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SUMMARY

This investigation combines an incompressible inviscid and a viscous flow
calculation procedure by assuming the viscous correction to the inviscid flow
pressure distribution is small (weak interaction) to predict the flow about
airfoils oscillating in pitch and heave. The calculations made in the
investigation predict the detailed viscous flow regions including transition
and separation phenomena and provide a detailed analysis of leading edge
separation, transition, and reattachment. Results from the calculation show
the leading edge viscous flow field to be quasi-steady altnough the imposed
inviscid nressure distribution shows significant unsteady effects. Although
unable to predict the flow field about a stalled airfoil, the indications
are that the present procedure can indicate the onset of catastrophic flow
separetion.

INTRODUCTION

The phenomenon of dynamic stall, which is largely controlled by the
viscous boundary layer in direct contact with the airfoil surface, plays an
important role in the successful design and operation of helicopter rotor
blades. Under high-speed flight conditions the retreating rotor blades are
subject to a diminished dynamic pressure and, as a result, high blade
performance requires large lift coefficients to be present in the retreating

" portion of the rotor disc. These large lift coefficients are generated

through large incidence angles often exceeding the maximum angle for which the
boundary layer can remain completely attached to the airfoil surface even under
dynamic conditions. When a significant amount of boundary layer separation
appears, the airfoil experiences a deterioration in performance which is termed
stall. Stall is most easily described in terms of a 1lift coefficient-incidence

*The contract research effort which has lead to the results in this report
was financially supported by USAAMRDL (Langley Directorate)
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angle reiation. At low incidence angles no significant amount of boundary
layer separation is present and the lift coefficient varies linearly with
incidence, as is predicted by inviscid flow theory. At some given incidence
the lift coefficient-incidence curve becomes nonlinear as the lift increases
less quickly than incidence; this decrease in the lift-incidence slope is
accompanied by a thickening of the viscous boundary layer and perhaps even by
boundary layer separation which causes the 1lift to vary from its inviscid
value. Further increases in incidence lead to larger decrements in the 1lift
coefficient from the linear lift-incidence relation of potential flow and
eventually an incidence corresponding t¢ a maximum 1ift coefficient is
reached; after this maximum is reached any further increase in incidence is
accompanied by a decrease in lift. At these higher incidence angles the
viscous flow about the airfoil is characterized by large separated regions
along the suction side of the airfoil and in the airfoil wake, clearly
indicating a relationship hetween boundary layer separation and airfoil stall.
In addition to the behavior of the 1ift coefficient during stall, the moment
coefficient about the quarter chord point shows a large change frcm its nearly
zero value characteristic of unstalled flow, indicacing a significant shift in
the center of pressure.

The performance of the airfoil during dynamic stall plays an important
role in determining the overall helicopter performance. Obviously, the lift
is highly-dependent upon airfoil peiformence during stall and, furthermore,
blade fatigue stress, blade flutter, and aircraft vibration are significantly
affected by the periodic aerodynamic loading and unloading as the blade
proceeds about the rotor disc. Thus, an accurate procedure for predicting
the unsteady flow about an airfoil during dynamic stall would represent a
significant input to a rotor design system.

McCulloughand Gault (ref. 1) have postulated three types of stall for
airfoils in steady flow; these are leading-edge stall, trailing-edge stall,
and thin-airfoil stall. The first of these, leading-edge stall, is supposedly
related to the formation of a separation bubble in the vicinity of the airfoil
leading edge. For leading-edge stall it is conjectured by MeCullough and
Gault (ref. 1) that as incidence increases the bubble moves upstream until an
incidence is reached at vwhich the butble suddenly bursts and the flow separates
from the airfoil surface. The bursting process is accompanied by a sudden
loss in lift and decrease in airfoil performance. In contrast to leading-edge
stall, which is supposedly associated with separation at the leading edge of
the airfoil, trailing-edge stall, which usually occurs on relatively thick
airfoils, is associated with the separation of the boundary layer on the aft
portion of the airfoil. Under most operating conditions, trailing-edge stall
is assoclated with the separation of a turbulent rather than a laminar
boundary layer. At low incidence no tralling-edge separation occurs. However,
at some given incidence the boundary layer separates in the vicinity of the
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trailing edge and, if the incidence continues to increase, the separation
point moves forward causing a gradual decrement in airfoil performance. The
effects associated with trailing-edge stall are considerably more gradual than
those associated with leading-edge stall. The final type of stall conjectured
by McCulloughand Gault (ref. 1) is thin-airfoil stall, which, as the name
implies, occurs on thin airfoils. Like leading-edge stall, thin-airfoil stall
is associated with a separation bubble in the vicinity of the leading edge.
However, ref. 1 suggests that in the case of thin-airfoil stall the bubble
grows with increasing incidence angle, whereas for leading-edge stall the
bubble moves upstream and can even shorten with increasing incidence angle.

The three different types of stall discussed in ref. 1 appear to be
associated with three different types of viscous separation. However, boundary
layer separation is an extremely sensitive phenomenon, the nature of which can
be significantly altered by changes in the applied pressure distribution, free-
stream turbulence level, Reynolds number, etc., and, therefore, it is not
unreasonable to expect an airfoil which exhibits oue type of stall under a
given set of conditions to exhibit a different type of stall under different
conditions. It may even be possible for an airfoil to be subject to leading-
edge and trailing-edge stall simultaneously. Obviously, since stall is
heavily dependent upon the extremely sensitive viscous separation mechanism,
it is questionable how well mechanisms of stall deduced from any specific set
of data correspond to the mechanisms of stall under different operating
conditions.

Although the suggestions of McCullougr and Gault (ref. 1) apply to static
stall, it seems reasonable to suppose® that some of these same mechanisms are
present in dynamic stall. However, important differences do exist between
the static and dynamic cases (e.g., refs. 2 and 3). First of all, the maximum
incidence angle which the airfoil can tolerate before the linear 1ift
coefficient-incidence angle relation breaks down is significantly higher in
the dynamic case than in the static case, indicating that a delay in stall is
obtained through dynamic phenomena. The maximum 1ift coefficient obtained
under dynamic conditions in general is sigaificantly greater than that obtained
under static conditions. 1In addition, under dynamic conditions, stall shows
a definite hystersis effect under which the aerodynamic coefficients are not
uniquely dependent upon the instantaneous incidence angle but rather depend
upon the time history of the airfoll motion. These differences between static
and dynamic stall indicate that even though static and dynamic stall may have
similar mechaniams, theories vhich employ static stall data to predict dynamic
stall phenomena cannot be expected to be accurate. Accurate theoretical
predictions of the airfolil loading during dynamic stall require a theory which
recognizes the time-dependent nature of the dynamic stall problem.
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Several theories of various degrees of sophistication have been proposed
to predict airfoil loading during dynamic stall. One such theory, due to Ham
(ref. 4), is based upon an inviscid flow analysis which ignores any direct
effect of boundary layer separation upon stall phenomena. The theory models
dynamic stall by the shedding of vortices from the airfcil leading edge.
Although the theory has predicted both the meximum 1lift and moment coeffi-
cients for an airfoil undergoing dynamic stall, it has not yet predicted the
coefficients through an entire loop. In addition to Ham's inviscid theory,
semiempirical dynamic stal. theories are also available. A semiempirical
method used by Carta, Commerford, and Carlson (ref. S) is based upon a
correlation of existing experimental data. However, it is not clear how far
the method can be extended to either other airfoils or other types of motion.
Similar procedures could be developed for airfoils undergoing other types of
motion, however, each class of airfoil end motion may require a different body
of experimental data. The procedure of Ericsson and Reding (refs. 6 and 7) is
based upon assuming an effective camber and +n effective incidence which
change as the hysteresis loop develops. When these effective quantities are
used in conjunction with a semiempirical lag time, the force and moment
coefficients during dynamic stall are predicted. However, the method is

highly-empirical and does not predict stall from basic boundary layer
separation considerations.

In contrast to the analyses of refs. 4 through 7, which are semiempirical,
there is the more fundamental analysis developed by Crimi and Reeves (ref. 8).
The Crimi-Reeves analysis is based upon a solution of the fluid dynamic
equations in the neighborhood of an airfoil in arbitrary motion. In brief,
the analysis of ref. 8 combines the solution of the linearized potential flow
equations with the boundary layer momentum equations to predict the flow field
behavior. Although the procedure produces qualitative agreement with the
basic features of dynamic stall, its theoretical predictions are in guantita-
tive disagreement with experimental data. An excmination of the Crimi-Reeves
analysies indicates assumptions are made that may lead to the observed
quantitative differences between theory and experiment. In particular, the
Crimi-Reeves analysis is based upon simplified treatments of separated regions,
the transition process, and the nominally inviscid flow field. Although the
method of ref. 8 uses a finite-difference solution to the boundary layer
equations in regions of attached flow, it uses an integral boundary layer
solution in regions of separated flow. The integral solution requires an
assumption of a velocity profile family and this assumption restricts the
validity of the solution. Secondly, the procedure uses an empirical transition
model and, finally, the procedure uses a linearized potential flow theory to
represent the outer inviscid flow.
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The present report describes the development of a weak-interaction
solution for the dynamic stall of helicopter rotor blades using an approach
similar to that of Crimi and Reeves (ref. 8), but with an improved treatment
of the separated flow regions, transition phenomena, and the potential flow
regions. By definition, the weak-interaction solution ignores the effect of
viscous displacement upon the nominally inviscid outer solution. The weak-
interaction assumption is valid as long &s the viscous displacement thickness
remains small compared to the airfoll thickness. However, when the displace-
ment thickness becomes large and significantly modifles the inviscid pressure
distribution, such as in regions of significant boundary layer separation, the
theory is invalid. In order to obtain accurate predictions of the flow field
when a significant separation region is present, it is necessary to use a
strong-interaction theory which recognizes the mutual interaction between the
viscous inner and nominally inviscid outer flow fields. Such a strong-
interaction calculation procedure could be developed by an extension of a suc-
cessful weak-interaction procedure in which an inner solution such as the
the viscous solution of the present report is coupled to an inviscid outer
sclution. The coupling would require continuity of flow angle along the line
Joining these solutions. Alternatively, the entire flow field could be
solved by the Navier-Stokes equations thus avoiding the problem of coupling
two different solutions in two regions of the flow. Such a solution has

recently been obtained for internal duct flow problems by Briley and McDonald
(ref. 9).

Although the present weak-interaction solution is limited in
applicability to flow situations in which the viscous displacement thickness
does not significantly afiect the inviscid pressure distribution, the present
effort can accurately predict the flow field under conditions for which the
boundary layer does not significantly affect the pressure distribution. In
this regard, as is shown subsequently, the procedure is capable of analyzing
the detailed viscous flow mechanisms including those mechanisms governing the
leading edge separation bubble and the method is also capable of predicting
conditions for incipient stall. In addition, the procedure may be regarded as
a first step in the development of strong-interaction solution to the isolated
airfoil dynamic stall problem, or a solution for the dynamic stall problem

based upon a single set of equations representing the flow field in the entire
solution domain.

The authors are pleased to acknowledge the considerable assistance
contributed by Dr. W. R, Briley of United Aircraft Research Laboratories to
this effort. Dr. Briley furnished the authors with a detailed explanation of
the viscous flow computer code and contributed to many of the ideas presented

in this report through on-going discussion of numerical calculations of
viscous flow fields.
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structural coefficients

chord

skin friction coefficient

sublayer damping function

low Reynolds number correction function
turbulence source terms

curvature, or reduced frequency

mixing length

dissipation length

pressure

turbulence kinetlc energy

turbulence Reynolds number

turbulence source terms

surface coordinate

surface coordinate of stagnation point
time

streamwise velocity component
transverse velocity component
streamwise coordinate, or chordwise location
transverse coordinate

incidence angle
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boundary layer thickness, or calculation layer thickness

sublayer thickness
displacement thickness
turbulence dissipation
dimensionless transverse coordinate
momentum thickness
von-Karman constant
kinematic viscosity
kinematic eddy viscosity
vorticity

density

acceleration parameter

shear stress or relaxation time

integral functions (see Egs. (35) through (38))

stream function
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THEORY

General

The airfoil flow field calculations described in the present rep .t u -
obtained by dividing the flow field into several distinct regions e - solvii:
the appropriate equations in each region. In this manner results obtained in
one region serve as boundary conditions for other regions and the entire flow
field about the airfoll is constructed. The major flow field division i: <he
separation between the relatively th 1 viscous layer near the airfoil surface
and the nominally inviscid outer flow. The calculations are initiated by
obtaining the nonlinear, incompressible, inviscid solution about an airfoil
in arbitrary motion using the procedure of Giesing (ref. 10). The Giesing
procedure predicts an inviscid velocity distribution about the airfoil as a
function of time and this inviscid velocity distribution serves as a time-
dependent outer edge boundary condition for the viscous flow calculation. The
viscous flow region is divided into several subregions, as shown in Fig, 1.

The stagnation region is specified in the vicinity of the airfoil leading edge.

This is followed on the si tion surface by the region where a leading edge
separation bubble ig anticipated and by a fully-turbulent region which may
exhibit a trailing edge separation bubble. The fully-turbulent region may,
for convenience, be divided into two or more subregions. The stagnation
region is followed on the pressure side by a transition region where boundary
layer transition is likely to occur and then by a fully-turbulent region which
again may be divided into two or more subregions.

The viscous calculation is initiated in the stagnation region using the
inviscid flow solution as an outer edge boundary condition. The necessary
boundary conditions at the junction between the stagnation and transition
region and the stagnation and possible separated region are specified by
assuming that at these boundaries the second derivatives in the streamwise
direction are zero. When the viscous flow field is divided into several
distinct subregions, a significant advantage is gained in terms of the
required computer storage. Obviously, for a given grid re.olution the storage
required by the subregion approach is much less than that which would be

required if the entire viscous flow were done in a single calculation. However,

if a large enough core capacity were available, the subregion approach would
not be necessary. The subregion approach has the disadvantage of limiting the
amoun. of upstream influence, Since the upstream boundary conditions for each
region (except for the stagnation region) are determined by the flow field of
the previous region, it is obvious that upstream influence cannot propagate
through a subregion boundary. This constraint upon upstream influence can
lead to a constraint on the upstream propagation of a separated flow region as
demonistrated in the airfoil calculation discussed subsequently.
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After a solution is obtained for the stagnation region, solutions are
found for the separated and transition regions. 1In each case the upstream
boundary condition is obtained from the stagnation region solution; at the
upstream boundary vorticity and stream function are continuous. The outer
edge boundary condition is imposed by the inviscid flow solution and the
downstream boundary condition is set using the assumption that second
derivatives with respect to the streamwise coordinate are zero. The solutions
in the fully-turbulent region are then obtained in a similar manner.

The Potential Flow Solution

The outer nominally inviscid, potential flow field is obtained using the
computer code developed by Giesing (ref. 10). The Giesing procedure calculates
the incompressible, inviscid flow field about a two-dimensional airfoil in
arbitrary unsteady motion. The basic technique used by the procedure is to
divide the airfoil body surface into a series of elements and then to apply a
source distribution around the body, one at each element. The source distri-
bution is adjusted until the velocity normal to the airfoil surface is zero.
In addition to the airfoil source distribution, the airfoil contains a bound
circulation which is adjusted to satisfy the Kutta condition at the airfoil
trailing edge. The vortex wake shed by the airfoil is carried by the fluid
particles to which it is attached and changes i~ space and time. A complete,
detailed description of the procedure and compar sons with experimental date
and other analyses can be found in refs. 10 and il.

The Viscous Flow Solution

General, - The viscous calculation procedure used in the present report
was originally developed by Briley and McDonald {ref. 12) in a study of
transitional separation bubbles. The procedure solves the vorticity-stream
function incompressible Navier-Stokes equations in either their full or
reduced form. When the full vorticity-stream function form of the equations
is used, the time-dependent vorticity equation is solved with a Douglas-Gunn
(ref. 13) perturbation of the Crank-Nicholson differencing scheme which
generates an alternating-direction-implicit (ADI) method. In the reduced form,
a Douglas-Gunn (ref. 13) perturbation of the backward difference scheme is
used for the vorticity transport equation while an approximate stream function
equation, not requiring a full ADI sweep, is used. In both the full and
approximate form of the governing equations the resulting ADI procedure
advances the vorticity equation ir time through a two-step calculation
procedure, ADI procedures present an extremely efficient way of solving multi-
dimensional problems, and in the past a major obstacle in the routine solution
of such problems has been the large amount of computer time required to obtain
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a solution. In explicit methods such as those of ref. 1L the goveining
equations are subject to one or more stability restrictions on ii2 size of
the time step relative to the spatial mesh size. These stability limits
usually correspond to a limit arising from convective consideraticns or to &
limit arising from diffusive considerations., In typical incompressible
boundary layer type flows the viscous 1imit is expected to dominate thne
problem.

While explicit stability restrictions may not be a serious disadvantage
for inviscid flow calculations in situations for which a laminar boundary
layer must be resolved the limitation in time step specified by the explicit
procedure stability limits may be a serious disadvantage. In *the case of a
turbulent boundary layer the extreme resolution required in the sublayer
region obvicusly magnifies the problem. Thus, expli-~it methods inherently
contain the key disadvantage that the maximum step size is fixed by the
spatial step size rather than the physical time scale. One way ort ¢f the
sublayer dilema with an explicit procedure is simply to assume & Torm for the
appropriate variable within the sublayer. In the present probliem of flow
separation it is obviously very limiting to suggest such a profile as an
artifice to eliminat¢ grid points, particularly in a flow where the temporal
behavior close to seraration is of interest.

In contrast to explicit methods, implicit methods tend to be stable for
large time steps an¢ so have the allowable time step set by physical consider-
ations rather than by the computational mesh and, therefore, offer the
prospect of substantial increasesin computational =fficiency if the computa-
tional effort per time step is competitive with that of explicit methcds. 1In
the calculations of the present report the viscous stability limit would be
expected to determine the maximum time step limitation of an explicit
solution method, however, due to the use of an implicit method, time steps on
the order of 1000 times the viscous stability limit were not uncommon.

The governing equations. - The calculations presented in tre present
report are based upon a solution cf the Navier-Stokes equations written in

vorticity-stream function form. The equations are written in an airfoil
coordinate system for airfoil sections subjected to two-dimensional flows.
Within these two-dimensional boundary layers Coriolis and centripetal effects
due to the pitching motion of the airfoil are expected to be small compared to
the viscous and usual boundary layer convertive effects and, therefore, they
are neglected. It should be noted that at the leading edge stagnation point
Coriolis effects may be important, h~-aver, these effects became negiigivle
very quickly. For example, if the lealing edge region of the NACA QGlz air-
foil is approximated by a circular cylinder,a : 1luced frequency of C.2 and a
chord Reynolds number of 107 is assumed, and for the purpose of estimation of
transverse velocity gradients, a steady flow calculation is used to approimate
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the viscous flow near the front stagnation point then the Coriolis force

becomes negligible compared to the convective momentum transfer well within
one degree of the stagnation point along the cylinder surface.
many authors (e.g., ref. 15), the vorticity transport equation can be written

in Cartesian coordinates as

9 9 9 ¢
—_— ety $ V— =y
at ax dy axt
where € is the vorticity given by
adu Qv
dy Ix

t is time, x and y are the Cartesian coordinates, u and v are velocity
components in the x and y directions, respectively, and v is the kinematic

viscosity. A stream function ¢ is defined by

u 3y s V x
which leads to the relation
%y . a2y
a2 Byl ¢

Equations (1) and (4) form the set of equations to be solved for laminar
For turbulent flow the equations are written in the form of conservation
of momentum in the x- and y-coordinate directions as

flow.

du ou du

—_— Y —

a . dy P ox
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As shown by
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2%¢
5 -

(2)

(3)

(4)

3%y 9%
—_——
ldxz \Oyz (5)
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ot ox  dy P dy M2 9y

The velocity components u and v are divided into mean and fluctuating parts

u=g+J (7)

vET+y (8) -

where the overbar indicates mean quantities and the prime indicates fluctuating

quantities. Substituting Eqs. (7) and (8) into Egs. (5) and (6) and averaging
leads to

- 2 2y
o—u+u9-2 PR L y[dU +?——— L 8o Or,,] (9)
a  dx  dy P ox FYCERFY) R PP dy
- 27 327
L1 | - [” L] [ﬂ.v_ (10)
at ax dy P oy ax?
where
[al rl,] - -p IJ’2 UIV/ (11)
o v Ve
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The stress-strain relations are assumed to be given by
oo [0(u’ . M (12)
- v
[ ] P¥y Uy + Vx bluy + vi)

where v, is the kinematic eddy viscosity and the subscrip:s x and y indicate
partial differentiation with respect to x and y, respectively. When Eq. (12)
1s substituted into Eqs. (9) and (10), use is made of the relaticn

g-éﬂ-"_" (13)
dy ox

and the prescure is eliminated from the equations, the resulting turbulent
vorticity transport equation is

2£+59.§.+v£-y[_6_§+"_£]+5 (%)
ot ax  dy M 9y?

where S5 is the turbulent dissipative contribution given by

s=uy [6y " 38 Wt (g, = ) (E+ 20

- 1
+ zu,y(t', - 2Uyy) - 2u,“({,l + 2V, )+ yla- b€+ 20y, (15)

+ v',(o -pi+2v), + W, la - b) (& + 29,), + ZCh b E + 2Vy)

In the calculations made in the present report, the viscous flow fields are
bacically boundary layer type flows in which the length scale and velocity in
the streamwise direction are at least an order of magnitude larger than the
length scale and velocity in the transverse direction. If the x-coordinate is
associated with the streamwise direction, this implies that
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U>d>y

2 59 (16)
dy .
so that
S =W, f”+ v'" f* 2 v" fy (17)

For turbulent flow Eqs. (4), (14), and (17) determine the flow field.

Equations (1) and (4) for laminar flow or Egs. (4), (14), and (17) for
turbulent flow represent the full Navier-Stokes equations (with the approxima-
tion to turbulence dissipation) in stream function-vorticity form. If the
flow field being investigated 1s a boundary layer type flow in which the
streamwise velocity, u, is much larger than the transverse velocity, v, and
derivatives with respect to the transverse coordinate, y, are much larger than
derivatives with respect to the streamwise coordinate, x, then

[ Lo ' (18)
n oy

and the stream function equation, Eq. (L), may be approximated by

v (19)
-s;i-.:€=uy

For these flows Eq. (19) replaces Eq. (4). When Eq. (19) replaces Eq. (4),
the set of equations is termed the reduced set of equations. It should be
noted that the reduced set of equations is equivalent to a set of boundary
layer equations with the addition of a streamwise diffusion of vorticity term
(ref. 12). In most of the calculations presented in the present report the

streamwise diffusion term does not contribute significantly to the vorticity
equation balance.
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The preceding equations represent the equations written in a Cartesian
system; however, for purposes of the calculations in the present report, a
coordinate transformation was performed to allow for airfoil curvature and so
as to better represent the change in shear layer width along the streamwise
direction. The curvature of the body, k, is accounted for by assuming a
coordinate system for curved walls in which the streamwise distance, x, is
taken along the body surface and the transverse distance, y, is taken normal
to the body surface. The curvature of the body, k, is a specified function of
x. The curved-wall coordinate system 1s discussed in detail in ref. 15. In
the curved-wall body coordinate system the vcrticity equation becomes

2
AR N A e L o Al

2
. %€ . vk L1

ay? [|+ky] dy

(20)

where g is vorticity, u and v are velocities in the x and y directions,
respectively, and v is kinematie viscosity. The vorticity-stream function
relation remains

viv=¢ (21)

vwhich in the curved-wall coordinate system is written as

| oy y gk oy, v K v e
(1+ky)2 ox2 (1+ky)d  dx X dy2  (1+ky) 9y

The velocities are related to the stream function by

0
Uf 3y (23)
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For turbulent flow the momentum conservation equations in the x- and y-
directions are written in the curvilinear coordinate system and the velocity
i1s divided into mean and fluctuating parts. After the usual averaging
procedure is performed, the pressure is eliminated by cross differentiation
and an order of magnitude argument is applied to the apparent shear stress.
The procedure is analogous to that of Egs. (5) through (15), and leads to the
result

Y3 8 9 _of  w a’E* 2 [wrerg]
at + I +ky 9Jx +vdy T 1+ ky)? axZ dy?
v dk Of . k 0 [(u+ 3(){-] (25)
+ky® Y dx 9x T T +ky ay

The derivation of Eq. (2%) is given in APPENDIX A. Equations (22) and (25)
represent the Navier-Stokes equations in curvilinear coordinates. 1In order to
always keep the grid within the viscous layer a further transformation is
introduced whereby

X =X (26)

n=y/3 (27)
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The vorticity transport equation becomes

ok e [5-53e

3 3.
e L1 ‘n*'xyz' [‘u'z""l" (ln”"(_:’)' &

LI A —35— 3" e,,,,] + s { ved ‘}nn -
- _é!'! n8k, lg'-—Z— 8,(,,] *‘K!a_{ V+3¢] t}n
vhere subscripts indicate differentiation and
K =1+ knd (29)
The stream function equation becomes
-Jx-z{\&“-z,, 3 Yan+ 2n %": ¥n 1,8—;1 %,+nizz 8 ¥} o)

It should be noted that the final form of the equations allows the grid to
adjust naturally to both spatial and temporal changes in the boundary layer
thickness.
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The Turbulence and Transition Models

The turbulence model. - In laminar flows the stress is —~omposed sclely of
the molecular stress which is determined uniquely by the molecular viscosity
(a property of the fluid) and the local velocity field. However, as shown in
Eqs. (9) and (10), in turbulent or transitional flow where the fiow field is
composed of a mean and fluctuating part the averaging procedure gives rise to
additional terms which appear to act as stress terms in the momentum conserva-
tion equations and which generally are called turbulent stress terms. These
additional terms in the momentum equation lead to additional terms in the
vorticity transport equation and calculations in the turbulent and
transitional regime require a mathematical model to represent these terms.
Since, under normal conditions, airfoils operate in the regime where laminar,
transitional, and turbulent viscous flow regions are present, any calculation
procedure attempting to predict the viscous flow field about an airfoil must
contain both a turbulence model and a transition model.

Insofar as the turbulent flow is concerned a large variety of models have
been developed for fully-turbulent flows (e.g., ref. :5). These models can be
divided into two broad categories, eqiilibrium turbulence models and historical
turbulence models. Equilibrium turbulence models assume that the turbulent
stress is determined uniquely ty the local mean velocity field. These equilib-
rium procedures usually hypothesize an eddy viscosity or mixing length deter-

mined solely be mean flow conditions. Although equilibrium turbulence models are

adequate for the prediction of many turbulent boundary layers, their basic
assumption relating the turbulent shear stress to local flow conditions is
cleirly in error for flow situations in which rapid changes in tie mean flow
field occur (e.g., refs. 17 and 18); in rapidly developing flows the turbulent
stress is not determined by local conditions but rather by the history (both
upstream spatial history and temporal history) of the flow and in these cases
the theory 1s improved if a model which includes the flow history is used. A
large number of such models for steady-state turbulent flows are discussed in
ref. 16. In addition to the steady-state historical turbulence models of
ref. 16, a time-dependent historical model has been developed by Patel and
Nash (ref. 19) and applied to a variety of flows by Nash, Car:, and Singleton
(ref. 20).

In the present calculations the turbulence model used is that developed
by McDonald and Camarata (ref. 21) which solves an integral form of the
turbulence kinetic energy equation. 1In brief, the turbulence kinetic energy
equation is a conservation equation derived from the Navier-Stokes equations
by writing the instantaneous quantities as a sum of mean and fluctuating parts.
The ith Navier-Stokes momentum conservation equation (i = 1,2,3 referring to
the three coordinate directions) is multiplied by the ith component of
fluctuating velocity and the average of the resulting three equations is taken.
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The three averaged equations are summed to obtain the turbtulence kinetic energy
equation. The derivation of the turbulence kinetic energy equation has been
given by Favre (ref. 22) for the general case of a compressible fluid and
approximated by Bradshaw and Ferris (ref. 23) to boundary layer flows. For
incompressible flow the derivation has been given by many authors (e.g., ref.
2L).

In the case of incompressible flow, the boundary layer approximation to
the turbulent kinetic energy equation can be written as

F () + (1) +flodtpe) - - 77 £

temporal change odvection production
. (31)
-7
v v w2
& (B 5F) - (FA
diffusion dissipation normal siress production
where aé is the turbulence kinetic energy.
T (32)

It should be noted that in the turbulent flow calculations of the present
report the boundary layer approximations are expected to be valid and thus
the boundary layer form of the turbulence kinetic energy equation is
appropriate.

Following Townsend (ref. 25) and Bradshaw and Ferris (ref. 23), McDonald
and Camarata (ref. 21) introduce structural coefficients ap and L, together
with a mixing length £4; chese scales are defined as

-uy = o,?.?'o.?.vﬂ‘-o,? .
(33)

TAA T4l
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and a), ap, and a3 are assumed to have values 0.15, 0.50, and 0.20,
respectively. The turbulence kinetic energy equation is then integrated
between the wall and the edge of the boundary layer at y = § to obtain the

equation
%
-%$1 * "‘s"% +E
where

oo () o

e d [ o()

ben ™ ol s
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n=Y/8 (40)

The term containing ¢] represents the temporal rate of change of turbulence
kinetic energy, the term containing ¢. represents the streamwise rate of
change of turbulence kinetic energy, the term containing ¢ represents the
integral of turbulence production minus dissipation, and the term containing
¢ represents the normal stress production. The terms designated by E
represent turbulent source terms resulting from disturbances imposed upon the
viscous layer by the free stream. It should be noted that the turbulence
kinetic energy at the edge of the boundary layer, q2e is damped by the factor
(Le/za,)2 vwhere Le is the value of the mixing length at the boundary layer edge
and L, 1is the "wake" value of mixing length; i.e., the value far from the
wall. In most regions of the flow ze/z, = 1.0 and thus no damping of the
entrained turbulence energy occurs. However, near the stagnation point, lLe

is initially considerably smaller than £, due to the extremely thin highly
viscous layer present near the stagnation point and the entrainment is damped
heavily in this region. As the flow proceeds away from the stagnation point
Le quickly rises to the value of £, and no damping of the entrained turbulence
oceurs.

The dissipation length is given by

L=013 tonh [ay/(0131] 2,2, (b1)

where k is the von Karman constant taken as 0.41, fbl is a sublayer damping
factor, and :bz is a low Reynolds number correction. In the original McDonald-
Camarata model the sublayer damping was assumed to be given by the van Driest
damping model and no low Reynolds number correction was made. However,
following a later work by McDonald and Fish (ref. 26), the sublayer damping is
assumed to distribute normally about a mean height y*(y* = y./1/p/V) with a
standard deviation o leading to the equation .

2,072 (y*-y*) /o) (s2)

where P is the normal probability function; ;; is taken as 23, and o as 8.




The low Reynolds nuzher correction is based upon the work of McDonald
(ref. 27) which relates the correction factor, :be, to a turbulence Reynolds
number, R., given by

n,:*_&au, ay/t‘j:',.dy (43)

where & is the viscous layer thickness, 8 is the sublayer thickness defined
as the location at which the laminar stress has fallen to L4 percent of the
total stress, vy is the turbulent kinematic viscosity defined as

w= (-dv)/(8a/8y) )

and v is the laminar kinematic viscosity. The correction factor :bg is given
by

2,y * [I.O +oxp (-163 &n f + 9.7)] (45)

where
f.® 681 R +6143 R, >40 (46)
fe = IOOR.'r!t R, S (47)

and for 1<R,<L0, £, is fitted between Eqs. (46) and (47) by a cubic
constructed to match the function and slope at the join points.
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Finally, a one-parameter mixing length profile, £_,, is introduced where

14y 3 ramnoy2d ] (48)

Introduction of Eqs. (41) and (48) into Eq. (34) yields a differential equation
for the wake value of the mixing length, L, , which is solved in conjunction
with the mean flow equations to determine both the mean [low field and the
shear stress development. A detailed derivation and discussion of the turbu-
lence model as well as the transition model (to be discursed aubsequently) is
given by Shamroth and McDonald (ref. 28).

The transition model. - Althougn the McDonald-Camara -+ - - ~bulence model,
as previously described, is a well-proven turbulence model for fully-turbulent
flows, it is still necessary to inciude a model to predict the flows in the
transitional regime. Such a model based upon a solution of the turbulence
kinetic energy equation has been developed by McDonald and Fish (ref. 26) and
has been verified through comparisons with a large body of experimental data
by McDonald and Fish (ref. 26), Shamroth and McDonald (ref. 28), and
Kreskovsky, Shamroth, and McDonald (ref. 29). It should be noted that this
transition model is based upon a rigorous conservation equation rather than
semiempirical data correlations, as is the case with most other transition
models (see, ref. 30). The model has successfully predicted the Lehavior of
a large variety of transitional boundary layers from the incompressible to the
lovw hypersonic Mach number regime subject to various heat transfer rates,
pressure gradients, and wall roughness heights (refs. 26, 28, and 29). In
brief, the transition model is identical to the turbulence model with the
exception that the structural ccefficient, a;, becomes a function of the
turbulence Reynolds number of the form

9,20, [fe /fe ] /%Hm% [(ff/ ) -tn (49)

vhere f. is given by Eqs. (46), (47), and the cubic fit with f1, = 100. The
variable a5 is a function of the wall-to-free-stream temperature ratio (ref.
28) and for the case of wall temperature equal to free stream temperature LY
is equal to 0.0115. Thus the turbulence kinetic energy equation is always
solved in conjunction with the governing mean flow equations. If the calcu-
lated mixing length is very smll, the flow is laminar; however, the mixing
length may increase causing the turbulent transport tov be comparable to the
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laminar transport and, ic this case, Lhe filow is transitional. Finally, the

mixing length may reach a fully-turbulent value leading to a fully-twrbulent .
flow.

Solution of the Equations

Solution of the full set of equationsg. - When the rull set of vorticity-
stream function equations are used,an iterative solution is required between
the vorticity transport equation, Eq. (1), and the vorticity-streea function .
relation, Eq. (4). The set of equaticns are subject to the bouniary condi-
tions at the wall and at the boundary layer outer edge as followa:

at y =0
v=o0 (50)
wfay =0 o

at y =8
AY/3y = ug (51) )
g =0 '

Briley and McDonald (ref. 12) solve the set by first assuming a wall vorticity {
distribution and then solving the vorticity transport equation by a Douglas-

Gunn ADI procedure. In the Douglas-Gunn procedure the vorticity iransport
equation is written in the general form

G T am—"

$, "Ap, + B9 ¢C¢w+o¢y+ E (52)

F_Sad

where ¢ is a dependent variable (in this case, vorticity), A, B, C, D, and E
are coefficients, and subscripts indicate derivatives. A two-step cslenlation ‘

procedure is used to advance the calculation in time from to to t, + At. 1In
this procedure ¢° -3 the dependent variable at the knwn time step, to, ¢ ic
the dependent variable at the first step of the caleulation procedure, and

¢** is the dependent variable at the second step of the calculation (or at
time = t, + At).
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In the first step of the procedure derivatives with respect to y are
treated implicitly using Crank-Nicholson differencing and those with respect
to x are treated explicitly leading to the equation

-g-‘,, %'t, f +A¢n+a¢‘+-§-¢"+-g-¢ +E (53)

which is solved for ¢* by inverting a tridiagonal matrix. In the second step
of the procedure derivatives with respect to x are treated implicitly while
those with respect to y are treated explicitly leading to the equation

48 b
A Ao Be-Se,-Re- %

b
+ -%— ¢"+-g-¢:+-§-¢:'+ %¢:+E

(54)

Equation (53) is subtracted from Eq. (54) leading to the simpler eguation for
¢**

¢" _A. vo -Q-'P. N "%‘*;2“5‘*2 (55)

After the vorticity transport equation is solved, the stream function
equation is solved with the wall end edge boundary conditions

(56)
MW/y = ug at y =6

by a Peaceman-Rachford ADI procedure for elliptic equations (ref. 31). The

Peaceman-Rachford procedure introduces a series of acceleration parameters, Pys
and ther solves the stream function equation by an iteration process. For each
choice of acceleration parameter, py, two sweeps are made. In the first sweep
the iteration is advanced from solution wi to wi by treating x-derivatives
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as explicit and y-derivatives as implicit. In the second sweep the x-deriva-
tives are treated implicitly and the y-derivatives explicitly and the solution
is advanced to y¢i+l, Thus, the procedure advances as

W;:W R PiWH.n: ¢€- W:, + piw
(57)
; 141/2
YA M

1f ¢1*l agrees with ¢l within a specified tolerance, the equation is
considered solved; if not, the procedure is repeated for the next acceleration
parameter. It should be noted that, if the acceleration parameter, p;, is
taken as the inverse of a time step 1/Ati, the Peaceman-Rachfordi procedure is
analogous to the Douglas-Gunn procedure.

After the stream function equation has been converged the streamwise
velocity component at the wall consistent with the stream function solution is
computed. If the wall velocity is zero within a specified tolerance, the set
of equations is considered solved at the given time step; if not, a new wall
vorticity distribution is assumed using a secant extrapolation and the entire
procedure consisting of the solution of the vorticity transport equation and
the stream function-vorticity relation is repeated.

Solution of the reduced set of equations. - As can be summarized from
the preceding discussion, the iterative solution to the full set of equations
can be a relatively time consuming process, The computer time required by the
reduced equations is less by an order of magnitude than that required by the
full set of equations; therefore, the reduced set represented by Egs. (1) and ,
(19) have been utilized whenever possible. When the reduced set of equations s
are used, the vorticity transport equation and the reduced stream function
equation are solved as a coupled set by the Douglas-Gunn ADI perturbation of :
the backward difference procedure using the boundary conditions represented 3’
by Eqs. (50) and (51). When the reduced set of equations are solved, the
equations are first integrated with the x-derivatives taken as implicit and the
y-derivatives as explicit. 3ince the reduced stream function-vorticity rela- !
tion contains no derivatives with respect to x, the integration is performed

only for the voriicity transport equation and is similar to that for the full ‘}'

set of equations. The equations are then integrated with y-derivatives taken
as implicit and x-derivatives as explicit. During these integrations a
coupled set of equations is solved in which the coefficlient matrix takes the i
form of a block tridiagonal matrix, each block being a 2 x 2 submatrix. The
fact that the system can now be solved in a coupled manner eliminates the
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previously required iteration on wall vorticity. The reduction in the stream
funetion equaticn eliminates the Peaceman-Rachford iterative ADI solution
required when using the full stream function equation.

RESULTS

Verification of the Calculation Procedure

General. - Before predictions were made for the flow field about
oscillating isolated airfoils, it was deer.2d necessary to verify the calcula-
tion procedure. Since the potential flow computer code used in the present
effort was extensively checked out by its originator (refs. 10 and 11), little
effort was expended in verifying this code. The major verification effort
concentrated on the viscous flow calculation procedure. Verification of the
viscous flow calculation procedure .-equires verification of the mathematical
models used in the procedure and verification of the finite-difference proce-
dure itself. The finite-difference procedure was verified by comparing
predicted results and available analytical solutions for a wide variety of
laminar flows. These comparisons between numerical solutions of the present
procedure and analytical solutions for laminar flows assess how well the
finite-difference solutions correspond to solutions of the original differ-
ential equations. In addition, calculations for transitional boundary layers
made with the present procedure were compared with calculations made with the
well ~established UARL boundary layer prediction deck.

Insofar as the mathematica. models are concerned, the only mathematical
models present other than that implied by representing the flow field by the
Navier-Stokes equations, are the turbulence and transition models. These
models have been verified for steady-state, unseparated boundary layer type
flows through a large number of comparisons between theoretical predictions
and experimental data (refs. 26, 28, 29, and 32). In addition, successful
predictions of experimentally measured transitional separation bubbles have
been made by Briley and McDonald (ref. 12). Thus, the turbulence and transi-
tion models are well-established for steady-state viscous flows.

The major unresolved question centers upon how well the turbulence and
transition models represent time-dependent flow fields. Since the basic
equation used to predict the turbulent shear stress development is the
turbulent kinetic energy equation, an equation derived directly from the
Navier-Stokes equations, there can be little argument regarding the governing
equation itself, Eq. (31). The major uncertainty resides in the turbulence
model, Eqs. (33) and (41) through (48); however, some such model m:st be
hypothesized in order to solve the turbulence kinetic energy equation. If
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unsteady calculations are to be valid, then the turbulence model should be
valid for the flows under consideration. 1In general, the characteristic
frequency of turbulence is given by

w = § (8"

and for helicopter applications the characteristic frequency of the airfoil is
at most

woxzél (59)

where 6§ is the boundary layer thickness, u is the free stream velocity, and c
is the airfoil chord. The ratio of the frequency of the turbulence to that of
the airfoil motion is

w
T:"'zga' >>| (60)

Therefore, the turbulence frequency is expected to be much greater than the
airfoil frequency and the turbulence structure should be unaffected by the
time -dependent mean motion at least in the absence of large separated regions.
Thus, the turbulence model is expected to be alid.

Potential flow calculation, - As previously discussed, the potential flow
calculation procedure is a well accepted procedure, the results of which have
been verified by its author (refs. 10 and 11). An additional comparison was
made under the present effort between theoretically predicted lift and moment
coefficients with the data of Carta, Commerford, Carlson, and Blackwell (ref.
33). The results of this comparison, shown in Fig. 2, are considered to be
good. The experimental data have been corrected for finite span effects by a
correction factor obtained from comparison of the low incidence experimentally
determined 1lift-incidence slope with the theoretical value.
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laminar viscous flow calculations. - One suitable test case for assessing
the present calculation procedure is the flat plate stagnation point laminar
flow field termed Hiemenz flow (ref. 15). The inviscid flow solution at large
distances from the plate is given by

U =ax
vs: -qy (61)

The anelytical viscous solution is a similarity solution in whi-h th-
dimensionless velocity, 4, », is a function of the dimensionless transverse
coordinate, y/.,/v/a, where ue is the inviscid flow velocity in the streamwise
direction, and v is the kinematic viscosity. A& comparison uetween the
solution predicted by the numerical proceduit and the analytical sclution as
given by ref. 15 is presented in Fig. 3. As can be seen, the comparison is
excellent.

A second steady-state laminar solution which serves as a good test case
for the calculation procedure is that of flow about a circular cylinder, since
such a flow provides an additional feature not present in the Hiemenz flow.

In particular, flow about a circular cylinder provides a geometry having a
finite-radius of curvature and thus the calculation serves as a check on the
radius of curvature effect in the present calculation procedure. A comparison
between the numerical solution of the present analysis :nd that obtained
analytically from the Blasius series solution to the boundary layer equations
(ref. 15) is presented in Fig. 4. The agreement between the numerical and
analytical solutions, shown in rig. 4, at three different angular locations
(8 =0 being the front stagnation point) is excellent. In Fig. L, ue is the
local free-stream velocity, u, 1is the approach velocity, and R is the
cylinder radius.

The viscous flow cal culation procedure was also used to predict the flow
along a flat plate oscillating sinusoidally in its own plane to assess the
accuracy of the procedure in predicting time-dependent flows. The numerical
solution was run using both the full set of Navier-Stokes equations and the
reduced set of equations; no significant differences in the results were
apparent. The velocity profiles calculated by the numerical procedure through
one half a cycle are compared to the analytical solution of ref. 15 in Fig. 5.
The analytical solution is given by
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uly, 1) = ug [cos (wt) - e *Y cos (wt - ky)] (62)

k=./ % (63)

In Fig. 5 the open circles represent the solutions obtained from both the
reduced and full Navier-Stokes equations for an oscillation frequency of

170 radians/sec. It should be noted that in the numerical calculation the
plate was assumed stationary and the inviscid flow field oscillated, whereas
in ref. 15 the plate was assumed to oscillate in a quiescent fluid; however,
as discussed by Lighthill (ref. 34), the two problems are equivalent. As can
be seen, agreement is excellent. A comparison between the wall vorticity,
Au/Ay, predicted by the numerical procedure and that given by the analytical
solution is presented in Fig. 6. The wall vorticity, being proportional to
the skin friction, is a very sensitive indicator of the accuracy of the
numerical procedure. The agreement is again excellent. It should be noted
that the reduced equations were used successfully for the oscillating plate
problem even though regions of reversed flow are present in the flow field.

In addition to these laminar viscous flow calculations made in the
presence of a solid wall, calculations were made for the wake behind a flat
plate and these results are compared to the resultc obtained by Goldstein and
Luckert as given by Rosenhead and Simpson (ref. 35) ir Fig. 7. Since
Goldstein's solution was numerical and Luckert's graphical, Goldstein's
solution is regarded as the more reliable of the two. Agreement between the
present solution and that of Goldstein is good.

Trangitional viscous flow calculations. -~ The results of Figs. 3 through
7 demonstrate the ablllity of the present numerical procedure to predict
boundary layer, stagnation point, and wake flows in the laminar regime
including unsteady effects and the effects of a finite radius of curvature.
The procedure's ability to predict transitional flows was verified by
comparing the results of the present procedure with the results of a well-
established transitional boundary layer calculation procedure previously
verified by an exterisive comparison between theoretical predictions and
experimental data (refs. 26, 28, 29, and 32). A comparison between steady-
state transitional results of the present procedure, using the reduced set of
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equations, and the results of the boundary layer procedure are presented in
Fig. 8. As can be seen, the results are nearly identical. The transition
model utilized was virtually identical in both cases.

Turbulent viscous flow calculations. - An additional comparison was made
between the present procedure and the data of Karlsson (ref. 36) to assess the
procedure's applicability to time-dependent turbulent flows. In ref. 36
Karlsson investigated a boundary layer developing under an oscillating free-
stream velccity glven by

uw(x.t) - uo(x) +ull) coswt (64)

Karlsson represented the velocity field within the boundary layer by the
series expansion

Pt SRSt e S Rt bl KL W i STRIAD PR w1 BTT MBI AT
ki,

o

U("dv’) - U("J) + u(')cos¢coswr - u“)sm¢smun +r (65)

and measured u(x,y), (1) cos¢ and u(l)sin¢ . In Eq. (65) r represents the
higher order harmonics. Calculations corresponding to Karlsson's data for the
conditions

w/2m = 1.0 cycles/sec

(66)

u(a'.)/ ug = 0.35

were carried out under two different sets of assumptions. The first calcula-
tion assumed the boundary layer at time zero to be independent of the stream-
wise coordinate, x; this is termed the similarity solution. The second
calculation assumed that at an upstream station, the velocity satisfied an
equilibrium turbulent boundary layer profile; i.e.,

() .
u(y,t) = u.(y)(l + _u% coswt) (67)
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where ug(y) is the steady-state turbulent boundary layer profile. This time-
dependent initial value solution was then allowed to d=velop as the flow
proceeded downstream. The results of both c31culations are presented in

Fi%. 9 where u(l)cos¢ is represented by u£ and u siné is represented by
Up l). The agreement is moderately good. In both calculations the predicted
mean velocity profile agrees well with data and the predicted first harmonics
agree qualitatively with the data. Both calculations predict the rapid rise
of the in-phase harmonic with distance from the wall and, although both
calculations predict a velocity overshoot for the in-phase component, both
disagree with Karlsson's measurements as to the magnitude and location of the
overshoot. Similarly, agreement between theory and experiment for the out-of-
phase component is good ir the wall region but disagreement exists in the outer
region. However, considering the present limits of the theoretical predic-
tions, which either assume a similarity solution or a set of initial conditions
at a given streamwise station in which no overshoot of the first in-phase
harmonic is present and in which no first out-of-phase harmonic exists (see

Eq. (67)), the agreement between theory and experiment seems satisfactory.

Comparison between the full and reduced sets of equations. - As previously
discussed, there are two options available within the viscous calculation
procedure used in the present report, the option using the full stream
function-vorticity relation, Eq. (4), and the option using the reduced stream
function-vorticity relation, Eq. (19). The full relation represents an exact
equation with no approximation t. the original Navier-Stokes equations,
whereas the reduced equation requires the apprcximation

_g_,v‘_«% (68)

where x is associated with the streamwise direction, y with the transverse
direction, and u and v are velocity components in the x and y directions,
respectively. The approximation obviously is valid in attached boundary layer
type flows and, as shown by the calculations of Briley and McDonald (ref. 12),
the approximation appears to be valid in relatively thin separation bubbles;
however, at the initiation of the present study it was not obvious if the
reduced set of equations leads to valid solutions in the stagnation region of
the airfoil. Since the reduced set of equations are much more efficient to
solve than the full set, they are used whenever possible and, therefore, a
test comparison between the results of the full set and the reduced set was
made for steady flow in the vicinity of an airfoil front stagnation point.
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A comparison between the two results for a modified NACA 0012 airfoil at
2.5 deg angle of attack is shown in Fig. 10. The Reynolds number for the
calculation was 0.26 x 107 and a free-stream turbulence level of 0.0l was
assumed. In Fig. 10 the normal distance and surface coordinate are normalized
by the chord length. The normalized surface coordinate, s/c, is zero at the
trailing edge and increases along the pressure surface to a value of 1.015 at
the leading edge. The surface coordinate then continues to increase along the
suction surface ‘> the trailing edge. The stagnation point is located well on
the pressure side of the leading edge at s/c = 1.00.

As shown in Fig. 10, the only significant difference in the results is
reflected in the mcmentum thickness in the vicinity of the stagnation point.
The full Navier-Stokes solution indicates a sharp increase in momentum
thickness in the immediate area of the stagnation point due to the presence
of a velocity overshoot, whereas the reduced Navier-Stokes equations solutica
gives a smooth variation of momentum thickness in the same region. The
comparison indicates the validity of the solution from the reduced equations
in the vicinity of the front stagnation point and, therefore, in subsequent
viscous calculations the reduced set of equations was used exclusively.

Predictions for Flow About Oscillating Airfoils

General. - Weak-interaction predictions were made for the flow field
about a modified NACA 0012 airfoil for three different types of motion. The
first calculation was for the flow about an airfoil osrillating in pitch
about the quarter chord point. The flow conditions were based upon experi-
mental data which showed that the airfoil did not encounter stall. The
second calculation was made for the flow about an airfoil once again
oscillating in pitch, however, in this second case the data showed the air-
foil to be stalled over a large portion of the cycle. Finally, & third caicu-
lation was made for an airfoil oscillating sinusoidally in heave; in this third
case, the airfoil was stalled over a significant porticn of the cycle. In all
three cases the calculation was made by first predicting the inviscid flow
field via the Giesing calculation procedure (ref. 10). This inviscid calcula-
tion then serves as &n outer edge boundary condition for the viscous flow
calculation. The viscous flow itself is divided into subregions, as shown in
Fig. 1. The viscous calculation has been described previously; in brief, the
stagnation region is solved first and the results from the stagnation region
serve as upstream bourdary conditions for the next downstream region on both
the suction and pressure surface., In this manner, the solution for each
viscous region serves as a boundary condition for the next region. The mesn
spacing in each region varied to allow adequate resolution of the local flow
field, Typically, the streamwise mesh spacing is smallest in the leading
edge separated region where Ax/c is of the order of 0.0025. The largest
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streamwise mesh spacing is used in the pressure side fully-turbulent region
where Ax/c is roughly 0.0177. The distribution and number of grid points
normal to the airfoil surface also vary from region to region so that optimum
resolution of laminar boundary layers, transitional regions, and turbulent
boundary layer sublayers is obtained. As an example of the total number of
grid points used, the distribution grid points for each segment of the Case II
airfoil are given below:

Stagnation region 30 x points by 24 y points
Pregssure side transition region 34k x points by 26 y points
Pressure side fully-turbulent region 34 x points by 33 y points
Suction side separated region 30 x points by 26 y points
Suction side fully-turbulent region 34 x points by 30 y points

Suction side fully-turbulent
t—-ailing edge region

Total number of grid points 56u8

34 x points by 23 y points

Cage I - ungtalled airfoil oscillating in pitch. - The first time-
dependent airfoil flow field calculation is for a modified NACA 0012 airfoil

oscillating sinusoidally in pitch. The airfoil and motion chosen correspond
to test point 3184.2 of ref. 3 for which the mean angle of attack is 7.76 deg,
the amplituds of the sinusoidal oscillation is 5.24 deg, the dimensionless
frequency, k, is 0.252, and the Reynolds number based upon chord length is
0.26 x 107. The free-stream turbulence level is assumed to be one percent.
Under static conditions, maximum 1ift for the modified airfoil at a chord
Reynolds number of 0.26 x 107 occurs at 12.9 deg and the nonlinear portion of
the lift-incidence curve begins at approximately 9 deg. Thus the airfoil is
being investigated at conditions which slightly exceed the limit of static
stall; however, from observation, the airfoil does not undergo any dynamic
stall. The variation of the experimentally determined 1ift and moment
coefficients comparcd with the theoretical predictions using the computer code
of ref. 10 is presented in Fig. 11. The comparison between theory and
experiment is co sidered good.

A ccmparison between differential pressure coefficients, as predicted by
the theory (ref. 10) and measured by experiment (ref. 3), is presented in
Fige. 12 through 14 and the surface pressure coefficient at several incidence
angles is shown in Fig. 15. As shown in Figs. 12 and 13, the theoretical
predictions are in good agreement with the data as might be expected for an
unstalled airfoil. However, as shown in Fig. 14, a large discrepancy does
exist between theory and experiment at x/c = 0.91. The modified NACA 0012
airfoil has a trailing edge tab (see Fig. 1) and at the junction of this tab
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and the airfoil skin there is a rapid changein surface curvature. This rapid
change in curvature causes the potential flow program to seek a stagnation
point and give a physically unrealistic pressure maximum at the tab location.
For example, at an incidence of 7.5 deg the predicted pressure coefficients
on the suction side trailing edge are as follows:

x/c Cp

0.67 -0.18
0.75 -0.09
0.82 40,06
0.88 +0,33
0.93 +0.06

The severe local maximum at the 88 percent chord location is physically
unrealistic and is due to the sharp curvature in the airfoil surface at the
Jjuncture of the teb and the airfoil skin. In reality such & sharp maximum
would not exist since the boundary layer displacement thickness would be
expected to smooth the pressure distribution. Before the inviscid flow field
calculated by the Giesing procedure is input to the viscous flow calculation,
a three-point least-squares smoothing in time and a five-point least-squares
smoothing in space is performed to insure a smooth variation of the outer edge
viscous flow boundary conditions. However, additional smoothing was required
in the region of the unrealistic pressure maximum, Prior to performing a
least-squares smoothing of the inviscid velocity field, the local Cp maximum
(velocity minimum) is relieved somewhat through a two-point central averaging
procedure, The averaging procedure consists of first obtaining the velocity
at the 88 percent chord location as the average of the velocities just
upstream and downstream of this location. The velocity at points upstream
and downstream of the 88 percent chord point are then evaluated by marching
both upstream and downstream away from the 88 percent location using the
formula

v*08 (v, * vi_l) (69)

Considering j to be increasing in the direction of marching, it is noted that
V-1 is a previously averaged velocity. Equation (69) is used to smooth the
velocity field between x/c = 0.80 and x/c = 0.98; with this central averaging
the only portion of the flow significantly modified is that in the immediate
region or the 88 percent chord location.
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The viscous flow fleld is initiated {n the stagnation region using the
reduced Navier-Stokes equations. As previously demonstrated, use of the
reduced equations is quite justified on the basis of the comparisons with
solutions to the complete Navier-Stokes equations and results in a consider-
able reduction in computer run time, Use of the reduced equations still
permits separation bubbles to appear as demanded by the physical constraints
of the problem. The results predicted at both ends of this stagnation region
are used as upstream conditions for two further segments, one on the suction
surface and one on the pressure surface. The segment downstream of the
stagnation region on the suction side of the airfoil contains the region where
the leading edge separation bubble appears. This segment is then followed by
the suction side fully-turbulent region which in itself may be divided into
two or more segments. On the pressure side of the airfoil the stagnation
region is followed by the segment where boundary layer transition usually
takes place. This region is then followed by the pressure side fully-turbulent
region.

Results of the calculations in the stagnation region are presented in
Figs. 16 through 22. The calculation in this region is made assuming quasi-
steady flow and the results are monitored to verify the validity of this
approximation. Quasi-steady calculations are made in the stagnation region at
discrete instants of time by using the instantaneous velocity distribution
from the Giesing time-dependent inviscid flow procedure as a steady outer-edge
boundary condition. The viscous calculation is carried out by assuming an
initial viscous flow field and then letting the calcialation march to a steady-
state holding the outer edge velocity constant. The stagnation region caleu-
lation is first made at a time t1 in the cycle assuming the initial flow field
to have a quadratic velocity profile. After this initial solution is
converged, the next viscous calculation is made at a time t2 in the cycle
using the inviscid flow velocity distribution at time t, and assuming as an
initial guess that the viscous flow field at time to> is a scaeled version of
the viscous flow field at time t;, The scaled flow field gives the initial
conditions for the viscous flow field and the calculation procedure is then
allowed to march in time to a steady-state while holding the outer edge
velocity constant. Thus the stagnati... region is calculated as a series of
quasi-steady solutions at selected points in the cycle by impulsively changing
the outer edge inviscid flow velocity distribution and allowing the scaled
viscous region to adjust to this new outer edge boundary condition. The time
increment (tn+1-tn) is typically O.1 for the cycle. If the time required to
adjust to this new condition is 7 (the relaxation time), the ratio of
7/(tn+l-ty) is typlcally of the order of 0.04., If ¢; is the solution at t;
and ¢, is the solution at t, then 7 is typically taken to be the time
required for (¢-¢y) = 0.88 (¢5-¢;). Thus, since the solution approaches ¢,
in a somewhat asymptotic manner, T can be regarded as two time consiants of
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an exponential decay from ¢, to ¢, or from the rirst steady solution to the
second. For the purpose of these calculations the vorticity at each point in
the flow field was monitored. The time constant, 7, was defined as the time
required for the vorticity at all points in the flow field to satisfy the
eriteria (w-w1) = 0.88 (wp-wy) where w i~ the vorticity. Since the time
required by the viscous layer to adjust to a new inviscid flow is so much
small:r than the time required to change the inviscid flow, the viscous flow
may be properly regarded as quasi-steady in the stagnation region. This
quasi-steady nature of the viscous leading edge region has also been hypoth-
esized by McCroskey (ref. 37) and Patay (ref. 38), based upon boundary layer
calculations.

The location of the stagnation point as a function of the incidence angle
is presented in Fig. 16, The surface coordinate, s, is zero at the trailing
edge and increases as the coordinate travels along the pressure surface to the
leading edge and then along the suction surface back to the trailing edge.

The leading edge is located at s/c = 1.015 where c is the chord length.
Although the viscous flow may be considered g asi-steady, Fig. 16 shows that
the inviscid flow is certainly not quasi-steady since the front stagnation
point location is not solely determined by the incidence angle but depends
upon the flow time history. Predictions of skin friction coefficient in the
stagnation region at selected incidence angles are presented in Fig. 17 where
the distributions are presented such that time increases from the bottom of
the figure to the top. Prediction of momentum thickness and displacement
thickness are presented in Figs. 18 and 19; the location of the stagnation
point is indicated by a circle. It should be noted that the displacement
thickness, §*, and the momentum thickness, 8, are defined by

3" -L’(n- &) o (70)
o [P L (-2 g (1)
o e LY

Since both edge velocity, ue, and the local velocity, u, are zero at the
stagnation point, the integrands are indeterminate; however, the integrals are
not necessarily zero. It should be noted that a grid point was not located at
the stagnation point in any calculation. As the flow proceeds away from the
stagnation point in both the pressure and suction segments the integral
thicknesses tend to increase due to the influence of skin friction and tend to
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decrease due to the influence of the very strong favorable pressure gradieat.
The results show the pressure gradient effect to be dominant on the suction
side of the stagnation point and the skin friction effect to be dominuint on
the pressure side of the airfoil. It should be pointed out that the favcrable
pressure gradient on the suction side of the airfoil is greater than that on
the pressure side and, therefore, the results obtained are not at &ll
unreasonable. The variation of mixing length in the stagnation ireglon is
presented in Fig. 20. Near the stagnation point the mixing length grows due
tou the large amount of entrainment of free-strear turbulence which acts as a
source term on the turbulence kinetic energy equation, however, in this region
the eddy viscosity is small compared to the mclecular viscosity due to the
relatively small transverse velocity gradients and the large viscous wall
damping effect. Elsewhere i., the stagnation region the mixing length is
negligible.

Predictions of velocity profiles in the stagnation region are presented
in Figs. 21 and 22. Predictions of the profile at various incidence angles
for a given location on the pressure side of the stagnation point are shown
in F* ;. 21 and on the suction side of the stagnation point in Fig. 22 where
U is the free-gstream approach velocity. '/hen the incidence is at its maximum
value, @ = 13 deg, the stsgnation point moves far down on the pressure side
of the airfoil ss demonstrated by the velccity plots. The prcfiles on the
suaction side of the airfoil are fuller than those on the pressure side
reflecting the stronger favorable pressure gradients present on the suction
surface, It should be noted that ali :—~ofiles appear to be laminar,

The viscous flow in the pressure sile regment containing the transition
region is presented in Figs. 23 through 27. 'The rarietion of skin friction
coefficient is presented in Fig. 23, where the skin friction coefficients at
upstream locations in this region indicate laminar flow. As the flow
progresses dowi.otream it undergoes transition. As the incidence angle
increases the transition is delayed due to the increased favorable pressure
gradient and the movement of the stagnation point rearward on the pressure
side. At the higher incidence angles transition is delayed: until near the end
of this segment. Predictions of momentum and displacement thickness for the
pressure side transition segment are presented in Figs. 24 and 25. The
characteristic sharp increase in slopc of the integrel quantities as a function
of Jlstance at the start of the transition zons is evident at the lower angles
of attack. The variation of mixing length is presented in Fig. 2€. The
pressure side transition region also is calculated assuming a quasi-steady
viscous flow field and in this region the ratio of viscous relaxation time to
the inviscid flow change time ig of the order of 0.15, again indicating quasi-
steady viscous flow. Predictions of velocity profiles at a constant stream-
wise station in the pressure side transition region are shown in Fig. 27. The
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streamwise station was chosen to be near the end of the segment and the
velocity profiles show the fully-turbulent, transitional, and laminar
character of the flow as the transition zone moves rearward and then forward
as the incidence angle increases and decreases, respectively. The results on
the fully-turbulent pressure segment are presented in Figs. 28 through 32
which again show skin friction coefficient, displacement thickness, momentum
thickness, mixing length distributions, and velocity profiles at specified
angles of attack. However, in this segment the quasi-steady approximation is
not valid and the flow in this region was predicted as time-dependent and
viscous.

The predictions of the flow field for the segment containing the _parated
region on the suction side of the airfoil are presented in Figs. 33 arough
38. At lower incidence angles no bubble is present, however, as the incidence
angle increuses a bubble does appear. The position of the bubble and the
resulting streamline pattern at seven specified incidence angles are presented
in Fig. 33. No bubble is present at o = 2.5 deg. The thecry predicts a
bukble to appear in the vicinity of the leading edge -f the airfoil by the
time the incidence is equal to 6.11 deg. As the incidence angle increases the
bubble increases in size and moves upstream. A further increase in incidence
leads to a furiher upstream movement and contraction of the bubble. As the
incidence angle is decreased the bubble moves backward on the airfoil, :

5L

increases in size, then decreases in size, and finally disappears. The bubble %“

behavior predicted by the theory corresponds to experimental observation for
hover tests of Velkoff, Blaser, and Jones (ref. 39) and was hypothesized by
Ham (ref. L) based upon various steady-state data and the time-dependent
data of Isogai (ref. 40). Ham attributed the dealy in stall

under dynamic conditions to the retardation of the bubble reattachment point
with incidence angle under dynamic conditions. In the present study the
separated viscous flow region was calculated under the viscous quasi-steady
assumptions. The ratio of viscous relaxation time to inviscid flow change
time was of the order of 0.15, thus indicating that the quasi-steady viscous
flow assumption is valid. Therefore, the present results indicate that, if
Ham's hypothesis is to be believed, the delay in the movement of the
reattachment point is due to the time-dependent nature of the inviscid flow.
Distributions of skin friction, momentum thickness, and displecement thickness
for the segment containing the separated region are presented in Figs. 3L
through 36. The skin friction plot indicates clearly the length of the
separated region. The streamwise variation of mixing length for this segment
is presented in Fig. 37. The turbulence kinetic energy model has been used
to predict transition and the turbulence field in this region. As shown in
Fig. 37, the predicted bubbles are transitional. At any given instant the
bubble behavior predicted by the present theory and presented in Figs. 33
through 37 is in qualitative agreement with McCullough and Gault's (ref. 1)
description of steady-state leading edge bubbles.

b
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The velocity profiles in the suction side separated region at selected
instanteneous incidence angles are shown in Fig. 38 at a fixed streamwise
location. Moving from left to right, the initial profile, o= 2.5 deg, shows
that the flow is approaching separation, however, at the low incidence no
leading edge separation occurs. The second profile, o= 6.11 deg, shows the
initiation of flow separation as the butble appears on the airfoil (see Fig.
33). The third profile, o= 9.35 deg, clearly reflects the forward motion of
the bubble as the profile shows a larger reversed flow region than the previous
profile. As the angle of attack continues to increase, the separation bubble
becomes smaller and moves even further forward on the airfoil. The fourth
profile shown in Fig. 38 at a = 13 deg shows that at this point in the cycle
the entire separation bubble has moved upstream of s/c = 1.057. The shape of
the profile indicates the transitional behavior of the boundary layer in the
area of flow reattachment. The last three profiles shown in Fig. 38 then show
the rearward movement, growth, and final disappearance of the separation
bubble as the incidence returns to its minimum value.

An examination of the suction side inviscid velocity distribution
predicted by the Giesing calculation procedure shows a strong adverse pressure
distribution fellowed by a strong favorable pressure distribution in the
region of the tab which is located at the trailing edge of the airfoil (see
Fig. 1). Even after the smoothing procedure of Eq. (69) was carried out it
was felt that adequate resolution in the vicinity of the tab would require
more grid points than could be accommodated in core storage if the entire
suction fully-turbulent region were done simultaneously and, therefore, the
suction side fully-turbulent regim itself was divided into two regions both
of which were calculated as unsteady regions. The first region is between the
10 percent chord station and the 80 percent chord station and the second
region is between the 80 percent chord station and the trailing edge.
Calculations in the first of these regions are shown at specified angles of
attack in Figs. 39 through 42. The calculations on the aft section of the
airfoil are presented in Figs. 43 through 46. Although the suction side
trailing edge region appears to approach separation (defined as the appearance
of a region of reversed flow), separation is never reached. As shown in
Figs. 42 and 46, the flow remains turbulent in these regions. Velocity
profiles in both fully-turbulent regions are shown in Fig. 47.

Case II - the stalled airfoil oscillating in pitch. - The second set of
calculations made are again for an airfoil oscillating in pitch. This case
corresponds to test point 3171.4 of ref. 3 for which the mean incidence is
12.535 deg, the amplitude of oscillation is 5.39 deg, the reduced frequency, k,
is 0.242, and the Reynolds number based upon chord is 0.47 x 107. Under static
conditions, the maximum 1ift for a Reynolds number of 0.47 x 107 occurs at

9.5 deg, therefore, the airfoil is operating well above the static stall limit
over most of its cycle.
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A comparison between theoretica’ j predicted and experimentally measured
1lift and moment coefficients is prese & in Fig. 48. As can be seen, serious
disagreement exists between *theory and experiment, particularly for the moment
ccefficient-at high incidence. Throughout the entire cycle the predicted 1lift
coefficient is considerably higher than that measured. This comparison
indicates that in contrast to Case I which is not in stall, the Case II air-
foil is in stall. The differential pressure coefficients, shown in Figs. 49
through 51, also indicate the airfoll is experiencing a more extensive stall
at the higher angles of attack. Surface pressure coefficients are shown in
Fig. 52. A comparison between Figs. S0 and 51 for thecoretical predictions at
x/c = 0.88 and 0.91 indicates the very poor local prediction at the tab. As
in the previous calculations, the velocity distribution in the regior of the
locally predicted pressure maximum was smoothed using the averaging procedure ;
outlined in Eq. (69). This distribrtion was then least-squared and input ]
into the viscous flow calculation procedure.

b
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The viscous calculations for the Case II airfoil divide the visccus flow
into six regions, including a stagnatian region, a pressure side transition
region, a pressure side fully-turbulent rogion, and a suction side separation
region, as shown in Fig. 1. 1In addition, the airfoil suction side fully-
turbulent region is divided into two subregions. As for the Case I airfoil
the coordinate, s, represents the distance along the surface. Results for the
stagnation region are presented in Figs. 53 through 57. As in Case I, it was
found that the stagnation region, the pressure side transition region, and the
suction side separated region are quasi-steady. In these regions the time
required for a viscous solution tc adjust from a set of outer boundary
conditions at time, t;, to a new set of outer boundary conditions at a time,
t1 + At, is much less than At. The fact that the calculated viscous
response time scale is much smaller than the outer flow inviscid time scale
demonstrates that the flow in these regions is quasi-steady.

i b W ol

The location of the stagnation point as a function of the incidence angle,
shown in Fig. 53, indicates that the stagnation point moves between s/c =
0.926 and s/c = 0.983. Since the airfoil nose is at s/c = 1.015, the stagna-
tion point is always on the underside of the airfoil. The variations of skin
friction in the stagnation region at various instantaneour incidence angles are
shown in Fig. 5':. In this region the skin friction coefficient shows its
expected high value in the vicinity of the stagnation point and then rapidly
decreases. The variation in momentum thickness and displacement thickness at
various instantaneous angles of attack is presented in Figs. 55 and 56. The
location of the stagnation point is denoted in Figs. 55 and 56 by an open
circle. The predicted mixing length distribution, £,/8, at several incidence
angles is presented in Fig. 57. In the region of the stagnation point the
mixing length is fairly large due to a large amount of entrainment of free
stream turbulence. However, in the immediate vicinity of the stagnation point
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the transverse velocity gradients are small and the viscous damping is large
leading to the eddy viscosity being much smeller than the laminar viscosity.
Thus the flow acts leminar. As the flow proceeds away frcm the stagnation
point, the mixing length decreases but eventually may increase depending on the
turbulent energy balance.

Predictions of the flow in the pressure side transition region are
presented in Figs. 58 through 61. The skin friction distributions of Fig. 58
and the mixing length distributions of Fig. 61 show the flow to be undergoing
trensition from the laminar to turbulent state. The transitional nature of
the viscous flow is also indicated by the change in slope of the momentum
thickness and displacement thickness plots of Figs. 59 and 60. The solutions
for the fully-turbulent pressure side region are presented in Figs. 62 through
65. In this region the flow is unsteady and no quasi-steady assumption is
used. The flow remains fully-turbulent here as demonstrated by the mixing
length distributions presented in Fig. 65.

The segment downstream of the stagnation segment on the suction side of
the airfuil is termed the separation region. In this small region extending
over 6 percent chord, there is a large adverse pressure gradient and st high
incidence angles a leading edge separation bubble is likely to exist. The
viscous flow predictions in the separated region are presented in Figs. 66
through 70. A plot of the streamlines at various instantaneous incidence
angles is presented in Fig. 66. The results show that a leading edge
separation bubble is present through all of the cycle. The cycle proceeds
from o= T7.17, 11.92, 15.43, 17.92, 15.27, 11.74, and 7.17 in Fig. 66.
Although not shown, there does exist a small portion of the cycle for o larger
than its minimum value when no bubble is present. As shown in Fig. 66, the
bubble demonstrates the expected behavior of appearing as a relatively large
bubble, moving forward as incidence angle increases and moving aft as incidence
angle decreases. There is also a tendency for the bubble to shorten at the
highest incidence angles.

As previously discussed, this predicted behavior is confirmed by
experimental evidence (refs 1, 38 through 40). Predictions of skin friction
coefficients are presented in Fig. 67 and of momentum and displacement thick-
ness in Figs. 68 and 69. The predicted mixing length distributions of Fig. 70
indicate that the bubbles are transitional as the predicted mixing length is
beginning to increase at stations at which the bubble exists. It should be
noted that, although the experimental evidance indicates the airfoil is in
stall through much of its cycle (Figs. 48 through 50), the predicted leading
edge bubble behavior is not significantly different from that predicted in the
unstalled airfoil, Case I. The major difference in the leading edge bubble
region is that for the Case I airfoil the bubble is present over only approxi-
mately one-half the cycle, whereas for the present Case II airfoil the bubble
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is present over nearly all of the cycle. However, as will be shown
subsequently, in the second suction side fully-turbulent region significant
differences between the Case T and Case II calculations appear.

The suction side fully-turbulent region is divided into two segments,
the first extending from the 5 percent chord station to the 30 percent chord
station, and the second extending from the 30 percent chord station to the
trailing edge. The predicted results in the first suction side fully-
turbulent region are presented in Figs. 71 through 74. As can be seen, the
flow appears to be well-behaved in this segment.

Although the first segment of the suction side Case II fully-turbulent
region gives predictions similar to the predictions of the Case T airfoil, the
second segment shows a very much different behavior between the Case II and
Case I airfoils. It should be recalled that the Case I airfoil was determined
experimentally not to ‘e in stall, whereas the experimental data shows the
Case II airfoil to be in stall through a significant portion of its cycle. As
shown in Figs. 43 through U6, which present the suction side trailing-edge
region for the Case I airfoil, the viscous flow approaches separation in the
vicinity of the trailing edge but trailing edge separation does not occur. It
may be expected that for an airfoil at higher incidence angle, such as the
Case II airfoil, separation would occur in the trailing edge region, In order
to understand the results presented for the Case II trailing edge region, it
is helpful to review how the calculation in this region is made.

The trailing edge region is a region in which time-dependent effects are
important and, therefore, a time-dependent solution of the reduced Navier-
Stokes equations is obtained. Since the segment is solved as a time-dependent
flow field, it is necessary to specify an initial flow field at time to. This
initial flow field is set by assuming that at the upstream boundary of the
segment being calculated the flow variables are identical to those at the
downstream boundary of the previous upstream segment at the same time t . The
flow field is then assumed similar in the streamwise coordinate so that at any
streamwise station at the initial time, t,, the flow variables are scaled
distributions of the upstream flow variables. The distributions are scaled
so as to match the outer edge veloclity imposed by the time-dependent inviscid
flow calculation procedure. The flow field in the segment being investigated
is then calculated by letting the assumed initial flow field develop in time
according to the governing equations. At each time, t,, the upstream boundary
conditions are set equal to the conditions calculated at the downstream
boundary of the previous segment at time, tp; the outer edge boundary condi-
tions correspond to the conditions calculated at time t, by the inviscid flow
calculation procedure. Therefore, in summary, an initial flow field is
assumed, time-dependent upstream and outer edge boundary conditions obtained
from other calculations are imposed and the governing equations are solved.
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Since the outer flow is cyclic, the effect of the initial conditions in
general should disappear and a cyclic viscous solution ought to be calculated.
For previous calculations the initial conditlions in the viscous region
disappear within less than one-quarter of a cycle; that is, the viscous flow
solution became cyclic within one and one-quarter cycles of time integration.
This was confirmed by carrying out calculations of the time-dependent region
over approximately one and one-half cycles.

Calculations for the second segment of the Case II fully-turbulent region
are presented in Figs. 75 through 77. In contrast to the Case I calculations
in which a cyclic nonseparated viscous region was calculated, the Case II
calculations show a large separation bubble to appear. This behavior is
demonstrated in Fig. 79 which shows skin friction coefficient at various
incidence angles. The coefficient for the initial profile is shown at the
bottom of Fig. 75 for an incidence of 7.17 deg. As shown in the remaining
plots of Fig. 75, the skin friction in the trailing edge region drops rapidly
as time and angle of incidence increase until at o= 17.92 deg a significant
separation region (indicated by negative skin friction) is present. The
separated region continues to increase in extent even after the incidence
reaches a maximum and decreases. For example, at 15.27 deg the separated
region extends over approximately 50 percent of the suction side of the air-
foil. The calculation was continued back to the minimum angle of attack and
no tendency for the bubble to disappear was noted. Prediction of momentum
thickness and displacement thickness are presented in Figs. 76 and 77, and
predicted streamlines are shown in Fig. 78. An examination of the results of
Figs. 75 through 77 clearly indicates that the bubble is being prevented from
moving upstream only by the upstream initial condition being imposed upon the
segment, The dimensionless mixing length originally remained at about 0.09
but as time increased grewto a value of approximately 0.40 in the separated
flovw regime. In addition, the bubble has, of course, grown to such an extent
that the weak-interaction assumption of the viscous layer not affecting the

pressure distribution is being violated. The effect of the hubble growth would

relax the pressure gradient and in a strong-interaction solution which
includes the mutual interaction between the vigcous and inviscid flow fields
an equilibrium may be reached and the bubble may stop growing. Within the
limits of weak-interaction theory the indication is that the leading edge
bubbles in the Case I unstalled and Case II stalled airfoils behave very
similarly; no dramatic flow phenomena in the leading edge region are predicted
in the stalled case. However, the trailing edge regions behave quite
differently. In the unstalled case, Case I, the flow remains attached; in the
stalled case, Case II, a trailing edge bubble is formed which moves rapidly
upstream and separates the flow over a significant portion of the ajirfoil
suction surface. This behavior suggests a possible stall mechanism for this
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type of airfoil in which a trailing edge bubble is formed and then rapidly
moves toward the leading edge as incidence is increased until a‘large portion
of the airfoil is separated and stall occurs.

Case IIT - the stalled airfoll oscillating in heave. - The final set of

oscillating airfeil calculations are for an airfoil oscillating sinusoidally
in heave. The airfoil and motion originally chosen correspond to test point
3090.2 of ref. 3 for which the incidence angle in absence of vertical motion
is equal to 12.36 deg, the magnitude of the vertical oscillation is 0.306
based on the semichord, the reduced frequency, k, is 0.242, and the Reynolds
number based upon chord is 0.26 x 107. Under static conditions, the maximum
1ift for a Reynolds number of 0.26 x 107 occurs at 12.9 deg and the nonlinear
portion of the lift-incidence curve begins at approximately 9 deg. Thus the
airfoil is being investigated at conditions which exceed the limits of static
stall.

Theoretical prediction of the 1lift and moment coefficients made using
the theory of Giesing (ref. 10) are compared with the experimentally measured
values of ref. 3, in Fig. 79. The predictions are indicated by the chain line
and termed Run A. As can te seen, there is considerable discrepancy between
theory and experiment, particularly for the moment coefficient at large
negative values of normalized transverse location. The predicted 1lift
coefficient is higher than the measured value throughout the entire cycle.
However, some discrepancies do appear between the data of Liiva (see ref. Ll)
and that of Halfman, Johnson, and Haley (ref. 42) and Rainey (ref. 43). In all
three cited references experimental investigations were made for airfoils
oscillating in heave. The data ofboth refs. 42 and 43 showed that the airfoil
dissipates work to the surrounding air and, therefore, the airfoil is stable in
the bending mode. The data of Liiva (refs. 3 and 41) on the other hand
disagrees and shows regions of bending mode instability to exist under the
influence of heave (ref. 4l). Although this stability discrepancy is a
discrepancy in the aeroelastic response, it may result from a discrepancy in
the flow fields present about the airfoils. In view of these discrepancies
between the Liiva data (ref. 41) and that of Halfman (ref. 42) and Rainey
(ref. 43) and the fact that the airfoil under the stated conditions only
appeared to be stalled at the high negative values of the transverse coordi-
nate, a second invigcid calculation, Run B, was made in which all mo*ion
parameters remained the same except the vertical oscillation was set at 0.612
based on semichord. In this second case, Run B, the maximum instantaneous
incidence angle is approximately 2C deg as opposed to a maximum of 16 deg in
the original case and thus the second case, Run B, is a case in which the air-
foil is much more likely tc be in the region of stall over a significant
portion of the motion cycle. Since it was desired to calculate the viscous
flow fleld under conditions for which stall does occur and since the heave
data of refs. 3 and 4l showed discrepancies with that of refs. 42 and L3,
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the second inviscid run was used for the viscous calculations to insure
calculation of a stalled airfoil. Theoretical predictions of 1lift and moment
coefficient made using the Giesing procedure (ref. 10) are shown by *=e solid
line for Run B in Fig. 79. The differential pressure coefficients are shown
in Figs. 80 through 82. Surface pressure coefficients for Run B are presented
in Fig. 83. A comparison between Figs. 81 and 82 for theoretical predictions
at x/c = 0.88 and 0.91 indicate the very poor local prediction at the airfoil
tab which was also present for both the Case I and Case IT airfoils. As in
the previous calculutions, the velocity distribution in the region of the
locally predicted pressure maximum was smoothed using the averaging procedure
of Eq. (69). This distribution was then least-squares smoothed and input into
the viscous flow calculation procedure.

The viscous calculations for the Case III airfcil divide the viscous flow
field into only five regions instead of the six regions used for the Case 1
and Case II airfoils. The division is as follows: a stagnation region, a
pressure side transition region, a pressure side fully-turbulent region, a
suction side separation region, and a suction side fully-turbulent region. In
the calculations made for the Case I and Case II airfoils, the suction side
fully-turbulent region was further divided into two segments. However, due to
the results of the calculations feor the Case II airfoil in which a large
trailing edge separation bubble was prevented from moving forward due to the
location of the segment boundary, the suction side fully-turbulent region was
treated as a single segment for the Case III airfoil. As in Case I and Case
II, it was again found that the stagnation region, the pressure side transi-
tion region, and the suction side separated region were quasi-steady. Thus
the flow in these regions was calculated using the quasi-steady viscous flow
assumption although the imposed outer edge velocity distribution was that
obtained from the time-dependent inviscid flow computation.

The results of the calculation for the stagnation region are presented in
Figs. 84 through 88. The variation of skin friction in the stagnation region
at various instantaneous transverse positions is shown in Fig. 85. In this
region the skin friction coefficient shows its expected high value in the
viecinity of the stagnation point and then rapidly decreases, The variation in
momentum ciickness and displacement thickness at various instantaneous
transverse positions is presented in Figs. 86 and 87. The stagnation point is
indicated by an open circle. The predicted mixing length distribution, £4,/6,
at several transverse positions is presented in Fig. 88,

Predictions of the flow in the pressure side transition region are
presented in Figs. 89 through 92. The skin friction distributions of Fig. 89
and the mixing length distributions of Fig. 92 show the flow to be undergoing

transition at ail but two transverse positions. The transitional nature of
the viscous flow field is also indicated by the change in slope of the
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momentum thickness and displacement thickness plcis of Figs. 90 and 91. The

solutions for the fully-turbulent pressure side region are presented in Figs.

93 through 96. In this region the flow is unsteady and no quasi-steady

assumption is used. The flow remains fully-turbulent here, as demonstrated by ,
the mixing length distributions presented in Fig. 96. |

The Case III separation region extends over 7 percent chord where there - i
is a large adverse pressure gradient and due to the high incidence angle
(recall that the geometric incidence angle is constant for this case) & lead-
ing edge separation bubble is likely to exist. The viscous flow predictions
in the separated region are presented in Figs. 97 through 101. A plot of the
streamlines at various instantaneous transverse locations is presented in
Fig. 97. The results show that a leading edge separation bubble is present
through the complete cycle. The cycle proceeds from Y/Ymax = -1.0, -0.309,
+0.309, +1.0, +0.309, -0.309, and -1.0 in Fig. 97 with time increasing from
bottom to top. Note that initially the airfoil is in its lowest position and
the separation bubble has moved forward on the airfoil. Then, as the airfoil
moves upward, the bubble moves back and grows in sizu. As the airfoil begins
to move downward, the separation bubble becomes shorter and moves forward
again. This behavior is explained by considering the relative incidence angle
of the airfoil. Although the incidence angle (measured with respect to a
constant reference direction) is constant, as the airfoil moves upward its
velocity is added in a vector sense to the velocity of the free stream and the
resultant velocity ylelds a lower effective incidence angle. Likewise, when
the airfoil moves downward, the effective incidence angle is increased. With
this behavior in mind, the predicted results appear to be in agreement with
what is observed experimentally for airfeoils oscillating in pitch (refs. 1,
and 38 through 40). Predictions of skin friction coefficients are presented
in Fig. 98 and of momentum and displacement thickness in Figs. 99 and 100.

The predicted mixing length distributions of Fig. 101 indicate that the
bubbles are transitional as the predicted mixing length is beginning to
increase at stationd in which the bubble exists.

T ]

S,

The suction side fully-turbulent region of the Case III airfoil was
treated as one segment rather than the two used for the Case T and Case II
airfolls. Thls was accomplished by using variable mesh spacing in the stream-
vigse direction. The streamwise mesh spacing varied so that a relatively
tight mesh was used at the upstream boundary of the segment. The mesh spacing
then increased until the region of the tab was approached. Near the tab the
spacing was again decreased. The calculation was performed in this manner so
that any separation bubble which appeared would have a segment of nearly
90 percent of the airfoil chord over which it could grow without encountering
the upstream boundary of the segment as it did in the Case II calculation.

The results for this segment are shown in Figs. 102 through 10k, As in the Case

vy




IT calculation, a cold start initial condition is shown at the bottom of Figs.
102 through 104, As discussed previously, this cold start initial condition
is obtained by spec.fying the stream function and vorticity profiles at the
upstream boundary and then scaling these profiles at each streamwise station
to match the edge velocity. As the calculation progresses in time a large
separation bubble appears almost immediately and continues to grow. This is
shown in the plots of skin friction (Fig. 102) where, for example, when the
airfoil is at a transverse position of +1.00 the separated region is almost

50 percent of the chord in length. When the airfoil begins to move downward
and the effective incidence angle becomes greater, the separated region grows
rapidly until at Y/Ymax = +0.8 it covers nearly 70 percent of the airfoil, as
indicated by the top plot of skin friction coefficient shown in Fig. 102, at
which time the ce’culation was terminated. The momentum thickness and dis-
placement thickness are shown in Figs. 103 and 104. Figure 103 shows that the
displacement thickness at the termination of the run is extremely large and
the assumption of weak-interaction is severely violated. For this reason and
due to the similar behavior of the Case II calculation, no attempt was made to
carry out the computation for the remainder of the cycle, although the
calculation was still numerically stable.

DISCUSSION AND CONCLUSIONS

A weak-interaction solution for the problem of the flow field about an
airfoil in arbitrary unsteady motion has been developed by combining an
unsteady nonlinear potential flow computer code (ref. 10) with a finite-
difference viscous flow computer code (ref. 12). The potential flow proce-
dure serves to predict an inviscid flow field about the airfoil and this
inviscid flow field is input into the viscous procedure as an outer edge
boundary condition for the viscous layer. The viscous development is then
predicted under the influence of the applied inviscid flow field using the
weak~-interaction assumption that the viscous fiow does not significantly
influence the outer inviscid flow field. The weak-interaction assumption is
valid as long as the viscous displacement thickness remsins small compared to
the airfoil thickness. However, when the dispiacement thickness becomes large
and significantly modifies the inviscid pressure distribution, such as in a
region of significant boundary layer separation, the weak-interaction theory
is invalid and accurate predictions of the flow field under these conditions
requires a theory which recognizes the mutual interaction between the viscous
imner and nominally inviscid outer flow fields. Such a strong-irteraction
calculation procedure could be developed by an extension of a successful
weak-interaction procedure in which an inner viscous solution such as the
viscous solution of the present report is coupled to an inviscid outer solu-
tion. The couplinzy would require continuity of flow angle along the line
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joining these solutions. Alternatively, the entire flow field could be
solved by the Navier-Stokes equations thus avoiding the problem of coupling
twc different solutions in two regions of the flow.

Although a weak-interaction solution is limited in applicability to flow
situations in which the viscous displacement thickness does not significantly
affect the inviscid pressure distribution, weak-interaction solutions should
accurately predict airfoil flow fields if no significant regions of separation
are present. In this regard the weak-interaction solution can give a
quantitative picture of viscous flow phenomena such as demonstrated by the
separation bubble calculation presented previously. In addition, the procedure
should be able to predict incipient stall since when incipient stall occurs
the separated region is still small enough to allow the veak-interaction
assumption to be valid. It should be noted that in their study of transitional
separation bubbles Briley and McDonald (ref. 12) included a strong-interaction
viscous correction to the inviscid pressure field. However, this was a
linearized correction and is only valid for thin separated regions. Therefore,
it could not be validly applied to the thick trailing edge separated regions
computed in the present effort.

Three airfoil calculations have been presented; the first of these,
Case I, corresponds to an airfoil experimentally found not to exhibit any
characteristics of stall, and the second and third calculations, Case II and
III, were for airfoils which are in stall over a significant portion of the
motion cycle. The viscous calculations in the first unstalled case differed
considerably from the calculations in the second and third stalled cases. In
the unstalled case a well-behaved viscous flow was found to exist over the
entire airfoil, whereas in the stalled cases significant separated regions
appeared along the trailing section of the airfoil. leading edge separation
appears on the suction surface in all cases; however, in both the stalled and
unstalled calculations the flow in the leading edge separation region soon
undergoes transition, reattaches, and forms a well-behaved bubble, Thus, no
qualitative differences in the leading edge separation bubbles are predicted
between the experimentally observed unstalled and stalled airfoils.

The predicted leading edge bubble behavior indicates a possible mechanism
of leading edge stall. As the airfoil increases in incidence, a bubble
appears in the leading edge region. In each case the boundary layer is laminar
at the leading edge bubble separation point and undergoes transition to the
turbulent state. The calculations show an increase in incidence to be
accompanied by a forward movement and a shortening of the bubble, as has been
deduced from experimental data by Velkhoff, Blaser, and Jones (ref. 39),
Isogai (ref. 40), and McCullough and Gault (ref. 1). In each case the forward
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movement of the separation point with increasing incidence angle is ;l
accompanied by a forward movement in transition location and, hence, a

subsequent forward movement in reattachment. The net result being a predicted )
shortening of the separation bubble as incidence increases. ']

Whether or not the bubble undergoes transition is determined by both the ‘
applied pressure gradient and the free-stream disturbance level, If the i
bubble does not undego transition, it is expected that the bubble would not
reattach and leading edge stall would occur. Within the limits of weak-
interaction theory this would correspond to a viscous solution in which the
leading-edge bubble were to grow very rapidly ieading to a large separated
region. In the present calculations transition always occured soon atter
separation; however, transition is a strong function of the free-stream B
turbulence level (ref. 26) and, if a low enough turbulence level were assumed,
transition would be expected to be delayed and the leading edge bubble could,
depending on local conditions, gr.+ rapidly leading to eventual leading edge -
stall.

The major difference in the visccus calculations betw-en the stalled and
unstalled airfoils occurs in the trailing edge suction side region. In Case I,
the calculation for the air foil which has been determined experimentally not
to be in stall, the suction side tralling edge segment is a well-behaved
viscous flow region. The viscous layer approaches separation at the junction
of the airfoil skin and the trailing edge tab but separation does not occur.
In Case II and Case III, both of which have been determined experimentally to '
be in stall, a large separated region does appear along the suction side
trailing segment. Due to the absence of a strong-interaction mechanism for
alleviating .e pressure distribution, the separated region grows uncontrolled.
In Caze II the tralling edge separated region encompasses over 50 percent of
the ajirfoil suction surface and is prevented from becoming larger only by the
location of the segment boundary. In Case III the trailing edge separated
region grew to 70 percent of the airfoll surface and the displacement thick~-
ness reached approximately 25 percent of the airfoil chord when the calcula-
tion was terminated. The appearance of this large separated region is
interpreted as indicative of stall. Thus the viscous behavior in the
unstalled and stalled cases is significantly different. In the unstalled
case, Case I, the flow remains attached in the trailing edge region, whereas
in the stalled cases, Case II and Case III, a trailing edge bubble ig formed
which moves rapidly upstream and separates the flow over a significant portion
of the airfoll suction surface., This behavior suggests a possible stall
mechanism for this type of airfoil and motion in which a trailing edge bubble
is formed and then rapidly moves toward the leading edge until a large portion
of the airfoil is separated and stall occurs, This mechanism could cause
trailing edge stall or could modify the overall pressure distribution about
the airfoil in such a manner as to cause the leading edge bubble to fail to
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reattach; this failure of the leading edge bubble to reattach would cause the
airfoil to go into leading edge stall. In regard to the problem of whether

the NACA 0012 airfoil actually undergoes leading edge or trailing edge stall,
it has been pointed out by Ericsson and Reding (ref. 6) that under steady
conditions the NACA 0012 airfoil is a prime candidate for transition between
stall typos with variation in chord Reynolds number; according to ref. 6, the
stall shifts from the leading edge type to the trailing edge type ¢ a Reynolds
number based upon chord of approximately 0.6 x 107. Therefore, th: NACA 0012
airfoil could be expected to exhibit either leading edge or trailing edge stall
or ever a combination of the two,

The viscous flow calculation procedure divides the entire viscous region
into several subregions and an examination of the results in each of these
subregions indicates the degree of sophistication required ir each portion of
the viscous flow field. The calculations indicate the leading edge region to
be quasi-steady; i.e., the viscous shear layer adjusts to changes to the outer
edge boundary conditions in a time scale much shorter than the timre s-ale of
the outer flow. This quasi-steady conclusion hus also been reached by
McCroskey (ref. 37) and Patay (ref. 38) based upon boundary layer calculations.
When the leading edge region is quasi-steady and when no viscous flow
separation appears, the viscous region can (and should) be calculated through
a finite-difference steady-state boundary layer procedure. In general,
finite-difference, steady-state boundary layer procedures would be expected
to be considerably more rapid in terms of computer time than a solution of the
full Navier-Stokes equations or than the solution of the 'reduced' Navier-
Stokes equations used in the present effort. It should be pointed out that
the reduced Navier -Stokes equations are equivalent to a set of time-dependent
boundary layer equations with the addition of a streamwise diffusion term and
solve the steady-state problem by assuming an initial flow field and then
allowing the flow field to develop in time under steady-state boundary
conditions. However, the present procedure for solving the reduced equations
is highly competitive with the more usual time~dependent boundary iayer codes.

The pressure side of “;he airfoll downstream of the stagnation region
consists of a transition region and a fully-turbulent region. The transition
region has t :en found to be quasi-steady for the airfoils investigated under
the present effort. Therefore, as for the stagnation region, a steady-state
boundary layer procedure may be preferable to the asymptotic time solution of
the reduced set of equations used in the present study. However, the best
available transitior model must be embodied in any computation procedure for
the pressure side transition region. The fully-turbulent pressure side region.
wag found to be unsteady and it is felt that the procedure which was used
(i.e., the solution of the reduced set of equations) was competitive with any
presently available alternative procedure.
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On the suction surface the stagnation region is followed by the region
where a leading edge separation bubble is expected to appear. This region
contains a very complex flow field which exhibits boil eparation and
transition. Any procedure used in this region should be capable of accurately
predicting becth phenomena. As has been shown by the predi._ted separation
bubble behavior, the present pro.2dure appears to predict the experimentally
observed physical behavior of leading edge separation bubbles. Based upon the
excellent qualitative predictions of the present procedure and the extreme
complexity of the flow field in this region, it does not appear that any
gimplified analysis should be used to predict the leading edge separation
bubble behavior. The leading edge separation region is followed by a suc.icn
side unsteady, fully-turbulent flow region. Once again it is felt that the
procedure for solving the reduced set of equations, which was used in this

region, should be competitive with any pre ently available alternate procedure.

In summary, the major modifications to the current procedure which would
be recommenied in a weak-interaction solution are in the stagnation region and
the pressure side iransition region. 1In both regions a savings in computer
running time could be gained by replacing the present solution procedure with
a steady-state firite-difference boundarv layer procedure using the best
available transition model. 1In all other regions the procedures used in the
present effort appear to contain a necessary and sufficient amount of
sophistication to obtain weak-interaction solutions.
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APPENDIX A

THE TURBULENT VORTICITY TRANSPORT EQUATION
INCLUDING CURVATURE EFFECTS

For flow over a curved wall a curvilinear coordinate system is introduced
in which the x-axis is along the wall and the y-exis perpendicular to the wall.
The coordinate system, therefore, consists of a set of curves parallel to the
wall and a set of straight lines perpendicular to the wall. As shown by ref.
15, if the curvature is denoted by k the streamwise and transverse momentum

equations become

%’L |+ky ax '3"’ 9'!5' —||l— -3-2+ viscous terms (A-1)

+

o L. v gx.”
X

2
L. A Y | I )
ot I+ Ky | = -F 3y + viscous terms (A-2)

-k

Q-IQ.
<« |I<
-~

In the curvilinear coordinate system the vorticity, @, is given by

"=V"".—fi;- :.g:_?o; ["*""“]: (A-3)

where 6“3 is the unit vector perpendicular to the x-~y plane. The vorticity
transport equation is obtained by subtracting Eq. (A-1) multiplied by (1+ky)
from Eq. (A-2) to obtain a transport equation for ®. In the present effort

£=-w (A-4)
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As in the case of Cartesian coordinates, the additional turbulence stress
terms are obtained by dividing u and v into mean and fluctuating parts,

averaging, and then combining the equations. Since all extra turbulence stress

terms result from the nonlinear convective terms, the nonlinear convective
terms are now examined in detail. Before dividing the nonlinear convective
terms into mean and fluctuating parts, the streamwise and transverse momentum
equations, Eqs. (A-1) and (A-2), are modiried through the continuity equation

l—-éTy- 'S:_*%* T+ky O (4-3)

Use of Eq. (A-5) lets the nonlinear convective term in the streamwise and
transverse equations, Crp and CTp, be expressed as

Cn i+ky dx +v y + | +ky

1 o, duv,, kv _ 1 udv _ udv _ kv (&€)
1+ky dx dy |+ky t+ky dx oy t+ky

m,m + 2kuY
I+ky dx  dy I +ky

C. = —M_— th'+ yov _ 2
T2 1+ky Ox dy |+ky

2 2 2
! k(y2-v® | _ VOV _ _kv -7
l+ky %ll!,.%* |+; |+ylg-r' -Y-g-y_ 1+ Ky (A7)

:—— +_¢_V_ M

i+ky Ox dy | + ky

When the velncities are divided into mean and fluctuating parts and the mean
continuity equation is applied the results are
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C. = —Ll_ SUU+FVT  QURe0E kl(g2-vt)- (J'»v'ﬂl
T, 1+ ky n dy I+ ky

—r"f:" lf-‘- l+ky (8-9)

. AV, o7t , x(v:-7%)
I +ky ox ay 1+ ky

The fluctuating averaged terms in Eqs. (A-8) and (A-9) contribute to the
turbulence stresses. The contribution of the fluctuating terms to the

vorticity equation is obtained by bringing the terms to the right-hand side of

the equations, taking the derivative with respect to y of Eq. (A-8) multiplied
by (1+ky), and subtracting this from the derivative with respect to x of
Eq. (A-9) which gives the contribution CT3

3 ox ox dy | +ky

- {2 eoew [ 25T

When the usual boundary layer type assumption is made that derivatives with
respect to y are much large than those with respect ‘> x, this reduces to

¢, « {._.Li_ AT _ o7 (77D }
I+ ky

25

(A-10)

AR by 1o RRhA RS s vty

%




=--§—{u+ky) "25—“-—"—l (‘”)K” (A-11)

I+ ky

By analogy to the procedure for two-dimensional flow (:ET;T) is related tc the
mean flow field through an eddy viscosity, vy. It should be noted that in the
present calculations vy is not solely dependent on local mean flow conditions
but rather is dependent upon the flow history through %~ turbulence kinetic
energy equation. The relation between -u'v' and vy is given by

UV 2 -Bhw (a-12)

Therefcre,

(:T = (1 + ky) ( v +3k -39- (vy w) (A-13)

It should be noted that the releationship between -u'v' and v; given in Eq.
(A-12) is somewhat different than the usual formulation

TV = v, —3—3— (A-14)

However, examining Eq. (A-3), with the assumption that Av/Ax is small it is
found that

w=-‘g-e--7ﬁ; (A-15)

and, thus, Eq. (A-12) may be written
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-u'v =y, ‘g';" + _I%TF (A-16)

Thus it is evident thet the formulation of Eq. (A-12) differs from the usual
formulation of Eq. (A-14) only in regions of significant curvature, or only
in the region of the leading edge of the airfoil where the flow is expected
to remain laminar and v¢ 1is negligible. 1In other regions of the airfoil,
where the curvature is negligible, the two formulations are equivalent.
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Figure 3. — Comparison betwsen numerical solution and analytical solution for Hiemenz flow.
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/

Figure 67. — Variation of skin friction coefficient in the separated region of the airfoil suction side at
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Figure 69. — Varistion of displacement thicknass in the separated region of the irfoil suction side at various
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Figure 77. Viariation of displacement thickness along the airfoil surface in the suction side
trailing edge fully turbulent region at various mstantansous angles of attack
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