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NON~-LINEAR BEHAVIOR OF
FIBER COMPOSITE LAMINATES

by 2vi Hashin, Debal Bagchi and B. Walter Rosen
Materials Sciences Corporation

SUMMARY .

The non-linear stress-strain behavior of fiber composite
laminates has been analyzed to define the relationship between
laminate behavior and the non-linear stress-strain characteris-
tics of unidirectional composites. The resulting analysis has
been programmed to yield an efficient computerized design .and
analysis tool.

The approach utilized herein was to adopt a Ramberg-

Osgood representation of the non-linear stress-strain behavior
and to utilize deformation theory as an adequate representation
of the material nonlinearities. The prbblem was viewed on two
levels. First, the relationship between the constituent proper-
ties and the stress-strain response of a unidirectional fiber
composite material was studied. For this probleﬁ, the primary
attention was directed toward axial shear behavior, and an ex-
pression was established rélating the composite average-stress/
average-strain curve to the fiber moduli and the matrix non-
linear stress-strain curve. Second level of approach is to treat
the interelationship between the properties of the unidirectional
layers and those of the laminate. For this case, the starting
point is a non-linear stress-strain curve for transverse

stress and for axial shear and a linear stress-strain relation
for stress in the fiber direction. The non-linear lamina
stress-strain curves can be modeled by proper selection of the
Ramberg-Osgood parameters. In the present study, with this as a
starting point, an interaction expression was formulated to ac-
count for simultaneous application of axial shear and transverse
stress.

A laminate having an arbitrary number of oriented layers
and subjected to a general state of membrane stress was treated.
Parametric results and comparison with experimental data and
prior theoretical results are presented.



1. INTRODUCTION
A basic reguirement for the engineer designing with fiber

composite materials is a definition of the stiffness and strength
of these materials under a variety of loading conditions, includ-
ing cases for which exberimental materials properties data are
not available. For this purpose, it is necessary that he have at
his disposal reasonably accurate procedures to predict these
mechanical properties. Existing analyses -can predict the elas-
tic behavior of a laminated composite quite well when the elas-
tic properties of the unidirectional materials from which it

is made are known. However, the situation has been much more
complicated and much less satisfactory with regard to the in-
elastic stiffness and strength of a laminate. The present pro-
gram was undertaken to develop a computerized analysis of the
inelastic behavior of fiber composité laminates which could be
used as a design tool. The results of this study and compari-
sons of these results with experimental data are presented in
this report.

It is essential to recognize that the utilization of fiber
composite materails in structural design involves the incor-
poration of material design into the structural design process.
This is illustrated clearly by the fact that the gross mate-
rial properties of a fiber composite laminate change when any
change is made in the laminate ply orientations. Even when
the designer considers a material forméd from a particular com-
bination of fiber and matrix materials, there remains a large
number of geometric variables associated with the laminate de-
sign. Thus, in the preliminary design phase, experimental mate-
_rial.properties data will generally be too limited. In the
case of elastic properties, sufficient capability to synthesize
the necessary properties exists. This procedure generally starts
with the definition of the elastic properties of unidirectional-
fiber composite materials. These can, of course, be determined
experimentally. Also, when such data are not available, they
can be estimated using a variety of analytical techniques. These
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latter are generally referred to as micromechanics analyses.
For example, a set of relatively simple relations for predict-
ing the moduli of unidirectional reinforced composites are
presented in [1]. Alternate micromechanics approaches are
described in [2] to [4]. A review of these methods is pre-
sented in [Si. With these properties available, it is assumed
that the individual laminae are homogeneous and anisotropic.

A laminate analysis is carried out in a straight forward
fashion following methods originally developed for such maté—
rials as plywood, and more recently extended to the more
general cases associated with fiber composite laminates (e.g.,
[6] to [8]).

However, contemporary fiber composite materials gepefally
consist of elastic brittle fibers such as glass, boron or
graphite in relatively soft matrix materials such as epoxy or
aluminum. For these matrix materials it is reasonable to an-
ticipate that at a certain loading state the matrix will begin
to exhibit inelastic effects. This results in non-linear re-
lations between structural loads and deformations. These in-
elastic effects can, of course, be expected to have a signifi-
cant effect upon failure of the laminate. It is quite clear
that adequate definition of these failure conditions are
essential to achieve structural designs of high reliability.

In the present study, a non-linear laminate analysis has
been developed which cah_provide realistic assessments of the
stresses and strains in the various laminae and of the inelas-
tic stiffnesses of the laminate at any stress level. This in-
formation can be used for assessment of such effects as struc-
tural stability or structural stress distributions. The stress
distributions in the laminae and the laminates can also be
utilized for the development of more realistic failure criteria.

Inelastic matrix behavior can be classified broadly as
either time dependent or time independent. Time dependent be-
havior is called viséoelastic if lihear and creep if non—linéar.
Polymeric matrices such as epoxy do- exhibit such behavior. In
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the case of metallic matrix materials, such as aluminum, time-
dependent effects are generally negligible unless elevated
temperature conditions-are considered. The present study is
concerned with time independent non-linear matrix behavior
which is of significance for both polymeric and metallic matri-
ces. Thrgughout this paper the expression "inelastic" is used
to describe this time independent mechanical behavior. The
method of approach to these problems is similar to that of the
elastic analysis. Thus, it is necessary to determine, first,
the inelastic properties of the unidirectional fiber composite
materials. This can be done experimentally or by micromechan-
ics methods. Given this inforhation, a method to determine
stresses and strains in an inelastic laminate is then devised.
The problem is complicated by the fact that the inelastic .
stress-strain relations are non-linear. )

A limited number of pertinent investigations can be found
in the literature. Hill [4] considered, in‘approximate
fashion, a limited aspect of inelastic behavior of a uniaxially
reinforced material: the case of stress in fiber direction
combined with isotropic transverse stress. Petit and Waddoups
[6] devised an incremental method for laminate analysis in
which it was assumed that in single laminae there is no inter-
action of stress components in different directions as far as
lamina deformation is concerned. This assumption is restric-
tive, and also their incremental laminate énalysis scheme is
unduly complicated. Adams [7] used a finite element technique
for numerical analysis of unidirectional materials in the form
of periodic fiber arrays under conditions of plane strain.

'Huaﬁg [8] gave an approximate analysis for transverse inelas-
tic behavior for a unidirectional material in plane strain,
but it is diffucult to assess the validity of the appfoxima-
tions introduced.

A detailed analysis of the inelastic laminate problem
has been given by Foye and Baker [9]. Using finite element
methods, they computed the inelastic effective properties of

-unidirectional rectangular and square arrays of elastic fibers
4. ’ '



in inelastic matrix. These properties were then used in an
"inelastic laminate analysis; The analysis is based on
incremental plasticity theory and is, unfortunately, very
complicated and requires a great deal of computer time. The
results obtained are, however, of great importance for com—-
parison with results predicted by more simplified theories,
such as the one which will be given in the present work.

The body of this report is divided into four major sec-
tions. 1In the first, consideration is given to the behavior
of unidirectional fiber composite materiéls. This requires:

a definition of the appropriate form of the inelastic stress-
strain relations; some consideration of the relationship be-
tween composite properties and constituent properties; and a
definition of the appropriate form of the interaction between
various stress components. The basic objective in this phase
of the report was to define appropriate constitutive relations
for the individual lamina which can be used in the non-linear
laminate analysis. Further, there is a desire to gain some
insight into the influence of the. particular constituent
properties upon the lamina stress-strain relations. In this
phase of the study, it is found useful to characterize the
unidirectional material with the aid of Ramberg-Osgood stress-
strain relations.

In the next section of the report, the analysis of the
inelastic behavior of laminates is described. Here, a pro-
cedure for incorporating the non-linear constitutive relations
into an analysis which defines the state of stress in the in-
dividual laminae under an arbitrary set of external loads,
is defined. Analyses are developed for the case of symetric
laminates subjected to membrane loading. The equations which
are developed uniquely define the desired laminate internal
average stress distribution under a given set of membrane loads.
Governing equations, however, are non-linear and require numeri-
.cal solution pfocedures. An efficient algorithm has been de-
fined which enables computer solution to be achieved for arbitrary

5.



laminates at minimal cost. The solution is obtained by appli-
cation of the Newton-Raphson method.

In the final section, the computerized analysis which has
been developed is applied to series of problems. The first
group presents comparisons with 'various analytical results from
the more complex analyses of Ref. [6] and {[9]. The second group
of numerical results presents comparisons between theoretical
results from the present model and available experimental data.
The third group of results provides several parametric studies
to gain insight into thosé factors which contribute signifi-
cantly to the non-linear behavior of fiber composite laminates.
Also, computations have been made to provide a prelimihary
assessment of combined load effects including comparisonsAwith
limited experimental data. '

Details of the various analytical developements, as well
as descriptions of the computer program, are presented in
appendices to the repori.

The principal result of the present program is a computer
program which provides a simple engineering tool which can be
used for the parametric study of the influence of material prop-
erties upon laminate performance. This laminate analysis capa-
bility can be used by the structural designer to define design
alloﬁable Stresses and to aid in the selection of fiber com-
posite materials for structural applicatiohs. A comparison of
the present results with the limited amount of available experi-
mental data shows good agreement. There are, however certain
cases in which the agreement is not good, par ticularly as the
laminate loading approaches failure. The results of the present
analytical method agree well with the results for those prob-
lems for which more exact and more complex analytical results

exist.




2. NON-LINEAR STRESS-STRAIN RELATIONS OF UNIAXIAL
FIBER REINFORCED MATERIALS

2.1 General Form of Stress-Strain Relations

An effective stress-strain relation of a composite mate-

rial is defined as a relation between average stress aij and
average strain Eij' Here and in the following latin indices

range over 1, 2, and 3. If the composite is elastic the
general effective stress-strain relation takes the form

el = *ll "€
9i5 = ©ijk1 Sk : (2.1.1)

where C;.

jkl1
constants and are thus independent of stress or strain. Thus,

are the effective elastic moduli which are material

(2.1.1) is a linear relation between average stress and strain.

If the composite is subject to symmetries the form of
(2.1.1) simplifies. For a uniaxial FRM the most important
cases of symmetry are transverse isotropy, around fiber direc-
tion, and square array (square symmetry). In these. cases the
stress-strain relations (2.1,1) for transverse isotropy assume
the form:

611 = C*;) €11 + C*;13 €22 + C*12 €33
= = C% = * = *, T
OG22 = C*, €, + C¥,, €,, + C%; €4,
O33 = C*¥12 €11 + C*,3 €22 + C*22 €33
— —_ (2.1.2)
12 = 2C*,y4 €1,
023 = 2C*55 €53
031 = 2C*4y €3,
and
(2.1.3)

C*s5s5= (C*22-C*,3)/2

In (2.1.2-3) 1 indicates direction and 2, 3 perpendicular direc-
tions transverse to 1.
In the event of inelastic matrix and elastic fibers, the

situation is much more complicated since the stress-strain



relation are nonlinearity and history dependent. In no case is
stress proportional to strain so that superposition of effects
is not valid, and in order to determine current strain it is
not sufficient to know current stress but it is necessary to
know precisely the variation of stress which preceded its cur-
rent value. Thus, for a material in a known state bf combined
shear and uniaxial tension, the state of strain is different
if: (a) tension is first applied and then the shear, (b) shear
is first applied and then the tension- (c) tension and shear
are applied simultaneously. For this reason stress-strain re-
lations must be presented in incremental form. That is, strain
increment is related to stress and stress increment. This com-
plicates matters enormously. However, it is known that in

the case of proportional loading, that is, all stresses at a
point grow simultaneously in a fixed ratio to one another,
incremental theory can be integrated into the much simpler
total or deformation theory for which current strain is com-

pletely determined by current stress.

Deformation theories have a wider range of validity than
proportionél loading. Comparison of numerous detailed solutions
carried out both incrementally and by much simpler deformation
theory show surprising agreement in many cases, and Budiansky
[10] has shown that deformation theory can also be valid for
"neighboring"” loading paths.

In the present work, we are concerned with composites
which are subjected to some external load. If it is supposed
that the various external load components grow proportionally,
this does not necessarily imply that the components of stress
at a typical internal point also grow proportionally. It is,
however, felt that the manner of growth of these internal
stress components cannot deviate severely from proportional
loading if external loading is proportional. Consequently,
deformation type stress-strain relations are assumed for the
matrix.

This assumption results in considerable simplification.

It will be seen that it yields results which are extremely
8.




close to the ones obtained in [9] on the basis of the much
more complicated incremental theory.

It is shown in Appendix A that for elastic fibers and
an inelastic matrix described by deformation type theory, the
effective stress-strain relations for a transversely isotropic

or square symmetric FRM are:

€11 = S11 011 + Sy2 022 + S12 033

€22 = S12 O11 + Sz2 Op2 + Sz23 033

€33 = S12 011 + Sz3 022 + S22 033 (2.1.4)
€12 = 2S44 012

€23 = 2555 053

€13 = 2SS4y O3
and
Sss= (S22-523)/2 (2.1.5)

The coefficients Sll' 312' etc. are the effective inelas-
tic compliances of the material and are functions of the aver-

age stresses, or rather of certain invariants of the average
stress tensor. ‘

We are here primarily concerned with thin uniaxially re-
inforced laminae which are in a state of plane stress. Let
1 denote fiber direction, X, direction transverse to fibers
in lamina plane, and'x3 direction perpendicular to lamina,

Figure 1. Then the plane stress condition is expressed by:

X

Oi3s =023 = G33 =0 (2.1.6)
Equs. (2.1.4) then assume the form:

€11 = 8,1 011 + 5312 022 (2.1.7)
€22 = S12 011 + S22 022

€12 =254y O



Note that €., does not vanish. It is however of no interest

33
for present purposes.

The inelastic compliances in (2.1.7) are functions of
the stresses Oll’ 022' 012.
It is convenient to split the strains in (2.1.7) into

p— - X .
elastic strains Ea and inelastic strains suB' Thus:

BI

—_— 1 n .
€ = g = : (2.1.8)
aB Cag tE aB :
where here and in the following greek indices rangeaover 1, 2.
The elastic strains are recovered after unloading of the com-
posite and are related to the stresses by elastic stress-strain

relations. Thus:

. 1 - -
€11 = S31 011 + Sy, 032
- [ "
€22 = S12 011 + S,2 Gy (2.1.9)
— | .
€12 =284y O3,
where v
_ ' 1 ! A
Sy = g S12 = - &
A A
1 1 t 1 (2.1.10)
S22= E—’ Squ E
T A

Here E, is the effectiveiYoung's modulus in fiber direction,

A

v.- the associated effective Poisson's ration, E

A

P T the effec-

tive Young's modulus transverse to fibers and GA - axial effec-
tive shear modulus, related to 1-2 shear. ’
The inelastic, permanent, strains then have the form:

" " ",

€11 = Sy1 01, + Si12 032
€22 = S12 & 11+ Sy2 522 (2.1.11)
E;; = QSJZ 01>
where
" . oo (2.1.12)
S,8 = S,8 (011, 022, 013)

10.




In order to further simplify the stress-strain relations
(2.1.11-.12), some'specific features of FRM will be taken into
account. In such materials, the fibers are by an order of mag-
nitude stiffer than the matrix (for the case of boron and/or
graphite fiber in an epoxy matrix the ratio of fiber to matrix
Young's modulus can be in excess of 100). The stiffness ratio
becomes larger in the inelastic range since the matrix loses
stiffness (i.e., flows) while the fibers retain their stiffness.
It is, therefore, clear that the stress 811 in fiber direction
is practically carried by the fibers alone, with insignificant
matrix contribution.

On the other hand, the transverse stress 522 and the shear

stress o are primarily carried by the matrix with little

fiber coiiribution.

It follows that inelastic behavior of the FRM is produced
primarily by 822 and 512 while inelastic behavior for 511 load
can be neglected.

The foregoing comments are summarized into two basic

assumptions:
(a) the inelastic strains EZ and Elz are not functions
of 91

(b) the inelastic strain Ell always vanishes.

On the basis of these assumptions, the stress-strain re-

lations (2.1.11-.12) simplify to:

€11 =0
(2.1.13)

" - - -
= S22 (022, 012) 022

m
n
»

I

[y]
-
»

[

" - - -
2Syy (022, 012) 012

11.



2.2 Plane Stress-Strain Relations in Ramberq-0Osqood Form

A convenient representation of non-linear one dimensional
stress-strain relations has been given by Ramberg and Osgood

[11]. For uniaxial stress, for example:

e =g L+ )"

Ey o (2.2.1)

where E1 represents the elastic Young's modulus, and k, o',
and m are three parameters to be obtained by curve fitting. The
parameter o' is sometimes called nominal yield stress. Equa-
tion (2.2.1) represents a family of curves with initial slope
El’ and monoﬁonically decreasing slope with increasing o. The
curves flatten out with increasing m (Fig. 2). Without loss

of generality (2.2.1) can be written in the form:

1+ (-gr)m'll (2.2.2)
y

which will be used from now on. Similarly, a stress-strain

£ =

JﬂQ

curve in shear can be represented in the form:

~

YEE o+ RIS (2.2.3)
T
Y
where G, is the elastic shear modulus.

-1
It should be emphasized that (2.2.2-.3) are valid only for

one dimensional cases. The question of the generalization to
general states of stress and strain has no unique answer. One

common used form is isotropic J, deformation theory [12].

Next, we consider the casezof effective or macroscopic
stress-strain relations for the special case of a uniaxially
reinforced material in which the matrix in non-linear, with
stress—-strain relations in Ramberg-Osgood form. .

Consider, for example, the case of uniaxial average stress,
522 in direction transverse to fibers, all other average stresses
vanish. It then follows from (2.1.7) that:

E22 = 832 (822) 622 (2.2.4)

12.




Similarly, if the only nonvanishing average stress is 512,

the shear stress-strain relation of the composite is:

€12 =2S44 (012) 012 (2.2.5)

Evidently the inelastic effective compliances 522 and
844 are functions of the parameters of the inelastic Ramberg-
0Osgood stress-strain relations of the matrix, of the elastic
properties of the fibers and of the internal geometry of the
composite. Actual pfediction is a very difficult problem. Such
problems will be cnsidered in limited fashion in the next para-
graph.

Just as matrix stress-strain relations are represented in
Ramberg-Osgood form, the same type of curve fitting.can also
- be applied for the effective stress-strain relation of the
composite. Thus (2.2.2-.3) are written in the form:

o Y -
2 " h (a)

T Y

- _ J12 [l + (%ﬁ)N—l] (2.2.6)

A Yy

(b)

Where ETiis the effective transverse elastic Youhg's modulus
GA - effective axial elastic shear modulus and oy, Ty, M and
N are curve fitting parameters which are in general quite
different from the corresponding Ramberg-Osgood matrix para-
meters.

A question of fundamental and of practical importance is
the form of the stress-strain relations for the case of plane
stress, taking into account interaction among the various stress
components. It should be noted in this repsect that (2.2.6)
are special stress-strain relations when 522 or 512 act only
by themselves.

It is recalled that equations (2.1.13) represent the
inelastic parts of the strains for plane stress-strain re-

lations for FRM with stiff fibers. It is shown in Appendix B

13.



that the Ramberg-~Osgood form of such plane stress-strain re-

lations is as follows:

e =0 - M-1
- 822 822 2 Ji12 2 —2—'
€22 = (=) + (7797 ,
T y Yy N1 ) (2.2.7)
- = o 2 8 2 .._-:_
g1. = 22 (1S + (DT 2
2GA Y

The parameters E g.., Ty, M, N in (2.2.7) are those of

T’ GA’ Y
the one dimensional stress-strain relations (2.2.6) which may
be regarded as experimentally (or perhaps theoretically) known.

The inelastic parts of the strains are given by (2.1.9-
.10), and the total strains are then given by adding equations
(2.2.7) and (2.1.9).

Equations (2.2.7) have been compared with computed numeri-
cal results given in [9]). Reasonable agreement was obtained.
'Comparisons for the interaction cases of transverse stress, 522,
versus transverse strain, Eopr in the presence of axial shear
stress, O1o¢ and axial shear stress, 012, versus axial shear
strain, Y], are shown in Figures 3 and 4 respectively (in both-
cases 022/012 = 8/3). It is seen that the agreement is fair
for transverse stress-strain relations (Fig. 3) and very good
for the shear stress-strain relations (Fig. 4).

Figures 3 and 4 also show the stress-strain relations ob-
tained from Egs. (2.2.7) for one dimensional transverse tension

Ooor and axial shear, O1a¢ respectively.
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2.3 Axial Shear Stress-Strain Relation

This paragraph is concerned with the problem of prediction
of a one dimensional effective axial shear stress-strain re-
lation of a uniaxial FRM in terms of matrix-and fiber properties
and the internal geometry of the composite.

The main reason for concentrating on the axial shear prob-
lem is that the inelastic effect is predominant in axial shear
for which significant nonlinearity of the stress-strain response
is obtained (e.g., Figure 4). The effect in fiber direction is
practically non-existent as has indeed been assumed above, and
is relatively small in transverse stress which is shown by the
‘'small curvature of the stress-strain relation in this case
(e.g., Figure 3).

On the basis of all this, it can indeed be assumed as
first approximation that the nonlinearity of the uniaxial FRM
is limited to axial shear alone.

Consider a uniaxially reinforced lamina which is subjected
to pure axial shear, Figure 5, on its surface. The boundary

conditions are:

X3 =it/2 031 = 032 = 33 = 0

(2.3.1)
Xy =+0b Gi12 = T, OG22 = 023 =0
Xl=ia 12 = T, 011 =013 =0

It may be shown that under such load the only nonvanishing

average stress in the composite is:

(2.3.2)

It would seem at first that, given the complexity of the in-
ternal geometry of the composite, the state of stress at any
interior matrix or fiber point is generally three dimensional.
Surprisingly enough, however, this is not so and the only non-

vanishing stress components in the interior-of the composites
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are the shear stresses 012 and 037 which are moreover func-
tions of x, and X3 only. Thus, the interior state of stress

2
is:
012 = 012 (x,, X,)
2 3
(2.3.3)
013 = 033 (Xz, X3)
Gi11 = Oz2 = 033 = 033 = 0

The validity of equations (2.3.3) for the case of an elastic

composite has been proved in [5]. Their validity for the pre-

sent much more general inelastic case will be shown elsewhere.
The effective stress-strain relation of the composite in

axial shear is defined by:

s . .
A (2.3.4)
S S ,=

Gp = Gplo12) = Gy l(1,)

where Gi is the effective secant shear modulus of the mate-

rial. The nonlinearity of the stress-strain relation is ex-
-pressed by the fact that Gi function of the applied stress.

It is seen that in order to determine Gi it is necessary
to compute the average shear strain €y, for given applied
shear stress. This is a formidable problem even with the
simplification (2.3.3) and we shall content ourselves with a
brief outline of its formulation. To simplify matters, the
fibers shall be assumed to be ideally rigid relative to ‘the
matrix. This is a very accurate assumption for the case of
Boron and Graphite Fibers. There is no difficulty to extend
the formulation to the case of non-rigid elastic fibers.

In view of (2.3.3) the problem is two dimensional and
need only be considered in a typical Xy Xg section. In the

matrix domain:

le.



3012 3013 " (2.3.53.)
3X2 + 3X3 =0
€1, = 3&2 1+ (_-[_;_)n—]_] (2.3.5b)
T
Y
ers =242 v (Z™h (2.3.5¢)
T
Y
= (2.3.6)
0122 + 0132
_ l du, (2.3.7a)
€12 = 3 3%,
513=% uy (2.3.7b)
3X3
u]_ = ul (le X3) (2.3.8)

and, u, = 0 at fiber/matrix interface.

1 .
Here equ. (2.3.5}) is the only surviving equilibrium

equation, (2.3.6) are Ramberg-Osgood stress-strain relations

for isotropic J, theory (2.3.7) are usual strain-displace-

2
ment relations in which u, and u, do not enter since it may

be shown that they are noi functfons of Xy and (2.3.8) ex-
presses the ideal rigidity of the fibers.

Equs. (2.3.5-.8) must be solved subject to boundary
condition (2.3.1). If this is done the strain €19 is known
: from (2.3.4).
The problem is exceedingly difficult because of the non-

everywhere and can be averaged to obtain G

linearity introduced by the stress-strain relations (2.3.6).
There is very little hope to solve it analytically for any
kind of fiber geometry. It should therefore be handled by
numerical methods for fiber arrangements and fiber shapes
of engineering interest.

Another way to approach an analytically intractable

problem such as the present one is by variational techniques.
: 17.



In this fashion, approximations or bounds for gquantities
of interest are obtained by methods which are much simpler
than bonafide solution of the problem. Such variational
methods have been extensively used for determination of
effective elastic moduli of FRM (e.g., [51). ’

In the course of the present work, it has been found that
variational methods can also be used for inelastic problems
such as the present one to obtain bounds on effective secant
moduli. The main ingredients of the method are:

(a) Construction of an extremum principle in terms

of an energy integral such that the true energy
is the minimum of the integral.

(b) Expression of the true energy in terms of effec-
tive secant modulus.

(c) Establishment of admissible fields to obtain a
value of the energy integral which is larger than
the true energy, thus obtaining a bound for Gi.

The work involves complicated developments and deriva-
tions which are given in Appendix C. Here only the end result
for a lower bound on G: will be given for a special geometry
of FRM which is known as composite cylinder assemblage. This
geometry has been described in detail in {1, 5] and consists
of an assemblage of composite cylinders of variable sizes
which are joined together so as to fill the whole volume of
the composite. In order to fill the whole volume, composite
cylinders vary from finite to infinitesimal size. This geom-
etry has been used to advantage for elastic FRM to obtain
simple expressions for effective elastic moduli which are well
verified by experiment [1, 5]. In the present case only a
lower bound on G: has been obtained for the case in which the
exponent n in matrix stress-strain relations is n=3.

It has been found that with this exponent and proper
choice of Ty, epoxy shear stress-strain relations can be well

described. The result for the lower bound is:
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+
G 1+cC

G > G = i-c
A< CA-) 2,3
1+ (Ls)2 3tldcte 32 (2.3.9)
' 3(1+c)
Y
where
¢ - volume fraction of fibers
G - elastic (initial) matrix shear modulus
T§ - Ramberg-Osgood matrix stress parameter, and
T~ applied shear stress.

It follows from (2.3.4) that:

Elz < T; (2.3.10)
ZGA(-)

In other words, with the lower bound on G an upper bound

A
on €y, variation with Ts is obtained.
If (2.3.10) is explicitly written in terms of (2.3.9) it

assumes the form:

- 2,3 (2.3.11)
12 < Ti+c 1+ (l&)z 3+13c+c“+c
2Gl__c T 3(1l+c)

Recalling that for the composite cylinder assemblage
with rigid fibers the axial elastic shear modulus GA is given

in [1, 5} as:

(2.3.12)

19.



and comparing  {(2.3.11) with (2.2.6) with choice of exponent

¥=3 (which is the same as matrix exponent), it is seen that:

12 3(1+c) 3

3

T
y 2 :
3+13c+c+c (2.3.13)

> T

2
Y

The prediction of (2.3.11) has been compared with numeri-
cal results obtained in [9]. Figure 6 shows the variation of
the right side of (2.3.11) in comparison with the results ob-
tained in [9] fér a fiber volume fraction, c=0.5. Since re-
sults of [9] were for boron fibers in epoxy matrix, the rigid
fiber approximation is accurately valid. It is seen that the
results are reasonably close. It should be noted that the
geometry of [9] is a rectangular fiber array which is quite
different from the composite cylinder assemblage geometry.

The results defined by (2.3.12) and (2.3.13) used in
equation (2.2.6) yield the result plotted in non-dimensional
form in Fig. 7. The shear strains are normalized with respect

to the matrix elastic strain, er' at the yield stress, Ty

_ Yy (2.3.14)
Y ye G

It is natural to also consider the establishment of an
upper bound on G:. Unfortunately, however, this ié a matter
of formidable difficulty for the reason that inversion of
(2.3.6) to.express stresses in termé of strains leads very
complicated expressions. Further discussion of this d4iffi-

culty is given in Appendix C.
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3. ANALYSIS OF NON-LINEAR LAMINATES

3.1 Formulation

The general problem to be investigated in the present
chapter is as follows: given the inelastic stress-strain re-
lations of uniaxially reinforced laminae determined theoreti-
cally or expefimentally, and a laminate composed of such
laminae and loaded on its edges by uniformly distributed loads
in the plate of the laminate:

(a) What are the stresses in the various laminae?

(b) What is the macroscopic strain response of the

laminate to the loads?

This problem has been extensively investigated for elastic
laminates, and the results obtained will serve as important
guidelines for the present much more complicated problem. It
is therefore very helpful to first briefly review the theory
of elastic laminates.

Let the laminate be referred to a fixed system of coord-

inates x x5 as shown in Figure 8. This will henceforth

1 X2
be referred to as the laminate coordinate system.

Any lamina, kth say, in the laminate will be referred to

(k) (k) (k)

X X, where x

2 U 1
perpendicular to fiber direction.

its material system of coordinates ¥y
(k)
2

is in fiber direction, x
and x5 is the same as the laminate xg, Figure 8. The reinforce-

ment angle 8. is defined by:

k

8 =¥ (xq, xl(k)) =¥ (x,, xz(k)) : (3.1.1)

Let it be assumed that the laminae are in states of plane stress.
It will be later explained under what conditions this is true.
Then the stress-strain relations of a single lamina referred to

its material coordinate system are written in the forms:

(k) _ (k) (k)
€xg = 5 aBys %ys (@)

(3.1.2)
c (k) _ §(k) 5 (k). (b) 21.



where (3.1.2a) is in tensor notation with range of subscripts
1, 2 and (3.1.2b) is in matrix notation. It should be noted
that (3.1.2) represent the stress-strain relations (2.1.9 -

.10), i.e.,

(%) k)

e °%1 _a 5 (k)
1 X) §3) 22
Ex Ep
- V(;) o 5 )
- - 22 (3.1.3)
€22 SRS S B )
E
A T
(k)
k) %12
12 x)
26 ;

Let a laminate of rectangular form, Figure 8, be loaded

by a uniform edge stress:

op1ttar %) = 0,9

og,,(+a, x,) = 0,2

12" 72 12 : (3.1.4)
olz(xll ib) = 015
Gy(xy, #b) = 0,5

The elasticity solution of the iaminate must satisfy the
following requirements:

(a) Equilibrium of stresses,

(b) Traction confinuity at laminae interfaces,

(c) Boundary conditions (3.1.4), and

(d) Displacement continuity at laminae interfaces.

It is assumed that the stresses in any lamina are con-
stant, but different in the different laminae. The condition
(a) is satisfied within any lamina. Since the assumed lamina
stresses are plane there are no traction components on laminae
interfaces. Therefore (b) is satisfied. ‘

The boundary conditions (3.1.4) cannot be strictly satis-
fied in each lamina but only in an average sense. To do this

lamina stresses oég) referred to lamina material coordinates

22.




are transformed to laminate axes. The stresses in the kth
lamina referred to laminate axes are denoted (k)oaB' The

transformation is given by:

(k)oll=o{§) coszek +o(§% sin29k ~- 20 {g) cosek sin 8y
(k)022=0§§) sinzek (E; coszek + 20{5) cosek sin ek (3.1.5)
(k)o 24 {?L é§351n6k cos8, + o(k)(cos 9 - sin2ek)

or in matrix notation:
k) 5= gtk) 4 (k) (3.1.6)

Let the edges of the laminate be loaded by constant forces
per unit length Tll’ T22, le and define the stresses (3.1.4)
as edge averages over the laminate thickness h:

°i1_ T),/h
0%.,= T.,/h '

22= T22/ (3.1.7)
07,= Tyo/h

Equilibrium requires that:

K
)

T o] = g?°
kop 117 %11

K

X (E) = g3
ko1 22 %22 (3.1.8)
1; 0") =07
oy 127 %12

where K is the number of laminae. Written in terms of stresses

o(k) using (3.1.6), we have:
of
K
k=1

where 0° denotes the stresses O&B at the edges. 23.



Replacement of the boundary conditions (3.1.4) by (3.1.6)
is an approximation of Saint Venant type. Thus, there must be
expected edge perturbations (among them interlaminar shear) on
the stresses predicted by laminate theory.

Equations (3.1.8) are .three equations for the 3K stresses

éé), cééz..oég) in the laminae. There are needed én additional

o}
3(K-1) equations which are provided by displacement continuity
at lamina interfaces, requirement (4). '
Since the stresses in each laminae are by hypothesis uni-
form, so are the strains. Therefore, displacement continuity
is ensured if the lamine strains in adjacent laminae, referred

to laminae coordinate system are the same. Thus:

(k) {k+1)
o fi1 T En
(k). . (k+l) T k=1,2.....k
o f22 : 22 o (3.1.10)
(k) _ (k+1) '
€12 7 €12

Equations (3.1.10) are the additional required 3(K-1l) equations.
(k) '
o.B

to laminae material axes. To do this it is noted that:

They will be written in terms of laminae stresses ¢ referred

(), - gtk) (k)

which is just a transformation of (3.1.6). From (3.1.2b):

(k) e(k)

e - (k) (k) (3.1.11)

s

and inserting the last result in (3.1.10):

(k) S(k)O(k) - g(k+l)§(k+l) g(k"‘l) k=l,2 ..... k (3.1.12)

g

Equations (3.1.9) and (3.1.12) are 3K linear equations for the
3K stresses in an elastic laminate, with K layers.
It should be carefully noted that the analysis given above

is based on plane stress conditions in individual laminae. This
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is a valid assumption if:

(a) The loads on the laminate are statically equiva-
lent to in-plane forces (membrane forces) and pro-
duce neither bending nor twisting moments, and

(b) The laminate has a certain stacking sequence of
laminae which defines a so called balanced or

symmetric laminate.

This stacking sequence is an arrangement in which the
laminate has a middle plane of geometrical and of material
symmetry. The laminae are arranged in paris with respect to
the plane of symmetry. The laminae of such pair have egual
thicknesses, same distances from middle plane, and are of
the same material with same angles of reinforcement.

In a non-symmetric laminaté application of membrane
forces will in general produce bending and twisting of lam-
inae and thus a plane state of stress will not be realized.
The symmetric laminate is, however, sufficiently versatile
to cover most cases of practical interest.

Let it now be assumed that the laminate is inelastic but
still fulfills the conditions of symmetry and pure membrane
loading. 1In this case the only equations which necessarily
change in the preceding development are the stress-strain re-
lations of the laminae, (3.1.2), which must be replaced by in-
elastic laminae stress-strain relations are given by (2.1.7)
where the compliances are now functions of the stresses. These
compliances now replace the elastic compliances in (3.1.2)
which thus become non-linear.

It is convenient for ‘later purposes to rewrite (3.1.2) in
the inelastic case in different form. To do this the strains
eég) are first split into elastic strains (2.1.9) and inelas-
tic strains (2.1.11). Preceeding to (3.1.12) this equation

assumes the form:

2(k+l)§l(k+l)g_(k+l) _ g(k)gl(k)g(k)

g (KHLGILUKHL) (k1) g (K) 11 (K)o (k) (3.1.13)

k=1, 2 ..... k
25,



where

sl(k) - elastic compliance matrix of kth laye:

Sll(k)- inelastic part of compliance matrix of kth layer

k) - gl0o)

" Sll(k) ' (3.1.14)

Equations (3.1.13) are now written out in component form
with notation (2.1.10), (2.1.12) for compliances:

(k+1)(sl (k+1)cos o, +Sl(k+l§1n 8

911 12 k+1)
1(k+1 i 12
+0,22(k+l) (sl (k+l)COS 9 1+522( ) sin ek+l)
k+1) .1 (k+1) . (k) G l(x) .2 1(k) _; 2
‘4°12( Syq  COS By qSind ) - 01y (S bos?e, +5),° siney)
S K)o 20 o120y, (k) (LK) .
955 (S12 cos 9k+522 sin ek) 4012 Sas cos ek 51n9k
_ (k+1) 11 (k+1 11 (k+1
= o171 (S éo Y +875 éln 9k+1)
k+1 11 k+1) 2 2 L (k1) 11 (k+1) .
+ 52 )(S (k+1) os CN l+s%l(k+1)51n 8,41 = 4015 Sya cos8, ,,5ind,
(k) (Sll(k)cos 9k+Sié (k)s:l.n 6 ) + 0 (k) (Sll (k)COS (3] +S]2hésln29k)
(k) g11 (k) : (3.1.15)
- 4o 015 Saa cosek51nek
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(k+1) l(k+l) 1(k+1) 2
11 (S sin ek l+S12 cos 6k+1

(k+1) l(k+l) 1(k+1)
22 sin 6 +1 + 522 cos ek+l)

(k+l) 1(k+l)
Oy2 " Sia cos8y K+1

1(x) cos2 Ok

+g (S

+4 sin®

(k) l(k)
11 (S n 8, + S],

1 (k)
sin ek + 822

(k) o1(k) L1(k) .
12 S12 544 cos ek sin 9

(k+1) ll(k+1) 11 (k1)
11 8y ek+1 + 81,

ll(k+l) ll(k+l) 2
2o (575 cos” 8

(k+l)sll(k+l)
12 44

(k)(sll(k)

(3.1.16)
(k) l(k)
955 (S os ek

+40

= ¢ k+1

(k+1 sin 9 +

*o k+1 t 523

k+1

. , (K) ll(k)
0Sy,q sindy o + 0y77 (8]

11 (k)

siné +S12

+4¢ cos 9 )
sin®e, +s21 (W cog?e 440 (K) g1 (¥D)

k 922 k" %%12 Sa4 cOoSsy

+1 Sinéy .,

J (k+1) l(k+1) SL(k+D)
opp  (8) Sy sindy

(k+l) l(k+l) l(k+l)
22 (S 822 ) Slnek +1 cosek+l

(k+1) .1 (k+1) 2
912 " S4q (cos™8y ., - sin’®

(k) J1(k)_ 1(k)
(s 12
1(k) (k) .1(k) _ 2
522 12 844 (cos e sin ek)
(k+1) 1l(k+1) 11(k+1) .
11 12 } sin8

(k+l)(sll(k+l) ll(k+l)
922 22

(k+1) 11 (k+1) 2
12 Sag (cos? Opey ~ SInTOL )

(k) ll(k) ll(k)
oy (Sl 12 ) 31n9

(k) 11 (k) _ J11(k)
22 12 22 ) 51n6k cos Gk

(k) ll(k) 2 a2 -
+20 44 (cos ek sin Gk) (3.1.17)

27.

cosek+l

+20 k+1)

S ) sind cosek

k
5 (KD (1L (k) _

+

) 51n9kcose +20

= - g (s +l_cosE)

k+1l

+0 ) s1n9k cosek

+20
+

cosek

+0 (S S



To these must be adjoined equations (3.1.9) which are written

here in components:

k
(k 2 (k) (k) : —
ki{olléos ek+022 sin ek 12'C°sek 51n9k)tk = oil h (a)
K ) 20 (k) (k)
ki{oll sin ek+022 cos e +20 12 cosek 51n6k) tk = 052 h (b)
K o (k) _ (k) (k) , .2 2
kZ{ 11 22 )cosek51nek+o12 (cos“8 x-sin ek)tk = qiz h (c)

(3.1.18)

We now consider special cases of interest. 1In the first
case the inelastic laminae strains have the form (2.1.13).
Then the right side of (3.1.15-.17) simplifies by setting:

sLL(K)_ 11 (k+1) _ (11(k)_ Gll(k+1) _ g

511 511 =515 = 8); =

SILOO gL (o0 0k,

552 522 22

L1O+1) | gll(k+1) ((k+1)  (k+1))

532 552 2 v 931

11(k) - 1l(k) ( (k) (k))

Say 44 Oaa 1

L1 (1) g110k+1) (o (k+1)  _ (k+1) (3.1.19)
S44 S44 o v Oy 70)

Once the stresses in the laminae have been obtained the
strains in the laminae, referred to laminate axes, are deter-
mined from (3.1.11). Since the strains in all laminae are
the same when referred to the laminate coordinate system, these
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are also the average laminate strains and thus determine the
inealstic response of the laminate.

In the simplest case the lamina material is assumed to
be inelastic in shear only. In that event we have in addition
to (3.1.19): |

(k) _ " (k+1l) _
S22 = S,, =0 (3.1.20)

and for Ramberg-Osgood presentation of inelastic part of shear

compliance:
(k) N, -1

el 1 12, K

44 2G (k) (k)

A Y
) - 1.

gll(k+l) 1 (012(‘+1))Nk+1 1 (3.1.21)

44 = e ey T

A y

In Ramberg-0Osgood representation (2.2.1) the inelastic parts

of the compliances assume forms such as:

. g (k) o (k) 2 1/2¢ L
11(x)_ 1 22 2 12 M, -
S5, < w )t — ] "k
E y
T y
5. (k) ) . L
1L(k) _ 1 22 .2 12 1/2 (N, -
A y y
(3.1.22)
(k+1) . (k+1) 20 )
11(k+1)_ 1 022 2, %12 2 .1/2 -1
S22 = D OkFIY L ) ¢ w1, ! M+l
T v y
(k+1) s (k+1) 2
11 (k+1). 1 922 2 12 2 . 1/2(N, -1)
2544 T e (KD L ) f e ) ! k
G o T
A y %
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3.2 Method of Solution

The equations which define the laminae stresses are (3.1.9)
and (3.1.13) in condensed form, or equivalently, (3.1.15- 3.1.17),
(3.1.18) in full form. To explain the solution method it is
simpler to write in terms of the condensed form. '
Define the matrices:
I_.-l(k+1)=9_(k+1)sl(k+1)

110 g (41) (11 (k1) ' (3.2.1)

LK) g 00 100

|®

L11(R) g k) gl1(k)

Then equs. (3.1.13) assume the form:

E1(k+l)g(k+1)_£1(k)g(k) - fgll(k+l)o(k+l)+Lll(k)o(k) (3.2.2)

to which are adjoined equs. (3.1.9) which are here rewritten:

K
r a®g ) _ o - (3.2.3)

k=1 -

The equations may be solved numerically by an iteration
method which proceeds as.follows: Consider equs. (3.2.2-3)
with the right side of (3.2.2) zero This defines a set of

stresses go(k) given by: '
k+ +
El(‘ l)gfk 1) _ El(k)g_o(k) - 0 » (a)
k=1,2 ..... k=1 (3.2.4)

‘K

P g(k) g_‘Ek) = oo (b)

k=1
Since (3.2.4a) contains only elastic compliances S'(k) it is

seen that the equations are linear and define the stresses in

an elastic laminate. Now insert the stresses go(k) into the

right side of (3.2.2) and define the stresses gl(k) by:
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El (k+l)g (k+l) _ Ll(k)o (k) = - Ell (k+l) [go (k+l)]o_,° (k+l) (a)

1 1
+£ll(k)[go(k)] go('k) (3.2.5)
K .
2 oMy ) | g (b)
k=1 - -

Equs. (3.2.5) defines {(hopefully) a new approximation gl(k)

which is the solution of a set of linear equations. The stresses

in square brackets in the right side of (3.2.5) are to emphasize

the stress dependence of the non-linear parts of the compliances.
The procedure just initiated can be repeated indefinitely.

In general:

E1(k+1)0_(k+1)_£1 (k)g(k) —_p11(k+1) (o (k+1)] o (k+1)
2+1 L+l T ) )
+_Iill(k) [g_(k)] g(k)
2 2 B (3.2.6)
K .
oz g(k)o(k) = go
k=1 TR+l -

This iteration procedure is quite easy to carry out with
aid of a computer. It replaces the soclution of a set of non-
linear equations by solution of a sequence of linear equations,
provided of course, that convergence is obtained.

It should be noted that the first iteration step does not,
necessarily have to start with equs. (3.2.4a), i.e., with zero
right side of (3.2.2). Any stresses ogk) which fulfill (3.2.4b)
can be used to -start the iteration with (3.2.5) and continuing
with the general iteration relation (3.2.6).

It is desired to obtain a laminate solution for only one
load system ¢° then it would seem most logical to start with
(3.2.4). But suppose there is a sequence of loadings A¢°,
2A0°...nAo . Suppose that a solution for (n-1) Ag® has been
obtained a;d that a solution for nAg® is desired. One possi-
bility is to multiply all stresses due to the load (n-1) Ag®
by the factor n/(n-1). The stresses thus obtained certainly
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also satisfy (3.2.6b) because of the linearity of these equa-
tions. They will generally be reasonable starting values
g (k) for the iteration.

° This method of iteration to obtain a solution was found
to work well for many sample problems; however, there were
cases in which the solution did not converge. Attempts to modi-
fy the recurrence relations to overcome this problem met with
only partial success. Thus, an alternate procedure for solu-
tion was defined. The solution was obtained by application of
the Newton-Raphson method.

The set of 3K nonlinear equations represented by equs.

(3.2.2-.3) may be presented in the form:

K
- - 2.7
F, (0% =0 n=1,2...3K (3.2.7)

.The function Fi is expanded in a Taylor series about an arbi-
trary set of initial stresses which may be taken as the solu-
tions of the elasticity problem. Considering only two terms

of the series, it is found that

o

o OF; x
Fi = Fi + X Acmn = 0.
30 (3.2.8)
mn
or
. ) .
[+] F -
1'k = g, K —B g7l g ° (3.2.9)
J 1] 80..k m
1]

where o?. is the corrected solution obtained from the assumed

k
ij
is repeated until the result is obtained within a desired ac-

solution °o?j. Using o as the initial guess, the process

curacy. A recurrence form of equation (3.2.9) to obtain the
stresses at t+l cycle from t cycle can be constructed as
follows:
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k X OF, (3.2.10)

Boij
After the stresses otj are obtained for all layers of the
laminate, strains for any layer k in terms of laminae axes
can be computed using equs. (3.1.3). Strains in terms of
the laminate axes can be obtained using the strain trans-
formation law.
This analysis has been developed into an efficient

computer program. A description of the program including
a listing, is presented in Appendix E.
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3.3 Numerical Results

The compdter program which has been developed under the
present study has been utilized in the analysis of a variety
of different composite laminates. The initial studies using
the computerized analysis were directed at presenting a compari-
son between the results of the present analysis and those of
previous analyses, notably that of Ref. 9. (The present results
were also compared to available experimental data, primarily
those of Ref. 6 which had also been used for comparison with the
analytical results in Ref. 9.) The objective of this phase
of the numerical study was to determine whether the present
results, which can be obtained with minimal computer usage,
compare well with those of the more exact and complex analyti-
cal results in Ref. 9. The results of this comparison are highly
encouraging, as will be shown below, and support the utilization
of the present analysis as an efficient design tool.

In the second phase of the design numerical studies, con-
sideration was given to examining the sensitivity of laminate
results to individual properties of the layers. These para-
metric studies are presented for several classes of typical
laminates.

A series of laminates of boron/epoxy composites for which
experimental data had been obtained in Ref. 6 were examined
ahalytically in Ref. 9. In Figures 9 to 15, results of the pre-
sent analytical method are added to the comparison of experimen-
tal results of [6] and analytical results of [9]. For example,
.in Fig. 9, the experimental stress-strain curve for a 0-90 boron/
epoxy laminate is compared to the analytical results obtained
in Ref. 9 and in the present analysis. Both analytical re-
sults coincide; both show slightly less inelastic'strain than
the experiment. The solid point on the curve indicates the
stress level at which fiber fracture is computed to occur in
one of the layers of the laminate.

The shear stress-strain curve used in the present analysis
was the best fit Ramberg-0Osgood curve having an exponent n=3.
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The values of modulus and yield stress obtained from the least
squares fit are shown on the figure. A similar result is shown
for the unidirectional tension +45° laminate in Fig. 10. Here

it is seen that the two analytical curves are similar, although
the agreement is not as close as in Fig. 9. Experimental data
reflect a substantially higher degree of inelasticity than
either analytical result. The present analysis shows a higher
degree of inelastic strain at the higher stress level than that
of Ref. 9. However, the reverse is true in the comparison of

the two analytical results shown in Fig. 11 for a +30° laminate.
The present results were obtained with a linear stress-strain
curve in the transverse direction within each of the layers.

The computations were made in this fashion because the transverse
stress-strain curve of Ref. 9 does not show a significant degree
of inelasticity.

Figure 12 presents results for the case of a quasi-isotrop-
ic laminate (0/+45/90) of boron/epoxy. Both the present result
and that of Ref. 9 show a relatively insignificant amount of
inelasticity. Again, the experimental data show a greater
inelastic effect. Here the predicted failure strain level is
in good agreement with the experimental failure strain level;
however, there is a significant difference in the failure
stress level. A similar result is presented in Fig. 13 for
the quasi-isotropic laminate formed from the 0/+60° configura-
tion.

Computations ‘performed for the present study for laminates
having fibers in several directions, including the loading direc-
tion, for a simple unidirectional load have shown a relatively
small amount of inelastic strain. Another example of this is
presented in Fig. 14 for a 0/+45° laminate. Here, however, the
agreement of all the analytical methods and the experimental
method is very good.

The final comparison taken from Ref. 9 is presented in
Fig. 15 for a laminate having'fibers in three different direc-
tions and a tensile load applied ét some intermediate angle.

The present analysis agrees reasonably well with the results
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Ref. 9. The discrepancy between the -failure load predicted

on the basis of fiber failure and the experimentally ob-
served failure stress is quite substantial., It is possible
that fialure in laminate of this type caould result from
shearing or transverse stresses within the individual layers,
and thus, not be a result of tension in the fiber failure.
This mode of failure has not been treated in the present
computer program. The mode of failure observed experimentally
is not known to the authors.

The experimentally measured response of a multidirectional
laminate to an applied shear stress has been reported in Ref.
13. Comparison of the experimeneal result with the theory of
Ref. 9 was presented in Ref. 14. Computations for this case,
made using the present analysis and the prior analytical re-
sult (Ref. 14), are compared to the experimental result in
Fig. 16. Again, correlation between the two analytical re-
sults is good, agreement between analytical and theoretical
results is reasonably good with the experimental observation
show1ng higher inelastic strains and lower tangent shear moduli
at the very high stress levels.

The conclusion of these comparisons with analytical and
experimental data seem to justify the adoption of the present
computer program as a useful engineering tool for the design
and analysis of composite laminates. However, it appears that
further study of the failure region 1s required.

Parametric study of the 1nfluence of various lamlnate
geometric and mechanical properties has also been explored.
Fig. 17 shows the results obtained for a 0/+45° laminate in-
dicating that the inelastic respense in the transverse direc-
tion can become significant at higher stress levels. Failure
due to fiber fracture under a transverse stress applied to
the laminate occurs at strain levels larger than those blotted
in Fig. 17. In the quasi-isotropic laminate haviné four fiber
directions, (0/+45/90) the degree of inelasticity in the longi-
tudinal and transverse directions is of course the same and is
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in both cases very small. It is to be anticipated, on an
intuitive basis, that the maximum degree of inelastic response
would be observed for a stress applied midway between two of
the fiber directions on this quasi-isotropic laminate. The
stress-strain curve for this latter case is also shown in Fig,
18. Although the inelastic strains for this. case are not
significant there is a large difference in the predicted
failure stress levels based on stress in the fiber direction
for the two cases. It is worthwhile to emphasize that the
quasi-isotropic laminate need not be isotropic in its strength
characteristics.

Because of the directional strength characteristics inter-
esting effects may be expected for combined stress cases. Some
results of the exploration of this question are presented in
Fig. 19 where the four direction quasi-isotropic laminate is
subjected to combined stress state with respect to a 22-1/2°
axis of symmetry. This laminate shows high strength under both
the unidirectional load and shear load by itself. The combined
stress case for equal values of applied shear stress and axial
stress results in fiber failuré, and therefore, laminate failure,
at a substantially lower stress. The stress-strain curve prior
to failure is not affected significantly by the presence of com-
bined stress. The quasi-isotropic laminate having fibers in
three directions (0/+60) is examined in Fig. 20. The sensitivity
of this laminate to the Ramberg-Osgood parameters for the indi-
vidual ply had little effect upon the stress-strain result. In-
deed as an extreme example of this variation all lamiates stiff-
nesses except the axial stiffness were equal to zero. Enforcement
of the Kirchhoff-Love plate assumptions for this case results
in the so-called netting analysis. The response for this net-
ting case, which is linear, is shown by the dashed curve in
Fig. 20. Even with this extreme assumption, matrix inelasticity
does not introduce a significant amount of inelastic strain.
Experimental data for comparison with this result are not easily
available, however Ref. 17 does present a stress-strain curve

for this case which shows a transverse failure stress for the
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quasi-isotropic 0/+60° laminate which is about 60% of the
fa;lure stress in the axial direction. Also, the inelastic
strain at failure is approximately 30% larger than the elas-
tic strain associated with the failure stress level. The net-
ting analysis result presented here suggests that in order to
obtain such a strain, one might have to consider that the
axial stiffness, either in tension, compression or both; or
that other effects not considered in the conventional lamin-
ate analysis, such as interlaminar or transverse shear de-
formations, might contribute significantly to the overall
laminate deformation.

The influence of the characteristic stress levels for
transverse stress and axial shear of the unidirectional layer
of a boron/epoxy material is examined in Fig. 21. The measure
of this effect is taken to be the influence upon the stress-
strain curve for the unidirectional tension of +30° laminate.
The strong sensitivity to the characteristic axial shear
stress Ty and the relative insensitivity to the transverse
;haracteristic stress oy for the R-O representations is
illustrated in the figure. .A similar comparison made for a
boron/aluminum laminate of the same geometry subjected to
uniaxial applied stress is shown in Fig. 22. Similar sensi-
tivities are observed for this case. Boron/aluminum laminate
response under transverse applied stress with the same values
of the Ramberg-Osgood parameters is shown in Fig. 23. Here
the fiber failure criterion did not come into play and thus
the computations were extended to rather large strains in
matrix. It is clear, that for this casé, the failure criterion
based on other stress-strain components is required. The exam-~
ination of the computer print-out permits one to terminate
the stress-strain curves at some stress level prior to fiber
fracture depending upon the choice of the failure criterion.
This can be done rather readily. The choice of the failure
criterion is discussed in Appendix D.

The lamina properties for boron/aluminum are used to
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analyze a 0°/+30° laminate under combined loading. These re-
sults are shown in Fig. 24. Axial stress-strain curves are
presented for varying ratios of axial shear stress to axial

tensile stress.
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4. CONCLUDING REMARKS

Current approaches to the definition of design allowable
stress for advanced fiber composite laminates are based upon
the utilization of extremely conservative criteria. These limit
the laminate to stress levels below which no significant démage
of any kind occurs. The utilization of overly conservative de-
sign criteria can negate much of the potential for effective de-
sign utilizing advanced composite materials. The heterogeneous
nature of these materials is such that a variety of possible
damage modes exist. Thus, matrix cracking or yielding, fiber
fracture, debonding, and other inelastic effects can all occur
in local regions at relatively low average stress levels. These
nonuniform and nonlinear effects'greatly complicate the problem
of establishing reliable design allowables. In the present pro-
gram, the problem of nonlinear laminate behavior resulting from
nonlinearities in the behavior of the matrix material was studied.
The objective of the program was to develop an understanding of
the inelastic behavior of composite lamiriates and to develop a
computer program which will be used as an engineering tool in
the design of fiber composite laminated structures.

The method of approach utilized herein was to adopt a Ram-
berg—Osgood representation of the nonlinear stress-strain be-
havior and to utilize deformation theory as an adequate repre-
sentation of the material nonlinearities. The problem was viewed
on two levels. First, the relationship between the constituent
properties and the stress-strain response of a unidirectional
fiber composite material was studied. For this problem, the
primary attention herein was directed toward the axial shear be-
havior, in as much as experimental data had indicated that it is
this type of load which results in the most significant nonlineari-
ties in material behavior. For this case, an expression was estab-
lished relating the composite average-stress/average-strain curve
to the fiber moduli and the matrix nonlinear stress-strain curve.
This expression, which was developed as a lower bound, was found
to give good agreement with the more exact results obtained by
40.




applying incremental plasticity theory and using a numerical
finite element analysis to the assessment of the material be-
havior (Ref. 9).

The second level of approach treats the interelationship
between the properties of the unidirectional layers and those
of the laminate. For this case, one may consider that the
starting point is a nonlinear stress-strain curve for trans-
verse stress, and for axial shear stress, alone, and a linear
stress-strain relation for stress in the fiber direction. The
nonlinear lamina stress-strain curves can be modeled by proper
selection of the Ramberg-Osgood parameters.

In the present study, unlike other formulations an inter-
action expression was formuléted to account for simultaneous
application of axial shear and transverse stress. A laminate
having an arbitrary number of oriented layers, and subjected
to a géneral state of membrane stress, was treated. The results
of this analysis were programmed into an efficient computer
routine for numerical evaluation of arbitrary laminates. Results
obtained show good agreement with those of previous complex
numerical methods utilizing incremental plasticity theory.

Certain limitations connected with this program should
also be discussed. First, deformation type stress-strain re-
lations have been used; hence, it is implicit in this result
that the stress and strain values obtained for any given set
of loads are functions only of those loads and not of the
loading history. On the other hand, if’points are computed for
intermediate values of loads, following different load paths,
then different intermediate conditions will be obtained. Thus,
the question is raised as to what is the accuracy of the results
obtained. for paths which do not yield proportional loading. It
is known that for local proportional loading, the deformation
theory result is the same as that for the incremental theory.
In the laminate, local proportional loading does not exist,
in general, even when the external loading is proportional. How-
ever, the assumption is made that the deformation theory will
yield an approximation which is satisfactory to generate a
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rational engineering tool. This can only be assessed by com-
parison with an exact analysis, or since this does not exist
for the case of arbitrary loading paths, perhaps by comparison
with experimental data.

Compapisons of the present results with experimental data
tend to show moderately good agreement. There are, however,
cases in which experimental results show a higher degree of
inelastic strain than predicted by the present analysis. These
experimental data are quite limited and may be insufficient
for drawing conclusions in this regard.

The question of failure criteria incorporated into the pre-
sent analysis required further consideration. The present
analysis obtains more accurate representations of the stress
components in the individual layers than have been obtained
from elastic analyses. Hence, the use of these stress components
in any failure criteria should represent an improvement in
failure prediction

In addition to a description of the methods of analysis,
and of the numerical comparisons which have been carried out,
the present report also presents a description of the computer
program for study of nonlinear behavior of laminates in suffi-
cient detail to permit the utilization of this program by
others. '
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APPENDIX A

SYMMETRY SIMPLIFICATION OF NON-LINEAR STRESS-STRAIN RELATIONS

The most general inelastic stress-strain relations of the
deformation type are of the form

i3 T Sijk1 k1 (1)
where Sijklare functions of the stresses. Let it be assumed

that the material is transversely isotropic with x

1 axis of.
symmetry. Any rotation about x, changes ¢,

. and o,. into €',
, 1 ij ij ij
and o© ij° Then the condition of transverse isotropy demands
that
1) . ] :
€ i3 % Sijx1 % x1 (2)

where Sijkl in (1) and (2) are the same. To fulfill this 1last
requirement it is necessary that Sijkl be functions of stresses

only through stress expressions which are invariant for rota-

tions about the Xq axis.

they are given by, [15]

There are five such invariants and

2 2
Iy =9%11 I, = 0,7%93; I, =05 %93 (3)

_ 2 2 _ ) 2 2
Iy = 1/2(0y,-043) 7420, I = 1/2(0,,=033) (0;,7-0,37)+20,,0,39,3
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Thus

Sijk1

= Sisx1 Iy

I2,

I

30 1

41

Is)

It follows that for rotations around the X axis of

symmetry the sijkl

behave as constants.

symmetry reduction of (1) to transverse isotropy is just

as in elasticity.
The reduction may be performed in following fashion:

rotation of angle & about the Xy axis, the stress tensor o,

transforms into Olij

11

22
33
23
12

13

911

1/2

172

1/2

912

%12

(022

+'0

(o22 33)

(033
cos 8 + 0o

13

sin & + 013

-.1/2

sin 6

cos 8

(

- 022)sin 280 + o

+ 033) + 1/2 (022 -

%22

23

in the following fashion

033) cos 20 + 0O

- 033) cos 20 - @O

cos 29

Consequently, the

23

23

(4)

For

ij

sin 26

sin 286

(5)

The same transformation relations obviously also hold for

strains., If the transformed stresses and strains are intro-

duced
sin ©
These

nents

from Chapter 2 of this report.
appear in the latter but this obviously makes no differences

in the derivation.)
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into (2) then coefficients of cos 26,
and remaining terms independent of 8 must be equal.

sin 26, cos & and

equalities result in relations among the various compo-
which reduce the stress-strain law to the form (2.1.4- 5)

(Average stresses and strains




APPENDIX B

PLANE STRESS-STRAIN RELATIONS OF FIBER REINFORCED MATERIAL IN
GENERALIZED RAMBERG-0SGOOD FORM

The purpose of the present appendix is to arrive at
equs. (2.2.7). For convenience in writing, overbars on
stresses and strains will be omitted.

The present development is guided by isotropic J2 theory
for deformation type plastic stress-strain relations. The basic
assumption of this theory in the isotropic case is that the
plastic strains have the form

€5 = f(JZ)sij (1)
where Sij is the stress deviator and

is its second invariant. )
It is instructive to work out the form of (1) for Ramberg-
Osgood type stress-strain relations. Suppose that in pure shear

the stress-strain relation is

" _ 012 012 n-1 (3)
812 = — X+ (?——) ]
2G Y.
Now in pure shear it follows from (2) that
_ 2
Ja = 912
Therefore (3) can be written in the form
" %12 /J2 n-1 S
€12 = 3G 1+ (;;—) ] (4)

which is in the form(l). Consequently, in the general case of

three dimensional stress and strain

S. . vJ, n-1
" = _ll _2n
€i5 7¢ L+ (Ty ) ] (5)
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It should be emphasized that there is nothing fundamental
about '(1). ‘It is an assumption which states that the plastic
strains can be represented by the stress deviator components
multiplied by a function of a quadratic expression in thé stress-—
es which is Iy The choice of J2 for a quadratic expression
is not arbitrary but may be arrived at by isotropy arguments.

In an anisotropic material it may be assumed by general-

ization that plastic strains are given by

"
= 8,

eij 14 £f (L) : (6)

Where L is some general quadratic function of the stresses. This

assumption will form the basis of the present development.

Consider the stress-strain relations (2.1.13). It
is assumed that 522 and 524 functions of the most
general quadratic form in 959 and 0yo-
Thus
s = s, (a5..%2 + B3 . 5. + c5,.%)
22 22 22 22 “12 12°
" - " — 2 _ - _ 2 . (7)
Sgqg = Saq  (BOy" + Bo,, 01, + Copp") :

It should be noted that the material reacts in same fashion
to positive or negative shear stress,.therefore also in same
fashion to some 522 together with positive or-negative shear
stress. However, the middle term in the guadratic changes
sign with shear stress. Therefore, this term should be omitted.

Now rewrite (7) in form

N 2 - 2 2 - 2
220 T E;-fap (07 97 + BT 07
2 . (8)
w1 2 - 2 2 -
S44 = Y fgq (@7 05,7 + BT 0y, )
GT
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where f22 and f44 are nondimensional functions and ¢ and 3
have dimensions of reciprocal of stress. 1If 312=o the first of
(8) assumes the form

w1 2 - 2
52 ‘E;fzz (a” ©y,7) (9)

For one dimensional o from the Ramberg-Osgood stress-—

22 7
strain relation (2.2.6a)
o
" 1 22, M-1
s = & (/)
22 ET o !
which can be written as
' g M-1
" 1 22,2, —=~ . .
S0 = F (172 (10)
T y
It follows from (8) and (10) that
2 1
a = —3 (11
o 2 )
y

and the function of f22 is determined as (M-1)/2 power.
In similar fashion, when5}2=0 , the second of (8) assumes
the form

w1 2— 2
Sas T 76, Fag 00 (12)

From the Ramberg-Osgood relation (2.2.6b) for one dimen-

sional 2P _

o

" < 1 12, N-1
Saa =35 (T
T 'y
which can be written as
o 2 N-1
" -1 12 -
S44 = G [(_-T ) 12 (13)
. T Yy

It follows from (12) and (13) that

2 1

B = ——
T 2 {14)
Y
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and the function f44
Consequently (8) now assumes the form
O, 2 o 2 M-1
" 1 2 2 —_
s = [(=—=) + (/) 1 2
E
22 T Oy Ty

[

o

" 1 22 12 —
s = g [(—=) + (/=) ] 2

44 2GT oy . T

is determined as (N-1)/2 power.

(15)

Then (2.2.7) follows from (15) and (2.1.13).
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APPENDIX C

1. EXTREMUM PRINCIPLES OF DEFORMATION THEORY OF PLASTICITY

i. Principle of Minimum Potential Energy

Let
935 T Cijk1 fx1 (1.1)
where Cijkl are functions of the strains. The strain en=rgy
density is defined by the path dependent integral
€ €
w o=/ o(g_)de 1.2
- e=0 M) +J (1.2)
where £ is a concise notation for Eij . The strain energy
e .

U of a body of volume V is defined by

vt = s ufav ' (1.3)
Let the surface of the body be subjected to the boundary con-
ditions

u® on S (1.4}

ui(S) % u

Ti(S) = T°i on ST
and let the body forces vanish. The potential energy U
) P
is defined by

= € - °
Up S w-av IST T° u, (1.5)
Define an admissible displacement field ﬁi(x) by
<~ _ .o
u; u i on Su
ﬁi(g) continuous everywhere (1.6)
Associated with {3, are the strains ¢g. . derived from it by

. 1 ij
the usual relations.
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£
e N .
W =/ Oi] deij : ) (1.7)
£=
where
i = i ® fa o (1.8)
Define
- = € - o L 1.9
Us S Eav ISTT ;B,as (1.9)

The principle of minimum potential energy for the present case

thien states that

Up 2 Up_ ' : . : (1.10)

equality taking place if and only if

In the event that displacements are prescribed over the
entire surface, the surface integral in (1.9) vanishes.Then

the principle reduces to that of minimum strain energy

~

vt > Ut (1.11)

ii, Principle of Minimum Complementary Energy
Let

- (1.12)
€15 = Sijk1 (@) %y

where si. are stress dependent compliances

jkl
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Define the complementary energy density w° by the path
dependent integral
o]

o - (1.13
W J Eijdgij )

0=0 .
Let the surface of the body be subjected to the boundary con-
ditions (14) and let the body forces vanish. The complementary

energy UC is defined by

_ 01y o ©(1.14)
Up = S W av fSuTiu ; @s |

Define an admissible stress field 5ij by the following
requirements

Qi

Ti = 0..n. continuous everywhere (1.15)

= o .
Ti(S) T ; on ST

Define the complementary energy functional UC by

S G4 A (1.16)
UC va av fsu Tiu idS
where- ~
g _ (0 = P (1.17)
W ! eijdoij
5=0

€i5 = 8151 @ O
Then the principle of minimum complementary energy states that
Ue 20¢ (1.18)
equality occurring if and only if

93 T %ij

If tractions are prescribed over the entire surface, Su=0,

the principle reduces to

~ (1.19)
© > °
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For proof of these principles see e.g. [16]. An interesting
application to obtain approximate solutions has been given
in [17}.

iii. Specialization of the Principles to Axial Shear with

Ramberg-Osgood Stress-Strain Relations

In the case of axial shear of a uniaxially fiber reinforced

material the only surviving stresses are

6. = 1 0., = T ' (1.20)

where 1 indicates fiber direction. Denote the associated shear
strains by ’

- . _ (1.21)
€127 2 €137 &3

Then the generalized Ramberg-Osgood stress-strain relations,

Appendix B, (5) assume in the present case the form
T n-1

T
[ 1+ (;—) ]

y

\S]

m
1]

N
N
@

n-1
[1+ () ]
b4

=
w

™
1l

w
N
9]

(1.22)

+ 1,2 /JZ

A
]

'-Iﬁ '
N

In the present case

(1.23)

o..deij = 2(12d52+13da3)

52.




Inserting (1.22) into (1.23) and using the relation

1dt = Tzd T2+T3d 13

it is easily shown that

n-1
[1+n (x5 1 dr (1.24)
y

g..de .. =
1] 1]

al-

To compute Ww® as defined by (1.2) it is necessary to
integrate (1.24) from zero to some state of strain €2, 3°
But it should be noted that (1.24) is expressed in terms of

the variable T only. Now T can be expressed in terms of

€

strains in following fashion. Define

£ =v_ 2 2 (1.25)
€ + € R
2 3 .
It follows at once from (1.22) that
n-1
_ I T o (1.26)
£ = e (1 + (T ) 1
Yy
This relation defines 1 as a function of € . Conse-

quently, w® assumes the form

we _1 T (8) < n-1
TG J T [1+n (=) ]adr
° T
y
which is easily integrated to yield
2 n-1
€ -1 2n_ (T (1.27)
W Mo ) ) |
Yy
T =1 ()

According to (1.3) the strain energy U® is then given by
the volume integral of (1.27). Note however that it is very
difficult to express U® in terms of strains since this requires
the solution of (1.26) for tv in terms of €. In general it is
not possible to do this analytically. This places a severe
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limitation on the use of the principle of minimum potential
energy or of minimum strain-energy with Ramberg-Osgood stress-
strain relations.

Next we Eonsider the principle of minimum complementéry

energy for axial shear. Since there are only shear stresses
8]

Tyr T3, and shear strains Y e3 the integrand in W .y
(1.13), is given by )
= : (1.28)
eijdoij = 2(€2dT2+€3dT3)
It follows from -(1.22-.23) that (1.28) is given by
n-1
=X I
€3993 =g L+ (&) 1 at.
Integration of this expression from 0 to Tt yields
2 n-1 :
(o] T 2 T - :
v s li+tam &) ) ( )

Expression (1.29) now enters as the integral into the volume

integral of UC, (1.14). - .
We now examine the meaning of an admissible stress field

Tz, ?3 in the present case. The only surviving equilibrium
equation is -
2 3 _

—_—= 4+ — =0

sz 3x3
The traction components are

T1 = 12n2f13n3

~ ~ (1.31)

Ty = Tom

T3 = T3nl )

‘ We shall be concerned with cylindrical boundaries in fiber

reinforced materials whose generator is in x direction. On such

1[
a surface n1=0. Therefore the only surviving tiaction. compo-

nent on such a surface is

T1 = Tn = T2n2+r3n3. i ) (1.32)
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Consequently an admissible stress system T3, %3 must satisfy
(1.30) and the value r°n of Tn wherever prescribed on the

boundary.
The complementary energy functional (1.16) assumes the form

= O ayv - T o
Uy = JyWav fS T, u°,ds (a)
~ ~2 Y . n-1
g _ T 2 T
oo Brmr &) (b)
(1.33)
¥o= /I 2, s 2
5 ¥ 4 (c)
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2. LOWER BOUND FOR AXIAL SHEAR MODULUS
Consider a uniaxially reinforced lamina which is subjected
to axial shear 1, in the 1-2 plane on its boundary, fig. 5.

By the average stress theorem, of Ref. 5.
01, = To (2.1)
and all other average stresses vanish.

By the average theorem of virtual work, of Ref. 5,

FFi3%55 T Fi39 %45 (2.2)

Since the only nonvanishing average stress in the present

case is (2.1) we have

- = _ o 2.

Eijdoij 2512 dt, (2.3)

The complementary energy of the body is given by (14) of
Appendix A. The surface integral vanishes however in the pre-
sent case since no displacements are prescribed on the

boundary. Now

U, =fvw°dv =/, J * Eijdaijdv |
o=0 (2.4)
¢ _ _ To
=7 feijdoijdv fo €15 dt,

The last equality following from (2.2, 3).
By definition the effective secant modulus G: is given by

6]
Elz = slz = sTo (2.5)
Gy (075) 2G, - (1,)
Hence (2.4) assumes the form
To TodT, 2.6
UC:=-VJ' —_ ( )
° GA.(TO)

In order to find a bound on G; it will be necessary to
find a bound on (2.6) by use of the principle of minimum com-

plementary energy.
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It is assumed that the fibers are infinitely rigid in com-
parison to the matrix. Therefore at fiber/matrix interface

u, = 0 (2.7
and the only contribution to the complementary energy is from
the matrix. Thus, the surface integral in (1.33a) vanishes and

it can be written as

u.= s w av (2.8)
C

\Y

m
where Vm is the matrix volume.

Furthermore, by (2.3.3) the actual stresses are functions

of Xy, Xg only. It is therefore natural to also choose admissible
stresses as functions of Xyr X3 o Thus W° in (1.33) becomes
only and therefore without loss of generality

a function of x X

2’ 73
(1.33a) can be taken over unit length in fiber direction. Thus

it can be written

- ~5
UC = fAm W (x2, x3) dx2 dx3 (2.9)

In order to construct an admissible stress system it is
necessary to devise a geometrical model for a uniaxially rein-
forced material . 1In past analyses of FRM two kinds of models
have been successfully treated: Periodic arrays of identical
circular fibers have been analyzed numerically with the aid of
computers and the composite cylinder assemblage model has been
treated analytically [1,5] yielding simple closed results. Since
the present treatment is to be analytical the composite cylinder
assemblage. model will be used. A detailed description of the
model has been given in[5]. Suffice it to say here that the model
represents a cylindrical specimen of a fiber reinforced material
as an assemblage of composite cylinders of different sizes which
fill the space in the limit. 1In eachvcomposite cylinder the
inner cylinder is a fiber and the outer shell is matrix material.
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In all cylinders the ratios of fiber to matrix shell radius are
the same, (figure 26).

It is recalled that an admissible stress system must satisfy
equilibrium and boundary conditions. An obvious possibility
for such an admissible field are the stresses of the elastic,
solution since they certainly satisfy the required conditions.
These stresses are the same in any composite cylinder of the

assemblage and are given in cylindrical coordinates by (see [5])

2

g = T = Ic_ _a_._

rz Ty 1+C (1 .+ 2) cos 8 (2.10)
r .

. . T, a2

Og, = Tg =~ 13 (1 - =) sin 8

where ¢ is the volume fracglon of fibers, a is the radius of any
fiber and r,gare polar coordinates, fig. 26.

Since T as expressed by (1.33c) is an.invariant with

respect to rotations abeout x, = z we have also

2 2 2
T =7 + T . (2.11)
r %]

Substituting (2.10) into (2.11) yields

2 2
T =p (1 + L+ 2 cos 8) (2.12)
S p* p?
where
T
= o0 - 2.13
P 1+c p = § ( )

To simplify the analysis the .exponent n in (1.22) will
be assigned the value

n o= 3 - (2.14)
It has been found that with this value of n, experimentally

obtained shear stress-strain relations of epoxy can be quite

accurately represented with proper choice of T . Recalling

Y
(1.33), (2.9) then assumes the form
~ _ l__ ~ 3 1 12 2
Uc = 5& fAm ¢ [1 + 5 (—y) ] da (2.15)
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where G is the matrix elastic shear modulus. Let the assemblage
consist of K composite cylinder. Define UCk for the kth comp-

osite cylinder by

~

ko1 32 T (2.16
Uow =55 [ T2 [1+ —) 1 aa _ f

mk - y

N

where A, is the matrix area akiribk in the kth composite

cylinder. Then
~ K~k

U = & Uc (2.17)
k=1
Since T? has been expressed in polar coordinates, (2.12),

it is convenient to also evaluate (2.16) in the same coordinates.

Using the variable p we have

~ B 2m ~ 2
X = =0 7w+ (971 pdpas (2.18)
1 0 T
Y
where
= (2.19)
B - bk/ak

which by construction has the same value in all composite cy-’
linders. Note also that the volume fraction of fibers c is
given by ,

(2.20)

k, 2 1

c = (__) = =
b 2

]

k

Substituting (2.12) into (2.18) and carrying out the integra-

tion we have

b2

“k _ "k 2:l=c . oy 2 3+loc-12c’-c*
Ue =@ Tl & Fmor ! (2.21)
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where (2.20) has been used. It is seen that nbzk is the area
of the cross section of the kth composite cylinder and the
parenthesis has the same value for all composite cylinders.
Therefore, if (2.21) is inserted into (2.17) we find

- - 2 y 2 4
U = 2ot (3584 Qo Hol2e s o (2.22)
¢ Y 6(1+c) "
Let (2.22) be writteh
~ To au
= L _C (2.23)
U A S ., A at. d 1,

Without loss of generality (2.6) can be evaluated for unit

height of cylindrical specimen. Thus

U.=a 5 ° _TedTe - (2.24)

C s
° Gy (7o)
Now introduce (2.23) and (2.24) into the minimum complementary

inequality (1.18). Thus

To du
1 C T
R 5y dt, s } dt, 20
Ga(To)

I (2.25)

Since the integral is positive for all values of T,
the integrand must also be positive for all values of 1, .
It follows that

Gy (1) > —oBle— = Goi-) (2.26)
dUC/dT°
where the extreme right denotes lower bound on the secant
modulus G5, Substituting (2.22) into (2.26) and rearrang-
ing we find the lower bound (2.3.9) of Chapter 2.
There naturally arises the question of the establishment

of an upper bound. The difficulties involved have been dis-
~cussed above: It is not in general possible to solve Ramberg-

Osgood relations for stresses in terms of strains. It is
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therefore not possible to analytically express the potential
energy functional in terms of admissible strains.
A possibility .to resolve the difficulty is to write in-

elastic stress-strain relations of type (1.22) in the form

_ [ a-1
T, = 2Ge2 [1 - (=) ]
Y 1
A o-
_ _ (E (2.27)
Yy
£ = ‘522+e32

wintere o and ¢ are to be determined by curve fitting. The
minus sign in the parenthesis is due to the fact that the

stress-strain curve is below a straight line with the initial

slope.

It should be noted that (2.27) are not an inversion of
(1.22). They are merely another form of approximation of
actual stress-strain curves.

In principle the representation (2.27) can now be used in
conjunction with the principle of minimum potential energy
to establish an upper bound on G: in same fashion as a lower
bound has been established. It has however been found that in
attempting to fit (2.27) to actual epoxy stress-strain curves
a fractional exponent o was needed. This led to integrals of
formidable difficulty in the evaluation of potential energy

functionals. Therefore this approach has not been continued

here.
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APPENDIX D

FAILURE OF NON-LINEAR LAMINATES

It is expedient to separate the problem of the establish-
ment of failure criteria of laminates into two separate problems:
(a) Establishment of failure criteria for uniaxially

fiber reinforced material, i.e., laminae.

(b) Establishment of failure criteria of the laminate

on the basis of laminae failure criteria.

A great deal of wrok has been done on problem (a). The
problem has been approached in micro as well as macro-fashion.
In micro-approach, it is attempted to predict failure on the
basis of local analysis of the interior of the composite. Such
an approach evidently encounters extreme difficulties. Although
.important work of fundamental nature has been done in this area,
we shall not be concerned with it here since the work has not
advanced to the stage of prediction of failure criteria under
states of combined stress.

In the macro-approach, a failure criterion is heuristically
postulated as some function of pertinent state variables (gener-
ally average stresses) which also contains undetermined para-
meters. These parameters are then to be determined in terms of
experimentally accessible information.

We shall in the present discussion limit ourselves to states
of plane stress. The simplest failure criterion is the so-called
maximum stress criterion which states that failure occurs when
either one of: stress in fiber direction, stress transverse to
fibers, shear stress, reaches its critical value, these cri-
tical values being the same whether or not the stresses act

simultaneously. In symbols the criterion is:

Oll = OA
or
(1)
922 T 9p
62. or
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where 1 is fiber direction and 2 is the transverse direction.
Generally, failure stresses 0, and Op are different in
tension and compression. This is known as Bauschinger effect.
There is evidently no Bauschinger effect for the shear stress.
The simplest generalization of (1) to account for Bauschinger

effect would be to assume as failure criterion:

o, =9% i 0,70

Oll = OA— if 'Oll <0

O,y = GT+ if . 022 > 0 2)
Opp = Oy 92 ° 0

015 = Tap 231 912

whichever occurs first, where (+) and (-) superscripts denote
failure stresses in tension and compression respectively. The
main drawback of these simple criteria is in that they take
no account of interaction effects.

The most commonly used criterion which takes into account
interaction is of quadratic form. For plane stress it has the
form ’

Alloli t A, 023 t B150110,,t A44°1§ =1 (3)
Here, products of shear stress with normal stress have been
omitted since the material cannot distinguish between positive
and negative shear stress. Therefore, odd powers (one, in this
case) of shear stress cannot appear.
"Applying (3) to failure for stress in fiber direction
alone, stress transverse to fiber direction alone, shear stress

alone, in turn, it is seen at once that
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A11=02
A
!
By = 73 '
O (4)
1
A =
44 = T2

The coefficient A is troublesome since its determina-

~tion requires a failurézexperiment under combined stress.
Several authors have proposed to use failure experiments on
off-axis specimens under uniaxial stress for the determination
of Alz‘ See e.gq. [18] for discussion.

The situation becomes more complicated if it is required
to take into account Bauschinger effect, that is difference of
failure stresses in tension and compression. One possibility
to account for this effect is to assume that All’ A22 assume
different values for tension and compression. The situation

regarding A however, becomes very awkward as it would have

'
to assume féir different values to account for four different
possibilities of sign combination in biaxial stressing
and

It is also possible to add linear terms to (3) in which

case it would assume the form:

2 2

2
+ * R1507190 F Byy0y)

A11911 *tR92%) + (5)

B,o + B

1°11 Oy =1

2722

Such a devicelwas suggested by Hoffman [19]). In this case it
is possible to determine values of All’ Bl’ A22, B2 to account
for different tensile and compressive uniaxial failure stresses
in fiber direction and transverse to it. But the difficulty of
assigning four different values to Al2 remains, unfortunately.

In summary, the status of quadratic failure criteria has
to date not been finalized. However, special versions of such
criteria have been successfully fitted to experimental data.

It is of importance to realize that in the fiber rein-
forced materials used in practice failure predictions on the
64.



basis of maximum stress criterion or gquadratic failure cri-
terion are not very different; This is due to the large
ratios between strength in fiber direction and transverse
and shear strengths and is easiest realized by considering
the failure criteria as surfaces in Oy Ohpr 015 stress
space. The maximum stress criterion is a very elongated
rectangular parallelopiped while the quadratic failure cri-
terion is an ellipsoid. For A12=0, Fig. 25 shows this
schematically on a cut in the G117 9p9 plane. Thus it is
seen that stress points on the two failure surfaces are close
together for most parts of the surfaces.

The situation would be entirely different for a material

in which o and o,, were of comparable magnitudes.

’

We shill now gonsider problem (b) i.e., the establishment
of laminate failure criteria in terms of laminae failure cri-
teria. The most conservative laminate failure criterion is to
assume that once any lamina has failed the laminate has reached
its ultimate load. There are cases of laminates in which all
laminae would fail simultaneously and then this criterion would
be justified. For example: a +6 laminate in which the exter-
nal load direction bisects tha angle between the fibers.

In most cases, however, a certain group of laminae will
fail first and failure of remaining groups would require fur-
ther increase of load. Therefore a more realistic alternative
is to determine the load at which the first laminae group fails.
At this state, the further carrying capacity of the laminate
may be assumed to be given by the remaining undamaged laminae.
The increase in load which fails another group of laminae is
then determined. This process is continued until failure of
all laminae has taken place.

Still another possibility is to assume that when a lamina
has failed, certain of its stiffnesses reduce to zero. For ex-
ample: suppose that a lamina or group of laminae has failed
in shear. Such a failure implies a crack through the lamina in
fiber direction. In that event, it is reasonable to assume
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that the shear and tranéverse stiffnesses of the lamina are
zero, but it still retains its stiffness in fiber direction.
If, however, a lamina fails because of the stress in fiber
direction the damage is so widespread that all of its stiff-
nesses will be negligible. According to the type of failures
encountered analysis is continued for the damaged laminate
with the new stiffness rearrangement. This process is con-
tinued until failure of all laminae has taken place. This
method of analysis éeems to be the most realistic but is
also the most complicated.

In almost all of the practical strength analyses of
laminates in the litefature, according to any of the methods
outlined above, the stresses used for failure criteria have
been determined on the basis of elastic laminate analysis;
With the present inelastic laminate analysis, more realistic
stresses are available in a better assessment of laminate

.failure loads.
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APPENDIX E

MSC-NOLIN COMPUTER PROGRAM

1. General Description of the Program

This is a computer program developed for the inelastic
analysis of a laminate subject to any constant,Aarbitrary
combination of in-plane loading. Details of the method of
analysis and of the numerical solution, using the Newton-
Raphson method, have been described in the body of this
report. The essential features of the program are summari-
zed below.

The primary capability of MSC-NOLIN is to compute lam-
inae properties when the laminate loads are defined. There
is also a limited capability to work with constituent proper-
ties, rather than laminae properties, as the input. Details of
the input options ars discussed subsequently. Basically, the
_inputs required are the stress-strain characteristics of the
individual laminae for each of the three in-plane stress
components applied separately. The stress-strain curves for
transverse stress and for stress and for axial shear stress
are defined by Ramberg-Osgood stress-strain curves. The
parameters for these curves along with the laminae elastic
constants are the required material property inputs.

It has been observed that axial shear stresses in indivi-
dual laminae are a major, perhaps the major, source of non-
linearities in laminate response. Therefore, several additional
options have been included in the MSC-NOLIN to accomodate more
detailed characterization of shear response. First, the lam-
inae shear stress-strain response may be input in tabular
form and a least squares fit to the data ia autométically ob-
tained for the R-0 yield stress (limited to the use of an
exponent, n=3). Secondly, the matrix shear stress-strain curve
can be input along with fiber elastic properties and the laminae
shear stress-strain curve will be computed. In this latter case,

the laminae elastic constants are also computed.
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The input specifies one of twoc options for the determina-
tion of the initial set of stresses to be used in the itera-
tion at each value of applied load on the laminate. In one
case the stresses found at one load are increased to the load
for which the stresses were evaluated. 1In the other, and
generally used option, the increment between the initial stresses
used at the nth laminate load value and the actual stresses
found for the (n-1)st load value bears the same relation to the
ratio of those two load values as the similar relation computed

at the previous load cycle, that 1is,

S (D) (n-1)  (n-2)
S S - Jij " %ij
Fa/Fa-1 Fr-1/Fn-2

The program contains a number of controls to define: the
size and number of steps of loading at which computations are
made; the maximum number of iterations to be permitted in the
numerical solution; the desired accuracy to be obtained in
convergence; the criteria for divergence of the solution in
the iterative process to avoid the use of unnecessary execu-
tion time in the case of breakdown of the solution procedure.
The program defines the failure of the laminate in a limited
fashion, either on the basis of the maximum allowable stress
in the fiber in tension or compression, or on the basis that
the tangent modulus of the stress-strain curve of the laminate
becomes less than a specified value. Failure due to shear or
transverse stress are not included at this stage in the develop-

ment of the program.

2. Input

The main features of input in this program are the follow-
ing: ’
(a) Specify the number of laminates or problems to be

solved;
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(b)
(c)

(4)

(e)
(f)
(9)

Define the geometrical properties of each layer;
Define either the material properties of each layer
or the properties of its constituents;

Define either of the following for each layer:

(1) yield.stress in transverse direction and yield
stress in shear;

(ii) yield stress in transverse direction and a table
of values defining shear stress-strain curve for
the matrix plus a set of values of stresses to
be used for the computation of yield stress in
sheaf; .

Specify the type of Ramberg-Osgood relation to be used;

Define the loadings; and

Define the control parameters.

A guide to the preparation of input data for this program
is given in section 4 below.

3. Details of Output

The output can be divided basically into two steps:

(a)

(b)

Output of Input Data: .
The first section of the output deals with the output
of the input data. If the input is in the form of
properties of constituents of the layer, it gives
an output of the properties of the constituents first
and then the computed value of the properties of the
layer; otherwise, it gives output directly the prop-
erties of the layer.
Output of Stresses and Strains:
For each set of loading, the computer prints the
following:
(1) value of the load applied;
(2) number of iterations.for convergence;
(3) stresses for individual laminae with respect

to principal elastic axes of the laminae; and
(4) strains for individual laminae in terms of both

laminae and laminate axes. 69.



4. Input Details for MSC-NOLIN

(1)

(2)

(3)

(4)

70.

Read (I5) NSETS

NSETS:

number of problems

Read (I5) LAY

LAY: number of layers in this laminate analysis

Read (I5) INP

INP: Option for reading in material properties

INP =
INP = 2
(a) If
(i)
(i1)
(iii)
(b) If
(i)
(ii)
(iii)

1;

read in material properties of individual

laminae;

; compute properties of laminae from the

properties of constituents.

INP =
Read
Read
Read

INP =
Read
Read
Read

If 1
(1)
If I
(1)
(ii)

(iii)

(iv)

(v)

1

(5D15.53) EpprEpprbypriipg

(5D15.5) Giz, SY, TY
(D15.5,1I5) T, IANG

2

(4D15.5) EF, MUF, GF, VF
(3D15.5) EM, MUM, GM

(I5) I2

2 = 0; read in SY and TY
Read (2D15.5) SY, TY

2 = 1; TY is to be computed

Read (5,1002) SYCE

Read ( 2 I 5) NUMT

NUMT = number of values in the table
Read (5D15.5) TAU (J), J=1, NUMT
(Table of shear stress values of
matrix read in)

Read (5D15.5) GAM (J),J=1, NUMT
(Table of shear strain values of
matrix read in)

Read . (5D15.5) SGl2 (J), J=2,11
(Table of shear stress values of
laminae read in)




{(5) Read (5D15.5) XN, XM

XN: exponent in nonlinear transverse stress-
strain law;

XM: exponent in nonlinear shear stress-strain
law.

(6) Read (5D15.5) SO11, S022, SO12

SOll: applied stress in X-direction
S022: applied stress in Y-direction
S012: shear stress in XY

(7) Read (I5, D15.5) KSGM, SMLT
KSGM: total number of loading increments

SMLT: ratio of load increment to the initial
load.

(8) Read (D15.5) STIFF

STIFF: tangent modulus of stress-strain curve
in terms of the laminate axes; specify
a value of STIFF below which the program
will not run.

Read (p15.5) SGR

SGR: maximum allowable stress in the fiber in
tension or compression

(9) Read (I 5, 2D15.5) IT, EPS, UPBD
IT: maximum number of iteration permitted in
Newton-Raphson analysis

EPS: convergence criteria; (ratio of values of
two successive iterations should be less

than EPS)
UPBD: divergence criteria (solution will stop

if ratio of two successive iterations is
greater than loilz)

(10) Read(I5) INMT

If INMT = 1, the program uses ratio of previous -
two solutions as the initial guess
value iteration process;

If INMT = 2, the program uses extrapolated value

of previous two solutions proportioned
on the basis of stress ratio as the

initial quess.
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Fig. 9 - Tensile stress-strain curve with [0/90] B/Ep.
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Fig. 10 - Tensile stress-strain curves for [+45] B/Ep.
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Fig. 11 - Tensile stress-strain curve with [+30] B/Ep.
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Fig. 12 - 0° Tensile stress-strain curves for {0/+45/90} B/Ep.
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Fig. 13 - 0° Tensile stress-strain curves for [0/+60] B/Ep.
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Fig. 17 - Stress-Strain curves for Axial, transverse and shear
90 loading for [0°/+45°] laminate.
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Fig. 18 = .. Four directional quasi-isotropic Boron/Epoxy plate
under unidirectional tension in fiber direction and
between fiber directions.
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Fig. 21 - Influence of laminae inelasticity upon axial tensile
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Fig. 23 - 0° Tensile stress-strain curves for [0,/+45] B/Ep.
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NASA-Langley, 1974
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“The aeronautical and space activities of the United States shall be

conducted so as to contribute .

. . to the expansion of buman knowl-

edge of phenomena in the atmosphere and space. The Administration
shall provide for the widest practicable and appropriate dissemination
of information concerning its activities and the results thereof.”

—NATIONAL AERONAUTICS AND SPACE ACT OF 1958

NASA SCIENTIFIC AND TECHNICAL PUBLICATIONS

TECHNICAL REPORTS: Scientific and
technical information considered important,
complete, and a lasting contribution to existing
knowledge.

TECHNICAL NOTES: Information less broad
in scope but nevertheless of importance as a
contribution to existing knowledge.

TECHNICAL MEMORANDUMS:
Information receiving limited distribution
because of preliminary data, security classifica-
tion, or other reasons, Also includes conference
proceedings with either limited or unlimited
distribution.

CONTRACTOR REPORTS: Scientific and
technical information generated under a NASA
contract or grant and considered an important
contribution to existing knowledge.

TECHNICAL TRANSLATIONS: Information
published in a foreign language considered
to merit NASA distribution in English.

SPECIAL PUBLICATIONS: Information
derived from or of value to NASA activities.
Publications include final reports of major
projects, monographs, data compilations,
handbooks, sourcebooks, and special
bibliographies.

TECHNOLOGY UTILIZATION
PUBLICATIONS: Information on technology
used by NASA that may be of particular
interest in commercial and other non-aerospace
applications. Publications include Tech Briefs,
Technology Utilization Reports and
Technology Surveys.

Details on the availability of these publications may be obtained from:

SCIENTIFIC AND TECHNICAL INFORMATION OFFICE

NATIONAL AERONAUTICS AND

SPACE ADMINISTRATION

Washington, D.C. 20546




