NASA TECHNICAL
REPORT

NASA TR R-412

NASA TR R-412

ANALYSIS OF LAMINATED, COMPOSITE,
CIRCULAR CYLINDRICAL SHELLS
WITH GENERAL BOUNDARY CONDITIONS

by S. Srinivas

Langley Research Center
Hampmﬂ, Va. 23665

OWITIOp,

&

(3
7>76-191°

¢RICAN
A,
<
P
g

W

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION <« WASHINGTON, D. C. + APRIL 1974



. Report No. 2. Government Accession No. 3. Recipient’s Catalog No.

NASA TR R-412

4. Title and Subtitie 5. RepOI:t Date
ANALYSIS OF LAMINATED, COMPOSITE, CIRCULAR April 1974
CYLINDRICAL SHELLS WITH GENERAL BOUNDARY 6. Performing Organization Code
CONDITIONS
7. Author(s) 8. Performing Organization Report No.
1.-8828

S. Srinivas

10. Work Unit No.

. Performing Organization Name and Address 501-22-02-01

NASA Langley Research Center 11. Contract or Grant No.
Hampton, Va. 23665

13. Type of Report and Period Covered

. Sponsoring Agency Name and Address Technical Report

National Aeronautics and Space Administration 14. Sponsoring Agency Code
Washington, D.C. 20546

15.

Supplementary Notes

Author is an NRC-NASA Resident Research Associate.

16.

Abstract

This report develops (1) a refined approximate theory for the static and dynamic analyses
of finite, laminated, composite, circular cylindrical shells with general boundary conditions;
(2) an exact three-dimensional analysis of simply supported, laminated, composite, circular
cylindrical shells; and (3) a thin-shell theory for laminated, composite, circular cylindrical
shells. In the refined approximate theory the displacements are assumed piecewise linear across
the thickness and the effects of transverse shear deformations and transverse normal stress are
included. A variational approach is followed to obtain the governing differential equations and
boundary conditions. A general solution of the governing differential equations is also presented.
The results obtained by using the refined approximate theory and the thin-shell theory are com-
pared with the exact results for the case of free vibrations of simply supported, laminated, com-
posite, circular cylindrical shelle. The refined approximate theory is very accurate, even for
thick shells with short nodal distances, whereas thin-shell theory is reasonably accurate only for
thin shells at moderate nodal distances and wave number less than 2.

17.

Key Words (Suggested by Author(s)) 18. Distribution Statement
Laminates Unclassified — Unlimited
Composite
Shell
Elasticity
Vibrations STAR Category 32

19. Security Classif. {of this report) 20. Security Classif. (of this page) 21. No. of Pages 22, Price”

Unclassified Unclassified 76 $4.00

*For sale by the National Technical Information Service, Springfield, Virginia 221561




ANALYSIS OF LAMINATED, COMPOSITE, CIRCULAR CYLINDRICAL
SHELLS WITH GENERAL BOUNDARY CONDITIONS

By .S. Srinivas™
Langley Research Center

SUMMARY

This report develops (1) a refined approximate theory for the static and dynamic
analyses of finite, laminated, composite, circular cylindrical shells with general boundary
conditions; (2) an exact three-dimensional analysis of simply supported, laminated, com-

posite, circular cylindrical shells; and (3) a thin-shell theory for laminated, composite,
circular cylindrical shells.

In the refined approximate theory the displacements are assumed to be piecewise
linear across the thickness and the effects of transverse shear deformations and trans-
verse normal stress are included. A variational approach is followed to obtain the
governing differential equations and boundary conditions. A general solution of the govern-
ing differential equations is also presented. The analysis of finite laminated shells with
general boundary conditions involves satisfying the boundary conditions by making use
of the appropriate part of the general solution. By using the refined approximate theory,
the edge boundary conditions can be properly satisfied.

In the exact three-dimensional analysis of simply supported, laminated shells, each
ply is treated as a homogeneous cylinder. The displacements are chosen to vary trigo-
nometrically in the axial and circumferential directions. The three governing partial
differential equations are reduced to three coupled ordinary differential equations with
the radial coordinate as the independent variable. The three coupled ordinary differential
equations are then solved by use of the Frobenius method to obtain the variation of displace-
ments in the radial direction. By satisfying the interface and exterior surface conditions, a
set of simultaneous algebraic equations is obtained. For free vibration, the determinant of
the coefficient matrix is equated to zero, and the solution of this characteristic equation
yields the frequencies. The analysis and results are applicable to wave propagation in
infinite shells, since the simple boundary conditions simulate the axial nodes in infinite
shells.

*NRC-NASA Resident Research Associate.



The thin-shell theories for laminated, composite, circular cylindrical shells that
are available in the literature contain some approximations in addition to the basic
assumptions of thin-shell theory. The present thin-shell theory contains no additional
assumptions.

The results obtained from the refined approximate theory and thin-shell theory
are compared with the exact results for simply supported, laminated, composite circular
cylindrical shells. The refined approximate theory is found to be very accurate even
for thick shells with short nodal distances. In contrast, the thin-shell theory is found
to be reasonably accurate only for thin shells with moderate nodal distances. Frequency
calculations using the refined approximate theory and thin-shell theory took considerably
less computer time than those using the exact three-dimensional theory.

INTRODUCTION

Structural application of laminated composites in which each ply is made up of
different materials is ever on the increase. As a consequence, analysis of such structures
is gaining importance. The present paper deals with the static and dynamic analyses of
laminated, circular cylindrical shells made up of composite materials.

Analysis of laminated circular cylindrical shells has drawn considerable attention
in recent times. If any of the plies is fiber reinforced or honeycomb, the normal proce-
dure is to treat the ply as an equivalent homogeneous material having orthotropic or
anisotropic properties. Dong (ref. 1), Bert, Baker, and Egle (ref. 2), and Stavsky and
Loewy (ref. 3) have given differential equations for the dynamics of laminated cylindrical
shells and solutions for free vibrations when the shell is simply supported. In these ref-
erences the differential equations are based on different variations of thin-shell theory.
The basic assumptions of thin-shell theory are (1) radial displacements are constant
across the thickness, (2) axial and circumferential displacements vary linearly across
the thickness and, (3) transverse shear deformations and transverse normal stress can
be neglected. In references 1to 3 some additional approximations are made.

Nelson, Dong, and Kalra (ref, 4) have analyzed the special problem of free vibrations
of simply supported circular cylinders by following the Ritz technique. Using the theory
of three-dimensional elasticity, Armenakas (ref. 5) has analyzed the problem of wave
propagation in two-layered circular cylindrical shells of infinite length and made of iso-
tropic materials. For isotropic materials, the governing differential equations of elasticity
can be easily solved in terms of displacement potentials; the variation of displacements
in the radial direction, when determined, is in the form of Bessel functions. However, a
similar approach is not possible if the material is orthotropic.



For laminated composite shells with general boundary conditions, the literature does
not appear to offer any analysis which takes into account general variations of the displace-
ments across the thickness. Such an analysis would automatically take into account the
effects of transverse shear deformations and transverse normal stress. An analysis of
this type is needed for the following reasons:

(1) The edge boundary conditions can be properly satisfied only if the variation of
displacements across the thickness is unrestricted. The stresses and displace-
ments close to the boundaries obtained from the thin-shell theory are highly
inaccurate.

(2) For thick shells, especially composite shells, the thicknesswise variation of
displacements is more general than the restricted distribution assumed in the
thin-shell theory. Therefore, a general variation of displacements is necessary
for a better estimation of frequencies of free vibrations, stresses, and displace-
ments even in regions far from the edges.

An exact three-dimensional elastic analysis of laminated shells is computationally
impractical except in the case of simply supported shells, the case that is derived herein.
Therefore, an approximate theory, which takes into account general variations of displace-
ments across the thickness, is developed for the static and dynamic analyses of laminated,
composite, circular cylindrical shells with general boundary conditions. The approximate
theory developed in this report is referred to as the "refined approximate theory.'" In the
refined approximate theory the displacements are assumed to be piecewise linear across
the thickness, and the three-dimensional problem is reduced to a two-dimensional problem
in the circumferential and radial coordinates. Furthermore, a thin-shell theory is devel-
oped without making any approximations in addition to the basic assumptions inherent in
thin-shell theory.

The accuracies of the refined approximate theory and the thin-shell theory are
assessed by comparing results obtained by using them with the exact results for simply
supported shells.

SYMBOLS

Ar , AQ, AZ arbitrary constants used in particular part of refined approximate
analysis

a outer radius of shell, a*(p +1)

a*(i) inner radius of ith ply



a(i) = a*@
a

By, (1,1), Biy(1,1), . . .

b
b

C11- .. Cgp
€22 . . . Cgg

Dp, Dy1(1,1),Dy5(L,1), . . .

d,., dg, d,

Fors Foo, Foz, . . .
fprs f99’ f@Z; . .

G(i,k)

H(j, k)

i’ j, k’ ’Q, B

2(8), M(p)

stiffnesses of shell used in thin-shell analysis

length of cylinder

nodal distance or half-wavelength, b/n

stiffness elastic constants

modified elastic constants for thin-shell analysis
stiffnesses of shell used in refined approximate analysis

coefficients in power series for displacements in exact three-
dimensional analysis

integrals of stresses in refined approximate analysis
integrals of stresses in thin-shell analysis

arbitrary constants in expressions for displacements and
stresses in exact three-dimensional analysis

coefficient in power series expansion of displacements used in
exact three-dimensional analysis

thickness of ith ply

indices

matrices occurring in particular part of refined approximate
analysis

integers occurring in trigonometric expansions of displace-
ments and stresses in circumferential and axial directions,

respectively
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a,.-(1), a,.5(1),
Apg(1)

4,.1(2), 9,.5(2),
Ay(2)

Ugr» gp Loz

qzr’ qze’ qzz

qrrf(l)’ qrgf(l)) qI‘Zf(l)’ . e s

R=3
r
T
t
U,
Uy (1)

null matrix
number of plies

number of layers into which middle ply of a three-ply laminate
is split in refined approximate analysis

integrals of applied stresses on edges

applied tractions on inner surface of shell in r, 0, and 2z
directions, respectively

applied tractions on outer surface of shell in r, 6, and
z directions, respectively

applied stresses on edges 6= Constant in r, 6, and z
directions, respectively

applied stresses on edges z = Constant in r, 6, and z
directions, respectively

Fourier coefficients of applied pressures

radial coordinate
kinetic energy
time

difference between radial displacements at inner and outer
surfaces of ith ply used in refined approximate analysis

difference between circumferential displacements at inner and
outer surfaces of ith ply used in refined approximate analysis



U, ()

U0 Upg, U

60’ ~z0

Ups Ugs Uy,

V(1,k,1), V(2,k,i), .

Vs

We

(We)surfaces

(We) edges

Z =

oIN

a (k)

Ty(), T,(6) |
=4(6), E,(P)
() 18 |
T 40, T,8)

(B, B,(P)

¥ o(B), ¥,(B)

difference between axial displacements at inner and outer
surfaces of ith ply used in refined approximate analysis

radial, circumferential, and axial displacements of inner
surface in thin-shell analysis

radial, circumferential, and axial displacements, respectively

coefficients of differential operators in governing differential
equations of refined approximate analysis

strain energy

work done by applied loading

work done by applied tractions on inner and outer surfaces
of shell

work done by applied stresses on edges

axial coordinate

indicial constants in Frobenius method of solution of differential

equations used in exact three-dimensional analysis

matrices occurring in system of ordinary differential equations
in complementary part of refined approximate analysis



6(j,1)

€rr> €op €zz>

€rzs €re» €0z

Kronecker delta

strains

R - a(j)
h(j)

¢(,k) =1 for k+#j and ¢(j,k) = H for k=]

np(1,8), ny(L,8),
n,(1,8)

gr(i, B)’ ‘g 9(1’ B))
£,(1i,B8)

p(i)
Orr> Ogp 9zz>
Opzs Orgpr T9z

7(B)

¢r, ¢6’ ¢z

Xp(i,K), Xg(i,k), )
Xz(i,k), Xrr(i,k),
X 9g(iyK), Xgz(1,K),
Xrz(i,k), Xrg(i,k),

X [a)/4 (i, k)

Q

functions of Z occurring in complementary part of refined
approximate analysis

circumferential angular coordinate

nondimensional frequency parameter, equation (98)

functions of 6 occurring in complementary part of refined
approximate analysis

mass density of ith layer

stresses

coefficients occurring in summation for coefficients V(B,k,1)

functions of radial coordinate occurring in double trigonometric
expansion of displacements used in exact three~dimensional
analysis

functions which are power series in radial coordinate occurring
in double trigonometric expansion of displacements and
stresses used in exact three-dimensional analysis

frequency of vibration



A tilde (~) under a symbol denotes a matrix. Primes denote differentiated quan-

tities. Numbers in parentheses are indices..
STRESS-STRAIN RELATIONSHIP

Most of the materials commonly encountered in structural practice are either iso-
tropic or orthotropic. But in some cases during analysis there arises a need to choose a
coordinate system which is different from the axes of orthotropy. In such cases the
stress-strain relationships exhibit anisotropy. As shown in reference 6, the anisotropic
stress-strain relationship that might be encountered in the analysis of fiber-reinforced

components is of the type

_ _ 4
opp| [C11 €12 C13 O 0 Cyg err |

996 Cig Cgg Coz 0 0 Cogl i€

02z Ci3 Cgg C33 0 0 Cggl ey

= 1)
Orz 0 0 0 Cyq Cy5 O €rz
Org 0 0 0 Cu5 Cs5 0| I
o0z | |16 C26 €36 O 0 Ces| |6z

If the material is orthotropic, the elastic constants Cyg, Cgg, Cgg, and Cyp5 are zero.

STRAIN-DISPLACEMENT RELATIONS

The strain-displacement relations in polar coordinates are (from ref. 7)

ou au ou W
= L =z T
rr = Br z=3r ' oz
ou u au ou u
_19Y6 r _1%r 0 0
0=t 30 T T “o=FT0 tE T ( 2)
duy, dug 13Uy
€2z = 3z €z =3z Tr B8




REFINED APPROXIMATE THEORY

Development of Theory

An approximate theory for the statics and dynamics of laminated, anisotropic,
circular cylindrical shells (figs. 1 and 25 is developed. The displacements are assumed
to be plecewise linear across the thickness; that is, the displacements of the jth ply
are given by

j A
wi=a ) U g,k
k=0
j
wpl) =a ) U LK) ¢ (3)

k=0

j
W) =a ) Up) 86,0

k=0 )
where j=1,2,. . ., p and
1 for Kk#j
€= R - a) for k=i

h(j)

In equations (3), U r(k) s Ue(k) , and U, (k) are functions of ¢ and z and are independent
of r; Ur(O), Uy(0), and UZ.(O) are the displacements of the inner surface; U.(k), Uy(k),
and Uz(k) are the differences between the displacements of the inner and outer surfaces
of the kth ply at a given 6 and =z.

A variational approach is used to obtain the governing differential equations and
boundary conditions. The variation in strain energy Wg, the kinetic energy T, and
the work done by the applied forces We due to virtual displacements are calculated
and substituted into the variational condition (known as Hamilton's principle)



10

Figure 1.- Multi-ply cylindrical shell panel.

Figure 2.- Multi-ply cylindrical shell.
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1
to

where tO and t1 are the initial and final times, respectively. The strain energy W
is given by

3 p a(]+1)
Ws =32“ Zl 0 [Orr(j) €pp() + Tyl €gpli) +9,,0) €,,0)
ji=1 "0 "z "afj
v o 0) e () + 0@ €6 + 0y, () €, ()R dR do dz (5)

From equations (2) and (3) the strains can be expressed as

k=0
; > (6)
U_(j)
erz(i) = Z(]) Z 8U8rz(k) ¢(j,k)
k=0
i
Uy (3)
i) = 0+ L) .[B‘J;gk’ i U9<k>]c<j,k)
h(j) k=0
j
ey = ) [BUQ(“) lﬁa‘;z;kq (3, )
k=0 D,

11



Substituting for the strains from equations (6) and integrating with respect to R give

p
3
WS = :a'z— L J Z Z {Frr(j’sr 1) UI‘(J) G(J,k) + Frg(jys’ 1) UQ(J) 6(]) k)

z j=1 k=0

+F_(3,3,1) U,G) 6G, K) + F,, G, 1, 69) [f’-%;fﬁ + Ur<k)}

) aU,, (k) . 9U..(k)
+ FZZ(],Z’O]_) _azz'—"‘ Frg(]ylaél) |: arg - Ug(k)

. E)Ur(k) . 8U9(k)
+Frz(.],2, 61) 57 +FQZ(J’2, 61) 37

. 0 U,(k)
+Fp,(G,1,0) BZG } do dz (7)

where &1 =1 +8(j,k). The integrals F are integrals of stresses defined as

a(j+1)

Ro (] -1
o413 Rog(i); 76 [R‘ a‘”} aR  (8)
2.(3) h(j) h(j)

where
B=rr, 06,. . ., 0z
Stresses can be written in terms of displacements by use of equations (1) and (6).

By substituting for stresses in equation (8) and integrating, the integrals F can be
expressed in terms of displacements. (See table I.)

Taking the variation of the strain energy Wy, integrating by parts, and then changing
the order of summation yield

12
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The kinetic energy T is given by

oot 3 g [T

2
ou,, (i)
| & R dR d6 dZ

duy(j) 2
at

p a(j+1) su () 8du (i
e 5[ [ o[ o

_ _ at ot
ji=1 ¢ a(j)
dug(j) aduy() ou () odu ()
+ 0 0 + Z Z R dR do dZ
ot ot ot ot

After integration by parts,

P .
f 6T dt = -a J Z f f f p(3) " u,(3)
to to ji=1 Yo “z  “a(j) 9
%0 du ( 82uz(j) su_()| RdR do dz
+ us{J]) + u_{]
at2 0 at2 z

Substituting equations (3) into equation (11) and integrating with respect to R give

t t p p
1 5 1 .
J 6T dt = -a f )3 JI Z Foo0,2,0) | 00,
to ty k=0 "0z =
p P
+ Z Fpg(j,z,él) 6U, (k) + Z sz (3,2,87) | 6U, (k) d6 dZ
j=k =k
(See table I for Fpr’ Fpe’ and sz.)
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The total work done by applied loads W e is the sum of the work done by applied
tractions on the inner and outer surfaces of the shell (Wg)gurfaces and the work done
by applied stresses at the edges (We)edges, that is,

Wo = Wogurtaces * Weledges (13)
Now if the shell is subjected to dynamic tractions qrr(l), qre(l), and- qrz(l) and

qrr(2), qr9(2), and q,.,(2) on the inner (R = a(1)) and outer surfaces (R = 1) of the shell
inthe r, 6, and z directions, respectively, then the virtual work done by these applied

tractions is

p
6(Wo)surfaces = a’ L f BZ(:9 - a,p(1) a(l) 5Ug(0) + ay5(2) kZ(:) 65U, (k) |d6 dZ
z B=T,0,Z =

p
23 f f Z Z [4,,4(2) - dp(D) 605,0) a(l)] sU4(k) 40 0Z (14
6 Yz g=r,0,z k=0

If the edge z = Constant is subjected to stresses q,., Qg and q,, and the edge
o = Constant is subjected to stresses dg., dgp» and qg, inthe r, 6, and z direc-
A tions, respectively, the virtual work done by these stresses is

p a(j+1)

j
8(We)edges = aSJ Z Z f Ay g Z 5U (k) ¢(3,k)| RdR do
6 j=1 B=r,0,z "a(j) k=0

j
+a3J Z J Qg Z sULK) C(,¥) | dR dZ

p a(j+1)
z j=1 B=r,0,z a(j) k=0

15



Integrating with respect to R and rearranging yield

p p
G(We)edges = a3fg Z Z Z 5UB (k) Qz,e(j’ 6¢) 6.

g=r,0,z k=0 j=k

p p

+a3f Z Z ZGUB(k) Qg (1, 09) dZ (15)
Z

g=r,0,z k=0 j=k

where
a(j+1) 1
. _ R - a(j) | %17+
, = R|- dR 16
a(j+1) 5.1
Q. 3,6q) = R-2a() |1 " 4y (16b)
68+ °1 L(j) Aop [ ha)

Equations (9), (12), (13), (14), and (15) are substituted into variational condition (4). Since
the virtual displacements are arbitrary, the coefficients of GUr(k), dUp(k), and U, (k)
(k=0,1,2,. . ., p) can be equated to zero to yield the governing differential equations
(3p + 3 in number) and boundary conditions (3p + 3 on a boundary).

The governing differential equations are

> [ a®F, (1,2, 6)) - 6G,%) F,..G,3, 1)

p
=k

- Fpp(,1,81) + 85 Frp1,89) + % Frz(j,z,bl)}

+ @) - a (1) 5(,0) a(l) =0 (17)
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P
=k

2 . . . .
[‘ a Fp@(]yz} 61) = 6(]91{) Fre(]:sy 1) + Fre(bly 51)

9 . 9 Ny
+ 90 FQQ(];ly 51) + _a_z' FQZ(J,Z, 61)]

v a,,@) - dyp(t) 06k, 0) ah) =0 (18)
P
2 . . . .
[ a2, 00 - 009 Fig0,8,D v 25 By, 1,69
s
¢ E,0,2,09)] * Gegl®) - ag®) 00) ah) =0 19)
for k=0,1,2,. . ., D.
The boundary conditions are as follows:
For 6 = Constant,
P P
S B0 - ) Qgplisop) =0 or 0Ux() =0 (202)
Tk K
p p
5 Fppis1,0p) - . Qg 0n) =0 or 8Upl) =0 (20D)
j:k j=k
p p
" Fpylisd,0p) - ), Qgpli8y) =0 or U0 =0 (20c)
ok =k

17



For z = Constant,

p p
) P26 - ) Q. (,00)=0 or 8U,()=0 (212)
i=k i=k
p p
Z ng(j,z,él) - Z Qze(j’ 61) =0 or &Uyk) =0 (21b)
j=k =k
p p
). Fppl,2,0) - ) Q0,6 =0 or oU,(9) =0 e10)
i=k i=k
where k=0,1,2,. . . p. Itis noted that for cylindrical panels, the boundary conditions

for both 6 = Constant and z = Constant are satisfied, whereas for cylinders, only
the boundary conditions for z = Constant are satisfied.

By substituting for the integrals F in terms of displacements, the governing differ -
ential equations (17) to (19) can be written as

p

2 2
Z V(L k1) 25 + VK, i) 2% v, ki) 25
i=0 ot 392 87

. 2 . i
+V(4,Kk,i) BGBW +V(5,k, 1):| Ur(1)

+ l:V(6,k, i) ;’—9 + V(1,k, 1) 332-} Uy (i)

+ [V(s,k, ) 2+ V(O,k,1) 812} U,@Wp =, (D5(k,0) a(l) - q. ()  (22)

18
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Z [v(m,k, 2+ VALK 3%] U, ()
2

. lva,kn 22 L V(2,k, 1) 22 +V(13,k,1) 0%
ot2 902 972

. 2 : .
+ V(14,Kk, i) ‘59@57 +V(15,k,1)} Up (D)

2 2 2
N9 s 9 2 o)
+ \V(16,k,1).5_9_2. +V(QA7,k,i) E_Z..z- + V(18,k,1) 657

£ V19, K, 1)] U0 b = apg® 8050) all) - dpg® (23)

p
Z {xr(zo,k,i) 385 +V(21,k,1i) Biz U_.(1)
i=0

. |vas, ki) 22 L VAT, K, 1) 25 V8,1, 1) =25 + V@2, kD | Tyl

2 2 2
+ | -v(@3,k,1) _@_i +VE3,k,1) L5 £ V(24,k, 1) 25
ot %) 97

= q,,(1) 8,0 a() - ., 2) (24)

2
. 8 . -
+V(25,k,1) 557 +V(26,k, 1)] Uz(l)
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In equations (22) to (24) the V coefficients are pure functions of material properties and
the inner and outer radii of the plies. (See table II.) They can also take into account var-

iation of material properties within a ply.
Procedure for Analysis

The analysis of a cylinder or a cylindrical panel involves finding a solution of the
governing differential equations (22) to (24) which satisfies the appropriate boundary con-
ditions (egs. (20) and (21)). The complete solution of the governing equations can be split
into two parts: (1) a particular solution which takes care of the applied loading on the
inner and outer surfaces and (2) a complementary solution which has arbitrary constants
necessary for satisfying the edge boundary conditions. The procedure for obtaining the
particular and complementary solutions is explained herein.

Particular solution.- In some cases, depending on the applied loading on the inner
and outer surfaces of the cylinder, the particular solution can be obtained by inspection
of the governing differential equations. However, the general procedure is as follows:

The applied loadings (amplitudes of loading in the case for forced vibrations) are
expanded in a double Fourier series of the type

[e.e] o0

A (B) = Z Z [qrrf(ﬁ,l) cos mé sin%

m=0 n=0

nnz nnz

+d,..¢(B,2) cos mo.cos + q..¢(B, 3) sin mo sin

+d. (B 4) sin mf cos __m:_:l (252)

qu(B) = Z Z [qref(ﬁ, 1) sin m@ sin _l'_l_’T_T_Z_
m=0 n=0 b

nnz
b

naz qref(B’s) cos m@ sin

+ qref(Br 2) sin mé cos

+ qref(B’- 4) cos mg cos nmz ] (25b)
b
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©
nnz

Ay, (P) = Z Z [qrzf(ﬁ,l) cos m@ cos =

m=0 n=

nmz

+ qrzf(B’z) cos mé sin M2+ qrzf(B,S) sin m cos

+ qrzf(ﬁ, 4) sin mo sin E%Z_ (25¢)

rier load coefficients dyrfs QrofH and Qpgf are functions of

The Fou
them might be zero.

nding on the loading, some of

nts Ur(i), Ue(i), and Uz(i) ar

where B=1, 2.
m and n. Depe

The displaceme

e also chosen in double Fourier series

as
o0 [ee)
Ur(i) = Z Z [Ar(i, 1) cos mf sin iz
b
m=0 n=0

+ Ar(i,Z) cos mé cos BTE + A G, 3) sin mo sin 2TZ
b

+ AL(,4) sin mé cos mrz] (262)
b
o0 o]

Uy @) = Z Z EAg(i, 1) sin mo sin nmz

m=0 n=0

+ Ae(i, 2) sin mo cos BTZ + Ae(i, 3) cos mo sin nuz

b
(26b)

+ Ay, 4) cos mo cos I‘l{.)&]
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o0 o0

Uz(i) = Z Z \:Az(i, 1) cos mf cos P7Z

m=0 n=0 b

+ A, (1,2) cos m¢ sin D7z L A_(i,3) sin mo cos 272
b z b

+ A, (i, 4) sin m0 sin nﬂz] (26¢)
b

where Ay, Ay, and A, are arbitrary constants. Equations (25) and (26) are substituted
into the governing differential equations (22) to (24), and the various terms are grouped

appropriately. Now, if the coefficients of cos mg sin 172, cos mf cos 17Z ,

b b
sin m@ sin 27Z | and sin mé cos 272 are equated to zero in each of the equations, a

set of 4(3p +3) simultaneous linear algebraic equations is obtained for each m and n
combination. The equations can be written in the matrix form

Mo o, 9, @] [aw]  [rk®]
0, M@ JIB) 94 A(2) K(2)
= @27)
0, J@ M@® 9 A(3) K(3)
10 0 Y M@ 4G | K@) |
where
AB) = {A.0,8), ALL,0), . . ., ALB,B);
AQ(O’ B)’ AQ(I, B), D) AQ(pa B);
A,0,8),A,1,p),. . ., A,0,0) (28)
K(B) = {[qrrf(l,fs) a(l) - appg2,8)]s = Appg @ 8)s v o5 - Appg(@s B
[qref(ly B) a(l) - qI-Qf(Z, B):I ’ _qref(z’ B)’ R qrgf(zyﬁ);
[qrzf(ly B) a(l) - quf(z’ B)]’ - quf(z’ B)’ e v 9 T qrzf(zyﬁ)’} (29)
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01 is a null square matrix of order 3p +3, and M and J are square matrices of
order 3p + 3. (See table IIL)

If all the plies are orthotropic, the J matrix becomes null, and correspondingly,
equation (27) degenerates into four lower order equations,

M(B) A(B) = K(B) (30)

where pB=1, 2, 3, and 4.

Solution of the simultaneous algebraic equations (27) or (30) yields the values of
A for each m and n combination. Summation of displacements and stresses with
respectto m and n to desired accuracy completes the particular solution.

Complementary solution. - For obtaining the complete complementary solution,

the displacements Up(i), Ug(i), and Uy(i) are assumed to be in the form

w )
U_@) = Z \:&r(i, 1) sin -’lg—z + £,(1,2) cos 11%%_]

n=0
+ Z [nr(i, 1) sin m6 + nr(i, 2) cos m@]
m=0
U, () = Z [ge(i, 1) sin M2 4 £,(i,2) cos D2 ]
— b b
n=0
~ (31)
o0
+ Z [779(1, 1) cos m6 + ne(i, 2) sin me]
m=0
U, @) = Z [‘Ez (i,1) cos B2 4+ ¢, (i,2) sin __mrz:|
=0 b b
+ Z [nz(i,l) sin m@ + 7,(i,2) cos m@]
m=0 )
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The ¢ are functions of 6 whereas the 7 are functions of Z. Equations (31) are
substituted into the differential equations (22) to (24), now with a zero right-hand side,
and the various terms are properly grouped. If the coefficients of sin 272, cos B7Z |

b b
sin mf, and cos m@ are equated to zero in each of the equations, two sets of homogeneous
simultaneous ordinary differential equations (6p + 6 in number) are obtained., One set
has 6 as the independent variable and ¢ as the dependent variable. The second set
has Z as the independent variable and 77 as the dependent variable. The equations can
be written in the following form:

T | o [ew

Iy %o | 9% | 2

rﬁ,re(l) Ig(z)— r§(1)

To(1) T2 | %0 | @

2,0 Z@ ] [
. =0 (32)
Zo(1) 24(2) | | &(2)

and

I, el a2 |

~

Lo L,e)] an

r,o ,e] [
T, @] % |

8, = @] [n0

+
]
10

(33)

2,00 2,@)| |12
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where
£B) = {£,00,8); £(LA)s - - o £ )5
59(0’3), 59(193)’ LIS | ﬁg(p,ﬁ);

£, 0,8, £,LB), - -5 ;0 A} (34)
and

n(8) = {108, 11,8 - - P, B);
1g(©0:8)5 Mg(:h)s « + - 1y ®;B);

nZ(O’B), 'r)Z(19B)7 I le(p, ,3)} (35)

The matrices ¥y, Iy, Ty, Tg, g Zg Yz, Mz, I T,, &z, and %, are square
matrices of order 3p +3. (See table IV.) If all the plies are orthotropic, the matrices

Og, Tg, Zg» Uz Tz, and Z, become null, and each of the equations (32) and (33)

reduces to two equations of order 3p + 3, that is,

2
) dieg £(B) + To(B) = £(B) + 2(B) £(B) = 0 (36)

t

2
,(8) S5 1A + To(B) g 1B) + B2(A) 1P = Q (37)
dZ

where B =1, 2. Solution of the homogeneous simultaneous ordinary differential equa-
tions (32) and (33) or (36) and (37) yields expressions for § and 7.

One of the procedures of solving homogeneous simultaneous ordinary differential
equations in closed form is given in appendix A. The solution of the differential equa-

tions (32) and (33) can, in general, be written in the form
12p+12

{ex 0,0 £9(5,8); E2(0,B)} = D {xel 805 %6(1,8,0); x5(0,6 0} X(O e8( 0 (38)
=1
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and
12p+12

{n(1,8); 1g(1,8); 1, (1, )} = ; {7208, 05 31, 8,03 ¥,(1,8, 0} Y(2) S(DZ (39)

where X and Y are arbitrary constants. The functions XpsXgsX, and y.,y,,y, could
be either constants or functions of 6 and z, respectively, depending on the multiplicity
of roots g(¢) and s(¢), respectively. Equations (38) and (39) with equations (31) form
the complementary solution.

Further remarks on analysis. - In the previous sections the procedure for obtain-

ing the particular and complementary parts of the solution to the governing differential
equations was described for a general case. In many cases, depending on the loading,
material properties, and boundary conditions, it might be sufficient to consider only a
part of the general solution. After the appropriate part of the general solution is
chosen, the boundary conditions are satisfied either exactly or approximately, as the
case may be, to obtain the values of the arbitrary constants of the complementary part,
Convergence studies can be carried out with respect to the number of terms chosen in
the complementary part.

Use of Refined Analysis with Simply Supported Cylinders

In order to assess its accuracy, the present approximate theory is applied to the
analysis of simply supported, laminated orthotropic cylinders (fig. 2), and the results are
compared with those obtained with the exact three-dimensional analysis.

The boundary conditions for a simply supported, laminated circular cylinder are
on z=0 and b

0z7(1) = u (i) = uy@) = 0 (40)

The boundary conditions (40) are identically satisfied by the first and third sets in
the particular solution (eqs. (26)). If the loading on the cylinder is such that it can be
expanded in the form of the first set in equations (25), then it is sufficient to consider only
the first set in equations (26). Because the particular solution itself satisfies the support
boundary conditions, the complementary part is unnecessary. Since the material is
orthotropic, from equation (30)

M(1) A(1) = K(1) (41)
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For static (2 = 0) or forced-vibration (Q 1is known) problems, equation (41) is
solved to obtain the values of A. The series for stresses and displacements is summed
to the desired accuracy.

In free-vibration problems the right-hand side of equation (41) is zero; hence,
M(1) A(1) =9 (42)
The matrix 1}4(1) can be written as the sum of two matrices, A1 and QZQZ, that is,
M(1) = By + D297 (43)
. Substituting equation (43) into equation (42) gives

Aq AQD) + 2289 A(D) =0 (44)

Methods for numerical solution of characteristic matrix equations such as equation (44)
are well known. Solution of equation (44) yields 3p + 3 frequencies for each m and n
combination.

EXACT THREE-DIMENSIONAL ANALYSIS OF
SIMPLY SUPPORTED SHELLS

As mentioned previously, simply supported, orthotropic, laminated circular cylindri-
cal shells (fig. 2) happen to be one of the very few cases for which exact three-dimensional
analysis is possible. This is because the boundary conditions of a simply supported
shell can be automatically satisfied by choosing the displacements and stresses in a
double trigonometric series in 6 and Z coordinates. In the three-dimensional analysis,
each ply of the laminated shell is treated as a homogeneous shell. The conditions of con-
tinuity and equilibrium at the interfaces are gatisfied in addition to exterior surface
conditions.

Governing Differential Equations

Consider a homogeneous orthotropic shell. The three-dimensional equations of
equilibrium in a cylindrical polar coordinate system are (from ref. T)

10 159 3 990 2. _
Fé?(r(’rr)+?'§§°re+5'z‘(’rz"x-‘+99 up =0 (452)
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1 5 ( 2 1 9 0 2

— % )+ o+ L. +0Q%up=0 (45b)
P2 or L oz 9% P 0

_1_ _?... (rO'rz) + .]; _8_ G‘BZ + i O-ZZ + pﬂzuz — 0 (450)
r 9r r 36 9z

By use of stress-strain and strain-displacement relationships (1) and (2), the governing
differential equations of three-dimensional elasticity in terms of displacements become

28

+ (C12 + 055) 1
+ [ (C 4 + Cqyq)
(Cyq + Cy3)

+(Cy3- Cag) - —‘] u, =0 (46)

2 2
9 1 o 1 2
+ (Cop —— +Cog — — - Cop— +pQ* +Cop — +Cp = — ju
55 2 55 66 55 0
1 32} '
+ [(Coq + Crp) = u =0 (47)
|:23 66" © 20 0z | 2

92

(Ciq + C,l)
[13 4481‘82

82 9
+ <C44 _ +C44_-—+C66_2— +p +C33

or2

10 1 92
+(C44+Cz3)——-—:|ur+ ‘:(C23+C66)_ } uy

r 9Z
2 | 02
1 9 1 9 3_>uz=0 (48)

8Z2

1'81'. 50



Solution of Differential Equations

The displacements u,, ug, and u, are chosen to be in the form

. N
u, =a Z Z ¢,(r) cos mo sin %
m=0 n=0
ug = a Z Z ¢)9(r) sin mp sin 2% \ (49)
m=0 n=0 b
- nnz
u, =2 Z Z ¢, (r) cos mf cos -
m=0 n=0 p

where ¢, ¢y, and ¢, are pure functions of r. By substituting equations (49) in
equations (46) to (48) and simplifying, a set of three homogeneous coupled ordinary differ -
ential equations in which the independent variable is r is obtained; the equations are

2
d 1 d 1 2 2 2
[C“__z *C11g g g Cos™ *+ Ca) + (078" - CyyN >}br
dR R

d m
+ | (Crr +Cqo) 2 & _ (Crr + Coo) 22
[ 55 * Y12/ o o2 55 T Cag 2 o

- i - - _N. =
N [ (Cy3+CagN L - (Cyg - Cpy R}bz 0 (50)
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d m
“(Crr +Cq1o) 2 % _ (Crr +Coo) 2 |0
[ 55 7 ©12 & 4R 55 T “22 2 r

[ 2
d 2 1 1 d
L ar R

+ [(Cy3 + Cge) r—nl—?-}qbz =0

L.

[(044 +Ciz) N % +(Cyq + Cp3) %}Pr* [‘Cee +Ca3) Eg—]%

2 2

d 1 d m 2

+ [044—2 *Cag on~ Cee 5 + (0% - N c33)] bz =0
dR R

(51)

(52)

The Frobenius method is now used to solve equations (50) to (52). The functions ¢,

¢$g, and ¢, are chosen in the form of a power series, that is,
{Qbr; . ¢z} _ Z ROH {Hr(j); Hyp (3); Hz(j)}
j=0

and are substituted into equations (50) to (52). This substitution results in

[>™e

. 2 2 R P,V 2 o]+
{[Cll G +a)® - (Cggm” + 022)} H_ (i) Rit®-2 (p92a2 - Cyq M) H_(i) R
j=0

+ [(055 +Cyo)m( +a) - (Cgp + Cyy) m] RI*2 g ()

+ [-(c13 +Cy) NG +a) - (Cyg - 023)1\1} rito-1 Hz(j)} =0
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o)

2

| {[-(055 +Cyp)m( +0) - (Cgg + Cyo) m] Ri+o-2 H_(j)
=0
+ (€55 + @2 - (Cyym? + C9) | R Hy(h)

+ (p92a2 - Cge N?) R Hy())

+ [(023 + Cgg) mN:| rita-1 Hz(j)} =0

) {[(044 + Cya) NG +0) + (Cgy + Cyg) N] Ry ()
i=0

+ [(C66 + C23)_ mN} ri+a-1 Hy(3)

. [044 (G +0)? - Cgg mz] RI2 g _(j)
2 i .

+(pQ2a2 - N Cgq) R Hz(])} =0

If the coefficients of R* 2 are equated to zero in equations (54) to (56),

- . " —
(Clla - Cggm™ - C22) [(055+C12)ma- (055+C22)m] 0
2 2
[—(055+ Cq9)ma- (055+C22)mj| (Cgg0” - Coom™ - Cyp) 0
2
0 0 (C 442" - Cggm?)

H,.(0)

Hy (0)

H,(0)

(55)

(56)

"
=

(57)
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For a nontrivial solution, the determinant of the coefficient matrix in equation (57) must
be zero; as a result, the indicial equation

(@ - 2v;0% + vg) (C y0f - Cem®) = 0 (58)

is obtained where

sz(mz-l)2
V0=
C
11
and
Crr(Coo + Cqq) + M2 (Cyq Coo - 2Cy0 Car - C20)
v, = 382 " O 11 Ca2 12Cs5 - C1g

2C11Cs5

Solution of equation (58) yields six roots for a:

(1) =\/v1 + ‘/ V% - Vg
a(2) = -a(1)
a(3) =\/:1 - ‘/ V% - Yy
> (59)
a(4) = -a(3)
a(5) =m 1/066/(:44
a(8) = -a(b)

Solving equation (57) for the constants Hp(0), Hg(0), and H,(0), one obtains (index k
is added to denote the root) the following:
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For roots, 1, 2, 3, and 4,

H_(0,k) = G(K) A
2 2
C. ak)? - C - C
Hy(0,k) = 11209 - Cs™ - Caa Gl & (60)
m(C55 + C22) - m(055 + Clz)a(k)
H_(0,k) = 0 )

and for roots 5 and 6,

H_(0,k) = Hp(0,k) =0
(61)
H,(0,%) = G(K)

In equations (60) and (61), G(k) for k=1,2,... 6 are arbitrary constants. By con-
tinuing the process of equating the coefficients of each power of R to zero (that is,

ra(k)-1 ro(k) R(K)+1 etc.) and solving the resulting equations, the constants
Hr(j’k), HQ(]yk), and Hz(j)k), for j =~1, 2, ... and k= 1, 2, o o ey 6, can be

expressed in terms of the arbitrary constant G(k)
{5,G,10; HgG,1); H,G, 1} = G {a,6,1); dgli, k); d,, W)} (62)

where dy, dg, and dy are functions of a(k), j, m, N, €, and material properties.
The functions dy, dg, and dz are obtained through recurrence relations (appendix B).
From equations (53) and (62),

6 o0
[br3 b3 02} = %;1 G(k) ;0 R0 (46,105 dgll, 03 4,01, 1)) (63)

If a(k) happens to be a multiple root or an integer, the form of equation (63) changes
slightly. The complete results are summarized in appendix B.

If equations (49) and (63) are combined, the displacements uy, uy, and u, can
be formally written (index i is added to denote the ith ply of the laminate) as
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o0 o0
u (i) =a Z Z cos mo sin 27T%
r b

up@i) =a Z Z sin mo sin 272
m=0 n=0 b

[>0) o]
u (i) =a E E cos m@ cos 22
z b
m=0 n=0

Expressions for Xy,

6
D 6B GG, K)
k=1

6

D %,K GG,
k=1

6

) %65 6K
k=1

6

opp(i) = i
m=0

[=e] o0
ogg(l) = Z Z cos mg sin 272
m=0 n=0 o
o0 o]
o, (i) = cos mg sin B7T%
ZZ
m=0 n=0 b
0 o0
opg(l) = Z Z cos mp cos 272
m=0 n=0 b
(2] [> o]
ope(l) = Z Z sin mg sin 274
m=0 n=0 b
o0 O
Opg(l) = Z Z sin mo cos MTZ
m=0 n=0 b

Expressions for X,p, Xgg, . - -
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(o]
E cos mo sin 272
n=0 b

2

k=1

Mo

o
Il
-t

e

w
Il
—

Mo

Xrr(i, k) G(i, k)

Xzz(, k) G(i, k)

Xpg (i K) G(i, K)
k=1
6
Z XrQ(i, k) G(lsk)
k=1

6
2.
k=1

Xgz (i, k) G(i,k)

are given in appendix B.

~

~

~

(64)

Xg, and X, are given in appendix B. By making use of stress-
strain and strain-displacement relations, stresses are obtained in the form

(65)



Boundary Conditions

The displacements and stresses (eqs. (64) and (65)) satisfy the boundary conditions
(eq. (40)) identically. The conditions that are to be satisfied are

For the inner surface R = a(l),

orr®) = a1, opg(M) = apg(), opz(1) = a (1) (66)

For the outer surface R =1,

opr®) = a,.(2), org(p) = q,4(2), orz(p) = q,,(2) (67)
For the interfaces R = a(f) where £=2,3,. . ., p,

opp(2 = 1) - 0pp(0) = 0pg(2 - 1) = 0pp(8) = 015 (L - 1) - 0p.,(0) = 0 (68a)

Up(2 - 1) - up(0) =ug(e - 1) - up(e) =uz(L - 1) - uy() =0 (68b)

Let the applied loadings be expandable in double Fourier series as in the first set of equa-
tion (25). When conditions (66) to (68) are satisfied, a set of 6p simultaneous algebraic
equations is obtained for each m and n combination. The equations can be written in

the matrix form as
PG=vy (69)
where
G = {G(1,1), G(1,2), . . ., G(1,6);
G(2,1), G@2,2), .. ., G(2,6);

G(p,1), G(p,2), . . ., G(p,6)} (70)

7= {2 (1); dpge(11), app(1,1); 055

qrrf(Z,l): qrgf(?.,l), qrzf(Z,l)} (71)

(03 isa null column matrix of order 6p - 6) and
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[pam,) 9 0y 0 |
L(a(2),1) -L(a(2),2) 0, 0q
05 L(a(8),2) -L(a(3),3) . .. . . 92
) 95 L(a(4),3) -L(a(4),4)
P- (72)
{-‘(a(p'l)yp_z) 'E(a(p'l)yp'l) 92
0, 0, . . .o 0, L{a(p),p-1) -L(a(p),p)
0, 0y . . .o . 0, L (1,p)
In equation (72),
er(i’ 1)’ er(i, 2), ¢ o oy er(i, 6)
p(i) = | Xpps 1), Xpp(i;2), . . o, Xrg(i,6) (73)
—sz(i’ 1)’ sz(i’ 2)’ ¢y, XrZ(i’G)_R;V
— . —
p(v,1)
L(yi) = | Xp(, 1), Xp(1,2), ..., X,(i,6) (74)
Xp(i, 1), xe(i,Z), “ . x9(1,6)
Xz (1, 1), X,(1,2), . . ., Xz(i,6)
L AR=v

and Q; and Qo are null matrices of order (3 X 6) and (6 X 6).
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In static (£ = 0) and forced-vibration (2 is known) problems, equation (69) can be
solved to obtain the constants G, and evaluation of equations (64) and (65) to the desired
accuracy yields the displacements and stresses.

In a free-vibration or wave-propagation problem, the right-hand side of equation (69)

is zero. For a nontrivial solution,

det P =0 (75)

The solution of this characteristic equation yields the frequencies of free vibration.
For given circumferential and axial wave numbers m and n, there is an infinite
spectrum of natural frequencies, each corresponding to a different thickness or radial
mode.

When either m or n equals zero, the characteristic determinant (of order 6p)
degenerates into a product of two determinants of orders 4p and 2p.

For m =0, the determinant of order 4p corresponds to axisymmetric motion

<?86. =0, wup= 0), and the determinant of order 2p corresponds to torsional vibration

<—§6— =0, U, =u, = 0). Furthermore, in the axisymmetric motion, if the nodal distance

(B =b/ n) is infinite, the radial and axial displacements become uncoupled, and the
determinant of order 4p degenerates into a product of two determinants, each of
order 2p. One corresponds to radial motion and the other to axial motion.

For n =0, the determinant of order 4p corresponds to plane strain motion

<”88;= 0, u, = 0), and the determinant of order 2p corresponds to thickness shear in
the axial direction (i =0, u, =ug = o>.
8z r

Procedure for Numerical Evaluation

Static and forced-vibration problems.~ If the geometric and material properties and

the loading are known, the steps to evaluate stresses and displacements are as follows:

(1) Express the loading in double Fourier series and obtain the Fourier load

coefficients.
(2) Compute the necessary x functions for radial coordinates R = a(1), . . ., a(p), 1.
(3) Solve equation (69) to obtain the constants G(i, k), for k=1,2,. . ., 6 and
i=1,2,.. ., p.

(4) Evaluate equations (64) and (65) to desired accuracy by summing the series with
respectto m and n to obtain the displacements and stresses at points of
interest,
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Free vibration.- If m, n, and the geometric and material properties are known,

the steps to obtain the frequencies of vibration © are as follows:

(1) Assume a starting value for the frequency.

(2) Compute the necessary X functions for R =a(l),. . ., a(p), 1.

(3) Calculate the determinant |E

(4) Adjust the frequency by a suitable amount and repeat steps (2) and (3) until the
sign of the determinant for two successive values of frequency is different.

(5) Linearly interpolate the frequency for which the determinant is zero, and by using
this as the initial value and employing the well-known regula falsi technique,

refine the approximate frequency to the desired accuracy.

Some remarks on computation. - In all the problems — static, forced vibration, or

free vibration — it is necessary to evaluate the X functions at the required radii, not
only for solving equation (69), but also for calculating stresses and displacements at the
required locations. In free vibrations the X functions will have to be evaluated for each
trial frequency. The X functions, which are power series in the radial coordinate R,
are slowly convergent. For the numerical results presented in this paper, the number of
terms summed for good accuracy ranged between 80 and 140 depending on thickness,
thinner cylinders requiring more terms. The numerical evaluation was time consuming.
In free-vibration problems, in order to save computer time, frequencies were evaluated
first by using the refined approximate theory, and these frequencies were then used as the
starting values for solving the characteristic equation (eq. (75)). In contrast to the exact
three-dimensional analysis, frequency calculations using the refined approximate theory
and thin-shell theory took very little time.

THIN-SHE LL, THEORY
In this section the Flugge type analysis for homogeneous isotropic shells (ref. 8) is

extended to anisotrbpic laminated circular cylindrical shells. The displacement distribu-
tion consistent with the basic assumptions of thin-shell theory is

__Ir TR-a@)] Yro
AR PTG [ a(1) ] 0 } > (76)
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where Upg, Ugg, and Uy are the displacements at the inner surface of the shell.

The strains are

€90 =

€2z =

The modified relationships between stresses oyp, 0y, and oy, and strains
€9gs €zz» and €g, for the jth ply are obtained as follows: Equation (1) is solved for

strains €., €gp,

U

2
13Uy _ \:R - a(l)] 8“Upo L 0
a(l) 99 - Ra(1) 562 R
2
au 94U
9%, 9%

82Ur0

. . R aer+1_aUzo_[ R _a(l)]
92 3(1) 9Z R 06 R

a(l)

€77 and €975

-
Cy1 €12 €13 Cis

Ci9 C C C

22 23 26

Cy3 Cg3 C3z3 Cgsg

C C

26 36

90 98Z
/

(77)

(78)
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Now, solving for stresses Ogg> Ogypo

ing use of the last three equations of equation (78) yield

and Opg, in terms of €ggr €

7o and €9z and mak-

(009 | [Eaz Eog Egg| ! €96 |
Oyz | = |BEog FEzz Egg €22,
oz |, _Eze Esg Eee_dj fez_].
[Co2 Ca3 Cap | g0 |
= | %23 ©33 36 €22 | (79)
C26 €36 C66 j €9z 3

A procedure identical to that for the refined approximate theory is now followed to
derive the governing differential equations and boundary conditions. The strain energy

WS is given by

i a(j+1)
W —a_ 006 €ggli) + 072() €55 ()
s™5 J L o L(]) 00 ZZ 77

+ 0p,() €5,()] RdR do dz (80)

Substituting for the strains from equations (77) yields

3 oU 92U
a 60 r0
w, =2 J f fho(1) —5— - 19p(2) —2 +14(3) Uy
2 Jo 'z 20
oU 0 : 32Ur0 | aUy0
22D —22 - 1,.(2) +fp,(1) —29
572 Y/
2
aU 9¢U 0
+f,,(2) 2720 _ ¢, (3) 'Y |dp az
0z 0z 50 5% (81)
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The stress integrals f can be written in terms of displacements. (See table V.) Taking

the virtual variation of strain energy and then integrating by parts give

92 2 2

02f,,(2) 0%,5(2) 9%fy,(3)

SWg = a3 J J f99(3) - 99( ) - zz - oz 5Ur0
0 Yz 902 972 90 97

af gz ( 1) af99(1)7

|
s

5U90

-
of5.,(2) l
- 927 L su, - d0 Az

96 |
J
ofge(2)  (3) | U
9
+ a3 00 + oz 5Upg r0
a6 87 a0
z p—
+1gg(1) 6Ugg +19z(2) 6UL L dZ
of 5, (3)  of, (2) U
R J oz\°)  Zzz 6ULg - £ r0
p 96 0Z 07

+fez(1) 5U60 + fZZ(l) 6U,q do

3
-a” |£,.(3) 6U
[ 0z ro]at corners

(82)
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The virtual variation of kinetic energy, including the rotary inertia terms, is

t Y f
[Fmaest [ e B TR o

t0 tO 0z

+ J f5r(2) 8Upq dZ +J £r(3) 58U, do | dt (83)
Z 0

where fpr, fpo, and fp, are given intable V. The virtual work due to applied tractions
on the inner and outer surfaces is

8 1-a@) 9pg(2
8Wo)surtaces = 2 fe fz {qrr(z) - a(l) q,.,.(1) + a(la)( ) ro

20
+ [1-a@)] aq;;(z)}.auro
[ r]
+ [qrz(z) - a(1) qrz(l)} 86U, | do dZ
_ a8 L [_1__;1_(:1:_1)(_11] app(2) 65Uy dZ
_a® L [1-a@)] q,,(@) sUpde (84)
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The virtual work due to applied stresses on the edges is

3 (. Q¢ = aUro
6(We)edges - L {(er My 06U~ Qzz 06— ¥ Qgp Ugo + Qg 0Uzp| 96
2Q — oU
Z
- a® [(629 + Qpy) 5Ur0] (85)
at corners
where

{Quri Ugi Uz Qg Vi Ur’ s el Uz [ 7Y);

P a(j+1) 9
: R” . : R [R - a(1)]. s
-) o Riag B a, R ay i 2lkq [R- 2] R agr
j:1 a(]) { Zzr Z a.(l) ZZ Z a.(l) ZZ
Agys qg@;?l—); ag, [r-a)]; qee—li;%ﬁ} dR (86)

Equations (82) to (85) and (13) are substituted into equation (4), and the various terms are
properly grouped. Since the virtual displacements are arbitrary, their coefficients are
equated to zero to obtain three differential equations and four boundary conditions. The
three differential equations are (after substituting for the integrals f in terms of

displacement)
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B(91)a—2+B(73) ot + B(9,3) ——s - Byo(l,3) 2—
p®r )~ Fplh ) T Bt Tepa T Faat Y T

o4
+ 2B, (2, 2) 2 - |2Bgq(5,3) + Bpp(12,3)] ———— - B (3,1)
22 89 [ 23 66 ] 8928Z2 22

2 4
+2B,4(6,2) 2 - Bgq(9,3) 2 - 2B,4(18,3)
23 972 33 VA 2 26357

U

+2By(18,2) 89 - 2Bg4(16, 3) ~ az3 -0

+4-B,(10,2) RS (4z)ﬁ§_-B 5,1) 2
p (D8 e T D22 —3 7 Baa® M g

+ [Bgg(14,2) + By3(8,2)] + [Byg(7,2) + Byg(17,2)]

00 0Z2 aezaz

3
9 9
- Byg(8,1) 37 * Bgg(15,2) ;ig } Upo

53 53
B, (9, 2) + |Bgg(13,2) + Bya(5,2)
{ P ot29Z [Poo 25(%:2) 26292

53 53

53
- Byg (3, 1)__ + [336(6 2) + Bgg(16, z)] " 822} U,

- ) _[1-a() 8qr9(2)— ) 89,.,(2)
=a(l) q.,.(1) - q,.) [a(l) } = 1 -a@)] 8;




3 3

B.(10,2) 22 _ - [Bna(14,2) + By3(8,2) 9
prtt 66\’ 23'\% ,
{ at250 [ ] 50 072

3
CBoo(4,2) 2= +Byy(5,1) & - Byg(7,2) + Byg(17,2) 9
22 503 22 90 [ . ] 8928Z

3
) chall
+ B26(8’ 1) ’8'5 - B36(15’ 2) 823 } UI‘O
2 2 2 _o%_
9 el o 2
+ {_Bp(n,n 25 + By (7,1) o + Bgg(11,1) 8ZZ+2B26(10,1) 50 az} Upo

2 2 2
3 ol 22
' {[Bee(B’l) + By3(® 1)) 55757 * Bae® D) 7 Paelt® Y 822} bao

a,.9(2)
- al) dpg(®) - — (88)
a(l)
B,(9,2) 22— - [Byg(5,2) + Bgg(13,2)] 03 1 Byy(6,1) 2
ot25%Z 90257 9Z
3 3 3 5
— Baal9,2) 2 - Bag(16,2) —2— - Bygl2,2) 27 £ Byg3, 1) =
33 273 o0 o0 022 20 203 2 36
Beon(6,2) 3 |y
- 36 ? 2 rO
872060
2 2 2
9 o 0
' {[B23(8,1) + Bgg(8,1)] —— + Bgg(15,1) —5 + By (5, 1) .8.9_2} Ugo
2 2 2 2 |
+ JoBL9,1) 2% 4 Baa(9,1) 2= + Bgg(3,1) % L 2B,.(6,1) 2 U
= a(1) q,.,(1) - 4,.,(2) (89)
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The quantities Bgg, Bgg, . . . are defined in table V. The boundary conditions are
as follows:

For 6 = Constant,

£, (3 1-a(l Q
[8f99(2) . o QZ( )_ £ @) + qre(z) ;2,(—)} — QGI‘ + iQ_Qé or 5Ur0 =0

a6 97 pr a(1) 9%
(90a)
—_ aUu
f00(2) = r0) .o
06(2) = Qyy or 5< = > (90b)
fgp(1) = Qg or 8Upg =0 (90¢)
£92(2) = Qy, or 6Uyy=0 (90d)

For 2z = Constant,

{f’fez“” e ¢ ) v a,@ - a(l)]} - Qe+ 220 or 60,0

90 9Z

(91a)

— aU ]

fzz(z) =Q,, or 5< 8;0> =0 (91b)

fo,(1) =Q,y or 6Ugg=0 ' (91c)

fzz(l) =Q,, or 06Uzp=0 (914d)

and at corners,

£0,(3) = Qug +Qpz oOr dUpg=0 (92)

It is noted here that the thin-shell theory has only three differential equations in con-
trast to the 3p +3 equations of the refined approximate theory. Also, the number of
boundary conditions that can be specified at any location on the boundary is 4 in thin-shell
theory compared with 3p + 3 in the refined approximate theory.
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Procedure for Analysis

The analysis of a circular cylindrical shell now involves finding a solution of the
governing differential equations (eqs. (87) to (89)) which satisfies the appropriate boundary
conditions (egs. (90) and (91)). The complete solution of the governing differential equa-
tions can be split into a particular part and a complementary part. The procedures for
obtaining the particular and complementary parts are similar to those for the refined
approximate analysis.

Use of Thin-Shell Theory With Simply Supported Cylinders

In order to assess the accuracy of the thin-shell theory, it is applied to the analysis
of harmonic vibrations of simply supported, laminated orthotropic cylinders (fig. 2), and
the results are compared with those obtained by using an exact three-dimensional analysis.
The displacements UrO’ Uyo, -and U,y are assumed to be of the form

o oo h
_ E E . N7TZ
UrO = Sr cos m@ sin T
m=0 n=0

Sp sin m@ sin.r_lg_Z_ > (93)

3

o

_ I
)
™e

i
o

o0 o0
_ nnz
UZO = Z Z SZ cos mf cos —"2

m=0 n=0 b

~
If the applied loading can be expressed in the form of the first set in equation (25), then
by substituting equation (93) along with the first set in equation (25) into equations (87)
to (89), a set of three simultaneous algebraic equations is obtained for each combination
of m and n. These equations can be written in the form
PiS+2Py8=0 (94)

where

S= {8,585 8,} (95)
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w = <a(1) A1) - 9, .(2) - [1—'1—";(1—):' mq(2) + [1 - a(1)] quzf(2)>;

a(

A o£(2)
<a(1) Aypge() - :,Zf) >; (20 dp (1) - a,4(2))

and P; and P, are square matrices of order 3.

The matrices 131 and

where
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1

g
N

[ k1 Ko

K2.K4

22 are of the form

-

K3

Ky

K11

(96)

4 2 2,2

2 4

| 2

2 3
Kg = [1366(13, 2) + 1323(5,2)] m“N + By3(6,1) N + Bgq(9,2) N

kg = ~Bgg(11, 1) N - Byy(7,1) m?

K5:

[1366(8, 1) + Bygl(8, 1)] mN



2
g = -Bga(9, DN - Bgg(3,1) m?

ky = Bp(9,1) + By(1,3) m? + By(9,3) N2

Kg = Bp(10,2)m

K10~= Bp(ll, 1)
Ky1= Bp(9, 1)

See table V for B relations.

In the case of static or forced-vibration problems, equation (94) can be solved to
obtain the constants S " SG’ and S,. The series for stresses and displacements are
summed to the desired accuracy.

In the case of free vibrations, equation (94) becomes

p; 8+ 92Pp8=0 (97)
This characteristic matrix equation is solved to obtain the frequencies of free vibration.
Since the order of Py and P matrices is 3, the number of frequencies is also 3 for
agiven m and n combination,

NUMERICAL RESULTS AND DISCUSSION

In this section the numerical results for the free vibrations of simply supported,
laminated, orthotropic cylinders are presented for two typical three-ply cylinders.
Results from the present refined approximate theory and the thin-shell theory are compared
with results from the exact three-dimensional analysis. Since the simple-support condi-
tions simulate the conditions at nodes in wave propagation in infinite cylinders, the present
results are applicable to the problem of wave propagation. In wave-propagation problems,
the nodal distance b is equal to one-half the wavelength, and the wave velocity is equal
to bQ/m.
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The frequencies are presented in terms of a dimensionless frequency parameter ),

defined as
e D ~N1/2
) o) [aG + 12 - a2
x=Qad =1 . (98)
p
Z Ca5) [aG+ 12 - a()?]
j=1
J

The first three frequencies of free vibration are presented in figure 3 and table VI
fbr a thin cylinder (total thickness is 5 percent of outer radius) and a thick cylinder (total
thickness is 20 percent of outer radius). The material and geometric properties are
given in table VI. In both cylinders the middle ply is thicker and also of lower elastic
moduli than the other two plies. In figure 3 the frequency parameter is plotted against
the circumferential wave number m for various ratios of nodal distance to outer radius.
In figures 4 and 5 the displacement distributions across the thickness are plotted for the
thick cylinder.

On attempting to classify the first three radial or thickness modes , it was found that
in most cases not one of the three displacements was clearly dominating. In this respect
the laminated composite cylinders differ from homogeneous isotropic cylinders, where
the three thickness modes can be distinguished reasonably well as modes associated with
either large radial displacements, large axial displacements, or large circumferential
displacements. In the numerical results presented, for m = 0, the first mode was
axisymmetric, the second mode was torsional, and the third mode was axisymmetric.

In contrast, when m =0 in homogeneous isotropic cylinders, the first mode is generally
torsional.

As in homogeneous isotropic cylinders, as the nodal distance approaches infinity, the
first and second frequencies vanish when m = 0, and only the first frequency vanishes
when m =1, For m Z 2, all the frequencies approach nonzero finite values as the nodal
distance approaches infinity. The frequencies are not always monotonic functions of circun
ferential wave number m; the nature of variation of frequencies with m depends on nod:
distance and material properties. (See fig. 3 and table VI.)

In axisymmetric modes (fig. 4), even when the cylinder is thick and the nodal distance
is short, the true wu, distribution across the thickness is nearly piecewise linear in the
first two modes. Also, the true u, distribution is piecewise linear in the first mode
and becomes nonlinear in the second mode. In the torsional mode the true ug distributio;
is nonlinear.
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Exact
————— Thin-shell theory

2.0 —

b/a

o0
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Third frequency

a(1) = 0.95;

Second frequency
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Total thickness, 5 percent of outer radius;

(a) Thin cylinder:
a(2) = 0.955; a(3) = 0.995.

ntial wave number m

arameter A as a function of circumfiere

Figure 3.- Frequency p
(See table VI for material properties.)

for various nodal distances.
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Exact ~—~—. — . Refined approximate theory
e . ~— — —— — Refined approximate theory with
Thin shell mid-layer split into two
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—— -~ = —— Refined approximate theory with
mid-layer split into four
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Figure 4.- Displacement distribution across thickness in a thick three -ply cylinder.
m = 0; b/a=1. (Firstand third modes are axisymmetric; uy = 0. Second mode
is torsional (ur = uy = 0). Displacements have been normalized with respect to their
maximum values.)
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When m 2 1 (fig. 5), the true displacement distributions across the thickness are
nearly piecewise linear for the first mode even when the cylinder is thick and the nodal
distance is short. But for the second and third modes, especially when the cylinder is
thick, the true displacement distribution across the thickness within each ply is nonlinear.

The thin-shell theory overestimates frequencies (fig. 3 and table VI). Table VI
summarizes the influence of thickness, wave number m, and nodal distance on the
accuracy of frequencies obtained from thin-shell theory. In general, the error in the
second frequency is less than the error in the first and third frequencies. The thickness-
wise displacement distributions predicted by thin-shell theory are highly erroneous
(figs. 4 and 5).

The first frequency obtained from the refined approximate theory is very close to the
exact value, even for thick cylinders, for all values of . m, nodal distance, and material
properties (table VI). The second and third frequencies are also reasonably close to the
exact values. For the thick cylinder, the maximum errors in the second and third fre-
quencies obtained from the refined approximate theory are 13 percent and 6 percent,
respectively. In comparison, the corresponding maximum errors in the second and third
frequencies obtained by thin-shell theory are 60 percent and 165 percent. The accuracy
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Figure 5.- Displacement distribution across thickness in a thick

three-ply cylinder. m = 4; b/a = 1. (See table VI for geo-

metric and material properties. Displacements have been

normalized with respect to their maximum values.)
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200

150

Refined approximate theory
————— Thin-shell theory

100~ 100
Error,
percent
——————————— m= 0
———————————— m=4
Error
percent 90" 50—
m=0
m=4
I — . $ J
07 2 3 4
pm
(a) Second frequency. (b) Third frequency.

Figure 6.- Percent error in the frequency parameter as a function
of the number of layers P into which middle ply is split.
b/a = 1; thick cylinder: Total thickness, 20 percent of outer
radius; a(l) = 0.8; a(2) = 0.82; a(3) = 0.98. (See table VI
for material properties.)

CONCLUDING REMARKS

A refined approximate theory for the static and dynamic analysis of finite laminated
composite shells was developed. The analysis was reduced to a two-dimensional problem
in the axial and circumferential coordinates by assuming piecewise linearity of displace-
ments across the thickness. The governing differential equations and the boundary condi-
tions were derived by using a variational approach. General solutions of the governing
differential equations were developed in trigonometric series form. Analysis of finite
laminated shells with general boundary conditions now involved satisfying the boundary
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conditions by making use of the appropriate part of -the general golution. This theory
allows 3 + (3 X Number of plies) boundary conditions on a boundary in contrast to only
four boundary conditions of thin-shell theory. Thus, the refined approximate theory
allows a proper gatisfaction of the boundary conditions and, in turn, the results close to
boundaries should be obtainable to a high degree of accuracy.

An exact three _dimensional analysis of simply supported shells was also developed,
and the results from it for free vibrations were used for assessing the accuracy of the
refined approximate theory and that of thin-shell theory. The thin-shell theory developed
in this report does not contain any approximations beyond the basic assumptions inherent
in thin-shell theory.

The refined approximate theory was found to be accurate even for thick shells with
short nodal distances and high circumferential wave numbers. In contrast, thin-shell
theory was found to be accurate for moderately thin shells (thickness about 5 percent of
the radius) only in a narrow range of nodal distances and circumferential wave numbers.

The accuracy of the results obtained from the refined approximate theory can be
further improved, if needed, by splitting the actual plies into a number of thinner plies.
The accuracy can be studied through improvement of the results as the number of plies
into which the thicker plies are split increases. The refined approximate theory can be
applied to a variety of static and dynamic problems of luminated, composite, circular
cylindrical shells. The theory can pe extended to arbitrary shells.

Langley Research Center,

National Aeronautics and Space Administration,
Hampton, Va., August 20, 1973.
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APPENDIX A

SOLUTION OF HOMOGENEOUS SIMULTANEOUS
ORDINARY DIFFERENTIAL EQUATIONS

A procedure for solving a system of homogeneous simultaneous ordinary differential
equations of the type of equations (32) and (33) is developed herein. The system of second-
order differential equations is converted to a system of first-order equations, which can
then be solved by following standard techniques. Consider a system of « equations,

2
é._d_ 2)4.]3,
dy2

4

®+Ce=0 (A1)
dy

where y is the independent variable, & 1is the column matrix of dependent variables,
and A, B, and C are the coefficient square matrices of order a. Now by choosing

o= @ (A2

d
dy ~

equation (A1) can be written in the form

AL ¢ +Bp+CE=0 (A3

dy ~
Equation (A3) can be written after some manipulation as

4

-1 -1
-A "Bp - ATCo =

-~ ~

¢ (A4

Combining equations (A2) and (A4) yields

IR
D |-—-|=— |--- (A5
¢ dy | ¢

D= ---=cbouoon (A€

where
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APPENDIX A — Concluded
a unit matrix of order &, and 01 1isa null square matrix of

In equation (A6) I is
ation (A5) can be assumed to be of the form

order «a. Solution of equ
@ o= {were” (A7)

Substituting equation (A7) into equation (A5) and simplifying give

¥ ¥
[0

A8) is well known. Since the

quations such as equation (
the solution of equation (A1)

hus,

rix €

Solution of characteristic mat
1be 2a values of p. T

order of D is 2a, there wil
can be finally written in the form

20

g- ) 50 T(0 (A9)
=1

onding to root u(2), and T(¢) is the arbitrary

where ’5'1(!2) is the eigenvector corresp

constant.

In cases where multiple roots
y following the usual procedure.

occur, the special solutions corresponding to such

roots can be obtained b
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APPENDIX B

X TFUNCTIONS OF EQUATIONS (64) AND (65)

In this appendix, expressions for the X functions occurring in equations (64) and (65)
are given. The form of the solution given by equation (63) is true if the roots are nonzero,
are nonmultiple, and do not differ by an integer. When any of these conditions are not
satisfied, as in the cases discussed later, the form of solution is different from that of
equation (63), and special procedures must be followed to obtain the solution.

Ordinary Case

When equations (63) and (64) are compared, it is seen that the displacement functions

Xy, Xp, and X, are

The functions X,.p(k), Xgg(k), - - -

(o]

©0O

can be written in the form

[0 X095 %00} = ) R fa,,10; d56,90; a,(3,0) G
i=0

xpe@) = ) RAEOFL [d 6,1 + wadgl, 1) + wad, (0] (82)
j=0
where

¥ P ¥3

Xrr®) Cyila® +3] + Cpy Crom -C13NR

X&) Cio o) +3j] + Co9 Coom -C93NR

Xpz K) C44NR 0 Cyqlak) +i]

Xrg (K -Cg m Cpg () +j - 1] 0

and dy, dg, and dyz are given in table VIIL
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APPENDIX B — Continued
Special Case: m = 1

When m = 1, roots of3) and o(4) are zero, and the original solutions, given in
equations (B1) and (B2), corresponding to these two indicial constants become identical.
For the root of3), the original solution 18 retained, but for the indicial constant of4), a
special solution, which is linearly independent of the solution for oA3), is found. The
special solution is obtained by differentiating the original solutions (egs. (B1) and (B2))
with respect to &, then substituting kK = 4 and taking the limit of4) — 0. The solution
thus obtained is given as follows (In the following equation, the index k is retained
instead of replacing it with 4 since the same equation will be used later with a different
value for K):

with k =4,

{93 X0 X209} = 5 R {[a,00 togeR + 409
j=0

(4,10 10gcR + 50,95 [450-9 logoR + 33,10} (83)

Functions Xpr(¥), Xgo(k), . . . can be written in the form

Xpr(K) = Z ri-1 [w{dr(j,k) logeR +d'r(j,k)} + wa{dglis B logeR
j=0

rdyd, R} + wa{d, G, k) logeR + dr G, B}

- wad (1) + Wsdgls k) + Vi, 6,19 | (B4)
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APPENDIX B — Continued

where

Yy 2 Ve
Xrr(K) Cqq 0 0
Xgo(k) Cyo 0 0
Xzz(K) | Cys | 0 0
Xrz(k) 0 0 Cya
Xrp(k) 0 C55 0
Xgz(K) 0 0 0

In equations (B3) and (B4) the primes denote that the value has been differentiated with
respect to o and then the limit has been taken as « — 0. The functions dy, d'e, and
dy, are given in table VIIL

Special Case: m =0

When m =0, o3)=1, of4)=-1, and o5)=of6)=0. For m=0, that is %: 0,
displacements u, and uy are not coupled with ugy; also, the differential equations (50)
and (52) are not coupled with equation (51). The motion that is associated with u, and
u, is axisymmetric, and the associated indicial constants are o(1), o(2), of5), and oA6).
The motion associated with uy is torsional, and the corresponding indicial constants are
a(3) and of(4).

Axisymmetric motion.- Among the four associated indicial constants, a(5) and of6)

are zero. Therefore, the original solutions, given in equations (B1) and (B2), correspond-
ing to these two jindicial constants, become identical. For of5) the original solution
(eqs. (B1) and (B2)) is retained, and a special solution corresponding to o(6) is found.
This solution is obtained by differentiating the original solution with respect to a and
then substituting k=6 and ofk) — 0. The solution is the same as given in equa-

tions (B3) and (B4), now with k = 6.

Torsional motion.- The two indicial constants corresponding to torsional motion are

o(3) and of4), which are equal to +1 and -1. Since the indicial constants differ by an
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APPENDIX B — Continued

integer, it would be impossible to obtain the solution corresponding to the indicial constant
of -1 by use of equations (B1) and (B2). Therefore a special solution corresponding to
root of4) must be obtained. Instead of trying to obtain a special solution starting from
in this case it is much easier to return to the appropriate differential

the general solution,
ibration is (from

equation and solve it directly. The differential equation for torsional v

eq. (51))

2 C
1
% 785, (pn2a? - CGGNZ) + Cop = aﬁ%}% =0 (B5)

Rearranging gives

2 . .
R2£—+R.£‘:-+(sz-1) g =0 (B6)
ai? dR
where
R =R
T = 40?2 (B7)
v=1, -1 (w2>0,w2<0)
and
2.9 C
Cgs Css

Equation (B6) is a Bessel equation when w2>0 anda modified Bessel equation when

w2 < 0. The two solutions of equation (B6) are Xg(3) and Xg(4), given by

3{(R) (w2 > 0)
1;(R) (w2 < 0)
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APPENDIX B — Continued

Y;(R) (w2 > 0)
X9(4) = ) ' (B].O)
K, (R) (w2 < 0)

where Jl and Y1 are Bessel funct1ons of first and second kind of order 1, and I1 and

K1 are modified Bessel functions of first and second kind of order 1.

Among the other X {functions, Xy, Xz, Xrr, X99, Xzz, and Xpz are zero, and

~ R w
Xrp(8) = C mﬁJl(AR) ) J1(A_ )].
d& R
avy® Y
o= G ® [di‘ R | (B11)

Xpz(3) = CggNIy (R)

When w2 <0 in equations (B11), J is replacedby I and Y by K.

Special Case: m 1/C66/C44 = Integer

When m 1/C66/ C4q 1s an integer, the indicial constants o5) and o6) differ by an
even integer. In this case it would be impossible to calculate the solution corresponding
to of6) by using equations (B1) and (B2). The special solution is obtained by multiplying
the original solution (eqs. (B1) and (B2)) by « - of6), differentiating with respect to «,
and then substituting « = o6). Now,

g-1

{6e®); (6% %6} = ) R¥OH fa.6,6); 4y, 0); 4,0,6)
=0

+ Z RH6)+ {[arq, 6) logoR + dp(j, 6)];
=B
[d00i, 6) logeR +d5(1, 6)]; [d2(i, 6) logeR + dz(l, 6)]} (B12)
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APPENDIX B — Concluded

where B = X(5) - X(6) = 2m Y Cge/Caar Xrr(6); Xpg(6), . . . canbe written in the form

g-1 |
Xpp® = ) RAOHT [11d:(, 6) + ¥2dpl,©) + Y3d,,6) ]
i=0 ‘

N Z RO {Wz}ar(j,fi) + Ygdg(i, 6) + wgdz(i,6)
=B

+ w1 [@x(, 6) logeR +dr(j, 6)

+ g [dg(i, 6) logeR +dpG, 6)] + w3[dz(i, 6) logeR + dy (i, 6)]} (B13)

In equations (B12) and (B13),

4,0 = tim {fo - o®)) 4,6,6))

an(i, 6) = = {lo - o6)) a_(3,6)} at o= off)
and dp, dr, ... are given intable VIIL.

Special Case: Isotropic Material

When the material is isotropic, all the indicial constants A1), A2), . . - of6) are
integers. Special solutions can be obtained starting from the general solution given by
equations (B1) and (B2). But, as mentioned in the Introduction, for the isotropic case the

solution for the governing differential equations (egs. (46) to (48)

) can be obtained very
easily by following the displacement pote

ntial technique (see refs. 5 and 9).
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TABLE I.- EQUATIONS FOR F

i

The Fypp(3,3,1), Frp(i,3,1), . . . can be expressed in the form Fp.(j,3,1) = Z Ecr(i) Up(i) + k(i) Ugli) + Ky (i) Uz(iﬂ.

i=0

Kr(i)

Kg(i)

K ()

Frr(,3,1)

Frg(,3,1)

Frz(3,3,1)

Fre(j’l’ﬁl)
Fgg(i,1,61)
Fez(j’l’él)
Frz(j’z’él)
Fg,(i,2,61)
F,,(,2,01)
Fp(i,2,01)
Fpg(i,2,01)

FpZ(]92’61)

5(])1) D11(3’7’1) + DIZ(]75964)

. 2} .
Dgi(j,5,04) T Dy5(i,4,04) oA

. 2] .
Dy5(i,5,04) YR Dyy(is4,04) 7

. 2] .
D55(]a3y65) v D45(J:1;55)
26 -V 4

8(j,1) D12(j,5,81) + D22(},3,05)

. 9 .

G(Jyl) D16(374761) + D26(])1:65)
8(j,1) D13(j,4,01) + D23(j,1,65)

D, (j,2,05) 22
1,4, )
P 552

0

. 2] .

8(j,1) Dg5(i,7,1) - Dygs5(i,5,04)

8(j,1) D55(j,5,61) - D55(i,3,05)

- . ) . 9
Dy2(i,3,05) 55 + D26(i,1,05) 57

Dg(i,3, 55) 35 + Pe6li;1,05) 5 az

. 3 .
Dgg(j,1,65) vl Dgg(i,2,05) 7

i ) )
Dy3(j,1,85) T D3g(1,2,08) 5

0

D, (.2, 05) 2
p(];:s)a_t§

D16(3,5, 54) 55 * P13U,4,04) 55
8(j,1) D45(j,7,1)
8(j,1) Dy5(i,5,01)
Dag(i,3,05) 2= + Da3(i,1,05) ==
26(1,3,95) 35 3(1,1,35) 57
Deei,3,65) <= + D3gli,1,65) —%
66”530 36”582
é(j:i) D44(j14’51)
Dea(i,1,65) 2 + Dag(i,2,65) —=
66”539 36”532
) 3 )
D3g(i,1,65) i D33(j,2,65) 7

0

D.(j,2,65) o2
1,4,05) —5

Note: 64 =1 + 08(j,i); 05 = 61 + 6(j,1)

The stiffnesses D are pure functions of the material properties a

that is,

{Dﬁ(lylsﬁ)y -

where g=11,12,. . .,

DB(J 3,1) = CB(J) loge[l + (])

D5(1,7,ﬂ)}
a(j)

Loy - SB0O)

[

Dg(j,2,2) = Cali) h(i) l:h(]) a(])]

a(j)

(j+1)

66, p. When g =p, CB:p.

Dmﬁm:CMD{—%%m%E+

Dglj,4,0) =

L B 1. 1
"R’ h(j)” h(G)’ RO()’ h(J)Z

1 a(j) 3—(])2

B(])3)3) - CB(]) RO

BG) *ny?
Dg,2,0)
hG)

h(j)
aQ)

nd the inner and outer radii of the individual plies;

- a(j
M)] L

If the material properties are constant across a ply,

Dg(j,1,4)

) Dg(j,3,0)
a(])]} DB(J’69£) =

h(j)

Dg3,2,0)
D3, 7,0) = Lo
p h()2
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TABLE II.- COEFFICIENTS V

P
VEkD = ) AGDT);
i=k
k=1 for k=0, k=k for k>0;

A(j,i) =0 for i>j, A(,i)=1 for i=Z]

8 7()
1 Dy(j,2,65) a
2 Ds55(j,3,65)
3 Dy4(j,2,55)
4 2D45(j,1,65)
5 -6(j,%) 8(j,1) D11(i,7,1) - 8(j,k) D12(i,5,54) - 6(j,1) Dy2(j,5,61) - Daa(i,3,55)
6 -8(j,k) D12(i;5,64) - D22(i,3,85) - D55(j,3,05) + 6(i,1) D55(j,5,61)
7 -6(j,k) D1g(i,4,64) - D4s(i,1,85) + 6(i,i) Dg5(i,4,61) - D2gli,1,55)
8 -5(j,%) D16(i,5,04) + 6(j,i) Dg5(j,5,61) - Dagli,3,05)
9 -5(j,k) D1 3(j,4,84) - D23(j,1,05) + 6(j,1) P44(j,4,61)
10 -5(j,k) Dg5(i,5,84) + Ds5(i,3,65) + 6(3,1) D12(i,5,61) + D22(i,3,65)
11 Dy5(j,1,65) + 6(,i) D16(i,4,51) - 8(j,k) Da5(i,4,64) + D2g(i,1,05)
12 D22(j,3,65)
13 Dgg(i,2,05)
14 2Dgg(j,1,65)
15 6(j,%) Ds5(j,5,64) - 8(j,k) 8(i,i) Dss(j,7,1) - Ds5(j,3,05) + 8(j,1) D55(j,5,61)
16 Dyg(j,3,65)
17 D3g(j,2,65)
18 Dy3(j,1,65) + Dgeli,1,05)
19 -6(j,k) 6(j,1) Dg53,7,1) + 8(j,1) D45(j,5,61)
20 Dag(i,3,65) - 6(j,K) Dyg5(j,5,64) + 8(j,1) D16(,5,61)
21 8(3,1) D13(j,4,61) - 6(j,k) Dgq(j,4,64) + D23(j,1,65)
22 -5(j,%) 6(1,1) Dys5(i,7,1) + 6(j,%) Dys5(i,5,64)
23 Dgg(i,3,55)
24 D33(j,2,565)
25 2D3g(j,1,65)
26 -8(j,k) 6(j,1) Dyg(3,7,1)

Notes: 09 =1+ 8(j,k), d5=1+5(,i) + 8(j,k), 04 =1+ 8(j,i), and the stiffnesses D are
given in table I.



T ABLE TIL.- MATRICES M(g) AND 38

Matrices M(p) and J(B) can pbe written in terms of nine sub

in the form

¥ O 50 L0

wo - y,®  L® L

General terms of matrices ¥1(8), - -
k refers to row and 1

V(6,k,i) m52(B)

-V(9,k,1) No3(P)

~V(10,k,) m2(p)

V(18,k,1) mNo2() 83(F)

v(21,k,i) N63(h)

V(18,k,i) mNog(p) 83(8)

Note: 62(1) = 62(2) = 1, 52(3) = 62(4) = —1’

V(1,k,i) 92 - V(2,k,1) m2 - V(3,k,1) N2 + V(5,k,1)

V(L,k,i) @2 - V(12,k,1) m2 - V(13,k,) N2 + V(15,59

V(1,k,i) 92 - V(23,K,D) m2 - V(24,k,i) N2 + V(26,,0)

PRCIENE FCI

to column.

The coefficients V are given in table IL.

-V(8,k,i) mda(B)

V(11,k,1) N63(B)

-V(16,k,i) m? -
—V(ZO,k,i) méZ(B)

-v(16,k,i) m

matrices,

. ¥g(p) are given below in which

-V(4,k,i) mN52(B) 63(6)

V(7,k,1) No3(B)

V(14,k,1) mNo2(8) 33(F)

V(25,k,1) mN62(8) 53(8)

og(1) = 03(3) = 1, 03(2) =83(4) = 1.

V(17,k,i) N2 + V(19,k,1)

2 V(17,0 N2 + V(22,k,0)
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TABLE IV.- MATRICES ¥,(8),,(8), . - -

Matrices ¥,(8), Wo(B), - - -

of order p + 1, in the form

can be written in terms of nine submatrices, eachw

OCCURRING IN EQUATIONS (32) AND (33)

9B 9B 9B
9,0 9B 9B
General terms of matrices Ql(ﬁ),Qz(ﬁ), .. . are given in which k refersto
row and i to column.
,(8) 0,0 03(8) 0,(8) 058 849 0,(0) 0g(0) 94(8)
2,00 | V2.k0 0 0 0 V(12,k,i) 0 0 0 V(23,k,1)
D@ 0 0 0 0 0 V(16,k,1) 0 V(16,k,1) 0
TyB) | 0 V(6,k,1) 0 V(10,k,1) 0 -V(18,k,i) Nog(6) 0 V(18,k,i) Nog(8) 0
To(B) | V(4,k,1) Nog(g) 0 V(8,k,1) 0 V(14,k,i) Nog(8) 0 V(20,%,1) 0 -V(25,k,1) Nog(8)
2,8 | V(LkD) Q2 - V(3,k,i)N2 | 0 -V(9,k,i) Nog(8) | 0 V(1,k,i) 2 - V(13,k,1)N2 | 0 V(21,k,i) Nog(g) | 0 V(L,k,i) 02 - V(24,k,1) N2
+ V(5,k,1) + V(15,k,i) + V(26,k,1)
EfBo V(7,k,1) Nog(B) | 0 V(11,k,i) Nog(p) | 0 -V(17,k,i) N2 + V(19,k,i) | O SV(17,k,) N2 + V(22,k,i) | 0
L8 VEkD 0 0 0 V(13,k,1) 0 0 0 V(24,k,1)
m, | 0 0 0 0 0 V(7,k,1) 0 V(17,k,i) 0
L0 0 V(9,k,1) 0 0 V(18,K,1) mog(8) V(21,k,) -V(18,k,1) mog(B) 0
1,(8) | V(4,k1) mdg(8) V(7.k,0) 0 V(11,k,i) -V(14,k,1) még(B) 0 0 0 V(25,k,1) mg(H)
2,8 | VLK) 22 - V(2,k,i) m2 | -V(6,k,i) mog(g) | 0 V(10,k,i) mog(8) | V(1,k,1) 92 - v(12,k)m? | 0 0 0 V(Lk,i) 92 - V(23,k,1) m2
+ V(5,k,i) + V(15,k,i) + V(26,k,i)
Z,8 |0 0 V(8,k,i) mdg(B) | O 0 -V(16,k,1) m2 + V(19,k,1) | V(20,k,i) mbg(g) | -V(16,k,) m2 + V(22,k,1) | 0
Notes: 8g(1) =1; 6g(2) = -1.

The coefficients V are given in table IL




TABLE V.- EQUATIONS FOR f

fgp(l),f4p(2), . - . can be expressed in the form —1

32 62 82
f99(1) = Ur(l) - Ur(z)a—ei - Ur(3);z—2 - Ur(4) ———89 57 Uro

] +EJ9(1) 240 %} Ugo + E’z(l)aie + v, @) -:i] Uy

Ug(z)

foe(1)
fo6(2)
f90(3)
f22(1)
f72(2)
foz(1)
£62(2)

ff)z(3)

Uz(z)

Bga(5,1) | Bga(4,2) | B23(8,2) Byg(17,2) | Bga(7,1) | B2s(10,1) Bgg(5,1)
Bya(2,2) | B22(1,3) | B23(5,3) Bog(18,3) | B2a(4,2) | B26(7,2) B26(2,2)
Bga(3,1) Bg9(2,2) B93(6,2) Bgg(13,2) Bgs(5,1) Bog(8,1) Bog(3,1)
Bys(6,1) | Ba3(5,2) | B33(9,2) Bg(16,2) | Ba3(8,1) | B3s(151) B3g(6,1)
By3(6,2) | B23(5,3) | B33(9,3) Bg(16,3) | B23(8,2) | B3g(15,2) B36(6,2)
Byg(8,1) | Bas(T,2) | B3e(15.2) | Bee(14,2) Byg(10,1) | Bgg(11,1) | Bee(®:1)
Bog(3,1) | B2s(22) | B36(6,2) Bgg(13,2) | Bag(5,1) | Bee(®.1) Bgg(3,1)
Bog(13,2) | Bag(18,3) | B3e(16,3) | Bee(12,3) Bog(17,2) | Bes(14,2) | Bee(13,2)

By3(8,1)
B3(5,2)
Bo3(6,1)
B33(9,1)
B33(9,2)
B3g(15,1)

B36(16,2)

2
9
fpr(1) = Bp(9,1) =5 U0

£or(2) = -Bp(7,3) atfanro + Bp(lo,z)%ueo
03 92
fpr(3 = Bp(9,3) —5——Ur0 + Bp(9,2) 25 Uz0
03 02
po(1) = ~Bp(10,2) —5—Uro + Bp(11,1) 25 Ugo
83 02
fpa(l) = -Bp(9,2)—5—TUro + Bp(9,1) 5 Uz0

The B terms are pure functions of the material properties and the inner and outer radii of the individual
plies.

B

22, .

{Bﬁ(l,ﬂ);BB(z,Q); .. .;BB(lg,Q)}

P .
=zga(1+1) 1t .1 .1 1 .1 4 R ._B_.R._fiz_._Rs_-
21 720) Ra()? Ra) R a2 al)  a(m)? ay " a(? a?¥

[:R + a(l)—_lz. [R + a(lﬂ_ RFR + a(lﬂ. BE_ [R + a(lj_\. [:R + a(lﬂ' R + a(l

me@? R a2 a0 a7 a)? " Ra(l)

. .,66, p; when B=p, Cg=P-

211 CB(j) [:R - 2:1(1)]1-1 drR
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(a) Thin cylinder; total thickness, 5 percent of outer radius;

TABLE VI.- FREQUENCY PARAMETER A FOR THREE-PLY CYLINDERS

Cy1(i): Clz(i): C13(i): sz(i): Ca3(i): C33(i)! C44(i): C55(i): Cse(i)

= 0.08: 0.05: 0,07: 0.19: 0,32: 1: 0.04: 0.03: 0.34

033(1)/c33(2) = c33(3)/c33(z) =20

a(l) = 0.95;

(i=1,2,3)

a(2) = 0.955; and a(3) = 0.995

- First frequency Second frequency Third frequency
b
- m N ‘ . N . s
a Thin Refined Thin Refined Thin Refined
Exact shell | laminate | EXact shell laminate | DXCt shell | laminate
1 0 0.32461 0.34393 0.32475 1.8186 1.8323 1.8321 3.0037 3.0582 3.0531
1 .33631 .36091 ) .33646 1.7031 1.7141 1.7139 3.1438 3.2082 3.2024
2 .367317 .40749 .36753 1.4689 1.4757 1.4756 3.4615 3.56521 3.5440
3 .40447 47064 .40467 1.2612 1.2657 1.2654 3.8451 3.9760 3.9636
4 42507 .52990 42533 1.1822 1.1875 1.1857 4.2502 4.4368 4.4173
2 0 .28282 .28342 .28286 .91444 .91614 .91612 1.5441 1.5508 1.5503
1 .30591 .30722 .30596 73851 .73938 .73936 1.7807 1.7917 1.7909
2 .30838 .31225 .30846 .60334 .60419 .60379 2.2071 2.2292 2.2275
3 .21959 23314 21974 719860 .80118 .79965 2.6748 2.7153 2.7122
4 20414 124179 .20444 1.1413 1.1467 1.1445 3.1559 3.2241 3.2187
8 0 .20999 .20995 .21000 .22901 .22904 .22904 51742 .51743 51757
1 .07054 .07054 .07054 41947 41954 41957 .84022 .84128 .84126
2 .03594 .03679 .03602 .78831 18949 .718928 1.3512 1.3559 1.3556
3 .06940 .07419 .06966 1.1918 1.1964 1.1956 1.8985 1.9113 1.9107
4 12237 .13560 .12283 1.5963 1.6080 1.6058 2.4564 2.4841 2.4828
© [ 0 0 0 0 0 0 .40893 .40875 .40897
1 0 0 . 0 57734 57756 57764 .59782 .59819 .59818
2 .02316 .02375 .02328 .91106 .91294 .91266 1.1935 1.1964 1.1963
3 .06372 06712 .06401 1.2851 1.2910 1.2900 1.7847 1.7946 1.7943
4 .11781 .12857 .11829 1.6695 1.6833 1.6808 .2.3694 2.3927 2.3921
(b) Thick cylinder; wotal thickness, 20 percent of outer radius; a(l) = 0.8; a(2) = 0.82; a(3) =0.98
First frequency Second frequency Third frequency
b : - - - .
- m : Refined : Refined laminate : Refined laminate
a Exact ’sr}};éill laminate; Exact ’srl?elill Exact g}}l‘éﬁ
Pm = Pm =1 Pm =2 pm=1 Pm =2
1 0 0.40438 0.81033 0.40466 1.6205 1.8399 1.8312 1.6637 1.7475 3.0636 1.8508 1.7901
1 .42140 .90411 42173 1.5294 1.7059 1.6938 1.5648 1.7530 3.2348 1.8543 1.7947
2 .46495 1.1402 .46544 1.3354 1.4500 1.4331 1.3580 1.7633 3.6180 1.8620 1.8037
3 .50904 1.2187 .50984 1.1742 1.4813 1.2375 1.1894 1.7626 4.0843 1.8508 1.8022
4 .52631 1.1676 52774 1.1540 1.8484 1.2171 1.1695 1.7309 4.5893 1.7982 1.7670
2 0 .31807 .34461 .31837 .89129 .91996 .91833 .89790 1.4316 1.5573 1.5388 1.4580
1 .35573 .41939 .35608 .71061 .725817 .72295 .71368 1.4242 1.8267 1.4445 1.4441
2 .33947 .46341 .33990 .62782 .68829 .63563 .62979 1.3608 2.3061 1.3801 1.3789
3 .28099 57619 .28145 .85051 .98070 .87356 .85655 1.65134 2.8370 1.5451 1.5381
4 .33070 .87921 .33178 1.1398 1.3556 1.2125 1.1597 1.7260 3.3934 1.7896 1.7581
8 0 .21844 .21804 21861 .22955 .22999 .22996 .22965 .54260 .54266 .54543 .54332
1 .06638 .06642 .06639 .46207 .46637 46439 .46267 .86049 .88568 .88059 .86560
2 .08773 .13212 .087¢7 .82383 .86418 .84514 .82944 1.3288 1.4482 1.4065 1.3499
3 .18459 .33591 .18496 1.1547 1,2943 1.2350 1.1765 1.6937 2.0573 1.7601 1.7266
4 .28616 .61270 .28705 1.3692 1.7296 1.5441 1.4177 1.9282 2.6843 1.9793 1.9503
o 0 0 0 0 0 0 0 0 .44779 44467 .44865 .44802
1 0 0 0 .60992 .61894 .61637 .61160 .64047 .65076 .64808 .64238
2 .08004 11167 .08019 .91989 .97362 .95316 .92872 1.2280 1.3015 1.2853 1.2418
3 .18123 .31182 .18159 1.2068 1.3758 1.3065 1.2338 1.7339 1.9523 1.8120 1.7733
4 .28393 .58693 .28481 1.3884 1.7937 1.5749 1.4405 1.9938 2.6030 2.0327 2.0090




TABLE VIL.- ACCURACY OF FREQUENCIES OBTAINED

BY USING THIN-SHELL THEORY

Thickness Nodal distance b
of laminate Radius __a | Circumferential Accuracy
wave number, R - Hiehl
. . m easonably ighly
Thin | Thick |Long | Moderate | Short accurate Inaccurate | ;.- Zate
X X X =2 X
X X X >2 X
X X All X
X X =1 X
X X >1 X
X X X All X
Notes:
1. Long: b/a>8
Moderate: 2 <b/a <8

Short: b/a < 2

2. Reasonably accurate:
error 5 percent to 25 percent
error greater than 25 percent

Inaccurate:
Highly inaccurate:

error less than 5 percent

3. Thickness up to 5 percent of radius
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TABLE VIIL - RELATIONSHIPS FOR dy, dg, AND d, AND FOR eg,eq,. . .

(a) Relations for dy, dp, and dg
i=0 for — j>0 for —
o s L _ j isevenand k=5,6 or
k=1,2,3,4 k=5,6 j isevenand k=1,2,34 or j isodd and k = 5,6 i isoddand k=1,2,3,4
dp(j,k) 1 0 (e2e6 - e4e5)/ eq 0
dg(i,k) eo 0 (ese5 - e1¢6) /€7 0
dy(j,k) 0 1 0 ee/eg
L F' A T 2
dp(j,Kk) 0 0 [(e‘ze6 +egep - eyeg - e4e5)e7 - (e2e6 - e4e5)e'7]/e,7 0
di(i, k) € 0 [(eées + egep - €1eg - eleé)e,7 - (ese5 - eleG)e,ﬂ/e,ﬂ 0
dy (5,k) 0 0 0 (eéeg eseé)/egz
d,(j,k) (e2é6 - e465>/e7 0
dg(i,k) (egés - elée)/efz 0
d,(j,k) 0 ézs/ég
aLG,k) el 4 elb, - e 8% - e'8s)e, - (enn - e 8. Ver] [en? 0
o Gr\ds 276 276 4-5 47557 ( 276 475 /71 7
dpi,k) 6L + ehd, - e 8L - €] - (eq8s - e185)er] [en? 0
o\ (‘9395 + €385 - €18 - €1€6)¢q (e3es € s) 7/ €7
Az, 0 (2389 - 258)) /égz




TABLE VIIL- RELATIONSHIPS FOR dy, dg, AND d, AND FOR eg, ey, - - - ~ Continued

(b) Relations for eg, €, . - -

Relation A‘

e C110(9? - Cem® - Cgy

m(Csg + Ca2) - m(Cs5 + C12) alk)
e Cqyfalo + )2 - C5gm? - Cag
ey m{(Css + C12)[a(k) + J'] - Cs5 - sz}
es m {-(c;,s + C1)[a) + i] - Cs5 - czz}
ey Css[e®) + ]2 - Caam? - Css
es (p2a? - C44N2)dp (-2, k) + Nd,(-1,%) {-(013 + Cag)f@l) +j - 1]-C13+ CZ%
e (pn%a? - CeeNDdy(i-2, ) + mNd,(j-1,K)(Ca3 + Ce6)
97 9194 - 6263
eg {(044 + Cyg) (@) +j - 1] + Caq + ngNdr(j—l,k) + (Cgg + C23)mNdg(i-1,k) + (p2a? - 033N2)dz(j-2,k)
eg Ceem? - Caae () + ke

Note: dp(-1,k), dg(-1,k), and d,(-1,k), when they occur, are zero.

(c) Relations for ey, e, . - -

Relation

Cs5+C12
Css5 + Ca2

2C11[oz(k) + jj

m(Cs5 + C12)

-m(Cs5 + C12)

2Cg5[a(k) + i

(pszzaz - C44N2)d'r(j—2,k) - N(C13 + Cqq)dp(i-1, k) + Nd,(i-1,k) {—(013 + Cag)fal) +j -1 - C13+ czg}

(ps22a2 - CGBNZ)d'G(j-Z,k) + (Cag + Cge)mNdy(i-1,K)

e'1e4 + ele:1 - eée3 - ezez3

(pszZaZ - 033N2) d,(j-2,K) + (Caq + C13INA(-1,K) + ﬁc44 + C19)[a® +j - 1] + Cgq + cz% Nd,(-1,k) + (Cgp + Cg3)mNdy(j-1,K)

-2Cy4 [Oz(k) + ]]

Note: dyp(-1,k), dy(-1,k), and dy(-1,k), when they occur, are zero.
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TABLE VII.- RELATIONSHIPS FOR dr,

(d) Values for &g,&g, - - -

dg, AND d, AND FOR eg,e1, . . . — Concluded

j=8 (j iseven) j=g+1 (j is odd) jzp+2
g | g
ég C44E3a(6) - a_-] at a = a(6);
thus, &g = 2C4q0(6)

e | g

&y | -Caq

ég Naz(B,6){—(C13 + Cyg)f(6) +i -1 - C13+ Cz%

ég mNdz(8,6) (Cg3 + Cep)

&y (pszza2 - C44N2>dr(l3-1, 6) - Nd,(8,6) (C13 + Ca4)

+ Naé(B,G){—(Cm +Caq)[@(6) +5 - 1] - C13 + Cag
&y (p92a? - CogN2)dg(p-18) + mNd,(8,6) (Ca3 + Cep)
é (p92a? - C33N2)a,(i-2,6 j -
8 p%a? - C33N2)d,(j-2,6) + {(Caq + C13)[a(®) + - 1]

+Cyy + Czs}Nar(j-l, 6) + (Cgg + Ca3)mNdp(j-1, 6)

&g g

&g (pa2a2 - C4aN2)ap(i-2,6) + N {—(Clg + Caa)e(®) +5 - 1
-~ Cy3+ Cz%az(j'l, 6)

ée (pﬂzaz - CGGNZ) &g(j—z, 6) + mN(Ca3 + Cse)az(j—l, 6)

& (p2a2 - C33N2)aL(j-2, 6) + (Caq + C13)NGL(j-1,6)
+ {(Cqq + C13)Ea(6) +j - 1] + Cq4 + Ca3 Na;.(j—l,ﬁ)
+ (Cgg + C23)mNa'9(j-1, 6)

&y ey = -2Cq4[a(6) + ]

& (p92a? - C4qN2)8(G-2,6) ~ (C13 + C4aING,(G-1,6)
+ -N{—(Cm +Cqq)[e(®) +j - 1] - C1g + c23} (-1, 6)

& (092222 - CgeN2) dj(i-2, 6) + mN(Ca3 + Cge)dp(i-1, 6)
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