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VISCOUS naJ ABOUT OSCILLATING AIRFOILS* 

S. J. Shamroth and J. P. Kreskovsky 
United Aircraft  Research Laboratories 

This invest igat ion combines an  incompressible inviscid and a viscous flow 
calculat ion procedure by assuming the viscous correction t o  the inviscid flow 
pressure d is t r ibut ion i s  srmll (weak in te rac t ion)  t o  predict  the flow about 
a i r f o i l s  osc i l l a t ing  i n  p i tch  and heave. The calculat ions made in the  
investigatiar- gredict  the  deta i led  viscous flow regions including t r ans i t ion  
and separation phenomena and provide a deta i led  analysis  of leading edge 
separation, t r ans i t ion ,  and reattachment. Results from the calculat ion shm 
the leading edge viscous flow f i e l d  t o  be quasi-steady altnough the  imposed 
invisc id  ?ressure d i s t r ibu t ion  shows s igni f icant  unsteady e f fec t s .  Although 
unable t o  predict  the  flow f i e l d  about a s t a l l e d  a i r f o i l ,  t h e  indicat ions 
a r e  t h a t  the  present procedure can indicate the  onset of catastrophic flow 
sepnre t ion.  

INTRODUCTION 

The phenomenon of dynamic stall, which i s  largely  controlled by the  
viscous boundary layer in d i r e c t  contact with the  a i r f o i l  surface, plays an 
important r o l e  i n  t h e  successful design and operation of hel icopter  ro tor  
blades. Under high-speed f l i g h t  conditions the  re t rea t ing  ro tor  blades a r e  
subject t o  a diminished dynamic pressure and, a s  a r e s u l t ,  high blade 
performance requires l a r g e  l i f t  coeff ic ients  t o  be present i n  t h e  re t rea t ing  
p o r t i m  of the  ro to r  disc.  These large lift coefficients a re  generated 
through large incidence angles of'ten exceeding the  maximum angle f o r  which the  
boundary layer can remain completely attached t o  t h e  a i r f o i l  surface even under 
dynamic conditions. When a s i ~ i f l c a n t  amount of boundary layer separation 
appears, the  a i r f o i l  experiences a deter iora t ion i n  performance which i s  termed 
s t a l l .  S t a l l  i s  most e a s i l y  described i n  terma of a l i f t  coefficient-incidence 

+The contract research e f f o r t  which has lead t o  t h e  r e s u l t s  i n  t h i s  repor t  
was f inancia l ly  supported by USAAMRDL (-ley Directorate) 



angle re la t ion .  A t  l aw incidence angles no s igni f icant  amount of boundary 
layer separation i s  present and the  lift coefficient  varies l i n e a r l y  w i t h  
incidence, a s  i s  predicted by inviscid f l a w  theory. A t  some given incidence 
the  lift coefficient-incidence curve becanes nonlinear a s  the  l i f t  increases 
l e s s  quickly than incidence; t h i s  decrease i n  the  l i f t - incidence slope i s  
accompanied by a thickening of the  viscous boundary layer and perhaps even by 
boundary layer separation which causes the  l i f t  t o  vary from i t s  inviscid 
value. Further increases i n  incidence lead t o  larger  decrements i n  the  l i f t  
coefficient  from the l inea r  l i f t - incidence re la t ion  of potent ia l  flow and 
eventually an incidence corresponding t c  a maximum lift coeff ic ient  i s  
reached; a f t e r  t h i s  maximum is  reached any further  increase i n  incidence i s  
accompanied by a decrease i n  lift. A t  these higher incidence angles the 
viscous flaw about the  a i r f o i l  is characterized by large separated regions 
along the  suction side of the a i r f o i l  and i n  the  a i r f o i l  wake, c l ea r ly  
indicating a relat ionship between boundary layer separation and a i r f o i l  s t a l l .  
I n  addit ion t o  the  behavior of t h e  l i f t  coefficient  during stall, the m m n t  
coefficient  about the  quarter chord point shows a large change frcm i t s  nearly 
zero value character is t ic  of unstalled flow, indicating a s igni f icant  s h i f t  i n  
the center of pressure. 

The performance of t h e  a i r f o i l  during dynamic s t a l l  plays an important 
ro le  i n  determining the  overal l  hel icopter  performance. Obviously, the  l i f t  
i s  highly-dependent upan a i r f o i l  p e i f o m n c e  during s t a l l  and, furthermore, 
blade fat igue s t r e s s ,  blade f l u t t e r ,  and a i r c r a f t  vibrat ion a r e  s igni f icant ly  
affected by the periodic aerodynamic loading and unloading a s  t h e  blade 
proceeds about the ro tor  d isc .  Thus, an accurate procedure for  predict ing 
the  unsteady f l m  about an a i r f o i l  during dynamic s t a l l  would represent a 
s igni f icant  input t o  a rotor  design system. 

McCullough and Gault ( ref .  1 ) have postulated three types of s t a l l  f o r  
a i r f o i l s  i n   stead.^ flow; these a r e  leading-edge s t a l l ,  trailing-dge s t a l l ,  
and th in -a i r fo i l  s t a l l .  The f i r s t  of these,  leading-edge s t a l l ,  i s  supposedly 
related t o  the  formation of a separation bubble i n  the  v i c i n i t y  of t h e  a i r f o i l  
leading edge. For leading-edge stall it i s  conjectured by McCullough and 
Gault ( r e f .  1) t h a t  a s  incidence increases the  bubble moves upstream u n t i l  an 
incidence i s  reached a t  which the buhble suddenly bursts  and the flow separates 
from the a i r f o i l  surface. The burst ing process i s  accompanied by a sudden 
loss  i n  l i f t  and decrease i n  a i r f o i l  performance. I n  c a t r a s t  t o  leading-edge 
stall, which i s  supposedly associated with separation a t  the  leading edge of 
the  a i r f o i l ,  trailing-edge s t a l l ,  which usually occurs on r e l a t i v e l y  th ick  
a i r f o i l s ,  i s  associated with the separation of the  boundary layer  on the a f t  
portion of the  a i r f o i l .  Under most operating conditions, trailing-edge s t a l l  
i s  associated with the  separation of a turbulent rather  than a laminar 
boundary layer. A t  lw incidence no trailing-edge separation occurs. However, 
a t  some given incidence the  boundary layer separates i n  the  v i c i n i t y  of the 
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t r a i l i ng  edge and, if  the incidence continues t o  increase, the separation 
point moves forward causing a gradual decrement i n  a i r f o i l  performance. The 
effects  associated w i t h  trailing-edge s t a l l  a r e  considerably more gradual than 
those associated with leading-edge stall. The f ina l  type of s t a l l  conjectured 
by kCullol@and Gault ( r e f .  1) i s  thin-air foi l  s t a l l ,  which, as the name 
implies, occurs on thin  a i r fo i l s .  Like leading-edge s t a l l ,  th in-air foi l  s t a l l  
is  associated with a separation bubble i n  the vicini ty  of the  leading edge. 
However, ref .  1 suggests that  i n  the case of thin-air foi l  s t a l l  the bubble 
graws with increasing incidence angle, whereas for ltading-edge stall the 
bubble moves upstream and can even shorten with increasing incidence angle. 

The three different types of s t a l l  discussed i n  re f .  1 appear t o  be 
associated with three different types of viscous separation. However, boundary 
layer separation i s  an extremely sensitive phenomenon, the nature of which can 
be significantly altered by changes i n  the applied pressure d i s t r ibu t im,  free- 
stream turbulence level,  Reynolds number, e t c  . , and, therefore, it i s  not 
unreasonable t o  expect an a i r f o i l  which exhibits 03e type of s t a l l  under a 
given se t  of conditions t o  exhibit a different type of s t a l l  under different 
conditions. It may even be possible for  an a i r f o i l  t o  be subject t o  leading- 
edge and trailing-edge s t a l l  simultamously. Obviously, since s t a l l  i s  
heavily dependent upon the extremely sensitive viscous separation mechanism, 
it i s  questionable how well mechanisms of s t a l l  deduced Fraa any specific set 
of data correspond t o  the nwcbanisms of stall under different operating 
conditions. 

Although the suggtstians of McCullough and G a u l t  (ref. 1) apply t o  s t a t i c  
stall, it seem reaaoaable t o  s u p p o e t h a t  some of these same mechanisms a r e  
present i n  dynamic stall. However, important differences do ex is t  between 
the s t a t i c  and dynamic cases (cog., refs.  2 and 3). Mrs t  of al l ,  the  maximum 
incidence angle which the a i r f o i l  can tolerate  before the linear l i f t  
coefficient-incidence angle relation brtabs d m  i s  significantly higher in 
the dynamic case tban i n  the s t a t i c  case, indicating tha t  a delay i n  stall i s  
obtained through dynamic phenomena. The ~ ~ a x i m u m  lift coefficient obtained 
under dynamic conditions in general i s  s ib l i f ican t ly  greater than that obtained 
under s t a t i c  conditions. In  addition, under dynamic conditions, stall shaws 
a def ini te  hystersis effect  under which the aerodynamic coefficients a re  not 
uniquely dependent upm the instantaneous incidence angle but rather depend 
upon the t i m c  history of the a i r f o i l  matioa. These differences between s t a t i c  
and dynamic stall indicate tha t  even though s t a t i c  and dynamic stall may have 
similar mechaniums, theorlea which employ s t a t i c  s t a l l  data t o  predict dynamic 
stall phcnamcna cannot be expected t o  be accurate. Accurate theoretical  
predictians of the a i r f o i l  loading during dymm3.c stall require a theory which 
recognizes the time-dependent nature of t h e  dynamic s t a l l  problem. 



Several theories of various degrees of sophist icat ion have been proposed 
t o  predict  a i r f o i l  loading during dynamic s t a l l .  rjne such theory, due t o  Ham 
( r e f .  4 ) ,  i s  based upon an inviscid flow analysis  which ignores any d i r e c t  
e f f e c t  of boundary layer  separation upan s t a l l  phenomena. The theory models 
dynamic s t a l l  by the  shedding of vor t ices  from the  a i r f o i l  leading edge. 
Although the theory has predicted both the  maximum l i f t  and moment coe f f i -  
c i en t s  fo r  an a i r f o i l  undergoing dynamic s t a l l ,  it has not ye t  predicted the  
coeff ic ients  through an e n t i r e  loop. In addition t o  Ham's invisc id  theory, 
semiempirical dynamic s t a l l  theor ies  a re  a l s o  available.  A semiernpirical 
method used by Carta, Comerford, and Carlson ( r e f .  5 )  i s  based upon a 
corre la t ion  of exis t ing  experimental data.  However, it i s  not c l ea r  how f a r  
t h e  method can be extended t o  e i t h e r  other a i r f o i l s  or  other types of motion. 
Similar procedures could be developed fo r  a i r f o i l s  undergoing other types of 
motion, hmever,  each c lass  of a i r f o i l  e ~ d  motion may require a d i f f e ren t  b a y  
of experimental data. The procedure of Ericsson and Reding ( re f s .  6 and 7 )  i s  
based upon assuming an e f fec t ive  camber and .-?n effec t ive  incidence which 
change a s  the hys teres is  loop develops. When these  e f fec t ive  quant i t ies  a r e  
used i n  conjunction with a semiempirical l ag  time, the  force and moment 
coeff ic ients  during dynamic s t a l l  a r e  predicted. However, the method i s  
highly-empirical and does not predic t  s t a l l  from basic boundary layer  
separation considerations. 

I n  contrast  t o  the  analyses of r e f s .  4 through 7, which a r e  semiempirical, 
t he re  i s  the  more fundamental analys is  developed by C r i m i  and Reeves ( r e f .  8) .  
The Crimi-Reeves analysis  i s  based upon a solut ion of t h e  f lu id  dynamic 
equations in the  neighborhood of an a i r f o i l  i n  a r b i t r a r y  motion. In  b r i e f ,  
t he  analysis  of r e f .  8 combines the  solu t ion  of  the  l inearized potent ia l  flow 
equations with t h e  boundary layer  momentum equations t o  predic t  the flow f i e l d  
behavior. Altb.ough the  procedure produces qua l i t a t ive  agreement with the  
basic fea tures  of dynamic s t a l l ,  i t s  theore t i ca l  predictions a r e  i n  quanti ta-  
t i v e  disa~reement with experimental data.  An exminat ion  of the  Crimi-Reeves 
a n a l y s i ~  indicates assumptions a r e  made t h a t  may lead t o  the observed 
quant i ta t ive  differences between theory and experiment. In pa r t i cu la r ,  t h e  
Crimi-Reeves analys is  is based upon simplif ied treatments of separated regions, 
the  t r a n s i t i o n  process, and the  nominally invisc id  flow f i e ld .  Although the  
method of r e f .  8 uses a f in i te-d i f ference  solut ion t o  the  boundary layer  
equations i n  regions of attached f l o w ,  it uses an in teg ra l  boundary layer  
so lu t ion  i n  regions of separated f l o w ,  The in teg ra l  solut ion requi res  an 
assumption of a veloci ty p ro f i l e  family and t h i s  assumption r e s t r i c t s  the  
v a l i d i t y  of t h e  solution. Secondly, the procedure uses an empirical t r a n s i t i o n  
model and, f i n a l l y ,  the  procedure uses a l inear ized  po ten t i a l  flow theory t o  
represent the  outer  inviscid flaw. 



The present  repor t  descr ibes  t h e  development of a weak-interaction 
so lu t ion  f o r  the  dJmmic s t a l l  9f he l icopter  r o t o r  blades usinq an approach 
s imi l a r  t o  t h a t  of C r i m i  and Reeves ( r e f .  8 ) ,  but with an improved treatment 
of t h e  separated flaw regions, t r a n s i t i o n  phenomena, and the  p o t e n t i a l  flow 
regions. By d e f i n i t i o n ,  t h e  weak-interaction so lu t ion  ignores the  e f f e c t  of 
viscous displacement upon t h e  nominally inv isc id  outer so lu t ion .  The weak- 
i n t e rac t ion  assumption i s  va l id  a s  long a s  t he  viscous displacement thickness  
remains small  compared t o  the  a i r f o i l  thickness .  However, when the  d isp lace-  
ment thickness  becmes l a rge  and s i - i f i can t ly  modifies t h e  inv i sc id  pressure 
d i s t r i b u t i o n ,  such a s  i n  regions of s i g n i f i c a n t  boundary layer  separa t ion ,  t h e  
theory i s  inva l id .  I n  order t o  obtain accurate  pred ic t ions  of t he  flaw f i e l d  
when a s i g n i f i c a n t  separat ion region i s  present ,  it i s  necessary t o  use a 
s t rong- in te rac t ion  theory which recognizes the  mut~ial i n t e r ac t ion  between the  
viscous inner  and nominally inv isc id  outer  flow f i e l d s .  Such a s t rong-  
i n t e rac t ion  ca lcu la t ion  procedure could be developed by an extension of a suc- 
ce s s fu l  weak-interaction procedure i n  which an inner so lu t ion  such a s  t h e  
t he  viscous so lu t ion  of t he  present  repor t  i s  coupled t o  an  inv isc id  outer 
so lu t ion .  The coupling would r equ i r e  cont inui ty  of flcns angle along t h e  l i n e  
joining these  solut ions.  Al te rna t ive ly ,  t h e  e n t i r e  flow f i e l d  could be 
solved by t h e  Navier-Stokes e q u ~ t i o n s  thus  avoiding t h e  problem of coupling 
two d i f f e r e n t  so lu t ions  i n  two regions of t h e  flow. Such a so lu t ion  has 
r ecen t ly  been obtained f o r  i n t e r n a l  duct  flow problems by Br i ley  and McDonald 
( r e f .  9).  

Although t h e  present  weak-interaction so lu t ion  i s  l imi ted  i n  
a p p l i c a b i l i t y  t o  f lw s i t u a t i o n s  i n  which t h e  viscous displacement thickness  
does not  s i g n i f i c a n t l y  a f ~ e c t  t he  inv i sc id  pressure d i s t r i b u t i o n ,  t h e  present  
e f f o r t  can accura te ly  p red ic t  t he  flow f i e l d  under condit ions f o r  which t h e  
boundary l aye r  does not s i g n i f i c a n t l y  a f f e c t  t h e  pressure d i s t r i b u t i o n .  I n  
t h i s  regard, a s  i s  shown subsequently, t h e  procedure i s  capable of analyzing 
t h e  de t a i l ed  viscous flow mechanisms including those mechanisms governing t h e  
leading edge separat ion bubble and t h e  method is  a l s o  capable of p red ic t ing  
conditions f o r  i nc ip i en t  s t a l l .  I n  addi t ion ,  t h e  procedure may be regarded a s  
a first s t e p  i n  t he  development of  s t rong- in te rac t ion  so lu t ion  t o  t h e  i so l a t ed  
a i r f o i l  dynamic s t a l l  problem, o r  a solut ion f o r  the  dynamic s t a l l  problem 
based upon a s ing le  s e t  of equations represent ing t h e  fluw f i e l d  i n  t h e  e n t i r e  
so lu t ion  domain. 

The authors  a r e  pleased t o  acknowledge t h e  considerable a s s i s t a c c e  
contr ibuted by D r .  W.  R. Br i ley  of  United A i r c r a f t  Research Laboratories t o  
t h i s  e f f o r t .  D r .  Br i ley  furnished the  authors  with a de t a i l ed  explanation of 
t h e  viscous f lw computer code and contr ibuted t o  many of t h e  ideas  presented 
i n  t h i s  r epo r t  through on-going discusaion of numerical ca lcu la t ions  of 
viscous flow f i e l d s .  



LIST OF S'ITdECiS 

s t r u c t u r a l  coe f f i c i en t s  

chord 

sk in  f r i c t i o n  coe f f i c i en t  

sublayer darcping f u n c ~ i o n  

low Reynolds number cor rec t ion  funct ion 

turbulence source terms 

curvature,  or  reduced frequency 

mixing length 

d i s s ipa t ion  length 

P pressure 
- 
q2 turbulence k i n e t i c  energy 

T turbulence Reynolds number 

S turbulence source terms 

s sur face  coordinate 

Ss surface coordinate of s tagnat ion point  

t time 

u streamwise ve loc i ty  component 

v t ransverse  ve loc i ty  component 

x streamwise coordinate,  or chordwise locat ion 

Y t ransveree coordinate 

CY incidence angle 



boundary layer thickness,  or calculation layer thickness 

s ublayer thickness 

displacement thickness 

turbulence d iss ipat ion  

dimensionless transverse coordinate 

momentum thickness 

von-Karman constant 

kinematic v i s cos i ty  

vt kinematic eddy v i scos i ty  

5 vor t i c i ty  

P density 

Pi acceleration parameter 

+T shear s t re s s  or relaxation time 

43 944 
integral  functions ( see  Eqs. (35) through (38)) 

$ stream function 



THEORY 

General 

The a i r f o i l  flow f i e l d  calculat ions described i n  the  present re;, .L h. . 
obtained by dividing the flow f i e l d  i n t o  several d i s t i n c t  regions e : . solvir. : 
the  appropriate equations i n  each region. I n  t h i s  manner r e s u l t s  obtained i n  
one region serve a s  boundary conditions fo r  other region8 and the e n t i r e  flow 
f i e l d  about the  a i r f o i l  i s  constructed. The major f l a w  f i e l d  d iv is ion  i s  ?he 
separation between the  r e l a t i v e l y  tt -I viscous layer  near the  a i r f o i l  surface 
and the  nominally inviscid outer flow, The calculat ions a r e  i n i t i a t e d  by 
obtaining the nonl.inesr, incompressible, inviscid solution about an a i r f o i l  
i n  a rb i t r a ry  motion using the procedure of Giesing ( r e f .  10) .  The Giesing 
procedure predicts  an inviscid veloci ty d is t r ibut ion  about the  a i r f o i l  a s  a 
function of time and t h i s  inviscid veloci ty d i s t r ibu t ion  serves a s  a time- 
dependent outer edge boundary condition fo r  the  viscous flow calculat ion.  The 
viscous flow region is  divided i n t o  several subregions, a s  shown i n  Fig. 1. 
The stagnation region i s  specif ied i n  the  v ic in i ty  of the  a i r f o i l  leading edge. 
This i s  followed on the  si  t ion  surface by the region where a leading edge 
separation bubble i s  anticipated and by a ful ly-turbulent  region which may 
exhibi t  a t r a i l i n g  edge separation bubble. The ful ly-turbulent  region may, 
f o r  convenience, be divided i n t o  two or  more subregions. The stagnation 
region i s  followed on the pressure side by a t r a n s i t i o n  region where boundary 
layer  t r ans i t ion  i s  l i k e l y  t o  occur and then by a ful ly-turbulent  region which 
again may be divided i n t o  two o r  more subregions. 

The viscous calculat ion i s  i n i t i a t e d  i n  the  stagnation region using the  
inviscid flow s ~ l u t i o n  as  an outer edge boundary condition. The necessary 
boundary conditions a t  the  junction between the  stagnation and t r ans i t ion  
region and the  stagnation and possible separated region nre specif ied by 
assuming t h a t  a t  these  boundaries the  second derivativeb i n  the  streamwise 
d i rec t ion  a r e  zero. When the  viscous flow f i e l d  i s  divided i n t o  several 
d i s t i n c t  aubregiona, a s igni f icant  advantage i s  gained i n  terms of the 
required computer storage. Obviously, fo r  a given gr id  re,olution the storage 
required by t h e  subregion approach is  much l e s s  than t h a t  which would be 
required i f  the  e n t i r e  viscous flow were done i n  a s ingle  calculat ion.  However, 
i f  a large enough care capacity were avai lable ,  thc  subregion approach would 
not be necessary. The eubregion appronch has t h e  disadvantage of l imi t ing  the  
amoun'. of upstream influence, Since the  upstream boundary conditions f o r  each 
region (except for the  stagnation region) a r e  determined by t h e  flaw f i e l d  of 
the  previous region, it is  obvious t h a t  upstream influence cannot propagate 
through a subregion boundary. This c m s t r a i n t  upon upstream influence can 
lead t o  a cdnstraint  on the  upstream propagation of a separated flaw region a s  
demofistrated i n  t h e  a i r f o i l  calculaticm diecussed aubaequantly. 



After a solut ion i s  obtained for  the stagnation region, solutions a re  
found for  the  separated and t r ans i t ion  regions. In  each case t h e  upstream 
boundary condition is  obtained from the stagnation region solution;  a t  the 
upstream boundary vor t i c i ty  and stream function a r e  continuous. The outer 
edge boundary condition i s  imposed by the inviscid flaw solution and the 
downstream boundary condition i s  s e t  using the assumption tha t  second 
derivatives with respect t o  the streamwise coordinate a re  zero. The soluttons 
i n  the ful ly-turbulent  region are  then obtained i n  a similar  manner. 

The Potent ia l  Flow Solution 

The outer nominally inviscid,  potent ia l  f l o w  f i e l d  i s  obtained using the  
computer code developed by Giesing ( r e f .  10).  The Giesing procedure ca lcula tes  
the incompressible, inviscid flow f i e l d  about a two-dimensional a i r f o i l  i n  
a r b i t r a r y  unsteady motion. The basic technique used by the  procedure i s  t o  
divide the a i r f o i l  body surface i n t o  a se r i es  of elements and then t o  agply a 
source d is t r ibut ion around the  body, one a t  each element. The source d i s t r i -  
bution i s  adjusted u n t i l  the  velocity normal t o  the  a i r f o i l  surface i s  zero. 
In  addition t o  t h e  a i r f o i l  source d is t r ibut ion,  the a i r f o i l  contains a bound 
c i rcula t ion which i s  adjusted t o  s a t i s f y  the  Kutta condition a t  the  a i r f o i l  
t r a i l i n g  edge. The vortex wake shed by the  a i r f o i l  is  carried by the  f lu id  
p a r t i c l e s  t o  which it i s  attached and changes i- space and tiine. A complete, 
detai led description of the procedure and compar.sons with experimer~tal data 
and other analyses can be found i n  r e f s .  10 and 11. 

The Viscous Flow Solution 

GeneralL - The viscous calculat ion procedure used i n  t h e  present report  
was or ig inal ly  developed by Briley and McDonald [ re f .  12) i n  a study of 
t r ans i t iona l  separation bubbles. The procedure ~ o l v e s  the  vorticity-stream 
function incompressible Navier-Stokes equations i n  e i the r  t h e i r  f u l l  or 
reduced form, When t h e  f u l l  vorticity-stream functicn form of the  equations 
i s  used, the time-dependent v o r t i c i t y  equation i s  solved with a Douglas-Gunn 
( ref .  13) perturbation of the  Crank-Nicholson differencing scheme which 
generates an alternating-direction-iqlicit (ADI ) mcthod . I n  the  reduced form, 
a Douglas-Gunn ( r e f .  13) perturbation of t h e  backward difference scheme i s  
used for  the  v o r t i c i t y  transport  equation while an approximate stream function 
equation, not requiring a f u l l  AD1 weep, is  used. I n  both the f u l l  and 
approximate form of t h e  governing equations the reoult ing AD1 procedure 
advances the  v o r t i c i t y  equation ir? t i m e  through a two-step calculat ion 
procedure. AD1 procedures present an extremely c f f l c i e n t  way of solving multi- 
dimensional problem, and i n  the  pas t  a m j o r  obstacle i n  the  routine solut ion 
of such problem hae been t h e  large amount of computer t i m e  required t o  obtain 



a solut ion.  I n  exp l i c i t  methods such as  those of r e f .  14  the  goveining 
equations a r e  subject t o  one or more s t a b i l i t y  r e s t r i c t i o n s  on t i ?  s ize  of 
the  time s t ep  r e l a t i v e  t o  the s p a t i a l  mesh s ize .  These s t a b i l i t y  l imi t s  
usually correspond t o  a l i m i t  a r i s ing  from ccnvective consideraticns or t o  s 
l i m i t  a r i s ing  from di f fus ive  considerations, I n  typica l  incompressible 
boundary layer  type flows the  viscous 1l"ll.t i s  expected t o  dominate the  
problem. 

While exp l i c i t  s t a b i l i t y  r e s t r i c t i o n s  may not be a serious disadvantage 
fo r  inviscid flow calculations i n  s i tua t ions  f o r  which a laminar boundary 
layer  must be resolved the  l imi ta t ion  i n  time s tep  specified by the e x p l i c i t  
procedure s t a b i l i t y  l i m i t s  may be a serious disadvantage. In  the  cas t  of a 
turbulent  boundary layer  the  extreme resolut ion required i n  the  sublayer 
region obvicusly magnifies the  problem. T h u ~ ,  e x p i i ? i t  methods inherently 
contain the  key disadvantage t h a t  the  maximum s teo  s i ze  i s  fixed bg the  
s p a t i a l  s t ep  s i ze  ra ther  than the  physical time scale.  One way ot*t cf the 
sublayer dilema with an exp l i c i t  procedure i s  simply t o  asstme a form fo r  the  
appropriate variable within the  sublayer. In  the  present problem of f l a t  
separation it i s  obv!.ously very l imi t ing  t o  suggest such a p r o f i l e  a s  an 
a r t i f i c e  t o  el iminatf ,  grid points ,  pa r t i cu la r ly  i n  a flow where the  temporal 
behavior close t o  serara t ion  i s  of i n t e r e s t .  

In  cont ras t  t o  e x p l i c i t  methods, impl ic i t  methods tend t o  be s table  for  
la rge  time steps an< so have the  allowable time s t e p  s e t  by physical consider- 
a t ions  ra ther  than by the  computational mesh and, therefore,  o f fe r  the  
prospect of subs tant ia l  increasesin computational e f f ic iency if' the computa- 
t i o n a l  e f f o r t  per time s t ep  i s  competitive with t h a t  of e x p l i c i t  methds .  In  
the  calculat ions of the  present repor t  the viscous s t a b i l i t y  lirnit would be 
expected t o  determine the  maximum time s tep  l imi ta t ion  of an exp i i c i t  
solut ion method, hcmever, due t o  the use of an implici t  method, time s teps  on 
the order of 1000 times the  viscous s t a b i l i t y  limit werf? not uncoman. 

The aovernim eauations. - The calculat ions presented i n  t r x  present 
repor t  a re  based upon a solut ion of the  Navier-Stokea equa.t;ions wr i t ten  i n  
vorticity-stream function form. The equa t~ons  a r e  wr i t ten  i n  an a i r f o i l  
coordinate system fo r  a i r f o i l  sect ions subjected t o  twg-dimennional flows. 
Within these two-dimensional boundary layers  Coriol is  and cen t r ipe ta l  e f f e c t s  
due t o  the pitching motion o f t h e  a i r f o i l  a r e  expected t o  be snull compared t o  
the  viscous and usual boundary layer  convective e f f e c t s  and, therefore,  they 
a r e  neglected. It should be noted t h a t  a t  the  leading edge stagnation poirit 
Cor io l i s  e f f e c t s  may be important, hm*rver, these e f f e c t s  becamc ~ :eg i ig ib le  
very quickly. For example, i f  the  lea3ing edge region of the  NAC4 CtCl.2 ' a i r -  
f o i l  i s  approximated t;y a c i r cu la r  cylinder, a ; 'Luced Prequency of 9.2 an3 a 
chord Reynolds number of 107 i s  assumed, and f o r  the pwpoee of t ~ t i m a t i o n  of  
t ransverse veloci ty gradients ,  a steady flow calculat ion i a  used t o  approinate 



the  viscous flow near the  f ion t  stagnation point then the Coriol is  force 
becomes negligible canpared t o  the convective momentum t rans fe r  well  within 
one degree of the  stagnation point along the cylinder surface. A s  shawn by 
many authors (e . g . ,  r e f .  15 ) , the  v o r t i c i t y  transport equation can be wri t ten  
i n  Cartesian coordinates a s  

where 5 i s  t h e  v o r t i c i t y  given by 

t i s  time, x and y a r e  the Cartesian coordinates, u and v a r e  velocity 
components i n  the  x and y direct ions,  respectively, and v i s  the  kinematic 
viscosity. A stream function $ i s  defined by 

which leads t o  the re la t ion  

Equations (1)  and (4)  form the  s e t  of equations t o  be solved fo r  laminar 
flaw. For turbulent flaw the  equations are  wri t ten  i n  the form of conservation 
of momentum i n  the x- and y-coordinate direct ions a s  



The :*elocity components u and v are divided into  mean and fluctuating parts 

where the overbar indicates mean quantities and the prime indicates fluctuating 
quantities. Substituting Eqs. ( 7 )  and (8) into  Eqs.  (5)  and ( 6 )  and averaging 
leads t o  

where 



m e  stress-strain relations are  assumed t o  be given by 

Q x  f a y  o(uY + V X )  
= P"t u y + v x  1 [,, 1 I",+.. bhJy+v.) 

where vt i s  the kinematic eddy viscosity and the subscritzs x and y indicate 
par t ia l  differentiation with respect t o  x and y, respectively. When Eq. (12) 
I s  substituted in to  Eqs. (9) and ( lo ) ,  use i s  made of the relation 

and the prescure i s  eliminated from the equations, the resulting turbulent 
vor t ic i ty  transport equation i s  

where S i s  the turbulent dissipative contribution given by 

In  the calculations made i n  the present report, the viscous flow f ie lds  are  
b a ~ i c a l l y  boundary layer type flaws i n  which th length scale and velocity i n  
the streanwise direction are a t  l eas t  an order of magnitude larger than the 
length scale and velocity i n  the transverse directjon. I f  the x-coordinate i s  
associated with the streamwise direction, t h i s  implies that  



so t h a t  

For turbulent  flow Eqs. (4 ) ,  (14),  and (17) determine the  flow f i e l d .  

Equations (1) and ( 4 )  f o r  laminar flow or Eqo. (4) ,  (14) ,  and (17) f o r  
turbulent flow represent the  f u l l  Navier-Stokes equations (with the  approxima- 
t i o n  t o  turbulence dissipat ion) i n  stream function-vort ici ty form. I f  the  
flow f i e l d  being invest igated i s  a boundary layer  type flow in  which the  
streamwise veloci ty,  u ,  i s  much l a rge r  than the  transverse ve loci ty ,  v ,  and 
derivat ives with respect  t o  the  transverse coordinate, y,  a r e  much larger  than 
derivat ives with respect t o  the  s t r e a w i s e  coordinate, x, then 

and the  stream function equation, Eq. (4) ,  may be approximated by 

For these flows Eq. (19) replaces Eq. (4) .  When Eq. (19) replaces Eq. ( 4 ) ,  
the  s e t  of equations is  termed the  reduced s e t  of equations. It should be 
noted t h a t  the reduced s e t  of equations i s  equivalent t o  a s e t  of boundary 
layer  equations with the addit ion of 8 atreamwise d i f fus ion of v o r t i c i t y  term 
( r e f .  12). I n  moat of the  calculat ions presented i n  the  present  repor t  the  
streamwise d i f fus ion term docs not contr ibute s ign i f i can t ly  t o  the  v o r t i c i t y  
equation balance. 



The preceding equations represent the equations wri t ten  i n  a Cartesian 
system; however, for  purposes of the  calculat iocs i n  the  present. repor t ,  a 
coordinate transformation was performed t o  allow f o r  a i r f o i l  c u r v a t m  and so  
a s  t o  be t t e r  represent the  change i n  shear layer width along t h e  streamwise 
direct ion.  The curvature of the  body, k, i s  accounted fo r  by assuming a 
coordinate system fo r  curved walls i n  which the  streamwise distance,  x ,  i s  
taken along the  body surface and the  transverse distance,  y, i s  taken normal 
t o  the  body surface. The curvature of the  body, k,  is  a specified function of 
x. The c u r v e d r a l l  coordinate system is  discussed i n  d e t a i l  i n  r e f .  15. I n  
the  curved-wall body cwrd lna te  system the  v c r t i c i t y  equation becanes 

where 5 i s  vor t ic i ty ,  u and v a r e  veloci t ies  i n  the  x and y d i rec t ions ,  
respectively, and v i s  kinematic viscosity. The vorticity-stream function 
re la t ion  remains 

which i n  the  curved-wall coordinate system i s  writ ten a s  

Tht velocit ies  a r e  re la ted  t o  the  stream function by 



Far turbulent flcm the momentum cmservation equations i n  the  x- and g- 
direc t ions  a r e  wr i t t en  in t h e  curvil inear coordinate system and the velocity 
is divided i n t o  mean and f luctuat ing par ts .  After the  usual averaging 
procedure i s  performed, t h e  pressure i s  eliminated by cross d i f fe ren t i a t ion  
and an order of rmagnitude argument i s  applied t o  t h e  apparent shear s t r ess .  
The procedure i s  analogous t o  t h a t  of Eqs. (5) through (15), apd leads t o  the  
r e s u l t  

The derivation of Eq. (25) i s  given i n  AFTENDIX A.  Equations (22) and (25) 
represent t h e  Navier-Stokes equations i n  curvil inear coordinates. In  order t o  
always keep the  gr id  within the  viscous layer a fur ther  transformation i s  
introduced whereby 



The vort ic i ty  transport equation becomes 

where subscripts indicate differentiation and 

K =1+kTp 

The stream function equation becomes 

I t  should be noted that the f ina l  form of the equations allows the grid t o  
adjust naturally t o  both spatial and temporal changes i n  the boundary layer 
thickness. 



The Turbulence and Transition Models 

The turbulence model. - I n  laminar flows the  s t r e s s  i s  1:omposed sole ly  of 
the  molecular s t r e s s  which i s  determined uniquely by the  molecular v iscos i ty  
( a  property of the  f l u i d )  and the  local  velocity f i e l d .  However, a s  shown i n  
Eqs. ( 9 )  and ( l o ) ,  i n  turbulent or t r a n s i t i o n a l  f l a w  where the  flow f i e l d  i s  
composed of a mean and f luctuat ing pa r t  the  averaging procedure gives r i s e  t o  
addi t ional terme which appear t o  a c t  a s  stress terms i n  the momentum conserva- 
t i o n  equations and which generally a r e  ca l led  turbulent s t r e s s  terms. These 
addit ional  terms i n  t h e  momentum equation lead t o  addit ional  t e r m  i n  the  
v o r t i c i t y  transport  equation and calculat ions i n  t h e  turbulent and 
t r a n s i t i o n a l  regime require a mathenmtical model t o  represent theae terms. 
Since, under normal conditions, a i r f o i l s  operate i n  the  regime where laminar, 
t r ans i t iona l ,  and turbulent viscous flow regions are  present,  any calculat ion 
procedure attempting t o  predict  the  viscous flow f i e l d  about an a i r f o i l  must 
contain both a turbulence model and a t r ans i t ion  model. 

Insofar a s  the  turbulent  flaw i s  concerned a large var ie ty  of models have 
been developed f o r  fully-turbulent flows (e.g.,  r e f .  ;j). These models can be 
divided i n t o  two broad categories, eq'lilibrium turbulence models and h i s to r i ca l  
turbulence models. Equilibrium turbulence models assume t h a t  the  turbulent 
s t r e s s  i s  determined uniquely ty the local  mean velocity f i e l d .  These equi l ib-  
r i u m  procedures usually hypothesize an eddy viscos i ty  or mixing length deter-  
mined sole ly  be mean flaw conditions. Although equilibrium turbulence models a re  
adequate fo r  t h e  prediction of many turbulent boundary layers ,  t h e i r  basic 
assumption r e l a t i n g  the  turbulent  shear s t r e s s  t o  loca l  flow conditions i s  
clc1rl.y i n  e r r o r  for flow s i tua t ions  i n  which rapid changes i n  t k e  mean f l a w  
ff el3 occur (e  .g., re f s .  17 and 18)  ; i n  rapidly  developing flows the  turbulent 
s t r e s s  i s  not determined by l o c a l  conditions but ra ther  by t h e  h ~ s t o r y  (both 
upstream s p a t i a l  h i s to ry  and temporal h is tory)  of the flow and i n  these cases 
the theory i s  improved if  a model which includes the  fluw his tory  i s  used. A 
la rge  number of such models fo r  steady-state turbulent  flaws a r e  discussed i n  
ref .  16. In  addition t o  t h e  steady-stste h i s t o r i c a l  turbulence models of 
r e f .  16, a time-dependent h i s t o r i c a l  model has been developed by Pate1 and 
Nash ( ref .  19)  and applied t o  a va r ie ty  of flows by Nash, Carl., and Singleton 
( re f .  20). 

I n  the  present calculat ions the  turbulence model used i s  that developed 
by McDonald and Camrata ( r e f .  21) which solves an in tegra l  f o r m  of t h e  
turbulence k ine t i c  energy equation. I n  b r i e f ,  the  turbulence k ine t i c  energy 
equation i s  a conservation equation derived from the  Navier-Stokes equations ' 

by wri t ing  the  inetantaneous quant i t ies  a s  a sum of mean and f luctuat ing pa r t s .  
The i t h  Navier-Stokes momentum conservation equation ( i  = 1,2,3 refer r ing t o  
t h e  three  coordinate d i rec t ions)  is  multiplied by the i t h  component of 
f luc tuat ing veloci ty  and the  average of t h e  resul t ing  three  equations i s  taken. 



The three  averaged equations a r e  sunmed t o  obtain the  turbulence k ine t i c  energy 
equation. The derivat ion of the  turbulence k ine t i c  energy equation has been 
given by Favre ( r e f .  22) for  the  general case of a compressible f l u i d  and 
approximated by Br~dshaw and Fer r i s  ( r e f .  23) t o  boundary layer  flows. For 
incompressible f lw the  derivat ion has been given by many authors (e.g., r e f .  
24). 

I n  the  case of incompressible flaw, the  boundary layer  approximation t o  
the  turbulent  k ine t i c  energy equation can be wri t ten  a s  

production 
(31) 

- 
where q2 i s  the  turbulence k ine t i c  energy. 

It should be noted t h a t  i n  t h e  turbulent  flow calculat ions of the  present 
repor t  the  boundary layer  approximations a re  expected t o  be val id and thus 
the  boundary layer  form of the  turbulence k ine t i c  energy equation i s  
appropriate. 

Fo l lwing  Tcmnsend ( re f .  25) and Bradshaw and F e r r i s  ( r e f .  23 ), McDonald 
and Camarata ( r e f .  21) introduce s t ruc tu ra l  coeff ic ients  an and L, together 
with a mixing length A ;  chese sca les  a r e  defined as 



where 

and a l ,  a2, and a3 are assumed t o  have values 0.15, 0.50, and 0.20, 
respect ive ly .  The turbulence k inet ic  energy equation i s  then integrated 
between the wal l  and the edge of  the boundary layer a t  y = 6 t o  obtain the  
equation 



The term containing 6 1  represents the  temporal r a t e  of change of turbulence 
k ine t i c  energy, the term containing 9;; represents the  streamwise r a t e  of 
change of turbulence k ine t i c  energy, the  term containing 43 represents t h e  
in tegra l  of turbulence production minus d iss ipat ion,  and t h e  term containing 
4 4 represents the normal s t r e s s  production. The terms designated by E 

represent turbulent source t e r n  resul t ing  Prom disturbances imposed upon the  
viscous layer by the  Prea stream. It should be noted t h a t  the  turbulence 
kinet ic  energy a t  the  edge of the boundary layer ,  q2e i s  damped by the  fac tor  
(Ae/A,)' where Ae i s  the value of the  mixing length a t  the boundary lnyer edge 
and A, i s  the  'bake" value of mixing length; i .e . , the  value f a r  from the  
wall. In  most regions of the  flow Ae/A, = 1.0 and thus no damping of the 
entrained turbulence energy occurs. However, near the stagnation point,  A e  
is  i n i t i a l l y  considerably smaller than A, due t o  the  extremely t h i n  highly 
viscous layer present near the  stagnation point and the entrainment is  damped 
heavily i n  t h i s  region. As the  flaw proceeds away from the  stagnation point 
Ae quickly r i s e s  t o  the value of A, and no damping of the  entrained turbulence 
occurs. 

The dissipation length i s  given by 

where K i s  the  von Karman conatant taken a8 0.41, al i s  a sublayer damping 
fac tor ,  and 82 l a  a la* Reynolds number correction. I n  the  or ig inal  McDonald- 
Camrata model the sublayer damping was assumcd t o  be given by the  van Driest 
damping model and no low Reynolds number correction was made. However, 
following a l a t e r  work by McDonald and Fish ( re f .  26), the  aublayer damping i s  
asswned t o  d i s t r ibu te  normally about a mean height y+(y+ = y f i / v )  with a 
etandard deviation t~ leading t o  the  equation 

where P i s  the  norm1 probabil i ty function; i s  taken a8 23, and o a s  8. 

2l 



The l o w  Reynolds n u h e r  correction i s  based upon the  work of McDonald 
( r e f .  27) which r e l a t e s  the  correction fac tor ,  a2. t o  a turbulence Reynolds 
number, R,, given by 

where 6 i s  the  viscous layer thickness, 6, i s  the sublayer thickness defined 
a s  the location a t  which the  laminar s t r e s s  has f a l l e n  t o  4 percent of the 
t o t a l  s t r e s s ,  vt  i s  t h e  turbulent kinematic v iscos i ty  defined a s  

and v i s  the  laminar kinematic viscosi ty.  The correction fac tor  i s  given 
by 

where 

and fo r  1 <RT c40, fT i e  f i t t e d  between Eqa. (46) and (47) by a cubic 
constructed t o  match the  function and slope a t  the  join points.  



Finally, a one-parameter mixing length prof i le ,  1, , i s  introduced where 

Introduction of Eqs. (41) and (48) in to  Eq. (34) yield6 a dif ferent ia l  equation 
for the wake value of the mixing length, A, , which i s  ~ ~ o l v e d  In conjunction 
with the mean flcm equations t o  determine both the man :law f i e ld  and the 
ahear s t ress  development. A detailed derivation and d i s c u ~ s i ~  of the turbu- 
lence model as  well as the transit ion model ( t o  be cl.fscunsed t,ulzequently) i s  
given by Shamroth and McDonald ( re f .  28). 

The transit ion model. - Althougn the McDonald-Cama~a.*~ .-bulence model, 
a s  previously described, i s  a well-proven turbulence model for fully-turbulent 
flows, it i s  s t i l l  necessary t o  i n c l ~ d e  a model t o  predict the flows in  the 
t ransi t ional  regime. Such a model based upan a solution of the turbulence 
kinetic energy equation has been developed by McDonald and Fish ( ref .  26) and 
has been verified through comparisons with a large body of experimental data 
by McDonald and Fish ( re f .  26), Shamroth and McDonald ( re f .  28), and 
Kreskovsky, Shamroth, an6 McDonald ( re f .  29). It shotild be noted that  t h i s  
transit ion model i s  based upon a rigorous conservation equaticm rather than 
semiempirical data correlations, as is  the case wi th  most other transit ion 
models (see, ref .  30). The model has successfully predicted the behavior of 
a large variety of t ransi t icnal  boundary layers f'rom the incompressible t o  the 
l c m  hypersonic Mach number regime aubjcct t o  various heat transfer ra tes ,  
pressure gradients, and wall roughness heights (refs.  26, 28, and 29). In  
br ie f ,  the transit ion model i s  identicsrl t o  the turbulence model with the 
exception tha t  the structural  ccefficient, a l ,  becon~s a function of the 
turbulence Reynolds number of the form 

where f, is given by Equ. (M), (47), and the cubic flt wilth fTO = 100. The 
variable ag i 8  a function of the wall-to-free-rtream temperature r a t i o  ( ref .  
28) and for  the caw of wall temperature equal t o  f ree  stream temperature a. 
i s  equal t o  0.0115. Thuu the turbulence kinetic encrgy equation is always 
solved i n  cmJunction with the governing mem flw equations. I f  the  calcu- 
lated mixing length is very small, the flw is laminar; harever, the mixiry; 
leagth may increare causing the turbulent transport t o  be comparable t o  the 



lamina:? transport and, ia  t h i s  case, the f l w  i s  transitiona'l. Finally, the 
mixing length may reach a f ully-turbulent value 1ead'r.g t o  a ful ly  -t.urbuleni; 
flow. 

Solution of the Equations 

m u t i o n  of the f u l l  se t  of eauations. -When the f u l l  se t  o f  vorticity- 
stream function equations a re  used,an i t e ra t ive  solution i s  required between 
the vort ic i ty  transport equatior~, Eq. ( I ) ,  and the vort ic i ty-s t reel  function 
relation,  Eq. (4). The se t  of equations s r e  subject t o  the boun:iary condi - 
t ions a t  the wall and a t  the boundary layer outer edge as  followa; 

Briley and McDonald ( ref .  12) solve the s e t  by f i r s t  assuming a wall vor t ic i ty  
d i s t r ib~t t ion  and then solving the vortici+y transport eqwrtion by a Ilouglas- 
Gunn AD1 procedure. In the Douglae-Gunn proceJure the vort ic i ty  i:ansport 
equation i s  written i n  the general form 

where 4 i s  a dependent variable ( i n  t h i s  case, vor t ic i ty) ,  A,  B, C, D, an2 E 
are coefficiente, and rubscripts indicate derivatives . A two-step ca lc~r la t ion  
procedure i e  wed t o  advance the calculation i n  time frm to t o  to + A t .  I n  
t h i s  procedure @ 3 the dependent variable a t  the h l u n  time step, to, 4- i q  

the dependent variable a t  the f l r e t  s tep of the calculafiatr procedure, and 
dw i s  the dependent variable a t  the second atep of the calculation (or a t  
time = to + At). 



In the  first s t ep  of the  procedure der iva t ives  with respect t o  y a r e  
t rea ted  impl ic i t ly  usicg Crank-Nicholson differencing and those with respect 
t o  x a re  t reated e x p l i c i t l y  leading t o  the  equation 

which is solved fo r  t$* by invert ing a t r id iagonal  matrix. I n  the  second s t ep  
of the  procedure derivat ives with respect  t o  x a r e  t rea ted  impl ic i t ly  while 
those with respect t o  y a r e  t rea ted  e x p l i c i t l y  leading t o  the  equation 

Equation (53) i s  subtracted from Eq. (54) leading t o  the  simpler eqaation fo r  
4* 

After the v o r t i c i t y  t ransport  equation i s  solved, the  stream function 
equation is solved with the  wall and edge boundary conditions 

by a Ekaceman-Rachford AD1 procedure for e l l i p t i c  equations ( r e f .  31). The 
Peaceman-Rachford procedure introduces a s e r i e s  of accelerat ion parameters, p i ,  
and the t  solves t h e  stream function equation by an i t e r a t i o n  process. For each 
choice of accelerat ion parameter, p i ,  two  weeps ar In  the  f i r s t  sweep 
the  i t e r a t i o n  is  advanced from solut ion $1 t o  *i x-derivatives 



a s  e x p l i c i t  and y-derivatives a s  impl ic i t .  In  the  second sweep the  x-deriva- 
t i v e s  a r e  t rea ted  impl ic i t ly  aad the  y-derivat ives e x p l i c i t l y  and the solut ion 
i s  advanced t o  r~~+l.  Thus, the  procedure advances a s  

I f  ditl  agrees with tbi within a specif ied tolerance,  the eqization is 
considered solved; i f  not ,  the  procedure i s  repeated f o r  the  next accelerat ion 
parameter. It should be noted t h a t ,  i f  the  accelerat ion parameter, p i ,  i s  
taken a s  the inverse of a time s t ep  l /a t i ,  the *aceman-Rachford procedure i s  
analogous t o  the  Douglas-Gunn procedure. 

After the  stream function equation has been converged the streamwise 
veloci ty component a t  the  wall  consistent  with the  stream function solut ion i s  
computed. I f  the  wall  veloci ty i s  zero within a specif ied tolerance,  the  s e t  
of equations i s  considered solved a t  the  given time s tep;  i f  not ,  a new wall 
v o r t i c i t y  d i s t r ibu t ion  i s  assumed using a secant extrapolat ion and the  e n t i r e  
procedure consist ing of the  solut ion of the  v o r t i c i t y  t ranspor t  equation and 
t h e  stream function-vort ici ty r e l a t ion  is  repeated. 

Solution of the  reduced s e t  of eauations. - A s  can be summarized f ron 
the  preceding discussion, the  i t e r a t i v e  solut ion t o  the  f u l l  s e t  of equations 
can be a r e l a t i v e l y  time consuming process. The computer time required by the  
reduced equations i s  l e s s  by an order of magnitude than t h a t  required by the 
f u l l  s e t  of equations; therefore,  the  reduced s e t  represented by Eqs. (1)  and 
(19) have been u t i l i zed  whenever possible. When the  reduced s e t  of equations 
a r e  used, the  v o r t i c i t y  t ransport  equa t im and the  reduced stream function 
equation a r e  solved a s  a coupled s e t  5y the  Douglas-Gunn AD1 perturbation of 
the  backward difference procedure using the  boundary conditions represented 
by Eqs. (50) and (51). When the  reduced ~ e t  of equations a r e  solved, the  
equations a r e  f i r s t  integrated with the  x-derivat ives taken a s  impl ic i t  and the 
y-derivatives a s  e x p l i c i t .  3ince the  reduced stream funct ion-vor t ic i ty  r e l a -  
t ion  contains no derivat ives with respect t o  x,  the  in tegra t ion  i s  performed 
only f o r  the  v o r i i c i t y  t ranspor t  equation and i s  s imilar  t o  t h a t  f o r  the  f u l l  
s e t  of equations. The equations a r e  then integrated with y-derivat ives taken 
a s  impl ic i t  and x d e r i v a t i v e s  a s  e x p l i c i t .  During these in tegra t ions  a 
coupled s e t  of equations i s  solved i n  which the  coeff ic ient  matrix takes the, 
form of a block t r id iagonal  matrix, each block being a 2 x 2 submatrix. The 
fac t  t h a t  the  system can ncm be solved i n  a coupled manner eliminates the  



previously required i t e ra t ion  on wall vor t i c i ty .  The reduction i n  the  stream 
function equation eliminates the  Peaceman-Rachford i t e r a t i v e  AD1 solut ion 
required when using the  f u l l  stream function equation. 

RESULTS 

Verif icat ion of the Calculation Procedure 

General. - Before predict ions were made fo r  t h e  flow f i e l d  about 
osc i l l a t ing  i so la ted  a i r f o i l s ,  it was deewd necessary t o  veriPy t h e  calcula-  
t i o n  procedure. Since the  po ten t i a l  f lw computer code used i n  the  present 
e f f o r t  was extensively checked out by i t s  originator  ( r e f s .  10 and l l ) ,  l i t t l e  
e f f o r t  was expended i n  verifying t h i s  code. The major ver i f ica t ion  e f f o r t  
concentrated on the  viscous flow calculat ion procedure. Verif icat ion o f  the  
viscous flow calculat ion procedure :equires ver i f ica t ion  of the mathematical 
models used i n  the  procedure and ver i f ica t ion  of the  f in i te-d i f ference  proce- 
dure i t s e l f .  The f in i te-d i f ference  procedure was berif ied by comparing 
predicted r e s u l t s  and avai lable  ana ly t i ca l  solut ions f o r  a wide va r i e ty  of 
laminar f l w s .  These comparisons between numerical solut ions u f  t he  present 
procedure and analyt ica l  solut ions fo r  laminar flows assess how well  the  
f ini te-difference solutions correspond t o  solut ions of the  o r ig ina l  d i f f e r -  
e n t i a l  equations. In  addit ion,  calculat ions f o r  t r ans i t iona l  boundary layers  
made with the  present procedure were compared with calculat ions made with the  
well-established UARL boundary layer  predict ion deck. 

Insofar  a s  the  mathematics, models a r e  concerned, the  only mathematical 
models present other than tha t  implied by representing the  flow f i e l d  by the  
Navier-Stokes equations, a re  the  turbulence and t r a n s i t i o n  models. These 
models have been ver i f ied  f o r  steady-state , unseparated boundary layer  type 
flows through a large number of comparisons between theore t i ca l  predictions 
and experimental data ( r e f s .  26, 28, 29, and 32). In  addit ion,  successful 
predictions of experimentally measured t r ans i t iona l  separation bubbles have 
been made by Bri ley and McDonald ( re f .  12). Thus, the  turbulence and t r a n s i -  
t i o n  models a r e  well-established fo r  steady-state viscous flows. 

The major unresolved question centers  upon how well the  turbulence and 
t r ans i t ion  models represent time-dependent fluw f ie lds .  Since the  basic 
equation used t o  predict  the  turbulent  shear stress development is  the  
turbulent  k ine t i c  energy equation, an equation derived d i r e c t l y  from t h e  
Navier-Stokes equations, there  can be l i t t l e  argument regarding t h e  governing 
equation i t s e l f ,  Eq. (31). The mador uncertainty res ides  i n  the  turbulence 
model, Eqs. (33) and (41) through (48) ; however, some such model m:st be 
hypothesized in order t o  solve the  turbulence k ine t i c  energy equation. If 



unsteady calculat ions a r e  t o  be va l id ,  then the  turbulence model should be 
val id fo r  the  flows under consideration. I n  general,  t h e  cha rac te r i s t i c  
frequency of turbulence i s  given by 

and for  hel icopter  applicat ions the  cha rac te r i s t i c  frequency of t h e  a i r f o i l  i s  . 8 . I 
a t  most 3 

i 
where 6 i s  the  boundary layer  thickness, u i s  the f r e e  stream veloci ty,  and c 

, I . . , 
- I 

i s  the  a i r f o i l  chord. The r a t i o  of the  frequency of the  turbulence t o  t h a t  of . . 
, 

the  a i r f o i l  motion i s  

: i - I 
Therefore, the  turbulence frequency is  expected t o  be much grea ter  than the 
a i r f o i l  frequency and the  turbulence s t ruc ture  should be unaffected by the  
tim-dependent mean motion a t  l e a s t  i n  the  absence of lhrge separated regions. 
'ihus, the  turbulence model i s  expected t o  be i .alid. 

Potential  fluw calculat ion.  - As previously discussed, the  po ten t i a l  flaw 
calculat ion procedure i s  a well accepted procedure, the  r e s u l t s  of which have 
been verif ied by i t s  author ( r e f s .  10 and 11) .  An addi t ional  comparison was ! I 

! i 

made under the  present e f f o r t  between theore t i ca l ly  predicted l i f t  and moment 
coeff ic ients  with +,he data of Carta, Comerford, Carlson, and Blackwell ( r e f .  1 1  ; 33) .  The r e s u l t s  of t h i s  comparison, shown i n  Fig. 2 ,  a r e  considered t o  be 
good. The experimental da ta  have been corrected f o r  f i n i t e  span e f f e c t s  by a 
correct ion fac to r  obtained from comparison of the lw  incidence experimentally 
determined l i f t - incidence slope with the  theore t i ca l  value. 

I 
t l  1 



Laminar viscous flow calculat ions.  - One su i t ab le  t e s t  case for  assessing 
the  present ca lcula t ion  procedure i s  the f l a t  p la t e  stagnation point laminar 
flow f i e l d  termed Hiemenz flow ( r e f .  15 ) .  The inviscid flaw solut ion a t  large 
distances from t he  p l a t e  i s  given by 

The ane ly t i ca l  viscous solution i s  a s imi la r i ty  solut ion i n  wh!-b. th- .  

dimensionless veloci ty,  itt. , i s  a function of the dimensionless transverse 
coordinate, ylv/v/a, where u, i s  the  inviscid flow veloci ty i n  the  streamwise 
d i rec t ion ,  and .J i s  the  kinematic viscosi ty.  A comparison ~ t t w e e n  the  
solut ion predicted by the numerical procedut md the  ana ly t i ca l  solut ion a s  
given by r e f .  15 i s  presented i n  Fig. 3 .  As can be seen, the  comparison i s  
excellent .  

A second steady-state laminar solut ion which serves a s  a good t e s t  case 
f o r  the  calculat ion procedure i s  t h a t  of f lw  about a c i r cu la r  cylinder, since 
such a flow provides an addit ional  fea ture  not present i n  the  Hiemenz flow. 
I n  par t icular ,  f l o w  about a c i r cu la r  cylinder provides a geometry having a 
f in i te- radius  of curvature and thus the  calculat ion serves a s  a check on the  
radius of curvature e f fec t  i n  the  present calculat ion procedure. A comparison 
between the  numerical solut ion of the  present ana1.ysis :~.nd t h a t  obtained 
ana ly t i ca l ly  from t h e  Blasius series '  solution t o  the  boundary layer  equations 
( r e f .  15) is  presented i n  Fig. 4. The agreement between the  numerical and 
ana ly t i ca l  solut ions,  shown i n  f ig .  4, a t  three  d i f fe ren t  angular locat ions 
( 0 = 0 being the  f ron t  stagnation point)  i s  excellent .  I n  Fig. 4, ue i s  the  
l o c a l  free-stream veloci ty ,  u, i s  the  approach veloci ty ,  and R is the  
cylinder radius. 

The viscous flow calculat ion procedure was a l s o  used t o  predict  the  flow 
along a f l a t  p la t e  osc i l l a t ing  sinusoidal ly i n  i t s  awn plane t o  assess the 
accuracy of the  procedure i n  predict ing time-dependent flaws. The numerical 
solut ion was run using both the  f u l l  s e t  of Navier-Stokes equations and the  
reduced s e t  of equations; no s igni f icant  differences i n  the  r e s u l t s  were 
apparent. The vcloci ty  p ro f i l e s  calculated by the  numerical procedure through 
one hal f  a cycle a r e  compared t o  the ana ly t i ca l  solut ion 'of r e f .  15 i n  Fig. 5. 
The ana ly t i ca l  solut ion i s  given by 



In  Fig. 5 the  open c i r c l e s  represent the  solut ions obtained from both the  
reduced and f u l l  Navier-Stokes equations fo r  an osc i l l a t ion  frequency of 
130 radians/sec. I t  should be noted t h a t  i n  the n ~ ~ e r i c a l  calculat ion the  
p la te  was assumed s ta t ionary  and the inviscid flow f i e l d  osc i l l a t ed ,  whereas 
i n  r e f .  15 the  p l a t e  was assumed t o  o s c i l l a t e  i n  a quiescent f l u i d ;  however, 
a s  discussed by L igh th i l l  ( r e f .  34), the  two problems a r e  equivalent.  As can 
be seen, agreement i s  excellent .  A comparison between the  wall  u o r t i c i t y ,  
au/ay, predicted by the  numerical procedure and t h a t  given by the  ana ly t i ca l  
solut ion i s  presented i n  Fig. 6. The wall  v o r t i c i t y ,  being proportional t o  
t h e  skin f r i c t i o n ,  i s  a very sens i t ive  indicator  of the  accuracy of the  
numerical procedure. The agreement i s  again excellent .  It should be noted 
t h a t  the  reduced equations were dsed successfully f o r  t h e  o s c i l l a t i n g  p la te  
problem even though regions of reversed flow a r e  present i n  the  flow f i e l d .  

I n  addit ion t o  these  laminar viscous flow calculat ions mde i n  the  
gresence of a so l id  wall ,  calculat ions were made f o r  the  wake behind a f l a t  
p l a t e  and these r e s u l t s  a r e  compared t o  t h e  result!: obtained by Goldstein and 
Luckert a s  given by Rosenhead and Simpson ( r e f .  35) i~ Fig. 7. Since 
Goldstein's solut ion was numerical and Luckert's graphical,  Goldstein's 
s o l u t i m  i s  regarded a s  the  more r e l i a b l e  of t h e  two, Agreement between the  
present solut ion and tha t  of Goldstein i s  good. 

Transi t ional  viscous flow calculat ions.  - The r e s u l t s  of Figs. 3 through 
7 demonstrate the  a b i l i t y  of the  present numerical procedure t o  predict  
boundary layer ,  stagnation point,  and wake flows i n  the laminar regime 
including unsteady e f f e c t s  and the  e f f e c t s  of a f i n i t e  radius of curvature. 
The procedure's a b i l i t y  t o  predict  t r a n s i t i o n a l  flaws was ve r i f i ed  by 
comparing t h e  r e s u l t s  of the  present procedure with the  r e s u l t s  of a well- 
established t r a n s i t i o n a l  boundary layer  calculat ion procedure previously 
ve r i f i ed  by an extensive comparison between theore t i ca l  predict ions and 
experimental data  ( r e f s .  26, 28, 29, and 32). A comparison between steady- 
s t a t e  t r a n s i t i o n a l  r e s u l t s  of the  present procedure, using the  reduced s e t  of 



equations, and the  r e s u l t s  of the  boundary layer  procedure a r e  presented i n  
Fig. 8. A s  can be seen. the  r e s u l t s  a re  nearly iden t i ca l .  The t r a n s i t i o n  
model u t i l i zed  was v i r t u a l l y  iden t i ca l  i n  both cases. 

Turbulent viscous flow calculat ions.  - An addit ional  comparison was made 
between the  present procedure and the  data of Karlsson ( r e f .  3 6 )  t o  assess  the  
procedure ' s app l i cab i l i ty  t o  t ime-dependent turbulent  flows. In  r e f .  36 
Karlssofi invest igated a boundary layer  developing under an o s c i l l a t i n g  f ree-  
stream velclcity given by 

Karlsson represented the veloci ty f i e l d  within the boundary layer  by the  
s e r i e s  expansion 

and measured u(x,y),  u ( l )  cosQ and u ( l ) s i n ~  . In  Eq. (65) r represents  the  
higher order harmonics. Calculations corresponding t o  Karlsson's data f o r  the  
conditions 

were carr ied out under two d i f fe ren t  s e t s  of assumptions. The f i rs t  calcula-  
t i o n  assumed the  boandary layer  a t  time zero t o  be independent of the  stream- 
wise coordinate, x; t h i s  i s  termed the  s imi la r i ty  solution. The second 
ca lcula t ion  assumed t h a t  a t  Rn upstream s ta t ion ,  the  ve loci ty  s a t i s f i e d  an 
equilibrium turbulent  boundary layer  p r o f i l e ;  i.e., 



where ue(y) i s  the steady-state turbulent  boundary layer  p ro f i l e .  'Ihis time- 
dependent i n i t i a l  value solut ion was then allowed t o  dovelop a s  the  flow 
proceeded damstream. The r e s u l t s  of both c lcula t ions  a re  presented i n  
Fi . where u(l)cosr$ i s  represented by u119 and u(')sind i s  represented by 
u j l ) .  The agreement i s  mcderately good. In both calculat ions the  predicted 
mean veloci ty  p r o f i l e  agrees well with da ta  and the  predicted f i r s t  harmonics 
agree qua l i t a t ive ly  with the  data.  Both calculat ions predict  the  rapid r i s e  
of the  in-phase harmonic with distance from t h e  wall  and, although both 
calculat ions predict  a ve loc i ty  overshoot for  the  in-phase component, both 
disagree with Karlsson's measurements a s  t o  t h e  magnitude and locat ion of the  
overshoot. Similarly,  agreement between theory and experl ment fo r  the  out -of - 
phase component i s  good ir, the wall region but disagreement e x i s t s  in  the  outer 
region. However, considering the  prestmt l i m i t s  of the theore t i ca l  predic- 
t ions ,  which e i the r  assume a s imi la r i ty  solut ion or a s e t  of i n i t i a l  conditions 
a t  a given streamwise s t a t i o n  in  which no overshoot of the  f i r s t  in-phase 
harmonic i s  present and i n  which no f i rs t  out-of-phase harmonic e x i s t s  ( see  
Eq. (67)), t he  agreement between theory and experiment seems sa t i s fac to ry .  

Comparison between the  f u l l  and reduced s e t s  of eauations. - As previously 
discussed, there  a r e  two options available within the  viscous calculat ion 
procedure used i n  the  present repor t ,  the  option using the  f u l l  stream 
function-vort ici ty r e l a t ion ,  Eq. (4), and the  option using the  reduced stream 
function-vort ici ty r e l a t ion ,  Eq. (19). The f u l l  r e l a t ion  represents an exact 
equation with no approximation t~ the  o r ig ina l  Navier-Stokes equations, 
whereas the  reduced equation requires the apprcximntion 

where x i s  associated with the  streamwise d i rec t ion ,  y with the  transverse 
d i rec t ion ,  and u and v a r e  veloci ty components i n  t h e  x and y d i rec t ions ,  
respectively.  The approximation obviously i s  val id  i n  attached boundary layer  
type flows and, a s  shown by the  calculat ions of Bri ley and McDonald ( r e f .  12),  
the  approximation appears t o  be val id  i n  r e l a t i v e l y  t h i n  separation bubbles; 
however, a t  the  i n i t i a t i o n  of the  present study it was not obvious i f  the  
reduced s e t  of equations leads tcr val id  solut ions i n  tine stagnation region of 
the  a i r f o i l .  Since the  reduced s e t  of equations a r e  much more e f f i c i e n t  t o  
solve than the  f u l l  s e t ,  they a r e  used whenever possible and, therefore,  a 
t e s t  colrparison between the  r e s u l t s  of t h e  f u l l  s e t  and the  reduced s e t  was 
made f o r  steady flow i n  the  v i c i n i t y  of an a i r f o i l  f ron t  stagnation point.  



A comparison between the two r e s u l t s  for  a modified NACA 0 1 2  a i r f o i l  a t  
2.5 deg angle of s t t ack  i s  shown i n  Fig. 10. The Reynolds number for  the 
calculat ion was 0.26 x 107 and a free-stream turbulence l eve l  of 0.01 was 
assumed. In Fig. 10 the  normal distance and surface coordinate a re  nwmalized 
by the  chord length. The normalized surface coordinate, s / c ,  i s  zero a t  the  
t r a i l i n g  edge and increases along the pressure surface t o  a value of 1.015 a t  
the  leading edge. The surface coordinate then continues t o  increase along the 
suction surface ' 3 the  t r a i l i n g  edge. The stagnation point i s  located wel l  on 
the pressure side of the  leading edge a t  s /c  = 1.00. 

As shown i n  Fig. 10, the  only s igni f icant  difference i n  the  r e s u l t s  i s  
ref lec ted  i n  the  mcmentum thickness i n  the  v i c i n i t y  of the  stagnation point .  
The f u l l  Navier-Stokes solut ion indica tes  a slmrp increase i n  momentum 
thickness i n  the  immediate area of the stagnation point due t o  the presence 
of a veloci ty overshoot, whereas the  reduced Navier -Stokes equations solut icn 
gives a smooth variat ion of momentum thickness i n  the same region. The 
comparison indicates the  v a l i d i t y  of the  solution from the  reduced equat-lons 
i n  the  v i c i n i t y  of the f ron t  stagnation point and, therefore,  i n  subsequent 
viscous calculat ions the  reduced s e t  of e q u a t i o ~ ~ s  was used exclusively. 

Predictions f o r  Flow About Oscil lat ing Ai r fo i l s  

General. - Weak-interaction predictions were made for  the flow f i e l d  
about a modified NACA 0012 a i r f o i l  f o r  three  d i f fe ren t  types of motion. The 
f i r s t  calculat ion was fo r  the  flow about an a i r f o i l  o s c i l l a t i n g  i n  p i t ch  
about the  quarter  chord point.  The flow conditions were based upon experi- 
mental data which showed t h a t  the a i r f o i l  d id  not encounter s t a l l .  The 
second calculat ion was made f o r  the  flow about an a i r f o i l  once again 
osc i l l a t ing  i n  p i tch ,  however, i n  t h i s  second case the  da ta  showed the  a i r -  
f o i l  t o  be s t a l l e d  over a large portion of the  cycle. F inal ly ,  a th i rd  caicu- 
l a t i o n  was made f o r  an a i r f o i l  o sc i l l a t ing  sinusoidal ly i n  heave; i n  t h i s  th i rd  
case, the  a i r f o i l  was s t a l l e d  over a s ign i f i can t  port icn of the  cycle. In a l l  
three  cases the  calculat ion was made by first predict ing the  inviscid flow 
f i e l d  via the  Giesing calculat ion procedure ( r e f .  10). This inviscid calcula-  
t i o n  then serves a s  sn  outer edge boundary condition f o r  the  viscous flow 
calculat ion.  The viscous flow i t s e l f  i s  divided i n t o  subregions, a s  shown i n  
Fig. 1. The viscous calculat ion has been described previously; i n  b r i e f ,  the  
stagnation region is  solved f i r s t  and the  results from the  stagnation region 
serve a s  upstream bour~dary conditions f o r  the  next dawnctream region on both 
the  suction and pressure surface. In  t h i s  manner, the  solut ion f o r  each 
viscous region serves as a boundary condition for  the  next region. The mesn 
spacing i n  each region varied t o  allow adequate r e s o l u t i m  of the  loca l  flow 
f i e l d .  Typically, the streanmise mesh spacing i s  s m i l e s t  i n  +,he leading 
edge separated region where Ax/c i s  of the  order of 0.0025. The la rges t  



Stagnation region 30 x points  by 24 y points 

Ressure  side t r a n s i t i o n  region 34 x points by 26 y points  

streanmise mesh spacing i s  used i n  the  pressure s ide  ful ly-turbulent  region 

Pressure side ful ly-turbulent  region 34 x points by 33 y points 

Suction s ide  spparated region 30 x points  by 26 y points  

1 

Suction s ide  ful ly-turbulent  region 34 x points  by 30 y points - .  
I ! 1 

where hx/c is  rough7.y 0.0177. The dis t r ibut ion and number of grid points 
normal t o  the a i r f o i l  surface a l so  vary from region t o  region so t h a t  optimum 
r e s o l u t i m  of laminar boundary layers,  t r ans i t iona l  regions, and turbulent * I 

boundary layer sublayers i s  obtained. As an example of the  t o t a l  number of - .  i 

g r id  points  used, the  d is t r ibut ion grid points for  each segment of the Case I1 
a i r f o i l  a r e  given below: 

I 

Suction side ful ly-turbulent  
t -a i l ing  edge region 

Total number of grid points 

34 x points by 23 y points  

5648 

Case I - u ~ s t a l l e d  a i r f o i l  o s c i l l a t i n ~  i n   itch. - The first  time- 
dependent a i r f o i l  f lcm f i e l d  calculat ion i s  f o r  a modified NACA 0012 a i r f o i l  i 1 ' I 

? .  o s c i l l a t i n g  sinusoidally i n  p i tch .  The a i r f o i l  and motion chosen correspond 
t o  t e s t  point 3184.2 of r e f .  3 fo r  which the  mean angle of a t tack i s  7.76 deg, 7 i 
the  amplitudn of the  sinusoidal osc i l l a t ion  i s  5.24 deg, the dimensionless 
frequency, k, i s  0,252, and the  Reynolds number based upon chord length i s  

I t 
0.26 x 107. The free-stream turbulence level  i s  assumed t o  be one percent. 
Under s t a t i c  conditions, maxim8m l i f t  for the modified a i r f o i l  a t  a chord 1 

i 
i 

. . 
Reynolds number of 0.26 x 107 occurs a t  12.9 deg and the  nonlinear portion of 
the  l i f t - incidence curve begins a t  approximately 9 deg. Thus t h e  a i r f o i l  i s  
being investigated a t  conditions which s l i g h t l y  exceed the l i m i t  of s t a t i c  
s t a l l ;  hawever, from observation, the a i r f o i l  does not undergo any dynamic 

i l 
s t a l l .  The var ia t ion  of the  experimentally determined l i f t  and moment 

I I coefficients  ccnuparcd with the  theore t ica l  predictions using the computer code 
of r e f .  10 is  presented i n  Fig. 11. The comparison between theory and 
experiment i s  coT yidered good. 

A csroparison between d i f f e r e n t i a l  presrure coeff ic ients ,  a s  predicted by 
II , , 

t h e  theory ( re f .  10) and measured by experiment ( re f .  3 ) ,  i s  presented i n  
Fige. 12 through 14 and t h e  surface prerrure coeff ic ient  a t  several  incidence 
angles is sham i n  Fig. 15. A8 sham i n  Figs. 12 and 13, the  theore t ica l  

!I I ' 
! 

predictions are  i n  good agreement with t h e  data a s  might' be expected f o r  an 
unetalled a i r f o i l .  Hawever, a s  ahmn i n  Fig. 14, a large discrepancy does 
e x i s t  between theory and experiment a t  x/c = 0.91. The modified IVACA 0012 

I I i 

a i r f o i l  has a trailing edge t ab  (see Fig. 1) and a t  the Junction of t h i s  t a b  11 ' i 



and the  a i r f o i l  skin there  i s a  rapid changein surface curvature. This rapid 
change i n  curvatlule causes the  potent ia l  flow program t o  seek ? stagnation 
point  and give a physically unreal i s t ic  pressure maximum a t  the t a b  locat ion.  
For example, a t  an incidence of 7.5 deg the  predicted pressure coeff ic ients  
on the  suction aide t r a i l i n g  edge a re  a s  follows: 

The severe l o c a l  maximum a t  the  88 percent chord locat ion i s  physically 
unrea l i s t i c  and i s  due t o  the  sharp curvature i n  the  a i r f o i l  surface a t  the  
juncture of the  t eb  an? t h e  a i r f o i l  skin. In  r e a l i t y  such a sharp maximum 
would not e x i s t  since the  boundary layer  displacement thickness would be 
expected t o  smooth the  pressure d is t r ibut ion .  Bcfore the  invisc id  flow f i e l d  
calculated by the Giesing procedure i s  input t o  the  viscous flow calcula t ion ,  
a three-point least-squares smoothing i n  time and a five-point least-squares 
smoothing i n  space i s  performed t o  insure a smooth variat ion of the  outer  edge 
viscous flow boundary conditions. However, addit ional  smoothing was required 
i n  the  region of the  unrea l i s t i c  pressure maximum. Prior  t o  performing a 
least-squares smoothing of the  inviscid veloci ty f i e l d ,  the  loca l  Cp maximum 
(veloci ty minimum) i s  rel ieved somewhat through a two-point cent ra l  averaging 
procedure. The averaging procedure cons is ts  of first obtaining t h e  veloci ty  
a t  the  88 percent chord locat ion a s  the  average of the  ve loci t ies  j u s t  
upstream and downstream of t h i s  locat ion.  The veloci ty a t  points  upstream 
and downstream of the  88 percent chord point  a r e  then evaluated by mrching 
both upstream and downstream away from the  88 percent locat ion using the 
formula 

v, = as (v, + v. ) 
+ I  1-1 

Considering j t o  be increasing in  the  d i rec t ion  of marching, it is noted t h a t  
V j - 1  is  a previously averaged veloci ty.  Equation (69) is  used t o  smooth the  
veloci ty f i e l d  between x/c = 0.80 and x/c = 0.98; with t h i s  cen t ra l  averaging 
the  only portion of the  f lm  s ign i f i can t ly  modified i s  that i n  the  illlwdiate 
region of t h e  88 percent chord location. 



The viscous flow f i e l d  i s  i n i t i a t e d  i n  the  stagnation region using the  
reduced Navier-Stokes equations. A s  previously demonstrated, use of the  
reduced equations is  qui te  jus t i f i ed  on the  bas is  of the  comparisons with 
solut ions t o  the  canplete Navier-Stokes equations and r e s u l t s  i n  a consider- 
able  reduction i n  canputer run time. Use of the  reduced equations s t i l l  
permits separation bubbles t o  appear a s  demanded by the  physical cons t ra in ts  
of the  problem, The r e s u l t s  predicted a t  both ends of t h i s  stagnation region 
a r e  used a s  upstream conditions f o r  ,two fu r the r  segments, one on the  sucticm 
surface and one on the pressure surface. The segment downstream of the  
stagnation rcgion on the  suction s ide  of the  a i r f o i l  contains the region where 
the  leading edge separation bubble appears. T h i ~  segment i s  then followed by 
the  suction s ide  ful ly-turbulent  region which i n  i t s e l f  may be divided i n t o  
two o r  more segments. Ch the  pressure s ide  of the  a i r f o i l  the  stagnation 
region i s  followed by the  segment where boundary layer  t r ans i t ion  usually 
takes place. This region i s  then followed by the pressure s ide  ful ly-turbulent  
region. 

Results of the  calculat ions i n  the  stagnation region a re  presented i n  
Figs. 16 through 22. The calculat ion i n  t h i s  region i s  made assuming quasi- 
steady flow and the  r e s u l t s  a r e  monitored t o  v e r i e  the va l id i ty  of t h i s  
approximation. Quasi-steady calculat ions a r e  made i n  the  stagnation region a t  
d i sc re te  ins tan t s  of time by using the  instantaneous veloci ty d i s t r ibu t ion  
from the Giesing time-dependent inviscid flow procedure a s  a steady outer-edge 
boundary condition. The viscous calculat ion i s  carr ied out by assuming an 
i n i t i a l  viscous flow f i e l d  and then l e t t i n g  the calculat ion march t o  a steady- 
s t a t e  holdine the  outer edge veloci ty constant.  The stagnation region calcy- 
l a t i o n  i s  f irst  made a t  a time tl i n  the  cycle assuming the  i n i t i a l  flcm f i e l d  
t o  have a quadratic veloci ty prof i le .  After t h i s  i n i t i a l  solut ion i s  
converged, the  next viscous calculat ion i s  made a t  a time t2 i n  t h e  cycle 
using the  invisc id  flow veloci ty d i s t r ibu t ion  a t  time t 2  and assuming a s  an 
i n i t i a l  guess t h a t  the  viscous flow f i e l d  a t  time t 2  i s  a scaled version of 
the  viscous flow f i e l d  a t  time tl. The scaled f l o w  f i e l d  ~ i v e s  the  i n i t i a l  
conditions fo r  the  viscous flow f i e l d  and the  calculat ion procedure i s  then 
allowed t o  march i n  time t o  a steady-state while holding the outer  edge 
veloci ty constant. Thus the  s t a g r ~ a t i ~ , .  rcgion is  calculated a s  a s e r i e s  of 
quasi-steady  solution^ a t  selected points  i n  the  cycle by impulsively changing 
the  outer edge inviscid flow veloci ty  d i s t r ibu t ion  and allowing the  scaled 
viscous region t o  adjus t  t o  t h i s  new outer edge boundary condition. The time 
increment i s  typ ica l ly  0.1 f o r  the  cycle. If the  time required t o  
adjus t  t o  t h i s  new condition is  T ( the re laxat ian  time), the  r a t i o  of 
T/(tn+l-%) i s  typ ica l ly  of t h e  order of 0.04. If d l  i s  the  solut ion a t  tl 
and 42 i s  the  solut ion a t  t 2  then T i s  typ ica l ly  taken t o  be the  time 
required for (do+) = 0.88 (d2-dl). Thus, since the  solution approaches 
i n  a somewhat asymptotic manner, T c w  be regarded a s  two t i m e  consiants of 



an exponential decay from 4 t o  4 2  or  f'rom the  first steady solut ion t o  the  
second. For the  purpose of these calcglat ions the  v o r t i c i t y  a t  each point i n  
the  flow f i e l d  was monitored. The time constant, -; , was defined a s  the  time 
required f o r  the  v o r t i c i t y  a t  a l l  points  i n  the  flow f i e ld  t o  s a t i s f y  t.he 
c r i t e r i a  (cu-q) = 0.88 (a2-%) where ur 1- the vor t i c i ty .  Since the  time 
required by the viscous layer  t o  adjust  t o  a new inviscid flow i s  so much 
smaller than the  time required t o  change the  invisc id  flow, the  viscous flow 
may be properly regarded a s  quasi-steady i n  the  stagnation ~ e g i o n .  This 
quasi-steady nature of the  viucous leading edge region has a l s o  been hypoth- 
esized by McCroskey ( re f .  37) and Patay ( ref .  38), based upon boundary layer  
calculat ions.  

The locat ion of the  stagnation point a s  a function of the  incidence angle 
i s  presented i n  Fig. 16. The surface coordinate, s ,  i s  zero a t  the  t r a i l i n g  
edge and increases a s  the  coordinate t r ave l s  along the  pressure scrface t o  the  
leading edge and then along the  suction surface back t o  the  t r a i l i n g  edge. 
The leading edge i s  located a t  s /c  = 1.015 where c i s  the  chord length. 
Although the  viscous flaw may be considered qzzsi-steady, Fig. 16 shows t h a t  
t h e  inviscid flow i s  ce r t a in ly  not quasi-steady since the  f r o n t  stagnation 
point location i s  not so le ly  determined by the  incidence angle but depends 
upon the  flow time history.  Predictions of skin f r i c t i o n  coeff ic ient  i n  the  
stagnation region a t  selected incidence angles a re  presented i n  Fig. 17 where 
the  d is t r ibut ions  a r e  presented such t h a t  time increases from the b o t t m  of 
t h e  f igure  t o  the  top. Red ic t ion  of momentum thickness and displacement 
thickness a r e  presented i n  Figs. 18 and 19; the  locat ion of the  stagnation 
point i s  indicated by a c i r c l e .  It should be noted t h a t  the  displacement 
thickness, 6*, and the  momentum thickness, 8 ,  a r e  defined by 

Since both edge veloci ty,  u,, and the  l o c a l  veloci ty,  u, a r e  zero a t  the  
stagnation point ,  the  integrande a r e  indeterminate; harever, the  in tegra ls  a r e  
not necearari ly zero. It should be noted that a gr id  point  wan not located a t  
t h e  etagnation point  i n  any calculat ion.  Ae the  flow proceeds away f'rom t he  
e t a e a t i o n  point in both t h e  prersure and euction ee@8ents t h e  in teg ra l  
thicknesses tend t o  increase due t o  t h e  influence of skin f i i c t i o n  and tend t o  



decrease due t o  the  inf luence of t he  very s t rong favorable pressure 3radien t .  
The r e s u l t s  show t h e  pressure grad!.ent e f f e c t  t o  be dominant on the  suc t ion  
s i d e  o f  t h e  s tagnat ion poin t  and the  skin f ' r i c t i o ~  e f f e c t  t o  be domIn.int on 
t h e  pressure s ide  of t h e  a i r f o i l .  It st~ould be pointed out t h a t  t he  f'avcrablc 
pressure gradient  on t b e  suc t ion  s ide  of the a i r f o i l  i s  g rea t e r  than t h a t  on 
t h e  pressure s ide  and, t he re fo re ,  the r e s u l t s  obtained a r e  not  a t  a l l  
unreasonable. The va r i a t i on  of mixing length  i n  t he  s t a m a t i o n  region i s  
presented i n  Fig. 20. Near t he  s tagnat ion poin t  the  ~ i x i n g  length  grows due 
t o  t he  l a rge  amount of entrainment of f r e e - s t r e m  turbulence which a c t s  a s  a 
s a w c e  term on t h e  turbulence k i n e t i c  energy equation, however, i n  t h i s  region 
the  eddy v i scos i ty  i s  small compared t o  t he  molecular v i scos i ty  due t o  the  
r e l a t i v e l y  small  t ransverse  ve loc i ty  grad ien ts  and t h e  la rge  viscous wa l l  
damping e f f e c t .  Elsewhere i : r  the s t a g n a t i m  region t h e  mixing length i s  
negl ig ib le .  

Predict ions of ve loc i ty  p r o f i l e s  i n  t h e  s tagnat ion region a r e  presented 
i n  Figs.  21  and 22. Predict ions of t he  p r o f i l e  a t  var ious incidence angles  
f o r  a given loca t ion  on t h e  pressure s ide  of t he  s tagnat ion poin t  a r e  shown 
in  F' ;. 21 and on t h e  suc t ion  s ide  of t hc  s tagnat ion point  i n  Fig. 22 where 
u, i s  the  free-stream approach ve loc i ty .  ':hen t h e  incidence i s  a t  i t s  maximum 
value, ct = 13 deg, t he  s t t gna t ion  poin t  moves f a r  down on the  pressure s ide  
of t h e  a i r f o i l  6 s  demonstrated by the  v e l c c i t y  p lo t s .  The p r c f i l e s  on t h e  
s ~ c t i o n  s i d e  of the  a i r f o i l  a r e  f u l l e r  than those on the  pressure s i d e  
r e f l e c t i n g  t h e  s t ronger  favorable  pressure gradien ts  present on t h e  suct ion 
surface.  it should be noted t h a t  a,; : - a f i l e s  appear t o  be laminar. 

The viscous flow i n  t h e  pressure s ide  9egment c c ~ t a i n i n g  the  t r a n s i t i o n  
region is  presented i n  Figs.  23 through 27. line . rar ie t ion of skin f r i c t i o n  
coe f f i c i en t  i s  presented i n  Fie.  23, where the  sk in  f r i c t i o n  coe f f i c i en t s  a t  
upstream loca t ions  i n  t h i s  region ind ica t e  laminar flow. As the  flow 
progresses daw1,::tream it undergoes t r a n s i t i o n .  As the  incidence angle 
increases  t h e  t r a n s i t i o n  i s  delayed due t o  t h e  increased favorable pressure 
gradient  and t h e  movement of t h e  s tagnat ion poin t  rearward on t h e  pressure 
s ide .  A t  t h e  higher incidence angles t r a n s i t i o n  is  delayed1 u n t i l  near t h e  end 
of t h i s  segment. Predict ions of momen+,um and displacement thickness  f o r  t he  
pressure s i d e  t r a n s i t i o n  oegment a r e  presented i n  F igs .  24 and 25. The 
c h a r a c t e r i s t i c  sharp increase  i n  slope of t he  i n t e g r e l  quan t i t i e s  a s  a furiction 
of di3tance a t  t he  start of  t h e  t r a n s i t i o n  zone i s  evident  a t  the lower angles  
of a t t ack .  The va r i a t i on  of mixing length is  presented i n  Fig.  26. The 
pressure s i d e  t r a n n i t i o n  region a l s o  l a  ca lcu la ted  aseuming a quasi-steady 
viscous flaw f i e l d  and i n  t h i s  region t h e  r a t i o  of viscous r e l axa t ion  time t o  
t h e  inv i sc id  change time i s  of t h e  order of 0.15, again ind ica t ing  quas i -  
s teady viscous flcm. Predict ions of  ve loc i ty  p r o f i l e s  a t  a constant stream- 
wise s t a t i o n  i n  t h e  pressure a ide  t r a n s i t i o n  region are shown i n  Fig. 27. The 



streamwise s t a t i o n  was chosen t o  be near t h e  end of t he  segment and the  
ve loc i ty  p r o f i l e s  show t h e  fu l ly- turbulen t ,  t r a n s i t i o n a l ,  aild laminar 
charac te r  of t he  flow a s  t he  t r a n s i t i o n  zone moves rearward and then forward 
a s  t h e  incidence angle increases  and decreases,  respect ively.  The r e s u l t s  on 
the  fu l ly- turbulen t  pressure segment a r e  presented in Figs.  28 through 32 
which again show skin f r i c t i o n  coe f f i c i en t ,  displacement th ickness ,  momentum 
thickness ,  mixing length d i s t r i bu t ions ,  and ve loc i ty  p r o f i l e s  a t  spec i f ied  
angles  of a t t ack .  However, i n  t h i s  segment t h e  quasi-steady approximation i s  
not va l id  and the  flow in t h i s  region was predicted a s  t imedependent  and 
viscous. 

The predict ions of the  flow f i e l d  f o r  t he  segment containing the  dparated 
region on t h e  suct ion s ide  of the a i r f o i l  a r e  presented i n  Figs. 33 arough 
38. A t  lower incidence angles no bubble i s  present ,  hmever ,  a s  t h e  incidence 
angle iccrekses s bubble does appear. The pos i t i on  of t he  bubble and t h e  
r e su l t i ng  streamline p a t t e r n  a t  seven spec i f ied  incidence angles a r e  presented 
i n  Fig. 33. No bubble i s  present  a t  CY = 2.5 deg. The theory p red ic t s  a 
bubble t o  ap?ear i n  t h e  v i c i n i t y  of t h e  leading edge ;f t he  a i r f o i i  by the  
time the  incidence i s  equal t o  6.11 deg. A s  t h e  incidence angle increases  t h e  
bnbble increases  i n  s i z e  and moves upstream. A fu r the r  increase i n  incidence 
leads  t o  a fur iher  upstream movement and contract ion of t h e  bubble. A s  t h e  
incidence angle i s  decreased the  bubble moves backward on t h e  a i r f o i l ,  
increases  i n  s i z e ,  then decreases i n  s i z e ,  and f i n a l l y  disappears.  The bubble 
behavior predicted by the  theory corresponds t o  experimental observation f o r  
hover t e s t s  of Velkoff, Blaser,  and Jones ( r e f .  39) and was hypothesized by 
Ham ( r e f .  L) based upon various s teady-s ta te  data  and the  time-dependent 
data  of I soga i  ( r e f .  40). Ham a t t r i b u t e d  t h e  dea ly  i n  s t a l l  
under dynamic coilditions t o  the  r e t a rda t ion  of t h e  bubble reattachment poin t  
with incidence angle under dynamic conditions.  I n  t h e  present  s tudy t h e  
separated viscous flow region was ca lcu la ted  under t he  viscous quasi-steady 
assumptions. The r a t i o  of  viscous r e l axa t ion  time t o  i nv i sc id  flow change 
time was of the  order of 0.15, thus  ind ica t ing  t h a t  t h e  quasi-steady viscous 
flow assumptLon i s  va l id .  Therefore, t h e  present  r e s u l t s  i nd ica t e  t h a t ,  i f  
H a m ' s  hypothesis i s  t o  be believed, t he  de lay  i n  t h e  movement of t h e  
reattachment point  is  due t o  t h e  time-dependent nature of the inv isc id  flaw . 
Dis t r ibu t ions  of skin f r i c t i o n ,  momentum thickness ,  and displacement thickness  
f o r  t h e  segment containing t h e  separated region a r e  presented i n  Figs.  34 
through 36. The skin f r i c t i o n  p l o t  ind ica tes  c l e a r l y  t h e  length  of the 
separated regicm. The streamwise va r i a t i on  of mixing length f o r  t h i s  segment 
i s  presented i n  Fig. 37. The turbulence k i n e t i c  energy model has been used 
t o  pred ic t  t r a n s i t i o n  and the  turbulence f i e l d  i n  t h i s  region. As shawn i n  
Fig. 37, t he  predicted bubbles a r e  t r a n s i t i c n a l .  A t  any given i n s t a n t  t he  
bubble behavior predicted by the  present  theory and presented i n  Figs. 33 
through 37 i s  i n  q u a l i t a t i v e  agreement wi th  McCullough and Gault 's ( r e f .  1 )  
descr ip t ion  of s teady-state  leading edge bubbles. 



The veloci ty  prof i les  i n  the  suction s ide  separated region a t  selected 
instantaneous incidence angles a r e  shown i n  Fig. 38 a t  a f ixed streamwise 
locat ion.  Moving fkom l e f t  t o  r i g h t ,  the  i n i t i a l  p ro f i l e ,  a =  2.5 deg, shows 
t h a t  the  flow is  approaching separation, however, a t  the  l a w  incidence no 
leading edge separation occurs. The second p ro f i l e ,  CY = 6.11 deg, shows the  
i n i t i a t i o n  of flow separation a s  the  bubble appears on the  a i r f o i i  (see Fig. 
33). The t h i r d  p ro f i l e ,  c r =  9.35 deg, c l ea r ly  r e f l e c t s  the  forward motion of 
t h e  bubble a s  the  p ro f i l e  shows a la rger  reversed f l o w  region than the  previous 
p ro f i l e .  A s  the  angle of a t t ack  continues t o  increase, the separation bubble 
becomes smaller andmoves even fur ther  forward on the  a i r f o i l .  The fourth 
p r o f i l e  shown i n  Fig. 38 a t  cr = 13 deg shows t h a t  a t  t h i s  point i n  the  cycle 
the  e n t i r e  separation bubble has moved upstream of s / c  = 1.057. The shape of 
the  p ro f i l e  indicates the  t r a n s i t i o n a l  behavior of the  boundary layer  i n  the  
area of flow reattachment. The l a s t  three  p ro f i l e s  s h m  i n  Fig. 38 then show 
the  rearward movement, growth, and f i n a l  disappearance of the  separation 
bubble a s  the  incidence returns t o  i t s  minimiup value. 

An examination of the  suction s ide  inviscid veloci ty d i s t r ibu t ion  
predicted by the  Giesing calculat ion procedure shows a strong adverse pressure 
d i s t r ibu t ion  followed by a strong favorable pressasre Z l s t r l Z z t l z ~  fc t h e  
region of the  tab  which i s  located a t  the t r a i l i n g  edge of the  a i r f o i l  (see 
Fig. 1 ) .  Even a f t e r  the  smoothing procedure of Eq. (69) was car r ied  out it 
was f e l t  t h a t  adequate resolut ian i n  the  v i c i n i t y  of the  t a b  would require 
more gr id  points  than could be accommodated i n  core storage i f  t h e  en t i r e  
suction ful ly-turbulent  region were done simultaneously and, therefore,  the  
suction s ide  fully-turbulent regicn i t s e l f  was divided i n t o  two regions both 
of which were calculated a s  unsteady regions. The first region i s  between the  
10 percent chord s t a t ion  and the  80 percent chord s t a t i o n  and the  second 
region i s  between the  80 percent chord s t a t i o n  and the  t r a i l i n g  edge. 
Calculations i n  the  first of these r e g i m s  a r e  ahawn a t  specif ied angles of  
a t tack  i n  Figs. 39 through 42. The calculat ions an t h e  a f t  section of t h e  
a i r f o i l  a r e  presented in  Figs. 43 through 46. Although the  suction s ide  
t r a i l i n g  edge region appears t o  approach separation (defined a s  t h e  appearance 
of a region of reversed flow), separation i s  never reached. As shown i n  
Figs. 42 and 46, the  flaw remains turbulent  i n  these regions. Velocity 
p r o f l l e s  i n  both ful ly-turbulent  regions are shckln i n  Fig. 47. 

Case I1 - the  s t a l l e d  a i r f o i l  o s c i l l a t i n a  in pi tch.  - The second s e t  of 
calculat ions made are again f o r  an a i r f o i l  o s c i l l a t i n g  i n  pi tch.  This case 
corresponds t o  t e s t  point  3171.4 of ref. 3 for which the  mean incidence i s  
12.53 deg, the  amplitude of osc i l l a t ion  i s  5.39 deg, the reduced Frequency, k, 
i s  0.242, and the Reynolds number based upon chord is  0.47 x 107. Under s t a t i c  
conditions, the  maximum l i f t  f o r  a Reynolds number of 0.47 x 107 occurs a t  
9.5 deg, therefore,  the  a i r f o i l  i s  operating well above the  s t a t i c  s ta l l  l i m i t  
over most of  i t s  cycle. 



A comparison between theoretica'  predicted and experimentally measured 
l i f t  and moment coefficients  i s  Frese i n  Fig. 48. A s  can be seen, serious 
disagreement ex i s t s  between theory and experiment, par.i;icularly for  the  moment 
cce f f i c ien t -a t  high incidence. Throughout the e n t i r e  cycle the  predicted l i f t  
coefficient  i s  considerably higher than tha t  measured. This comparison 
indicates t h a t  i n  contrast  t o  Case I which i s  not In  stall ,  the Case I1 a i r -  
f o i l  i s  i n  s t a l l .  The d i f f e r e n t i a l  pressure coeff ic ients ,  s h m  i n  Figs. 49 
through 51, a l so  indicate  the  a i r f o i l  i s  experiencing a more extensive s t a l l  
a t  the  higher angles of at tack.  Surface pressure coeff ic ients  are  shown i n  
Fig. 52. A comparison between Figs. 50 and 51 fo r  theore t ica l  predictions a t  
x/c = 0.88 and 0.91 indicates the very poor l o c a l  prediction a t  the  tab.  As 
i n  the  previous calculat ions,  the  velocity d i s t r ibu t ion  i n  the  r e g i m  of the 
loca l ly  predicted pressure maximum was smoothed using t h e  averaging procedure 
outlined i n  Eq. (69). This d i s t r ibv t ion  was then least-squared and input 
i n t o  the  viscous f l e d  calculation procedure. 

The viscous calculat ions for  the  Case I1 a i r f o i l  divide the visccus flow 
in to  s i x  regions, including a stagnatior. region, a pressure side t r ans i t ion  
region, a pressure s ide  fully-turbulent rcsion,  and a suction s ide  separation 
rens on, as  shown i n  Fig. 1. I n  addition, the a i r f o i l  suction s ide  fu l ly -  
turbulent region i s  divided i n t o  two subregions. A s  for  the Case I a i r f o i l  
the coordinate, s ,  represents the  distance along the  surface. Results for  the 
stagnation region a r e  presented i n  Figs. 53 through 57. A s  i n  Case I, it was 
found t h a t  the stagnation region, the  pressure side t r ans i t ion  region, and t h e  
suction s ide  separated region a r e  quasi-steady. I n  these  regions the  time 
required f o r  a viscous solution t c  adjus t  from a s e t  of outer boundary 
conditions a t  time, tl, t o  a new set of outer boundary conditions a t  a time, 
tl + A t ,  i s  much l e s s  than A t .  ?he f a c t  t h a t  the  calculated viscous 
response time scale i s  much smaller than the outer flaw inviscid time scale 
demonstrates t h a t  the flow i n  these regions i s  quasi-steady. 

The location of the  stagnation point a s  a function of t h e  incidence angle, 
shown i n  Fig, 53, indicates tha t  the stagnation point moves between s /c  = 
0.926 and s/c = 0.983. Since the  a i r f o i l  nose i s  a t  s/c = 1.015, the  stagna- 
t ion  point i s  always on the underside of the  a i r f o i l .  The variat ions of skin 
f r i c t i o n  i n  the  stagnation region a t  various instantaneour incidence angles a re  
shown i n  Fig. 5 ' : .  I n  t h i s  region t h e  skin f r i c t i o n  coeff ic ient  shows i ts  
expected high value i n  the  v i c i n i t y  of t h e  stagnation point and then rapidly 
decreases. The variat ion i n  momentum thickness and displecement thickness a t  
various instantaneous angles of a t tack i s  presented i n  Ngs.  55 and 56. The 
location of the  stagnation point i s  denoted i n  Figs. 53 and 56 by an open 
c i rc le .  The predicted mixing length d is t r ibut ion,  i , / b ,  a t  several incidence 
angles i s  presented i n  Fig. 57. I n  the  region of the  stagmatian point t h e  
mixing length i s  f a i r l y  large due t o  a large amount of entrainment of f r e e  
stream turbulence. However, i n  the  itmediate v ic in i ty  of the stagnation point 



the transverse velocity gradients are  small and the viscous damping is large 
leading t o  the  eddy viscos i ty  being much smaller than the  laminar viscosity. 
Thus the  flaw a c t s  laminar. As the  flow proceeds away frcm the  stagnation 
point,  t h e  mixing length decreases but eventually m y  increase depending on the  
turbulent energy balance. 

Predictions of the  flow i n  t h e  pressure s ide  t r ans i t ion  region a re  
presented i n  Figs. 58 through 61. The skin f r i c t i o n  dis t r ibut ions  of Fig. 58 
and the  mixing length d is t r ibut ions  of Fig. 61 show the  flow t o  be undergoing 
t r ans i t ion  fram t h e  laminar t o  turbulent s t a t e .  The t r ans i t iona l  nature of 
t h e  viscous flow i s  a l s o  iadicated by the  change i n  slope of t h e  momentum 
thickness and displacement thickness p lo t s  of Figs. 59 and 60. The solut ions 
fo r  the  ful ly-turbulent  pressure s ide  region a r e  presented in  Figs. 62 through 
65. In t h i s  region t h e  flow i s  unsteady and no quasi-steady assumption is 
used. The flow remains fully-turbulent here a s  demonstrated by the mixing 
length d is t r ibut ions  presented i n  Fig. 65.  

The segment downstream of the  stagnation segment on the  suction s ide  of 
the  a i r f o i l  i s  termed the separation region. I n  t h i s  small region extending 
over 6 percent chord, there  i s  a large adverse pressure gradient and a+ high 
incidence angles a leading edge separation bubble i s  l i k e l y  t o  ex i s t .  The 
viscous f l o w  predictions i n  the separated region a r e  presented i n  Figs. 66 
through 70. A p lo t  of the  streamlines a t  various instantaneous incidence 
angles i s  presented i n  Fig. 66. The r e s u l t s  s h w  t h a t  a leading edge 
separation bubble i s  present through a l l  of the  cycle. The cycle proceeds 
Prom CY = 7.17, 11.92, 15.43, 17.92, 15.27, 11.74, and 7.17 i n  Fig. 66. 
Although not shown, there does e x i s t  a s m l l  portiorl of the  cycle fo r  a larger  
than its minimum value when no bllbble i s  present.  A s  shown i n  Fig. 66, the  
'bubble demonstrates the expected behavior of appearing a s  a r e l a t i v e l y  large 
bubble, moving forward a s  incidence angle increases and movirg; a f t  a s  incidence 
angle decreases. There i s  a l so  a tendency for  the  bubble t o  shorten a t  the  
highest incidence angles. 

A s  previously discussed, t h i s  predicted behavior i s  confirmed by 
experimental evidence ( r e f s  1, 38 through 40). Predictions of skin f r i c t i o n  
coefficients  a re  presented i n  Fig. 67 and of momentum and displacement thick- 
ness i n  Figs. 68 and 69. The predicted mixing length d is t r ibut ions  of Fig. 70 
indicate  t h a t  the  bubbles are  t r a n s i t i o n a l  a s  t h e  predicted mixing length i s  
beginning t o  increase a t  s t a t ions  at  which the  bubble ex i s t s .  It should be 
noted t h a t ,  although the  experimental evidmnce indicates t h e  a i r f o i l  is  i n  
stall through much of i t s  cycle ( ~ i g s ,  48 through 50), the  predicted leading 
edge bubble behavior is  not s igni f icant ly  d i f fe ren t  from t h a t  predicted i n  the  
unstalled a i r f o i l ,  Case I. The major difference i n  the  leading edge bubble 
region i s  t h a t  f o r  thc  Case I a i r f o i l  the  bubble i t 3  present over only approxi- 
mately one-half t h e  cycle, whereas for  t h e  present Case I1 a i r f o i l  the  bubble 



i s  present over nearly a l l  of the  cycle. However, a s  w i l l  be shown 
subsequently, i n  the  second suction side ful ly-turbulent  region s igni f icant  
differences between the  Case I and Case 11 calculat ions appear. 

The suction s ide  ful ly-turbulent  region i s  divided in to  two segments, 
the  first extending from the  5 percent chord s t a t i o n  t o  the  30 percent chord 
s t a t ion ,  and the second extending from t he  30 percent chord s t a t ion  t o  the  
t r a i l i n g  edge. The predicted r e s u l t s  i n  the  f i r s t  suction s ide  fu l ly -  
turbulent  r e q i m  a r e  presented i n  Figs. 7 l  through 74. A s  can be seen, the  
flow appears t o  be well-behaved i n  t h i s  segment. 

Although the  first  segment of the  suction s ide  Case I1 ful ly-turbulent  
region gives predictions similar  t o  the  predict ions of the  Case I a i r f o i l ,  the  
second segment shows a very much d i f fe ren t  behavior between the  Case I1 and 
Case I a i r f o i l s .  It should be recal led t h a t  the Case I a i r f o i l  was determined 
experimentally not t o  ' e  i n  s t a l l ,  whereas the  experimental data shows the  
Case I1 a i r f o i l  t o  be i n  s t a l l  through a s igni f icant  portion of i t s  cycle. A s  
shown i n  Figs. b3 through 46, which present the  suction side trailing-edge 
region f o r  the  Case I a i r f o i l ,  t he  viscous flow approaches separation i n  the  
v i c i n i t y  of the  t r a i l i n g  edge but t r a i l i n g  edge separation does not occur. It 
may be expected t h a t  f o r  an a i r f o i l  a t  higher incidence angle, such a s  the  
Case I1 a i r f o i l ,  separation would occur i n  the  t r a i l i n g  edge region. In order 
t o  understand the  r e s u l t s  presented f o r  the  Case I1 t r a i l i n g  edge region, it 
i s  helpful  t o  review how the calculat ion i n  t h i s  region i s  made. 

The t r a i l i n g  edge region i s  a region i n  which time-dependent e f f e c t s  a r e  
important and, therefore,  a time-dependent solut ion of t h e  reduced Navier- 
Stokes equations is obtained. Since the  segment i s  solved a s  a time-dependent 
flow f i e l d ,  it i s  necessary t o  specify an i n i t i a l  flow f i e l d  a t  time to. This 
i n i t i a l  flaw f i e l d  i s  s e t  by assuming t h a t  a t  t h e  upstream boundary of the  
segment being calculated the  f l o w  variables a r e  iden t i ca l  t o  those a t  the  
downstream boundary of the  previous upstream segment a t  the  same time to. The 
flow f i e l d  is  then assumed similar  i n  the  streamwise coordinate so t h a t  a t  any 
streanwise s t a t ion  a t  the  i n i t i a l  time, to, the  flow variables a r e  scaled 
d is t r ibut ions  of t h e  upstream flow variables.  The d i s t r ibu t ions  a r e  scaled 
so  a s  t o  match the  outer edge veloci ty  imposed by the  time-dependent invisc id  
flow calculat ion procedure. The flow f i e l d  i n  t h e  segment being invest igated 
i s  then calculated by l e t t i n g  the  aasumed i n i t i a l  flow f i e l d  develop i n  time 
according t o  the  governing equations. A t  each t i m c ,  tn, the  upstream boundary 
conditions a r e  s e t  equal t o  the  conditions calculated a t  the  downstream 
boundary of the  previous segment a t  time, h; the  outer edge boundary condi- . 

t i o n s  correspond t o  the  conditions calculated a t  time tn by t h e  inviscid flow 
calculat ion procedure. Therefore, i n  suumnary, an i n i t i a l  flcm f i e l d  i s ,  
assumed, time-dependent upstream and outer edge boundary conditions obtained 
from other  ca lcula t ions  a r e  imposed and t h e  governing equa t ims  a r e  solved. 



Since the  outer flow i s  cycl ic ,  the  e f f e c t  of the  i n i t i a l  conditions i n  
general should disappear and a cycl ic  viscous solut ion ought t o  be calculated. 
For previous calculat ions the  i n i t i a l  conditions i n  the  viscous region 
disappear within l e s s  than one-quarter of a cycle; t h a t  is ,  the  viscous flow 
solut ion became cycl ic  within one and one-quarter cycles of t i m e  in tegra t ion .  
This was confirmed by carrying out calculat ions of the  time-dependent region 
over approximately one and one-half cycles. 

Calculations f o r  t h e  second segment of the  Case I1 ful ly-turbulent  region 
are presented i n  Figs. 75 through 77. I n  cont ras t  t o  the  Case I calculat ions 
i n  which a cycl ic  nonseparated viscous region was calculated,  the  Case 11 
calculat ions show a large  separation bubble t o  appear. This behavior i s  
demonstrated i n  Fig. 75 which shaws skin f r i c t i o n  coeff ic ient  a t  various 
incidence angles. The coeff ic ient  f o r  t h e  i n i t i a l  p r o f i l e  i s  shown a t  the  
bottom of Fig. 75 for  an incidence of 7.17 deg. A s  shown i n  the  remaining 
p lo t s  of Fig. 75, the  skin f r i c t i o n  i n  t h e  t r a i l i n g  edge region drops rapid ly  
a s  time and angle of incidence increase u n t i l  a t  a =  17.92 deg a s igni f icant  
separation region (indicated by negative skin f r i c t i o n )  i s  present.  The 
separated region continues t o  increase i n  extent  even a f t e r  the incidence 
reaches a maximum and decreases. For example, a t  15.27 deg the  separated 
region extends over approximately 50 percent of t h e  suction s ide  of the  a i r -  
f o i l .  The calculat ion was cmtinued back t o  t h e  minimum angle of a t t a c k  and 
no tendency f o r  t h e  bubble t o  disappear was noted. Prediction of momentum 
thickness and displacement thickness a r e  presented i n  Fiqs. 76 and 77, and 
predicted streamlines a r e  shown i n  Fig. 78. An examination of the  r e s u l t s  of 
Figs. 75 through 77 c l e a r l y  indicates t h a t  the  bubble is being prevented from 
moving upstream only by t h e  upstream i n i t i a l  condition being imposed upon the 
segment. The dimensionless mixing length o r ig ina l ly  remained a t  about 0.09 
but a s  time increased grewto a val.ue of approximately 0.40 i n  the  separated 
fluw regime. In addit ion,  the  bubble has, of course, grown t o  such an extent 
t h a t  the  weak-interaction assumption of t h e  viscous layer  not a f fec t ing  t h e  
pressure d i s t r ibu t ion  i s  being violated.  The e f f e c t  of the  bubble growth would 
re lax  the  pressure gradient and i n  a strong-interaction solut ion which 
includes the  mutual in terac t ion  between the  viscous and inviscid fluw f i e l d s  
an equilibrium may be reached and the  bubble may s tup  growing. Within the  
limits of weak-interaction theory the  indicat ion i s  t h a t  the  leading edge 
bubbles i n  the  Case I unstal led and Case I1 s t a l l e d  a i r f o i l s  behave very 
s imi lar ly ;  no dramatic flow phenoznem i n  the  leading edge region a r e  predicted 
i n  the  s t a l l e d  case. However, t h e  t r a i l i n g  edge regions behave qui te  
d i f f e ren t ly .  I n  the  unstal led case, Caae I, the  flow remains attached; i n  the  
s t a l l e d  case, Case 11, a t r a i l i n g  edge bubble i s  formed which moves rapid ly  
upstream and separates the  flcm over a s ign i f i can t  portion of t h e  a i r f o i l  
suct ion surface. This behavior suggests a possible s t a l l  mechanism f o r  t h i s  



type of a i r f o i l  i n  which a t r a i l i n g  edge bubble i s  formed and then rapidly 
moves toward the  leading edge a s  incidence i s  increased u n t i l  a s l a r g e  portion 
of t h e  a i r f o i l  i s  separated and s t a l l  occurs. 

Case I11 - the s t a l l e d  a i r f o i l  o s c i l l a t i n ~  i n  heave. - The f i n a l  s e t  of 
osc i l l a t ing  a i r f o i l  calculations a r e  fo r  an a i r f o i l  osc i l l a t ing  sinusoidally 
i n  heave. The a i r f o i l  and motion o r ig ina l ly  chosen correspond t o  t e s t  point 
3090.2 of r e f .  3 for  which the incidence angle i n  absence of v e r t i c a l  motion 
i s  equal t o  12.36 deg, the  magnitude of the  ve r t i ca l  osc i l l a t ion  i s  0.306 
based on t h e  semichord, the  reduced frequency, k, i s  0.242, and the  Reynolds 
number based upcm chord i s  0.26 x 107. Under s t a t i c  conditions, the  maximum 
lift for  a Reynolds number of 0.26 x 107 occurs a t  12.9 deg and the  nonlinear 
portion of the  l i f t - incidence curve begins a t  approximately 9 deg. 1%us the  
a i r f o i l  i s  being investigated a t  conditions which exceed the  l i m i t s  of s t a t i c  
s t a l l .  

Theoretical prediction of the lift and moment coeff ic ients  made using 
the  theory of Giesing ( re f .  10) are  compared with the  experimentally measured 
values of ref .  3, i n  Fig. 79. The predictions a re  indicated by the chain l i n e  
and termed Run A .  A s  can he seen, there  i s  considerable discrepancy between 
theory and experiment, pa r t i cu la r ly  fo r  the  moment coefficient  a t  large 
negative values of normalized transverse location. The predicted l i f t  
coeff ic ient  i s  higher than the measured value throughout the  en t i r e  cycle. 
However, some discrepancies do appear between the  data of Liiva (see r e f .  41) 
and t h a t  of Halfman, Johnson, and Haley ( r e f .  42) and Rainey ( re f .  43). In  a l l  
three  c i t ed  references experimental invest igat ions were made fo r  a i r f o i l s  
o s c i l l a t i n g  i n  heave. The data ofboth re f s .  42 and 43 shawed t h a t  the a i r f o i l  
d iss ipates  work t o  t h e  surrounding a i r  and, therefore,  t h e  a i r f o i l  i s  s table  in 
the  bending mode. The data  of Liiva ( re f s .  3 and 41) on t h e  other hand 
disagrees and shows regions of bending mode i n s t a b i l i t y  t o  e x i s t  under the 
influence of heave ( ref .  41). Although t h i s  s t a b i l i t y  discrepancy is  a 
discrepancy i n  t h e  aeroelas t ic  response, it may r e s u l t  from a discrepancy i n  
the  flow f i e l d s  present about the  a i r f o i l s .  I n  view of these discrepancies 
between the  Liiva data ( r e f .  41) and t h a t  of Halfman ( r e f .  42) and Rainey 
( ref .  43) and the  f a c t  t h a t  the  a i r f o i l  under the  s ta ted  conditions only 
appeared t o  be s t a l l e d  a t  the  high negative values of the  transverse coordi- 
nate,  a second inviscid calculat ion,  Run B, was made i n  which a l l  motion 
parameters remained the same except the  ve r t i ca l  osc i l l a t ion  was s e t  a t  0.612 
based on semichord. In  t h i s  second case, Run B, the  maximum instantaneous 
incidence angle i s  approximately 2C deg a s  opposed t o  a maximum of 16 deg i n  
the  o r ig ina l  case and thus the second case, Run B, i s  a case i n  which the a i r -  
f o i l  i s  much more l i k e l y  t o  be i n  the  region of stall  over a s igni f icant  
portion of the  motion cycle. Since it was desired t o  calculate the  viscous 
flaw f i e l d  under conditions fo r  which s t a l l  does occur and since the  heave 
data of r e f s .  3 and 41 showed discrepancies with t h a t  of r e f s .  42 and 43, 



t h e  second inv i sc id  run was used f o r  t he  viscous ca lcu la t ions  t o  i n su re  
ca lcu la t ion  of a  s t a l l e d  a i r f o i l .  Theoret ical  p red ic t ions  of l i f t  and moment 
coe f f i c i en t  made using the  Giesing procedure f r e f .  10)  a r e  shown by "it= s o l i d  
l i n e  f o r  Run B i n  Fig. 79. The d i f f e r e n t i a l  pressure coe f f i c i en t s  a r e  shown 
i n  Figs.  80 through 82. Surface pressure coe f f i c i en t s  f o r  Run B a r e  presented 
i n  Fig. 83. A comparison between Figs.  81  and 82 f o r  t h e o r e t i c a l  p red ic t ions  
a t  x/c  = 0.88 and 0.91 ind ica t e  t he  very poor l o c a l  pred ic t ion  a t  t he  a i r f o i l  
t a b  which was a l s o  present  f o r  both t h e  Case I and Case I1 a i r f o i l s .  As i n  
t h e  previous ca l cu la t ions ,  t he  ve loc i ty  d i s t r i b u t i o n  i n  t h e  region of t h e  
l o c a l l y  predicted pressure maximum was smoothed using t h e  averaging procedure 
of  Eq. (69). This d i s t r i b u t i o n  was then least-squares  smoothed and inpc t  i n t o  
the  viscous flow ca lcu la t ion  procedure. 

The viscous ca l cu la t ions  f o r  the  Case I11 a i r f c i i  d iv ide  the  viscous flow 
f i e l d  i n t o  only f i v e  regions instead of t3e s i x  rezions used f o r  t h e  Case I 
and Case I1 a i r f o i l s .  The d lv i s ion  i s  a s  follows: a s tagnat ion region,  a  
pressure s i d e  t r a n s i t i o n  region,  a  pressure s i d e  fu l ly- turbulen t  region, a  
suc t ion  s ide  separat ion region, and a  suct ion s ide  fu l ly- turbulen t  region. In  
the  ca lcu la t ions  made f o r  t h e  Case I and Case I1 a i r f o i l s ,  t he  suc t ion  s ide  
fu l ly- turbulen t  regiofi was f u r t h e r  divided i n t o  two segments. However, due t o  
t he  r e s u l t s  of t h e  ca lcu la t ions  f o r  the  Case 11 a i r f o i l  i n  which a  l a rge  
t r a i l i n g  edge separat ion bubble was prevented f!rom moving forward due t o  the 
loca t ion  of t h e  segment boundary, t h e  suc t ion  s i d e  fu l ly- turbulen t  region was 
t r e a t e d  a s  a  s ing le  segment f o r  t he  Case I11 a i r f o i l .  A s  i n  Case I and Case 
11, !.t was again found t h a t  t he  s tagnat ion region,  t h e  pressure s i d e  t r a n s i -  
t i o n  region, and t h e  suct ion s i d e  separated region were quasi-steady. Thus 
t h e  flow i n  these regions was ca lcu la ted  using the quasi-steady viscous flow 
assumption although t h e  imposed outer  edge ve loc i ty  d i s t r i b u t i o n  was t h a t  
obtained from the  time-dependent i nv i sc id  flow computation. 

The r e s u l t s  o f  t h e  ca lcu la t ion  f o r  t h e  s t sgna t ion  region a r e  presented i n  
Figs.  84 through 88. The va r i a t i on  o f  skin f i i c t i o n  i n  t h e  s tagnat ion region 
a t  various instantaneous t ransverse  pos i t i ons  i s  shown i n  Fig. 85. I n  t h i s  
region t h e  sk in  f r i c t i o n  coe f f i c i en t  shows i t s  expected high value i n  t h e  
v i c i n i t y  of t h e  s tagnat ion poin t  and then r ap id ly  decreases.  The va r i a t i on  i n  
momentum '~hickness  and displacement thickness  a t  various instantaneous 
t ransverse  pos i t i ons  i s  presented i n  Figs.  86 and 87. The stagnat ion point  i s  
ind ica ted  by an open c i r c l e .  The predicted mixing length d i s t r i b u t i o n ,  ids, 
a t  severa l  t ransverse  pos i t ions  i s  presented i n  Fig. 88. 

Predict ions of  t h e  f lw i n  t he  pressure  s i d e  t r a n s i t i o n  region a r e  
presented i n  Figs. 89 through 92. The sk in  f r i c t i o n  d i s t r i b u t i o n s  of Fig. 89 
and t h e  mixing length d i s t r i b u t i o n s  of Fig. 92 show the  flow t o  be undergoing 
t r a n s i t i o n  a t  a i l  but  two t ransverse  pos i t ions .  The t r a n s i t i o n a l  nature of 
t h e  viscous flow f i e l d  i s  a l s o  indicated by t h e  change i n  s lope of t he  



momentum thickness and displacement thickness plc:s of Figs. 90 and 91. The 
solutions for  the  fully-turbulent pressure s ide  region a re  presented i n  Figs. 
93 through 96. In  t h i s  region the  flow i s  unsteady and no quasi-steady 
assumption i s  used. The flow remains fully-turbulent here, a s  demonstrated by 
the  mixing length d is t r ibut ions  presented i n  Fig. 96. 

The Case I11 separation region extends over 7 percent chord where there  . 
i s  a large adverse pressure gradient and due t o  the  high incidence angle 
( r e c a l l  tha t  the geometric incidence angle i s  constant f o r  t h i s  case)  R lead- 
ing  edge separation bubble i s  l i k e l y  t o  ex i s t .  The viscous flow predictions 
i n  the  separated region a r e  presented i n  Figs. 97 through 101. A p lo t  of the  
streamlines a t  various instantaneous transverse locations i s  presented i n  
Fig. 97. The r e s u l t s  shcrw t h a t  a leading edge separation bubble i s  present 
through the  complete cycle. The cycle proceeds from Y/Y- = -1.0, -0.309, 
+0.309, +l .O,  +0.309, -0.309, and -1.0 i n  Fig. 97 with time increasing from 
bottom t o  top.  Note tha t  i n i t i a l l y  the a i r f o i l  i s  i n  i t s  lowest p o s i t i m  and 
the  separation bubble has moved forward on the  a i r f o i l .  Then, a s  the  a i r f o i l  
moves upward, the  bubble moves back and grows i n  s ize .  A s  the a i r f o i l  begins 
t o  move downward, the  separation bubble becomes shorter  and moves forward 
again. This behavior i s  explained by considering the re la t ive  incidence angle 
of t h e  a i r f o i l .  Although the  incidence angle (measured with respect t o  a 
constant reference di rec t ion)  i s  constant, a s  the  a i r f o i l  moves upward i t s  
velocity i s  added i n  a vector sense t o  the  velocity of t h e  f r e e  stream and the  
resu l t an t  velocity yields a lower ef fec t ive  incidence angle. Likewise, when 
the  a i r f o i l  moves downward, the  ef fec t ive  incidence angle i s  increased. With 
t h i s  behavior i n  mind, the  predicted r e s u l t s  appear t o  be i n  agreement with 
what i s  observed experimentally for  a i r f o i l s  osc i l l a t ing  i n  p i tch  ( re f s .  1, 
and 38 through 40). Predictions of skin Prict ion coeff ic ients  are presented 
i n  Fig. 98 and of momentum and displacement thickness i n  Figs. 99 and 100. 
The predfcted mixing length d is t r ibut ions  of Pig. 101 indicate  t h a t  the 
bubbles are  t r ans i t iona l  a s  the  predicted mixing length i s  beginning t o  
increase a t  s t a t i d i n  which the  bubble ex i s t s .  

The suction s ide  fully-turbulent region of t h e  Case I11 a i r f o i l  was 
t rea ted  a s  one segment ra ther  than the two used f o r  the  Case T and Case I1 
a i r f o i l s .  This was accomplished by using variable mesh spacing i n  the  stream- 
wise direct ion.  The streamwise mesh spacing varied so  that a r e l a t i v e l y  
t i g h t  mesh was used a t  the  upstream boundary of t h e  segment. The acsh spacing 
then increased u n t i l  the  region of the  t a b  was approached. Near the  t a b  the 
spacing was again decreased. The calculat ion was performed i n  t h i s  manner ao 
t h a t  any separation bubble which appeared would have a segment of nearly 
90 percent of t h e  a i r f o i l  chord over which it could grow without encountering 
t h e  upstream boundary of t h e  segment a s  it did i n  the  Case TI calculat ion.  
!the r e s u l t s  for  t h i s  segment a re  shown i n  Figs. 102 through 104. As i n  t h e  Case 



I1 ca l cu la t ion ,  a cold s t a r t  i n i t i a l  condition i s  shown a t  the  bottom of Figs. 
102 through 104. As discussed previously, t h i s  cold s t a r t  i n i t i a l  condition 
i s  obtained by specifying t h e  stream funct ion and v o r t i c i t y  p r o f i l e s  a t  t he  
upstream boundary and then sca l ing  these p r o f i l e s  a t  each streamwise s t a t i o n  
t o  match the  edge ve loc i ty .  As t h e  cal.culation progresses i n  time a l a rge  
separat ion bubble appears almost immediately and continues t o  grow. This i s  
shown i n  the p l o t s  of skin f r i c t i o n  ( ~ i g .  102) where, f o r  example, when t h e  
a i r f o i l  i s  a t  a t ransverse  pos i t ion  of +1.00 t h e  separated region i s  almost 
50 percent of t he  chord i n  length.  When t h e  a i r f o i l  begins t o  move downward 
and t h e  e f f ec t ive  incidence angle becomes g rea t e r ,  the  separated region grows 
rapidly u n t i l  a t  Y/Y- = +0.8 it covers nea r ly  70 percent of the  a i r f o i l ,  a s  
ind ica ted  by t h e  top  p lo t  of  skin f r i c t i o n  coe f f i c i en t  shown i n  Fig. 102, a t  
which titne t h e  c~ l . cu l a t ion  was terminated. The momentum thickness  and d i s -  
placement thickness a r e  shown i n  Figs. 103 and 104. Figure 103 shows t h a t  t he  
displacement thickness  a t  t h e  termination of t h e  run i s  extremely la rge  and 
the  assumption of weak-interaction i s  severely violated.  For t h i s  reason and 
due t o  the  s imi l a r  behavior of t he  Case I1 ca l cu la t ion ,  no attempt was made t o  i 
c a r ry  out the canputation f o r  the remainder of t he  cycle ,  although the 
ca lcu la t ion  was s t i l l  numerically s t ab l e .  

DISCUSSION AND CONCLUSIONS 

f ' 
A weak-interaction so lu t ion  f o r  the problem of t h e  flow f i e l d  about an I , 

! I 
a i r f o i l  i n  a r b i t r a r y  unsteady motion has been developed by combining an 
unsteady nonlinear po ten t i a l  flow computer code ( r e f .  1 0 )  with a f i n i t e -  ! / 
di f fe rence  viscous flow computer code ( r e f .  12 ) .  The po ten t i a l  flow proce- i i 
dure serves t o  pred ic t  an inv isc id  flow f i e l d  about t he  a i r f o i l  and t h i s  
i nv i sc id  flow f i e l d  i s  input i n t o  t h e  viscous procedure a s  an outer  edge 
boundary condition f o r  the  viscous layer .  The viscous development i s  then 
predicted under t h e  inf luence of t he  appl ied inv i sc id  flow f i e l d  using the  

I / 
weak-interaction assumption t h a t  t he  viscous cow does not s i g n i f i c a n t l y  
influerice t h e  outer  i nv i sc id  flow f i e l d .  The weak-interaction assumption i s  
va l id  a s  long a s  the  viscous displacement thickness  r e w i n s  small compared t o  

I I 
the  a i r f o i l  thickness .  However, when the  displacement thickness  becomes la rge  i l and s i g n i f i c a n t l y  modifies t h e  inv i sc id  pressure d i s t r i b u t i o n ,  such a s  i n  a 
region of s ign i f i can t  boundary l aye r  separa t ion ,  t he  weak-interaction theory 
i s  inva l id  and accurate  pred ic t ions  of the  flow f i e l d  under these  conditions 
requi res  a theory which recognizes t he  mutual i n t e r a c t i o n  between the viscous 1 I 
inner  and nominally inv isc id  outer  flow f i e l d s .  Such a s t rong- ic te rac t ion  
ca lcu la t ion  procedure could be developed by an extension of a successfu l  
weak-interaction procedure i n  which an inner  viscous so lu t ion  such a s  t h e  
viscous so lu t ion  of t h e  present  repor t  i s  coupled t o  an inv isc id  outer  s o h -  

l l \  * 

t i o n .  The coupling would requi re  cont inui ty  of flow angle along the  l i n e  



joining these solut ions,  Alternatively, the e n t i r e  flow f i e l d  could be 
solved by the Navier-Stokes equations thus avoiding the  problem of coupling 
twc di f ferent  solutions i n  two regions of the  flow. 

Although a weak-interaction solution is  limited i n  app l i cab i l i ty  t o  flow 
si tuat ions  i n  which the  viscous displacement thickness does not s ign i f i can t ly  
a f f e c t  the  inviscid pressure d is t r ibut ion,  weak-interaction solut ions should 
accurately predict  a i r f o i l  f l o w  f i e l d s  i f  no s igni f icant  regions of se7aration 
a r e  present.  I n  t h i s  regard the  weak-interaction solution can give a 
quanti tat ive p ic ture  of viscous flow phenanena such a s  demonstrated by the  
separation bubble calculat ion presented previously. I n  addit ion,  the procedure 
should be able t o  predict  incipicli'c s t a l l  since when incipient  s t a l l  occurs 
the  separated region i s  s t i l l  small enough t o  allow the  weak-interaction 
assumption t o  be valid. It should be noted t h a t  i n  t h e i r  study of t r ans i t iona l  
separation bubbles Briley and McDonald ( re f .  12) included a strong-interaction 
viscous correction t o  the  inviscid pressure f i e l d .  However, t h i s  was a 
l inearized correction and i s  only valid for t h i n  separated regions. Therefore, 
it could not be val id ly  applied t o  the  thick t r a i l i n g  edge separated regions 
computed in the  present e f f o r t .  

Three a i r f o i l  calculat ions have been presented; the first of these,  
Case I, corresponds t o  an a i r f o i l  experimentally found not t o  exhibit  any 
character is t ics  of s t a l l ,  and the second and t h i r d  calculat ions,  Case I1 and 
111, were for  a i r f o i l s  which a r e  i n  s t a l l  over a s igni f icant  portion of the 
motion cycle. The viscous calculat ions i n  the  first unstalled case differed 
considerably from the  calculat ions i n  the second and t h i r d  s t a l l e d  cases. I n  
t h e  unstalled case a well-behaved viscous flow was found t o  e x i s t  over the  
e n t i r e  a i r f o i l ,  whereas i n  the s t a l l e d  cases s igni f icant  separated regions 
appeared along the  t r a i l i n g  sect ion of the a i r f o i l .  Leading edge separation 
appears on the  suction surface i n  a l l  cases; however, i n  both the s t a l l e d  and 
unstalled calculat ions the  flow i n  t h e  leading edge separation region soon 
undergoes t r ans i t ion ,  reat taches,  and forms a well-behaved bubble. Thus, no 
qual i ta t ive  differences i n  the leading edge separation bubbles a r e  predicted 
between the  experimentally observed unstalled and s t a l l e d  a i r f o i l s .  

The predicted leading edge bubble behavior indicates a possible mechanism 
of leading edge s t a l l .  As the  a i r f o i l  increases i n  incidence, a bubble 
appears i n  the  leading edge region. I n  each case the  boundary layer is  laminar 
a t  the  leading edge bubble separation point and undergoes t r a n s i t i o n  t o  the  
turbulent s t a t e ,  The calculat ions shm an increase i n  incidence t o  be 
accompanied by a forward movement and a shortening of the  bubble, a s  has been 
deduced from experimental data by Velkhoff, Blaser, and Jones ( r e f ,  39), 
Isogai ( r e f .  40), and McCullough and Oault ( r e f .  1). I n  each case the  forward 



movement of the  separation point w i t h  increasing incidence angle i s  
accompanied by a forward movement i n  t r a n s i t i o n  locat ion and, hence, a 
subsequent forward mwement i n  reattachment. The net  r e s u l t  being a predicted 
shortening of the  separation bubble a s  incidence increases. 

Whether o r  not the  bubble undergoes t r ans i t ion  is determined by both the  
applied pressure gradient and the free-stream d i s t u ~ b a n c e  level .  If the  
bubble does not unde-go t r ans i t ion ,  it i s  expected that. the  bubble would not 
rea t tach  and leading edge s t a l l  would occur. Within the limits of weak- 
in terac t ion  theory t h i s  would correspond t o  a viscous solut ion i n  which the  
leading-edge bubble were t o  grow very rapidly leading t o  a large separated 
region. In  t5e  present calculat ions t r ans i t ion  always occured soon a f t e r  
separation; however, t r ans i t ion  i s  a strong function of the  free-stream 
turbulence l e v e l  ( r e f .  26) and, i f '  a lw enough turbulence l eve l  were assumed, 
t r ans i t ion  would be expected t o  be delayed and the  leading edge bubble could, 
depending on l o c a l  conditions, g r , ~  rapidly leading t o  eventual leading edge 
s t a l l .  

The major difference i n  the visccus calculat ions betw-en the s t a l l e d  and 
unstal led a i r f o i l s  occurs in the  t r a i l i n g  edge suction s ide  region. In  Case I ,  
the  calculat ion f o r  the  air f o i l  which has been determined expr imenta l ly  not 
t o  be i n  s t a l l ,  t he  suction s ide  t r a i l i n g  edge segment i s  a well-behaved 
viscous flow region. The viscous layer  approaches separation a t  the junction 
of the  a i r f o i l  skin and t h e  t r a i l i n g  edge Lab but  separation does not occur. 
In  Case I1 and Case 111, both of which have been determined experimentally t o  
be i n  s t a l l ,  a large separated region does appear along the  suction s ide  
t r a i l i n g  segment. Due t o  the  absence of a strong-interaction mechanism fo r  
a l l ev ia t ing  .e pressure d i s t r ibu t ion ,  the separated region grws uncontrolled. 
I n  Caee I1 the  t r a i l i n g  edge separated region encanpasses over 50 percent of 
the  a i r f o i l  suction surface and i s  prevented from becoming l a rge r  only by the  
locat ion of t h e  segment boundary. In Case I11 the t r a i l i n g  edge separated 
region grew t o  70 percent of the  a i r f o i l  surface and t h e  displacement th ick-  
ness reached approximately 25 percent of the  a i r f o i l  chord when the  calcula-  
t i o n  was terminated. The appearance of t h i s  la rge  eeparated region is  
in terpre ted  a s  indicat ive of s t a l l .  Thus the  viscous behavior i n  the  
unstal led and s t a l l e d  cases i s  e igni f icant ly  d i f fe ren t .  I n  the  unstal led 
case, Case I, the  flow remains attached i n  t h e  t r a i l i n g  edge region, whereas 
i n  the s t a l l e d  cases, Case I1 and Case 111, a t r a i l i n g  edge bubble i s  formed 
which moves rapidly upstream and separates t h e  flow over a s igni f icant  portion 
of the  a i r f o i l  suction surface. This behavior suggests a possible s t a l l  
mechanism fo r  t h i s  type of a i r f o i l  and motion i n  which a t r a i l i n g  edge bubble 
i s  formed and then rapid ly  moves tcmard the  leading edge u n t i l  a la rge  portion 
of t h e  a i r f o i l  i s  separated and s t a l l  occurs. This wchanium could cause 
t r a i l i n g  edge s t a l l  o r  could modify t h e  overa l l  pressure d i s t r ibu t ion  about 
the  a i r f o i l  i n  such a munner as t o  cause the  leading edge bubble t o  f a i l  t o  



reat tach;  t h i s  f a i l u r e  of the  leading edge bubble t o  reat tach would cause the 
a i r f o i l  t o  go i n t o  leading edge s t a l l .  I n  regard t o  the  problem of whether 
the NACA 0012 a i r f o i l  ac tual ly  undergoes leading edge or t r a i l i n g  edge s t a l l ,  
it has been pointed out by Ericsson and Reding ( r e f .  6 )  tha t  under steady 
conditions the  NACA 0012 a i r f o i l  is  a prime candidate for  t r ans i t ion  between 
s t a l l  typzs with var ia t ion  i n  chord Reynolds number; according t o  r e f .  6, t h e  
s t a l l  s h i f t s  f r o m  the  leading edge type t o  the  t r a i l i n g  edge type r:; a Reynolds 
number baued upon chord of approximately 0.6 x 107. Therefore, t b  ? NACA 0012 
a i r f o i l  could be expected t o  exhibit  e i the r  leading edge or  t r a i l i n g  edge s t a l l  
or ever a combination of the  two. 

The viscous flow calculation procedure divides the  e n t i r e  viscous region 
i n t o  several subregions and an examinaqr;ion o f t h e  r e s u l t s  i n  each of these 
subregions irxiicates the degree of sophist icat ion required ir. each portion of 
the viscous flow f i e l d .  The calculat ions indicate  the leading edge region t o  
be quasi-steady; i .e . ,  the  viscous shear layer adjus ts  t o  changes t o  the outer 
edge boundary conditions i n  a time scale much shorter  than the tilee slcrle df 

the outer flow. This quasi-steady conclusion has a l s o  been reached by 
McCroskey ( re f .  37) and Patay ( re f .  38) based upon boundary layer calculations. 
When the  leading edge region is quasi-steady and when no v i s c ~ u s  flow 
separation appears, the  viscou8 region can (and should) be calculated through 
a f ini te-difference steady-state bomdary layer procedure. I n  general, 
f ini te-difference,  steady-state boundary layer procedures would be expected 
t o  be considerably more rapid i n  terms of computer time than a solut ion of the 
f u l l  Navier-Stokes equations or  than the solution of the 'reduced' Navier - 
Stokes equations used i n  the present e f fo r t .  It should be pointed out t h a t  
the  reduced Navier-Stokes equations a re  equivalent t o  a s e t  of time-dependent 
boundary layer equations with the  addit ion of a streamwise diffusion term and 
solve the steady-state problem by assuming an i n i t i a l  f l o w  f i e l d  and then 
allowing the  flaw f i e l d  t o  develop i n  t i m e  under steady-state boundary 
conditions. However, the  present procedure fo r  solving t h e  reduced equations 
i s  highly competitive w i t h  the  more usual time-dependent boundary iayer codes. 

The pressure s ide  of ';he a i r f o i l  downstream of the  stagnation region 
consis ts  of a transStion rcqion and a fully-turbulent region. The t r ans i t ion  
region has 1 ten found t o  be quasi-steady f o r  the  a i r f o i l s  investigated under 
the  present e f fo r t .  Therefore, a s  for the  stagnation region, a steady-state 
boundary layer procedure may be preferable t o  the asymptotic t i n e  solut ion of 
the  reduced s e t  of equations used i n  the  present study. Hawever, the best 
available transi t ior!  model must be embodied i n  any computation procedure f o r  
the  pressure s ide  t r m ~ i t i o n  region. The ful ly-turbulent  pressure s ide  region,  
was found t o  be unsteady and it i s  f e l t  that the  procedure which was used 
( i .e . ,  the  solut ion of t h e  reduced set of equations) was coapeti t ive with any 
presently available a l t e rna t ive  procedure. 



On the suction surface the  stagnation region i s  followed by the  region 
where a leading edge aeparation bubble i s  expected t o  appear. This region 
contains a very complex flow f j e l d  which exhibi t3 bott  eparation arid 
t r ans i t ion .  Any procedure used i n  t h i s  region should be capable of accurately 
 predict?^ bcth phenomena. A s  has been shown by the  predi-ted separation 
bubble behavior, the  present pro,zdure appears t o  predict  the  experimentally 
observed physical behavior of leading edge separation bubbles. Based upon the  
excellent  qua l i t a t ive  predictions of t h e  present procedure and the  extreme 
complexity of the  flaw f i e l d  i n  t h i s  region, it does not appear t h a t  any 
~ i m p l i f i e d  analysis  should be used t o  predict the  leading edge separation 
bubble behavior. The leading edge separation region i s  followed by a suceLicn 
s ide  unsteady, fully-turbulent flow region. Once a ~ a i n  it i t ;  fel t  t h a t  the  
procedure fo r  solving the  reduced s e t  of equations, which was used i n  t h i s  
region, should be caupeti t ive with any pre ent ly  avai la3le  a l t e r n a t e  procedure. 

In  summary, the  major modifications t o  the  current procedure which would 
be recoamrnded i n  a weak- in terac t ia  solution a r e  i n  the  stagnation region and 
the  pressure side t r ans i t ion  region. In  both regions a savings i n  computer 
running time could be gained by replacing the present solut ion procedue with 
a steady-state f i r i t e -d i f fe rence  boundary layer  procedure using the  best  
avai lable  t r a n s i t i o n  model. In  a l l  other regions the  procedures used i n  the  
present e f f o r t  appear t o  can3ain a necessary and su f f i c i en t  amount of 
sophist icat ion t o  obtain weak-interaction solutions . 



APPENDIX A 

THE TURBULENT VORTIC ITY TRANSPORT EQUATI On7 
INCLUDING CURVATURE EFFEZTS 

For flow over a curved wall a curvilinear c3ordinate system i s  introduced 
in  which the x-axis i s  along the  wall and the  y-axis perpendicular t o  the  wall. 
The coordinate system, therefore,  consists  of a s e t  of curves pa ra l l e l  t o  the  
wall an6 a s e t  of s t r a igh t  l ines  perpendicular t o  the  wall.  As ehown by ref. 
15, i f  t h e  curvature is  denoted by k the  streanwise and transverse mamenturn 
equations become 

4~ + -LL v + = .+ ! + viscous terms (A-1) d t  ~ + k y  dx ~ + y  I + y p  x 

P 
&+A d v + , d v - k t  
d t  l+ky B x  

' + V~KOUS terms ( A - 2 )  
B y  1-ky - 7 d y  

I n  the  curvilinear coordinate system the  vor t i c i ty ,  G,  i s  given 3y 

where 5 i s  the unit vector perpendicular t o  the  x y  plane.  The v o r t i c i t y  
transport  equatim i s  obtained by subtracting Eq. (A-1) multiplied by (l+ky) 
from Eq. (A-2) t o  obtain a transport  equation f o r  s. In  the present e f f o r t  



As i n  t h e  case  of Cartesian coordinates ,  t h e  add i t i ona l  turbulence s t r e s s  ! 

terms a r e  obtained by d iv id ing  u and v i n t o  mean and f luc tua t ing  p a r t s ,  
averaging, and then combining the  equations. Since a l l  ex t r a  turbulence s t r e s s  
terms r e s u l t  f'rom t h e  nonlinear convective terms, t h e  conl inear  convective 
terms a r e  now examined i n  d e t a i l .  Before d iv id ing  t h e  nonlinear convective 
terms i n t o  mean and f luc tua t ing  p a r t s ,  the  s t r e a m i s e  and t ransverse  momentum 
equations, Eqs. (A-1) and (A-2), a r e  modit'ied through t h e  cont inui ty  equation 

Use of Eq. (A-5 ) l e t s  t he  nonlinear convective term I n  t h e  s t r e a m i s e  and 
t ransverse  equations, C T ~  and C T ~ ,  be expressed as 

When t h e  ve loc i t i e s  a r e  divided i n t o  mean and f luc tua t ing  p a r t s  and the mean 
con t inu i ty  equation is  applied the  r e s u l t s  a r e  



'Ihe f luc tuat ing  averaged terms i n  Eqs. (A-8) and (A-9) contribute t o  the  
turbulence s t r e s ses .  The contribution of the  fluct!lating terms t o  the  
v o r t i c i t y  equation i s  obtained by bringing the  terms t o  t h e  right-hand side of 
the  equations, taking the  derivat ive with respect  t o  y of Eq. (A-8) multiplied 
by (l+ky), and subtracting t h i s  from the  derivat ive with respect  t o  x of 
Eq. (A-9) which gives the  contribution CT 3 

When the  usual boundary layer  type assumption i s  mtide t h a t  derivat ives with 
respect  t o  y a r e  much large  than those with respect  ' )  x, t h i s  reduces t o  



- 
By analogy t o  t h e  procedure for two-dimensional f l a w  ( -11 'v '  ) i s  r e l a t ed  ts the 

man flow f i e l d  through an eddy v i scos i ty ,  vt .  It should be noted t h a t  i n  t h e  
present  ca lcu la t ions  v t  i s  not so l e ly  dependent on l o c a l  mean flow condit ions 
but r a the r  i s  dependent upon the  flow h i s t o r y  through t+ turbulence k i n e t i c  - 
energy epilation. The r e l a t i o n  between -u'vl and vt i s  given by 

Theref ore,  

- 
It should be noted t h a t  t h e  r e l a t i onsh ip  between -u1v' and vt given i n  Eq. 
(A-12) i s  somewhat d i f f e r e n t  than t h e  usual formulation 

However, examining Eq. (A-3) ,  with tne  assumption t h a t  ;lv/ax i s  small it i s  
found t h a t  

and, thus ,  Eq.  (A-12) may be wr i t t en  



Thus it i s  evident tha t  the formulation of Eq. (A-12)  d i f f e r s  from the usual 
formulation of Eq. (A-14) only i n  regions of s igni f icant  curvature, or only 
i n  the  region of the leading edge of the a i r f o i l  where the flow i s  expected 
t o  renaain laminar and v t  i s  negligible. I n  other regions of the  a i r f o i l ,  
where the  curvature i s  negligible,  the  two formulations a re  equivalent. 
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INVISCID FLOW FIELOGIVEN BY 

ANALYTICAL SOLUTION (REF 151 

0 NUMERICAL SOLUTION 

VELOCITY RATIO, u/ue 

Fiwn 3. - Comparison kt- numorial solution mJ mlyticrl solution for Hiemen? flow. 



- ANALYTICAL SOLUTIt 1 15;  

n NUMERICAL SOLUTION 

0 0 0 0.2 0.4 0.6 0.8 1.0 

VELOCITY RATIO, ulu, 

Figum 4. - Cornperison k m n  numrriul solution and analytical solution for flow aboit circular cylinder. 



V E L O C I T Y  PROF ILE'F 

INVISCID FLOW FIELD GIVEN BY 

u - u o C o S w l  

uo * 3050 2MISEC 1100 FTISECI 

w - 1WISEC 

A N A L Y T I C A L  SOLUTION (REF 151 

0 NUMERICAL SOLUT lOY 

-1.0 -0.5 0 0.5 

VELOCITY RATIO, uluo 

Figure 5. - Compwimn botwan nunurial solution md wrdytid solution for oscillating plats Row. 



W A L L  V O R T l C l T Y  

INVISCID FLOW F I E L D G I V E N  BY 

9 = (la COS I' t  

u,- 3050CM SEC t1OOFT SECl 

- ANALYTICAL SOLUTlOh (REF 151 

NUMERICAL SOLLTION 

CYCLES 

Figum 6. - Comparison between numerical solution and analytical solution for oscillating 
plate flew. 
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- UARL BOUNDARY LAVER PROCEOURE (REF. 26, 

2 REDUCED N A V I E R S T O K E S  EQUATIONS 

INCHES 
I I 1 1 1 I 1 

12 14 16 18 20 

CENTIMETERS 

STREAMWISE COORDINATE, X 

Figun 8. - Predictions of transitional boundary layer development. 



0 DATA (REF 36) - PRESENT SOLUTION (SIMILARITY SOLUTION) - I. PRESENT SOLUTION (INITIAL VALUE SOLUTION) 

DISTANCE FROM WALL. ylh 

-0.2 L I I 1 I I I 1 
0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 

DISTANCE FROM WALL. y/b  

Figure 9. - Comparison theoretical pdiction and experimrntal data for 
oscillating turbulent boundny laver. 



- FULL NAVIER-STOKES EOUATIONS - - - - REDUCED NAVIER-STOKES EQUATIONS 

DISTANCE ALONG AIRFOIL SURFACE. S 

Figun 10. - Vircaus ky@r dwelopmnt in vicinity of boding edge. 





- THEORY OF GIESINO (REF 101 - -- EXPERIMENTAL DATA OF DRAY AND LllVA (REF. 31 

Ilrll 
oo k 1: ,'3 

ANGLE OF ATTACK, a 

Figure 12. - Comparison betwan thooretically predicted a d  rxperimntally twasured 
differential prossun meffichts for Cam I . 



- m E o R v  OF GIESING (REF. 1 0 )  - - - EXPERIMENTAL DATA OF GRAV AND LIIVA (REF. 31 

I I I 1 I I 

0 1 2  3 4 6 6 7 8 9 1 0 1 1 1 2 1 3  1 4 1 5  
ANGLE OF ATTACK, a 

Figure 13. - Comparison k t w a n  theontically prrdictod 8 d  rxporimonully mewrad 

d i f fmt ia l  pmwn codficirnta for b@ I . 



- THEORY OF GlESlNG (REF. 10) - - - EXPERIMENTAL DATA OF GRAY AND LI IVA (REF 3) 

XIC - 0.88 

-5.0 1 1 I I 1 1 I 1 1 I 1 1 1 I 

0 1 2  3 4  5 6 7 8 9 1 0 1 1 1 2 1 3 1 4  
ANGLE OF ATTACK. a 

Figure 14. - Comparison between theoretically predicted and experimenully memured 

differential p e w r e  d f i c i m t s  for COSO I . 



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 

DISTANCE FROM LEADING EDGE, XIC 

Fivra 15 . - Variation of tho prossun corfficim on thr airfoil surface at various innmumc.  
sngkt of attack for C8w I. 

76 



ARROW INDICATES DIRECTION OF INCREASINO TIME 

ANGLE OF ATTACK, a 

Figun 16 . - Loation of stagnation point n r function of ongk of attack 
for CIY I . 



DISTANCE ALONG AIRFOIL SURFACE, S /C 

Figun 17 . - Variation of skin friction ccnffiiont in thr mgnrth -on at various imtntenrous 
m g h o f  8tt8ck for Cam I .  



0 INDICATES LOC,lTlON OF STAONAT ION POINT 

DISTANCE ALONG AIRFOIL SURFACE, SIC 

-. 
. ...-,. . ---- I..,.? .h 

--.- - -  



0 INDICATES U)CATION OF STAGNATICN POINT 

DISTANCE ALONG AIRFOII. SURFACE, SIC 

F k n  19. - Vrktion of diwbaw .rt thidcmn in tho ctegnakn region 8 i  :mini . i~ntmtmOUu 
mgkcofrtudctwCuI. 



DISTANCE ALONG AIRFOIL SURFACE. S I C  

Figum 20. - Variation of dimdonleu mixing hngth in the stagnation region at various 
imtmtmms angles ot tttrdc for Cma I . 







0.95 0.90 0.85 0.80 0.75 0.70 0.65 

DISTANCE ALONG AIRFOIL SURFACE. S/C 

Figure 23.- Variation of skin friction coefficient along airfoil surf- in the prosun rick transition region 

at various instantarmus anghr of attack for Case 1 . 



DISTANCE ALONG AIRFOIL SURFACE, S IC 

F i p n  24. - Vwirtion of momentum thicklmr along airfoil surface in the pncwm side transition region 
at various inctmtmws mgk, of rmdc for Clsc, I . 



DISTANCE ALONG AIRFOIL SURFACE. S/C 

Figure 25 . - Variation of dispkcsment thickness along airfoil urrfacr in the pressure d k  transition 
region at various instantamus angkr of attack for Cma I . 



DISTANCE ALONG AIRFOIL SURFACE, S/C 

Figure 26. - Var'. tion of dimsionkrr mixing length along airfoil surm in t h  ~ ~ S S I J ~ @  side transition 
region at various instantmoous angles of attack for Cwe I . 





D I F A N C E  ALONG AIRFOIL SURFACE, S I C  

Figure 28. - Vwiation of skin friction coefficient 810. ,g airfoil wr fm in tha pmrurr ride fully turbuknt 
region at vrriour inct#rtmmur mgkr of ott8ck for Cam I . 



0 
0.70 0.60 0.50 0.4 3 0.30 0.20 0.10 0 

DISTANCE ALONG AIRFOIL SURFACE, SIC 

Figure 29. - Variation of momentum thickness along airfoil surface in the prossun sick fully turbulent 
region at various instantrwous mgkr of attack for C r u  I . 



DISTANCE ALONG AIRFOIL SURFACE, SIC 

Figura 30. - Vnktion of dhploamnt thicknas along airfoil wrfoa it, thr prrrrun sida fully turbuknt 

mion n vwiwi inrtmtmou8 n g k r  of rnmk for Clw I . 



0.70 0.60 0.50 0.40 0.30 0.10 0.10 0 
DISTANCE ALONG AIRFOIL SURFACE. SIC 

Figurn 31. - Vwirtion of dimmdmko mixing length along airfoil wrfror in t)w pmturn sic& fully 
turbuhnt mgion at vwiour instmunrous ngkr of attack for Cnr I . 
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DISTANCE ALONG AIRFOIL SURFACE. SIC 



DISTANCE ALONG AIRFOIL SURFACE. SIC 

Fwn 35. - V.;irtia~ of momrntum thidtnn in Um mpmmd l e @ h  of the airfoil suction rid. at various 

i-s rcgkrofrtpdr fwCmI .  



DISTANCE ALONG AIRFOIL SURFACE. S K: 



1.00 1.02 1.04 1 .06 1.08 1.10 1.12 1.14 

DISTANCE ALONG AIRFOIL SURFACE, SIC 

Figure 37. - VarWian of dimnrionb mixing hgth in tb rpw- of the airfoil suction side at 

various instntmwws rngkr of attack for Clm I . 



T
IM

E
 IN

C
R

EA
SI

N
- 

S
IC

 - 1.0
61

 

3.
0 

V
E

L
O

C
lr

Y
 R

A
T

IO
. u

N
a

~
 

Fi
gu

rr
 3
8.
 - 

R
d

ic
td

 in
st

m
m

no
ou

s 
ve

lo
ci

ty
 p

ro
fil

es
 a

t s
 f

ir
d

 s
tr

u
m

w
in

 lo
ca

tio
n 

in
 t
h.
 r

p
.n

a
d

 re
g

io
n

 
f0

rC
11

1l
. 



" 
1.10 1.20 1.30 1.40 1.50 1.60 1.70 1.80 

DISTANCE ALONG AIRFOIL SURTACE. S 

Fipure 39.- Variation of dtin fr i ion coefficimt along thr M o i l  surface in the suction side fully turbulent 

w o n  at various inm-s angles of rttsck for Caa I . 



1.10 1.20 1.30 1.40 1.50 1.60 1.70 1.80 
DISTANCE ALONG AIRFOIL SURFACE , S/C 

Figure 40. - V r M i  of momntum thicknos along thr airfoil rurfaa in th, suction sick fully turbuknt 

ragion n v u i w s  ins tmtwmws mghs of rttrck for C#r I. 



1.10 1.20 1.30 1.40 1.50 1.60 1.70 1.80 
DISTANCE ALONG AIRFOIL SURFACE, SIC 

Figure 41. - Variation of displacement thickness along the airfoil surfam in the suction side fully turbulent 

region at various instantaneous mpks of attack for Cam I . 



1.10 1.20 1.30 1.40 1.60 1 .60 1.70 1 .80 

DISTANCE ALONG AIRFOIL SURFACE. SIC 

Fiwn 42. - Vwiotion of dimrmionkr mixing hgth along tho airfoil wrfra in tho suction rid, fully 
turbuknt rogion at v u  i our inrtntrcwour ngkc of attrek for Clr I . 



DISTANCE ALONG AIRFOIL SURFACE. SIC 

Figure 43. - Variation of skin friction coefficient along ths airfoil surfacr in thr suction side trailing 

dgl fully turbulent region at various instantaneous angles of attack for Cam I . 



DISTANCE ALONG AIRFOIL SURFACE, S/C 

F igun 44. - Variation of momonturn t h i d t m  along tho airfoil wrfaa in tho suction tidm 
tniling odgm fully turbukm npion at various imtntmooub mgk, of attack 



DISTANCE ALONG AIRFOIL SURFACE. SIC 

Figurr 46. - Vwiation of dicplrcmwnt thickmu along tM airfoil surface in tha suction r id  trailing 

odp fully turbuknt rogion at vrriwr inrtrntMIous M Q I ~  of at- for C#r I . 



DISTANCE ALONG AIRFOIL SURFACE. SIC 

F W  46. - Vwktion of dimonrionkw mixing length along tha alrfoil uwfm in tha suction rkk miling 

d~ fully turbulrnt mlon at vlrlwr i n r u : v  mglr of nt#k for CBW I . 



TIME INCREASING- 

S I C  1 . U  

c S I C  = 1.88 

VELOCITY RATIO. ulum 

Figure 47. - Predicted imtanm.ous velocity profiles at a fixed stmmwise location 
in tha suction side fully turbulent region for Cam I . 
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- THEORV CW GlESING (REF 101 -- EXMRIUENTAL DATA OF GR&V A N 0  L I IVA {REF 3' 
6 0  

X.C 005 

40 
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i ------ J 
I - 

20 ---- ---------/ I 
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01 I I 1 I 1 I I 1 1 I I I 1 I I 
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

ANGLE OF ATTACK. a 
Figun 49 . - Cornprim khmn S a l l y  pndicad rrd ~perimantrlly 

maud difhmtirl pressure coeffiiirm for Case II. 



T H E O R Y  OF GlESlNG (AEF 101 --- EXPERIUENTAL DATA OF GRAY AND LIIVAIREF 3) 

X,C 0.4 

2.0 I 

ANGLE OF ATrACK, a 

F i n # ) .  - ~ ~ t ) r o n t i a l ) y p r d i d l d m d ~ p r r i m r m l ~  
mrrunddiffumtbl prmunmdfkhts for- II . 
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- THEORY GIESING (REF 101 ----- EXPERIUENTAL DATA OF GHAV AND LllVA IREF 3) 

-0.6 I I I I I I I I I I I I I I I I 
5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 

ANGLE OF ATTACK. a 

Fiwm 51. - Comparison batwam theomtially predicted nd er,arimentally 

measured differential prsrrure coefficients for Cora II . 



DISTANCE FROM LEADING EDGE, X/C 

Figure 52. - Variation of the prmure corfficient on the airfoil surface at various instantaneous 
anglrs of attack for Clw I I. 



ARROYY INDICATES DIRECTION OF INCREASING TIME 

ANGLE OF ATTACK, a 

Figure 53. - Location of stagnation point as 8 function of an@ of 8ttack 
for Case ll . 



DISTANCE ALONG AIRFOIL SURFACE, SIC 

Figura 54. - Variation of &in friction coefficient in tha stagnation region at various 
inttantanaous aglm of attook for Cllw I I . 



0 INDICATES LOCATION OF STAGNATION POINT 

DISTANCE ALONG AIRFOIL SURFACE. S IC  

Figure 55. - Variation of momentum thickness in the swgnation region at various 
instantaneous angles of attack for Cam I I . 
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Figun 86. - Variation of dicplrcrmmt thidcnrw in th stagnation rogion at various 
innmbnroum -la of mwk tor Crr, II . 
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Figure 57. - Variation of dimndonku mixing kngth in the stagnation region at 
vriour inrtrntanrour a g k c  of rttrdc for Cam II . 
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Figure68. - Vrktion of skin friction ~~t dong t)w drfdl surf- in t)w pressurn s k h  trmsitiorr 
ragion at various iMfllntm00~ nngh of rtudc far Cow II . 
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Figure 59. - Variation of momentum thickrwrs along thr airfoil urrfaa in thr pressure side transition 
region at various instrntrnrous angles of at- for C m  II . 
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Figum 60. - Verution of dirpkamcnrt thickma abng t)n airfoil curtaw in Uu pmwm sMe transition 
r@um ot various inrtmtnwous angla of rttldc for Crr II . 
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Figure 61. - Variation of dimensionlrrr mixing length along the airfoil surface in the pressure side 
transition region at various instantamus angks of attack for Case I I . 
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Figun 62. - Vrirtion of &in friction mdficiont along tho airfoil turfra in thr prawn tick 
fully turbuhnt r-im at vwious iWt8Wwmm mgk, of attack for Clra II . 
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Figure 63. - Variation of momentum thickness along the airfoil surface in the pressure side 
fully turbulent region at vsrio:n i~rtnntanoous angle6 of attack for Can II . 
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Fi#m 64 - Vwinion of dirpkamrnt thidcmm aloq tho airfoil sudaw irr the PrmmIn ridr 
f~ l lyNlbukntm8tmkuc rttw.kf~Cr#II.  



DISTANCE ALONG AIRFOIL SURFACE. S 

Figure 65. - Variation of dimensionlet, mixing length along the airfoil surface in the prauure 
side fully turbulent region at various instantarnous angles of am& for Cats II . 
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Figure 67. - Variation of skin friction coefficient in the separated region of the airfoil suction side at 
various instantaneous angkt of attack for Cam II . 
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Figun 68. - Variation of momentum thidcm in the sopmtd  mgion of the airfoil suction side at various 
indmUnrour mgkr of rtodc for Car  I I. 
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Figure 69. - Variation of d i s p l m m t  thick- in tha sopanmi rrgion of tha airfoil suction side at vaiour 
instantmoous rngbs ot rttcldc for Cam I I . 
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Figun 70. - V r k t i  of dinwnrionh mixing hngth In ttw rpumd ragion of tho airfoil suction ti& a 
d o  inmntmrwousmgkrofattaekforClr II. 
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Figure 71. - Variation of skin friction coefficient along t)n airfoil surfaa in tha suction side 
fully turbulent region at various instantaneous angkr of attack for Car II . 
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Figure 72. - Vwiation of momtun: thianrrr along th8 airfoil wrfror in thm wction sick 
iully turbulrnt ragion n n r i w ,  instontrnoous rqkr of attack for Clw II . 
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Figure 73. - Variation of ditplrcrrnent thidcnrr, along the airfoil surface in the suction side 
fully turbulent region at various instantarnous anglr of attack for Car I I. 
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Figura 74. - Vwlrtion of d imwlonh mixing kngth dong tlm Jrfdl ru- in thr m i o n  ckh 
fully tutbuknt ngbn rt vwiou inmntmouc angI.8 of rtt#k for Cwr I 1. 
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Figure 75. - Variation of skin friction coefficient along the airfoil surface 
in the suction side trailing edge fully turbulent region 
at various instantaneous angles of attack for Case I 1 .  
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DISTANCE ALONG AIRFOIL SURFACE. SIC 

F igm 76. - Vwirtian of momanturn thidcner, along tlm airfoil surha 
in tha suction ckk miling odga fully turbuknt meion at 
vriourin8mntlcnouc~ofrttrdrforCIIIll. 
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Figure 77. Variation of dirpbcsment thickness along the Prfoil surf- in the suction sick 
trailing edge fully turbulent *on at vari6uq rnstmrtanaaus angles of attack 
for Case I 1. 
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THEORY OF GlESlNG (REF 10) - RUN B 

-- - EXPERIMENTAL DATA OF GRAY AND LllVA (REF 31 
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Figure 79. - Comparison between theoretically predicted and 
experimentally measured aerodynamic coefficients 
for Cam Ill . 
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RUN 6 - - - EXPERIMENTAL DATA OF GRAY ANU LI IVA IHtF.  31 

NORMALIZED TRANSVERSE LOCATION, Y/YMAX 

Figurn 80. - Cornprim ktmrn tfmmtiorlly prdicad md 
r x p r i ~ l l y  memud wmdyrumic mrtfidrntr 
for Car Ill. 
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Figure 81. - Comparison between theoretically predicted and 
experimentally mlrured aerodynamic coefficients 
for Cam Il l  . 
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Figun 82. - V8rWin of tln prosum corfficiont on tln airfoil surface ut various inrtrnmnrous 
normrlind trim locations for Caw Ill, Run 6. 
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Figure 83. - Comparison between theoretially predicted and 
experimentally nleasumd aerodynamic coefficients 
for Caw Ill . 
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Figun 84. - Loution of -nation point rr a function of normalized trurmns loation 
for Cllr) Ill . 



DISTANCE ALONG AIRFOIL SURFACE, SIC 

Figure 85. - Variation of skin friction coefficient in the stagnation region at 
various instantaneous normalizd transverse kcations for Case I l l .  
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Figun 86. - Vui lon  of momonturn thick- in ttu on mgkm at % wkus imtmtmour nonnrliad t m ~ n  for Cr Ill . 
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DISTANCE ALONG AIRFOIL SURFACE, SIC 

Figun 87. - Vwirtion of d isp l ramt  thicknoss in thr stagnation ngion at 
various imtrntmous normriizod trrmvrrr loations for CM Ill . 
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DISTANCE ALONG AIRFOIL SURFACE, SIC 

Figun 68. - vwwon of dinmrknkr mixing luwth in tb rtlOnrth nOkn at d o u s  
lmtntmous nomolizd w m v m  kcodom fur Cwr Ill . 
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Figure 89. - Variation of skin friction cooffimt a l q  the airfoil surface 
in tho peuure sidr transition @on at various imwntaneous 
normalized transuwsa locations for Cns Ill . 



DISTANCE ALONG AIRFOIL SURFACE. SIC 

Figure 90. - Variation of momrrtum thidcm a b q  thr rirfoil rurtrcr in the prossun ridr 
mmition r@on at vr ious  inrtntan@ous mrlind W i o n s  
for cw Ill . 
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Figure 91. - Variation of dispkcement thickness along the airfoil surface 
in the pressure side trwsition region at various instantaneous 
normalized tramvana locations for Case Ill . 
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Figun 92 - V w h t h  of dimrmknksr mixing kngth along tho airfoil surface in 
thr pnoun rick trmsMon mion at various immfmmuc nomuliad - katiomforc8n Ill. 



DISTANCE ALONG AIRFOIL SURFACE, SIC 

Figure 93. - Variation of skin friction coefficient along the airfoil surface 
in the pressure side fully turbulent region at various 
innantanemus normalized transverse locations for Case Ill . 



DISTANCE ALONG AIRFOIL SURFACE, SIC 

Figun 94. - Variation of momentum thickrno dong tha airfoil surfam in the prw8un ti6 
fully turbulent ragion at miour imtmtmous normalized mnnmr loation, 
for Clr Ill . 
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DISTANCE ALONG AIRFOIL SURFACE. SIC 

Figure 95. - Variation of displacement thickness along the airfoil surface in the 
pressure side fully turbulent region at various instantamus 
normalized transverse locations for Cate Ill . 



DISTANCE ALONG AIRFOIL SURFACE. SIC 

Fiaun 96. - Vwinion of dimnsionku mixing kngth along thr rirfoil r u r f i a  in the pmtum 
sidr fully turbuknt ragion at v#lous instantmoous ncrmalind tranworsa locations 
for Cnr Ill . 
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DISTANCE ALONG AIRFOIL SURFACE, SIC 

Figun 98. - V r i n k n  of skin friction cooffidmt in th rrpwrtion rrqion 
of th airfoil suction rich at wriour inmnmrouc normalized 
trrr#vmr locations f a  Caw I I I . 



DISTANCE ALONG AIRFOIL SURFACE, SIC 

Figure 99. - Variation of momentum thickness in the separation region 
of the airfoil suction side at various imtantsmous 
normalized trannrbm locations for Can Ill. 
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Figure 101. - Variation of dimensionless mixing length in the separation region 
of the airfoil wcticm ride at various insantamus normalized 
tranmrr locations for Cau Ill . 
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Figun 102. - Vwinion of &in friction mr;ficknt along tlu airfoil wrfna in tt.3 wction 
$id0 fully turbuknt Man rt wkw inctntrnour no8 mrlizd tmrvon, location8 
for caw Ill . 
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DISTANCE ALONG AIRFOIL SURFACE. SIC 

Figure 103. - Variation of mornenturn t h i ~ i r m  along the airfoil surface in the suction side 
fully turbulent region at various instantatmous normalired transverse locations 
for Cam Ill . 
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