SYNTHESIS OF CALCIUM SUPEROXIDE

By: R. T. REWICK, W. G. BLUCHER, and P. L. ESTACIO

Prepared for:
NASA-AMES RESEARCH CENTER
MOFFETT FIELD, CALIFORNIA 94035
Attention: DR. THEODORE WYDEVEN
BIOTECHNOLOGY DIVISION

CONTRACT NAS2-6954
SYNTHESES OF CALCIUM SUPEROXIDE

By: R. T. REWICK, W. G. BLUCHER, and P. L. ESTACIO

Prepared for:

NASA-AMES RESEARCH CENTER
MOFFETT FIELD, CALIFORNIA 94035
Attention: DR. THEODORE WYDEVEN
BIOTECHNOLOGY DIVISION

CONTRACT NAS2-6954

SRI Project 1899

Approved by:

M. E. HILL, Director
Chemistry Laboratory

C. J. COOK, Executive Director
Physical Sciences Division
CONTENTS

INTRODUCTION AND BACKGROUND ... 1
EXPERIMENTAL .. 4
RESULTS AND DISCUSSION .. 9
SUMMARY ... 21
REFERENCES ... 23
INTRODUCTION AND BACKGROUND

Interest in air revitalization systems has recently increased due to the large number of current or proposed research programs that require men to live and work for extended periods in environments completely isolated from our natural atmosphere: space stations, undersea laboratories, defense and pollution shelters, hyperbaric medical chambers, and others. Space and weight requirements often limit the use of compressed air tanks for these applications. Hence, recent emphasis has been on studies of chemicals or chemical systems capable of generating on demand a life-supporting atmosphere. Among the proposed and actually operating systems to supply oxygen are those using alkali and alkaline earth metal superoxides, which possess the capability of releasing O₂ on contact with H₂O.

Of the known metallic superoxides, KO₂ is the least expensive and has been used for many years as the active chemical in the self-contained breathing apparatus used for fire-fighting and mine rescue work. However, canisters containing KO₂ have shown inefficient utilization of the superoxide charge. The inefficiency of such systems can be attributed to the formation of a slurry-type layer of KOH, which prevents further reaction of fresh KO₂ with H₂O. This problem provides considerable impetus to the development of high-purity calcium superoxide. Calcium hydroxide has a much higher fusion temperature than the alkali metal hydroxides and therefore may not form a barrier preventing diffusion of H₂O around the unreacted superoxide. In addition, high purity calcium superoxide has a more favorable O₂ release and CO₂ absorption capacity per unit weight than sodium and potassium superoxides.

Numerous attempts have been made to synthesize pure calcium superoxide. The general approach has involved the reaction between H₂O₂ and
calcium peroxide or hydroxide. This method generates solid oxide mixtures containing as much as 60% calcium superoxide. To date, methods for consistently producing calcium superoxide of high purity have not been developed.

Previous studies have indicated that at -80°C the oxides of barium, calcium, and magnesium develop a coloration when treated with an O₃/O₂ mixture containing 8% O₃. This observation and the liberation of I₂ when the products were treated with KI solution were given as evidence for the formation of ozonides. Recent experiments involving the ozonation of the oxides of barium, calcium, and magnesium have not revealed a noticeable formation of compounds differing from starting materials. However, reactions of calcium oxide, peroxide, and hydroxide with 100% O₃ have not been described and could lead to the formation of the superoxide or ozonide. The formation of calcium ozonide would be significant since it should decompose with heat to the superoxide

\[\text{CaO} + \frac{5}{3} \text{O}_3 \rightarrow \text{Ca(O}_3\text{)}_2 \]
\[\text{Ca(O}_3\text{)}_2 \xrightarrow{\Delta} \text{Ca(O}_2\text{)}_2 + \text{O}_2 \]

Experimental evidence has shown that oxygen atoms in the first excited state, O('D), are a more reactive species than ground state oxygen atoms O(3P). Possessing the electronic configuration of an empty orbital, O('D) atoms have the properties of a very strong acid and are capable of reaction with very weak bases at low temperature and activation energy. At 2537 Å, the quantum yield of O('D) atoms generated by photolysis of O₃ approaches unity.

Reaction of O('D) atoms generally fall under two categories:

1. Insertion type
 \[\text{O('D)} + \text{CH}_4 \rightarrow \text{CH}_3\text{OH} \]
 \[\text{O('D)} + \text{H}_2\text{O} \rightarrow \text{H}_2\text{O}_2 \]
Experimental evidence further suggests that if $O(^1D)$ and $O(^3P)$ atoms can react with the same substrate to give the same products, the reaction rate will be considerably higher for $O(^1D)$, provided there is appreciable activation energy for the reaction, or if the reaction is endothermic for $O(^3P)$.

Previous studies have indicated that ground state oxygen atoms $O(^3P)$ are effective in a high yield conversion of KOH to KO$_2$ (80% purity), and a low yield conversion of Ca(OH)$_2$ to CaO$_2$ (2.2% purity). The work reported here describes efforts to prepare CaO$_2$ from reactions of Ca(OH)$_2$, CaO, and CaO$_2$ with 100% O_3 and with $O(^3D)$ atoms generated by photolysis of O_3 at 2537 Å.
EXPERIMENTAL

Equipment--The basic apparatus consists of a Monel vacuum line which contains an ozone generator, an ozone storage system, and a flow or static photolysis system for the reaction of calcium oxide, peroxide, and hydroxide with ozone or oxygen atoms. Various parts of the apparatus are constructed from glass and Kel-F. A schematic drawing of the vacuum system is shown in Figure 1; all valves can be operated remotely behind a plexiglass shield. The ozonizer, shown schematically in Figure 2, is constructed from Pyrex glass. A measured quantity of oxygen, condensed into the ozonizer at liquid nitrogen temperature, can be converted to 1 g of 100% O₃ in about 1-1/2 hr by applying a 13.2-kV potential across the 4-mm electrode gap of the ozonizer at -196°C. The ozonizer can also be used to convert a portion of flowing oxygen into ozone. The generated ozone can then be used directly or stored in a silica gel trap V₅ at -78.5°C or in the storage vessel V₈ at -196°C until it is needed. Measured quantities of ozone and other gases can be mixed in the mixing vessel V₁₁ and then transferred to the reaction vessel V₁₂.

The reaction vessel V₁₂ is a removable 50-cc quartz or Pyrex test tube containing a magnetic stirring bar for static experiments or a 3-cc quartz u-tube for flow experiments. The reaction vessel is surrounded by a Dewar flask to maintain the reaction at a given temperature. For low temperature studies, slush baths were chosen which were transparent to 2537 Å radiation. For reactions at -196°C, a remote temperature controller provides additional N₂ to maintain the temperature. Elevated temperatures were obtained by passing a stream of hot air into the Dewar surrounding the reaction vessel.

The uv source, which surrounds the Dewar, is a Hanovia 10-W helical quartz low pressure mercury lamp built to our specifications.
1. Oxygen purification system - V_0, V_1
2. Ozonizer - V_3
3. Silica gel trap - V_5
4. Storage vessels - V_6, V_{14}, V_{19}, V_{20}, V_{22}
5. Kel-F burette - V_9
6. Mixing vessel - V_{11}
7. Reactor - V_{12}
8. Fractionation traps - V_{15}, V_{17}
9. O-2 atm. Wallace and Tiernan gauge - V_{23}

FIGURE 1 PHOTOLYSIS SYSTEM
ELECTRODES

SILVERED SURFACE INSIDE AND OUTSIDE

4 mm

COLD FINGER

FIGURE 2 OZONIZER
In operation, this lamp generates a sharply defined line spectrum of short wavelength, of which 96.5% is emitted at the resonance line of mercury at 2537 Å. Approximately 2% of the total uv energy may be emitted at 1849 Å. The balance of the uv emission is a scattering of weak lines between 2200 and 4000 Å. Visible and ir radiations are of relatively low intensity.

Materials—Calcium oxide and hydroxide were obtained in their highest commercial purity from Mallinckrodt Chemical Works and used after drying for several hours at 125°C without further purification. Before use, the dried materials were stored in a dry box. Optical grade calcium oxide and 60% calcium peroxide, obtained from Research Organic/Inorganic Chemical Co., and other chemicals used during additive studies were similarly treated. Infrared and emission spectrographic analyses of calcium oxide and peroxide detected the presence of impurities. Ultrapure grade potassium hydroxide was obtained from Alfa Inorganics Co. and purified calcium metal turnings from J. T. Baker Chemical Co. Samples of Potassium superoxide were obtained from Mine Safety Appliance Co. Oxygen, Liquid Carbonic Co. medical grade, 99.5% purity, was further purified by passing the gas over copper oxide turnings heated to 500°C. Ozone (~100% purity) prepared statically was not analyzed other than to measure its vapor pressure at -196°C. Ozone/oxygen mixtures prepared under flow conditions were analyzed by passing the mixture through a neutral buffered potassium iodide solution followed by a standard thiosulfate titration.

Procedure—In general, experiments conducted under static conditions with and without uv irradiation involved reactions of excess O₃ with 100-mg samples of Ca(OH)₂ (1.35 mmole), CaO (1.78 mmole), 60% CaO₂ (0.83 mmole), and mixtures containing additives. The dried starting material was transferred in a dry box to the reaction vessel which was then attached to the vacuum line. Gaseous ozone under various conditions was then
allowed to contact the solid phase. To improve contact of the material with \(\text{O}_3 \), some experiments were conducted with a stirred \(\text{O}_3/\text{O}_2 \) solution at \(-196^\circ\text{C}\). Visual examination of the starting material during reaction provided a qualitative evaluation of the degree of conversion of the solid phase, since ozonides and superoxides are highly colored species. In cases where a colored product was formed, the solid was analyzed by measuring the oxygen evolved during thermal decomposition or hydrolysis.\(^{16}\)

Experiments conducted under flow conditions with and without the aid of uv irradiation involved reactions of excess \(\text{O}_3 \) in an \(\text{O}_3/\text{O}_2 \) gas stream with 100-mg samples of \(\text{Ca(OH)}_2 \) (1.35 mmole), \(\text{CaO} \) (1.78 mmole), 60% \(\text{CaO}_2 \) (0.83 mmole), and mixtures containing additives. In the dry box, the dried starting material was loosely packed in the u-tube reactor between quartz wool plugs. After attaching the reactor to the vacuum line, purified \(\text{O}_2 \) at a pressure of 114 mm Hg and a flow rate of about 30 cc/min was passed through the ozonizer cooled to \(-78.5^\circ\text{C}\). The gas stream containing \(\text{O}_3 \) was then passed through the u-tube reactor maintained at various temperatures. The rate of \(\text{O}_3 \) production under these conditions, measured in a blank run, was 0.01 mmole \(\text{O}_3/\text{min} \). Products formed under flow conditions were analyzed as previously described.
RESULTS AND DISCUSSION

A summary of static nonphotolytic experiments with O₃ and Ca(OH)₂, CaO, CaO₂, KOH, and Na₂O₂ is presented in Table 1. To improve contact of the solid phase with O₃ and to increase the lifetime of O₃, some experiments were conducted at -196°C with a stirred O₃/O₂ liquid phase. During the course of some experiments with 100% O₃ (g) and CaO, CaO₂, and Na₂O₂, explosions occurred; in more stable systems, the starting materials were allowed to remain in contact with the gas phase for 3 hours. No effort was made to determine the extent of O₃ decomposition; primary emphasis was placed on visual detection of a colored solid phase reaction product. Previous experience with dilute KO₂ samples suggests that concentrations of less than 5 wt% superoxide can be qualitatively detected in this manner. Visual examination of Ca(OH)₂, CaO, and CaO containing a small quantity of KOH after treatment with excess O₃ suggested that no reaction to form Ca(O₂)₂ had occurred. However, in two experiments with neat CaO₂ at -78.5 and -196°C, a yellow product was formed. After removing unreacted O₃ at -78.5°C, the temperature of the solid was slowly increased. Above -45°C the yellow product began to decompose and within several minutes the solid closely resembled the starting material. The reaction between KOH and 0.5 atm 100% O₃ generated an orange-colored solid, presumed to be KO₃.

A summary of static photolytic experiments with O₃ and Ca(OH)₂, CaO₂, CaO, and KO₂ is presented in Table 2. Since O₃ is rapidly decomposed at room temperature by radiation at 2537 Å, its lifetime was considerably increased under photolysis with a liquid O₃/O₂ phase at -196°C. The rate of O₃ decomposition, and hence the rate of O(^1D) production, was further decreased by placing a metal screen around the reactor which reduced the surface area exposed to radiation by about 50%.
<table>
<thead>
<tr>
<th>Sample</th>
<th>0.25 atm O₃ (g)</th>
<th>0.5 atm O₃ (g)</th>
<th>1.0 atm O₃ (g)</th>
<th>O₃/O₂ (l)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>25°C</td>
<td>0°C</td>
<td>-78.5°C</td>
<td>25°C</td>
</tr>
<tr>
<td>Ca(OH)₂</td>
<td>NR</td>
<td>-</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>CaO₂ (60%)</td>
<td>Expl</td>
<td>NR</td>
<td>NR</td>
<td>-</td>
</tr>
<tr>
<td>CaO</td>
<td>NR</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>0.5% KOH</td>
<td>NR</td>
<td>-</td>
<td>-</td>
<td>NR</td>
</tr>
<tr>
<td>CaO + 1.0% KOH</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>NR</td>
</tr>
<tr>
<td>5.0% KOH</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>NR</td>
</tr>
<tr>
<td>KOH</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Orange</td>
</tr>
<tr>
<td>KOH</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Orange</td>
</tr>
<tr>
<td>Na₂O₂ (97.4%)</td>
<td>-</td>
<td>-</td>
<td>NR</td>
<td>-</td>
</tr>
</tbody>
</table>

a Dried reagent grade
b Dried ultrapure grade
c Decomposed on standing
d Decomposed on warming above -45°C
Table 2

SUMMARY OF STATIC PHOTOLYTIC EXPERIMENTS

<table>
<thead>
<tr>
<th>Sample</th>
<th>O$_3$/O$_2$ (l) -196°C</th>
<th>1 atm O$_3$ (g) 25°C</th>
<th>No O$_3$ 25°C</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ca(OH)$_2$</td>
<td>Yellow solidc</td>
<td>NR</td>
<td>-</td>
</tr>
<tr>
<td>60% CaO$_2$</td>
<td>Yellow solidc</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CaOa</td>
<td>Yellow solidc</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>CaOb</td>
<td>NR</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>KO$_2$</td>
<td>-</td>
<td>NR</td>
<td>NR</td>
</tr>
</tbody>
</table>

aReagent grade
bOptical grade
cDecomposed on warming above -45°C
The screen also served as a protection shield for the Dewar and Hg vapor lamp surrounding the reactor.

When samples of Ca(OH)$_2$, CaO$_2$, and reagent grade CaO were stirred for 1 hour under photolysis in the presence of excess O$_3$ in an O$_3$/O$_2$ liquid phase at -196°C, a yellow product was formed. After removing unreacted O$_3$ and O$_2$ at -78.5°C, the temperature of the reactor was slowly increased. Above -45°C, the yellow product began to decompose, and within several minutes the solid closely resembled the starting material. In a second experiment, the product from the reaction between O$_3$ and reagent grade CaO was allowed to warm above -45°C into an evacuated bulb. Qualitative mass spectral analysis of the contents of the bulb detected the presence of O$_2$. Products from the reaction of Ca(OH)$_2$ and CaO$_2$ with O$_3$ at -196°C were not similarly analyzed. Blank runs with CaO, Ca(OH)$_2$, and CaO$_2$ under identical conditions with O$_2$ but no O$_3$ failed to generate a colored product.

In contrast to the reaction observed for reagent grade CaO with O$_3$ at -196°C, no colored product was formed with optical grade CaO. To help explain the difference in reactivity between reagent and optical grade CaO to form a colored product during photolysis with O$_3$, these solids and 60% CaO$_2$ were analyzed for impurities by infrared and emission spectrographic analysis. Anions detected in the three samples by ir analysis included OH$^-$, NO$_2^-$, CO$_3^{2-}$, and PO$_4^{3-}$. Sulfides are also impurities commonly found in alkaline earth metal oxides. Although it was difficult to estimate the absolute quantity of each impurity present, optical grade CaO appeared to be considerably less contaminated. The results from emission spectrographic analysis are given in Table 3. Reagent grade CaO appears to be more heavily contaminated with Mg, Y, Ti, Cr, Fe, Al, and Si than does optical grade CaO. The impurity level is even greater with 60% CaO$_2$.

12
<table>
<thead>
<tr>
<th>Elements</th>
<th>CaO<sup>a</sup></th>
<th>CaO<sup>b</sup></th>
<th>CaO<sub>2</sub><sup>c</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Ca</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Na</td>
<td>0.000</td>
<td>0.000</td>
<td>0.3</td>
</tr>
<tr>
<td>Mg</td>
<td>0.003</td>
<td>0.4</td>
<td>0.6</td>
</tr>
<tr>
<td>Sr</td>
<td>0.06</td>
<td>0.035</td>
<td>0.05</td>
</tr>
<tr>
<td>Ba</td>
<td>0.001</td>
<td>-</td>
<td>0.002</td>
</tr>
<tr>
<td>Y</td>
<td>-</td>
<td>0.003</td>
<td>-</td>
</tr>
<tr>
<td>Ti</td>
<td>-</td>
<td>0.002</td>
<td>0.025</td>
</tr>
<tr>
<td>Cr</td>
<td>-</td>
<td>0.001</td>
<td>0.001</td>
</tr>
<tr>
<td>Fe</td>
<td>0.003</td>
<td>0.025</td>
<td>0.35</td>
</tr>
<tr>
<td>Cu</td>
<td>< 0.001</td>
<td>< 0.001</td>
<td>< 0.001</td>
</tr>
<tr>
<td>Al</td>
<td>0.002</td>
<td>0.06</td>
<td>0.400</td>
</tr>
<tr>
<td>Si</td>
<td>< 0.01</td>
<td>0.3</td>
<td>0.75</td>
</tr>
<tr>
<td>Sn</td>
<td>-</td>
<td>-</td>
<td>0.002</td>
</tr>
</tbody>
</table>

^a Optical Grade
^b Reagent Grade
^c Reagent Grade (60%)
To evaluate the role which these impurities might exhibit in converting reagent grade, but not optical grade, CaO to the colored product, doped samples of optical grade CaO were treated with O₃. In five experiments, samples of optical grade CaO containing 10 wt% CaCO₃, ZnS, K₃PO₄, NaNO₂, and Ca(OH)₂ were photolyzed for 3 hours at 2537 Å in the presence of a liquid O₃/O₂ phase at -196°C. In each case, no coloration of the solid phase was observed. Samples of optical grade CaO were then similarly doped with 10 wt% MgO, Fe₂O₃, TiO₂, and Al₂O₃ and treated as above. Again, in each case, no coloration of the solid phase was observed. Apparently, the major cause of difference in reactivity between reagent and optical grade CaO to form a yellow reaction product with O₃ is not related to the impurity level but may be a function of particle size or crystal structure differences.

A sample of 90% KO₂, analyzed by a gas evolution method, was irradiated for several hours at room temperature and in the presence of an O₃/O₂ liquid phase at -196°C. No gas was evolved during photolysis of the neat solid and no color change observed after the low temperature study. These results suggest that under these conditions KO₂, and perhaps other superoxides, are stable to 2537 Å irradiation.

A summary of nonphotolytic experiments conducted in an O₃/O₂ gas stream with Ca(OH)₂, CaO, CaO₂, Ca metal, and KO₂ is presented in Table 4. Visual examination of CaO, Ca(OH)₂, and Ca metal samples after treatment for 1 hr with excess O₃ in a flow of O₂ suggested that no reaction to form Ca(O₂)₂ had occurred.

Samples of KO₂ and KOH were treated for 1 hour at room temperature and -183°C, respectively, with excess O₃ in an O₃/O₂ gas stream. No color change was observed in the reaction of KO₂ with O₃; a thermally unstable orange solid, presumed to be KO₃, was formed with KOH. Reaction of excess O₃ in an O₃/O₂ gas stream with mixtures of CaO + 10 wt %
Table 4
SUMMARY OF NONPHOTOLYTIC FLOW EXPERIMENTS

<table>
<thead>
<tr>
<th>Reactant</th>
<th>Temperature, °C</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-112</td>
</tr>
<tr>
<td>CaO<sup>a</sup>, Ca(OH)<sub>2</sub>, Ca<sup>b</sup></td>
<td>NR</td>
</tr>
<tr>
<td>CaO<sub>2</sub></td>
<td>Yellow solid<sup>c</sup></td>
</tr>
<tr>
<td>KO<sub>2</sub></td>
<td>-</td>
</tr>
</tbody>
</table>

^aReagent and optical grade

^bPowder

^cDecomposed on warming above -45°C
KOH, CaO + 5 wt % KO₂, Ca(OH)₂ + 5 wt % KOH, Ca(OH)₂ + 5 wt % KO₂, CaO₂ + 1 wt % KOH, and CaO₂ + 10 wt % KO₂ at -183, 25, and 80°C gave negative or inconclusive results. Apparently these additives exhibit no positive effect in converting CaO, Ca(OH)₂, and CaO₂ to Ca(O₂)₂.

However, when a sample of CaO₂ was treated for 15 minutes at -112°C with excess O₃ in an O₃/O₂ gas stream, a yellow product was generated. After removing unreacted O₃ and O₂ at -78.5°C, the temperature was slowly increased. Above -45°C the product began to decompose and within several minutes the solid closely resembled the starting material. In a second experiment, the yellow product was allowed to warm above -45°C into an evacuated volume-calibrated bulb. Under these conditions, only a trace of evolved gas was detected. The decomposed product was analyzed for oxygen content by hydrolysis with 0.1 N KMnO₄ in a manner similar to that reported by Seyb and Kleinberg. The results are presented in Table 5. Analysis of 90% KO₂ for active O₂ content by KMnO₄ and the FeCl₃/HCl solution used by Seyb and Kleinberg gave nearly identical results. The advantage of the KMnO₄ method is that for samples containing CO₃ only a trace amount of CO₂ is liberated with O₂.

A summary of photolytic experiments conducted in an O₃/O₂ gas stream with Ca(OH)₂, CaO, CaO₂, and Ca metal is presented in Table 6. Visual examination of CaO, Ca(OH)₂, and Ca metal samples after irradiation at 2537 Å for 1 hour with excess O₃ in an O₃/O₂ gas stream suggested that no reaction to form Ca(O₂)₂ had occurred.

A sample of KO₂ was photolyzed for 1 hour at 80°C under similar conditions in the absence and presence of O₃. No change in color of the starting material was observed in the absence of O₃; with O₃ the color of the solid phase changed from yellow to orange. These results suggest that KO₂ is stable to uv irradiation at 2537 Å, but reacts at 80°C to form KO₃ with O(³D) atoms generated by photolysis of O₃.
Table 5

ANALYSIS OF CaO₂ + O₃ REACTION PRODUCT

<table>
<thead>
<tr>
<th>Product</th>
<th>During Color Change</th>
<th>After Color Change (KMnO₄)</th>
<th>After Color Change</th>
</tr>
</thead>
<tbody>
<tr>
<td>~ 60% CaO₂</td>
<td>0</td>
<td>3.97</td>
<td>57.2</td>
</tr>
<tr>
<td>CaO₂ + O₃</td>
<td>Trace</td>
<td>4.07</td>
<td>58.7</td>
</tr>
<tr>
<td>CaO₂ + O₃ (uv)</td>
<td>0.18</td>
<td>4.82</td>
<td>69.5</td>
</tr>
</tbody>
</table>

O₂ Evolved (STP), mmole/gm
Table 6

SUMMARY OF PHOTOLYTIC FLOW EXPERIMENTS

<table>
<thead>
<tr>
<th>Reactant</th>
<th>-112</th>
<th>25</th>
<th>80</th>
</tr>
</thead>
<tbody>
<tr>
<td>CaO<sup>a</sup></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ca(OH)<sub>2</sub>, Ca<sup>b</sup></td>
<td>NR</td>
<td>NR</td>
<td>NR</td>
</tr>
<tr>
<td>CaO<sub>2</sub></td>
<td>Yellow</td>
<td>solid</td>
<td></td>
</tr>
<tr>
<td>KO<sub>2</sub></td>
<td>-</td>
<td>-</td>
<td>Orange</td>
</tr>
</tbody>
</table>

^aReagent and optical grade
^bPowder
^cDecomposed on warming above -45°C
When a sample of CaO$_2$ was photolyzed for 30 minutes with excess O$_3$ in an O$_3$/O$_2$ gas stream, a yellow product was formed. The conversion of the starting material to the colored product appeared to be greater than in previous reactions, based on the intensity of the coloration. After removing unreacted O$_3$ and O$_2$ at -78.5°C, the temperature of the solid was slowly increased. Above -45°C, the yellow coloration began to fade and within several minutes the solid closely resembled the starting material. In a second experiment, the yellow product was allowed to warm above -45°C into an evacuated volume-calibrated bulb. Under these conditions, a measured quantity of gas was collected, which, by mass spectral analysis, was found to be O$_2$. The decomposed solid product was then analyzed for active oxygen content by hydrolysis16 with 0.1 N KMnO$_4$. A sample from the nonphotolyzed reaction between CaO$_2$ and O$_3$ was treated in a similar manner.

The results from these studies, compared to untreated CaO$_2$, are given in Table 5. The results clearly show that treatment of 57.2% CaO$_2$ with O$_3$ increases the active oxygen content of the sample; the effect is further enhanced by photolysis. If the formation and decomposition of the yellow product can be represented by

$$\text{uv, } -112^\circ C$$

$$\text{CaO}_2 + 2 \text{ O} \xrightarrow{-112^\circ C} \text{Ca(O}_2\text{)}_2$$

$$\xrightarrow{-45^\circ C}$$

then gas measurement results suggest the formation of additional CaO$_2$ by reaction of O$_3$ with starting material impurities.

Since pure CaO$_2$ was not available for a comparative study, it is difficult to predict that CaO$_2$ is the major reactant to form the colored product although similar reactions of CaO and Ca(OH)$_2$--the suspected major impurities--with O$_3$ failed to generate a colored product. The
reaction products from these studies were not analyzed for increase in active oxygen content.

Since Ca(\(O_2\))\(_2\), prepared from the decomposition of \(\text{CaO}_2 \cdot 2\text{H}_2\text{O}_2\), is reported to be stable up to 50\(^\circ\)C in mixtures containing 40 wt \% \(\text{Ca}(\text{O}_2)\)_\(2\)^3, the thermal decomposition observed here is probably complex and may involve oxidation of an impurity, thereby releasing only a portion of the available superoxide oxygen.

Further consideration should be given to the possibility that the colored product formed is \(\text{Ca}(\text{O}_3)\)_\(2\), although most known metal ozonides are orange-red in color.\(^{17}\) The thermal decomposition of hypothetical \(\text{Ca}(\text{O}_3)\)_\(2\) may not yield \(\text{Ca}(\text{O}_2)\)_\(2\) as expected, but may proceed further to form \(\text{CaO}_2\).

Therefore, a calculation of the superoxide content of the product could be in error if the identity of the product and its decomposition mechanism are not known. However, based on the assumption that the quantity of \(\text{O}_2\) evolved during the color change is equivalent to the amount of \(\text{Ca}(\text{O}_2)\)_\(2\) formed at -112\(^\circ\)C, the concentration of \(\text{Ca}(\text{O}_2)\)_\(2\) present before decomposition is calculated to be 1.9\%.

By increasing the reaction time of \(\text{O}_3\) with \(\text{CaO}_2\), the \(\text{O}_3\) concentration, or changing the geometry of the reaction zone, it is likely that a higher conversion to the colored product can be achieved. In addition, the use of purer \(\text{CaO}_2\) will help to define the role impurities may play in the formation or decomposition of the product.
SUMMARY

The work reported here describes efforts to prepare \(\text{Ca(O}_2\text{)}_2 \) from reactions of calcium compounds with 100% \(\text{O}_3 \) and with \(\text{O}(^{1}\text{D}) \) atoms generated by photolysis of \(\text{O}_3 \) at 2537 Å. Samples of \(\text{Ca(OH)}_2 \), \(\text{CaO} \), \(\text{CaO}_2 \), \(\text{Ca} \) metal, and mixtures containing suspected impurities to promote reaction have been treated with excess \(\text{O}_3 \) under static and flow conditions in the presence and absence of uv irradiation. Studies with \(\text{K}_2\text{O} \) suggest that the superoxide anion is stable to radiation at 2537 Å but reacts with oxygen atoms generated by the photolysis of \(\text{O}_3 \) to form \(\text{K}_2\text{O}_3 \). Calcium superoxide is expected to behave in an analogous manner.

With 100% gaseous \(\text{O}_3 \) under some conditions, samples of \(\text{CaO} \) and \(\text{CaO}_2 \) initiated rapid gas phase decomposition (explosion). Under more controlled conditions at \(-196^\circ\text{C}\), treatment of these solids and \(\text{Ca(OH)}_2 \) with a photolyzed \(\text{O}_3/\text{O}_2 \) liquid phase resulted in the formation of a solid having the typical yellow coloration of a superoxide. However, the solid formed under these conditions was not stable above \(-45^\circ\text{C}\); in the case of the \(\text{CaO} \) reaction product, \(\text{O}_2 \) was evolved as the color change from yellow to white occurred above this temperature.

Similar results were obtained at \(-112^\circ\text{C}\) for \(\text{CaO}_2 \) when the solid was treated with excess \(\text{O}_3 \) in an \(\text{O}_3/\text{O}_2 \) gas stream. The coloration of the reaction product was enhanced by photolysis of the gas stream. As the colored products decomposed above \(-45^\circ\text{C}\), samples of evolved \(\text{O}_2 \) were collected and measured. The decomposed solid samples were then analyzed by hydrolysis for active oxygen content, and the results compared with untreated \(\text{CaO}_2 \). The data show that treatment of \(\text{CaO}_2 \) with \(\text{O}_3 \) at \(-112^\circ\text{C}\) is effective in increasing the active oxygen content of the sample; a marked increase is observed with uv irradiation. Although the coloration of the product formed in the reaction between
O$_3$ and CaO$_2$ strongly suggests the presence of Ca(O$_2$)$_2$, the reason is not clear for the decomposition of the product above -45°C. Based on the assumption that the quantity of O$_2$ evolved during the color change is equivalent to the amount of Ca(O$_2$)$_2$ formed at -112°C, the concentration of Ca(O$_2$)$_2$ present before decomposition is calculated to be 1.9%.

By increasing the reaction time of O$_3$ with CaO$_2$, the O$_3$ concentration, or changing the geometry of the reaction zone, it is likely that a higher conversion to the colored product can be achieved. In addition, the use of purer CaO$_2$ will help to define the role impurities may play in the formation or decomposition of the product.
REFERENCES

