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ABSTRACT

The instability of the ordinary electromagnetic mode propagat-
ing perpendicular to an external magnetic field is studied for a
single-species plasma with ring vélocity distribution. The marginal
instability boundaries for both the purely growing mode and the
propagating growing modes are calculated from the instability cri-
teria. The dispersion characteristics for various sets of plasma
parameters are also given. The typical growth rates are of the

order of the cyclotron freguency and enhanced by increasing B”.



I. INTRODUCTION

The instability of the ordinary electromagnetic mode propagat-
ing perpendicular to en external magnetic field has received consid-
erable sttention. Hamasaki (1968a, b) and Davidson and Wu (1970)
investigated a stationary plasma with anisotropic temperatures and
showed that for temperature anisotropy T¢/TH < 1 and sufficiently
large B" > 2, where ﬂ” is the ratio of parallel kinetic pressure to
magnetic pressure, purely growing ordinary electromagnetic modes
exist fof propagation perpendicular to the external megnetic field.
Counter-streaming plasmas with and without temperature anisotropy
have also been previously investigated by many euthors for the ordi-
nary mode instability (Gaffey, Thompson and Liu, 1972, 1973; Lee
and Armstrong, 1971; Borﬁatici and . Lee, 1970; Tzoar end Yang, 1970).
In this paper we wish to present a comprehensive picture of the ordi-
nary electromagnetic mode for a single-species plasma. From the
study of the dispersion relation derived from the linearized Vlasov-
Maxwell eguations, it is found that the instability can occur for
B“ > 1 and iz dependent on the values of Bl and ¢, where E>-L is the
ratio of perpendicular kinetic pressure to magnetic pressure and o
is the ratio vol/ce, with ¢ as the velocity of light. voxis the aver-
' age perpendicular particle velocity. Attention is called to the pre-

diction of propagating instability with the real pert of the complex



frequency, W, being non-zero. A detailed analysis is made of the
steady state conditions of the plesma to determine the stability
boundary. The sclution of the very complicated dispersion relation
is done numerically and compared with the analytical solutions that
are cbtained in certain limiting cases. The Jjustification of the
instability boundaries predicted by the instability criteria which
require the instability to be abscolute is also made through the
numerical solutions of the dispersion relation. The growth rates are

found to be typically of the order of the cyclotron frequency.

The electromagnetic instability is important in high-P plasmas
and is of interest in a broad range of astrophysical and laboratory
applications. Recently the experimental observation of the electric
field fluctuations mede by the IMP-6 spacecraft in the outermagneto-
sphere was reported by Gurnett and Shaw (1973). They observed strong
electromagnetic radistion of harmonically related bands in the
frequency spectrum with electric field fluctuation parallel ﬁo the
external magnetic field. They suggested that 1t is due to an ordi-
nary electromegnetic plasme instability end thies suggestion is just-
ified by our work. -

The basic plasmas model that is investigated consists of an
equal number of electrons and ions immersed in a uniform external
magnetic field and free of any eleciric field. Ions are considered
to form & uniform positive background. 1In section II the dispersion

relation is obtained. Various limiting forms of the dispersion



relation are discussed and general stability considerations are given.
Section TIT presents the analysis of instability. Three conditions
for instability are given and the instability boundaries are calcu-
lated. 1In Section IV the numerical solutions of the dispersion
relation of the various parametric dependences are discussed.

Finally the conclusions of this study are summarized in gection V.



II. DISPERSION RELATION

For an infinite collisionless single-species plasma immersed
in a uniform, static magnetic field 30 we take the equilibrium dis-
tribution funetion to be an even function of the component of
veloeity parallel to ﬁo so that the ordinary mode decouples from
the extraordinary modes for wave vector ¥ N -]50 (_l; = kéx and

-+
Bo = Boéz). The ordinary mode is a purely electromagnetic wave

+ -+
with the electric field E | Bo'
The electric field in the (E,w) gpace for the ordinary mode

is (e.g., Baldwin, Bernstein and Weenink, 1969)
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where the numerical function is
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and the dispersion function is

@ A (kKlne,

(3)
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with g = brn_e”/m; w, = eB_/me; p =rkvi/uh’ J is the nth order
Bessel function of the first kind; fo i8 the edquilibrium distribu-

tion function; and g, %, g are defined by

2, 3, g) =f @ EX R so0),Re=0), M w-07.
(2nm)°

The singularities at w = nw  in N(k,w) are matched by the

singularities at w = nw, in D(k,w). Therefore all of the singularities
in E(k,w) come from the zeros of the dispersion relation D(k,w) = O.
Tf we solve for w (k real), exponential growth and damping are implied
for w; > 0 and Wy < Q, respectively, w@ile wy is the imeginary part
of w.

Tn general the infinite sum in Eq. (3) converges rapidly for

arguments of the Bessel functions less than order unity because



n
Jn(p)m-]?lﬁ[%}‘ | for p << 1 . , (1)

However for p larger than order unity the series converges very

slowly because

. [Z n _ om |
Jh(p) “'J;; cos [p ~% "B for p > 1 . (5)

i

Therefore & large number of terms must be kept in order to obtain
accurate resulté. Thiz extensive caleulation can be avoided by
using both the integral representation of the Bessel functions and
the Sommerfeld-Watson transformation technique (see Appendix A).

The dispersion function then reduces to

2 2k2 2 2 2 dp ————
= - - + P P53
D{k,w) = w c @ UL Ji v, dvu J[ gin Qn

¢
.J( dr 8in Qr sin T Jo [2p cos %) - {6)
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where { = w/wc. Clearly this expression is defined for all O except
possibly at ¢ = n and hence is the proper analytic continuation of
Eq. (3). This form is particularly convenient for computational

purposes. Before solving the dispersion relation exactly, it is



important to examine some interesting features of the dispersion
relation. In the limit of & cold plasma system, the dispersion rela-
tion becomes D{k,w) = w2 - %R - w§ = 0, which shows how the
presence of the plasma alters.the vacuum propagation of an electro-
magnetic wave. In particular, w is indefendent of Bo‘ In the
cutoff limit (k -+ 0), the dispersion relation has roots at the
plasme frequency and all harmonics of the cyelotron frequency except
n = 0. In the resonance limit (k + =), the dispersion relation has
roots at y = (c2k2 + @E)l/a and = nw_ (n =1, ¥2, ...). In
the limit of very strong Bo’ w, * @ and hence p + 0, the dispersion
relastion has roots at o = + (cEKE + mi)l/E’ and w = nw,

{n = +1, +2, ...). This implies that, from comparing the result
with cold plasma limit, the very large B, plasma behavesg just like
a cold plasma except for the intrinsic cyclotron harmonic bvehavior.

Now in order to get some idea on the relation between the

equilibrium distribution and instability of the system, we let

2 ( 2

w = (v - wi) + i(EQEwi). Then separate the dispersion function

{3) into its real and imaginary parts, we have
2 2]

22 [
e Bn(k) nw, P, -0

=1 UPr - nEwi)e + Pi}

RefD(k,w)] = P, - A - mf) + =0

(7)
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= B_(k) n°
n nw, -0 (8)

§: 2 2\ 2
n=1 [[Pr -1 wc] + Pi]

m[D(k,w)] = P, L~

where P = ms - mﬁ, P, = 2y w5 5 and. Bn(k) = 2An(k).

Now assume that Bn(k) < 0 for all n 2 1, then Eq. (8) implies
that either w, = 0 or w, = 0 and there is no propagating instability.
Tf there are more than one particle species in the plasma, the above
conclusion is still correct so long as each velocity distribution
satisfies the condition Bn(k) < 0 for alln =1, One class of
distribution functions that satisfies this condition is defined from
Eq. (3) by afo/avL = 0 for all v > 0. Hence a necessary condition
for propagating instabilities is that the inequality éfo/av* > 0
must be satisfied for some range of vl.

Instabilities associated with the class'of distribuﬁions
with afo/av; < O have been investigated by many authors (Hamasaki,
1968a, b; Davidson and Wu, 1970; Tzoar and‘Yang, 1970; Bornatici and
Lee, 1970; Lee and Armstrong, 19713 Gaffey, Thompson and Liu, 1972,
1973). Our interest is to investigate the type of distribution with
afo/av;2> 0 for some range of vL.. We will take the ring distribution
which occurs naturally in the earth magnetosphere when high energy

charged particles, streaming from the sum, are trapped by the earth's

magnetic field at the bow shock (Kennel and Petschek, 1966).
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III. INSTABILITY ANALYSIS

The equilibrium distribution is teken to be the ring distri-

bution

B(V = vO ) 1 “vﬁ
£, = é‘-nv L exp 5 . (9)
oL v 2n voll 2 vo“

The distribution function is normalized so that

P 3 _ '
frodv=1 . (10)

The dispersion relation can be written from Egs. (3) and (6) as

5 2
2 —J
Ye 2 2 2 BDO n(po)
D(k,w) =5 o0 - a_._ - P Bypg Z N -n
- Ne=om
m2 B p2 ™ 1
__Cln® L2 o N ; I.]
= = |@ 61. po * Sioom jo drsinQrsint J_ l2p0 cose—‘

=0 (11)
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kv
p = —*
o wc ?
W
ﬂ=w— R
c
24
Yo
CX:'—"'-é"= »
3
2uz] (a2
_ (wp/mc ) n v, /2
VR (e
e /vb” BO/BH
and

LA CEa e
s Pn) )

If we consider an eguilibrium distribution of the counter-

streaming type, say,

s{v - v
f=a(l O.L) 1
(o] 21‘1‘\"

oL 2n Vo
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the dispersion relation will have the same form as Eq. (11) with ﬁ"
replaced by Bﬁ = [wﬁ/wz]/[cg/(vin + ug)}. Distribution functions of
the form (12) produce no current along the magnetic field. Thus

the effect of streaming is only to increase the value of &“.

In order to determine the curves of marginal instability in
the parameter space & - B" - Bl, we study the threshold conditions
for the onset of complex solutions of the dispersion relation with
w, > 0. The necessary condition (Briggs, 1964) for an onset of a
pair of complex conjugate solutions of D(k,w) = 0 at 0 = d, p_ = ED

Q

is that (8,5 ) be a double root of & for p_ = B‘D, i.e.,

=4 =0 . (13)

The pinching-pole criterion (Briggs, 1964; Derfler, 1967)

which is necessary for absolute instability is that D(k,w) = O has

a double root Py at Q =, Py = Po’ i.e.,
- =0 (1)
RN .
{)=
Po~Po



1h
where ﬁ, S; satisfy the dispersion relation
D(p,, &, @, B, B ) =0 (15)

for some specific values of Q, B", 31.
Note that it is possible to have an instability with zero w,
which corresponds to purely growing modes. By setting 0 = 0, Egs.

(13)—(15) reduce to

(%%) =0 (identically zero} , (16)
{1=0
2
D _ 2w, ~ ~ ~
{apo ST ﬁﬂ Jo(po) Jl(po) - Ps
0=0
PO=PO
~ A FZacd 2"‘-‘
+ap 17 (o ) I (p,) - 3Gl =0 (17)
2 .
D(p a—o)—fﬁtﬁ i s J(EYIGII=0
Por * = =7 LF, TP 1Po “o‘Fo 1 Po’/d =
(18)

Equstions (17) and (18) give a set of two simultaneous egqua-

tions,
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1 2~ 2~
B - I (o) - Iyley) (19)
_l_ . ﬁ.l. _ BJO(PO) Jl(PO) (20)
p ~2 ~ ’

N ﬁ”po Po

The right-hand side of Egs. {19) and (20) are plotted in Figure 1.
Since 56 js real, Eg. {19) can be satisfied only if B“ > 1 and for

a given value of Bu, Eq. (20) can be satisfied only when the value
ﬁL/B" js rendered such that the hyperbola [l/ﬁ“][l + (6l/a§)] = const.
intersects with the curve [2JO(E;) Jl(E;)]/EO = const. When this
occurs there exist purely imaginary roots of the dispersion relation,
jmplying that plasma fluctuations will grow in time without propaga-
tion. The situation when these two curves just touch gives the

curve of marginal instability for purely growing modes in the B" - B¢
plane and is fresented in Pigure 2 parameterized as w, = 0. HNote that
the curve is independent of C.

Numerical study of the dispersion relation has also been done
to determine the curves of marginal instability for the first three
propagating frequency bands. Solving Egs. (13), (14), and (15)
simultanecusly for various values of Q, Py? Bu with a, B; as para-
meters, we hdve obtained the marginal instability boundaries in the
5L - B“ plane with ¢ as parameter, as shown in Figures 2 and 3. 1t

is interesting to note that these instability boundaries are
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essentially straight lines. Points lying on the right-hand side of
thegse straight lines are unstable. Figure 2 is obtained for & = 0.1.
Note that these three lines, which correspond to the first three
propegating frequency bands, "intersect each other. The effect of
the perpendicular temperature is destabilizing; increasing the value
of o decreases the value of 6“ for instability, as shown in Figure 3.
Attention is also called to the fact that the instability boundaries
corresponding to different values of O for the same fregquency band

are parallel, TInstability can occur for very low Bl.
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IV. DISPERSION CHARACTERISTICS

In order to make sure that these curves truly represent the
instability boundaries, we have to solve the dispersion relation (11)
numerically. The dispersion characteristics for the points A, B,
c,D,E, F, G, and H in p - B“ plane for o = 0,1, as shown in Figure

iy
2, are shown in Figures 4(a)—U4(h), respectively. Cutoff is ob-
gerved at each harmonic of the cyclotron frequency and at the plasma
frequency wp. The mode which starts from mp is well approximated

2 2 2k2
by the cold plasma wave w = mp +cC . Resonances are found at
all harmonics of w, - These observations are consistent with the
analysis of section II.

Now we assume « = nw_and (wa/wz)(v2 /V'2 ) << 1, then the
e p ¢’ on Tou 7

infinite series in Eq. (11) can be well approximated by one term and

the solution of (11) is approximately given by

v2
2 ol d
“p 2 o dpo Jn(po)
oL
W R Doy, 1+ 55 02k2 7 (21)
c ub /

which accounts the undulstion of each mode near each harmonic of the
‘cyclotron frequency. This is shown in Figure 4(a). It will be noted

that Eo. (21) predicts that the modes pass through points defined by



the zeros of Jn(po) and (d/dp)Jn(po), in agreement with the exact
numerical solution. In order to prove that this is true in any case,
it is only necessary to obtain an alternate representation of the

dispersion function (11) (see Appendix B)

D
w B,p 0
D(k,w) = —O%{C@E—BJ_ - p2 . %7 3 [Jﬂ(po) J_Q(po):D

o sin Qm  °p,

(22)
Clearly if Q is an integer, Eq. (22) implies

a7, (e,)

J (p_) =0

n'"o Bpo

verifying that the modes pess through harmonics of the cyclotron
frequency when Po is a zero of the nth order Bessel function or its
first derivative.
As (msf 2)(v2 /v2 } increases, the loops above a given harmonic
We/t ol oy’ !
approach the loops below the harmonic immediately following it. The

points a8t which the loops can couple must always lie between 7
>

and 7y where 7n n

represents the mth zero of Jé(po)‘ At point
3

n+l,m’
B of Figure 2 the n = 1 mode touches the zero freguency axis, thus
there is a range of Po in which purely imaginsry solutions exist.

The imaginary solutions are indicated by a broken line, as shown in

Figure 4{(b).
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At point C of Figure 2 there are two unstable frequency bands.
In addition to the purely growing frequency band there is a complex
freguency band with w, < mr-< ch. The real parts of the frequencies
are indicated by fine lines and the corresponding imaginary parts are
shown by broken lines in Figure L({c). The presence of these complex
solﬁtions has the important practical significance that an individual
propagating mode will grow in time to an amplitude limited only by
the validitj of the linear theory which has been used in obtaining
the dispersion relation.

The points D, E, F, G, and H of Figure 2 give the consistent
results which are shown in Figures 4(d}—U(h), respectively. It is
pointed out that the real parts of the complex frequency bands are
centered at about (n + 1/2)wc and the maxiﬁum growth rates of the
unstable waves decrease with increasing W, and are typically of the
order of the cyclotron freguency. The growth rate can be very strong
for some appropriate choices of plasma parameters.

If we further increase the values of B“ and ﬁ;’ we reach
the situation that there are two purely growing bands; they couple

= i a I +
at po po( » B", 6L) and for p0:> po there always exist Qomplex
solutianswithu% starting from zero at Po = pé to infinity as Po

approaches to infinity. This situation is typically represented by

?igures 5.
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V. CONCLUSTONS

The instability of the ordinary electromagnetic mode propagat-
ing perpendicular to an external magnetic field has been investi-

gated for a single-species plasma with ring velocity distributicn.

afo(v",v;)/avi > 0 for some v, > 0 is a necessary condition

for the existence of propagating instabilities. The instability -
criteria give the mﬁrginal instebility boundaries not only for the
purely growing mode, but also for the propagating growing modes.
These instabilities are all absolute because they gatisfy the abso-
lute instability criterion.  The necessary condition for the purely
growing mode to set in is B“ = 1 and the instability boundary for
purely growing modes depends on B" and 5; only, independent of

a (g = vﬁl/ce). The marginal boundaries for propagating instabilities
are:straight lines in ﬁ” - BL plane with B” > 1 and @ as a parameter.
For different @ the marginal boundaries of propagating modes with

w, in the same harmonic branch are parallel, Increaging @ decreases
Bn required for instability. For appropriate choice of parametgrs,
growth rates may be of the order of the cyclotron frequency. The
growth rate is enhanced by increasing B". The investigation of loss-
. cone type velocity distribution and the case of two-species plasma

for the ordinary EM modes has been underway and the results will be

published in the near future.
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APPENDIX A

From Eq. (3), with @ = ofw,, we have

: 2
2 n C
o ® TTH),
D(k,0) = o - K - W * Z ﬁ‘p_n j "ﬁ dvy
-l .

Nn=-—-o

. (A-1)

oD
By using the identity E: Ji(p) = 1 and the integral repre-

N==0

sentation for the Bessel function

m
p) == -[; JO{Ep gin %] cos nv dr (A-2)

the sum of Bessel functions in (A-1) can be written as
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C-Je
o
'
o
I
ke
S
N
i

=01

‘n’ [+ ]
s 03 nT _
I arJ,[2p sin oy 2T
o n=-% ) = n

(A-3)

If 0 is complex we have, by means of a Sommerfeld-Watson transforma-

tion,

© )
cos nT 1 Jﬁ dz cos ZT (
it A-4)
nee Q2 ~ n2 2i lecg tan zm Q2 _ Z2

where the contour Cl + Cé is taken around the real axis in the

complex z planes as shown in Figure 6.
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jﬁ dz __ cos zT _ dz_ cos (m - T)=
tan zm .2 2 - sin zm 2 2
C-:L+C2 Q -2 C:L+C2 Q" -z

- f dz %1_% . (A-5)
Cl+C2 0" -z

The second integral in (4-5) vanishes because its integrand is

analytic inside the contour C. Since on the large circle CR + CR

1 2
the contour integral approaches zero as the radius R approaches

infinity, we have

jg dz  cos (7w - T)z _ dz  cog (v - 1)z
Cl+02 sin zn‘ QE - ZE c sin zw 2 2

D -z
erl

+j dz  cos {m - 1)%
C+_ sin zn 2 2

2R2 Q -z

_ 2mi cos (r - T)0
Y] gin

(4-6)

Hence (A-Y4) becomes



2k

L.

Z cos nT _ g cos (m - 1)z

- ] L] (A-T)
nle Q2 . n2 Q sin O

If @ is real we have

- -3

Z cog nt 1l dz cos 2T + I cos QT (A-8)
ne"e QE . n2 21 C.+C tan zg Q2 _ Z2 0 tan (On
L2
and
1 dz cos zv _ 1 Jg dz cos (g - 1)Z
2i tan Zq .2 27 21 sin =z 2 2]
C1+C2 9] z Cl+C2 Q0 - =z

The first integral in (A-9) vanishes because the integrand has no

poles in the complex plane except on the real axis. Thus

1 dz cos ZT T

21 tan zm .2 57 Q
C]_+C2 Q. - =
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Hence (A-8) becomes

[--3

cos nt _ mnecod (v - 1)z
I e e - TR (A-10)

==0 {} = n

‘which is enalytic for all Q except possibly at @ = 0, *1, %2,

Note thet {A-10) has the same form as (A-T7). Hence (A-3) becomes

2
= an(p) m Y0 cos (1 - -'r_)ﬂ
—_— j dr JO(Ep sin —-) -1

e -0 T 2 sin m
(A-11)
Finally Eq. (A-1) becoues
2 2 2 2 2
Dlk,p) = ® - %" - w, + uﬁwp fd‘\"” v J’dpfo
T Qsin%cos (g - )0

X A=12
X fo dr Jl[gp sin 2) sin On - (8-12)
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-
o T T _
jo dr Jl[Ep sin 2) Q sin 3 cos (m - 1)

il
) 8] 8
= jro de Jl(Ep cos 5| L cos 3 cos 08

= 8in 06 cong[2 cosg-)TT
= 5 Y11°P 2

8=0

[a¥] ]
bt
—

1 . 18 8 :
- = =2 |2 8
: J’o d¢e sin 08 Y [p cos 7 Jl(Bp cos

™ A
=% desinnesing——a——_——[z‘pcosg.l{Qpcos:a.“
2 . 2 B 2 l. il
o a[2p cos 5]
™ ‘ 8
=-°2- j de sin Q¢ sin @ Jo(2p cos 5] . (A-13)
o .

Thus with the aid of (A-13) the dispersion function reduces to the form

2 P2 2 2 r® o [ dp pf,
Dik,0) = @ - ¢k - a + 2 —_"o
(ko) = o p T T f_ Wy Yy J, sinon

m
j dr sin Qv sin 7 Jo(Ep cos %) . (A-14)
o
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APPENDIX B

From the identity (Watson, 1958)

o /2
- fo Jp.+v (2p cos 7) cos {p - v)1 dT = Jp‘(p) Jv(p)
(B-1)
If we put 4 = -v = 0, then
o e
Jﬂ(p) J_Q(p) == j; JO(Ep cos T} cos fr dr (B-2)
and
2
2 _2 [
BP[JQ(p) J_Q(p)] = j; Jl(Ep cos T) cos r cos 7 dr
(B-3)

Putting 8 = t/2, we have

2 ] =2 (" 8 8
ap[qn(p) J_Q(p) = jo Jl(2p cos 2] cos 35 cos (gds .

(B-4)



28

By using Eq. (A-13) we have

K3 _=p T . 8
ap[Jﬂ(p). J_Q(p)] = G J,O de sin 0o sin @ Jo(?p cos 2} .

(B-5)

From Eq. (11) we finally have

2| € n

Bplm 5
o’ - B - b " I = [Jg(p) J_Q(p)]

D(k,p) = v
(i w) o = sin 0w op

(B-6)
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FIGURE CAPTIONS

. ~a ~a o 2"‘-' 2’\‘
Figure 1 Plot of {EJO(pO) Jl(po)]/po and Jo(po) - Jl(po) versus
Poe
Figure 2 Instability boundaries in the B“ - BL plane. w, = o}

curve is the instability boundary for purely growing
modes, which 1s independent of ¢. 1 < wo/wc < 2,
2 < mofwc <3 3< wo/mc'< 4 curves represent the
instability boundaries for the first three propagating
frequency bands with @ = O.l; Unstable regions lie on
the right of the curves.
Figure 3 Instability boundaries in the &, - 61 plane for the
first propagating frequency band with O as parameter.
Figure L Dispersion characteristics of ordinary electromagnetic
mode for @ = O,l.
(a) BL = 0.2, Gu = 1.6 represents point A in Figure =,
Round points are defined by (w = nw, ,
aJn(po)/apo = 0) and triangular points by
(w = nwc, Jn(po) = 0).
(b) B =0.25, B =1.9 represents point B in Figure 2.
The broken line is the purely imeginary solution.
(e) B,
(@) 8,

0.25, B = 2.25;

2.0, B, = 2.75;



Figure 5

Figure 6

32

(e) g, =10, B, = L.o;
(f) B =13.0, B = 5.0; \
il I
(g) B =0.75 8 = L.0; and
(h) 8 =0.75, B, = 6.0
1 1

represent points C, D, E, F, G, and H in Figure 2,
respectively. The real parts of the complex roots
for frequency are indicated by fine lines and the
corresponding imaginary parts by broken lines.
Dispersion characteristics for ordinary electromagnetic
mode with o = 0.1, ﬁl = 10, 5" = 80. The real parts of
the complex roots for frequency are indicated by fine
lines and the corresponding imaginary parts by broken
lines.
Contours in the complex z plane for evaluation of the

integral in Eq. (A-L4).
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