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Abstract

The first part of the report summarizes reseafch carried out under
this grant and now in the publishéd'litérature; inclﬁded'are.basic qﬁantum
detection and estimation theory; applications to 6ptics, photon counting,

. and filtering theory. The second part describes receht work on the
festoration of dégraded optical images received at photoelectrically emissive
surfaéeé; the daté ﬁsed by the method are the numbers of electrons ejected

from various parts of the surface.



I. Survej of Published Results

The reseafch accomplished under fhis graﬁt has in large part been
publishedvin tﬁe papers.listed_on pages 9-11. This final report will be
mostly devoted to déscfibing our recent work on the restoration of degraded
optical images-recéived at photoelectricaliy emissive'surfaces, but first
we recapitulate our previous.investigatioﬁs. "In particular we call

. o %
attention to our review paper in Progress in Optics (§I, 3) , which

:summarizes the elements of quahtum detection theory and itg applicétion
to the detéction of 1ight,sources and the estimation of tﬁeir paramefers,
Earlier reviews (§I, 1,2) described the state of the theory at the time,
.particularly with regard to its application to!qommunicationsg

The functioﬁ of the receiver.iﬁ a communication.syétgm is to deqidg
- which of a set of known signals has been transmiftéd during each element
of a uniform sequence of inte;vals; it.issues iﬁs decisiqns as a.sequence
of symbols repreéentiﬁg its best veréion of the transﬁitted message. In
a rédar the pufposé of‘the receiver is to'decide.whether ;he echo from a
target is present in ité iﬁput and, ;f so, to‘estimate the range and
velocity of the target. In optical.communication‘and rédat systemé the
Ainfdrmation on which such decisions aﬁd estimates are based is emBodied
in the field at the aperture of thé_recei&er, Wherebit is corrupted by
random backgroundrradiation. Because that field is governed byithé laws
of quantum mechanics, the methods of classical decision and estimation

theories cannot be applied, and those theories must be reformulated to

* . ' :
* This notation refers to paper 3 of §I of the bibliography on pages 9-11,



take into account‘quantum—mechapical restrictions on measurability
of the fields (§I, 3).

In quantum detection, the decisions made by the feceiver are
considered as choices among a set of density operators o1 pz; ey pM,
each describing'the aperture ‘field in the presence of one of the'possible
transmitted signals. The density operators act in the Hilbert space J%%
of the field. The choices are based on measurements of the field and
calculations involving their outcomes, and the entire procedure can be

viewed as applying to the field a resolution of the identity operator 1

in gfk into a set of positive—definite Hermitian opefators, Hl,_Hz, Cevs Hﬁ,

1 ~

My + Ty + cee + e = 1,

such that thé probability that the receiver decides that the j-th signal
was seﬁt when.feally the k—-th waé senp‘is the trace Tr(pkﬂj). The optimum
receiver will épply thét resolution of the identity fof which the averége
probability of error,is minimum. It:hés been shown ;ﬁat the operators
Hl, Hz, ey Hﬁ attaining minimum error probability need not commute, but
that when they do not, an ancillary apparafus can in principle be coupied
with the receiver in such a way that the same minimum error probability
can be attained by measuring commuting projection operatofs in the Hilbert
space of the comBination (81, 5).

When the receiver estimates parameters of a received optical signal,
such as its arrival time and Doppler shift, efrors are introduced by the

background radiation and by the stochastic quantum-mechanical nature of

the signal itself. Lower bounds on the mean-square errors of such estimates



can be set by duantum—mechanical counterparts of the Cramét;Rao inéquality
of classicaljstétistics. Two forms of the iqequality ére known, and
sometimes the 6ne,‘éometimes the other yields the superior bOuhds (81, 5).

Quantum detection theory was originally formulated in terms of an
ideal receiver consisting of a lossless box or cavity into which the
incident lighf was admitted by Qpening'aﬁ.aperfure during an observétion
interval (0,T). Measurements were then to be'madé on the elegtromagnetic
field inside the cavity ét a later time t > T in order td decide whether
it contained a éomponent attfibﬁtable to ;hé source or object soﬁght,.or
in“order to estimate certéin parameters, such as the radiancé or direction
df»an opticél source. Ordinari;y an 9p£ica1 instrumeﬁf bases its decisions
and estimates aboﬁt a source on the electroﬁagnetic‘fiéid at its apefture,
for instance Bykfocusing the}in;ident ligﬁt on;o a pﬁotographic plate or
a counter whosé response is presented to an;observgrr 'We wanted, therefore,
to eliminate that_artifice.df the lossless cavity aﬁd to express det¢ct1on
and estimation sffategies direct1y in ﬁerms of the aperture fieid. This
was done first for threshoid détectors (§II, D énd estimatofs (511, 2).
Optimum deteétors and estimators, as well as Cramér-Rao bounds on mean-square
errors of estimates of parameters, must in quahtum_mechanics be based on
the density operators of fhé aperture field, and by degomposing that field
hiﬁ;o spatis;féﬁpé£él Qﬁdes it has been possible to write down the necessary
density operators in a broad class of problems involving éoherent or
naturally incoherent 1ight (811, 3; §I,‘3, §4 and §5), |

"~ The resolution of'close point sources of incoherent light cduld,be

convenilently studied by means of this modal decomposition of the aperture



field. Two formulations were treated by quantum detgction theory. In
the first, an observer is tn decide whether two point sources of'known
radiant power and position are present, or whether only a single source
having twice the rédiant power and located at the midpointiis present.

In the second.formulation either one or thebother of two point sources
may be radiating during the observation interval, as in a binary
communication syétem in which 0's and 1's ate sent by turning on one
source or the other. In both formulations the &énsity nperatots-do;not
commute. The basic eigenvalue:equation of quantum detection theory was
written as an integral equation by expreséing the density operators in the
coherent-state representation; and by assuming the absence of background
radiétion it was‘possiﬁle'tq solve the integral equations_for both
formulations in(closed form and calculate the error probabiiitiés_inqurred by
the optimum decision strétegies (81, 45.

The infotmation of interést in a scene emitting or reflecting natural
light is embodied-in its radiance distribution as a function of nositiqn
and frequency, and a camera or.a telescope is essentiaily an instfument
for estimating that rédiance distribution, which the laws of light
propagation transléte into the spatio-temporal coherencelfunction of the
field at the apetturé of the instrument. The restotation of images degraded
by diffraction, aberrations, and atmospheric turbulence can be viewed as
a problem of estimating a comptehensivevéet of narameters of the aperture
field or of the radiant source producing it. Treatment of this pronlem by
conventional linear estimationvmethods, assuming additiye Gaussian noise,

is often unjustified.‘ Within the framework of classical optics it was

U-I .



shown how the random fluctuétions of the light fields cause large errors
in estimates of the radiénce of an object plane af points closer together
than half the Rayleigh resolution distance (§II, 4). Conditions were-
derived under which a formula of the Shannon type holds for the information
transfer from an incoherently radiating object plane (§II, 5). An analysis
was made of a systém that estiﬁates the radiance distribution of an dbject
plane by focusing it on a dense array of pﬁotoglectric'deteétors and
procgssing by linear means the numbers of photoelectrons emitted by each.
Equations of the Wiener type were obtained foi the optimum:.linear processor,
with ﬁhe noise term embodying the classical fluctﬁatidns of the object and
baékground_light fiélds, and the quantum fluctuations of the photoemissive
~pro§ess (811, 6). |

The ideal Quantum receiver of a‘coherent signal of random phase counts
the number of photons in a sihgle mode of the apertu;e‘field; or in a mode
of the»lossless cévity suitablybmatchéd'to the signal. The'number-gf
photons has a Lague%re;distribution in the presence qfﬂa signal and a
Bose distribﬁtion in its absenée. Detection and error probabilities:for
such an optimum receiver have been calculated (6111, 1), In practice
the signal will be passed thfopgh'a narrowband filter in order to cut out
as much background iight as possible and will then be focused on a photbn
counter; detection and efror probabilities for such a_system'have also
been calculated (§III, 2).

For many detectors, and particularly for the likelihood-ratio detectors
prescribed by éetection theory, it is not possible to calculate analytically

the probability distributions of the statistics on which are based decisions



about the presence or absence'ofba signal, but one can &ork out tﬁeir
moment-generating functions, which are the Laplace transforms of the
distributions. Methods for determining the cumulativé distribution of a
statistic from its moment-generatingvfunction are therefo;e of'interést,
and two have bgeﬁ studied, one invplving an expaﬁsion in terms of Laguerre
functions (§IV, 1), the other the evaluation of the inverse Laplace |
trénsform by the methéd of steepest descent (§iV, 3).

These téchniques must be applied in analyéing the performance of a
photoeléctric detector‘proposéd some.tiﬁe ago.* An‘observer.is_to décide
whether a'certaih_imagé is present of not amid background light incident
on a-photoeleétriéally emissive surface divided like a mosaic into many
small, isolated elements.‘.The decisions are béséd on the numbers of
electrons emitted from eaéh'e;ement, and tﬁese have Poisson distribu;ioné._
The likelihood ratio is formed from the numbers and compared with a
decisiqn level chosen, for insfance, to yield a pre—assigned false-alarm
probability.i Thg momént—geﬁerating functions of ﬁhe 1ogarithm of the
likelihobd.fafio can be expressed in terms of the iliuminances caused by
the background and by the image sought, and by finding their 1nverse
Laplace transforms by the method of steepest descent, false~alarm and
detection probabilities have been calculated. This detector has been
compared with the threshold detecfor+ and with one that simply counts the

total number of photoelectrons emitted from a circle concentric with the

C. W. Helstrom, 'Detection and resolution of optical signals'.
Trans.IEEE, vol. IT-10, pp. 275-287 (October, 1964).

Ibid.



expected image and having optimum radius; an image with a Gaussian
distribution of illuminanée was postuiated. It was found that_fhe optimum
likelihood-raﬁio pro;essing of the photoele;trons yields only slightly
greater.detection probability than that of the simple counter (8III, 3),
In a thesis completed under this grant (§V, 5), Dr. C. L. Rino, now
of Stanford Research Institute, developed and anélyzed.methods for solving
the convolutional integral equation describing, inter alia, the linear
filtering undergone by an image in passing through an.isoplanatic optical
system. It is this integral equation that must be solved in restoring
degradéd_optical images by linear éstimaﬁion. Most attention was given
to one-dimensional problems. Use of the discrete Fourier transform was
investigated (§V, 3,4), and the absence of data be?ond the endpoints of
the data inter?al was taken care of by'using causal Wiener filters derived
_ for the semi-infinite interval. The extrapolation of the solution beyond
the endé of the data intervél was studied by'means of expansions in terms
of prolate-spheroidal wavefunctions, and it was shown hgw the properties
of those functions explain the large errors inherent in such extrapolations
(§V, 1). These functions were also uéed to treét the detection and

estimation of bandlimited signals (§V, 2).
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II. RESTORATION OF DEGRADED OPTICAL IMAGES#*

1. Maximum-Likelihood Image Restoration

The restoration of degradéd optical imagés has in the past been treated
largely as linear filtering of a spatial random process in.the presence of additive
Gaussian noise.l-slt is 6nly under special conditions that thié ié an accurate
model of the image.  Although the electromagnetic fields’of the'light from the ob-
ject and the background combine additivel}, it is not the field of the objéct light
that is of interést, but the radiénce diétribution of the sbject orfscene,vwhich is
rélated to the éovariance function of the-field.v Furthermore, what is_méasured at
the image plane’of an optical éystem.is the illumiﬁance of the incident light, which
is also a quadratic functional of-thé-field. ‘When photographic film is used, the
noise dependsth‘the illuminances dué to object aﬁd béckgrouhd,in a complicated way.
The‘simple additivity of the Gaussian model is seldom realistiq(

| In an endeavor tq study image.restoration in terms of a more realistic, yet
mathematically tr#cﬁable model;.we have postulated thatlthe incident light is fo-
éused ;n a photdeléétriéally'eﬁisSive.sufface,'whiCh is dividéé liké a mosaic into
a number N_of éhéll, insulated regions A, of areabAA.: ﬁﬁring an observation in-
terval of duration T the ﬁumbers ni-ﬁf photoelectrons ejec;ed from each of these
elements Ai are recorded and constitute the data on the basis of which an estimate
of the undegraded image is formed.6 The system is illustrated in Fig. l;l.

Let thevilluminance that wouia appear at the péint x of the'image'plane,

were the undistorted geometrical image present, be B{E)i this is proportional to

The research described in this part was carriéd out in collaboration with
Y.-M. Hong and is described in his doctoral thesis, "Optical Signal Processing:
Poisson Image Restoration and Shearing Interferometry", Dep't. of Applied Physics
& Information Science, University of California, San Diego; September, 1973.

*
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fiiter for object and background light is not shown.
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the radiance distribution of the object plane with its dimensions scaled ac-
cording to the magnification factor of the optical system. The’actua} illumin-~

ance at point‘ﬁ is
I(x) =f K(x,u) B(g)dzg, A (1.1)

where K(x,u) is the incoherent point spread function of the optical system and
the transmission medium combined. It accounts for tgrbulent distortions of
.the ref;active index, diffraction at the aperture of the observing instrument,
aberrations in lenses, and relative motion of object and instrument. We supbose
the kernel K(g,g) to ‘be known.

Let;§i'be the coordinates of the center of the i-th element Of,the_image
plané, which element we suppose small enougﬁ that I(E) is effe%tively constant
over it. Then the‘mean number of phoﬁoelecfrons emitted by the i-th element Aif

is

=] I
!
[

o Iggi), i ='1,2,..,n, | (1.2)
with
| a=TAéJr n(v)é(v)(hv)-ldv, ' _ (1.3)

where n(v) is the quantum efficiency of the surface at frequency v, ¢(v) is the

~ relative spectral density of the light,

f d(v)dv = 1,

and hv is the energy of a quantum of 1ight'at frequency v. When as we assume
here the duration T is much greater than the reciprocal w‘l of the bandwidth of

the light, WT >> 1, the numbers n, of emitted photoelectrons have Poisson dis-

i

tributions and are statistically independent,7



o1

. ni
1

N ‘ ' :
Pr gnl,...,nN§ = []1 n, A- exp.(iﬁi) . . N

:

We suppose that
B(w) = By + b(w, | (1.5)

. where B0 is known and b(g) is to be estimated at a number M of uniformly
spaced points Y., in the intervals between which B(u) changes in a smooth

0 o~ 0 . ) :

assumed independent of X, we put for the mean values of the data ni,

n,

i q(I0 + ni), ': A(l.7)

and :
' M
ng =E Ky by i=1,2,...,N, (1.8)
j=1 |
where
Ky = K(l‘i’gj) AA. A o I ¢ )
Thus in this approximation
M :
I, ;Z- K; 4 Bo® : . (1.10)
j=1 o ' | o '

' The data are the N numbers n, distributed as in (1.4); the estimanda.are the
sample values bj of the deviation of the geometrical image ffom_a mean level
_BO.

In order to apply the principle of maximum likelihood, some statistical

description must be formulated .for the class of expected true images B(g). We

‘consider them as spatial Gaussian random processes with mean zero and auto-



. )
covariance function
(u,-u )'= E E(u YB(u,)}| - B 2 _ E b(u )b(u ) : | ‘(i 11)
9? ~1~270 TR ~17% V) 0 ~ ~1/7\=2’f - .

The images are spatially stationary, and the width of ¢ (u) represents the size

of typical details iﬁ the object plane; the ratio

¢ (0) ' .
C = ——— . (1.12)

specifies a mean-square contrast. The Fourier transform of the autocovariance
function ng) describes the distribution of spatial freqﬁencieé:ih objects of
the class. Although the actual objects will not in general resemble what we

think a Gaussian stochastic process looks like, a method that works‘well_for

an ensemble of such processes should usually be effective in restoring an object
of similar structure. The structure of a scene can seldom be specified.in terms

less rudimentary than the average contrast and ‘the size of typical details. The

form chosen for the autocovariance function in (1.11) represents the demands we

are placing on our restoration scheme. If qJQg) is .taken to be very narfow, we

‘are forcing the method to try to reproduce fine details, and we can expect the

resulting image‘td be noisy. If ¢>Q3) is too broad, the resulting image will be

in error because details have been smeared out.

The principle of maximum likelihood states that the best estimate of the

image is the one for which the joint c¢onditional probability density function

(p.d.f.) of the estimanda bj’ given the data n, is maximum. It is given by

pe (1] ) = (sl ) o (1

), , (1.13)

16




where

q ({bj.}) C exp (—% Zz_:,l i by b.k) (1.14)

J=

n,
1

is the prior p.d.f. of the estimanda; Pr ( {bj:) is the product of Poisson

distributionégiven in (1.4), and

(o) = f o (l) e

is the unconditional distribution of the data. In (1.14) the u

{ bJ.%) db, . .dby,

are the elements

Jk
of a matrix p = w_l that is the inverse of the covariance métrix_@,whose elements
are
vy = Qe - u.); o ' - ' (1.15)

' C§ in (1.14) is a normalizing constant. Maximizing the condltional p d. f in

(1. 13) is equlvalent to minimizing its negative logarithm

(b i)~ Z T “f‘“"““ZZ quJk!’ i

j=1 k=1

from which terms independent of the estimanda sb/ have been dropped. The

|3 _
constraints on the minimization are embodied in eqs. (1.7) and (1.8), which take

the distortion of the image into account.
If the numbers n, are large and the contrast is small, the distributions
of the ni's are approximately Gaussian with mean 'values'ﬁi given by (1.7) and

variances Ei T a Io. The quantity to be minimized is then, instead of (1.16),

el e e

N~

+
N
Mk
.
~
(A
~

(1.17)



which must also be taken with (1.7) and (1.8). The minimizing values of the

estimanda bj are the solution of the linear equations

bk =2 (n:.L _.qIO)Kij; : | (1.13)
i=1 .

they provide the usual least-squares estimate, which can be written in matrix

M N
> (.Ioujk +a) KikKij)
k=1 =l
form as
A ' \-
b = (I E,+ QETE) 1 EF(E_- a;ol)

-1

T

(i o2) e

(E -aIO']‘_') , a9

where n is an ‘N-dimensional column vector of the data, 1l a colum vectof'of

N 1's, and IM

is the MxM 1dent1ty matrix. The matrix K = llKijll‘is NxM and

ET is its transpose. This least-squares estima;e forms the starting point of

our search for the maximum-likelihood estimate, which minimizes F(

b,
J

Having neither prior knowledge nor_preconceptions'about the class of

- images to be restored is equivalent statistically to attributing an infinite

variance to the estimanda {bjy
and one minimizes only

N

The second term of (1.16) then disappears,

F" (%bj%) =:£: (ﬁi -n; fn Ei) | . ‘ (1.20)

i=1

in combihation.with the constraints in,(l.7) and (1.8). Fof_thé 1éast—squares

estimate this leads to the simple

~

0

"inverse filtering" specified by the equatipns‘

/1;=.<aKK) Lkt (2 - ol 1) - - . .(1.21)

)inv(l.l6).

18
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We shall find that the image restorations based on prior assumptions about the
class of true images, through (1.16), are seldom much more accurate than those

obtained, by maximizing (1.20), without utilizing such assumptions.
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2. The Method of>Steepest Descents

The most successful method we tried for computing the maximum-likelihood

A , _ , _ , o
estimate b, of the true image was the method of steepest descents applied to the
)in eq. (1.16).8 Let ‘a given set of trial

minimization of the function.F( bj
values of the estimates b, be denoted by the superscript We expand the function
F(%bj}>in an M-dimensional Taylor series about the point {bjo s
0
_ 0 fi: oF 0
F(%bj})- F<}bj %)+ (3bk> (bk Pk )
M M ' '
. 2 0 0 T\
1 ~[(dF L 0
+ = - -
7 2,0 (ablé)b ) (bk " ) (bm Sy ) | (2.1)

and treat this as a quadratic form to be minimized. The next trial point lies

in the‘directibn of the.gradient'from b,

bj = bJ0 - A gj, (2.2)
where . N
0 - a .
oF . i
gj = (*5‘5—) = Gi Kij (l —_—l) +t ujk bko, j =1,2,...,M, (2.3)
] i=1 " kel ’ ,

are the components of the gradient vector at point b°, in which we must put,

from (1.7) and (1.8),
- L (2.8)

(2.5)




The parameter A determines how far along the gradient one prq‘ceeds, and it is

détermined by substituting (2.2) into (2.1) and minimizing with respect to A,

A =ﬁl ZZ a 8.8, . o (2.6)

"k=1 m=1

2. | 0 M 0K K -
_ (3% 3 15aam | -
akm‘( 3b, 9b ) “km_*ﬁ;' 0)2 , 2.7
k'm B »(Io+ni. ' S

The quadratic form in the denominator of A cam be written

MM MM 1r12 I
DD akmgkg =3 Z “kmgkg Z T 02, (2.8)
k=1 m=1 _ k=1 m=1 =1 ( 0 i ) ’
where o : ‘ . o : .
ry =i Kik 8- " | o | (2.9)
k=1 '

When the ;rial'point changes from‘é)'to b by (2.2), ny in (2.5) changes. from

nio to "10 -')\ri . The only MxM matrix that needs to be stored in the computer

is u =:g-l,'the.1nverse covariance matrix, and fq: the covariance matrixzw we
used, W was very simple. The rest of the operations in calculating A and the

new values of

b.* and gnj} can be carried out with ome-dimensional arrays.

Because the true image must be positive, values of b, that sank below

3

-B0 at any stage of the iteration were set equal to —Bo+e, where € was a small

positive constant. The iterations were stopped when the ratio

21

_ . 0.
fell below 10 3’ where gbj } were the values at ;he beginning, %bj; those

at the end of an iteration.

e e ¢ oo oo e s
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3. Generation of Trial Objects and Images

The method of steepest descents was tried out on the restoration of
one-dimensional objects distorted by motion blur and diffraction. Two types
of objects were used, a deterministic one composed of Gaussian peaks and random

ones generated by an autoregressive process. The former had the form

b, = 90
i

exp [-(1-5)2 /,4]_+ exp [-(_1-9)2/4] + exp [—(1—16)-2/4“. (3.1

Its peaks are two units in width and located at coordinates 5, 9, and 16 in a
total range of tﬁenty'points.
The random object was generated by the formula -

b

. = +
j41 ST Ppt 2

i+, i=1,2, ..., M-1, ' e &< %)

" starting from an initial value bl that was a Gaussian random variate with mean
. 2 e e S

zero and varlance»ob . The zi's were independent Gaussian random variates with

mean zero and variance sz(l—rz), as a result of which all the image vafiates

. : . . "2
,were Gaussian with mean zero and variance ¢

p » but with a correlation matrix

given by

(,Oj;j = O'b2 rli_jl- l . _ : - (3.3)

The inverse p of this matrix is especially simple. Its diagonal and first off-
diagonal elements are

_ o "2, 2

b = o, Yy /(Y i # Lor M,

* -2 2
= = - 1-1%). 3.
Hi,itl - Midl,t op  r/-r). ( ﬂ



23

All other elements of the matrix p vanish.

The Gaussian variates z, were generated from pairé of'uniformly dis-

tributed random variates R, and R, in the interval (0,1) by means of the

transformation

z = oz(-z in Rl)l/2 cos (2nR2), o, = (Var z)l/2 , (3.5)

Values of bi generated by (3.2) that fell below -B0 were set equal to —B0 in
order to produce an object with.nonnegative radiance B0 + bi' A typical object
generated by this process is illustrated by the heavy line in Fig. 3.1. Its

parameters are B, = 3, r = 0.6, o,_ = 25.

0 b
When the image is degraded by relative motion between object and re-
cording instrument, the point spread function K(z,u) will be constant for a

range of values of x about u and zero elsewhere. Sampling then produces an

' NxM matrix K of the form

Kij =D , 1= 3,j+1,...,3¥D-1, j = 1,2,..., M, : ‘ (3.6)

where N = M+D-1, and D is an integer proportional to the relativé'velocity of
object and iﬁstrument;. we took D=4, Although (3.6) appears to violate (1.10),
we can assume that the actual object extends to the left and right of the range

of sampled values and has in those margins a constant radiance B the remaining

0’

analysis, with I = Bo, is unaltered.

0

For diffraction the point-spread matrix was taken as

: 2 e T 2 .
Kij =C [Sin W(l-J)] /[ (=17 = ei_j’ |1"J|<Ja

K., =0, |[i-3] > J,

J | '
-l i : t
c.=( Z;J e, ) . - (3.7)
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- Fig. 3.1

True image (thick line) and the noisy -degraded image (thin line)
after blurring by relative motion. I0 =3, a=10, ¢ = 25, r = 0.6.
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Again we suppose that the object has wide enough margins with b(g) = 0, in

0

width of the aperture, which is taken to be a slit perpendicular to the one

which its radiance is constant and equal to Bo = I . Here W is related to the

dimension of the object.
The data n,, representing the numbers of photoelectrons ejected by

the incident light from the several elements of the image surface, were generated

as Poisson-distributed random variates with mean values

n, =a (I0 + ni),
ny = Kijbj’ i=1,...,N. o : N } (3.8)

Let A ='Ei be a typical such mean valué.v.A pseudorandom-number program produces
a uniformly distributed random variate y in (0,1), which is multiplied by eA.

The sums
: n i
— : 1
s, E A /3

are accumulated, starting with s0 =1, until sn just exceeds ye , whereupon
the accumulation stops and the datum n, is set equal to the final integer n.

The probability that n, takes on a value n-is then, with‘s_1 = 0,
T _ A Sl _yn =X, ,
Pr ln, = q’ Pr Snfl<.ye <s (= A" e /n!,

as required.

For mean values ﬁi'exceedihg 25 we approximated the Poisson distribution

-as a Gaussian with mean value ni and variance n,; -a Gaussian random variate was

i
generated as in (3.5) with ¢, = ﬁillz, ﬁi was added, and the result was rounded



to the nearest integer.
The object shown as the heavy line in Fig. 3.1 was blurred by applying

the matrix K in (3.6) with D=4, and Poisson variates n, were generated from the

i

resulting mean values Hi obtained as in (1.8), with a = 10. The ni's were

then divided by a to reduce them to the same scale as the object and plotted

on Fig. 3.1 as the thin wavy line, which represents the recorded data on which

the restoration was based.
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4. The Computer'Simulations

.Thé image data n, generated as we havé just described were subjected
to three image-festoration procedures and fhé results were compared. As a
simple measure of the quality of a restofation we chose the rela£ive avéragé
squared error, in percent, defined by.

>

- Mo o /M 9 ' o o
€= 100 xz (bJ.-bJ,) /Z b'j- s ’ _ ' (4.1)
i=1 j=1 | . ‘
where bj are the-knowh illuminance values of the.true image and./l\)j are the
estimates. | |
The first reétoratioﬁ proceduré was simple‘inverse lineaf filtering,
which correspondé ﬁo the least-squares estimafe in the limit @(0):+-®;' no
prior kno@ledge of the cla;s of ébjects.is presumed.- It is.detéfmined‘frqm
eq. (1.21). The second procédure Qaé ﬁﬁé.métﬁod of liﬁeéf;ieéét-squares es-~
timation, as giQen By eq. (1.19). The resulting estimété g'sefved aé the
starting point for seéking thebnonlineaf maximum—iikeiihood estimate;.and for
this the method of steepest descents described in SecﬁionAZ wasvéppliéd.‘ For

. : A : .
all three procedures any estimates bj lying below -B, were set equal to -B

0 0

before the average squared error & was calculated.

Figure 4.1 shows the results of applying these three procédures to
restoring the image depicted in Fig. 3.1. As the signal-to-noise ratio
acbz/BO is large in this case, the linear leastésquarESvestimate @svﬁot much
different from the one obtained by inverse filﬁering aé in (1.21);>the
relativé percentage errors are 10.17 and 12.5%, respectively. ' The maximum-

likelihood estimate, on the other hand, yields &= 2.53% and lies much closer

to the true image than either of the others.
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True image of Fig. 3.1 and its restorations: o =-lipear estimate;

A = inverse-filtering estimate,

0 = maximum-likelihood estimate.
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When establishing an image-restoration system it is ofﬁen &ifficulf tb
judge ﬁhat covariance function ¢ (u) most aptly describes the class of true
images to be reétored. The robustnessfof the system to the use of inabpropriate
covariances is therefore of interest. In order to in§estigate it, we have tried
our methods with values of the iject variance cbz and the correl%tion cqefficient
r in (3.3) and (3.4) different from those with which the object in Fig. 3.1 was
generated. The resulting error percentages & are ﬁlotted in Fig. 4.2. Inverse
filtering is independent of the object covariance. The maximum-likelihood method
is relatively inéensitive to thelvalue of the correlation coefficient r until it
exceeds about 0.9,.after which the method breaks down and yieldé'}argerverroré
than thé linear least-squares estimator. It may be thét a value 6f r too close '
to 1 imposes toq much co;relatiﬁn on the estimated radiance value? and prevents

the search procedure from accommodating to the data.

The absence of any prior assumptions about the class of images being

restored is equivalent to the assignment of infinite v#riance ﬁo éhe priorpp.d.f.
Q( bj%) in (1;14) agd eliminétes thg second term from tHe functio? F (%bj%)to
be minimized, eq. (1.16). The steepest-descenf‘proceduré minimiziég (1;20) is
. |
therefore simpler and cﬁéépet. ‘Fig. 4.3 shows -the resulﬁihg restoré;ion'of the

image in Fig. 3;1. Its rélatiﬁe squared error amounts to 2.69%; only slightly

. : S 2 .
larger than for the restoration that used the known values of 0. "‘and r and is

b

depicted in Fig. 4.1,

The variability of our restoratiohs-was:studied by starting with the
same distorted image, that is, with the samermean valﬁes E};'and éenerating
independent sets of Poisson-distributed data n, by sta;ting the random number
procedure with different "initializing conétants." ‘The first example used an

autoregressive object with oy = 15, r = 0.2, I0 = 3, and a = lO,vaistorted by
motion blur introduced by the‘matrix K of (3.6) with D=4, Table I lists the
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Fig. 4.3

ilgstoracion of Fig. 3.1 without prior assumptions (o
linear inverse filtering, x = maximum~-likelihood.

b

-O).
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o, =15, r= 0.2, I. =3, a =10

b 0
_Relative Sﬁuared Errors (percent)
o, =15 , r=0.2 - o, > =
linear nonlinear linear R nonlinear
1.  5.53 | 1.80 8.81 0.862
2. 5.13 C 2.46 1.02 1.08
3. 490 293 4.76 2.21
4.  5.95 . 4.28 820 2.44
5. 7.61 | 5.20 5.17 T 3.43
*6. '5.83 579 3.43 3.58
7. 8.49 4.23 8.25 | 3.68
8. 6.02 5.64 3.97 3.69
9. - 5.49 | 3.67 917 4.76
10. 9.84 6.22 8.69 C5.17
11, 7.84 6.36 7.24 | 5.63
12. 12,59 9.39 12.36 9.56
 mean 6.85 . 4.83 -~ 6.81 a 3.84
‘standard 2.67 2,07 3.18 2,33
deviation ' :

* : .
Illustrated in Figs. 4.4 and 4.5



resulting squared errors; the left-hand columns are for a restoration procedure
using the correct prior variance Iy = 15 and the correct correlation coefficient
r=0.2. The right-hand columns are for 07 i.e., no prior knowledge. - The

linear and the maximum-likelihood estimators were used; for O the linear
estimator corresponds to.inverse filtering as in (1.21). The starred line.
réfers to the restorations depicted in Figs. 4.4 and 4.5.

In ten out of twelve of these>trials the smaller relative error & was
obtained for cbém, i,e., by discarding all prior_knowledge of the class of ob=
jects. 1In two éaseé the linear estimatorvwaé.mOré effective than the maximum—
likelihood estimaﬁor. In general, however, the maximumflikelihood‘estimator
was rather better than the linear estimator, and as the figures for standard
deviation at the bottom of the téble_demonstrate, the forﬁer'is the more con-
sistent.

A second set of trials with a’different object of the same type yielded

the squared errors listed in Table II; the starred case is illustrated in Figs.

4.6 and 4.7. Here there was a greatér variabiiity, and in all but one case the

maximum-likelihood estimate was closer than the linear one to the true image.;

Omitiing the prior informatibn led to closer restorations in seven out of the
twelve trials. Again the maximum-likelihood estimator was the more consistent,
and on the average considerably better than the linear estimator:

The Gaussian ''deterministic" object of eq. (3.1) and its motionéblurred
image are sho&n in Fig. 4.8;Vagaih'thé-matri#¥5 in (3.6)wés.§sed Viﬁh‘D=4. ‘
The dip between the two left—hand peaks has been wiped out. Data were

generated from this object by taking B0 = IO = 5 and o = 3. It was then
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Fig. 4.4  True image (thick lne) and data (thin lin

e) after distortion by .
relstive motion, o = 15, r = 0.2, IO = 3,

a= 10, D=j§,
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Pig. 4.5 Restoration of image in Fig. 4.4: x = maximum—l;kelihood; o=

linear inverse filtering.’ oy = =
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Table II

o, =15, r = 0.3, I. =275, o =10

g =15 |, r=20.3 g,

b
linear > nonlinear linear nonlinear

1. 7.91 670 B T 5.42

2. 9.69 | 7.07 . 8.11 5.70

3. 14.93 8.84 11.82 . 6.59

4. 13.57 7.23 | 15.79 6.90

5. 9.16  sa0 1.ss 7.51

6. 13.94 | 8.12 18.44 9.73

* 7. 19.62 11.75 19.91 - | 1017

8. 9.51 6.86 9.94 10.74

. 29.62 8.62 C47.06 - 10.99

10. 16.04 | 14.55 16.81 1427

11. 23.18 18.07 24.70 ' ©17.02

12. 22.19 12.78  25.73 | 17.05

. mean 15.78 f 964 - 718.13 o 10.17

standard 6.70 . 3.85 10.90 4.11

deviation

*
Illustrated in Figs. 4.6 and 4.7
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Fig. 4.6 True image (thick line) and data (thin line) after distortion by
relative motion. 0 = 15, r = 0.3, I0 =5, a=10, D= 4,



’.Fig. 4.7

Restoration of image in Fig. 4.6: X = maximum likelihood; o =

linear inverse filtering, % s w,

X
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Fig. 4.8  Deterministic object of eq. (3.1) and its motion-blurred image; D = 4.



__value attained by any of the linear methods. _ .

restored under the assumption that it belongs to the class of objects gen-—

erated by the autoregressive process of (3.2) with o, = 45 and r = 0.5. The

b
results of the ﬁaximum—likelihbod and linear leastfsquaresestimates are shown
by the crosses and circles in.Fig..4.9; In Figs. 4.10 and 4.11 we.plot the

relative squared errors obtained when different values of o, and r were used

b
in the restoration procedure. For most of those values the-maximum-likeliﬁood
estimate is the more acqurate. It is also less sensitive to the choice of the
values of ob.and r than the linear least-squareé estimate.

Diffracti&n was the second mode of image distortion coﬂsidered. Figure
4.12 shows an agtoreéreééive object generated with the-values Oy = 15 and rf= 0.2
and distorted by the diffraction kernel of eq. (3.7) with W=1.2. ,The-small:central
peak was eliminated by the diffraction, and we were unable to perceive it in any
0

The restoration procedure.assumed the values ¢ = 20.andir = 0.2, pro@ucing_the

of the restorationms. Data'were generated from this image with I, = 3 and a = 10.

points shown in Fig. 4.13. ‘The three large peaks stand out in both restorations;
the other two did not survive. In Fig. 4.14 are shown the percentage squared
errors attained for various assumed values of the standard deviation % and the

correlation coefficient r. The method of inverse filtering failed completely for

. this object. Discarding prior knowledge (db = »), the maximum-likelihood estimate

yielded a relative squared error of 24.52%, which is roughly equal to the smallest

1

In Fig. 4.15, finally, we show the relative squéred errors attained in
restoring a diffracted Gaussian object of the form in eq. (3.1). The value of W

in (3.7) was taken equal to 0.8, and I0 = 10, a = 10. In the restoration cb was

taken equal to 15,and various values of r were tried. Over-most:of the

rénge the maximum-iikelihood'estimétorris much superior.
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Fig. 4.9 - Restoration of image in Fig. 4.8: I_ =5, a= 3, g = 45, r = 0.5.
: A= maximum-likelihood estimate, o = linear least-squares estimacte.
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Fig. 4.10 Relative squared errors in restoring Fig. 4.8 for various assumed
" values of standard deviation 0,; r = 0.5. Solid line-linear least
squares; dashed line--maximum ~likelihood. )
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Fig. 4.11 Relative squared errors in restoring Fig. 4.8 for various assumed
values of correlation coefficient r 30, = 45, Solid line-linear
least squares; dashed line-maximum Xikelihood.
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Fig. 4.12 Diffraction of an autoregressive image: ¢

= 15, r = 0.2, Io =3,
a=10, W= 1.2.
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W= 1.2. o - linear least squares; 4 - maximum likelihood.
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Fig. 4.14- Relative squared error (percent) as function of correlation

coefficient r for restoring image in Fig. 4.12. Curves are
{ndexed by the assumed standard deviation o, . Solid lines--
linear least squares; dashed 1ines-maximum ~likelihood.
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Fig. 4.15 Relative squared error (percent) in restoring image of eq. (3.1)

after diffraction with W = 0.8 as function of assumed correlation
coefficient r. Io = 10, a = 10, ab = 15.
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5. Conjugate Gradient Method

When the method of steepest descents nears the minimum value of the

function F (;bj

), it has a tendency to oscillate between two points in the
space of the estimanda, and this behavior protracts convergence. In an ef-

fort to find a faster computing routine, we turned to the method of conjugate

gradients.9 We applied it only to the function F"({bj )in (1.20), which is the
negative logarithm of the likelihood function in the absence of prior knowledge
about the claés of objects. This method was unsuccessful.

| Again a quadratic approximation to the function to be minimized is used,
as iﬁ (2.1). The new trial point is derived from the original one at any étage
by shifting in the direction d, which is one of the so—calléd"conjugate diféctions",

b=p"+2d. (5.1)

The value of A is again chosen to minimize the new value of F",

~ oo

A= - g-g/dTAd, | (5.2)

vwhere g is the gradient vector whose components are given in (2.3), and A is the
matrix whose elements are o given in (2.7); in both cases we have set the in-
verse covariance matrix p equal to Q. The first direction d is taken as -g;

thereafter the direction d for a stage is given in terms of the direction ﬂ: for

the previous stagebby

d (5.3)

1
~
o
'
o0
-

where

g /el 5



1

g' being the gradient vector at the previous stage.  After M such stages, 4

~

is once again set equal to -g, the displacement of steepest descent, and the
cycle is repeated.

The difficulties with this method apparehtly'arose from the pdsitivity

constraint, which required our setting bj = =B, + & whenever bj7fe11 below —Bo.

0

Equation (5.1) then required us to change the corresponding component of the
vector 2} to (-BO _bjo)/& before calculating the new direction‘g from (5.3).

This occasionally caused the next move to be in an unfavorable direction, and

the method did not converge. The images on which we tried it had high contrast,

so that there were several adjacent points with zero illuminance, BO + bj = 0.

0’ the conjugate-

gradient method doubtless would have been superior, but for such objects the

For an object of low contrast, with bj never falling below -B

least-squares solution in (1.19) is generally adequate. The nonlinearity of the
positivity constraint and the logarithmic singularity of the function F"({b,

to
)

be minimized are too far from compatibility with the basic assumption of the

conjugate-gradient method--that the function is a quadratic form—for it to be

successful with objects of high contrast.
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6. Conclusion

In the great majority of cases tried, the maximum—likelihood estimate
of the true image was superior to thaf calculated by the linear least-squares
method. The minimization_of the negative.logarithmic likelihood function by
the method of steepest descents appears to be the most efficient procedure.
The prior information about the class of images being restored had in most of

our trials little influence on the outcome, and minimization of the function

N' .
el 1) = F.-n,fn T ). 6.1)
3 i i i : _
- i=1 » ' : o :
with the constraints
5, - (10 + 2 :Kijbj) , (6.2)
=1 .
b, > -B. | | - | (6.3)

provided good estimates of the true images in most trials. This insensitivity
to prior assumptions is gratifying, for the proper statist;cal desgriptiqn of a’
class of images is difficult to férmulate.

This maximum-likelihood estimate is most appropriate when the image has
a high contrast, with few or no photoelectrons being ejected from.substantial
E%eéé of the picture. It is under Such circumstances that the usual linear model
of image formation with additive Gaussian noise is least accurate. The function
in (6.1) takes the Poisson distributions of the data n, into account, and the
mechanism by which the image was distorted is embodied in the constraint (6.2).

The third constraint (6.3) forces the restored image to have everywhere a non-

negative illuminance. There remains to be investigated how the computation can



be made more efficient when applied to pictures furnishing large numbers of

data.
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Figure Captions

Image restoration system. The elements s of area AA epit numbg{s
n, of electrons that are processed to yield estimates g =B, +b

of samples of the true image of the radiance distribution B. O =
object plane, A = aperture, I = image plane. A narrowband spectral
filter for object and background light is not shown.

True image (thick line) and the noisy degraded image (thin line)
Io
True image of Fig. 3.1 and its restorations: o = linear estimate,
A = inverse-filtering estimate, O = maximum-likelihood estimate.

Percentage squared error in restoring Fig. 3.1 as function of
assumed correlation coefficient r; curves are indexed by assumed
standard deviation o . Solid lines-linear estimate; dashed lines—
maximum-likelihood estimate.

Restorétioh of ' Fig. 3.1 without prior assumptions (ob =®), o=
linear inverse filtering, X = maximum-likelihood.
True iﬁage (thick line) and data‘(thin line)Aaftér.distortion‘by
relative motion. o = 15, r = 0.2, Io =3, a=10, D= 4.

Restoration of image ih Fig. 4.4: x = maximum-likelihood; o =
linear inverse filtering. oy = ®- - ’

True image (thick line) and data (thin line) ‘after distortion by
relative motion. ¢ = 15, r = 0.3, Io =5, a=10, D = 4.

Restoration of image in Fig., 4.6: x = maximum likelihood; o =
linear inverse filtering, Oy = - '

Deterministic object of eq. (3.1) and its motion-blurred image; D =

Restoration of image in Fig. 4.8: I ='5, a = 3, 9 = 45, r = 0.5.
4 = maximum-likelihood estimate, o = linear least-squares estimate.
Relative squared errors in restoring Fig. 4.8 for various assumed -
values of standard deviation o,; r = 0.5. Solid line-linear least
squares; dashed line--maximum ~likelihood. ‘ ' ’

Relative squared errors in restoring Fig. 4.8 for various assumed
values of correlation coefficient r ;0. = 45. Solid line-linear
least squares; dashed line-maximum likelihood.

Diffraction of an autoregressive image: o, = 15, r = 0.2, I
i b X
o= 10, W= 1.2, : :

=3, a =10, 0 = 25, r = 0.6.
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Fig. 4.13

Fig. 4.14

Fig. 4.15

Restoration of image in Fig. 4.12, taking o, = 20, r = 0.2,
W= 1.2. o - linear least squares; A - maximum likelihood.

Relative squared error (percent) as function of correlation
coefficient r for restoring image in Fig. 4.12. Curves are
indexed by the assumed standard deviation o, . Solid lines--
linear least squares; dashed lines-maximum ~likelihood.

Relative squared error'(peréent) in restoring image of eq. (3.1)
after diffraction with W = 0.8 as function of assumed correlation

coefficient r. I, = 10, a = 10, o, = 15.

54



