear model. To check on the validity of this approach, the
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threshold point was determined for Figures 27 through 38 when the

"bend" in the SNR/CNR plot was pronounced enough to give an accurate

2
reading. The corresponding values for a were then determined from

the print out generated during runs of the computer program which

calculated theoretical values. The following observations were made.

For wide signal bandwidths, threshold occurs at higher values for

2 2 2
Ox and a . The phase variance (C ) at threshold depends mainly on

the signal spectrum and is fairly insensitive to changes in IF Filter

Bandwidth and deviation. In particular, for fl = 56Hz, and f2 = 900Hz

at threshold a 2 0.12; while for f = 560Hz and f = 900H at threshold
S0.1 2 z

a 2 0.13.



Chapter 7

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK

7.1 Conclusions

The Quasi-Linear PLL Phase Model developed in Chapter 1 is

realistic and useful in the sense that it accurately predicts phase

error and multiplier output variances as well as output SNR of an

actual PLL. It is an improvement over previous models in that it

accounts for (in a statistical sense) the fact that the IF Filter

Bandwidth may be narrow compared to the PLL Bandwidth and that the

phase error may be large enough to cause operation in a non-linear

region. The use of a realistic modulating signal contributes to

the usefulness of the results of this paper. For the second-order

PLL and band-pass type modulating signals used in the Experimental

System the error between actual and predicted data was less than

15%. However, there is no reason to believe that a similar bound

on errors would not be found for different order PLL's and modu-

lating signals.

The following observations were made concerning the occurence

of threshold. The threshold effect is more pronounced (has a sharper

"bend" in the SNR/CNR plot) for narrow IF Filter bandwidths, for

larger modulation indices, and for narrow signal bandwidths. The

phase error variance at threshold depends mainly on the modulating

signal spectrum, and varies considerably as the signal bandwidth or
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center frequency of the signal spectrum is changed. The above

threshold information is important since it is desirable to operate

the PLL above threshold.

7.2 Recommendations for Future Work

One of the difficulties encountered in using the Experimental

System was that the VCO "phase jitter" made measurements of the out-

put SNR above approximately 18dB inaccurate. The use of a voltage-

controlled crystal oscillator might reduce this inaccuracy and allow

measurements at larger SNR's, and variances. Then threshold character-

istics for large modulation indices could be investigated.

An important effect encountered when making measurements on

the Experimental System was output signal distortion caused by the

finite IF Filter Bandwidth. It would be very helpful if an analytical

expression could be developed which gives the relationship between

IF Filter distortion as a function of the IF Filter Bandwidth, modu-

lation index, and signal spectrum.

The theoretical and experimental techniques developed in this

paper were applied to a second-order PLL. These same techniques could

be applied to PLL's that are other than second-order. One particular

PLL which has received attention [10] to which these techniques may

be applied is the Multifilter PLL.
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Appendix I

SPECTRAL DENSITIES OF THE PLL

Let 01(s), 02(s), D(s), N(s), Y(s), and O(s) represent

the Fourier Transforms of 0 1 (t), 02(t), (t), n(t), y(t), and

o(t) respectively. Then, from Figure 5,

'(s) = 01(s) - 02(s)

=- o(s) - F(s) [N(s) + G (s) ],

or (s) F(s) + (s) - K F(s)

Thus D(s)= SO(s) K F(s) N(s) (I-)
s + GK F(s) s + GK F(s)

Since H(s) = GK F(s) and - H(s) (1-2)
s + GK F(s) 1 H(s)F(s)

Equation I-i becomes

1
t(s) = [1 - H(s)] O(s) - - H(s) N(s). (1-3)

G

Since l(t) and n(t) are independent

1()) = I1 - H(s) 12 81(w) + IH(s)1 2  (W). (1-4)
G
2

Again from Figure 5

Y(s) = N(s) + G t(s). (1-5)

substituting for t(s) as given by Equation (1-3)

Y(s) = N(s) + G[{1 - H(s)}01(s) - - H(s) N(s)]

= G[l - H(s)]lG(s) + [1 - H(s)] N(s) . (I-6)
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Thus the spectral density is

Y(w) = G2 11 - H(s) 12 -5 () + I1 - H(s) 2 N(w) . (1-7)

From Figure 5 and Equation (1-6)

0(s) = K D(s) F(s) Y(s) = GK[1 - H(s)] D(s) F(s) 01(s)

+ K[1 - H(s)] F(s) N(s)

1
= s D(s) H(s) Ol(s) + s D(s) H(s) N(s). (I-8)

Therefore
2

0(w) = w IH(s)1 2 D(w) - (w) + -IH(s) 2 D(w) N(W) (1-9)
G

2
where D(w) = ID(s)

Ci'



Appendix II

BAND-PASS FILTER TRANSFER FUNCTION

Consider first the low-pass section of the Filter. Since

Equation (2-1) is the transfer function squared it is necessary

to find the polynominal V4 (s) such that

1 64c2
V4 (s) V4 (-s) 1+ 2 T s) (II-i)

64E2

1+ 264s - 128s 6 + 80s - 16s 2 + 1]

Thus one must find the roots of

1 + 2 T2 (s) = 0. (11-2)

The procedure to do so is given by [6] and yields the following

4 roots in the left-hand complex plane

r1 = -al + jb1  where al = 0.203721927

r 2 = -al - jb1 bl = 1.046636712
(11-3)

r 3 = -a2 + jb2  a2 = 0.491828394

r 4 = -a2 - jb2  h2 = 0.433531121

Therefore

V4 (s) = (s +al -jbl)(s +al +jbl)(s +a2 -jb2)(s +a2 +jb 2)

= s 4 + 2(al + a2)s
3 + (A1 + A2 + 4ala2)s

2

+ 2(alA2 + a2Al)s + A1A2  (11-4)
2  2 2 2

where A, = a2 + b , and A = a + b .
1 1 1' 2 2 2
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Substitution of Equation (11-3) into Equation (11-4) yields

V4 (s) = s + f3
s3 +f 2s2 + f1s + f

where

f0 = 0.4887118438 f2 = 1.96758027

(II-5)
fl = 1.29350660 f3 = 1.39100322

Thus the transfer function for the low-pass section is

B(s) 41 (11-6)

LP f + f2  +f +f 0

where m2 is the upper break frequency of B(s). Likewise the transfer

function of the high-pass section is

1
B(s) 3  (11-7)

f ( + + f( + f0

where l 1 is the lower break frequency of B(s).

The overall transfer function (B(s)) is

B(s) = B(s)LP B(s)HP

4 (II-8)

8 7 2
g8 s + g 7  . ............

where

80 = f0 W

1 1 3
1 W 0 3 1
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