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ABSTRACT

The instability of the ordinary electromagnetic mode propagat-

ing perpendicular to an external magnetic field is studied for a

single-species plasma with ring velocity distribution. The marginal

instability boundaries for both the purely growing mode and the

propagating growing modes are calculated from the instability cri-

teria. The dispersion characteristics for various sets of plasma

parameters are also given. The typical growth rates are of the

order of the cyclotron frequency and enhanced by increasing .
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I. INTRODUCTION

The instability of the ordinary electromagnetic mode propagat-

ing perpendicular to an external magnetic field has received consid-

erable attention. Hamasaki (19 68a, b) and Davidson and Wu (1970)

investigated a stationary plasma with anisotropic temperatures and

showed that for temperature anisotropy T/TI < 1 and sufficiently

large it > 2, where 11 is the ratio of parallel kinetic pressure to

magnetic pressure, purely growing ordinary electromagnetic modes

exist for propagation perpendicular to the external magnetic field.

Counter-streaming plasmas with and without temperature anisotropy

have also been previously investigated by many authors for the ordi-

nary mode instability (Gaffey, Thompson and Liu, 1972, 1975; Lee

and Armstrong, 1971; Bornatici and Lee, 1970; Tzoar and Yang, 1970).

In this paper we wish to present a comprehensive picture of the ordi-

nary electromagnetic mode for a single-species plasma. From the

study of the dispersion relation derived from the linearized Vlasov-

Maxwell equations, it is found that the instability can occur for

P > 1 and is dependent on the values of P and a, where B is the

ratio of perpendicular kinetic pressure to magnetic pressure and a
c2

is the ratio v o/c , with c as the velocity of light. v o is the aver-

age perpendicular particle velocity. Attention is called to the pre-

diction of propagating instability with the real part of the complex
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frequency, Wr, being non-zero. A detailed analysis is made of the

steady state conditions of the plasma to determine the stability

boundary. The solution of the very complicated dispersion relation

is done numerically and compared with the analytical solutions that

are obtained in certain limiting cases. The justification of the

instability boundaries predicted by the instability criteria which

require the instability to be absolute is also made through the

numerical solutions of the dispersion relation. The growth rates are

found to be typically of the order of the cyclotron frequency.

The electromagnetic instability is important in high-P plasmas

and is of interest in a broad range of astrophysical and laboratory

applications. Recently the experimental observation of the electric

field fluctuations made by the IKP-6 spacecraft in the outermagneto-

sphere was reported by Gurnett and Shaw (1975). They observed strong

electromagnetic radiation of harmonically related bands in the

frequency spectrum with electric field fluctuation parallel to the

external magnetic field. They suggested that it is due to an ordi-

nary electromagnetic plasma instability and this suggestion is just-

ified by our work.

The basic plasma model that is investigated consists of an

equal number of electrons and ions immersed in a uniform external

magnetic field and free of any electric field. Ions are considered

to form a uniform positive background. In section II the dispersion

relation is obtained. Various limiting forms of the dispersion
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relation are discussed and general stability considerations are given.

Section III presents the analysis of instability. Three conditions

for instability are given and the instability boundaries are calcu-

lated. In Section IV the numerical solutions of the dispersion

relation of the various parametric dependences are discussed.

Finally the conclusions of this study are summarized in section V.
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II. DISPERSION RELATION

For an infinite collisionless single-species plasma immersed

in a uniform, static magnetic field o we take the equilibrium dis-0

tribution function to be an even function of the component of

velocity parallel to o so that the ordinary mode decouples from
0

the extraordinary modes for wave vector k B (k = k and
0 x

B = B 8z ). The ordinary mode is a purely electromagnetic wave
o 4o4

with the electric field E 1 B

The electric field in the (k,w) space for the ordinary mode

is (e.g., Baldwin, Bernstein and Weenink, 1969)

E(k,w) (1)

where the numerical function is

2
WW

N(k,w) = ie + ic x + z e g(k v )
c

X nn

(2)
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and the dispersion function is

2 2k2 2 + A (k)nwc
D(k,w) = w - n - + w (5)

n=-m C

r2 2

An(k) = dv dv

with = 4vne2/m; w = eBo/mC; p = kv /wc ; J is the nth order

Bessel function of the first kind; fo is the equilibrium distribu-

tion function; and e, b, g are defined by

(e, b, g) = - e [E (t = 0), B (t = 0), f(1) (t = 0)] .

The singularities at w = nwc in N(k,w) are matched by the

singularities at w = nwc in D(k,w). Therefore all of the singularities

in E(k,w) come from the zeros of the dispersion relation D(k,w) = 0.

If we solve for w (k real), exponential growth and damping are implied

for w. > 0 and w, < 0, respectively, while wi is the imaginary part

of w.

In general the infinite sum in Eq. (35) converges rapidly for

arguments of the Bessel functions less than order unity because
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1 In (4

J(P) n for p << 1 ()

However for p larger than order unity the series converges very

slowly because

2 j
Jn(p )  cos - - for p >> 1 . (5)

Therefore a large number of terms must be kept in order to obtain

accurate results. This extensive calculation can be avoided by

using both the integral representation of the Bessel functions and

the Sommerfeld-Watson transformation technique (see Appendix A).

The dispersion function then reduces to

pf

SD(kw)22 2 2 dv dp sin OD(k,w) = 2 ci - wp 2TTw v1 d1  d f

STr d sin 2T sin T Jo 2p cos (6)

where 0 = w/wc . Clearly this expression is defined for all Q except

possibly at 0 = n and hence is the proper analytic continuation of

Eq. (3). This form is particularly convenient for computational

purposes. Before solving the dispersion relation exactly, it is
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important to examine some interesting features of the dispersion

relation. In the limit of a cold plasma system, the dispersion rela-

tion becomes D(k,b) = w - -2k2 2 = 0, which shows how the
pP

presence of the plasma alters the vacuum propagation of an electro-

magnetic wave. In particular, w is independent of B . In the

cutoff limit (k 4 0), the dispersion relation has roots at the

plasma frequency and all harmonics of the cyclotron frequency except

n = 0. In the resonance limit (k 4 -), the dispersion relation has

roots at w =  (c2k2 + 2)1/2 and w = nw (n = +1, ±2, ... ). In

the limit of very strong Bo, wc 4 m and hence p - 0, the dispersion0 1/

relation has roots at w = + (c2k2 + )1/2 and w = nwc

(n = +1, ±2, ... ). This implies that, from comparing the result

with cold plasma limit, the very large B plasma behaves just like

a cold plasma except for the intrinsic cyclotron harmonic behavior.

Now in order to get some idea on the relation between the

equilibrium distribution and instability of the system, we let

2 2 2
w 2(wr - wi) + i(2wrwi). Then separate the dispersion function

(3) into its real and imaginary parts, we have

O B (k) n 2  P - n w

Re[D(k,w)] = P - c 2 k 2 - p + n c (r Wc = 0
n=l Pr - n w + Pi]

(7)
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i [ B (k) n 2W

Im[D(k,w)] = Li - n -2 2 2 = 0 (8)
n=l Pr - nW + P.]

where P = W 2 , P 2 Wwri, and B (k) = 2A (k).
r = Wr- i' -- r n n

Now assume that Bn(k) < 0 for all n > 1, then Eq. (8) implies

that either wr = 0 or wi = 0 and there is no propagating instability.

If there are more than one particle species in the plasma, the above

conclusion is still correct so long as each velocity distribution

satisfies the condition B (k) 
< 0 for all n 2 1. One class of

distribution functions that satisfies this condition is defined from

Eq. (3) by f 0 /bv O for all v > 0. Hence a necessary condition

for propagating instabilities is that the inequality fo/v I > 0

must be satisfied for some range of v .
±

Instabilities associated with the class of distributions

with fo/ v 1 5 0 have been investigated by many.authors (Hamasaki,

1968a, b; Davidson and Wu, 1970; Tzoar and Yang, 1970; Bornatici and

Lee, 1970; Lee and Armstrong, 1971; Gaffey, Thompson and Liu, 1972,

1975). Our interest is to investigate the type of distribution with

afo/V > 0 for some range of v . We will take the ring distribution

which occurs naturally in the earth magnetosphere when high energy

charged particles, streaming from the sun, are trapped by the earth's

magnetic field at the bow shock (Kennel and Petschek, 1966).



III. INSTABILITY ANALYSIS

The equilibrium distribution is taken to be the ring distri-

bution

f2
8(v - v ) 2

= 1 1 exp . (9)fo 2Tvo. v eVo2 v2

The distribution function is normalized so that

* f v = . (10)
J o

The dispersion relation can be written from Eqs. (3)and (6) as

2k n J 2 J
Wc 2 2 CO o J

D(k,w) = 4 2 - - P E __

2 2
= - is - p° + -nfi Jo(2pocos-

= C 2 P, -2o +  Jsin T dTsin OTsinT J

a 0 () sin o
00
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where

kv
0

PO- w
c

W
w

C

2
V
O.L
2

c

/ ) (nomV 1/2)

c= /Vo2 B 2o/811

and

/(W) n m /2

p O 0 0- c 2/V2.2
c2/v) B8)

If we consider an equilibrium distribution of the counter-

streaming type, say,

2 2
8(v - V 1 -(v - u) -(v +u)

fo 2 vo exp 2 2 + exp 22

1 2/ o oil 2vOl 2vOl J
(12)
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the dispersion relation will have the same form as Eq. (11) with PI

replaced by " = [w 2  ]/[c2 2 + u 2 ) ]. Distribution functions of

the form (12) produce no current along the magnetic field. Thus

the effect of streaming is only to increase the value of P I

In order to determine the curves of marginal instability in

the parameter space a - P - ,1 we study the threshold conditions

for the onset of complex solutions of the dispersion relation with

Wi > 0. The necessary condition (Briggs, 1964) for an onset of a

pair of complex conjugate solutions of D(k,w) = 0 at Q = Q, po = Po

is that (Y,po) be a double root of Q for po = 0  i.e.,

D . (135)

po=po

The pinching-pole criterion (Briggs, 1964; Derfler, 1967)

which is necessary for absolute instability is that D(k,w) = 0 has

a double root p at Q = , p = p,' i.e.,

S = o (14)

bpo 
=

p =p
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where L, p0 satisfy the dispersion relation

D(o 1) = 0 (15)

for some specific values of a, PI , P.

Note that it is possible to have an instability with zero wr

which corresponds to purely growing modes. By setting Q = 0, Eqs.

(13)-(15) reduce to

() E 0 (identically zero) , (16)

( :0 = jL 0 (Po) J 1 (Po) - P=0

+ aG'o[Jo( o) Ji o - Jl(Po)] = 0 , (17)

2

bon=0 1

Po PO

+ i JIGa 1 Po 2 ( o)] 0 (17)

2

we -2~~
D(p 0o, =0O) - [- - po + 2~ po Jo(o J 1 Po ) ] = 0

(18)

Equations (17) and (18) give a set of two simultaneous equa-

tions,
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= _( Po) - J1o )  (19)

11 2Jo oGO 1iO (20-- + .o(20)

11Po PO

The right-hand side of Eqs. (19) and (20) are plotted in Figure 1.

Since p is real, Eq. (19) can be satisfied only if I > 1 and for
0 II

a given value of P , Eq. (20) can be satisfied only when the value

-2
-/B is rendered such that the hyperbola [l/P ][1 + ( /p2)] = const.

intersects with the curve [2Jo(po) Jl(Po)]/po = const. When this

occurs there exist purely imaginary roots of the dispersion relation,

implying that plasma fluctuations will grow in time without propaga-

tion. The situation when these two curves just touch gives the

curve of marginal instability for purely growing modes in the P1 - P

plane and is presented in Figure 2 paraneterized as w = 0. Note that

the curve is independent of a.

Numerical study of the dispersion relation has also been done

to determine the curves of marginal instability for the first three

propagating frequency bands. Solving Eqs. (15), (14), and (15)

simultaneously for various values of n, p0  1 with a, . as para-

meters, we have obtained the marginal instability boundaries in the

P - 11 plane with a as parameter, as shown in Figures 2 and 5. It

is interesting to note that these instability boundaries are



essentially straight lines. Points lying on the right-hand side of

these straight lines are unstable. Figure 2 is obtained for a = 0.1.

Note that these three lines, which correspond to the first three

propagating frequency bands, intersect each other. The effect of

the perpendicular temperature is destabilizing; increasing the value

of a decreases the value of 11 for instability, as shown in Figure 35.

Attention is also called to the fact that the instability boundaries

corresponding to different values of a for the same frequency band

are parallel. Instability can occur for very low .1"
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IV. DISPERSION CHARACTERISTICS

In order to make sure that these curves truly represent the

instability boundaries, we have to solve the dispersion relation (11)

numerically. The dispersion characteristics for the points A, B,

C, D, E, F, G, and H in P - P11 plane for a = 0.1, as shown in Figure

2, are shown in Figures 4(a)-4(h), respectively. Cutoff is ob-

served at each harmonic of the cyclotron frequency and at the plasma

frequency w . The mode which starts from w is well approximated
p P

by the cold plasma wave w2  2 + c 2 k 2 . Resonances are found at
p

all harmonics of wc . These observations are consistent with the

analysis of section II.

2 2 2 2
Now we assume w - nwc and (Wp/W c)(v /v ) << 1, then the

c p c on oj

infinite series in Eq. (11) can be well approximated by one term and

the solution of (11) is approximately given by

2V
2 vol dJ 2(P
p 2 Po dP n 00v. (21)V 0

w ne 1 + 2 2 2 (21)
C ~no - c 2k 2-n~nc- -p

which accounts the undulation of each mode near each harmonic of the

cyclotron frequency. This is shown in Figure 4(a). It will be noted

that Ea. (21) predicts that the modes pass through points defined by
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the zeros of J n(Po ) and (d/dp)Jn(p o), in agreement with the exact

numerical solution. In order to prove that this is true in any case,

it is only necessary to obtain an alternate representation of the

dispersion function (11) (see Appendix B)

2
W r2 2 11 (

D(k,w) =- - - po sin p

(22)

Clearly if 02 is an integer, Eq. (22) implies

6J (P )

(P n lowJn(p°) Po = 0
n o bpo

po

verifying that the modes pass through harmonics of the cyclotron

frequency when po is a zero of the nth order Bessel function or its

first derivative.

2 2 2 2
As (cu/wc)(v oi/v2 ) increases, the loops above a given harmonic

approach the loops below the harmonic immediately following it. The

points at which the loops can couple must always lie between 7n,m

and 7n ,I where / represents the mth zero of J'(p ). At point
n+lm n,m n o

B of Figure 2 the n = 1 mode touches the zero frequency axis, thus

there is a range of po in which purely imaginary solutions exist.

The imaginary solutions are indicated by a broken line, as shown in

Figure 4(b).
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At point C of Figure 2 there are two unstable frequency bands.

In addition to the purely growing frequency band there is a complex

frequency band with wc < Wr < 2wc . The real parts of the frequencies

are indicated by fine lines and the corresponding imaginary parts are

shown by broken lines in Figure 4(c). The presence of these complex

solutions has the important practical significance that an individual

propagating mode will grow in time to an amplitude limited only by

the validity of the linear theory which has been used in obtaining

the dispersion relation.

The points D, E, F, G, and H of Figure 2 give the consistent

results which are shown in Figures 4(d)--4(h), respectively. It is

pointed out that the real parts of the complex frequency bands are

centered at about (n + 1/2)wc and the maximum growth rates of the

unstable waves decrease with increasing wr and are typically of the

order of the cyclotron frequency. The growth rate can be very strong

for some appropriate choices of plasma parameters.

If we further increase the values of P and ' , we reach

the situation that there are two purely growing bands; they couple

at p = p'(a, 1 , B ) and for p > p' there always exist complex
0 0 0

solutions with Wr starting from zero at po = po to infinity as po

approaches to infinity. This situation is typically represented by

Figures 5.
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V. CONCLUSIONS

The instability of the ordinary electromagnetic mode propagat-

ing perpendicular to an external magnetic field has been investi-

gated for a single-species plasma with ring velocity distribution.

8f(v, v )/v > 0 for some v > 0 is a necessary condition

for the existence of propagating instabilities. The instability

criteria give the marginal instability boundaries not only for the

purely growing mode, but also for the propagating growing modes.

These instabilities are all absolute because they satisfy the abso-

lute instability criterion. The necessary condition for the purely

growing mode to set in is 1 > 1 and the instability boundary for

purely growing modes depends on P1 and P only, independent of

2 2
a (a = v2 /c ). The marginal boundaries for propagating instabilities

01

are straight lines in B - B plane with > 1 and a as a parameter.

For different a the marginal boundaries of propagating modes with

w in the same harmonic branch are parallel. Increasing a decreases

1 required for instability. For appropriate choice of parameters,

growth rates may be of the order of the cyclotron frequency. The

growth rate is enhanced by increasing B . The investigation of loss-

cone type velocity distribution and the case of two-species plasma

for the ordinary EM modes has been underway and the results will be

published in the near future.
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APPENDDC A

From Eq. (3), with 0 = w/wc, we have

2

(k,)= 2  c2k2  + Z V dvDt _, ,w, w - CO 1

n=-co-

x dv 2(p)

= 2 c2k - 2  - 2 2p dv v dpf

p nJ2
x n n~(P2  (A-i)

x E 0 _ nbp n= -m

By using the identity Jn(p) = 1 and the integral repre-

n=-o

sentation for the Bessel function

J2(p) J o 2 p sin cos nT dT (A-2)

the sum of Bessel functions in (A-1) can be written as
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nJ (p) 2 Jn

E Qn- n 2 _2 21
n=-c n=- - n

1 To ) eos n T  1

= r dTJ O 2p sin - c 2 - -1

o n=- - n

(A-5)

If Q is complex we have, by means of a Sommerfeld-Watson transforma-

tion,

C cos nl 1 dz cos zT (A-h
2 2 2i tan z , 2  2

~~ -n 12n=- - n C1.C2- z

where the contour C 1 + C2 is taken around the real axis in the

complex z planes as shown in Figure 6.



25

dz cos ZT dz cos (T - T)z
tan zT, 2 2 sin z 2 2

C+C2  - z C1+C2 s - z

- 1 2

dz sin Tz (A-5)

- C + C 2  
Q 2  2 "A2

The second integral in (A-5) vanishes because its integrand is

analytic inside the contour C. Since on the large circle CR1 + CR2

the contour integral approaches zero as the radius R approaches

infinity, we have

dz cos ( - T)Z dz cos (1 - T)Z

S1+ 2 sin zT 2 2 sin zT Q2  2C+C2 - z C1+CRI - z

+ dz cos (T- T)z

JC2+CR2 sin z7 2 2

2ni cos (1 - ) (A-6)
£2. (A-6)0 sin ) c

Hence (A-4) becomes
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o COS nT fl cos ( -j )z (A-7)
2 2 0 sin OTT

n=-  - n

If Q is real we have

Z cos n 1 dz cos z + Z cos T (A-8)

~22 ~ 2i tan z . 2  2  Q tan OTT
n=-- Q - n C +C2 - z

and

1 dz COS ZT I dz cos (r - T)z

i tan zT r 2  2 2i + sin z 2 2
C1+C2 12- z C1+C2 ' - z

i1 sin ZT .(A-9)- --- dz 2 2 (i1+C2 0 - z

The first integral in (A-9) vanishes because the integrand has no

poles in the complex plane except on the real axis. Thus

1 dz cos ZT in T

C2i C1 tan z --2 2- .
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Hence (A-8) becomes

O cos nT _ Cos (T - T)z (A-10)
-2 2 _ 2 sin P

n=-m 2 - n

which is analytic for all Q except possibly at P = 0, ±1, ±2, ...

Note that (A-10) has the same form as (A-7). Hence (A-3) becomes

OnJ2(P) oT o sin
n =s Q cos ( - T)

_ -n j sin Q1
n=-co

(A-11)

Finally Eq. (A-1) becomes

D(k,w) =  - c2k2 - p + 4r dv v f dpf

o -sin cos (TT -T)

x dT Jl 2p sin sin (A-12)

Now put T - = :
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dT J1 2p sin ) sin T cos (T - T)O

fo22

0= & J1(2p cos 0 cos cos 0e

= sin e cos 2. J12p cos

2 2i e=0

1 r 1 8 r e'9
2 de sin e [ 2p cos J 2 (2p Cos 2

- de sin De sin e J 2p cos . (A-15)

Thus with the aid of (A-15) the dispersion function reduces to the form

2 22 2 2 2 Hpp

0~

D(k,T) = - - 0 2 dv0 o sin sin Co'2- 2
P- o sin Q Jo 2p cos . (A-14)

TdT sin PT sin T J0Co s(14
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APPENDDIX B

From the identity (Watson, 1958)

2 fo/ 2

- J (2p COS T) cos (p - V)T dT = J (p) J (p)
Tr fo +v v

(B-1)

If we put p = -v = Q, then

2 /2
p(p) J (p) = J0o(2p cos T) cos OT dT (B-2)TT J

and

() ( = T/ J21 (2p cos T) cos T COS 2 2T dT

(B-3)

Putting e = T/2, we have

l[J(p) Jjp)] f 1(2p COS -) CoS COs Qed.d
S17 '

(B-4)
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By using Eq. (A-15) we have

(p) J (p)] = de sin 1e sin e J (2p cos .

(B-5)

From Eq. (11) we finally have

2 C 2 O I T T( ) j _ (
D(k,w) = ~ - Po sn (n J-'P-

(B-6)
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FIGURE CAPTIONS

Figure 1 Plot of [2Jo(o) l( Po)]/o and J2o o) versus

Po.

Figure 2 Instability boundaries in the - plane. wo = 0

curve is the instability boundary for purely growing

modes, which is independent of a. 1 < wo /wc < 2,

2 < wo/w c < 5, 3 < wJo/ e < 4 curves represent the

instability boundaries for the first three propagating

frequency bands with a = 0.1. Unstable regions lie on

the right of the curves.

Figure 3 Instability boundaries in the 1 - plane for the

first propagating frequency band with a as parameter.

Figure 4 Dispersion characteristics of ordinary electromagnetic

mode for = 0.1.

(a) B = 0.2, B = 1.6 represents point A in Figure 2.

Round points are defined by (w = nwc,

Jn (Po)p ° = 0) and triangular points by

(w = nw c, Jn(P o) = 0).

(b) P = 0.25, 11 = 1.9 represents point B in Figure 2.

The broken line is the purely imaginary solution.

(c) P = 0.25, P = 2.25;

(d) P = 2.0, B = 2.75;
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(e) B = 7.0, = 4.0;

(f) P = 13.0, P = 5.0;
(g) P' = 0.75, P = 4.0; and

(h) = 0.75, = 6.0

represent points C, D, E, F, G, and H in Figure 2,

respectively. The real parts of the complex roots

for frequency are indicated by fine lines and the

corresponding imaginary parts by broken lines.

Figure 5 Dispersion characteristics for ordinary electromagnetic

mode with a = 0.1, P = 10, B = 80. The real parts of

the complex roots for frequency are indicated by fine

lines and the corresponding imaginary parts by broken

lines.

Figure 6 Contours in the complex z plane for evaluation of the

integral in Eq. (A-4).
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