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1. INTRODUCTION 

The NASA Ames/DSI oblique wing remotely piloted research air­

craft, shown in Figure (1. 1), is a highly unusual, variable remotely piloted 

vehicle whose configuration and capabilities are the result of certain initial 

design guidelines that, in terms of conventional aircraft structures and 

configurations, would be considered to be contradictory and unachievable. 

Accordingly, the novel design of the yawed wing RPV is at odds in many 

respects with conventional aircraft practice. Novelty, then, forms the 

first, unwritten, design guideline. This design is intended to move away 

from convention in geometry, structure, and materials. 

The following are the specific guidelines followed in the design of 

the yawed wing RPV along with a short discussion of the impact of each on 

the configuration of the vehicle. 

1. ALL WING CONFIGURATION 

All wing is taken to mean no fuselage and no tail. To this end the 

engine and payload are housed in the wing. One feature unique to all wing 

configurations is an increasing structural "g" limit with the addition of pay­

load up to the point where the mass distribution matches the lift distribution. 

A short coupled tail structure is incorporated in the design to provide 

static stability while yawed. Provisions are made for removing the tail 

structure if flights with relaxed stability are t6 be made. 
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Z. 	 YAWED WING 

Wing yawing was the preeminent design requirement. Combined 

with the all-wing guideline, the requirement to yaw the wing forms a most 

difficult set of requirements. To accommodate wing yaw, the structure is 

designed such that the engine is housed in a rotating turntable. To the turn­

table is attached the short tail structure and a small fuselage to house a 

forward viewing television camera. 

3. 	 PLASTIC MATERIAL 

The use of conventional plastics was ruled out by the high stress level­

produced in the unconventional geometry of the RPV. Had stress levels been 

lower, the development of the necessary technology to fully utilize plastic 

materials would still have been beyond scope- (and budget) of this program in 

light of the other unusual requirements placed on this vehicle. The material 

use'd is fiberglass/epoxy which, in common with plastics, has the advantages 

of low radar signature and high energy absorption capabilities. 

4. 	 CRASH SURVIVABLE/ REPAIRABLE 

Crash survivability is a product of the all wing configuration. It was 

found in early model tests that tail structures and surface represent the high­

est liability during launch and recovery operations. Tailless models easily 

survived without damage in net and snag recoveries that would have rendered 

tailed models unflyable. 
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Repairability accrues from the use of epoxy for 90 percent of the
 

structure. Field repairs will be possible in many cases. Particularly
 

vulnerable items such as the wing tips, the horizontal tail and the vertical
 

tip are frangeable and are easily replaced in the field.
 

5. 	 PAYLOAD - 160 LBS. 

Wing area and power available allow for a payload of well above the
 

required figure. Payload volume available in the removable leading edge
 

is 8 ft 3..
 

6. 	 GIMBALLED TV. SYSTEM WITH WIDE ANGLE AND ZOOM LENS
 

The T. V. system tilts + 80 degrees. A 10:1 zoom lens provides a
 

'field 	of view from 5.3 to 53 degrees in width. A separate wide angle lens 

is not provided since the wide field of the zoom is considered adequate. 

7. 	 PARACHUTE RECOVERY CAPABILITY 

A fast deploying parachute system is provided for emergency use. A 

certain amount of damage will be sustained in a parachute recovery, but will 

--not extend to the primary structure. 

8. 	 AUTOPILOT 

A two-axis autopilot with altitude hold capability is selected from the 

ground. Bank and pitch changes may be commanded while in autopilot mode. 

9. 	 DUCTED PROP 

A 50 inch diameter duct shrouds'the propeller. The duct improves low 

speed 	thrr .t and adds a degree of safety to ground handling operations.
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10. CATAPULT LAUNCH
 

Wheeled takeoff is used for.initial flights. Catapult launch capability 

is not provided at this time but may be added at a later time. 

The rest of this report is organized to provide a reasonably detailed 

examination of the efforts expended under this contract starting with the 

project task organization and ending with ground testing of the RPV. There 

are two companion volumes to this report: Volume II is a compilation of 

all drawings and schematics created for purpose of fabricating the RPV; 

Volume III is a short, Operations Manual. 
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PROJECT ORGANIZATION 

Project tasks were organized into three parallel efforts. These were 

airframe design and fabrication, avionics development and construction, and 

propulsion development and testing. These efforts and their component tasks 

are illustrated in Table I. 

Each effort underwent an initial definition phase. These necessary 

design guidelines were changed drastically between the time the proposal was 

generated and the start of the program. In addition, the engine that was to be 

used initially was not available and a suitable replacement had to be chosen. 

Since the static stability of a yawing all wing aircraft could not be 

evaluated theoretically with much confidence, finalization of the configuration 

and structural design could not begin until the completion of wind tunnel testing. 

The tests resulted in several modification's to the initial configuration. A 

design review was held after the design concepts had been further refined and 

resulted in further changes. As shown in Table I the original completion 

period was nearly half spent before detail design could begin. 

Avionics development was a continuous effort from the beginning of 

the program. While every effort was made to use commercially available 

components where possible, it was necessary to develop circuits f6r most 

functions. 
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PROJECT ORGANIZATION 

TABLE I 

-Percent Completion Time 

10 20 30 40 50 60 70 80 90 100 

VEHICLE DEFINITION 
FROM GUIDELINES 

PRELIMINARY CONFIG-
URATION DRAWINGS 

WIND TUNNEL TESTS -

MODIFIED CONFIGURATION 
AND PRELIMINARY DESIGN 
REPORT 

DESIGN REVIEW (3 

'DESIGN _ 

- AIRFRAME FABRICATION 

AVIONICS DEFINITION 

-AVIONICS DEVELOPMENT \"_ 

AVIONICS FABRICATION _ 

AVIONICS TESTING . 

AVIONICS INTEGRATION 

PROPULSION DEFINITION 

ENGINE MODIFICATION 

ENGINE TESTING 

ENGINE INTEGRATION 

FINAL SYSTEMS CHECK 

FLIGHT TEST 
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A number of unique circuits were designed in the course of this development 

which are described in the technical section of.this report 

Engine development consisted of the examination of a number of can­

didate engines and purchase of and modifications to the chosen unit. Integ­

ration into the unconventional airframe presented as much a problem in this 

area as the engine modifications themselves. 

Overall system integration, once the components were completed, pre­

sented very little problem since constant interaction occured during design 

of the individual components. Nevertheless, component mounting, inter­

wiring, final testing and trouble shooting proved to be a time consuming 

phase. 

-7­



2. VEHICLE CONFIGURATION AND AERODYNAMICS 

2.1 Configuration 

Design guidelines call for an all-wing vehicle capable of flying 

at wing yaw angles between 0 <A< 4 5 0. Early aerodynamic analysis indicated 

that it might be difficult, if not impossible, to achieve longitudinal static aero­

dynamic stability without a horizontal tail. This was later borne out by more 

detailed theoretical and experimental analysis. Thus, as presently configured, 

the aircraft is fitted with a "T" tail with removeable horizontal surfaces. The 

craft can be flown in the zero-to-moderate yaw configuration without the elevator, 

but is statically unstable without it in the 450 yaw configuration. 

Figure (2. 1) shows a three-view of the vehicle with elevator attached. 

The craft has a wing span of 22.7 ft. and an overall length of 13.4 ft. Other basic 

data are listed later for both the wind tunnel and the final configurations. 

The vehicle is controlled largely by a pair of elevons which are 

operable both differentially (as ailerons) and together (as an elevator). The aileron/ 

elevator command functions are achieved electronically rather than mechanically. 

Actuation is by servos based on lightweight gear motors direct-coupled to the elevons. 

The horizontal tail is operated by a separate servo commanded by 

the same circuit as the elevons' elevator functions. Thus, the tail can be removed 

and the craft flown as a flying wing when desired while still utilizing the elevator 

function of the elevons. 
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The 21% thibk reflexed wing airfoil section is shown in Figure 

(2,2), and is constant over the entire untwisted At = 5.0 elliptic planform. The 

thick wing was selected on the basis of the payload housing requirement specified 

by NASA and structural requirements. 

The outboard leading edge of the wing is largely non-structural 

and is removable for installation and removal of payload. The wing is "dished" 

near the center (producing the flared spanwise thickness distribution shown in 

Figure (2. 1)) to permit yawing of the fuselage with respect to the wing without 

breaking the contour of the fuselage/wing mating surfaces. The trailing wing is 

fitted with a vertical stabilizer which provides weathercock stability at the larger 

wing yaw angles. The wing tips and tip stabilizer are frangeable to minimize 

damage at recovery. The wing structure is discussed in a later section. 

The fuselage consists of the nose, the central disc or "cookie", 

and the tail assembly. 

The nose contains the television scanner and related zoom and 

tilt mechanisms, as well as the flight instrumentation and instrumefitation camera, 

command receiver, yaw, roll and pitch gyros and transmitters for the television 

signal, and UHF tracking. Also contained in the nose is the battery, fuel tank, 

and vacuum pump. 

The "cookie" (so nicknamed since it is in essence a circular disc 

of constant thickness (6.9")), contains the 90 H.P. engine, a 46.5 ft. paraform 

chute, and related equipment. A spanwise slit through the cookie accommodates 

the propeller disc. 
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Attached to the cookie is a 48 inside diameter propeller duct 

of symmetrical 18% thick airfoil section. The propeller duct improves static 

thrust and thrust at low speeds, permitting a high cruise speed prop to be used 

while still achieving satisfactory takeoff and climb performance. The duct 

also reduces propeller tip noise, and protects operators from the spinning 

propeller. 

Drawings in Volume II show the chute deployment arrange­

ment. Deployment of the chute occurs automatically when the command signal is 

lost. The craft can also be deliberately recovered by this method in response to 

a command signal from the -ground. 

The horizontal tail is mounted in the 'T"arrangement to minimize 

aerodynamic interference with the wing at the high wing yaw angles. It is con­

structed of a thin layer of epoxy-fiberglass backed by a foam filling and is frange­

able to minimize recovery damage. The tip part of the vertical tail is also con­

structed of this material and is also frangeable. The vertical tail is fitted with 

a controllable rudder. 

The vertical/horizontal tail components are supported by a large 

diameter tube structure designed to accommodate the wing yawing motion. Two 

additional braces are TVeed" from the duct to the tail to stiffen the tail assembly 

in torsion, thereby minimizing the danger of flutter. These braces are carried 

through the duct and continued upstream to the fuselage nose. Another tube con­

nects the nose to the bottom of the propeller duct for support, and to deflect the 

arresting cable in the case of a low approach when using a horizontal-cable snag 

recovery system. 
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2.2 Aerodynamics 

Oblique-wing aircraft configurations have a number of unique 

aerodynamic features and problems. This is especially true for tailless and 

short tailed configurations where the oblique-wing problems assume first order 

prominence. To date, aerodynamicists have had little experience with solving 

these problems so that at the present time, few design guidelines exist. There­

fore, as part of the present development program, it was necessary to explore 

in detail the idiosyncrasies of oblique-wing configurations, establish the needed 

guidelines, and incorporate them into the RPV design. 

This task was approached both theoretically and experimentally 

through the use of the DSI-Neumann potential flow computer programs and wind 

tunnel tests performed by DSI at NASA-Ames. 

The axis system used is a wing fixed or stability axis system 

shown in Figure (2.3). 

2.2.1 Theoretical Analysis 

In order to provide a deeper understanding into oblique­

wing aerodynamics as well as to permit extrapolation of wind tunnel data, the 

RPV wing was analyzed using the DSI-Neurnann lifting-latice computer program. 

As originally constructed, this program was restricted to bodies with planes of 

symmetry, so that it was necessary to re-write the program to accommodate 

assymmetrical bodies such as the oblique-wing. 
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Figure (2.4) shows the calculated lift as a function 

of angle of attack for four wing yaw angles (A = 0, 150, 300 , and 450) for the 

RPV wing camber and planform geometry. As expected, the lift-slope decreases 

with increasing A (Figure 2.5). 

Figure (2.6) shows the influence of wing yaw angle on 

the position of the aerodynamic center, Xac at zero Mach number as computed 

with the Neumann program for the DSI RPV wing. As can be seen, the aerodynamic 

center* moves foiward by a considerable amount as I\- increases to 450 . 

To obtain static aerodynamic stability throughout the 

range o A< 450 with a tailless airplane it would be necessary either to continuously 

move the c. g. of the aircraft forward to match the movement of the aerodynamic 

center with A, or to initially set the airplane c. g. ahead of the maximum forward 

a. c. position corresponding to the maximum -. 

The first solution proves to be impractical, although 

it must be noted that by offsetting the wing c. g. from the plane of initial symmetry 

in the direction of the forward-moving wing, an appreciable forward motion of the 

total aircraft c. g. can be achieved in cases where Ww is of order unity. On the 
Wf 

other hand, if the center of gravity of the wing itself is ahead of the wing pivot point, 

As measured from the L.E. of the = 0 wing. 
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and no such initial offset of the wing c. g. is provided, the total airplane c. g. will 

move rearward further compounding the stability problem when Wwf = 0 [. 

In the present aircraft design, the payload must be 

carried in the wing structure, and the payload c.g. must be located on the craft 

center of gravity which in turn must be forward of the quarter chord point. Thus, 

the wing c.g. is necessarily ahead of the pivot point and also, Ww/wf = 0 [1] 

(specifically, with full payload, Ww/wf = 0.5). 

This, of course, can be minimized by laterally offsetting 

the c.g. in the direction of the leading wing, but this solution obviously creates the 

necessity for corrective aileron trim to maintain level flight at-/V = 0. 

The second possible solution mentioned above to deal 

with the stability problem (i. e., setting the initial c. g. ahead of the maximum 

forward a. c. position corresponding to A-= -L max) creates serious trim pr6blems 

forA_= 0. 

Finally, with an all-wing type of configur-cion, in practice 

it is difficult to obtain a e.g. location much further forward than about 25% chord, 

which requires that all payload and most of the propulsion system be located forward 

of the quarter chord. 

Thus, in conclusion, with true tailless oblique wing air­

craft configurations, it is either necessary to provide substantial initial lateral 

center of gravity offset to obtain static longitudinal stability, or to equip the craft 

with an artificial stability system. 

-13­



Z.Z. 	2 Wind Tunnel Tests 

Model and Tunnel 

An unpowered wind tunnel model (Figure (2.7)) was 

constructed on a scale of 0. 1794 (model span = 48"). By comparing values in 

TableII it is seen that the model configuration tested differs somewhat from the 

final configuration. These changes resulted from the findings of the tests them­

selves. All computations made in this section relate to the model as tested rather 

than to the vehicle. 

The model was 	fitted with a six-component wind tunnel 

balance mounted to the "cookie" so that the balance was fixed with respect 

to th'e tunnel support system and sting, and the wing moved with respect to 

the balance/sting/support system. The reference moment center was locate 

at the position corresponding to the 1/4-ch'ord point of the A = 0 wing. 

Tests were performed in the Army-Ames 7' x 10' wind tunnel at a speed 

of 170 ft/sec. 

Experiments were performed at two wing-yaw angle 

settings (A = 00 arid 450) with variable elevon settings, (both differential 

and together) as well as with and without horizontal tail and various horizonte 

tail angles. 

Vc 6 	 1 _V g 
.Re= 

V-	 610 and q 1 P 35 #/ft 
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TABLE II 

RPV AND MODEL DIMENSIONS 

RATIONOMENCLATURE. WIND TUNNEL FINAL 
MODEL CONFIGURATION FINAL/MODEL 

Span b 48.25 in. 268 in. 

Chord c 12.25 in. 68.3 in. 

Wing Area S 464 in. 99.8 ft.Z 

Aspect Ratio A 5.0Z 5.00 .996 

Tail Length, 
Horizontal 

It 
I/t/c 

9. 75 
0.796 

in. 74. Z5 
1.087 

in. 
1.366 

Tail Height 

Fuselage 
* length 

L.E. to nose 

ht 
ht/c 

If 
If/c 

4.50 
0.367 

10.25 
0.837 

in. 

in. 

28.5 
0.417 

63.5 
0.930 

in. 

in. 

1.136 

1.111 

Fuselage
Diameter 

Df
Df/c 

3.0
0. 122 

in. 18.0 
0. 132 

in. 
1. 082 

Tail Length 
Vertical 

Iv 
Iv/c 

7.75 
0. 633 

in. 68.75 
1.007 

in. 
1.591 

Elevon area Se" 
-Se/S 

45,5
.098 

in. 11.75 
.118 

ft. 1.204 

Elevator 
area 

Vertical 
area 

St 
St/S 

Sv 
Sv/S 

Z 
50.3 in. 
0,108 

.2 
18,0 in. 
0,0387 

12.9 
0.129 

5.56 
0.0556 

2 
ft. 

2Z 
ft. 

1.194 

1.437 

L.E. to center 
of rotation 

d 
d/c 

6.125 in." 
0.50 

9.Z5 
0.428 

in. 
0.856 

Duct 
diameter 

D 
D/c 

8.6Z5 in. 
0o35Z 

50.5 
0.37 

in. 
1.051 

Horzontal tail 
volume 
m ht/b/z. 

.086 

. 19 
.140 
.21 

1.63 

r 

downwash 
at tail 

It/b/z .41 

.53 

.55 

.49 

15 

0.925 



Flow -Visualization 

Before presenting the force data, it is useful at this 

point to examine some tuft photographs taken of the model under various 

explain many of the phenomenaconditions. These photographs will help to 

observed in the force balance results. 

Figures (2. 8a) and 2. 8b) show the model RPV with 

-A 0 at angles of attack of 0t= 00 and 150 (near stall) respectively. 

These results are substantially what is to be expected. It is noted from 

Figure (2. 8b) that stall occurs first at the root which is a desirable con­

dition. 

By way of contrast, Figures (2. 9a) and 2. 9b) show 

dramatically different behavior at a= 100 and 200 (stall for the A = 450 

wing). In particular, even when the wing is at a relatively low angle of 

attack (Figure (Z. 9a)), the flow aft of the elevon hinge lines is seen to be 

predominately spanwise, particularly on the trailing wing. This would 

suggest that the elevon would not be too effective, either in roll or pitch 

control at this value of A. 

At .a= 200, the spanwise flow completely dominates 

the picture as can be seen from Figure (2. 9b). 
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Further flow visualization studies showed that the tufts 

attached to the propeller duct (top and bottom) indicated no tendency toward separation 

despite the small nose radius of curvature bf the duct. This would suggest that the 

flow turning was accomplished wholly by the wing and that the ,effective local angle of 

attack of the duct (and hence its loading) did not vary appreciably with craft angle of 

attack... 

Drag Polar 

Figure (2. 10) shows-the experimentally measured 

drag polars for the A = 0 and A = 450 configurations without elevator in.the 

range 0 < CL < 0 L ax. The slope of these curves gives the effective 

aspect ratio of the lifting surfaces (independent of any particular theoretical 

assumption) in the linear range of the CD vs CL curves. The following 

values may be determined from Figure (2. 10). 

ARe = 5.0 (A = o) 

and ADe = Z.4 (A = 450) -

Since the A = 0 geometrical aspect ratio is 5. 0, this 

implies that Oswald's efficiency factor for the elliptic wing is e = 1.0. 

Also, since geometrically, 

(- )A = '(AR)A = 0 cos 2 A (approximately) 

(AR)45 = 5.0 (.707) 2 = 2. 5 

Then, forA= 45o, e= - 4- 0.96
-2.5 
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It is also noted from Figure (Z. 10) that the parasitic 

drag coefficient CD for the A = 00 configuration is 

pCDP= 0. 026 

while for the A 450 configuration 

CDD = 0.020 

The reason for this 30% drag difference is not really clear, although it is 

suspected that in yawing the wing, some of the gaps and openings in the 

model required to accommodate the motion of the wing relative to the 

"cookie" were better sealed in the 450 configuration than in the A = 00 one. 

Adding the horizontal tail increased the parasitic drag 

coefficient to a value of 

CDw= 0.028 

which constituted about a 5% increase in drag. 

The high drag values at A = 0 result from the, geometrical 

compromises associated with the requirement of variable wing yaw angle. 

If it were not necessary to yaw the wing, the aerodynamic cleanness could 

be improved at A= 0. Alternatively, it could be possible in practice to design 

sliding fairings to keep the geometry clean throughout the wing-yaw range. 

To-determine the effectiveness of such fairings, the gaps and openings 

required to accommodate the wing motion in the model were sealed with 
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modeling clay in the -A- = 00 configuration. The result was 

CDP = 0. 0217 (with tail)
 

CDP = 0. 0208 (without tail - estimated)
 

a reduction of about 23% over the unfaired craft geometry drag. 

However, it is noted that this parasitic drag coefficient 

is still about 4 percent higher than that of the unfaired JA= 450 configuration. 

Longitudinal Forces = )) 

Figures (2. 11) and (2. 12) show the pitching moment 

coefficient about the 1/4-chord point, and the lift coefficient as functions of angle 

of attack and four different elevon settings for the-A- = 0 wing yaw tailless con­

figuration. 

The elevons are seen to have a powerful pitching 

effect with little sacrifice in CL for the elevon up condition, even for 8 e = -200 
max 

(positive sign denotes elevon trailing edge down). 

A straight line approximation was made to the data shown 

in Figure (2. 11) in the range 0 <ct< 9 degrees for elevoh angles of - 10, 0, and 10 

degrees. These slopes were averaged to arrive at 

3Cm 1/4 - .0015 per degree. 

Also, 

= 0.064 per degree
 

Oct
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Since 
Cm 1/4 /aa"
 

Xac = 0.25 

Then 

Xac = 0.227 

varying only slightly with 8 e for the A = 0 configuration with no horizontal tail. 

Let us note in passing that the experimental results of Figure (2. 11) show a real. 

problem for elevon deflections of - 20 degrees with no elevator. 

Now, adding a horizontal tail will move the aerodynamic center aft by an 

amount 
at ( de It St 

AXaac - -aw 1--)d a -c -Sw (1) 

For the tail location on the wind tunnel model shown in Figure (2.7), the 

nondiimensional horizontal and vertical tail a. c. locations with respect to 

the wing a. c. become, respectively, 

2 t
 
r = -E- = 0.405 

2 h t 

and m = -- = 0.183b 

From Perkins and Hage (reference (1) - pp 224), using data for Al = 3 as repre­

sentative of the elliptic wing, 

d 0.53 

d a
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for these values of r and m 

Recalling that 

aw = 0.065 

and noting that the tail aspect ratio is 

A = 4.94 

then, for act = 0.107 (reference (1)) 

a t .107 
at === 0.0761+ 57.3 a0 t 1+ 57.3 (.107) 

7!YR 7" (4.94) 

From equation (1), 

AXac - 0.06 (1- 0.53) (.796) ( 100 = 0.0481S0. 06510 

Thus, the calculated aerodynamic center of the model with the horizontal tail 

(i. e., the stick fixed neutral point) is 

Xac = 0.227 + 0.048 = 0.275 (theoretically) 

From the experimental results of Figure (2.13) for the model with tail it is seen 

that 

Cm 1/4 _ .0015 o<a<5 

FCL .From the same tests -. 0705. 
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'l'aus, 

ac 

02 

.25 
-. 0015 

.0705 

= 0.25+ .b212 

0.278 

Which is in good agreement with the theoretical prediction (Xac = 0.275). Thus, 

even with such a short coupled horizontal tail, the simplified theoretical approach 

used above gives realistic results, and can be used confidently in making any 

modifications to the design, at least for the case of the A 00 configuration. 

Longitudinal Forces (A = 450) 

Figures (2. 14), (2.15), and (2.16) show the experimentally 

obtained longitudinal behavior of the A = 450 configured model. The Neumann 

theoretically predicted behavior is included hwere appropriate for comparison. 

From Figure (2..14) it is seen that the tailless A = 450 configuration achieves 

about the same maximum lift coefficient (CLmax 0. 98) as the A = 00 con­

figuration; although at a higher angle of attack (240 instead of about 15 ). The 

lift-curve slope for this configuration is seen to be 

aw = 0.042 (per degree) 

From the experimental results of Figure (2.15), it may be determined that for 

'the A = 450 tailless configuration in the linear range of the data, (-9 0 <a< 90) 

SCm1/4 _ .0034 

and that this slope is sensibly independent of the elevon angle. 
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Thus, in this a range, the aerodynamic center is located 

at the fixed position 

0. 0034 
X =) 0.25 -ac 0.042 

- 0.25 - 0.081 

0. 169 

The Neumann predicted result for the A = 450 configuration is Xac = 0.246, 

suggesting that the influence of the nose is possibly 

AXac = 0.246 - 0.169 = 0.077 

for the A = 450 configuration in this a range. A faired curve based on the 

theory for the aerodynamic center travel is shown in Figure (2. 16). 

In the range 9°< C1< 180, before stall, the moment drops off 

sharply and the a. c. moves to 

-0. 00384 
Xac = 0.25 - .042 

= 0.25 + .0.091 

= 0.341 

In the stall region of this wing (ae >18 ) the curve again 

reverses, putting the a. c. very far forward and-iving an unstable stall. 

Referring again to the flow visualization photos, this would 

suggest that as the stall begins, the trailing wing becomes almost completely 
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ineffective due to the rearward drift of the boundary layer (i.e., the trailing 

stalls before the leading wing). The sudden reversal in the region (10°<C<180 ) 

is yet unexplained. 

Now, comparing Figures (2.15) and (2.11), it is also 

seen that the effectiveness of the elevons in generating pitching moments at 

A = 450 is drastically decreased in comparison with their effectiveness at 

A = o, even though the net centroid of the elevon area with respect to the balance 

center remains essentially unchanged longittdinally. However, since the leading 

elevon moves ahead of the balance center and retains its aerodynamic effectiveness, 

while the aft-moving trailing elevon rapidly loses its effectiveness, the result is, 

a reduction in pitching moment for given elevon settings, especially at the higher 

angles of attack as is clearly seen in Figure (2.15). 

We shall now attempt to test the accuracy of the theoretical 

approach to predicting the effect of the horizontal tail on the craft stability for 

the A = 450 configuration. This is likely to be crude indeed, since at present we 

have little in the way of proven downwash information on yawed wings. However, 

we shall continue undaunted to use straight wing information to achieve the answers, 

and check the results obtained with the present experiments to determine the magni­

tude of the resulting errors. 

From equation (1) 

't StAXac =K at (1 de 
acda c Sw 

where the empirical constant K is now inserted to account for the yawed wing effect. 
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AXac = K 0.076 53) 10011 = 0.07440.042 (1- (.796) 

Now, from the experiments with the elevators in place (6 -6 deg.) in the range 

.-90< C <9 ° 

Cmt = .0012 

Thus, the aerodynamic center for the yawed wing model with horizontal tail is 

Xae = 0.25 - .0012 0.25 - .0286 = 0.2214 

ac .042 

Since the original a. c. location in this range was 

(Xac) talless = 0.169 

then 

AXac = .0524 

Solving for K 

0.0524 
K 0 0.7040.0744 

Which is a result that will be used in aerodynamic modifications to obtain the 

final design. 

In the range 90 <0 < 180, the experimental data gives 

-0. 00334 
Xac = 0. 25 

0.042
 

= 0.25 + .080 = 0.330.
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Corresponding to 

Xac = 0.341- 0.330 = 0.011 

which means that in this range, the tail is not nearly as effective in stabilizing 

the craft as it is in the range - 90< C1 < 90 . However, in this range, the craft 

is very stable anyway. 

Lateral Results A = 0 

The experimental results of interest here are the yaw 

restoring moments due to sideslip angle and the aileron power. 

As a benchmark for the yaw behavior, the theoretical yaw 

restoring derivative CN.8 is ideally 

CN Iv St 
= av c S 

For the model under consideration 

- '0.36 I = 0.55, atv - v
 
S c Sv
 

aov .107- .055 
av 1 + 57.3 a0 1+ 57.3 (.107) 

2 7rAv c 27r (1) 

where the 2 accounts for the imaging affect of the wing on the vertical tail aspect 

ratio, since on the original model, the two overlapped. Thus, theoretically, 

= 0.036 (.55) (. 036) = 0.0010 
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The experimental results, of Figure (2.17) show that for 

the model without the horizontal tail, the yaw restoring moments due to vertical 

tail are 

CN 0.0009 

The agreement of this experimental value with the 

calculated effect of the tail indicates that, contrary to the results in pitch, the 

nose has little de-stabilizing effect in yaw. This is propably due, in part, to 

the fact that there exists a horizontal slot in the nose (to accommodate wing 

yawing) which permits fluid to flow through the nose when it is yawed relative 

to the stream, thereby reducing its lifting effectiveness. This slot does not 

affect the lift generation of the nose in pitch. Additional stabilizing moment is 

contributed by the duct, making the de-stabilizing contribution of the nose 

somewhat larger than indicated. 

For the case with horizontal tail attached to the vertical 

tail, the experimental results show that for A 0 

CN 
0. 0010 00022 

depending on the craft angle of attack. Values are quite close to results without 

the elevator in the same range of ac . 
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The following formula is suggested in reference (1) for a desirable value of 

yaw restoring moment 

( ; = 0.0005 

desirable 

For the present RPV then, 

__C__ 900 ] 

6___ 00005 20 .0007
(22)2
desirable 

The restoring moment we assured is therefore sufficient. 

Figure (2. 18) shows the effectiveness of differential elevon 

deflection in generating rolling moment From the data it can be found that 

S- .0062. 

Lateral Results A = 450 

Figure (2.19) shows the yawing moments as a function of 

a sideslip angle for the At-= 450 configuration at different angles of attack with 

and without horizontal tail. The data shows that the effect of angle of attack 

is much stronger than the restoring ability of the tail. The striking difference 

at a = 6, 0< 8< 5 between configurations with and without the elevator appears 

somewhat odd but may be explained in part by an end plating effect of the elevator. 
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Although this data is somewhat sketchy, and the results 

are a bit curious, the matter is somewhat academic since the craft cannot be 

trimmed in yaw at practical sideslip angles according to Figure (2.19) with the 

use of a short-coupled vertical tail at this value of A. 

Thus, experiments were performed on the use of a vertical 

tip stabilizer as shown in Figure (2.20). This surface measured 3"1 x 3" and 

was airfoil-shaped and nominally symmetrical. 

Assuming for simplicity that the aerodynamic center of 

the tip stabilizer is located precisely at the tip along a spanwise line drawn 

through the center of gravity, and that the stabilizer drag can be neglected with 

respect to its lift for the larger yaw angles, the yawing moment about the e.g. 

can 'theoretically be expressed as: 

N=N o -Lt 2 
s 2 

where No is the yawing 

contribution of the wing/ 

fuselage alone in the neighbor­

hood of PS = 00. 

But, 

Lts 	 = CLt s q St s 

= ats (i - qSts 

and 	since, 

b 7 
_29Rc 4 
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the n 

CN = No - ats (i-.) Sts T AR sinA-S- "-

Thus, the tip stabilizer incidence angle to give zero de-yawing at f = o is 

CN
 

trim -s ts 7r AR sinA 

and, the yaw stability resulting from the tip stabilizer is, assuming 

-c cN s 
N 0o + ts V" AR sin (3)616 + at s s 8 

For the i= 0, 3" x 3" tip stabilizer used in the =450 

model the tests; 

AZ t s 22. 0 	 (since the wing acts like a plane of symmetry 
for the tip stabilizer) 

thus, 

a 
a 0 0.107 = 0.054 

s I + 57.3 a I + 57.3 x .107 
0 

Now 
2 Sts 

S 460.8 in. , - .0194 
S 

Therefore, from equation (2) 

trim 	 0 =688 C
.054 (.0194) 	 Vt (5) (.707) N 

--8­

-30­



Getting the CNo (a) from Figure (2. 19) the theoretical plot of ieq vs CI 

is shown in Figure (Z. 21), where the experimental points are also presented. 

The agreement is seen to be reasonable, except @ a = 0. From the figure, 

it is seen that the tip stabilizer will stall before the wing, resulting in 

de-yawing at the higher angles of attack. 

Having demonstrated the applicability of the theory 

(it gives conservative results), we will employ equations (Z) and (3) to 

size the tip stabilizer for the flying article to avoid the stall problem. 

Figure (2. Z2) shows the rolling moment generated 

about the balance axis as a function of the craft angle of attack for different 

differential elevon (aileron) settings, a a' It is seen that the moment is a 

strong and nearly linear function of angl6 of attack. The Neumann theoretical 

preductions are also included for comparison for the aa = O case. An 

important point to note is that the elevons have sufficient control power 

to overcome the wing-induced rolling moment throughout the entire range. 

This data is approximately expressible by the linear 

synthesis 

CR = CR + a R a Sa 8 

aZa Sa 

where 

CRo = 0. 014 

CR 0-0000217 per degree 

6CR - 0.001 per degree
 

a
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The elevon differential equilibrium angle is defined 

as 

88a a where OR =0 

= aeq
 

Then, 

8 a 0= a~ 

eq a 

66a 

a -q(7+ I1 a1). 

Which is plotted as a function of a in Figure (2. 23). Now, it must be 

noted as discussed previously, that this is only true for the case where 

the wing is pivoted at the 50% chord point. On the final craft design, the 

pivot point will be placed at 42. 6% chord which is shown in Section (2.2. 4) 

give rolling moment independent of lift. 

2,2. 3 Glider Tests 

An unpowered all-wing model was constructed and flown as a 

preliminary investigation of the aerodynamics and control of yawed all-wing 

aircraft. A launcher was also constructed which further served to provide 

a better understanding of launch methods and problems. Photographs of 
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the model are shown in Figure (2. 24). 

Basic data on this model are listed below: 

3 ft2 
Wing Area 

Aspect Ratio 8 

Weight 2 lbs 

The model was flown with wing yaw angles of 30 and 60 degrees. 

It was found that the elevons provided sufficient control to trim the model at 

all angles. It was not clear, however, that the model was statically stable at 

60 degrees. 

Tip rudders were used on this model. The rudders were set parallel 

to the fuselage. At A = 600 it was found that these rudders were ineffective in 

controlling the de-yawing tendencies of the model. The result was that after 

launch the model would de-yaw at which time the differential trim which had been 

applied caused the model to roll. 

The trends revealed in these model tests later proved to be found in 

the wind tunnel results. The tests were therefore valuable in providinga "quick 

look" at these effects. 

2. 24 Final Configuration Aerodynamics 

The wind tunnel data and related theoretical results were applied 

to modify the tested model configuration to achieve the desired flight character­

istics of the RPV. In particular, improvements were sought aimed at moving 

the neutral point farther aft to provide static stability in all flight configurations, 

sizing the tip fin for the needed yaw trim, and reducing the influence of 
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angle of attack on roll trim. Thus, changes affecting the aerodynamics consisted 

of tail size and position, tip fin size and wing pivot.position. A dimensional 

comparisbn is made between the model and final configuration in Table II. 

Horizontal Tail 

Changes made in the initial tail design (TableffI) were an increase in 

area of almost 20 percent, an increase in the tail length of 37 percent*, and a 

small increase in the height of the horizontal surface. 

Recalling that the increase in Xac is given by 

(1-d-AX it at St 

Then, 

dE 
(AXac)f (it)f (St)f (f- a
 

( acm (it 1m (tm di- m
da )m 

Applying the dimensions from Table I, 

(AX)
 
f (1.366) (1.194) 
 (1-.49) =1.77.


(AXa) m (1-.53)
 

This value is used to predict the aerodynamic centers for the modified con­

figurations. Results are presented in Table II. 

*The resulting length is still in keeping with the concept of a short coupled tail 

and the ultimate objective of tailless flight. 
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TABLE III 

LONGITUDINAL SUMMARY 

NEUTRAL POINT 

MODEL FINAL 
A DEG. CONFIGURATION - DESIGNXac xa 

0 No elevator .227 .227 

0 With elevator .271 .303 

45 No elevator .169 .169 

.26345 With elevator .221 
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Vertical Tail 

The increased horizontal tail length and height result in greater 

vertical tail length and span respectively. This is desiratle in that the yaw 

restoring derivative, CN , was just barely adequate as tested and will 

be reduced somewhat on the final design as streamlining is added that blocks 

the slot in the fuselage. 

The improvement in yaw stability due to tail length and span is 

given by 

A6CN 
 6=N% 
- ( 1) m 

(at Iv St at v S t 

ac_ Stf 
 S 
_arm Fvm Stm c, S ; 

We have already increased the tail length by a factor of 1. 59 in 

connection with the longitudinal stability. We now increase the vertical tail 

span by 33 percent and its area by 44 percent corresponding to the final con­

figurational. The aspect ratio has then been increased by 54%. According to 

lifting line theory, this results in an increase of the lift slope of 

atf .0655 - 1.19 
at m .055 

AaCN - + (l.19x 1.59x1.44-1) (.0009) 

.00155 
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- There is a great deal of uncertainty in this value since the de­

stabilizing effect of the nose is unknown. Never the less, the value indicated 

is well within the desire range. 

Tip Stabilizer 

It is economical to have the tip stabilizer be identical to one half 

of the elevator since a large proportion of the cost of these parts is in the 

molds used to make them. 

This surface 	has an effective aspect ratio (assuming that the wing 

acts like a plane of symmetry as previously considered) 
2 

AR = ? bts 3.6
 
S
 

6.5 ft Z 
and an area S = 

at - .107 = 0.07 

1 + 57.3 (. 107) 
(3.6) 

'eq 	 =-o , (A =450)
 

.07 (.075) 7r (.707)
58 

'eq = 	 103 CNo 

This result is plotted in Figure (2. 25) 

The re-designed device is seen to provde powerful trim control. 

The pulley system which yaws the tip stabilizer along with the wing is geared 

such that an incidence of 3 is obtained when Areaches 450. This will give an 

over-yawing tendency at CI < 7.50 and a de-yawing tendency at ac > 7.5o although 

this stabilizer will never let the craft de-yaw very much, 
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Wing Pivot 

It is seen in Figure (2. 22) that rolling moment increases with angle 

of attack, requiring corrective trim. There exists an axis parallel to the 

existing roll reference axis about which the rolling moment is invariant 

with C L. The lateral distance to this axis from the axis used for the wind 

tunnel testing is given by: 

S a R acRR c L 

where CR is about the original (.50 c pivot) axis. 

d.S,
 

Experimental and theoretical values for - are compared below. 
dCL 

New values for the wing pivot, given by 

2 pivot = 2 S + .5 are included 
c c 
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d Cr pivot 

c pvod C L 

Experiment .052 .426 

Theory .050 .429 

The difference between these two values amounts to only 

0.2 inches difference. The experimental value has been adopted for the 

RPV design. 

Wing Yaw Direction 

The RPV wing is designed to yaw in only one direction -­

port wing forward. This direction was selected on the basis of power­

plant torque and slipstream rotation consideration. 

i)" Torque 

Viewed from behind, the pusher propeller rotates in 

a counterclockwise direction, thereby generating a torque on the RPV in 

the clockwise sense. Sinc6 at positive lift coeffients, the craft has a 

natural tendency to roll into the leading wing, these two effects will tend 

to cancel if the leading wing is the port one. 

The torque generated at a given power setting is 

P 
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Thus, neg'lecting wing center of.gravity affect, 

CRqSc 


Recalling that 

) cR 6cR 
CR = Ro + 6C O+ 8a 8a 

and letting 8 a = 0 , then 

p

(CR o + CRt I) q S c
 

for zero net rolling moment. 

Now, in general 

CL = a (c -eZL) 

nw/S
and CL= q 

= nW/S + CE 

qa ZL 

Thus, 

I (nW/S + P 

aZL) qSc
c \ qa 

= 

C + 

So that 

P/S C n W 

* - e a S 
q =Ro + CRadZL 
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which is the dynamic pressure at which the net rolling moment vanishes. 

At q < q* , the engine torque causes the craft to roll in the direction of 

the trailing (starboard) wing, while for q > I*t , the aerodynamic forces 

dominate generating rolling moments in the direction of the leading (port 

wing). Taking for example, 

P 90 H.P., ( = 4000 RPM (410 rad/sec) 

and recalling the values of Figure (2. 5) 

q*= 3.5 

Since this value falls below flying q(qstall = 4. 5 /ft), it is seen that 

cbrrective aileron will have to be applied to prevent rolling into the 

leading wing, despite the counteracting engine torque contribution. 

ii) Slipstream Swirl 

The port-wing-forward configuration also tends to reduce 

the de-yawing tendency as a result of slipstream action on the vertical tail. 

This is explained in the sketch below. The swirl component of the slip­

stream above the wing generates an effective angle of attack on the vertical 

-tail which is in the yaw restoring direction. 

CUIOMNG
- DE--YAWx C, 
IN 

W 

Y' 


In the absence of corrective Op 
aileron deflection, of course. "rAI 
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2.2.5 Flying Without A Horizontal Tail 

The propsect of flying the RPV without a horizontal tail is an 

intriguing one. The horizontal tail represents added weight, drag, and 

expense, and is a distinct liability in recovery from the survivability 

point of view. 

The wind tunnel results have shown that the craft will perform 

° .well without a horizontal tail at A. = 0 However, at A_ = 450 , the aero­

dynamic center is located at Xac = . 17c, giving a statically unstable situ­

ation for obtainable c. g. locations. By comparing the Neumann theoretical 

results with the experimental data (Figure (Z. 16)), it can be inferred that 

the fuselage nose is partly responsible for the forward movement of the 

a. c. On the other hand, the forward location of the nose is also responsible 

for the c. g. being as far forward as it is. It must be noted that this con­

figurational predicament may will be due to our present limited experience 

with yawed-wing aerodynamics. It may, in fact, be possible to design 

vehicle configurations and wing geometries which do not generate this dif­

ficulty. Clearly, the conceptually simple, though perhaps implementationally 

difficult idea of sliding part of the payload forward as the wing yaws would 

work, but it is felt that this artifice constitutes an inferior solution. 

It is almost certain that the stability problem can be. solved 

on a more fundamental level, but additional basic aerodynamic work is 

needed.
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'However, the stability problem can always be circumvented 

electronically 	by the use of the relatively simple notions of artificial 

stability. At 	least with the present craft the more intractable problems 

are trim and 	control. As seen from Figure (2. 15) when the wing is yawed 

at 450 the elevons do not provide sufficient pitch power to control and trim 

the craft, Possibly the elevon planform should be re-designed - perhaps 

as symmetrically, or a wingtip elevator (either on the leading or trailing 

wings) could be used to achieve the needed control power for flight without 

a horizontal tail. 

3. 	 AVIONICS 

The avionics system is required to provide complete control of 

the aircraft, 	to return flight data and a television picture to the ground station, 

and to track the vehicle. The desired range of these functions is 50 miles. 

The frequencies allocated for this purpose are listed in Table IV. 

RPV FREQUENCY ALLOCATIONS 

TABLE IV 

Frequency Power 	 Purpose
 
MHz 	 Watts 

49.78 	 25 Comfiiand Control 
240.2 	 25 Telemetry 
1830.0 	 Z0 Video
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3. 1 Airborne System 

Figure (3. 1) shows the various airborne components and their inter­

connections. The command package performs all manual control functions and 

the logic and decoding for autopilot control. The instrument package contains 

all flight instruments as well as video switching circuitry whose function is to 

mix video frames from the nose camera and from the instrumentation camera 

that views the flight instruments. The mixed video frames are decoded and 

displayed on separate monitors on the ground. The artificial horizon in the 

instrument package is used for autopilot control, hence the connection to the 

command package. Other componants shown, either purchased or assembled 

from purchased parts are listed in Table V.*., 

3.1. 1 Command Package 

The components of the command package are listed in Table V 

Electronic circuits are provided for manual proportional control of control 

surfaces, throttle and steering, auxiliary non-proportioned control of 

other aircraft functions, interface with attitude gyros for autopilot control, 

amplification of instrument input, and the driving of servos and aixiliary 

function actuators. 

A brief description of each circuit card follows. 
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AIRBORNE SYSTEMS COMPONENTS
 

ITEM 


Nose and Instrument-
ation cameras 

Zoom lense 

Camera/Compass 
invert er 

Autopilot Supply 
Inverter 

Vacuum Failure 
Switch 

FM Exciter 

VAF Amplifier 

LB and FM trans-
mitter 

Servo Motors 

Feedback Potentio-
Meters 

Throttle Servo 

Squib 

Receiver 

TABLE V 

FUNCTION 

Signal for Display of 
Forward 

Lense for nose 
camera 

400 AC For Camera 

15VDC Supply for auto 
pilot logic 

Drives indicator light 
for vacuum failure 

Telemetry exciter and 
tracking
 

Telemetry and track-
ing RF amplifie2# 

Video Signal trans-
mitter 

Mechanical drive for 
control surfaces, etc. 

Position Signal 

Throttle actuation 

Parachute Deployment 

Receives and decodes 
command signals 

MANUFACTURER AND 
NUMBER 

GBC Model CTC-5000 
Modified Package 

Zoomar Mark X-B 

Texas Electronics 424 A 

Abbott CCl5D05 

Automotive part 

GFE 

Greenray Industries, Inc. 
EA-117-2 

3dbm Model LFT 1800-15 

TRW-GLOBE 5A515-I 

Bourns 1 k potentiometer 

Kraft Kp 16 

Holex 3100 Pressure Cart­
ridge
 

Kraft KPR-7 



COMMAND PACKAGE COMPONENTS 

TABLE V I 

CARD NUMBER 	 FUNCTION 

-1r Autopilot Driver/Supply 
-2- (Blank) 
-3- Gyro Interface 
-4- (Blank) 
-5- Elevator Sig. Synth. 
-6- Auxiliary Select 
-7- Auxiliary Delay 
-8- Meter
 
-9- Priority Control
 

-10- Priority Drive
 
-11- (Blank)
 
-12- Servo Amp, Elevator
 
-13- Servo Amp, Elevon
 
-14- Servo Amp, Elevon 
-15- Servo Amp, Nose Wheel 
-16- Servo Amp. Rudder 
-17- Servo Amp. Camera Zoom 
-18- Servo Amp. Mixture (Option) 
-19- Servo Amp. Camera Pitch 
-z0- Servo Amp. Wing Yaw 

Connectors: 	 P9-Nose assy. & Inst. Box 
P10-Nose Assy. & Inst. Box 
J11-Fuselage Cable 
J12-Wing Cable 
J7-Receiver Ant. 

Power Terminals: 	 C-Z8V. Command System Power 
X-28V. Transmitter Power 
GNO-Frame Ground 

Receiver Ant Matching Network
 
5V Regulator
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CARD #1 Autopilot Supply 

The autopilot supply card provides stable + 5 volts D. C. and 5KHZ, 

10 V. P. P. square wave outputs for the autopilot gyro circuits. 

Referring to Figure (3.2) a dual regulation circuit reduces the in­

coming + 15 V. D. C. to approximately+ 5V. D. C. (adjusted to balance the gyro 

interface circuit). A 3. 9K resistor and Diode interconnects the regulators to 

prevent lock-up of either side. 

The 5 KHZ square wave signal is g~nerated by a function generator 

1. C. (NE 566) and amplified by operational and power booster amplifiers (74 

and B 10). A capacitor in the feedback circuit rounds off the square wave 

slightly to prevent transients in other circuits. 

CARD #3 Gyro Interface 

The gyro interface card converts the gyro pick-off signals (5KHZ) 

to anal6gue roll and pitch voltages. The sum and difference of these signals 

is then formed to be used to drive the elevons. 

Referringto Figure (3.3) this circuit uses MC1545 video switch l.C. 's 

as syncronous detectors. The first two MC1545ts receive roll, pitch and 

altitude hold signals and are switched at the 5 KHZ rate in sync with the 

input signals. The detector outputs are integrated and then amplified by the 

second set of MCI545's. Finally, differential and common mode outputs are 

derived with operational amplifiers (741). 
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For manual operations, a gating signal is fed to the second set of 

MCl545's causing them to switch to their grounded inputs thus locking the out­

puts to zero error level and disabling the autopilot. 

CARD #5 Elevator Signal Synthesizer 

An elevator signal is formed in this card to provide elevator control 

from the right and left elevon signals. 

Referringto Figure (3.4) the right and left elevon signals, 1-2 MS 

pulses, are conditioned by two input Schmitt triggers. The first occuring pulse 

triggers a one shot flip-flop for the purpose of generating a time reference pulse 

equivalent to a neutral width elevon pulse (1. 5 ms). The elevator pulse (output) 

is initiated at the completion of the one-shot pulse by changing the state of the 

out-put flip-flop. 

The second elevon pulse, upon its completion, changes the state of 

the resetting flip-flop and concludes the elevator pulse. 

Thus, as shown in the pulse detail, the elevator pulse follows the 

command mode function of the elevon signals only. 

CARD # 6 Auxiliary Select 

The auxiliary select card essentially divides the time domain of two 

command channels into sixteen discrete commands. 

Referringto Figure (3. 5) the input pulses, channel 5 and 7, are first 

shaped by Schmitt triggers, then each perform the function of controlling the 

following counting sequence: The leading edge of the first pulse (Channel 5) 

enables the one-shot flip-flop and the binary counter. 
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The one-shot and feedback transistor (Q 1) form a pulse generator with a 

pulse rate of about 4000 PPS. The counter is allowed to count these pulses 

as long as the input pulse is present. Since the irnput pulse has a width from 

1 ms to Z ms, the count range is then four (minimum) to eight (maximum). 

Actually, only QA and QB counter outputs are used, so at the end of the count 

period, the binary output will be from zero to three. 

The trailing edge of the input pulse then clocks the output latches 

(A and B) and resets the one-shot and the counter. The "A" and "B" outputs 

now retain the previous count. 

The second input pulse (Channel 7) controls the same functions with 

exception to clocking the "C" and "D" latches. 

The output will now provide the full zero to fifteen binary codes, up­

dated with each set of input pulses. 

CARD # 7 Auxiliary Delay /Decode 

The auxiliary delay/decode circuit converts the auxiliary select 

binary code to a one of sixteen output upon time completion of a preset delay 

period 

Referiingto Figure (3.6) the binary code input (0 to 4) is stored in a 

four-bit latch and decoded in a four to sixteen line demultiplexer. The latch 

output is compared with the input by a four-bit magnitude comparator which 

will give a logical "l" output if equal. 

If, however, the latest binary update is different than the previous, 

then the comparator output goes low and allows the RC time period to start. 
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At the end of this delay period (. 5 sec), the one-shot is triggered which gates 

the latch to the new data. 

The output will be up-dated only if the binary code difference is 

maintained during the delay. Thus, momentary input changes from glitches, 

noise, etc. is ignored and only the valid auxiliary selection is passed through. 

CARD # 8 Meter Amplifier 

Exhaust gas temperature, head temperature and battery-voltage 

signals are conditioned by this meter card to provide the proper voltages and 

ranges for meter read-out on the instrumentation panel. 

Referring to Figure (3. 7) a dual-operational amplifier I. C. is utilized 

to amplify the low level thermocouple voltages. Amplifier offsets and output 

diodes provide expanded scale read-out on B 0-l.MA meter load. 

Battery voltage is also conditioned for expanded scale indication with 

a 20 volt zener diode and a 12, 000 OHM resistor. 

CARD # 9 Priority Control 

Control of the more crucial elements of the avionics system are per­

formed by the priority control card, i.'e. autopilot on/off, altitude hold on/off 

and p&rachute deployment. 

lReferring to Figure (3.8) four discrete commands from the auxiliary 

select system are the inputs to two hi- stable flip-flops. These flip-flops are 

used simply as latches to hold the given "on" or "off" command. Cross con­

nections prevent the altitude hold from being enabled (on) without the autopilot 

being on also. 
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A separate receiver (Channel 6) is measured for pulse width by 

comparing to a fixed pulse width froma one-shot flip-flop. As long as the in­

put pulse width is greater than about 1. 2 MS, then no output occurs. If, how­

ever the width is changed to 1 MS or disappears all together, then a 4 second 

time delay period is initiated. An output (chute deploy) command pulse will 

occur at the end of this period provided that the input pulse is not re-established 

with the normal 2 MS width. 

CARD #10 Priority Driver 

The priority driver card provides the power necessary to operate the 

engine kill and chute deploy relays, alt. hold solenoid and indicators from the 

signals derived in the priority control circuit. 

Referring to Figure (3. 9) the output drivers normally supply +28V. 

to the engine kill and chute deploy relays. Upon receiving a logical "o" input, 

the output will drop to zero volts. 

The altitude hold and hook deploy outputs change from zero to a plus 

level with logic "o" input. 

CARDS #12 through 16 

Proportional Servo Amplifier 

Proportional command is amplified and controlled (through external 

position feedback) to drive a servo motor with output position relative to input 

command and pulse width. 
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CARDS # 17 through 20 

Positionable Servo Amplifier 

The positionable servo amplifier provides power amplification 

necessary to drive an actuator from auxiliary selection signals. 

Referring to Figure (3. 11), a logical "o" at either input from the 

auxiliary select system will drive the output to full on with polarity determined 

by which input is commanded. 

Optional limit control is provided to disable the output polarity 

relative to the limited actuator direction. 

3. 1. 2 Electrical 

The power switch panel allows the command systems, transmitters 

and vacuum pump to be operated, separately for purposes of power-up and check­

out. Referring to Figure (3. 12), power may be provided by either the RPV 

batteries or by ground power source. Alternately, the aircraft batteries may 

be charged through the ground power connector by switching the batteries onto 

the power bus. Starter current is controlled by a switch on the ground power 

cart. 

The relay panel isolates and controls the engine kill, chute deploy 

and hook deploy functions. Referring to Figure (3.13) the engine kill and chute 

deploy relays normally receive + 28 volts D-C from the priority driver circuit. 

Th6y are latched (prior to flight) by pressing the reset button. A pilot light 

then indicates latch-up, allowing safe arming of the chute squib. 

Removal of the incoming + 28 volts supplying the chute relay, will 

cause relay drop-out and thus connect the chute battery to the squib, if armed. 
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This function will also "kill" the engine by shorting the magnito circuit to 

ground.
 

The engine "kill" relay will also drop-out of latch with removal of 

supply voltage, however, it "kills" the engine only, leaving the chute relay 

still functional. 

An optional hook deploy relay may be added. This relay normally 

will receive no voltage until a command is received at which time +Z8 volts 

will close the relay and operate a hook deployment mechanism. 

3. 	 1-. 3 Instrument Package and Nose Camera 

The instrument package houses the flight instruments, the instru-­

ment camera and video encoder circuitry for mixing video signals from the 

nose and instrument camera. The instrument panel layout as it appears on 

the monitor is shown in Figure (3.14). 

The wiring of the instrument package and nose camera are shown 

in Figure (3. 15) and (3. 16) respectively. A signal sync generator for the two 

cameras mounted on the nose camera causes the two cameras to scan simul­

taneously. 

The-video encoder, Figure (3. 17), is housed in the instrument 

package and ,provides the logic and switching for time sharing the two video 

signals. 

The video signals are selected sequentially by a video switching 

I. C. , driven by a flip-flop synchronized to the vertical sync. pulse. The 

switching takes 'place during the vertical retract of each scan. 
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Thus, only field instead of a complete frame is selected from each camera. 

The video signals are adjusted for close match of .amplitude and DC offset. 

Manual selection of either picture provided by grounding either the reset or 

set input of the flip-flop. 

3.1.4 Control Logic Summary 

The control block diagram, Figure (3. 18), shows the control 

signal flow paths used for RPV control. Elevator control is used as an 

example. Other surfaces are controlled in a similar manner but do not 

receive inputs from the attitude sensor. 

In the manual control mode , the auto pilot circuit is opened and 

command inputs produce control surface deflections proportional to the control 

stick position. This corresponds to conventional manual controls and may be 

thought of as a rate command in that the pitch rate will be proportional to 

surface position. 

In the autopilot mode the pitch gyro signal is summed with the sur­

face position signal. With this system an error signal from the pitch gyro will 

cause a surface deflection proportional to the error. Thus, since the rate is 

proportional to the error, pitch response to a disturbance will be without 

qvershoot, neglecting aircraft inertia. Since the manual input is still present, 

it may be used to change the null pitch angle and thus the flight path. 

In the altitude hold mode of operation an altitude error signal, 

indicating the difference in altitude from the position where the altitude hold 

was initiated, is summed with the other control signals. The altitude error 

signal may be thought of as providing an offset in the pitch null signal in the 
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proper direction to correct the altitude change. The equilibrium altitude 

will differ from the initial altitude by as much as several hundred feet if the 

RPV is not initially trimmed for level flight when.altitude hold is initiated. 

Control gains were determined by pilot preference while operating 

a simulator developed for this purpose at NASA/Ames Research Center. Gains 

for initial flights are shown in Table VII Actuator speed was limited to 13 RPM 

or approximately 78 deg/sec. 

3.Z Ground Equipnent 

3.2. 1 Command Control 

The command system is based on a Kraft KPT-7 transmitter whidh 

is used as an encoder and exciter. In addition to the basic Kraft unit (slightly 

modified), input signal conditioning is provided by flight control and auxiliary 

select circuits. Output power is boosted by an RF amplifier to approximately 

20 watt s. 

Flight Control 

The flight control circuit interfaces the flight control sticks to the 

command transmitter encoder and generates the proper differential function of 

the aileron/elevator channels to provide the elevon control mode. 

Referring to Figure (3. 19) the D-C voltages from the flight control 

sticks are filtered (noise) and coupled to conditioning circuits through emiter 

followers. The aileron Channel (1) and the elevator Channel (2) signals are 

combined with summing resistors and differential amplifiers, the output of 

which is the elevon function. 

The rudder and throttle channels are coupled unchanged to the out­
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TABLE VII 

CONTROL SURFACE GAIN 

INPUT 

Elevator Full Up 

Alerons Full RT. 

Rudder Full 

,Pitch Gyro 10 deg. Up 

Roll Gyro 10 deg. RT. 

100 Ft. Altitude Error 

RESPONSE
 
Degrees
 

Elevator 10 
R. Elevon 10 
L. Elevon 10 

R. Elevon -10 
L. Elevon 

Rudder 20 
Nose Gear 6 

Elevator 5 
R. Elevon 5 
L. Elevon 5 

R. Elevon 10 
L. Elevon -10
 

Elevator 2 
R. Elevon 2 
L. Elevon 2 
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All four outputs are emitter coupled to the transmitter/encoder 

channels one, tv o, three, and four respectively., -Each output emitter follower 

acts as a clamp to the pulse amplitude which controls the timing of the succeeding 

pulse width. 

This pulse width is thus proportional to the stick position. 

A chute deploy circuit is also incorporated which simply shunts the 

timing resistor in Channel (6) of the encoder and shortens that pulse period. 

Auxiliary Selection 

The auxiliary select panel, Figure (3.Z0), incorporates six, two­

position switches to control the selection of sixteen discrete commands. 

Each switch selectively shunts the pulse timing resistors in Channels 

(5) and (7) in the encoder circuit of the Kraft exciter. This shunting causes the 

pulse width to decrease to one of three selected widths (four including no shunt) 

therefore, utilizing the two channels provides the sixteen combinations used for 

discrete commands. 

3. 	Z. Z Video Display 

Receiving 

Referring to Figure (3. 21), incoming video signals are received 

through 	a parabolic dish antenna (Z9 db gain) and processed by a "building 

block" 	single conversion receiver. 

Video Decoder 

The function of the video decoder is to separate the incoming 

sequencial video s.ignal for display on two monitors. 
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Referring to Figure (3. 22) the incoming video is fed to both 

monitors symultaneously and if no sequenbial blanking is used, then both 

pictures (nose and instruments) would be seen superimposed on both monitors. 

The decoder, however, prevents this by sequencially blanking each monitor, 

in sync with the vertical sync pulse. 

The vertical sync pulse toggles a flip-flop circuit installed in the 

nose camera monitor. The output of this flip-flop drives claniping transistors 

to blank the video in each monitor sequencially. A diode and pot is provided 

for holding the raster on during blanking of the nose camera monitor. The 

pot is adjusted for minimum picture flicker. 

3. 2.'3 Tracking System 

The RPY is tracked using the 240 MHZ telemetry signal. Tracking 

serves three purposes: (1) Navigation (2) Aiming of the high gain TV antenna 

and, (3) Providing the basis for an automatic housing system. 

The tracking antenna assembly is shown in Figure (3. 23). It consists 

of two 7 element yagi's used for tracking and the TV antenna mounted on a 

common rotating mast. 

The tracking system works by comparing the signal strength of the 

two yagi's which are aimed in slightly different directions so that their patterns 

do not coincide.' 

Referring to Figure (3. 24), syncronized choppers samples each 

antenna. The power amplifier, Figure (3.25), drives the antenna rotor in 

response to a difference in signal strength between the two antennas. 
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Automatic RPV return control is accomplished by using the air­

craft position error signal from the tracking system as shown in Figure (3. 26). 

An error signal from the tracking system causes a 3 degree bank turn to be 

commanded in the proper direction to correct the RPV's track error. A 

typical path under automatic control is shown in Figure (3.27). 

4. . PROPULSION 

The R.PV engine is a McCulloch 4318 B target drone engine modi­

fied for use a a pusher and a power output of 90 horsepower. With an installed 

weight-of 84 pounds including the propeller, this engine has by far the best power 

to weight ratio of any available engine below 100 horsepower. In this case, 

'fuel consumption is the penalty for performance. The specific fuel consump­

tion is estimated to be 0. 9 to 1. 3 depending on the power setting. A direct de­

termination of sfc has yet to be done. Engine Specifications are listed in Table 

ViI'VII. 

Engine accessories include a Delco 2 kw aircraft alternator and a 

Bosch starter motor from an outboard motor. The alternator is mounted under 

the forward end of the engine and is driven by a timing belt from the modified 

magneto drive. The starter motor is mounted under the aft end of the-engine 

and drive a ring gear on the propeller hub. The total added weight is 30 lbs. 

The standard carburator was replaced with a pressure carburator 

(Tillotsen) which allows inverted operation and eliminates a separate fuel pump. 

The only modifications to the engine itself were the addition of a snap ring to 

the prop end of the crankcase.and a split ring on the prop end of the crank to 

take pusher thrust loads and the use of long life rod bearing. A muffler system 

was fabricated to reduce the exhaust noise. There was insufficient volume avail­

able for properly sized expansion chambers. 
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TABLE, VIII 

ENGINE SPECIFICATIONS 

Model: Model 0-100-1 Engine
 

Type: Two-cycle Air Cooled Engine
 

Number of Cylinders: Four
 

Bore: 3-3/16 inch.
 

Stroke: 3-1/8 inch.
 

Piston Displacement: 100 Cu. Inch
 

Compression Ratio: 8 to 1
 

Crankshaft Rotation: Clockwise (viewed from front of A/C)
 

Propeller Hub Bolt Circle Size: 4 Inch. Dia.
 

Propeller Hub Keyway: 1/4 in.
 

Number of Engine Mounting Eyes: Three
 

Size of Engine Mounting Eyes: 1 Inch
 

Weight of Engine Complete: 84 lbs. (Includes propeller)
 

Overall Diameter of Engine: 27 in.
 

Overall Length of Engine: 26 1/4 in.
 

Position of Center of Gravity: Seven Ins. AFT From forward Surface 
of Engine Mounting Eyes, and Vertically Through the Center of the 
Carburetor Venturi Tube 

90 H.P. Developed at 4100 R.P.M. Rated H.P.
 

Magneto Speed: One to One
 

Magneto Breaker Point Gap: .018 Inch.
 

Spark Plug Type: RB916-S (BG Corp.)
 

Spark Occurs in Degrees Before Top Center - Z5.o
 

Fuel/Oil Mixture: Ten to One
 

Type of Fuel: 115/'145 Octane 
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The mufflers tested, therefore, all involved a compromise between power 

loss and noise suppression . The Table below summarizes the results of 

muffler tests with power expressed in RPM obtained with the same propeller. 

The "Flow Thru" muffler was installed on the RPV. 

TABLE IX MUFFLER EFFECTIVENESS 

CONFIGURATION NOISE AT 20 FT. dba RPM 

Open exhaust 123 3750 

Fall Baffle Muffler 110 3300 

Flow Thru Muffler 118 3500 

Cooling ducts were fabricated to direct cold air through the 

cylinder cooling fins. 

Total engine weight with the propeller, alternator, starter 

mufflers and cooling ducts was 120 lbs. 

All engine testing was done statically. Initial tests were with a 

gyrbcopter propeller with a 48 inch diameter and a 24 inch pitch. Full throttle 

with no muffler was 3800RPM and produced 360 lbs. thrust, without the duct. 

Later tests with a 30 inch pitch propeller running in the duct with.. 25 inch tip 

clearance produced 300 lb. thrust at 3950 RPM. The drop in thrust was due it 

part to the high pitch. It is felt that considerable improvement can be made by 

adding an effective tip seal. 
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5. PERFORMANCE 

The craft performance depends to a great extent on the selection 

of the fixed-pitch propeller. The selection of the propeller, in turn depends 

upon what specific flight-tests are to be conducted with the RPV. For examr 

if low- speed, high maneuverability performance is to be demonstrated, a lov 

pitch prop can be installed. If the emphasis is to be on high speed flight, a 

higher pitch prop can be used.. Since the propellers are inexpensive and 

easily changed, many possibilities are open. We shall assume that propellej 

efficiencies of 7? = 0.8 can be achieved in any speed required through the 

appropriate propeller choice. Thus, the performance calculation will be 

made as if the craft had a variable pitch prop. 

@ Static Thrust 

- For a ducted propeller, the slipstream does not contract 

behind the duct as it does with a free propeller. Thus, the ideal static 

thrust (negative swirl) can be calculated on the basis of the following twc 

simple relationships. 

Thrust = T = PVs2 A s
 

•PowerPower p = pV s (G/71)= P 	 ~~A 3 As l7* 

Whete 	 V s = slipstream velocity
 

A = slipstream (duct) area
s 


7" = static thrust efficiency of blades 

-/3
Thus, 	 T = (PAS)I/3 (2 1P) 

For P = 	 90 H.?P., = 0.8, A 12.6 fts 

T = 570# @MSL 



Power Required 

Figure (5. 1) shows the power requirement vs. speed for 

two configurations. 

i) A= o 

ii) A=45' 

Top Speed 

With the appropriate high advance ratio propeller, the followi 

top speeds should be attainable @ MSL 

A 0 v = 155 mph 
mx
 

A = 45 V = 168 mph 

Cruise Speed 

Again, with the appropriate propeller pitch, using 70% power 

the following cruise speeds can.be achieved 

A= 0 V = 136 mph 

A= 450 V = 144 mph 
or 
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Stall Speed 

From Figure (2. 12), neglecting stale effects, untrimmed 

C = 1.0 for the A = 0 and A= 450 configurations, therefore taking 
Lmx 

a nominal gross weight of 880 Ibs. V Stal 59 mph 

Endurance
 

The specific fuel consumption for the McCulloch engine is 

estimated at 

(SFC) @ 20-40 H.P. = 1.2 

(SFC) @ 40-90H.P. = 0.9-

Thus, with 50 usable pounds of fuel on-board 

E = 57 min. @ 140 mph, _A 45 

Ema = 2 hrs. @ 80 mph, -= 0x 

Rate of Climb 

Based on the power required curves, Figure (5. 1), the rate 

of climb curves plotted in Figure (5.2) were obtained. 

The best climb performance (approximate) for = 0 and 

45 degrees is shown to be: 

A = 0 R/Cmax = 1640 Ft/Min. @ 80 mph 

A= 45 R/Cmax = 1510 Ft/Min. @100 mph 
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6. 	 STRUCTURE 

6.1 	 Materials 

The primary and secondary structure consists of hand lay up 

fiberglas, and epoxy resin. Various types of cloth were used as described 

in detail following. Only one type of resin was used due to its high strength; 

dimensional stability and resistance to attack from most acids, chemicals 

and water. 

6.2 	 Wing Structure 

The wing primary structure consists of one main spar and a center 

ring. These items are the main load carrying members. 

Materials used for the main spar and ring were style 7544 uniglas 

(manufactured by Thalco, Los Angeles, California). The cloth is an 18 oz. 

cloth of basket weave pattern. This cloth was selected because of its strength 

and pliability. 

The resin used was Fiber Resin Corp.(Los Angeles, California) 

No. 531-7L epoxy laminating resin and 5Z35 M hardener. 

The physical properties of this laminate are: 

Ult. Compression Strength - 45, 000 p. s. i. 

UIlt. Tensile Strength - 58, 000 p. s. i. 

UIlt. Flexural Strength - 62, 000 p. s. i. 

Ult. - Shear Strength - 19, 0.00 p. s. i. 
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The laminate construction is shown on Drawing 1126 Volume II. 

Four layers of cloth were used for the upper and lower cap areas and two (2) 

layers of cloth for the web areas in the region of the root. Starting at Station 

#6 and iontinuing toward the tips, fewer layers of cloth are used until, at the 

tip, only one layer is used. 

The bending and torsional loads'are distributed through the struc­

ture from Station #1 to Station #7 as a single cell beam, Figure (6. Z). From 

Station #8 to the Qj of the aircraft the structure is a two (2) cell beam. Figur 

(6.3). 

The moment of inertia of any Beam section between Station's P and 

7 is, 

h3
I = Z btlh2 + z t 
x 3 2 

The material used to resist bending from Station #1 to Station #7 

in the spar as depicted'in Figure (6.4) as the cross hatched area. 

The area of each element is, 

+ ht2A=btl 
6 

In the fixed leading edge, two cell portion of the wing, the bending 

material is concentrated at points 5, 6, 7 and 8. Figure (6. 3). The area con­

centrated at each point is, 50 t 3 . 

where, . t 3 = skin thickness 
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The followinfg stresses are based on a lOG loading condition. 

The maximum bending stress of 7219 p. s. i. compression occurs 

it Station #11 in the forward top stringer of the beam. 

The maximum toatal shear stress of 780 p. s. i. occurs in the front 

web of the beam at Station #11. 

In the center ring the maximum bending stress of 11177 p. s. i. occurs 

-n the ring at the of the airplane. 

The maximum shear stress of 6089 p. s. i. occurs in the fixed leading 

dge skin at the of the. airplane. 

The removeable leading edge was made from 7 1/2 oz. boat cloth 

and 5317L epoxy resin. The leading edge was designed to transfer its load 

through skin structure only. Figure (6.4) 

The frangible wing tips were made from a 4 oz. , style 120 fabric 

of .004 thickness, molded to contour and filled with a two (2) pound density 

Polyurethane foam. 

Wing ribs are laid up from 7 1/2 oz. boat cloth. Two layers of 

cloth were used to give a rib thickness of . 040. 

6.3 Duct 

- The duct structure is made up of two 2024-T3 aluminum rings 

which comprise a front and rear beam. Ribs and outer skin are laid up to 

a thickness of . 040 from 7 1/2 oz. boat cloth. 

The duct is made in two halves, an upper and lower half. These 

halves are joined by bolts through the front and rear beams into fittings in the 

central rotating disc. The duct loads are therefore transmitted through the 

fittings and rollers into the wing structure. 



6.A Tail Surfaces
 

Horizontal Tail
 

The horizontal tail skin is laid up from 7 1/2 oz. boat cloth to a 

thickness of . 025. This outside shell is then filled with a two (Z) pound 

density Polyurethane foam. Each horizontal tail section half is fastened by 

screws to a magnesium rib, fitting. 

The bending loads are reacted by the skins. The skin bending 

stress in compression and tension is 890 p. s. i. Skin buckling in bending 

and torsion is not considered to be any criteria due to the fact the foam in 

its adhesion to the fiberglas skin stiffens the skin considerably. The ver­

tical shear is carried by the foam core. Maximum vertical shear stress is 

12.5 p. s.i. 

Vertical Tail 

The vertical tails primary structure consists of a fore and aft 

beam. The beam thickness is . 125. The vertical tail skin is laid up from 

two layers of 7 l/Z oz. cloth to a thickness of . 050. 

The vertical tail tip is a- . 004 thick fiberglass skin filled with a 

two (2) pound density polyurethane foam. This tip section is a frangible por­

tion of the vertical tail. 

Vertical tail torsional loads are reacted by two (2) struts leading 

from the duct to the upper part of the vertical tail. 
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*6.5 Landing Gear 

The main landing gear is made from a 5/8" thick 7075-T56 

aluminum alloy strip. Landing gear loads are reacted through the side duct 

fittings 	and transferred to the wing structure via the central ring. 

The maximum landing load is a 4 G loading condition. 

-69 ­



7. PRELIMINARY TESTING 

FORT IRWIN, CALIFORNIA 
NOVEMBER 12-16, 1973 

The tests planned for this period consisted of a series of ground tests 

to evaluate the performance of all RPV systems, and a series of flight tests 

to determine flying qualities and to further demonstrate the operation of the 

RPV systems. In summary, all ground tests, including some taxiing, were 

completed in the first three days. A certain amount of time was spent during 

this period in adjustments to the controls and modifications to the video system 

and instrumentation as problems were encountered. 

The last two days were spent taxiing in an effort to improve ground 

handling and to find a reliable method for straight line taxiing for takeoff run 

and landing rollout. R/C techniques were thought to be insufficient for this 

task since the required length of takeoff run would place the vehicle out of 

effective visual range for takeoff. The method adopted was to give a second 

operator the nose camera display and steering-only control for taxiing purposes. 

The tests ended on Friday, November 16, when a loss of video signal 

resulted in a ground loop and moderate damage. 

A summary of each day's activities follows: 
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- MONDAY, NOV. 12 ..................
 

Unloaded and assembled tPV.
 

Changed compass connections.
 

Calibrated yaw indicator.
 

Video transmitter blew fuse - replaced with larger fuse after consulting
 
manufacturer.
 

Calibrated camera tilt indicator.
 

Verified head and exhaust temp indicators.
 

Connected S-meter.
 

Verified three chute modes.
 

Trimmed surfaces. 

--------------- ------ TUESDAY, NOV. 13--------------------------

Assembled and verified tracking system. 

Operated all systems, vehicle tethered, engine running. 

Verified auto-homing command. 

Measured unusable fuel (-2 lbs). 

Tested, chute firing with engine running
 
(blows 3A fuse)
 
5 times on command
 
3 times on loss of signal
 

Starter nut came off - added cotter pin 

-71­



Tuesday, Nov. 13 (continued) 

Range 	check to far end of lake (1.6 mi.) 

Command solid - engine running 
tracking good 
video weak on receiving dipole 

Noted head temp, exhaust temp, and tachometer ­

no good with engine running and transmitters on. 

Propeller damaged by rocks - patched with epoxy. 

Ran battery test (see results). 

Checked video for possible attenuation by leading edge. 

------------- --------- WEDNESDAY, NOV. 14---------------------

Fixed head temp, exhaust temp and tachometer rf interference. 

Set up for taxi tests. 

Taxi 1. Engine killed on apparent chute deploy command - cause unknown, 

Taxi 2. Taxi in large circles - max. speed 30 mph, approx. 5 min. 
max head temp = 310 0 F. 

Taxi 3. Same - approx. 5 min. - noted tendency for turns to tighten up. 

Wind increased - returned to hangar. 

WEIGHING RESULTS 

NO FUEL 

STBD GEAR 365 Lb. 
NOSE GEAR 116 Lb. 
PORT GEAR 366 Lb. 

TOTAL 847 Lbs. 

C.G. 	 =7.46 fwd. main gear 

- 27.8% chord 
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BATTERY TEST RESULTS 

The following items operating: 

Command System (Manual Mode) 

Vacuum Pump 

1.8 GHz Transmitter 

240 MHz Transmitter 

Total load is approximately 15A. 

ELAPSED BATTERY 
TIVE, MIN. VOLTAGE 

0 24.0 

5 *23.3 

10 23.0 

15 22.8 

20 22.6 
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Wednesday, Nov. 14 (continued)
 

WITH 230 LB. FUEL
 

STBD GEAR 365 
NOSE GEAR 140 
PORT GEAR' 371 

TOTAL 876 

Drop test from 7" blocks 6k. 

Drop test from 12" blocks - STBD gear fell off block 
prematurely - wheel contacted ground and broke - no 
other damage. 

------- THURSDAY, NOV. 15 

Installed new STBD gear. 

Modified'command system for steering - only control from console. 

Removed mufflers. 

Engine covers off as for previous taxi tests. 

Tethered static tests 

Thrust = 290 -3001b. 
approx 3800 rpm 
full rich mixture. 

Setup for taxi tests.
 

Tried straight runs using distant land marks.
 

Tried following line on lake.
 

Ih all cases, very active control was necessary - ground track very
 
sinuous often ending in spin-out.
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Thursday, Nov. 15 

Two problems:
 

1) poor ground handling
 

2) poor picture quality
 

Tried runs with chase car, noted airspeed indicator
 

50 mph + 5 mph-- 32 kts indicated
 
car wind
 

Returned to hangar.
 

Modified video to free-running mode.
 

Removed and repaired STBD elevon servo for less free action.
 

--------------------------- FRIDAY,NOV. 16------------------------

Removed autopilot card because of noted tendency to enable autopilot 
without command. 

Reduced nose gear tire pressure to improve straight running tendency 

Main - 27 psi 

Nose - 13 psi 

Tried hands-off taxi at low speed - noted large trim change with power ­
runs fairly straight power on. 

Tried taxiing with auto chase, nose camera only display for second 
operator. 

Noted improved handling and picture quality. 

Straight runs possible using terrain for reference - active control necessary 
handling poor with power off. 

Make four full power runs - each apparently better with operator gaining ski 

Last run 17 sec. - 70 mph. 

Video signal lost at same time as throttle was shut down - vehicle ground 
looped in tight turn to left. 
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ITEM 	 PART 

1. 	 ROD AL .Z50 OD LENGTH 56.0 7075-T6 5 REQUIRED 

2. BRACKET, AL .030 x 1.0 x I.Z5 6061-T6
 

3; BLOCK, AL 1.0 x Z.0 x 3.0 6061-T6
 

4. 	 SUPPORT TUBE, AL .050 WALL, 1.00 OD, Z0. 6061-T6 

5. 	 STRAP, BRASS .030 .250 x 5.0 

6. INSULATOR 	SLEEVE .750 OD, .250 ID LENGTH 1. 00 NYLON 

7. 	 CONNECTOR 50 Z39 

NOTES 	 1. 
1. 	 WELD ITEM 3 TO 4 fl 
2. 	 ATTACH 7 TO 2 WITH 4-40 x 1/2 SCREWS 
3. 	 PRESS FIT ITEMS 3 6 1. 

4. 	 SOLDER BRASS STRAP TO 7 AND CLAMP 

OTHER.END 	TO VERTICAL ROD
 

OF VERTICAL ROD FOR
5. 	 ADJUST LENGTH 
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