
r
DEPARTMENT OF AEROSPACE ENGINEERING

BOSTON UNIVERSITY

COLLEGE OF ENGINEERING

BOSTON, MASS. 02215

A FINITE-ELEMENT FORMULATION FOR

SUBSONIC FLOWS

AROUND COMPLEX CONFIGURATIONS

by

Luigi Morino

December 1973

Prepared for

LANGLEY RESEARCH CENTER

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

HAMPTON, VIRGINIA 23365

Under

NASA Grant NGR 22-004-030

E. Carson Yates, Jr., Technical Advisor

TR-73-05





- i -

ABSTRACT

The problem of potential steady subsonic flow around

complex configurations is considered. This problem requires

the solution of an integral equation relating the values of

the potential on the surface of the body to the values of the

normal derivative, which is known from the boundary conditions.

The surface of the body is divided into small (hyperboloidal

quadrilateral) surface elements, 2:. , which are described in
~

terms of the Cartesian components of the four corner points.

The values of the potential (and its normal derivative) within

each element is assumed to be constant and equal to its value

at the centroid of the element. This yields a set of linear

algebraic equations. The coefficients of the equation are given

by source and doublet integrals over the surface elements,

Closed form evaluations of the integrals are presented.
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SECTION I

FORMULATION OF THE PROBLEM

1.1 Introduction

A general theory for compressible unsteady potential aero-

dynamic flow around lifting bodies having arbitrary shapes

and motions is given in Refs. 1 and 2. Application to finite-

thickness steady and oscillating wings in subsonic flow is

given in Refs. 3, 4 and 5. Here, a general numerical formu-

lation for complex configuration in steady subsonic flow is

considered. By using the Prandtl-Glauert transformation, the

incompressible flow is obtained. l ,2 Hence, for simplicity,
if

only the incompressible flow is considered here. In this

case, the problem is governed by the Laplace equation with

prescribed normal derivative on the body (exterior Newman

problem for the Laplace equation) with an additional compli-

cation due to the presence of the wake (of unknown geometry).

The method is described with the emphasis on the aerodynamic

applications, but it is applicable to different physical pro-

blems as well (see Subsection 6.3).

The problem of the evaluation of the steady, incompressible

potential aerodynamic flow around an aircraft of arbitrary

configuration can be analyzed by solving the integral equation

(1.1 )

where ~ is a surface surrounding the aircraft and the wake. 2 ,5

*Subsonic oscillatory flow is considered in Appendix c.
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For the moment, it will be assumed that the wake does not

exist. The effect of the wake is considered in Section 5.

The value of oron
(tangency condition)

is obtained from the boundary condition

or

(1. 2)

oJan :;;: - n x :;;: - n. ~

The integral equation can be studied by dividing the

(1. 3)

surface 0 into N small finite elements to yield

ct. ~ 2~ LIf[ n·1 -; ~ S" ii. <7(+)] do~
f$~

Applying the mean value theorem one obtains

~ 2'rr i, ff (n.~+)d<J~ I N

Cf~ ff n· Q(+)d~1i'" -r-I
21T -k=,

<S-k ~~

where r-fv is a suitable mean value of r inside the

which will be approximated by the value of !f at the

(1. 4)

(1. 5)

element cr~ ,

centroid

p(K) of the element, 6
k

By satisfying Eq. (1.5) at the centroid, p(h), of the

element oft ' (h = 1, 2 .... N) yields

( h : 1, 2, :>, . ... N)

(1. 6)
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where r h is the distance of the centroid of the element ~~

from the dummy point of integration in the element ~
K

Equation (1.6) is equivalent to*

(1. 7)

where

(1. 8)

and

(1.9)

with

(1.10 )

1.2 Surface Geometry

Let the geometry of the element OK be described by

(1.11 )

where l' and i'" are the generalized curvilinear coordinate.-Then the two base vectors ~. are given by (Fig. 1)
A.

~

~ IIQ. :.

°1A.J.

The unit normal to the surface is given by

(1.12 )

=

-+ -+
Q, 'A Q;l

I Qt ~ 0.\
(1.13 )

*The effect of the wake is not considered here (see Sections

5 and 6).
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and is directed according to the right-hand rule (Fig. 1).

The surface element d6" is given by (Fig. 1)

(1. 14)

1.3 Expressions for bhk and c hk

Combining Eqs. (1.10), (1.13) and (1.14) yields

(1. 15)

Similarly, combining Eqs. (1.8), (1.13) and (1.14) yields

Ch~ ~ ff u,
-

q (_I ) di' 'd'S' ~= x. a;l
rh

6~

-;nJJ -Q, lI. aa.. Yb d-f/d5~= Yh 3

~"k

where
'X- - X"-rk

= ~ ~h

l - -t h

(1.16 )

(1.17)

In Section 2, these expressions are evaluated under the

hypothesis that the surface element is a portion of a hyper-

boloid.
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SECTION II

HYPERBOLOIDAL ELEMENT

2.1 Introduction

Consider the equations

If:: 1<- -t ~1-1 + 1·1 ... ~~-37

~ ::

or, in vector notations

-P :: Pe ~ "P, l' -t p~ 7 -1" ?~5'?

(2.1 )

(2.2)

This represents a hyperboloid. The lines 7= const and ~ =

const are clearly straight lines. Consider the hyperboloidal

element defined by the above equation with

-I S -1 <

- \ ~ 7
(2.3)

The centroid of the element is Pc ( ~ = 7 = 0). The corner

points of this element are

PH - -
('1=+1, ? = + I):: pc "\" 'P, + 'P.. T 1>3

- - - - -
P+- ::. Pc + 'P, - p~ - p~ (-1::+1, ?:: - I)
-
R+

- - - -
~ =T I)= p~ - 'P, -+ p~ - p~ (i =-I I- - - -P... = p~ - 'PI - P:& -+ p~ (1=-\, ? =-1)

(2.4)
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The inverse relation is

fG ~ ~ (p~. Tp~- + p_~~ P..)

1, : ~ ( P~. + p~-- P.. - R.)
I - -

r~; 4- ( p~~ - R. ~ i1 - ~-)

(2.5)

Note that the four boundaries of the element (i;.:. I ) ?:: I )

are straight lines given by

~ :: (p, ~ ~) -t (Fa t P~) / -I t.. 7 ~

P= (pc - PI) + ( fa -p;)? -I ~ 7 ~

p:: Cp~ 1" pJ+ (~ t P')3 -I ~1 !.

f :: (rc - f~) ~ (f, - p~t5 -1 ~1' ~

(2.6)

Next, assume that the surface of the aircraft is divided

into curved quadrilateral elements with four corner points

P P P- p- Then, as mentioned in Section I, these++' +-' -+' -_.

elements can be replaced by the hyperboloidal element (des-

cribed above) which goes through the four corner points p++,

P- -p p- (see Fig. 2). It may be noted that the surface+-' -+' --
is continuous since adjacent elements have in common the

straight line connecting the two common corner points. It
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may be noted also the Pc is the centroid of the hyperboloidal

element 6~ and hence it will be indicated as

- (~)p (2.6)

2.2 Geometry of Hyperboloid Element

The geometric quantities introduced in Section I can be

written for the hyperboloid element described above. Letting

(2.7)

Equation (1.12) yields
-+- ?>P .... -+

CAl = = PI ..,. 'P3 ?a1--+ l>'P -+ -+
Q, = = 1'). .... P?> i?J?

This yields

4 -.

Q, ~ a~ ::: ( P, ~ 'P~ ?) ~ (p~ ~ P, 5)

:. PI" r> -to p, " p~ 5 ..,. p~ x p) ?

(2. 8~a)

(2.8-b)

(2.9)

since - = o. In components notationsP3 x P3

~"I:'
"7

7) ~..[:, - - - -
J J f< A. J h-

0., ~ a2 = 1, + ~, J, ~+ 'DQt: A~ 1~ 3} 7x.. ~ .. ~ .. AS 11 h 'Xl- 1" ~ ..

(~I~~- 311~)·d~,h- }/~~)i +(1) ~ .. - h1,)7

(~, 'X). -~, ~J 1" (~I?'} - 'XI h)1' -to (~~ 'X).- Xd»)J
{~11~ - ~,J:J~ (7<, ~3 - ~, X3)i -to (?)~, - ~3X).)}

(2.10)
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In particular, for the first component, one obtains

(2. 11)

Note that, with present notations

-
= po ..- VI 5 -r P~? -r P? ?1 (2.12)

where

(2.13)

is the vector connecting the centroid p (h) of the element <S", ,

to the one, p (k), of the element 6'k' Hence

= (P, ~ p~ 1" P, )( ~ S ~ ~ x ~ ?). ( p~ ~ PI -S r R?+ j31' ~ )

= ( Po . P, x p~) 1" (po' PI X r~)1 i- ( Po' j} 1- pJ 7

+ \ PI . f~ ~ f~}1? T ( p) . PI x Y3)1 7-r ( p} .7, )( f~)17
(2.14)

since

(2.15 )

- - - --p, . P, x P? :; p... 'PI i< r~ = 'P,.' 'P3 )( f,

~ 'f:s' PI (1\ ., f3 . p,)( p,. = 0

- - -fl' P, XPlo ~

Noting that

- - - -::: - :PI' P?}( p~ :; - Flo • PI )( ~ (2.16)
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Equation (2.14) reduces to

~ • a: I ~ 0: >. =- (Po' P, X P2) -+- ( po 0p.)( ~)"i

+ (PO' ~ x pJ J - (PI' p~ x p,)-3;
(2.17 )

In component notations, Eq. (2.17) reduces to

Finally, according to Eq. (2.12)

r~ = I r" I : Il I = I Po ~ P, -"5 T P& ?.,. (5, ~ ? I

:: { po· Po ~ PI . P, 5 ~ -t p~. P& ?2 + p~. ~ "1 ~ ? ).
I

+ 2 ( Po . P, ~ ... ~. p~ ?.,. ( Po· ~ ... PI . p~ )171" ~ . P, i ~71" R.~1 ~/]J"i

(2.19)

or, in components notations

r~ =[t?("t'X.i+'X.?t--X~1?/t"(~ot~,1-t1)?-t-~~1,f
t (~.+~,i1" h?-r ~~1?)ji

(2. 20)
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2.3 Expression for bhk and chk

By combining Eq. (1. 15) wi th Eqs. (2. 11) and (2. 20), one

obtains
I I

bhh 0 + 2~ ) \ (( 'i,k ~,~,H1,h-~"hJf ('M-,- h 1»7J'
-I -I

-I

ll.[ (Xot-x,it-X0t-M1VJ.... (1,T 111r1.. 7-r,~h"1?I+(}orh-f1t-~ .. ?t- }-~1//J):d-rd7

(2.21)

Similarly, combining Eg. (1.16) with Egs. (2.18) and (2.20)

yields,

I I ---"57 x. ~o }.

Ch!r< =. -~)) 1kt 7 XI 1, ~, )(

-I -I -; x~ ~~ ~,.

-I )( 3 1~ ¥}

(2.22)

The integration of Egs. (2.21) and (2.22) is discussed in

Section 3 and 4, respectively.
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SECTION 3

DOUBLET INTEGRAL

3.1 Integration with respect to ~

Consider Eg. (2.22), which can be rewritten as

where

0 Xo ~o }"

rYlo :. 'bet ? )<.., ~, 1f,

I
0 )(). 1>- ~,.

-I 1-3 '1> ~>

(3.1 )

ry 1-" ~o ~"

W), :. 1)e-t. 0 X, 11 ~,

-I x.. 1.. !flo

0 '1-, 1~ ~>
(3.2)

and

(h I ~ I ~. -to '3 ~II ( ~ (3.3)::- ::
~.o -to 2 2~,"5 '1- ~1I5~):::

with

2-- = ~, . ~, (3.4)"'J ,..
J

where

~b = po -to ? p~

- - (3.5)
5t., :: P, -r 7 p~
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(3.6)

In order to obtain the relation between nO' n l and mo' m1 ,

consider the derivative of the expression in bracket in Eq.

(3.6) and equate it to the integrand of Eq. (3.1). This

yields

(3.7)

This implies

(3.8)

or

I
D [

;t"

~Of

(3.9)



- 13 -

Note that (see Eq. B.l)

D :::. 'DfGt [;2.Qf> -:£0 I]
- .2QI 2"

I - - I J.
:= ;to 1- 2,

Finally, Eq. (3.9) yields

(3.10 )

Ylo -t t')1~ :: ~ [(2
0
,rrl o+ 2

0Q
m,)-r 5 Ut

1l
1?1 0 + 201 m,)]

:: ~ ((.2 01 + "3 2 11 ) m. 1"" (.2 •• -t 3' .20') mIJ

:: ~ (2.+"1.2.). (2,m.+2 o Y>1.)

I
= 1> ~. Q

since, according to Eqs. (2.12) and (3.5)

- - - -
t = ? 1" "5 P, + ? p~ -to "5 7 P3

(3. 11)

=
(3.12)

and, having defined

- - -Q == 2-, YY1 0 -to i.m,

-
~.? 'f.... ~o ~ II 0 Xo +? x~ 1f> 1" 7~~ ~01" 7,L.

::. "De:t :Z, 7 'xl ~, ~ J- :: Det () X\ + ?X~ 1, + 7~3 ~,1"7~3-
- ;to 'l- l ~,. ~2 -2 'f.. ~ ~~ ~~•
- ~\ 'J..3 ~, ~3

-;2., x~ ~3 }}
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- l~" 7
x
•

~o -to 71.. ~~~ 7~ .. l
::. - :to )(, 1, }, j

,,~ 1} })

[ ~. 1v

}. ]+ :t, . )\, -r ? x~ 1,-1-1 1~ ~11"?~}

X). 1~ ~L

- - 2. ( ~o' 15, ~ p~ ) - ~ I ( ~ I • Po ~ 15))

( po -t- ? f~) ( ( Po T ? ~). P. x p~ J

- (PI + ? P~) [ (PI T ? p~ ). po ~ r~ J

(3.13 )

Finally, combining Eqs. (3.6), (3.11) and (3.13) yields

l.1> (?) ::: _ (~oo -t-12(0)(~.· ~ x~) 1" (;216: "52,,)( ~I' p.)( R) _1 _
:200 '2" - :i,o Ic2. + 12,J

(3.14 )
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an alternative form is (note that Ci. p- ~ n ci. c; l( p-..G-, I r3 = .,("." 0'-, 3

~D (?) = - (( 200 T 1 ~~I) P3 - (~IO: ~ ~,.) p~]. ( ~Q )( it~
~ ... ~,,- 2'0 I ;l 0T -5 ~, \

= _ (~o + 5 2,) • <if) P3 - ~, p~). (if) ~ iJ
/~. + 1i,I (i, ~i,)· (i.o ~ ~J

= I ~ IlL, ~i( i· i.)(P; .j., ~,)-> 5 ( t· ~,)(p..j.d,)

- ( ~.i.)(p,·i.,~,)-"§ (}.~')(P. ..2.'~JJ

(3.15)

3.2 Procedure to be Avoided

It may be noted that, according to Eqs. (3.1) and (3.14),

C
hk

is given by the sum of two integrals with respect to 1 is
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of the type

M 3{Q) I
N4(?) ) "'-7~-t2f7'" r

(3.16)

where M~(?)=f m~? h is a polynomial of third degree in ? '
while

(3.17)

is a nonnegative polynomial of fourth degree. If N4 ( YJ) were

always positive, then the rational function could be replaced

by a polinomial

1

(11 -t C/ (~? 1" b) -t- C ({;\ 7T b) + (3.18)

and the integral in Eq. (3.16) could be easily evaluated by

using the recurrent formula (Eq. A.6)

(3.19)

together with (Eqs. A.9 and A.lO)

(3.20)
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However, if for a certain value, ?'* , of ~ the denominator

is equal to zero, Eq. (3.18) cannot be used. It may be noted

that this implies at '}::?-tt ) 1.2. l( .at I :: 0 or, that 20:: Po ... 'J* Fa

is parallel to f, T?* ~ As is evident for Fig. 2, this is

the case ;f the 't~b 1 t th l' n (*) It.... po~n " e ongs 0 e ~ne I:: t}.. may

be noted that, as shown by Eq. (3.15), the numerator has a

single root at ?::?.. while the denominator has a double root

at ? :: 7.. In order to avoid this problem, it is convenient

to follow the procedure described in the following subsection.

3.3 Integration with Respect to 7
Consider Eq. (3.16) as mentioned above,

negative polynomial of fourth degree. Hence, it can always

be decomposed as

where ?i are the roots of the poly.nomial N4 , and n 4 is the

coefficient of IJf, namely / ~ A ~(~. Then the rational

function M3/N 4 can be separated into the sum of four terms

=
c, Ca, C~ c...

---- "t" ---- "t __.;...._ + __..:.."If"__

? - ?, ? - ?~ ? - 'l~ ? - ?I,-

(3.21)

where C
i

are constants. Hence, the evaluation of c hk is

{*)It may be noted that the problem could be avoided by

integrating with respect to 1 first.
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reduced to the evaluation of integrals of the type

11) I c· dr;I
::.

? - 7; )J,?1-+2~7T (

= .-S::!.. in (i '( ... Y"t-t cp-tr2i)(7- 9;)
ri ? - 7;

(3.22)

with

y. ::: ~ ?; T 2 ~ ?i ... rI

3.4 Particular Cases

A few special cases need a special treatment or can be

evaluated in a simpler manner. They are considered in the

following Subsections.

3.4.1 N4 = 0 in the integration interval

As mentioned above, N
4

is a nonnegative polinomial. Hence,

if 1\14-(9,) = 0 with ? real and within the interval (-1, 1),

then N4 has at least a double root at ?, In this case, the

decomposition in fractions is different and Eq. (3.21) must be

replaced by

::
C, C~ C~ C~---- -+ ... --......;..._ 1"" 't':....-_

7-?, (?-?,t 7-?~ ?-'lft
(3.23)

However, as mentioned above, when this occurs, Ii
fl

)C. ~II :: 0 and

the numerator is also equal to zero (single root). This implies

that C
2

in Eq. (3.23) is equal to zero. Hence, only integrals

of the type given in Eq. (3.22) are involved.
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3.4.2 N
4

:: 0

The case N4 = 0 is also possible. This implies that 1i~

is always parallel to ~" This, on the other hand, implies

that all the lines i = const converge into the point p(h).

This means that the element is a planar element with two edges

passing through the point p(h), which lies outside the element.

In this case, the coefficient Chk is identically equal to zero,

as evident from Eq. (1.16).

3.4.3 Trapezoidal planar element

If two edges of the element are parallel (trapezoidal

planar element) the integration can be performed in a simple

fashion. Choose ~ and ? such that the parallel edges are

the edges ? = ! i or

(3.24 )

In order for the edge to be parallel, the vector PI

must be parallel, namely

and Dr,

(where
-

- P,
u = lpi/

,.I UP, ::: '1'

-
p~ ::: r v.

is a unit vector) and

(3.25)

- -
Q, :; :1, - (~+ ~ ~) = (1 -tp \f') tA (3.26)

Substi tuting these into Eq. (3.15) gives (note that t·~, It f~ =0

Po' U l( P.
\.io x u I).

(3.27)
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Integrating with respect to ? ' one obtains

1 \ (, dn Po . Q It p;z ( ~I 'qU, I d7 (3. 28 )
D = - 2iT) A. D / = - 2. 1T ) fF -I-~-"-I..(-- -'2

Noting that(see Eq. B.l)

l~l~ ~ I ~~lA'~ .. lj·C\I~ (3.29)

one obtains

I'D =--'- f J
2TI 'f I

(3.30 )

(3.31 )
J

where

wi th (Eq. A.1)

= I f IJ--~ r======

~. ~ :: (P(> + ~ p.). U -t '} ( ~ +" "5 p~ )·U
: ~ 1- b 7

I } 1
2

- (~. ut
I

a. I:L :L: po+~f" 1-). (pO"'~PI)(P<l+!r;z)?ot P;z+~P~1 'J -(o.+bpj

(3.32)

with

b =



J. ~ I - - \~ \ ~- ~ ::: leo x u = po X Ci I
~ - a.b .. (Co" u)- (E1.~<A)= (Po)(Ci)·(P'lxlA)

'r - b1-::: \ c~xu\).= I p~IlUI4

J- :::

~ ~

'( ::

C ..

d :-

e. ~

f ::

where
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- -
C•• Co

- -
C~ 6 C~

(3.33)

- - -
Co=- Po -r ~-PI

(3.34)

The results obtained above can be rewritten in a more compact form

by noting that (see Eg. B.I)

~c - d~ = I Po~ UI·\P1.lCUI~-[(~l( u)6(pt XU ))2

:: I ( Po x 14) X (P1. x LA) \ ~ ::: l p/~ )( P1. I~
~ ~

:0 ( Po N X p~ N _ u) = (P~ ~ P1.. U) :; f 1

(3.35)

where the superscript N indicates the part normal to u:

- T

PJ. - p~ Ct

Also, it may be noted that

(3.36)
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(Co I( c~) · ( f l( u) ( } A ~). ( j: l( cA)
::. - = -

rio I ~ . lA l( P;t I Yit \ i· v. X c~ J

( ~)( c~) . ( i ~ i,> ( j '" (i,). ( i x (j&)
- ::: -

(1.1 i · i, It ell ) i· i I~ . Q, A a~,

(3.37)

Combining Eqs. (3.30), (3.31), (3.35) and (3.37) yields

with

(3.38)

(3.39)
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3.5 Hyperboloidal Element

In this section, it will be shown by differentiation that

the result obtained above is valid for any hyperboloidal element.

Note first that
~0 -

=- ~a.

°1
-

a llt -
:. p~() ?

-
~ ll~

0- =Q? (3.40)

-
Next consider ( ! 1 indicates the sign of ~ • at x a~)

:;: I
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(3.41 )



For
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Next note that (see Eg. B.l)

I i'. a, 1'1 i·~,I' - f(~·t)( ~.i,xii.>'+ ((ixa,Hi,a.)]'}

= (( i· t)( QL' Q~) - (~. a~/ ]((~. ~) (a~· Q~) - ('t. a~/ )

- t. i (i ·~ xa~):- ((~> ~) (ci, ,aJ - (t· a~ ) ( ~. a~) J2

= (f;g./ (a" a,) (If" «,)-r(t~t- (i· tJ(i<i,'ii,J(j-i')+ (t/.. i.)(i" <i,iJ

-- (f· ~) (f·i" iiJ':· (i· tila,.q5-(~i + Ht·t)(i, .q.)(j.i,Xt· 6/.)

= (f i)l (f ~)((a;·a,)(Q,· 11,)- (Q,' a/J- (f Q, K qJ

-- ( Q,. ii,)( ~. cd.. (a,· Q.)( g.. at- 1 (a.. aJ( t· ci)l t· c?,)]}

= (t'i)I(~·~)(a>aJ·(a,)(aJ-~' (~x aJ t· (&,)(~)

-I~ (~ .a~) - a,. (i· a,) I). }

= (~. i) {I td a,x i?JI' -- lOr (~. Q.)- a, (i· iiiJ
- 0

(3.43)
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since

A" ( 8)l c) =: 8 (A· c) - C (~. "5)

It is worth noting that, as shown above,

Next note that (see Eg. B.1)

(3.44)

(3.45)

( Ut ,. ~I)' ( ~)( a~) (1-. i-) - ( f)( a;}( ~)( &~) (~~, j.)J(t· i, )C ~~)

t ( ( i" f~)' (i ~ aJ (~ ·if X ~~) - ( ~, ii,)o( 1-1. aJ(~. p~ x ~~)] ( i· t)

= {u Il.' - .. a,)- la., R,)IQ"iJJ It· t)

- (1%)- (j. ii,)1 ~. Ii,)] (ii,· ~)} ( 'f' i, ,ii.)

+ r(If ~) (~. ~.) -(f 4,) (<f' ~) ) If ii.> a~)

- ((~. ~) Iii,. ii.)-It· (j,)lt· a,)J (i· ~ x qJJ(~. V

== -[(i· ~)( at' a>.)- (t· &~)J(f.. a,) (i' ~ )( 4~)
+ {rt- iJ (rq,. {.){ t· a,xq-J- 1&:" q.)( t· f. xa.)]

- r~. a,)(ri· r,)I~' (i,x Ij,)- It- a.)( t· ~x ii,)J}~. i



.,.. 27 -

= - I 'b- 1. a~ \~ (~. i,)( f.. a, )( qJ

~ , } ~ a,.1 ~ (} •~) (} . i, x F~)
(3.46)

since (note the change of the order in the triple product)

( .g... i) ((a). . p~) (t x a}.· ~) -(i; .~~) ( ~ " 4).' f~) ]

- ( 1,. • i~) G~. P~) (~ " a~ .a)- (~. i;)(~ '< i~· r~)J

= ('6-' ct-) ( ~l- X (t 1\ i~)J·(f; xc<,)

- ( t· a,)( ~ ~ ( ~ x c?JJ. (~x a,)

:: (~. p( (a..li.)(i-. r,x fi)- (Q.~x q))

- (}. aJ ((i· 0:,) (t· f,x aJ- (i·~i,)J

= ((~. i) (~ .a) - (~ . c?J~J t· ~ X i l

=

(3.47 )

Finally, by combining Eqs. (3.38), (3.39), (3.41), (3.42)

and (3.46) one obtains
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- ( i ~ i,). ( f Jl. &.)
) b- •~ (3: f· j, ~ o.~)

I
r

±I
- r

(f· 0,)( t .a, ~ G~)-(f·jJ(i·a;,,~)

I ~ 'A ~I I~

(3.48 )

and, according to Eg. (3.38) and (3.15)

1 \
== - in "r> (3.49 )

in agreement with Eg. (3.28). This completes the proof that

Eq. (3.38) is valid for any hyperboloidal element. However,

()~I9 :; - ()~ ta.;' -(i)(a,)·(ix.a~)

?J~ ?; 7 or 7J ~ 17 ) 1- •t (~t· i,1. &J
= 2- ( (t· i)( t· Q,' P.)-f!' ii, i(Fi;. ii'L)

~ ~ ,Jf1 I &- r- a, I .

= li~a,I'{- (~.·:)~K~~P.)-(fiiJ(t·iil.ii.)J-t

~ is also performed (note that

~ (--)$(Q, = 0)
o~

211

for the sake of completeness, the derivative with respect to
- -

~ ~I = 0, a Q,l :: 'P~ and
0> 0>
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+ J/ i [ 2 (a" - -. ii" r.) ... (r i)( a, · ii, x p.)

-(5.· a,) ( ~. 0, ~ aJ- (~. a-,)C i,' Q, x&~) -(i '4,

I=--
r~

- - -
~. ~ I X. lZ). (3.50)

in agreement with Eq. (1. 16)
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SECTION 4

SOURCE INTEGRAL

1. Introduction

Consider the evaluation of b hk . According to Eg. (2.21),

b
hk

can be evaluated as

..l.).I(, )~: I dhb,.,,( := 2TI A. 5 /
1 ':-1

-I

where

with

(4.1 )

(4.2)

1\
0. ::

~
- -

= I f' +? P31 ~::. 9." . 9../

1\ - -
= (P,'" 7 t~)· (~ 1" 7~)~ :: &to -:1.

1\ - -
( Pp + ?p~). (~or? Pa)r ::. ~ 0 • /1,. :::

(4.3)

Note that Eg. (4.2) yields (Egs. A.9 and A.10)

" "" ,,1\
~ +)J.1....f~~i + b:;-;~ 9-n(~r~J.-r...~) .. ~CJ)

(4.4)
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The integral obtained combining Egs. (4.1) and (4.4) can be

easily evaluated numerically. Note that b is a linear function

I)" "
of 7 while fA., ~ and '( guadratic ~unction of 'l. However,

for elements with two parallel edges, the integral can be

evaluated analytically, as shown in the next Subsection.

4.2 Trapezoidal Planar Element

Consider an element with two parallel edges (trapezoidal

planar element). Choose 1 and 7 such that the parallel

edges correspond to ? = ! 1. For this case

i -
PI : V\

- \f
-

p~ -= \A

(where U :: -1L ) and
Ip,1

:1, : (F, '1" 7 p, ) = ('1 -r?<f) C1

(4.5)

(4.6)

These imply

"a .: 0

" ( 1< + ?4') ( ~ l( ~ • Ix)b :: ::. ex 't"? If) B

~ (1(1"741)
~

:-

I' (1< T 7lf) (fA . ~~)
~

::

" -
'( = . &2.~ • ~ ~ (4.7)

and Eg. (4.4) reduces to
1\

, b 1\._ (f'i"" '" ") "As::' J ~- 'I-Y' rJ rJ.. '( ... J..1 ... ~ -r C (J)

= B I~:~~I ~ (/1¥/tf/(T 0<~7Y'51'<?<'7'/')(u '.2)J

"+ c (?)

(4.8)
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Note that

(4.9)

otherwise the boundaries ~ = ! 1 would be crossing. This

implies

(4.10)

and hence, Eq. (4.8) reduces to

~ S "" B ~ l '( T ( 1- 1" ?1f)-1 .... ~ • ~,,] 1- CI (?)

:: B QY\( (-t- (9,0"'1 ~,)·U J or C, (?)

(4.11 )

with

(4.12)

Consider

where

(4.14)

Integrating by parts yields

2; 1. = (7 - ?~) 9.n ( I~ I .. i· iA) - Fn.) If ,'.f.•P:· ~'iim .. (P.'fr.)·~,!?
" (Fl.) "" ( Iil .. ~. iA)-j<'-9+)(,1+,1fr!+,1M ,0t, .. C (J)

(4.15)
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where ?Jk is a suitable constant. The choice for ?*is
discussed later on (see Eg. 4.jO). Note that it is possible

to write

(4.16)

with

(4.17)

By using Eg. (4.16), Eg. (4.15) reduces to

with

(4.18 )

Next note that
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Applying the general formula (see Appendix B)

one obtains (note that U . U. = 1)

I ~ I ~ - I ~. iA I~ = I ~ ~ ct I ~ :; I~~ ~ uI ~

i~· ~ - (~*. U)(~· i{) :: (tt~ Ci)· (t~ u) :: ~ p~ ... ?~ ~)~ ~.(~.xU)

~ - -
(i:~' U)! ~l-( 1J/·1-)(g.·a)= (t~A t){;;X~)::(tJf~ ~)·(CAx~J

(4.22) .

since

1." CA :: ?f1+ of P, 1-7i! (f,. ~ .,~)x iA = (p~ r 7.11 ~))( M

~ "tA ~ ( ~o ... 1 ~,) X tA :: jo" U

Combining Eqs. (4.20) and (4.22) yields

(4.23)

(4.24)

1$1 = f((1.Ti~::: iAJi~~., ii) d7 + J(t· ~'l~~I:U) /;1 + c. iJ)

= f Cf. A ,*). (i)l. IA) d9 + C (n)
l~xiAl~ It I 3/

(4.25)

where

(4.26)
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since the integrand in Eq. (4.26) is independent of ~ .

Finally, note that it is possible to write

)

~" .where ~~ 1S normal to both

- IJ -t... . V( .: 0

- - -
<A and P~ ....~ PJ or

- Ii -
8-~ . (f{ +~~) ~ 0

(4.27)

(4.28)

Combining Eqs. (4.17), (4.27), and (4.28) yields

(4.29)

By using Eq. (3.33) and noting that lA· <4 .: t ~ Eq. (4.29) may'

he rewritten as

that is, a system of two equations for the two unknowns ~* and
T

q which has the solution,- '( ,

af -b(?
(" - b~

=
a (-b~

e.
(4.30)
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Finally, combining Eqs. (4.25) and (4.27) yields

(4.31)

or

f
- -

I _ _- H. - g. • lA

SI - I*" ~ I ~ X ~ t
- N -

since ~* -U =0 (Eq. 4.28) and

(4.33)

For 1-: is normal to u and fa.'" 1 p~ (Eq. 4.28). Note that

(seeEq. A.IO)
I

) -ij:-; c1? =r(,J. +:.n d-)-~d7

=*" I-n (,J'( I~I d·?+t~)
(4.34)

with J.- , .(J and (given by Eq. (3.33), while the first

integral in Eq. (4.33) is proportional to I p given by Eq. (3.28).

Finally combining Eqs. (4.18), (4.32), (4.34), one obtains
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The results obtained above may

be rewritten in a more expressive form. Note that

_ (f)(;;')·(c~~~)

- Ic),)\ fA r~'

(4.36 )

a. r - b~

e
:. (c.p ' ii)(Cj.. CJ- (C~·iA)(c>~)

I c). )( iA I ~

= (Co J( cJ· (lA 1- C~) =
I C~x iA I).

(4.37)

-,., -
i./"· 8-./p~

- ~

and finally t"¥; • I p,,' n'::: -If I If I (p".{;jxRI

I fi~· n,~ , ~. nI Iad I ~" q; x Q).l- = :::

IP~"nfli:1x~1 I iA J( p~I la, x. a.ll~

(4.38)

Combining Eqs. (4.35) through (4.38), adding for convenience

the function of 7, Q,n)i
l
" a, ,and noting that (Eq. 4.7)

(4.39)
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yields

-
at '" q, \ J }

(4.40)

4.3 Quadrilateral Planar Element

In this section, it will be shown, by differentiation,

that the results obtained above are valid for any quadrilateral

planar element. For this element, the normal

I Q. 1- a:l I (4.41)

is independent of "1 and ? and Eq. (4.40) reduces to
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Is :. l~ n·A, i-~x~ .. n I~,I ~Yl (1l1.l1~1"" t·~.)

- - - I
-+ t- x a~· n I a21 Q.n ( Iaf II ~ I t- T· 0:~ )

-If·;;IJ}

Note that

and

-
~ a,
- =- 0
o~

2- ( ft i I • Y» =- C<, x a, ·n .=. Q?>1

(4.42)

(4.43)

Hence

jq;. a,
Jf> t

(4.44)

(4.45)



- 40 -

Similarly

(4.46)

Furthermore, noting that

7) (f· n) a, .:;;. f\ =-0
~~

1) \. ~. n) a~· n::. =-D
?JYj (4.47)

and using Eq. (3.50 ) yields

,.
:; ZIT 7);~ (!. (~'n) Ip J

(4.48)

Finally, combining Eqs. (4.42), (4.45), (4.46) and (4.48)

yields
...

2-lT 7) Is
Pi . Xli ?Ji)7 +

Ct· n) i-. ~ ;( i~
(3
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=

that the error introduced by assuming

(4.49)

in agreement with Eq. (1.15).

4.4 Comments

It may be noted that triangular elements are the limiting

case of quadrilateral planar elements. Hence, the above for-

mulation is exact for triangular elements. On the other hand,

if the derivatives of n with respect to '5 and 1 are negli-

gible, then Eq. (4.42) can still be used. It may be noted- -
... n 11" , h'-- :. -:. 0 Wl t In7), 7J?

the element is of the same order of magnitude as the one in-

troduced by using constant-potential elements. Smaller ele-

ments are thus required where r1 is varying rapidly, that is

at the leading edge and tip, where, incidentally ~ is also

varying rapidly.
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SECTION 5

THE WAKE

5.1 Dynamics of the Wake

As mentioned in Section 1, the surface ~ in Eg. 1.1,

surrounds the body and the wake. The effect of the wake,

disregarded in Section 1, yields an additional term in Eg.

(1.4), given by2,5

I - i (( A(J) n.. ,;; -L-dlS'
~- U )) 1 .. v r~

<S'

with

(5.2)

This represents a distribution of doublets with intensity

A l.f. The geometry of the wake is not known. An iterative

procedure can be used to solve the problem: consider the

surface of the wake divided into small elements. Assume

initially that the wake is composed of straight vortex lines

(Bee next subsection): then find the values of ~ and then
"

evaluate the velocity at the corner of the elements. Find

a new location for the corner of the element such that the

elements approximate the stream-surface emanating from the

trailing edge and repeat the procedure mentioned above.

Needless to say, convergence of the iterative procedure should

be verified, numerically, if not theoretically.

Finally, the values of Ar at the centroids of the ele­

ments can be obtained as follows. Consider the Bernoulli
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theorem for potential flow

(5.3)

Since no pressure difference can exist across the wake, then

(5.4)

or

This can be rewritten as

or

1)
6~ 0- :::

"D-t

where
11 7> -- :: - ;- ~. V'Dt e>-e W\

(5.6)

(5.7)

(5.8)

is the total time derivative obtained by following a particle

having the mean velocity,

Q =
'" (5.9)

For steady state flow, Eq. (5.7) reduces to

(5.10)
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(in agreement with the result obtained by Mangler and Smith7 )

or

= (5.11)

along a streamline. Hence it is convenient to use elements

with edges approximately coincident with stream lines. Then

the value of A t is the same along the strip obtained by con-

tinuing all the elements between two streamlines. This yields

a simpler set of equations since only the value of.6~ at the

trailing edge (rather than the values of A'I at the centroid

of each element) would be involved.

It may be noted that the above derivation is exact in

the sense that no small perturbation hypothesis has been made.

It may also be interesting to interpret these results in terms

of velocity: the vortices are parallel to the streamlines,

the total vorticity between two streamlines (equal to the

difference in ~r between the streamlines) is constant, while

the intensity of the vortices decreases if the vortex lines

diverge. Note that the vorticity is given by

? =
d

d s (~~ - cf9-) (5.12 )

where s is the arclength in the direction normal to the lines

~ ~ = const.

It may be worth noting that (Ref. 1)

= (5.13)

where ~ is the solid angle of the surface as seen from the

control point. Hence, the important factor is the contour
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of the strip (rather than the shape of the strip) since the

solid angle depends only upon the contour. Note that the

doublet integral is exact for any hyperboloidal element.

Furthermore, it should be noted that after a few span­

lengths, the wake-sheet rolls up into two vortices. Hence,

after a few span1engths, the strips can be replaced by two

concentrated vortices.

Finally, it should be mentioned that, as shown by

Mangler and Smith7 ,"the vortex sheet shed from the trailing

edge of a lifting wing with non-zero angle, in inviscid

subsonic flow, leaves the trailing/edge tangentially to the

upper or lower surface, or exceptionally, in an intermediate

direction. The exceptional intermediate direction is possible

in three circumstances only: either there is no mean flow or

no shed verticity at the point" or both. If the shed verticity

is positive (negative) and the mean flow is outboard (inboard),

the sheet is tangential to the upper surface, otherwise is

tangential to the lower surface. Note that is has been impli­

citly assumed that the flow leaves the aircraft at a sharp

trailing edge. Shedding of vortices from the body requires

the use of viscous flow equations (Ref. 1) and is not con­

sidered here.

5.2 Simplified Treatment of the Wake

A simplified treatment of the wake (used in Refs. 1-5)

consists of assuming that the wake is composed of straight
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vortex-lines emanating from the trailing edge and parallel to

the x-axis (direction of the flow). For this case, the

surface of the wake is divided into infinitely long elements,

"~l ' with two edges parallel to the x-axis. These elements

are the continuation of the elements of the wing having an

edge in contact with the trailing edge (Fig. 4).

Hence, by assuming that the value of L:::. ~l can be approxi­

"mated by the value at the centroid of the element G'j the con-

tribution I w (see Eg. 5.1) is given by

(5.14)

with

C<{. • I IV = :t 2~ ff n. ·V(+) d1, (5.15)
~ k 0\

l
for the elements with an edge in contact with the trailing

edge, and

for the others.

W",J( = 0
(5.16 )

In order to evaluate the integral in Eg. (5.15), it is

"convenient to consider that the element ~l is the limit of

the parallelepipedal element obtained by truncating the

"element ~~ at the finite distance (Fig. 5). The limit is

obtained by letting

(5.17)

to infinity; note that:: - i since two edges parallelgo u = are

to the x-axis. Note that (see Fig. 5)

- -- Pot 1- f-fu P, Pm.;;;

2
;

PI - j A ;::. ~I-
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-'P, ::::

- -
Pi" - p-

2

o (5.19)

It is convenient to separate the contribution from the

trailing edge (~::: -I) and the edge that goes to infinity

(~::, ):

(5.20)

-
where (note tha t ~:: PWI t (Iff) 1. +? Pd

(5.21)

(5.22)

S :: ~('f.~)(a.J =+ (!m/J.1.!'d)

r", ~ I') Pd
- - -)t- (1::: I) : ~tl ~ 21 ,.t

Pltl<l :::
while (note that

with

:: k.:m -6Q.n-1 [ - (~)(l;' (f.)( fa) .\
/j~1)tJ \ I~I (1.;' KPd)J~;1

: ~ ect;1 - ((PIt1+'J~))(Xl·[(p"'T)XX)x~J

f. ~ (1) (rPn,+'7 ~ ~ l-1U-(Pn, r') ~1"l)( r)J~1 Pm ·rJ( fd I

-tCA.n I - (P",d J\ I)·(I '( fd)

I fmd .l '" Pd J

f",d' ~ - (tel':Z)(~ .I)
{ fma • L x Pet J

(5.23 )
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and similarly (note that ~ (~.= -I) = PIt\ + ? Pd. ~ PItlcl

(5.24)
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SECTION 6

COMMENTS AND SUMMARY

6.1 Comments

As shown in the preceding sections, the use of hyperbo-

loidal elements is quite cumbersome unless two edges of the

element have two parallel edges. In this case, the element

reduces to the trapezoidal planar element considered in Ref.

1 (in particular triangular).

Hence, it is convenient to divide the surface into tri-

angular elements (which are a particular case of trapezoidal

elements. For flat surfaces (the surface of a building for

instance) quadrilateral elements are more convenient.

It should be noted that the doublet integral is equal

to the solid angle (rnultiplied by .::.i.. ) or the surface <S' IC
21T

- (h)
as seen by the control point p . Hence, the correct shape

of the solid angle depends only upon the contour of the sur-

face cr JC. but not upon its actual shape. This implies also

that it is important to use trIangular elements, rather than

tangent plane approximations to the hyperboloidal elements,

which would yield discontinuities in the surface and hence,

the total solid angle would be changed. A measure of the

accuracy of the method in evaluating the coefficients Chk

(Ref. 1) is that the sum of the coefficients should be equal

to -1 (solid angle multiplied by 2~ ). Note that if the two

hyperboloidal elements in Fig. 3a are replaced by the two

hyperboloidal elements (in the limit triangular elements) in
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Fig. 3b, the centroids of the elements move very slightly.

This is convenient for the evaluation of the pressure coeffi­

cient Cfx := - 2 ~~ by central difference (since centroids

of the elements lie on the same wing section if the elements

are bounded by wing sections). On the other hand, hyperbo-

loidal elements can be used if the derivatives of n with respect

to 1 and ? are negligible (Section 4.4) in the source inte­

gral (the doublet integral is exact for any hyperboloidal

element) •

6.2 Summary

Assume that the surface has been divided into quadrilateral

elements. The elements are described by the vectors p.- p- 0 0,
c ~ I, r. ~ I ~

from which one obtains

q (P -4 - - - )(K) (A.)
rr =- f c. + ~ F, T ? P:J- ... ~ ? f~ - Pc.

J

Then the approximate solution of Eq. (1.1) is obtained by

solving the linear system of equations

(6.1 )

with

(6.2)

(6.3)

where wik represents the contribution of the wake discussed

in Section 5, while Cik and bik were derived in Sections 3 and 4.
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For convenience, the results are summarized here. The

coefficients Cik and b ik are given by

C;'K :: 11> (i, 1) - l,p (1,-1) .... I" (-1.1) + II> (-1,-1)

In Eq. (6.4), Ie is given by

with

(6.4)

(6.5)

(6.6)

J :. ~-I
- (f)( Q,). (i xQ~)

I~ f / ~ • ~I 1- ~ I (6.7)

On the other hand, in Eq. (6.5), IS is given by

with

(6. 8)

(6.9)

Equation (6.9) is exact for quadrilateral planar elements

and may be used for hyperboloidal elements if the derivatives
~ri bn
--- ) --- are negligible: this is possible if small
~~ 'I,,)
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elements are used where the surface curvature is high (leading

edge and tip).

Finally, the coefficients wik in Eq. (6.2) are given by

WiK ::. 0 (6.10)

for the elements without any edge on the trailing edge. For

the elements in contact with the trailing edge, assuming that

the wake is composed for straight vortex lines, the coeffi-

cients wik are given by

with

and

(6.12)

= lA..n-
'

-CPmdJl.l)·(f".</APd)

I Pin" I I Pmd . ;: " 'PJ I
(6.13 )

where i is the unit vector in the flow direction,

'P", :::. P+ of- p-
2

Pel = --L.L
2

-r",d : p~ -to ? Pd

(6.14)

(6.15)

(6.16)
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where p+ and p_ are the location of the trailing-edge corner

- I - "points p V of the elements with respect to the control
1"5 ~ r T to

point p(ltl

-
p~

- / - (Id:. Pn-P
I

-
P =- -" - (lC)

PT~ - P
(6.17)

6.3 Exterior Neuman Problem

The results obtained above can be applied for the solution

of the Laplace equation outside the surface ~ , with pres-

cribed normal derivative on <s' and usual regularity conditions

at infinity. In this case, Eq. (1.6) is replaced by

+1: tff( lJ n·q(i)d~k
<S'k

and correspondingly, Eq. (6.1) is replaced by

h ::> ~ 2 ... N, ,

(6.18)

= (t, ] f{~) }V,I( \ QI? Ie (6.19)

with a ik given by Eq. (6.2) (with wik = 0 if there is no

wake) and

(6.20)

"-
wi th Is (-1, ?) given by Eq. (6.9). Clearly, if the boundary

condition is given by Eq. (1.3), Eg. (6.19) reduces to Eq. (6.1).
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APPENDIX A

USEFUL INDEFINITE INTEGRALS

A.l Introduction

For the sake of completeness, some indefinite integrals

used in this report are verified in this Appendix.

A.2 Doublet Integral

For the evaluation of the doublet integral, I D, the use

of the following integral is required

J

; 1 ~n-I (e..~-bJ)? -t-(a.d-bc.) I
Je-c -<:I." )e..c- d> (

(A. I)

with

Differentiating Eg. (A.I), one obtains

(A.2)

f ~ 1A,'; I ((a.e-bd)2 ·d~d-bt) -('J
Je c... d~ d? [)e..('- d~

_ 1 . 1 (~e-bd)(~ UQe-P4)7.,. (..d-~)J((b~e.)? .. (4P'" dlJ
- )e.c -d· 1+ ((4e-~d) '21" (~d-kfJ:l ; e.c _ da. r~

~U-d& (

= (ae-~J)((:(b~e)2:' (4P.,.d)~J -(~-b~)((b+e)9+ (~b ...d)]..L
(ec- 4/ ( ... 1" ((~C -bd)7 +(tA.4 _be») J. r

(A. 3)
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since ( Q. e-~ fld) ( '{ -:. (b* e )?: ((l b.,. J), ] - (~J .. bc. ) ( ( It.. e.) 7 ,. («bto J)J

: (a·be.. ... a~~-ab~d - bJ l
_ ~"b~a -~d.e ... bJc. ... bee] J

+ (a~e.. 't4.ce._~~bd-t>ed-~"bd-ad"+ab&c-t'''c.dJ

: (b 7 +- el) (t e - Ja. +- b"e- ... e e - ~a.bJ )

and

( c e.- - d / r ~-1" ((~ e - bJ)7+- (~ d- be)1£

:: ( (c.e - QI (b~t' Il)+ (a e.- bd)~]:/' 't ((ce..- tl/l.) (abl- 4) T

(Qe-J>d)(~d-be)J~ ... [ke.-Ja)(a~c.)+ (Ad_be)" J

/' l..l ,l. b1 I ~ l.a. /l. 'l ] ~ ~= l v ell 'tee - 0 -'I e. +- Q e -l.t:l.bde. .. JleJ~ /

... (a.hce.+- Cd(?-l2bl- d} -+,~~d.e...- Qbc.e. _lJbJ"+ ""Cd] l.J
T (a.~e.e .. c.~e. -~:'d'~-e.cl .. + a~lt- ~'?bcd ... Ilc." J

A.3 Recurrent Formula

(A. 4)

CA.5)

The recurrent formula

f
I'J 1 It-/

(~f"r?) 7d!l=(~t('J) r'- 11- ,

n (A. 6)
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with (A. 7)

is easily verified.by differentiation

In particular, for n = 1, one obtains

(A. 8)

(A. 9)

Note that for n = 0, Eg. (A.6) is not valid and is replaced

by

For , d
,ff 17 ~ (,I( r .. (? T (3)

=' I . (,rr r?...~ J
,ff ,JT(Tr?i"~ r r -r r

I=-r

(A. 10 )

(A .11)
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.,
APPENDIX B

A VECTOR CALCULUS FORMULA

A convenient· formula used extensively in this report is

(B.I)

which is easily verified in the following:

:: (11K ~IC 1- Ay 6'1 ~ A$ 8};)CCJC PI( ~ C, D~ ~ C}- DI)

- (All ex ... Ate, to A~ el ) ( 8" PI( + B1 D~ -t 81D$)

~ A~ D. + 1r1~D1 + f)~~T + A.~. c, D'1

+ ·Ay. (;)( c~ v~ + A'} e, Cit 111( of" A~ 6 5 el( VA ... A1 f}, C
J

D~

,. -") e>~ (..1 '01- { ~D.,. ~1 D~ ,. A~DJ

l' All c~ 1}11)1 ... A~ c" 8f D~ ... A~ c1 r3" 'Ox + AS c's f3x 1»)(

,. "'1 e, Bt 1». A~ c~ &1 DI]

(f>. 2.)
while

(A "V). ( B~ c)

=
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\

:: ( A1 V} - A} V1 ) (B1 c} - ~) c~ )

.... ( A, Vi{ - A J( v,) (8, c)t - 13l( C1 )

... (fl~ 1),- A~ '01C) (8x C1 - 8t C;c)

= A1 B~ c.~ OJ - A1 BJ C1 Df - (AS B1 C~ D1 - A~ Bs- C'1 Dt)

T A~ 8 t ex DJ( + Ax By CJ P, - (As c~ 8" DJ( ..,. AII C I &) D, )

+ A" (}x c~ °1 ", ,11 13 , C)( Dx - (A~ c1 13" 1)" + A,ll ell B~ '01)
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,
APPENDIX C

SUBSONIC OSCILLATORY FLOW

Cel Integral Equation

In this Appendix, it is shown how the results obtained

in the main body of this report can be extended to subsonic

oscillatory flow. Introducing the variables

T =f-a.. f;
e (C.l )

and the complex potential :P such that

[

A ,..0 (T+ 11 X)1
ef (x, ,1' l) '" u.. 1 X + l' (~r;z) e J . (c. 2 )

the integral equation for the subsonic oscillatory flow is

given by

-,:al?
e
R (c. 3)

where L surrounds body and wake.

C.2 Boundary Condition

The boundary condition is given by

9$-f);J(. (C. 4)
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,
or

where Cf and .~ are such that

(C. 5)

(C. 6)

Next, assume that the motion of the surface consists of small

harmonic oscillations around a rest configuraiton, that is
N in T

,5 :;: ~ (X, Y, 'l:) + $ (X, ~ z) e (C.7)

Then, setting

one obtains

(C. 8)

..v rv J' 2 12. T --.)

(VS . Vr:P) e + -#;- ,'12. S
'/.yz m !'1

J (/IS (35 iJ2.T)
+-~+_-€..f oX oX

--J

-f 112. /- as. 'Jrk + (;05. '!¢F PiX 8X 8"X aX

as J¢ i2JLTJ = 0+ __ e
?JI 01

Assuming

s = 0 (1)
CI

05., -::: O(e)
()X

;57..T
e +-

(C. 9)

(C .10)

(C .11)
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,
with

17S .=: o (J)
XYl a

and
rJ o (e 2)S .::.

12.. = 0(1)
'"oS

::: 0(1)-oX

it is easy to see that

ck.::. O(c)

1. -: )I - 0(62.

(C.12)

(C.13)

(C.14)

(C .15)

(C.16)

(C. 17 )
i2Jl.T

. Neglecting the terms which contain e (of order E. 4 ) and

separating the steady from the oscillatory terms, one obtains

/\

Introducing ef such that
N -r1 iJ2.MX
¢ == 't' e

Equation (C.19) reduces to
. /\ i fl MX d t\ ;.n.I1K N 'AI

t7,$ . V ¢ e -f /'J2. t1~ ep e t ~. £~
)(1'1; 0 )('(l ax

,...., N '2- /\ .A. ,Jz.J1X
IJ ,'.QS J.. ~ + L!CJS" (~ t ;.fl.M ¢) e+1f1 +!' oX f32. eX oX

+~ ~] := 0
()X ;)X

(C .18)

(C. 19)

(C.20)

(C.21)
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\

Finally, neglecting terms of order e 2
in Eq. (C.18) and terms

of order [3 in Eq. (C.19), one obtains

(c. 22)

(C.23)

In particular for

(where the upper [lower] sign holds on the upper [lower] surface),

one obtains

~ ~ :! i [:l-:t.. (X,!)}

$ = + i i (X,t)

= /t{/= i Hz

and

(C. 24)

(C.25)

(C. 26)

(C. 27)

where

k= F# = wE.
/1 ~

Equation (C.27) gives the value of of/aN
(C. 3) •

C.3 Pressure Coefficient

(C. 28)

to be used in Eq.

The pressure coefficient is given by the linearized Bernoulli

theorem as
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\

(C.29)

(C. 30)

setting

¢ = :;; e ;llT = t e ;,R(T-fJ1X)

et = - 1:- (£it + u.a ?!!!.)
Uz at: (7-X

.0

::'_2(/!;~ +-! 0P)
\'1'1 9T f 9X

For oscillatory flow,

(C.3l)

one obtains

~ ~ - 2(* tiL ¢ I ~ :!)
-::.- _ 2. [/JL.(Pi + 11) ~ -f -! ?1) e ,'S7..MX

'11 (!J f ;;)(

= _2- (l' 12- ¢ + El] e ,'.n.I1X
j3 L' t1 t7)(

= _ f [,,' ,ILX/M~ ( ~ e d2X/j) e 'JlflX

_ ,'.JZ. z.X

_ _; e 'Ii o~ (~ e 'llX/n)

= 2 e -;kfX 1- (;e /kXlf)

f 9X

(C.32)


