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EXTRACTION FROM FLIGHT DATA OF LONGITUDINAL AERODYNAMIC
COEFFICIENTS FOR F-8 AIRCRAFT WITH SUPERCRITICAL WING

By James L. Williams and William T. Suit
Langley Research Center

SUMMARY

A parameter-extraction algorithm was used to determine the longitudinal aerody-
namic derivatives from flight data for the F-8 aircraft with supercritical wing. The flight
data were the responses to horizontal-tail pulses and the data used were for Mach num-
bers of 0.80, 0.90, and 0.98.

Results of this study showed that a set of derivatives were determined which yielded
a calculated aircraft response almost identical with the measured response in flight.

In addition, results of this study showed that the trends of the converged derivatives
with Mach numbers were generally similar to the trends obtained by using a Newton-
Raphson method. At the highest Mach number, the converged damping derivative was
substantially lower than the value of the damping derivative obtained from preliminary
tests in the Langley 8-foot transonic pressure tunnel. This lack of agreement probably
resulted from the difference in Reynclds number between the flight and wind-tunnel tests.

INTRODUCTION

Analytical and simulator studies of the flight and handling qualities of aircraft
require that accurate estimates of the aerodynamic parameters be used if the results are
to be valid. To provide aerodynamic parameters for analytical and simulator studies and
to also provide numerical values for comparison with wind-tunnel data and theoretical
estimates, parameters have been extracted from flight data for many years. Results
from recent studies made at the Langley Research Center relating to parameter extrac-
tion for several aircraft are reported in references 1 to 4.

Various techniques for parameter extraction are presented in reference 5. The
technique and program used in extracting the parameters in this study are those of the
maximum likelihood method of reference 6.

The purpose of the present study is to extract longitudinal aerodynamic parameters
from flight tests of the F-8 supercritical-wing aircraft at Mach numbers of 0,80, 0.90,
and 0.98.
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SYMBOLS

Ay, Ay, linear accelerations, g units
Cm pitching-moment coefficient about Y body axis
8Cm
Cmg = 5[aE
2
&
Cma = -E%—, per radian
oCpmp
Cméﬂ = r—
a( &L
2V
aC
Cmﬁh =3 m, per radian
h
Cx force coefficient along X body axis
aC
Cx a = —a—}s, per radian
a
Cz force coefficient along Z body axis
°Cyg :
Cy a =g Per radian
8Cyp .
z(Sh = _E’Eh_’ per radian
c mean geometric chord, m

DE = §p - 5h,t, rad
g gravitational acceleration, 1g = 9.81 m/sec?

hp pressure altitude, m



Ix,Iy,lz moment of inertia about the roll, pitch, and yaw axis, kg-m2
Ixz product of inertia, kg-m?2

distance from aircraft center of gravity to quarter-chord point of mean
aerodynamic chord of horizontal tail, m

N number of data points
p roll rate, rad/sec
q pitéh rate, rad/sec

1

Ry = Wlﬂ

i

r yaw rate, rad/sec

S wing area, m2

u velocity component along X body axis, m/sec
v resultant velocity, m/sec

v velocity component along Y body axis, m/sec
W aircraft weight, N

\JVq,Wu,WW weighting value of g, u, and w state variables
w velocity component along Z body axis, m/sec

X vector of aircraft states
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Subscripts:

angle of attack, deg or rad

angle of sideslip, deg or rad

horizontal-tail deflection (positive for trailing edge down), deg or rad
pitch aftitude angle, deg or rad

mass density of air, kg/m3

roll attitude, rad

computed
horizontal tail
measured in flight

indicates state at trim conditions

The dot over a symbol denotes rate of change with respect to time.

EQUATIONS OF MOTION -

The equations of motion used in this study are referred to a body-axis system
{fig. 1) and are as follows:

X Translational direction:

U=rv-qw - gsinf +=

1 g
szzs W[Cx,t + Cx,, (a' - at)]

yA Translational direction:

s 1 g
W=qu-pv+gcosfcos o+ Eszs ﬁ[:cz,t + C‘Za (a - aet) + Czah(éh - éh’t):l



Pitching moment:

L Ig-I1x  IXZ(g oy, 1pV2SE qe.
q_-I—Y_—pr+I—Y—(r -p)+§ - Cm,t+Cma(a-at)+Cmq

+ Cmy, g’—“} + Cmﬁh(éh - ah,t)]

The lateral variables v, p, and r were found to be small, and hence the nonlinear
terms in these equations were negligible for these calculations.

DESCRIPTION OF AIRPLANE

The airplane for which the aerodynamic parameters were extracted is the F-8 air-
plane on which the original wing was replaced with a supercritical wing. The aircraft is
a single-seat high performance airplane with a single jet engine embedded in the fuselage
and a unit horizontal tail. Figure 2 is a photograph of the airplane. Pertinent geometric
characteristics of the airplane are given in table I.

Flight instrumentation appropriate to this study included the following items:
(1) Pitch-rate gyro

(2) Angle-of-attack indicator

(3) Altimeter

(4) Total velocity indicator

(5) Horizontal-tail position indicator

(6) Magnetic tape recorders

(7) Accelerometers

The full-scale range of the flight instruments and their accuracies are given in table II.
FLIGHT TESTS

The data which are used in the present investigation were obtained from in-flight
measurement of the airplane response to a horizontal-tail input. These flights were
made at the NASA Flight Research Center as part of a general evaluation program of the
F-8 supercritical-wing aerodynamics. Data were obtained at Mach numbers of about 0.80,
0.90, and 0.98. The control input used to generate the longitudinal motion were one or
more horizontal-tail pulses. All data used in the study were reduced at Flight Research
Center and have been corrected for bias and displacement of the measuring instrument



from the aircraft center of gravity. A list of the test conditions and mass characteristics
are presented in table jird

DERIVATIVE-EXTRACTION PROCEDURE

The parameter-extraction procedure used in this study is an iterative technique
which utilizes the maximum likelihood method to estimate the stability and control
parameters. This method uses the likelihood function which, when maximized, provides
the following information:

(1) The parameter changes which are used to update the parameter

(2) The covariance matrices whose elements are proportional to the estimated
standard deviations and the pairwise correlation coefficients for the param-
eters and the states

(3} The performance index function J which is an indicator of the fit between
measured and calculated motions

Details of the method are given in reference 6.

The iterative technique produces a set of estimated derivatives which, when used in
the equations of motion, provide the best {fit to the time variation of the aircraft motion
measured in flight. The criterion for the best fit is the performance index J which is
defined as:

N

J = det % Zl (Xi,m - Xi,c) (Xi,m - Xi,C)T
i=

where det means determinant, T means transpose, and X is the vector describing
the state of the aircraft. Generally, the performance index J becomes smaller with
successive iterations. The iteration procedure is stopped when the value of J does not
change appreciably for several successive iterations. The components of the vector X
are the state variables u, w, q, 6, and Agz. The linear acceleration Ay was not
included in the X vector since this variable was generally small. The quantities up,
and wp, were not measured directly but were obtained from the measured total velocity
and angle of attack through the use of equations:

Ump = Vi €08 ay,

Wm = Vm sin o,



Maximization of the likelihood function yields the covariance matrix for the meas-
urement noise based on the current nominal solution. (See ref. 6.) This matrix gives the
variances (or standard deviations) of the differences of the measured state and the nominal
solution. The inverse of this matrix is the weighting matrix used in the parameter-change
equations. In this investigation, the diagonal form of the weighting matrix was used and
the diagonal elements can be expressed as the squares of the difference between the meas-
ured and calculated data. For example, the weight for the state variable u is expressed
as

2

11
RZ N,

1=

(m - ue);
1

1l

Similar cquations are obtained for 1/Ry2 and 1/Rg%.

Initial values of the state variable were obtained from the flight records for the time
period just prior to 2 control input. Initial values of the aerodynamic derivatives were
obtained from a preliminary investigation in the Langley 8-foot transonic pressure tunnel
and these values are listed in table IV. Although the tabulated derivatives were for a Mach
number of 0.8, they were used as initial values for all the work presented herein.

RESULTS AND DISCUSSION

The aerodynamic derivatives of table IV were used as starting values in the
parameter-estimation process for each flight condition. Preliminary results indicated a
high correlation between Czﬁh and Cmﬁh’ and also between Cmq and Cmd!. These
correlations had been observed in several other parameter-extraction studies and, there-
fore, were expected. The correlation problem was circumvented by fixing Cmd at -7.00
(the estimated value from table IV) and letting the computer search for Cmq- The corre-
lation between Cpmy 8y and Cg on was circumvented by using the geometric relationship

Cz. ==C
zéh th Mop

and searching for Cp X

The preliminary results also showed that the derivative Cx, hada very large
variance, which meant that it was not well defined. It was also found that Cyx ~ could be
varied over a rather large range of values without appreciably affecting the computed
time histories or the other extracted derivatives. The inaccuracy in this derivative
resulted from the fact that only small changes in the forward velocity u of the aircraft
occurred after the control input (Ayx small) and this derivative occurs in the equation



for forward velocity, The sirategy employed in selecting a value for Cy o Was to try a
range of values, and to select that value which resulted in the smallest variances in the
states at convergence. The value selected was CX, = 0.58. It appeared to be of reason-
able magnitude, and was therefore held constant during the iterative process for each
flight condition.

Calculated time histories obtained after convergence, and with the constraints noted,
are shown in figures 3, 4, and 5 for Mach numbers of 0.80, 0.90, and 0.98, respectively.
The calculated time histories are almost identical with the flight records.

The extracted derivatives and their estimated standard deviations are listed in
table V. The extracted derivatives appear to be well defined. There are no standard
deviations listed for CXa’ Czﬁ, and Cmd since these were constrained to the tabu-
lated values, as mentioned previcusly.

The more important extracted derivatives of table V are presented in figure 6 as
functions of Mach number. Also shown are values from preliminary tests in the Langley
8-foot transonic pressure tunnel and extracted derivatives from flight tests calculated by
using a Newton-Raphson method (ref. 7). In general, the extracted derivatives (the
present study and the Newton-Raphson method (ref. 7)) are in good agreement with the
wind-tunnel values. However, the extracted effective damping~in-pitch parameter
- (Cmq +Cm ciz) has a trend with Mach number which is opposite (lower value) that
obtained from wind-tunnel tests in the Mach number range from 0.90 to 1.00. One reason
for this difference can be attributed to a Reynolds number effect; since, in general, the
Reynolds number for the present tests was about 10 times the Reynolds number of the
wind-tunnel tests at these Mach numbers.

CONCLUDING REMARKS

A parameter-extraction algorithm was used to determine the longitudinal aerody-
namic derivatives from flight data for the F-8 aircraft with supercritical wing. The
flight data were the responses to horizontal-tail pulses and the data used were for Mach
numbers of 0.80, 0.90, and 0.98.

Results of this study showed that a set of derivatives were determined which yielded
a calculated aircraft response almost identical with the measured response in flight.

In addition, results of this study showed that the trends of the converged derivatives
with Mach number were generally similar to the trends obtained with the Newton-Raphson
method. At the highest Mach number, the converged damping derivative was substantially



lower than the value of the damping derivative obtained from preliminary tests in the
Langley 8-foot transonic pressure tunnel. This discrepancy appears to be caused by a
difference in Reynolds numbers between the flight and wind-tunnel tests.

Langley Research Center,
National Aeronautics and Space Administration,
Hampton, Va., January 10, 1974,
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TABLE I.- GEOMETRIC CHARACTERISTICS OF F-8 AIRCRAFT

Fuselage:
Length, M . . v ¢ o v 0 o ot e e e e e e e e e e e e e e e e e e e 16.09
Wing:
Ared, M2 . . L e e e e e e 25.50
Aspectratio. . . . . . . L L L e e e e e e e e e e e e e 6.77
022 o o 13.14
Mean geometric chord, m . . . . . . . . .. 0oL o e e e e 2,08
Vertical tail:
ATea, M2 . L L e e e e e e e 10.13
Aspect ratio . . . . . . . L L L e e e e e e e e e e 1.5
SPan, M . . . . . . e e e e e e e e e e e e e e e e e e e e e e e e e 3.89
Rudder:
Area, M2 . . . L e e e e 1.17
Horizontal tail:
Area, M2 . L e e e e e e 8.68
Aspect ratio . . . . . . L L . e e e e e e e e e e e e e e e e e e e e e 3.5
SPan, M . . . . . . o e e e e e e e e e e e e e e e e e e e e e e e e e 5.52
Tail length, center of gravity to quarter-chord point
of mean geometricchord, m . . . . . . . . . . . . . e e e e 5.31
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TABLE II.- INSTRUMENT RANGES AND ACCURACIES

Instrument Range Accuracy
Pitch rate +40 deg/sec +0.8 deg/sec
Angle of attack -50 to +259 +0.3°
Pressure altitude 0 to 18000 m +0.024 kN/m?2
Total velocity 0 to 360 m/sec | +0.7 m/sec
Horizontal-tail position -250 to 70 £0.40
Normal acceleration at c.g. -1g to +4g +0.06g
Longitudinal acceleration at c.g. +0.5g +0.01g
Pitch angle +300 +0.6°

TABLE III.- TEST CONDITIONS AND MASS CHARACTERISTICS

Weight, | Mass, | Ix, Ly, Iz, Ix 7, hp, hs

N kg kg-m2 kg_mz kg—mz kg-m2 m m
Mach number, 0.80

105981 |10807.020519.9125574.1|139580.1}4559.5 | 11264.0 5.31
Mach number, 0.90

104722 |10678.7|20511.2 [125305.9 [139319.8 (4514.6 |11274.25.30
Mach number, 0.98

101982 |10399.3|20492.31124660.9|138 693.6 | 4406.5 |13 856.0|5.27

TABLE IV.- STARTING VALUES OF AERODYNAMIC DERIVATIVES

Cxa

Cza

Czah

Cm,,

Cmy,

Cmq

Cm 5y,

-0.29

-6.13

-0.91

-1.14

-7.0

-41.6

-2.69

11
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AND STANDARD DEVIATION

TABLE V.- EXTRACTED AERODYNAMIC PARAMETERS

Parameters and standard deviationsd

at Mach number of —

Coefficients

0.81 0.90 0.98
Cxt - 0.03  (0.00) 0.02  (0.00) 0.02 (0.00)
Cx, - bo.58 bo.58 bo.58
Czt - - -0.44  (0.00) -0.44  (0.00) -0.44  (0.00)
Czy - - -6.02  {0.08) -6.95  (0.13) -7.49 (0.24)
Czg, - b_p.92 b_1.01 b _g.97 ,
Cmt . - 0.003 (0.00) 0.003 (0.03) 0.00 (0.00)
Cmy - -1.62  (0.01) -2.04  (0.10) -3.31 (0.02)
Cmyg - b_7.00 b_7.00 b _7.00
Cmy -27.82  (1.04) -29.17  (1.83) -16.59 (2.60)
Cmg, - - - -2.3¢  (0.02) -2.58  (0.73) -2.46 - (0.07)

4standard deviations are given in parentheses.
PUsed as constants.




wind direction

Figure 1.- System of axes. Positive directions of forces, moments,
and angles are indicated by arrows.
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Figure 2.- Photograph of aircraft for which derivatives were extracted.
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Figure 6.- Comparison of extracted derivatives with Mach number for the F-8 supercritical-
wing aircraft with preliminary results from the Langley 8-foot transonic pressure tunnel.



44

£0g6-1 ¥L61 “Aorduey- vSYN

8 Transonic Tunnel
Present study

o0

0.8 0.9
Mach no.

.0

Figure 6.- Concluded.

-10.0

(b) Normal-force derivatives.

I ©
O
® o
&
&
| | i
0.8 0.9 .0
Mach no,





