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ABSTRACT

The three dimensionai eduations of motion for a cable connected

- space station--counterweight system are developed using a Lagrangian
formulation. The system model employed allows for cable and end body
damping and restoring effects. The equations are then linearized about
the equilibrium motion and nondimensionalized.

To first degree, the out-of-plane equations uncouple from the in-
plane equations. Therefore, the characteristic polynomials for the
in-plane and out-of-plane equations are developed and treated separate-
ly. From the general in-plane characteristic equation, necessary con-
ditions for stability are obtained. The Routh-Hurwitz necessary and
sufficient conditions for stability are derived for the general out-of-
plane characteristic equation. Special cases of the in-plane and out-
of-plane equations (such as jdentical end masses, and when the cable is
attached to the centers of mass of the two end bodies) are then examined
for stabiTity criteria.

Time constants for the least damped mode are obtained for a rangé
of system parameters by numerical examination of the roots of the in-
plane and out-of-plane characteristic polynomials. For the in-plane
case, a comparison with results previously obtained in a two dimensional
treatment {but with a different damping scheme) is made.

The effect of first order gravity-gradient torgues on the steady-
state motion is shown to be small. Resonance due to gravity-gradient
forcing ferms is examined and is seen to oceur for certain choices of

system parameters.
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Unit vector along the i axis of the A coordinate sys-
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+
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1. INTRODUCTION

Artificial gravity in a space.station system may be created in
two different ways: the station in a rim-like configuration may be
rotated about its axis of symmetry, or the station connected to a
counterweight by a taut cable can be rotated about the system center
of mass. The second system may have certain weight and power system
advantages over the first; to change the spin-rate of the system it
Vis necessary to adjust the effective equilibrium length of the cab]e,'
whereas in the rim confjguration an active power source is required;

" One of the earlier treatment studying the dynamic behavior of
cable-connected two-body systems was given by Paul] who considered
the planar motion and stability of a gravity-gradient stabilized,
eXﬁensib?e dumbbell saté11ite system where the cable mass effects
were neglected. Paul developed stability criteria and showed that,
if the internal friction resulted from fmateria] damping" within the
elastic cable, there would be relatively Tittle damping of a viscdﬁs
nature, but that a nonlinear time-independent type of hysterétic
damping cculd be significant. Bainum et a12 included the effects of
distributed {unsymmetrical) end masses for the case of a gravitation-
ally stabilized tethered-connected interferometer system and con-
cluded that a combination of tether system damping and rotational

-

" damping of the motion of the end -masses about their own mass centers

" must be employed; the use of one damping scheme without the other



will not provide adequate damping of each normal mode for the rela-
tively long (e.g. 3 n. mi.) connecting lengths required.z The first
three-dimensional stability analysis of a tether-connected gravita-
tionally stabilized system was presented by Robe.3 His system con-
sisted of twe identical but unsymmetrical distributed end masses con-
nected by a massless, extensible tether, resu]ting in nine degrees-
of-freedom. It was shown that there is a decoupling of the small-
amplitude motions within the orbital plane from those outside the
plane; therefore, additional "out-of-plane" stability criteria, would,
in general, have to be satisfied in comparison with the previous: two
dimensional crfteria. A paper by Beletskii and Novikova4 considered
domains of possible three dimensional motion for & gravitationally
stabilized point-mass system connected by a flekib?e, massless tether
for the cases of both a taut and a slack tether.

In the area of rotating connected systems an earlier paper by
Chobotov5 included the effects of cable mass.and elasticity with
point mass end masses and two-dimensional motion. It was found that
the gravity-gradient effects upon the small amplitude vibration
stability of the rotating system are very small and that the stabil-
ity criteria are functions of the cable natural frequencies, the
angular velocities of the station and orbital motion, and viscous
damping parameters. Subsequently, Stabekis and Bainum6 examined the

motion and stability of a rotating space station-massless cable-

J
counterweight configuration where the motion was restricted to the



0rb1ta1 plane. Although the system remained stable in the absence of
rotational damping (of end body motions), this damping in addition to
cable damping is necessary to achieve reasonable time constants for
the nominal parameters considered. A paper by Nixon deals with
determining the dynamic equilibrium states in three dimensions for a
completely undamped system with an arbitrary number of cables. He
showed that his linear model accurately compares to the nonlinear
model when the cable tension has some tnitial value and when angles
do not deviate from their equilibrium values by more than one or two
degrees. Although Nixon analytically determined the states of equi-
1Tibrium in three dimens{ons, he did not perform an analytical stabil-
ity analysis about these motions. Ander‘son,8 whose system had dis-
tributed end masses with lateral oscillations for three dimensional
motion, used an energy approach to analyze the motion of the system
under the influence of disturbance torqueg. He found that the basic
attitude response of the space.station is that of an undamped second-
order system and that coupled to this basic response are rigid bod?
_characteristics and cable Tateral mode effects. '

Of interest in this investigation is an examination of the
three-dimensional motion of the rotating cable-connected system for
the general case where the end bodies have a distributed mass (finite,
unequal moments of inertia) and the possibility of énergy dissipation
1n both the cable system and end bodies is included. To date, this

treatment has not appeared in the open 11terature and would represent



an extension to the problem considered in Ref. 6. Even if a decou-
pling of the smali-amplitude in-plane motions from the out-of—p]ané
motions would result (as in Ref. 3), the additional stability cri-
teria emanaténg from these out-of-plane motions would have to be
carefully considered prior to the design of such a system as a means
of creating artificial gravity. The optimum design parameters of
such a control system may vary considerably from those inferred from

a two dimensional analysis.

Fa
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I1. DESCRIPTION OF MATHEMATICAL MODEL

It is assuméd that the system center of mass follows a circular
orbit, that the cable is extensible but massless and that the systiem
at equilibrium has a nominal spin rate in the orbit plane about an
axis passing through its center of mass.

Five different coordinate systems describe the motion: The
fixed inertial reference is located at the center of mass of the
Earth, whereas, the A coordinate system 15 located at the center of
mass of the systém model with the A4 axis along the local vertiCa1;
the A, axis in the direction of tﬁe velocity of the orbit and the A3
axis normal to the orbit p1ane; The third coordinate system is the
B system fixed in the space station (body 1 as shown in Fig: 1) at
jts center of mass. The axes of the B system are assumed to be the
principal axes of .body 1 with the cable attached at a point on‘the

By axis. A one-two-three sequence of rotations, respectively, is-

assumed to orient the B system with respect to the A system. The €
system fixed in a body 2 (the counterweight) at its center of mass

is defined the same way as the B system. Lastly, there is the D
coordinate system which is Tocated at the center of mass of the

modé] and is defined by two rotations with respect to the A system:
an angle él in the orbit plane and then an angie 8, out of the p1ane;

" By these rotations, the Dy axis is parallel to the cable line.



The transformations from the A to the B systems, from the A %o

the € systems, and from the A to the D systems are given in equa-

tions (1) and (2)'as:



COSB3

-sinBs

COSY3

-Sinys

sings

C0S%83

Sinys

COSY3

COS6>

COSRBy

sings

CoSY2

SinYz

c0s91

-singi

- sing;

€050

~sing,

COSBo

-5inys

COSvy2

1 0.
0 COsSR)
0 ~sing,

L 0
0 .cosyi
O ~Sinvy;

$ingy

COSB1

sinyy

COSYIJ

Aq

Az

- (1a)

(1b)



III; DEVELOPMENT OF THE EQUATIONS OF MOTION

The following definitions of vectors are used throughout this

- section (see Fig. 2).-

Ti/0

-3

i/A

t=|

~

Afo

1/P

-

2/P
A/F
B/A

“8,C/F

D/F

Position vector from the center of the Earth to

the center of mass of body i (i = 1,2)

Vector from the C.m; of the system to the c.m. -of

body 1 (i = 1,2)

Vector from the attachment point of body 2 to the

attachment point of body 1

Vector from the c.m. of the Earth to the c;mﬂ of
the model

Vector from the attachment point of body 1 fo the

c.m. of body 1

Vector from the attachment point of body 2 to the
c.m. of body 2
Angular velocity of the A coordinate system with

respect to the fixed inertial reference (F)

| Angular velocity of the B system with respect to

the A system
Angular velocity of the B or C systems with res-

pect to the F system

Angular ve]ocﬁty of the D system with fespect to



the F system

(.)F The time derivative of a vector with respect to the
fixed, inertial reference

(-)A,B,C,D The time derivative of a vector with respect to

the noninertial A, B, C, or D systems, respectively

III. A. Enerqgy Expressions and the Rayleigh Dissipatign Function

Tﬁ use Lagrange's equations, it is necessary to express the
“total kinetic and potential energy of the system in terms of the
variables which describe the system's motion. This can be performed
by means of vector equations whose components are functions of the
variables.

- The equation for the translational kinetic energy is,
S L S -
TT 5 m]r'-l/O + 7 m2r2/0 (3)
where f?/o = %3/0 : %}/0 for i = 1,2.  From the fact that the A sys-

tem has 2 noninertial rotation, equations (4) and (5) may be obtained.

(Fyy0dF = Py pdprense x Yz | (4)

(Fa00F = (ro/a)e * wage X Tagg (5
Equation (6), arising from the geometry of the system (Fig. 2), is

By p - Tyt YAt Toyp= 0 (6)

From the fact that point A is the system c.m.,
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The model used has two end masses; This indicates that for gen-
eral unconstrained motion twelve variables are needed; If in addi-
tion, the variables oy 85 and & are added for the cable line, there
will be fifteen variables in all. Equations (6) and (7) can be used
to express ri/A and ’2/A in terms of the other vectors. Since the i,
y, z coordinates of each end mass are then eliminated, equat1ons (6)
and (7) can be considered as six equatwons of constraint. Thus‘nwne
independent variables describe the motion of the model and are
selected as follows: 84 and 8, for the orientation of the cable with
respect to the A system: & for the variable cab]e Tength; Bys 8ps B3
for the orientation of body 1 and Yi» Yps T3o for the orientation of

body 2. “

Equatioﬁs (6} and {7) can be combined in order to express the

vectors ?H/A and FE/A as:

— L AP —
MR Gy TR T (8)
. |
- 1 e = —
F2/N° " iy LF Y T1/P ro/pl . (9)

The derivative of equations {8) and (9) are taken, noting that

7= (1 + (Fyp)e - (gl (1)

Then after substituting the results of this differentiation into
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i

|
equations (4) and (5), the following is obtained

mou

L o omu - = 3

(2s0)F = = ramy T UMF X Tavo | (12)
It should be noted also that

| -ITI- ='(F'|/A)F - (FE/A)F = (F]/O)F '-(-FZ/O}F- (]3)

Fquation (10} may be further ekpanded_using the general equafion
relating the derivative of a vector in an inertial system to its

derivative in a noninertial systenm,

(BF = (Dp + wppxT | (14)
(Fypde = (ragple *Ggyp X Tyyp (15)
(¢ = (rgypde * wgsp X Toyp (16)

Since the cable can stretch, (E)D = kai. Furthermore,

)

(r]/P = (rZ/P)C = 0 since r]/P.and Ty p are constant vectors in the
B and C systems, respectively. )

Equations (11} and (12) when substituted into equation (3)
give

Tt = zu(vw)+ %—(m1+m2)]wA/F x Fa/ol? (17)

where the second term is constant for a circular orbit and constant
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j
orbital angular velocity.

The rotational kinetic energy has the form

(15,08 + 1o 0E ) | (18)

since the axes of the B and C systems are the principal axes of
bodies 1 and 2, respectively.
The potential energy is, allowing for restoring forces in the

cable and end bodies,

M (matm,) - 2
Voo =B (k)
r
Ao
. 'l - ..2 . )
+ 1 G O & . 19
7 121 (CBiB1 C1Y1) 7( )

ﬁhere G is the gravitational constant, My is the mass of the Earth and
the bars indicate variational variables defined later. The interac-
“tion of on-board magnetics wﬁth the ambient magnetic field could pro-
vide rotational restoring torques derivable from the type of potential
assumed above and discussed in Ref. 2.

It is further assumed in connection with (19} that the restoring
force in the cable is proportional to the linear extension fromrthe
unstretched length--i.e. the cable obeys Hooke's Law. Damping forces

are assumed to act through a dissipation function of the form:

3 . .
L 2 =2 +2
F= ] 121 (kBiBi + kCiYi) + kot (20)

|
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where é} and i} are the time rates of change of the variational
variab]eé corresponding to 8 and ;. This type of damping on the
énd bodies could be accomplished by employing tﬁree orthogonal mag-
netometers together with appropriate e?ectronics..2 It is also

assumed that the cable will provide viscous damping proportional to

the cable rate of ektension.

II1.” B, Examples of Terms Expressed in the Nine Variables

The angular velocity of a body is ekpressib?e in terms of the
angles used to describe the transformation matrix and the time rate
of change of these angles. From the transformation matrix, equation
(1a),

Bgsp = (;]COSBBCOSSZ + ézsins3)61

+ (*815103303582 + éZCOSBS)BZ + (;3‘[5'“183 + ‘53)63 (21)

1t is noted that, in accordance with the assumed one-two-three
sequence of rotations, eguations {la), that él corresponds to a
rotation about the.A1 axis, éz corresponds to a rotation about the
displaced A, axis, and é3 is associated with a rotation about the
Bg axis.

The expression for u, the relative translational velocity vec-

tor, can be reduced for planar motion to the following:

(¥

U = [L-pg(8y+0)sin (By - 0.) -p (Ve %) sin (vg - 0;)]dy

+ [(87 + @)L + oq(B3 +0)cos(83 - 07 ) + pplyg + )cos(vy~ 09)1d; (29
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f
.f 6
while Stabekis has previously developed for the same gquantity:

u o= [,.E - P (('3] + 0+ cnt)sind»] - pz(é-ll'*‘ n + (;2)S'in¢v2]a-l

+ [(é1+ Q) pt 91(61'4- R+ §y)cosey + poloyt 0+ $2)cos¢2]d2 (23)

By comparing the two, we can relate ¢] to 83 and similarly ¢2
to g
B3 = 8 * 9 Y3 = 0y % ¢y (24)
for planar motion. The angles ¢7 and ¢, describe the orientation

between the cable line and the principal axis of each end body which

is aligned with the attachment arm vector (Fig. 3).

IIT. €. lagrange's General Fquation and the Procedure for
Developing the Equatigns of Motion

With all expressions, kinetic, potential energies, etc., in

terms of the nine generalized coordinates, Lagrange's equations,

_d (a3l y _a(T-V) - _ 3F. (25)
dt " 3q; 39 5 aaj

yield the nine equations of motion for this space station--counter—
weight system.
The expansion of equation (25) can be simplified by using index

notation. For exampie,

3
ATV T oy W B .
29, jop 0 Fro tlpugy 1+ Ip ug
i - 43 993 | 3qj
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. 9B 3Yq . 3L ' & :
- — = ) - k(-2 ) — 26

"The total expression for T-V need not be expanded before differ-
entiation. Similar expressions were used iﬁ evaiuating 3T/993.

111. D. The Equations of Motion

The nine equations of motion were derived with the approximation
that siﬁ(qp) z qp and cos(qp) = 1 where qp is any one of gy, B2, éz.
Y] or Yp {angles out of the orbit pfane). The approximation was made
after the final differentiation and all terms of degree higher than
two in qp, were considered small. In addition it is assumed that the
attachment arm vectors ?1/P’ ?é/P are in the direction of the unit
vectors, 61‘and ;T’ réépedtive]y; for the more general case whefe the
cable attachment point is not located on the 8y (Cy) principal axis,
the equations would have to be appropriately modified.

One of the nine equations obtained after only these approxima-
tions appears in the appendix. A1l of the remaining eight equatioﬁs

are more complicated algebraically than the &, eguation referred to

1
here.

III. E. Linearization of the Equations of Motion

In a stability analysis concerned with motion about an equilib-
rium state, variables are used which measure the deviation from the
‘equilibrium motion. The following definitions were used in this

respect.
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(£-2,)/2,

<
—

t
Ty .
=
o
+
>
o
1t

83 = 6.t + oy Y3 Bnt + oy (27}
where ént is the equilibrium value of a7, 33, and vy for any time, t,

and £, is the equilibrium cable length to be determined. X, %, az;

and § are the new variational coordinates corresponding to 91, B3, ?3
and £, the original variables. The original out-of-plane angles are
zero at equilibrium and accordingly serve as variational coordinates;
The variational form of the 87 equation in which ferms of degree
higher than two in the variational variabies have been neéTected is
shown in the appendix.

After examining the variational form éf the equations, the
linear equations are obtained by making use of trigonometric identi-
ties and neglecting all second and higher degree terms in the varia-

tional variables. The approximations

sjn(s3 - 1) sin(u1? x} T a3- X and

4

cos(Bg ~ 87) = cos{ey - %) =1 ., etc., also yield

linear terins. The linear equations upon which the subseguent stabil-

ity analysis is based are shown as follows:

1es
L]

hid i . i 1 .
Xee X+ 013+ 020 4 2(8n + ®)B 4 (o) 4 0p) (B 4 )%

] 2 v,
| -p](en + Q) ay - pz(en + 9)2 ap = 0 (28a)
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§-n

. [ 1 T

. ' o 2 . ' . .
8-(1 + Py + Po){e, + 2)° =2(8,y + 0)X - 2°9(8, + )%

-Zpé(én + )by - (& + a)% 5+ k(6 - 5o) + kps = 0 {28b)

] [ 2 ) 1 1, 1,

1 . ’

: . 2 1 t 2 1 LI B 2
Py (en + o) x+p}(1 + 02)(en + ) a1+c83a1-9192(8n+9) a,= 0 {28¢)

|2 ! P l; B 1 ]

wp-=(Pp * Igy)% + PPp% ¥ PpX + kegp + 20p(en + Q)8

12
/

' 1 I 2 I "-.".2,.__ \
-p2(8p+a x+p2(1+ﬁ1)(én+9} “p * Ce%p 1% (8, +a)%ay = 0  (28d)

.E t i .- ' 1 1 . . .
Bom- 2 (IBZ + 181) 85 +[(132 + 131)3—183(8n+—9)]51 + kBZBE

. . : . .[ s . V 2 _ 7 :
Heg, + Ip 840 - 5 (g - 2l # Ig )01 82 = 0 (29a)
1 ' o, H . ' i ' . r
b= 7 (g, * Ig. )8y + [l (8 + ) = (I + Tg Jal By + kg By

b [ 1 1 copt 1 Z = ] ;
+leg, *+ Ip b0 -5 (Ig, - 2, + Ig,Jo% ] gy = 0 ) (29b) |

92""" 32 + (T + p]+. 02)(én + Q)z 82 = 0 ' (29(:) :
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1 ! . L . 1 )
— = (I, +1 +(1. + I, )a-~1 6+ 0 + k
Yg 2 ( CZ C])YZ [( C2 C]) [;3( n )]Y] CZ‘Yz

#fc. +1. e -5 (1. -2I. +1 )2 Iv. =0 (294d)
3 A :
-4 3 C1 C3 CZ ?

Yooe 1 (1N 4 1N ) e # [IL (6. +9) - (1n + 1003, + k.3
1 5 e, c]) ntl C3 (6, + @) - (Ig, c1)ﬂ]Y2 kee™

1 ] . T 'l 1 1 1 2
sfep +Tp 60 -3 (I -2l +1c e = 0 29
¢, * Toy 9n® - g (Toy - Blgy * 1gy 097 I (2%)
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'The'iinear equations separate into four parts. The in-plane.
equations (28a)-(28d) are completely uncoupled from tﬁe out-of-plane
equations; The out-of-plane equations are made up of three separate
parts: (1), the 8,, gy equations (29a) and (29b) which are dynami-
.ca11y toup1ed; (2), the 8o equation, (29c)}, and (3), the vy, 7 éQUa-
tions, (29d) and (2Se) also dynamically coupled. The Bos B equatfons
apply to body 1 in the same way that the yz; Yy equations apply to
body 2. The ég equation, however, separates completely from the other
equations and indicates simple harmonic motion. .ATthough asymptotic
‘stability of the system clearly will not occur for the case in which
the cable has an out-of-plane perturbation, mission requirements could
perhaps still be accomplished for small disturbances; From the defi-
'nition of the angle 67, the system would achieve an equilibrium
‘motion in a plane slightly inclined with respect to the original
plane of motion, But with the same equilibrium length and nominal
spin-rate. For sych a situation, all stability criteria previously
. developed by considering the original equilibrium motion would apply
to the neﬁ eguilibrium mot‘ion.9 |

At equilibrium, the values of the variational coordinates are
zero. An examination of the £ equation at equilibrium yields the

equilibrium condition

kydg = (1 + o7 *+ pp)(B, + 0)2 (30)
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_f o : '
With &, = £%E—g-and p; = pj/&, for i = 1,2, equation (30) becomes

k(g - L) = wlEe + o1 * o) (e + 0)2 NENR

which states that the centrifugal force due to the inertial rotation
of the system is balanced by the tension in the cable. Solving

equation (31) for £, reveals that

R k‘t"k: 1*‘;‘11;; i?é%i"”)"“ - (32)
The condition ky < u(6, + 0)2 1mp1iés that £, is eifther negative or
infinite. For realistic values of £,, it is necessary that kq be
greater than u(én+ 9)2 since if this condition is not satisfied the
cable will not provide sufficient tension to balance the centrifugal
force of the spin.

The fact that the in-plane equatioﬁs all separate from the out-
of-plane equation allows a means of comparing the in-plane equatiéns
with those in Ref. 6. The analysis of Stabekis6 was confined to the
orbit plane. From equations (24) and the definition of the varia-
“tional variables, equations (27), one can relate the ¢];2 variational

coordinates of Ref. 6 with those used in the preseht analysis:

=X *o, - (39)

o =X+‘¢>.£.

1 “2

The in-plane Tinear equations can thus be written in terms of the
variables defined by Stabekis.

| After using equation {33) and manipulating the in-plane equa-

tions, equatibns (28a) - (28d), it was found that equation (16) of
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!

{

" Ref. 6 did not include the Tinear terms ﬁp];1(£+p]+pz), and

ﬁ02;2(£+01+92) while in equation (17), the terms -2py(6,+2)¢7, and
~202(én+9)é2 were missing. The equations of motion for the system
used by Ref. 6 were completely rederived using the variables defined
thereih and confirmed thg indication that these terms were missing.
When converted to nondimensional form, these four terms a11 contain
the coefficient Pi/, which is much less than one for the examples
considered (attachment arm Tengths much shorter than cable equili-
brium length). Thus the effect of neglecting these terms on the

: 6
numerical results previously reported would be expected to be small.
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1V. STABILITY ANALYSIS

IV. A. The General Stability Criteria

. The procedure used in analyzing the stability of the general
system was to first obtain the character1st1c polynomial. The coeff1—
cientsof this polynomial can be considered in conjunction with the
Routh-Hﬁrwitz necessary sufficient conditions for the roots to have
negative real parts, in order to provide conditions for stability.

The in-plane and out-of-plane criteria can be obtained independently
of each other because of the decoupling of the equat1ons

The first step in obtaining the character1st1c polynomial is to
nondimensionalize time as follows:

| ro= (b + )t (34)

This sfmp1ies the coefficients of the variables in the linear edua-
.fions. Differentiation with respect to time is now replaced by differ-
entiation with reséect to t and primes on the variables replace dots.
(Note that primes above the various coefficients represent nondimen-
sionalization of physical parameters and should not be confused with
7 differentiation.) The nondimensional linear equations are shown

helow:

1] 1 n LI || ] ]

. X'f- x ¥ P77 + 02012 + 25 + (D}"'Dz))( D'}OL'] p20t2 0 (35a)

- b - 2x'- 2p{u{ - 205y + K16 4+ k8 = 0 (35b)

19 i 1 v 1 on " 1 \

ap-- (o7t )“ topp ot kg “1 * 2oy



U-z"’~

Bo--

——

t2 1]

] ] (1]
-PX 4 P14 0,)% +cg

LI . 1] rn

3 | 1

(g + Tg,)op + 9102% * P2X - kg 2 2050

! 3 [ l1. (|
-poX + Pp(1 + P1)%p + oo - PP = 0

LG
Z

+[c52 + Ig,T

'i t 1
B1-- 7 (Ig, + Iy )8
n ]
+fep + Ip T
By B3
S PE gp + (1
] f t n
+ c’I + Il T
: Cr ~ "C3
] ] ) 1 n
17" E-(ICE * IC1)Y]

1
+[cc] + Ig,T

+

+

+

1, Vo2
1 ] 1 i u 1
[Ig, - (Ig, + Ig)T)82 + Kpy Pl

%'(181 * 152)f2 18)=0

py + Pp) 8p = 0

[(ICZ + IC1)T

J_ 1 1 2
il (IC] + ICZ)P

] 1 1 1 1l 1
[T¢, = (g, * IgIrd v + ke

'1 ] 1
E‘(IC}+ ICZ)

] Bz =

i t it ]
- IC3]Y1.+ Keove

]YZ =0

Tz']Y] =

0

(1 B + IB )82 + [(182 + IB )r - IB ]51 + k3282

(35c)

~ (35d)

(36a)

(36b)

(36c)

(36d)

(36e)

23.
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Considering first the in-plane equations, equations (35a) -
(35d), the substitutions g, * Arelt, where gy is one of the in-plane

variables {r = 1,...,8), yields the following equation necessary for

a nontrivial solution for the Ap's:

2+ R 23 o' (321 p' (22-1
A 1 _ p]( ) 2( )
23 ,\2+k" )\+kll . -ép 1 )\
2" -2, "2 =0
, (37)
] 2 1 2 1 [ | 2
pl(12-1) zp‘k p|o'(kz—1) P 12+k“>\+R
AR 2 172 44 C3 44

Eﬁuation (37) is an eighth order polynomial in X where

Rip =Pt ep
Ry = CBS + 01(1 + 02)
u 1 5 1
Rgg = cc, + P2(1 + Pq)
P3g = Py * Ig,
~ 12 1
Pag = P2 * lc,

Expanding equation {37) and collecting terms of like powers in_i; the

characteristic equation for the in-plane motion results,
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8 7 6 5 4 3 2 -
ao). + a]h + azk + 333\ + a4)\ + asl + aﬁh + a72\+ ag 0 (38) |

The coefficients appearing in equation (38) are related to the_system

parameters as follows:

30 = IB3 IC3

' 1 i 1 13 1 B
ay = Igy Iggkp * Igakpg * Ipgkeg

: 1 1 I2 I2 I2 ] il [1]
ap = (1 + 07 + 02)(P33Pgq = P17 ) + (Rgg + 04 )IC3 + kB3kC3
( ‘2) 1 n( Hoo " 1 )
+ (Ryq 4P5 )1 + kolky In + ka1
44 772 1By T T2'\"By Ly T "C3Bg
L ‘ t 1 1 ¥
+ (ky = 1) Iy I, + 41, 1
(ky = 1) Ig Tc, + 4Tg Ic,
a3 = kpa[(Py + P2)Pgq + (ky + 4)Pgq + Ryq - 205%- P5°k1]
i ] [ " E . |2 |2| 1
* ke L(Py # Pp)P33 + (kg + AP35 + Ryg - 2007 Pyl
n ] l2 § I2
+ kalTp (Rag + 202°)+ Tg (Ryz + 207 )
1 . 1 I2 i2 [ (1]
+ (D‘l + 02)(P33P44 - D'] ‘Dz )] + kEkBSKCB
a., = (1 +0' & p‘)[R o e p R' . [/“ kn + Zplzplz
4 1277733744 ° 733744 "By Cy 12
_ 1] ‘n [ - ] |2 12 ‘|2 |2
+ kalkpy Pag + kgyP3z) + k1(P33Paq - P1%02%) IH(R33+017) (Ragt?2")
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+

kalkg (Raqrop2)+ke (Rygte12) 1 (k3-1)[(Rgqrep®) g,

i [T n 1

thpqkey + (R33 + 3 )Ic3] kz(k331c3 * kc3IB )

-+

it

15 1¢, + AL (Rgz#0i2(2r07302) L KoK,

i
(Rgq + DZZ)IB 7+ 402 (1 + p] + 92)1 8,

- 2
= kB [(p1 + pz)R44 + (k1 + 4)Ryqt 7922 + 292 k1

-

-

+

ot

L

(0] + pp)k1Pag + 4(p] + 02)p52]

“' i 1 2 ]2 n
r(p] + 92)R33 + (kI + 4)R33 + 7p1 + 2p1 k3

(Py + Pp)kP3z + 4(P + Pp)Py2]

kp[{e] + P2)R33P4q +(P7 + P2)RaqP33 + 209%R33

201%Rgq - pézié3 - 9%2153 + 3077057 + 2(p) + 0p)01%0p7

]
R3gRgq] * (py + p2“‘2‘(53 o

r ' 15 19 T ' m
(1 # 2y + 2)Ry3Ryq = P1705" + kplkg Ryy + K Ra3)

1 ] ] 1 1

k1{R33Paq + P33Raq + kpKoy + 207 P2 )]

26.
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! |
j' u . 12 ) . |2 u n 12
L4 (kT - ])(R33 + 0 ) (Rag + P2 ) -szkgs(RM +pp)

n V ' ! 2 ] |2 1 n 1t
* ke (Ryg + 0q7)] =y LRgq + 0p")Tg, * kg Koy

G2 ] |2 |2
* (Ryg % 0y e T4 (Ryg + 0 )Ry +25)

|2 1 1 () 1 1 t '
+ip1 (1 + py + 09)(Rgq * p22) + 4922(1 +py + e2)(R3z + 912)

- [1} 1 1 [} _ 1 2 n
3, = kBB[(p] + pz)k]R44 p, k1]
[} ] [} t ] n
* kegllog + pp)kiRag - Py Kyl
" [] ] 1 1 ] | 1 3
+ kz[(p1 + pz)(R33R44 - 012922) -.p12R44 - 922R33 - 2012022]

11} ] 1 " n 1 I 3 1 1} u
ag = kyl[(rq + 92)083°C3 +090,(1 + 0 + pz)(cB3+cC3)]
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Because of the compiekity of the coefficients in equation (38), the
necessary and sufficient Routh-Hurwitz criteria were not developed
for the general case; nevertheless, equation (38) was used to obtain
the roots numerically and to obtain graphs corresponding to those'
acquired by Stabekis in his optimization procedure.6 In addition,
analytic stability criteria were developed for special cases, and
for the general case, by considering the signs of selected coeffi-
cients‘in the characteristic equation. _

The necessary condition for stability is that all of the coeffi-
cients iﬁ the characteristic equation have the same sign and be non-
-zero. By inspection of the coefficients in equation (38), it is
seen that in-plane stability is insured if at least one of the fol-
towing forms of damping is present: cable damping (k;), or rotary
damping in at least one end body about an axis nominally perpendicu-
lar to the plane of rotation (kg3 or kEB). Under this condition all
of the odd coefficients will be positive non-zero. From considera-
'_tion of ags @ restoring torque capability must be‘present on at lTeast
one of the end bodies about an axis perpendicular to the nominal

"

plane of rotation——either CBB or CC3 > 0. Also for ag > D,k1 must be
greater than zero. Thus it must be true that k; be greater than

- . 2 )

u(9n+ﬂ) in order to allow the possibility of stability--in agreement

‘with the results obtained from the equilibrium condition. (viz. dis-

cussion in connection with equations {30) - (32)).
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!
The out-of-plane equations (only the equations for one end body
need be considered, e.g. equations (36a) and (36b), since the equa-
tions for the second end body are analogous to the equations for the

first end body) yield the following characteristic determinant:

2

| . |
mppAn kg Ky Cy22

‘0 (39)

. 2 "
Co? Magh™ + kg, b+ Kap

where
_ _'|7 ] 1
My = mpp = 7 (Ig, + Ig,)

. - v ) 1
Clg = Gy = Tpy - {Ig, * Ig T

i

K = C
11 B]

+

1 '! 1 t 2 :
IB3F - E(IBZ + IBI)P

-+

; __' " ] 1 1 1 2

- The characteristic equation for this fourth order system is:
4 " n 3 ’, ’ 1L Al 2 2
mpgrt + gk # kg AT+ Im (Kyp # Kop) + K kg, + Cpp

0 ' (a0)

+ (kg Ko * kp Kygda + KyqKpp =
- which can be written,
bo,\4 + bixs + byl + bax + by = 0 ~ (40a)
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f

The Routh-Hurwitz necessary and sufficient criteria are that for

bD > 0, it is true that

A. by > 0
- B. by bg
= byby - b3bg » 0
by by
C b1 bg 0 ‘
0 b4 bs
D. Dy bo 0 g
>0
0 bg b3 by
0 0 0 bg

The fourth condition is satisfied if the third condition holds and,
in addition, bg > 0. When the b's are written in terms of the para-
meters, the four criteria for roots with negative real parts are

obtained as shovwn below:

A kg, *t kg, > O

m 1" TR ' 1
+ (kgy + kg, ) (kg kg, + (Ip, -.% (g, + Ié])r)z + mjyre) >
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] n Kl 1 1 '
kp. + k In -5 (Ip + 1 T )T
my(kg, + kg, )1, - 7 (I, + Ip, )T )

i 11} i [{] i [§] 1] n
c. m1]kB]sz (CB_l - C82)2 + [kag CB] + kB% CBZ

" u ] '[ | 7 1 n ] n 1] 1
+(kBI+k32)2(133—E{132+IB])F)r+kBlkBE(cB]+c82)][kB]kBZ

: 2
+ (I - (I + I, T 0
(T, - (g, + 1) D71

n : 1 P ' 1 1 1 ' 1
D. [CB]+ (;83 - E'(182+ 181)T)P ][c82+(183 -§-(182+181)r)r] > 0

From condition A, there must be rotational damping on each of the end
bodies about at Jeast one of the principal axes which, at equilibrium,
will lie in the plane of rotation. {Note that rotational damping must
be present on both end bodies since similar criteria may be developed

for the second end body). Furthermore from condition B if

£ o, 2 Tpir - 7 (Ig) * Tg1r%, for both § = 1,2

asymptotic stability of the out of plane motion is assured if condi-
tion A is also satisfied. It is also seen that the satisfaction of

E gﬁarantees condition D.

IV. B. Special Cases of the Linear In-Plane Eguations

Assumptions on the physical model can reduce the complexity of

the in-plane stability analysis. The cases of: identical end bodies;
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I

where the cable is attached to the c.m. of both end bodies; point
mass end masses; and the case in which the system moves in orbit

with a constant inertial orientation are treated.

The Case of Completely Identical End Masses
For this case, it was assumed that the space station-counter-
weight system was completely identical, that is, that Py = Po,

m = my, and for i = 1,2,3, IBi = Ic, » X5, = k¢

and ¢, = Cn .
i i i By Cy

i
The characteristic equation separates into two factors for this case
as shown below: |

f(a) g(x) = 0

where

It 1 1
f(r) = IBBA +k331 +R+O1l ; R=033+p](7+p]) (41}

and,
) 1 I .noa 1] 1 1
g(r) = 13316 + (kB3 + kzIBB)AS + [CBg + (1 + 2p]2)2

+ kokp, * (ky + 2eqt 4)183]A4

Li] L1} 1 ] 2 11} L1} 1 I n %
+ [kplcg, + 07(1 + 2017)" ok (k1 +207+4)420 1 kpTp Th

un 1n 1

A |2 h I2 2 ' '22
+ [ZP] (1 + 201 y o+ (k] + 2p] + 4)(CB3 + p'l(] + 291 ) )

.|n|| .|u| pd
+ Zp]kszB + 291k1183]k
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u_

)+2p] ]k83]l

1 1 2 1] o A1 1 1
+[20,2(14201%)" kpr2ogky (e 1oy (14207)

|2 ' 12 2 ] 1 1l 1 + |2 2 42
+ 29] (1 + Zp] ) k] + 2p]k](c83 + 01(1 Zp] 17) (42)

The quadratic factor, f(2), indicates roots given by

‘ ki " ' 1o 1/2 '
A= - B3 + ] [kB% - 4133(R + 017)] (43)

o i
2183 2183

where R = CES + D;(1+P;). In-plane instability is associated with

this mode for kg3 <0 or CES s -pi(1+20%). However, it should be

recalled from consideration of equation (38) that either cB3 or cC3

> 0 is required for stability of the general syétem--i.e., a stronger
criterion on thekrestoring constant than is apparent from equation
{43). The fact that the missing terms of Ref. 6 are not involved in
this factor makes the results obtained above analogous to those
‘obtéined fherein. |
The Case of Zero Attachment Arms
When py = 0, = D; = 02l= 0 the cable is attached at the c.m.'s

of both end bodies and the in-plane characteristic equation separates

into the factors:’

i (1] it
13312 + kpah * cgy (44)
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IC3

2 " i ; .
22+ kc3x + o {45)

and 202 4kt ky ¥ 8)  {(46)
‘The repeated zero root resulting from expression (46) is indicative
that in-plane asymptotic stability never occurs for this case (see
the appendix). But aside from this, stability is indicated in the
other modes for cg3 > 0 and k§3 > 03 CES > 0 and kEB > 0. These
results indicate that rotational damping and restoring effects must
be present on both end bodies, as well as cable damping and restoring
forces. This is a stronger criterionrfor in-plane stability than
that deduced earlier in connection with the sign of the coefficients
in equation (38).

For an actual situation where the attachment arms are much

shorter than the cable length D; = Di/ﬂﬁ ® D, the results cbtained

here would have important implications on stability.

The Case of Point End Masses
1 ]

For this case, p; = p2 = 0 and there is no rotational end body

motion so that only the £ and 67 equations remain. The in-plane

characteristic equation will contain only those ferms appearing in
expression {46) and the repeated zero roots still will occur indicat-

ing the presence of a first integral of the motion.
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The Case in which ﬁn = -0
Here; the system spin rate is equal and opposite to the orbital
spin rate so that the system moves around the orbit with a constant

inertial orientation. The 0y equation involves only the ‘acceleration

X , ;1 and 52. When the 8y equation is used to eliminate x from the

a} and o, equations, the ¢ and @, equations resulting are exactly

those obtained for Py =P " 0. The roots indicating the cable

motion are obtained from

2 ' v - .
A2+ k)t kg = 0 (47)

i
which indicates asymptotic stability in this mode for k2 > 0 and
k] > 0. A more conclusive discussion of this 1imited case would have
to include the effects of gravity-gradient torques, which become &

more important perturbation on the system motion for lower spin rates.

Iv. C. Specié] cases of the Out-of-Plane Linear Equations

The out-of-plane equations, yielding a fourth degree characteris-
tic equation, allowed the determination of the Routh-Hurwitz cond{tions
'for the general system. The next most simple case 1is fhat for which
the By and By equations uncouple (C1p = Cp7 = 0 in equation (39) ).
In this instance,
Tg, * Ip =T | (48).
The Bo and 8, equations become two second order eduat{ons from which

it is clear that asyptotic stability occurs in these modes for
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1y

-7 1

ro= - .} (15 + I3 )rl (49)
5 |

¢y and ¢ >
B B 1 2

2 i
with kgz and kgl both positive.
For a realistic system where the spin rate is much greater than
the orbital rate, I' << 1. Therefore equation (48) would be satisfied
only by bodies having Igy << 132 + IB1 when the end badies have their

“long axis" perpendicular to the nominal plane of rotation, (i.e. for

long, slender pencil-shaped bodies).
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V. FIRST ORDER GRAVITY-GRADIENT EFFECTS

The following symbols will be used in this section:

ay unit vector in the direction of the system local vertical vector

G the gravitational constant

Th the inertia dyad of body 1 with respect to the B system

fz the inertia dyad of body 2 with respect to the C system

Me the mass of the Earth

ﬁqj unit vector corresponding to the direction of increasing 93

qu generalized force associated with the a3 coordinate

R the constant orbital radius N

ng the torque due to gravify-gradiént effécts on the first end body
{the body in which the B system is fixed) about its center of mass

Ttg the torque due to gravity-gradient effects on the second end body

7(the body in which the C system is fixed) about its center of mass
Robe used the following expression for the gravity-gradient torque about
the mass center of the first end body of a tether connected two bedy gravita-

tionally stabilized system:

a; x Iy - a7) | {50)

7
Simi}ar]y, for the second end body,

GMy . = .
Tbg = >3 (ap x I¢ - ay) (51)




It should be noted that these expressions are first order approxima-
7

38.

tions ~ and would not be valid for the case of very long separation distances

between the two end bodies.

Under the same assumptions used to obtain the equations of motion

(equations (28) and (29)}), fég and ?bg can be written in terms of the nine

independent coordinates of this system. If N is the total gravitational

torque on the system, then it can be shown that

N=Tp, + Tbg = Tpay + Tads. (52)

g
Assuming all second degree and higher terms in the out-of-plane angular

- coordinates are small, the expressions for Ty and T3 can be developed as

follows:
M g |
Tp = 3gR§[-(IB1 - 1g,)81 sin 2(6pt + o)
+ (Ip, - 2Ig, + Ip,)8p + (Ip; - Ip,)8p cos 2(8,t + aq)
- {Ip - Io )Yy sin 2(0,t + a5) + (Ip - 210 + I )Y
¢y~ tcp/N nt * % o cy * i, 2
+ (I, - Ig,)Tp cos 2(0,t + ¢5)] - (53)
and
36Me

Ty = _§E§[(181 - IBZ)sin 2(ent + al)

+ (g, ~ Ig,)sin 2(8pt + op)] (54)

e =
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The following transformation is applied, according to the principle
of virtual work, to convert the gravitational torque into generalized

forces: Qq_ = ﬁq_ - N. Lagrange's equations then become:
J J

aTy 3(T-V) . _ oF
a'.) Ba. qu 3q. (55) .
9 EN 43

d
at
In equation (55), V is the ptential energy without including gravity-
gradient effects.
To a first order approximation, the gravitational force on body 1,
?bg, is given by Ref. 7 as:

- _ GMem]

} g+ 4, , B
oy ™~ 2 [+ 2Ty 8y - 2 (56a)

Similarly, the gravitational force on body 2 can be written:

= GM Yoo a1y,
Feg = - _.._Rg—’“z [ - ‘"CR yg, + _‘f.%] (56b)

where ¥g is the vector from the system center of mass to the center of
mass of body 1 and ?t is the vector from the center of mass of body 2 to
the system center of mass. FEquations (56a) and (56b)} can be used to show
that the total gravitational force on the space station-counterweight
system js, to first order, not a function of the relative position vectors,
g and'Ft.7 Therefore there will be no first order effect of these forces
on the equations of motion {equations (28) and (29)).

The first order generalized forces due to gravity-gradient effects will

now be evaluated. The ﬁqj for the angular coordinates are developed as

(viz. equations (1) and (2)):
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ng, = &

ﬁﬁé = cosBiag + sinB]53

533 = singpaj} ~ cosppsingjan + cosByCcospiag | 7 ' (573)
F’Y] =g

.6*2 = cosY;a, + sinY;é, |
ﬁys = sinvzy - cosstinT]Ez + COSYpC0SY] a3y -.   . |  (57b)
ﬁe} - 43

'ﬁez = sin9151 - cose152 - }2 - R ; '.tB%c)

Thus the generalized forces, qu = ﬁqj + N, under the assumption of small
amplitude displacements in the out-of-plane coordinates, can be'expressed

as follows:

QB_I = a] - ﬁ =0
052 z Tp + 8173 :
‘ . . , o

- o i

Q83 =Ty : . (58a) o

Q = 0

N

QY2 T Tt Ty

(58b)

£
)
w
24
—
)
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Qa = T3

-cos8T, (58¢)

2
<
1

It should be noted that QB] = QY] = 0 since according to equation (52),
N has no 51 component. Similarly, Qe] and 082 ;re alsp exact expres-
sions within the assumptions previously stated.

Equations (28) and (29) are in the dimensions: rad/sec2 because they
were obtained from Lagrange's general equations after division by ﬁﬁi.
(an exception is the £ equation (equation (28b)) which was obtained from
the general form of Lagrange's equation by division by u). For dimensional

2
consistancy, equations (53) and {54) must also be divided by wf,. The

resulting expressions are:

' SGMQ 1 ¥ . :
Ty = —Eﬁg [.-(IB.I - IBZ}B]s1n Z(Bnt + a])

+ Il _ 21l + Il + II _ II . +
(1g, - 2Ig, * Ig )82 + (Ip, - Tp )8pcos 2(ent + o)

f ' . ] [ ]
- (IC] - Icz)y]sin Z(Gnt + uz) + (IC] - 21(:3 + ICZ)'YZ

: :
+ (z(':] - I, )rpc0s 20t + o)) (59)

and

' 3GM@ ! ' . .
T3 = or3 [(IB'I - IBz)sm 2(9nt + fi])

+ (Ig, - Tg,)sin 2085t + ap)] (60)
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which are in the units of rad/secZ.
Thus to a first order approximation, the linear equations of motion

with gravity-gradient effects are:

- ! - ! L4 * ,
X~ X + Py + Ppos + Z(Bn + 2)8
. 2 [ > 2 * 2
£ (p7 + 09)(0g + 0) x-07 (8, + 2) a7 - P26y + 2)

= T3 (61a)
§-- 8- (1407 + 0p)(6y, + @)% 206, + Q)%

2

. . 1 . e e 1
-201(6n + R)a] —292(Bn + Q)ag-(en + Q) &+ k](6 - 60)

I
+ kof = 0 | (61b)
12 (- . . v,
oy-- (pq + 183)G] T P1P2ap + PIX + kpgo

+207(6, + 9)§ - py(e, + a)%x + p1(1 + pp) (6, + n)2a1

' vy, 2 N
12 1 - t 1™ [ . [
{12—— (92 + IC3)0'.2 + D-Ipzot-[ + D2X+ kCBGZ
voe . LI 2 ' ! . 2
+ 20p(8 + 0)8 - Palen + @) X + pa(1 + py){og + ) an

tcgqup - P1Pa(ep + Q)za] = T3 (61d)
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'} 1 1 - ] ]
B2~ 7 (132 + 131)82 + [(IBZ + IB.I)Q
3 - - ] . 1 1 -
-Ipy(6n + 2)187 * kgy82 + Lopy * Ipgfn®
1 v ‘ 1 2 _ 1 ' ’
-5 (Igy - 2Iga * Ip,)a I8y = Tp ¥ 8173 (62a)

'| 1 1 - | i
By-- E'(IBz + IB])B1 + [IBS(en + Q)

‘ 1 ] * [ I 1 I .
--(IB2 + IB]) ale, + kB]B'i + [cB1 + IB3BnQ

1,0 1 ' 2 _
- E{IB1 - 2183 + IBZ)Q Jgy = 0 (62b)
- ) 1 R 2 ¥ .
99~ 8y + (1 + P + Pp)(8y + 2) €2 = - T2 costy (62¢)
Y Lk 1), [(Ie + Ip)e
2 7z g, * Igy?'2 ¢, ¥l
1 ) : 1 . 1 [
-Icg(sn + Q)]Y] + kCZYZ + [cC2 + Ic39n“
1 o t 1 ) ! 1
-5 (Ig; - 2Igg + Igo)e® Jvp = Tg + MT3 (62d)
1 t 1 - 1 .
Yqo- a (1p + Ip )1 + [Ipe (8 + 0
1 > (¢, Cl) 1+ 0 c3( nt* e

] L . T, | 1,
- Q
(IC2 + Ic1) ]Yz + kC]Y] + [Cc1 + Icaeng

1 1 ' t
- 7 (1¢y - 21¢g * Ig,)e8In = 0 (62¢)
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It can be seen by examining equations (59) and (60) that the first
order linear equations with gravity-gradient effects (equations (61) and
- {62)) now involve periodic coefficients with frequency at twice the spin
rate. Also, each of the in-plane equations ({equations {61)) except the
£ (8) equation, now contain forcing terms of constant amplitude on the
right side with fréquency 2én.

Certain conclusions can be drawn from the expressions for Té and
Té (equations (59) and (60)). First, as noted previously, the in-plane

motion is forced by terms of frequency equal to Zén. Second,it‘js

apparent that gravity-gradient effects become more pronounced for

small R. Also these effects are increased as either
[Tgy - Tgy| or  [Ig, - Ig,]
or both are increased. _

A rigorous stability analysis of a Tinear system with periodic coeffi-
cients could be made using the Floquet theory.]o For a complex system, the
application of the Floquet analysis would necessitate extensive computer
simutation to examine the moduli of the eigenvalues associated with an
augmented matrix and evaluated over a wide range of system parameters.
Although the Floquet theory was not applied to this étudy, the effect of
gravity-gradient torques on the system was considered numerically for
selected steady state responses as well as transient responses. Resonance
due to gravity—gradient_effects 1s shown to exist for certain special |

cases, easily identified, and these results are presented in Section VI. C
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VI. NUﬁERICAL ANALYSIS

When the least damped mode of a system is examined, the worst
possible response of the system is examined. All of the other modes
decay at a faster rate than the least damped ohe. If it can be
determined for which set of system parameters the Teast damped mode
decays fastest, then the system damping can be optimized. The roots
of the system characteristic equation can be calculated numerically
for a specific éet of system parameters. By incrementing the system
parameters one at a time, a éomp]ete range of physical constants can
be considered. Then by finding the least damped mode and plotting the
the time constant of this mode as a function of each parameter; the
optimum set of system constants can be detefmined.

In this section, the numerical results obtained by the procedure
outlined above are compared with those results inen in Ref. 6 for
the in—p]ane-characteristic'equation, Thus only those parameters
treated in Ref. 6 are considered here. Furthermore, the out-of-
plane modes are examined for the same range of parameters. Transient
responses of the lTinear equations for two different sets of param-
eters are also presented.

A1l computer results were obtained by means of an IBM 1130

computer system. The roots of the characteristic equations were
calculated using a Newton-Raphson iteration technique. The transient

responses were obtained by integrating the Tinear equations (equations



(28) and (29)) employing a Runge-Kutta fourth order method.
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1

The in-

plane optimization program required about fifty minutes for each

curve of T vs.

system parameter which contained 250 points. This'can

be compared with the out-of-plane optimization program which only

used ten minutes of computer time for the same number of points.

For

the computational time step chosen. (st = 0.25 simulated problem sec~

onds), the transient responses req

lated problem second;

In all computations, for both examples

By = b, = By
1] ) i u
ko = kn =k
By = kB, ™ e
VI. A. Identical End Bodies

; =

[t}

uired thrity seconds for each simu-

considered it was assumed,

and

Now, the time constant of the least damped mode, T, was calcu-

lated as a function of C;i and kéi in this

lowing parameters remained constant at the

£ = (.055 deg/s
8, = 32.0 deg/s

my = my = 600 slugs

Py =pp= 12 f

£, = 230 f

k-‘f'

first example. The fol-

values given below:

1000 p/f

56.7 p-s/f

81,000 s1-f2

80,000 s1-f2

—
lw)
[p"]
1

= 86,400 s1-f°

— o e A e
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In the. first study, the rotational damping constant, kEB, had the
- constant value 15,500 fLEéi as the.spring constant, cg3, was incre-
ra

, ménted. Fig. 4 shows that T as a function.of.cg3 increases slightly

I
as Cpq increases. Also shown is the piot given in Ref. 6 in which a

rotational restoring constant of 5000 f-p/rad corresponded to the
minimum value of T for this same set of syﬁtem constants. The cor-
responding out-of-plane graph appears in Fig. 5. Here, as cgl
increase, T decreases in a manner which seems asymptoticé 1t can be
seen that the minimum time constant achieved by Stabekis for the
in-plane modes is about two orders of magnitude less than that
obtained here for the same range of parameters. (It Shou1d'be noted
that in Fig. 4 and all subsequent figures, fhe.parameter shown on the
abscissa is dimensionless. For the nominal system parameters con-
sidered the conversion to the corresponding dimensional quantity is
given below the abscissa on each figure.) |

| ~ Throughout this section the optimization curves presented in Ref.
6 were two and sometimeslthree orders of magnitude smaller than the
curve obtained in the present work. This difference in results was

~due to the fact that rStationa? damping and restoring system constants
of Ref. 6 were defined with respect to angles and angular rates mea-
sured from the cable Tine (¢; and %é—-see Fig. 3) where, on the cther

hand, in this analysis, system constants were defined with respect to

variational angles and angular rates which include the effect of X and



. 48,

X according. to equations {33).

1t should be recalled from the stability analysis of the general
in-plane equation (38), that cB {or CC ) > 0 is necessary for in-
plane stability. For this reason, time constants assoc1ated with zero
values of rotational restoring constants are not indicated for this
unstable situation in Figs. 4 (and 14).

Fig. 6 is a graph of T versus k83 in which cB3 was held constant
at 5000 f-p/rad. Near k;3 = 0, the value of T is very large and as
k§3 increases T decreases in asymptotic fashion. The out-of-p]éne
graph of‘Fig. 7 has the same characteristics asxthe in-plane graph'but
with a minimum time constant of about one order of magnitude smaller.
Included in Fig. 6 is the graph obtained by Stabek156 which shows his
T minimum is reached for a rotational damping constant of approximately
12,900 feprs/rad.

The transiéht responses of the identical system studied in Figs.
4 through 7 with cgy = 5000 f-p/rad and k81 = 15,500 f+prs/rad are.

given in Figs. 8 to 13. The initial conditions used were, zero velo-

cities in all variables and,

=0 ay = -0.1 rad
£ - L,= 0.48 f. g1 = 0.1 rad
4= 0.1 rad - Bp = 0 |

Initially only a response of 100 seconds simulated time was.considered.



49,

From Fig.'9, the high frequency motion of the cable is seen to

be greatly damped for the value of cable damping chosen (k2 = 56.7

p-s/f). For the parameters chosen, p] = p2 = 12f and £, = 256f, it

should be noted that o; and pé have the value of about 0.0468 which

is much less than unity. The results of the special case df zero
attachment arms indicate that the in-plane equations are weak1yi
coupled for very small p; and p%. Thus the graph of y shows predom-
inately a lower frequency motion, and the response of £ - £, shows
mainly the motion associated with the-cable, that is, until this

motion decays and the effects of coupling become of the same order of
magnitude. Th{s same type of motion is apparent in the graphs of‘u1
and a,. The graphs of gy and 8, indicate damping, but because the out-

of-plane motion is independent of attachment arm lengths, the etfects

seen in the in-plane graphs do not take place. Since the motion of
1/2

85 is simple harmonic of frequency (1 + oy + pé) (én + Q) rad/s
(see equatfon (29c)}, the response of the variable ep is not shown.
A1l of the.transient response considered in Figs. B8 - 13 were
then considered for an extended response time up to 600 seconds in
order to reveal the damping of the lowest frequency motion. Theser
extended responses required about five hours of computer time. The
results are shown in Figs. 8a, 9a, 10a, 1la, 12a, and 13a. Assuming

that the lower frequency motion of the in-plane responses is more

representative of the least damped mode of motion, the time constant
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of this motion can be calculated by means of the equation

ts -4
. ]ﬂty]/)’z)

T =

where y; is the positive amplitude occurring at t = t;, for 1 = 1,2
and is measured directly from the transient response of a variational
coordinate. Using Fig. 8a, it can be measured that tp - t1 = 367 sec.
and y1/y = 1.18; with these values, T = 2186.37 seconds which is
approximately 194.68 revolutions for the given inertial spin rate of

this system {32.055 deg./sec.). From Fig. 4, at ¢, = 5000 f-p/rad

B3
(CE3 Z 0.0008), T, the time constant of the least damped mode, is
about 197 revolutions. The value of T obtained from the transient
response in Fig. 8a is therefore about one per cent different from
the value predicted for the least damped mode. However, the accuracy
in measuring T from the transient motion targely depends on the error
obtained in measuring the ratio y1/y2. From consideration of the
other in-plane responses, Figs. 9a, 10a, 17a, it can be seen that the
.méasured time constants are within %4 revolutions of that determined
from Fig. 8a..

The same procedure applied to the 8y and 67 motions reveals that
the time constant of the 81 response {Fig. 12a) is about 4.35 revolu-
tions.and the time constant of the 8, response (Fig. 13a) is about
3.79 revolutions. Since these two motions are more highly coupled

than the in-plane motions, the transient responsesdo not indicate

the least damped mode to the same degree as the in-plane transient
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fesponses. Nevertheless, the time constants calculated are less
than the time constant of the least damped mode (T = 7 rev.) obtained
from Fig. 5 at cg] = 0.0008. ,

Thus from the measured time constants based on the transient
responses of both in-plane and out-of-plane ccordinates, it can be
observed that these results are consistent with those predicted by an

examination of the roots of the system characteristic equation.

VI. B. Unidentical End Bodies

For this second example, the nonvarying.system constanis were

selected as:

Q = 0.055 deg/s Ig, = 130,000 sl-f2
by = 32.0 deg/s Igo = 100,000 s1-f2
‘mj = 770 slugs Ipy = 173,250 sl'f?
Mp = 430 slugs Ic; = 30,000 si-f?
2o = 230 f Igp = 20,000 s1-f2
py =15 f Tcy = 34,830 sirfP
pp =9 T

For this case in which the end bodies are dissimilar, the varying

n n

. . 1€ 111
parameters were CBi’ kBi’ k], and k2.

In the first study presented in this section the va]ueé

kBi = 10,000 f.p.s/rad
ky = 1,000 p/f
ko = 56.7 p.s/f
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;
were held constant while cgi varied. Figure 14 shows that T

increases slightly from its minimum value of 263.6 revolutions as
c§3 increases. This plot as well as the curve Stabekis obtained are
shown, in Fig. 14, whereas the out-of-plane graph is given in Fig.
15.

The rotational damping constants were next varied, resulting in
the graphs of Figs. 16 and 17. Again as the end body damping

increases, the time constant of the least damped mode decreases. The

values
g = 5000 f.p/rad
ky = 1000 p/f
kp =56.7 p-s/f

were held constant.

The time constant of the Teast damped mode as a function of k?,
the nondimensional cable restoring constdnt, appears in Fig. 18.
When k¥ approaches zero, the equilibrium cable length approaches
infinity according to equation (32) and the definition of kj. This
also represents an unstable situation from consideration of the nec-
essary condition on the sign of ag in Eq. (38). As Fig. 18 indicates,
T also becomes large for small k?.

The last parameter incremented for this system was k%, the non-
dimensional cable damping constant. Frﬁm Fig. 19, the time constant
of the least damped mode decreases on]y'slight1y as kg increases.

Stabekis found that a minimum value of'T occurred for k% approximately
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j
57 p-s/f.

The transient responseé for this example with

g; = 5000 f-p/ rad

kg; = 15,500 f-p-s/rad
k1 = 1000 p/f

ko = 56.7 p.s/f

are shown in Figs. 20 to 27. A comparison of the transient responses
of the identical end mass case with the transient responses of the
general case reveals the effect of unbalancing the space station-
counterweight system.

In the identical system, the amplitudes and frequencies of d1
and o, are more similar than in the unidentical case. In the uniden-
tical case, the larger end body exhibits larger amplitude and Tower
frequency motion (Fig. 22) than the smaller end body (Fig. 23) and

the bodies of the symmetric system (Figs. 10 and 11).
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VI. C. Numerical Results of Gravity-Gradient Effects

Equations (61) and (62) incorporating first order gravity-gradient
effects were programmed for cohputer simu1ation; The steady-state re-
sponse {zero initial conditions) was examined for various cases. The
possibility of resonance in the in-plane motion was also considered. In
all computer runs,

R = 3.30557 x 107f (2000 nautical miles altitude)
G-M, = 1.407528 x 1010f3/52

and  Tp - Ip, = 1000 s1+£% = Ig, - Ig,.

Figures 28, 29, and 30 show the steady-state motion of the in-plane
variables for the identical end mass system described in Section VI A.
There is no out-of-plane motion for the case of zero initial conditions.

The amplitudes of the X, o and % motions are in the order of 1077 degrees

and for this ver&_sma]] amplitude motion, the response of ay is equal to
the'response of ap. This can be seen from an examination of equations
(61c), (61d) and {60) which verifies that for the identical system and zero
initial conditions, the o and ap responses would be expected to remain
in phase. In considering the transient response of this system for smail
initial perturbations (Figs. 8 to 11}, it can be seen that the effect of
gravitational torques here would be negligible.

The remainder of this section deals with the possibility of in-plane
resonant motion due fto gravity-gradient torques. To investigate resonance,
the system parameters were varied, and the roots of the in-plane system

characteristic equation, (38), examined numerically for the torque-free
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system, until a natural frequency was found that was equal to Zén. That
this value of natural frequency is close to in-plane resonance is evident
from the expression for T3 (equation 54), or Té, equation (60}.

Starting from the identical end body system, IB3 and IC3 were simul-
taneously increased to a value predicted from the roots of the characteris-
tic equation to produce resonance in one of the in-plane modes (IB3 = IC3 =
256,955 s1+f2). A11 other parameters remained unchanged. Figs. 31, 32,
and 33 indicate that the in-plane steady-state motion remains at about the
same order of magnitude, compared to the motion depicted in Figs. 28, 29,
and 30, but now the amplitudes of the higher-frequency motion are increased.

Since it was difficult (by this trial and error procedure) to find
other sets of parameters which produced resonance for this identical system,

the case in which an in-plane natural frequency was equal to 4én was con-
sidered. This situation was found to occur for IB3 = IC3 = 713340 s1-F2
with all other parameters the same as in the iQentical case. The steady-
state results are shown in Figs. 34, 35, and 36. It can be seen that there
is a beat in the motion of the cable (Fig. 35). This beat frequency can be
seen to be approximately equal to the difference between 4én and the fre-
quency mostiy associated with the natural motion of the cable for this
lightly coupled linear system.

In all previous cases all parameters except the moments of inertia were

| the same as in the identical system of Ref. 6, e.qg.,

'p'l = 02 = 12 f
ky = 56.7 pes/f
kg, = kg, = 15,500 Fepes/rad.

Ba

e e s e 3 e g v e
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1f

and

ko

the in-plane motion is only very 1ightly coupled and completely undamped.
For this system, the oy Gy equations can be approximated by an undamped,
uncoupled, forced harmonic oscillator. Resonance with respect to a Zén
forcing frequency was predicted to occur for IB3 = 10,000 s1.F2 and
cB3 = CC3 = 10,073 f-p/rad. | . .
The in-plane steady-state motion is shown in Figs. 37, 38, and 39. After
four hundred seconds, the x and cable motion (Figs. 37 and 38} are about
ten times larger than the X and cable motion.(Figs. 28 and 29) of the
identical system. The aq,, motion (Fig. 39) is four orders of magnitude
larger than the Gy motion of the identical system (Fig. 30)}. The ampli-
tudes of all the in-plane coordinates also seem to be increasing with time.
The effect of damping on resonance for this system is shown in Figs.

40, 41, and 42 in which the amplitudes of the steady-state 0 motion is

much smaller than in the previous undamped case. For this case,

ko = 100 p.s/f

KB4 kC3 = 15,500 f-p-s/rad.
With I, = Ig, = 10,000 s1-f%, cg, = cg, = 16,100 f-p/rad resulted in
resonance. From this comparison, the beneficial effect of damping in this

resonant situation can be seen.
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In order to induce out-of-plane motion of the system with gravity-
gradient effects, it is necessary to have nonzero initial conditions.
With the same initial conditions used for the identical system, i.e.,

zero initial velocities and

x =0 o2 = -0.1 rad
£-4£, =048 F B1 = 0.1 rad
o1 = 0.1 rad Bp = 0 R

the amplitudes of transient response in all coordinates (Figs.18—13) were
so much greater than that of the steady-state response for both the in-
plane and out-of-plane motion that the effects of gravity-gradient torques
were not apparent. However, Because the 85 coordinate had no initial con-
dition and its motion is Tess coupled to the other equations in the pre-
sence of gravityQQradient effects, the 62 response due to gravitational
torques for this particular case is shown in Fig. 43. It can be seen that
the magnitude of 65 during the first 300 second response is an order of

magnitude less than that shown 1n'Figs. 28 and 30.

(
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VII. CONCLUSIONS

For the three dimensional analysis of a rotating cable-connected
space station system, the in-plane linear equations separate frbm the
out-of-plane linear equations for small amplitude motion; For sma11-
perturbations on the cable's orientation out of the original plane of
rotation, the system will tend to rotate in a plane inclined to the
original plane of rotation without affecting the spin rate of the
system. From the out-of-plane general stability criteria, positive
damping is necessary about at Teast one principal axis on both end
bodies in the plane of nominal rotation.

From the equf]ibrium condition and the necessary condition for
stability indicated by the constant coefficient of the general in-
plane characteristic equation, the cable restoring constant must be
. greater than the value of the reduced mass of the system mu1tipiied
by the square of the system’s inertial spin rate.

From the nacessary condition for in-plane stability, rotational
.restoring capability about an axis perpendicuiar to the nominal spin
plane and on at least one end body is necessary for stability in the
coordinates selected. fFor the case of identical end masses, positive
damping ahd restoring torques about this same axis are necessary for
stabi?ity;

In contrast to the general in-plane criteria for stability, for

the special case in which the cable is attached at the center of mass
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of the end bodies, damping and restoring effects must be provided on
both end masses about an axis normal to the plane of rotation;

The great difference in time constants resulting from the choice
of the type of damping and restoring torques assumed here as compared
with those obtained in a two-dimensional ana1ys1‘s6 indicates that damp-
ing and restoring capability proportional to angles and angular rates
measured from the cable are better than damping and restoring with
respect to the variational angular rates and angles &],2 and Gsp @S
defined herein.

The steady-state motion due to first order gravity-gradient effects
was shown to be small and its influence on the transient response neg-
ligibte under nominal nonresonant conditions. Resonance was shown to
occur for certain choices of system parameters. For cable attachment
lengths which are small in comparison with the cable equilibrium 1eﬁgth,
the 1inear'equations were less coupled and so the effects of resonance
could be more easily identified. Also, damping may reduce the order pf
magnitude of the steady-state motion in a resonant situation.

Further work on this system could involve redefining damping and
-restoring constants so that they are 1ike those of Ref. 6 and incor-
porating them into the equations of motion. In addition, the equations
of motion could be rederived for the case in which each end body is
attached to the cable at a more general point, not restricted to lie
along a principal axis of inertia. |

_A future examination of gravity-gradient effects may include a

redevelopment of the complete gravity-gradient potential for this space



station-counterweight system and a more completie stability analysis
involving Floquet theory. Effects produced by unidentical end bodies

could also be considered.

60.
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APPENDIX

A1l nine equations of motion were derived using the approXima-
tion that sin(qp) % qp and cos(qp) 2 1 where dp is one of the out-of-
plane variables (52, Bl> 825 Yoi YT)' 1f, in addition, terms of third

degreé and higher in q, are assumed negligible, the nonlinear o, equa-
P 2

© tion can be written as

[2(6q + )28 - 2(07 +2)eq8,% + 82]
. . .2 .- . .
+p1[-83525221+ 8352312 + 832 - (83 + Q)B]B]R - (53 + Q)B3BEB]2

+é]é]ﬁ]ﬂ + é3é152512 - (é] + Q)élglﬂ - (é] + 9)83828]2]51n8351ne}

+p][828162£ - 839182812 + (,é3 + ﬂ)é]BZB'IL + 252812, + 3313.

- . . .. .. .2
-2B3B1B1% - (B3 + R)BpBIL + B3B282% + B2L By~ B3B2B12

Z2

(07 + BB + (B + 2)BgBoBya-(B142)BpBy81 2= (8140) (B4+2)ByB

-é]kﬂz] COSB3 ¢os 0y
.. 2 . . . .o - . .
+p1[B391687% + (B3 + Q)G]R - (B3 + Q)B3L -B1B12-B38281L-263B281R

.2 . . .22 . . 2 . .
-Byh - 2B361By% - BaBol - (B + S?f)_f33f31sz-(f33+9')(9]~IL9)*°5]sfn£SBCt',as;81
2 .22

+p1[62622-é 88,8 48,0 8,8, 2-8,0.8 2 3

3% p% TB4B)8-8,0,8,0-B,8,8, 0+ (B, + Q)82



i
f

i | L2 X
-(B3+Q)é]£—élél821_8361BZR+(B]+Q)8251£+(83+Q)(6]+n)£
. : . 2.2 . .
+(8y + 0)ByBar + (By + Q)B3Bae + Bpbpr + (B3 + )BoB7R
+ (B3 + R)81852] cosBasindy
.. .2 . - . . .
+02[-Y3Yp 19 4 v3YoY L +Y3R —(Y3+R)Y]Y] 2-(Y3+9)Y3Y2Y1 L
181712 + v381vav1e - (B1+2)71712 - (81+0)¥3v2v]LIsinv3sine)
+02[ 1287728 - Y3hyramyt + (Y30)Svpnyt + 295792 + 38
~2Y3Y1Y1R - (Y3+8)¥ov1R + Y3Yovod + Y2l Y1- Y3YoY1h
- . . . . o 2

_(9}+Q)Y2Y2£ + (91+Q)Y3Y2Y]2 + (91+Q)Y2Y]2
-(87 + 2)(v3 + 2)v2v1% - Y12 v2]lcosY3 costy

y A 2 ! A ‘ N N = . .
+oplY30 i (Y3rR) Oy L- (Y32} 321 YR« vavoryt - 2vg7,¥pt

.2 . . .22 . 2 . o

~Y14-2Y377 YZF«-Y3Y22—-(9]+9)Y3T] R-(Y3+Q)(8]+Q)£]giny3sin8]

- . . .2 .22 .. ..
0olvaYok - Y3Y1YRh + Ypl 4 ¥3¥YL - YpByiR - Y3voviR

2 - vy 8.v R - % 8 y2£ + (é]+ﬂ)+ Y. %

Y +My 2 (v +m)b
H(YgH) Y32 - (15490, 1172 3172 272

. . . . . . 2 .
+(Y3+Q)(8]+Q)£ + (B]+Q)Y]T2£ + (6]+Q)Y3Y22 + TgY?ﬂ

112.



- N3,

/

I +(Y3 + Q)YZY]?. + (Y3+ Q)Ylyzﬁ,] cos\«351ne1
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i
!

~ THE VARIATIONAL FORM OF THE 3] EQUATION IS

i
§

Tx + 2(0,49)5 + 2x8 + 2(6,40)86 - 2(5,+2)0585]
. .2 .- . . . . . _ ‘
+p"l [_én6282+25n8251 +a]-2(8n+§2)51 B'l -Z(Bni-ﬂ)enﬁzﬁliﬂnsl B] Isi HBSS'I n01
v .2 . . . . - . .
+01[20,Bp8p - 26,8087 + 2(9,+02)0nBaRy + 28287 + oy - 20,818y
. . s 2
-2(_611-”?)6282 - (en+Q) 828"](:0583 COSe'l

i-22— ._L'l._.z_ .Q-'--' _é-‘_.z
+oq[008] - 28 #)iy - a7 - 2(8 R)oys - ByBy - 20,858, -

. . 22 . . . .
-20,B1Bp - BBy - (O+0)8p8y - (en+n)2- (Bn+ﬂ)26] sinf3 cosdy
P . .2 .22 . Y .
+p1[BoBp - 20,018y + Bp + 0,87 - 20,RpBy + 20+ o bay+2(9,+0) g8
22 . . . 5 . 2 . .
-0pB2 + 2{0te)Bapy + (optR)c + (8ptR)s + 2(8+0) 6182
. . 2
+(6p + 2)8pB2] cosB3 sindy
.. .2 . . . . s ..
oo [ -8 Yoo r28 Yy Y +ap '2(Bn+9)YlYl'2(8n+Q)BnYZY1+9nY1Yﬁ5i”YSSingl
o .2 . . o« . - .
[ 20079 vp - 28pvp1y + 2(0H2)0pvoYy + 2vpYy + ap - 28p7yMy

. . " 2
- 2(8n + 2)v,yry - (8 + %) Yov9] cosvy coshy

+P'ré2Y2- 2(6,+2)a &2 2(6. +9) o §mv 8~ 2
2len ntRlep - ap - 2(6,+02)and-y1Y7 =28, vy -v1-20Y Y2
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22 . .20 . 2 . 2 .
-8,Y - (On,+ Q)0 vy - (8 + R) - (8, + 22) 6] sinvz cos®y

gy - ) . . . . . .
-28 4 V248242 ok 3 +0)o +ali2(8 30)a_ 6
40, [ ¥pm28 ¥ v v p#0 ] -28 Yo +2 (8 4]0, ka2 (0 #R)0,0

02 . . . 2 . 2 . .
"BnYZ + g(en+g)yzy] + (9n+9) + (8n+9) 5 + 2(8n+Q)Y]Y2

. - 2 . .
+ (6, + 9)8 v5] cosvgsing = O

For p1 = p2 = 0, the linear 6] {x) equation becomes from equation

(28a)

; + Z(én + Q)é = Q Coor,

X + Z(én + 2)8 = ¢ = constant - (R}

- where ¢ is determined from the initial conditions. The linear £

(8) equation is, (after employing the equilibrium condition),

“ o . . 2 .

§ - 2(s, + Q)x - (en + 0} e+ kys ko = 0 (B)
Solving Equation (A) for ¥ and substituting the resulting expression

into (B) gives

é + kéé + [k; + 3(én + Q§ 18 = 2c(én + Q) (C)

Now at steady-state, §=8=0 so that from equation (C), the steady-

state solution for & can be written

2¢(6y + 2)
k; + B(én + )2

(D)
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Substitution of equation (D) into (A) shows that for steady-state,

X is constant,

. 4, + o) |
X = ¢ 1 - — - 5| = constant (E)
k1 + 3(6n + Q) :

Thus, for this case, the system acquires a new spin rate and a new

equilibrium cable length for ¢ % 0.
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The following two programs were used to chtain the transient

responses:
H xcc Ll‘:T ’ T
TFUFUsAREN T
SEXTENCED PRECISICH
e *[DCST14C3 PRINTER,CISK) - i
; TONE WORL INTEGERS
! #LIST SOLRCE PROSRAV -
! _REAL K1eK2,10 — S ‘

TOIMENSIUN WLUNNTZ60)
DIFENSTICN SCaL{Lle}
cornen MPpaANTINSRT
Cavvon b(lLJ,lLtlb)lqliq? ?15’?25|Q'2 Riv
I We Ny n NG g Ty T a,wS,TDTu DYHS,»Xi8 1, X182,X[8
R . &) ol X“ql,\KuuoKh*B KROL e X2y XK T34 X031y 208244
LXEC xlty <nz,0ELE
CUXMON XJL,402,XJ3,XJ4
e LOMMDN Pﬂl. [J] . R
. COVRON L e o+ R e e PO R -
EQUIVALTNECE (ARTOMNILY NPRMTY
UDEFINE FILE 221(1.26C,U,10MMY ) o
OATA SCAL”.L,C-';?-Q 12 0s 2 0, 0. 27400 02,0048, 1.5,0.740.4y6. 0160
%, 12.04,6.0; 1-U,L 0:6.C/
o PARY(LY=C. e X R
J Ar‘,-‘tz) 3{‘( T _ T TmmmmmmEmm e e e
PARNEZ =D, ?‘
PARy 7(‘1[7—1 CE-
NPRHTSD
REXYT = 1
SUK=0.0
[V I 1'18
Ut1)=0.¢
i §UP =SUNM+]. DISCAL(Il__mm__
Fou(ry=1075C20110 o - TooTmm e
00 2 I=l.18
e 2 LU[I?‘C'U(])/’;L“
T TP L T N o S O 0 1 S«
Th=22.0%3,1415926535/080.0
hN=0TH+Y
WETRRR T —— J— e ot e+ e e e e
' Ti=2.0%x
1 DIkS=DTHSCTH
: TUTE=2,. C#0TH
g ’ THRN=2. 050N
i WS SN N ' - !
Lo=230007 . e
. Kl1=15C0.0 . ' D
g Ke=5%6.T
HHLC 1'; 1‘? - 6‘““—
RHCZ2=12.C
__A12600.0

ML, EESEM,R25%,R12M, 0TH,
AICL,XICe.XIC3
ﬁéq(;E?QKCu [} <CC2!

J-
‘)\ [£9) ﬂ

| SO - e —— O
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T KHz=6G0.0
f EPL=XMEeNr 2/ (XM 1+X12)
CIFIKL=XM0% AN S 15403012
TYT O OWRITEINPUNT 1Y)
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1% FORMAT{'OTHE CASLE 5 KOT STHCNG ENCUGH FOR THE GIVEN SPI& RATE

1r/721}

sige

12 EL-(Kl*LC*X”Uﬁ(RHD[*PHC21¢P\SHIIKI ~XMUTWNS)

UfRi‘rE{l\;”‘\.tT‘Il?}'!

TTUT FGRVATL40% , P THE EGULILESRIOY LENGTH TS AN AN YA LN

XI=XMUsblLsCL

xiel= Ol\,uu.u/XIl
Txied=50000.0/%1
A1E3=664C0.C/X1
L XICl=x1gl

X1C2=X142
XIC3=XIE3
XKKE81=155CC. C/K]T

TREEZ=15500.C/%1
XKEI=155C0.C/X]
XRC1=XRO1

XEC2E4%52
XKC3=XKG2
XCBL=535C,0/XI - R e
TXCEZ=5C 0.0 AR
xCaz= subo.h/xl

e XCCl=Xo31 = e
XCCZ=XCE?
XCC3=XCB3

e XNMEXI22=XURNN?.D _ L
XJ2s(xtez+xInti/z.¢
XJ3={xXICr-¥lcrys2.¢C

e RJAsUXILZRRICAMN/2.0 - B L
E1=3K01/EL
R2=20k02/5L

- . RI15=R1®AT e e
R2ZS=R2EN2
R12=R1%R12

o RYFECRL . T
RZH2-R3
R1S¥=-R1S
RZSM=-R2S5 e L

T T T R 2vs-R12 - T T T i
KKL=K1/KVU

e RR2=R 2/ KU e e e

- - TLELG=ILO-ELY/EL e o ) )
KXKL=XKL/wKS~1.0
XXK2=AK2/ni

TTTHAKEL2XKEL AWNT - T -
XXKB2=XRRZ/ni
_ L XXKR3I=AKIBAAN o

o TURARCI=XAC L W T ]

XXKC2Z2XRC2Z /N
_ ¥XKC3=XKC3/wN

T A -"‘XXL Wl=x{nH1/%" ¢..W T T Tt T )
XXCO2=XCE2/wNS
XXCB3=KODA/WNS L L )

e e s e

TXXCCL=XCC] /anS
XXCC2=XLC2/1MS
KXCC3=XTCB/wBS



 WRITEANPRAT,24)%1,R2

TTWKIIECIRAENT, 230 e I

WRITEANPRNT,21)

WRETE(RPRNT, 21) T
WRIVEANSRNT, 250 K101, X(L]
MRITEANPRNT, 261 K[82,X1C2

T WRITEANPRAT, 21)

WRIETELNY |\T ?(}\IdinICS
NPITE(“P 211

LRIT((-"““T ?t YRR 4 AKCL
TWRITEUNDPRN T+ 25 ) KAn2 CZ
WRITZUNPENT 30 ARG (XKL
‘\P\l]’[’.(\r‘”‘{\]v?l}

TWRITECORNT 31INCBL XECL T
WRETE{NPRNT 3240062, XCC2
HRITE(APRNT, 32)A083,XCC3

WRITLCUNPRNT 34 YAKL XK 2
WRITE (NPRNT, 21}
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TTRMRITE L

hR]]t[f\l’Rf\T 3G TXCKE L XXREY
RRITEINPRET 36D XAN0I2 4 LAKC2
hplrtlmn;\T_a?lvwhﬁa, XKC3
ARITELwrANTyel}
WRITE(NPRNT,, 38 XXCRT,XXCCL
HR] El-?*’\qujziJ((C"?yi'(CL(_

K THLALa I XNCCET
wBRITA(: lr’l('nT|21]

KRITEANPRNT »41) £XR) , X2AK2

21

/f XEQ
*FILES

CTFORYATL32, = VL FT2LT, l)(.'uTH' =
FGF‘AIt32\,'°1 = VL FI2.T,15%,'R2 =
CFORVAT(324,"KIET = ', F12.7,10X,'%1CL =
FORSATEI2X, IR = 0, F12. 7,190, ' 21C2 =
FORMATLI 32K, ' X183 = ¢, F12.7,197,'%103 =
FORNATIS2E, 'XKB1 = Y (F12.7,19%,'2KC} =
i FORe nitjzx;'xru? 2O GFL2. T LGXy TRAECE =

FORYAI{32X, X533 = ¢, F12.7,19%, " X632
FORMATLA2X, X001 = '4F12,7,19%,'%(CL =
CEORMAT(32U,"ACRZ & VLF12.7,19%, X087 s
FORYAT(32X,15%CB2 = ¢,C12,5,19%, %63 =
= T =

TFORALTI LR, VKKEBL

FORYATIIEX, ' X4URL

TFORMAT{3IX, 'XXKL

TENE

h"{lrL{\plz\Tn(?}(u‘\i)cl’l lb}
FORINATL/)
[']Q"\T(fuﬂ" 'T)’I— I*'] TAL l,p\[lTIﬂ'S

FORVAT{Z2X,'Xx1 fFLZLT, 19X, " XKHZ
th 120, 180, VHERC)
yF12.74 18X, "RARKCZ
11207, 18W Y NAKCS

)
FORMATLIEX "UNKE2 ’
1]
VLFL20T, 18K, VXXCC)
1
L]
§

FORVATI3I1Y, T"AXKH]

[T I L 1)

FORMAT{3EX, VXX a2
FORMAT{31 X, XXCQ3

sFI2.74 188, PXXCLD
L EYZ2.5, 18X, 'XXCC3
sFL207  1EX, P XXK2

WRITEL221 1 NCGHN

CaLL EXIT i el
Lol

223,55CCHY

1
1
1
1
L[]
L}
.
1
1
1
4
1

AREV//IX,IF12.5/9%,5E12.5)
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/e 000F GooA c006 0004
- LUG LRIVE TRy S pEL T AT T Avar . T Y TRRIVE T . B
ccee ' CoGF CCUF 0ocl :
. cect o ptges  cana _booz__
T Tecck CTcoug” 0000
—— Y2 MMl ACTUAL M&R CONEIG 1eR — it o e e ¢ e e e
17 oxel LIsT
S A 1 8 N e e -
SDELETE SSK2a
/f FCITRAN
o *EXTERDEC PRECISICH e
TTTRIQLSIACT PRINIER,DISETT T T T i
tONE WOKL INMTCSORS
. FLIST SOLYUCE PRCGR AN e _ e e
EXTERNMAL SSL42,/§5C0T
DIFENSEDN WCAK{®,18) yNOOMN{260)
COVEGN  NARNT  NEXT o S _ , o
DMV Ty DL LY VR E IR IR A Y, YLV, B2V, A e, 23SV, R1 2%, 0T,
BTV AL .-‘,:II» Ny TSy TOTE sOTrS, XIB) X152, X33 ,4)CL,41 CZ+AICA
SLOFVCN uX 31, AKE2 PAEENNCL L AKCZ XK ACEL, 2022, 4082, KCLL, XCL2,
LXCC3, % Lc‘hcy
COUMVITY le.XJZ'KUS,XJA
e EDYEIY 2aRM (5 _ e e e e e
- _—-”CU."»‘.'JG_\'”}_'L o T T
CORFOYN  T,009,45)
LLOFVEN YYIC e R — e e e
EpulivaLts KLO¥NUT }yhennNT)
tnLivALcu:f:Ct1.1),511;.[C(1.?»,0123.tcr1.3).c13).ICt1 41,0140, 00
e m____,ll.n|r:l,tcn.abgg¢:ur(1,rh517inc:[.H.Cizn:btt.n.c1»htar2
el L2010 002,20 002, (02, 310220, H002,401,024) , (CI2,51,C25), (012,
36} rza;,(,:z,fi,c;f).4c42.51,c7<J.tfc?.,;.czaz
_ Eﬁ'l PALENCE (L30T L3l (2030 2) 0320 1012, 3) 50323, 0C 3.41,034),4C
13550, Cj%).trfi.ﬁl,CBL}-(C(5.?}'C’1).(th,u).cj“),[L[%¢9],C’ b LCH
24.11.&4:1'(L14,L> Ca2h (014,30, 0A3) 4 (Ctasn) L8660, {Cl4,:5),Ca5) (14
3,6}, Cﬁbl.!C[4|IP.LfF?,!y(r,‘lyCAV}.{C(ﬁ.U),fGQ}
- CEGUTVALERGE (2050011, :Bilin(:.6)15?2).(f{),31.63511ic{5,f){C q) .40
BU508)eCSe) o405, 7140570, {009, 8) .05 ”Jq(ui),v)gCSH)‘(uﬂﬁ,IJ,Lul)'[L(

29|21,Lcél.{ulu,-I,\,.,B),(C[u"thC(:‘oJ,(F{b 5} C(‘ﬁitfrlf' lebefJ'r([’(ﬁ
3’7,":(2?)'(‘: :‘vD]f\,v.)1‘(4‘{71.J,jcé-.‘),[r‘,v!slu(-—)}
FOUIVALENIE {CI741),L71, LTy 21,02 0 LCLTy3)0002), (07, 4140748}, (C
AR RIS }!(Pl?lh,,v7h,|(Lt?|?)‘c?T}f{C(?]))yc?“’ylhl?‘?'r C75),(CH
FA LI I N T TS ?lu(C[fvilqﬁiiioit{' 10840 L, 5), C55]'(C({
3, U’lbLu]t[C(Jf?’ipu?]r(‘(i-"_’pc ’l(L(!|(‘J|C89)
ECLEVALERTE (C{3.1) rJl)'\i‘3!2]|CCZ)!(C[q|3]gCP3]9l'(3'41!C9q}![6
1(‘3 ')';C‘J?J,[L(?rl‘ gh]!(b“’ 7]| ?T)r(C(” }|\.-Q."i]g[(.fg ngCVJ)‘
CEFINE FILE 22111, 2 AU TEMEY ) 220017204430, Uy NEXT)
FEAD(Z221M1¥R0CHY
CRRITEq,12inExT
12 FORZATIIX, T3}

2 Cl5.d)=G.
CLi:1.g
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T 3R]
Cl4=R2
. L22=1.0 . e e e e e e e e e
C3i=R1
C33=R15+4[P3
C34=212 _ o U
Ay % YOV - S T
Cad=g12
[N P i Bk 3 ) O VRS R -
€55=1.G
CoE=XJ2
C77=xJ2 _ L o - )
T T Tgmeery T T T
C99=XJ4
e CRRLFEANPRNT G
TROT FUGRYAT(ONLY)
CALL BKGSXIPARM UL CU18sTHLF SSENP,S$SOLT,WORK)
BRITEANPRAT S0 THLF e
T Y TEORFAT W THUR =, 13)
RRITE(22101)9CCHN
— AL X e e e e am
P
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o ASTORECI 4S5 WA Ss¥EA 1 000B L e
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