
B O L T B E R A N: A ,- D' N E W M A N i c

C O N S U L T I N G D E V E L O P M E N T R E S E A R C H

BBN Report No. 2792
A.I. Report No. 10

"ROBOT" COMPUTER PROBLEM SOLVING SYSTEM

Quarterly Progress Report

Contract No. NASW-2572

Joseph D. Becker

E. William Merriam

(1NSA -c-138395) ROBOT COMPUTER PROBLESOLVING SySIE8 Quarterly Progress N7-2285
Report, 23 Oct. 1973 - 23 an. 1974 74-2 2 8 5 1(Bolt, Beranek and eman, Inc., 1974ca

Alingt Va. 49 p fIC $5.50 CSCL 09B G3/08 16962Uncls

23 January 1974

Reproduced by

NATIONAL TECHNICAL
INFORMATION SERVICE

US Department of Commerce
Springfield, VA. 22151

Prepared For:

National Aeronautics and Space Administration

Washington, D.C. 20546

CAMBRIDGE WASHINGTON, D.C. CHICAGO HOUSTON LOS ANGELES SAN FRANCISCO

NOTICE

THIS DOCUMENT HAS BEEN REPRODUCED FROM THE

BEST COPY FURNISHED US BY THE SPONSORING

AGENCY. ALTHOUGH IT IS RECOGNIZED THAT CER-

TAIN PORTIONS ARE ILLEGIBLE, IT IS BEING RE-

LEASED IN THE INTEREST OF MAKING AVAILABLE

AS MUCH INFORMATION AS POSSIBLE.

BBN Report No. 2792 Bolt Beranek and Newman Inc.

A.I. Report No. 10

"ROBOT" COMPUTER PROBLEM SOLVING SYSTEM

Quarterly Progress Report

Contract No. NASW-2572

Joseph D. Becker

E. William Merriam

23 January 1974

Prepared For:

National Aeronautics and Space Administration

Washington, D.C. 20546

TABLE OF CONTENTS

Page

INTRODUCTION. 1

I. CONCEPTUAL ISSUES. 2

A. Some Characteristics of "Intelligence" in
Animals 2

B. The Motivation behind Intelligent Behavior
in Animals 6

C. The Basis of Intelligent Behavior in
Sensori-motor Skills 11

II. PRACTICAL ISSUES 17

A. Conversion of SAIL to TENEX. 19

B. Investigation into the Possible Use of the
ARPANET for a Multi-Host Robot Program 20

B.1. Background. 20

B.2. Our Current Work on Multi-host Program
Facilities 22

B.3. General Description of the Operation and
Structure of a Multi-host Program 23

B.4. Mechanisms for Inter-NCJ Communication --

Byte-Stream Files and Channels. 30

B.5. Access to Non-Local Files 34

B.6. Information Needed to Initiate a
Multi-host Program. 36

B.7. Controlling, Communicating With, and
Debugging Multi-Host Jobs 40

B.8. Final Remarks 45

C. Miscellaneous Assistance with the JPL ROBOT
Project. 46

//

INTRODUCTION

The following is a report on progress made on NASA

Contract Number NASW-2572 for the period 23 October 1973 to

23 January 1974. This work is a continuation of work

started under NASA Contract NASW-2236 and previously

reported in BBN Report Numbers 2316 and 2646.

Our work on this contract encompasses the conceptual,

experimental, and practical phases of the development of a

Robot Computer Problem Solving System. We categorize the

progress made this quarter in the conceptual and practical

domains as follows:

I. Conceptual Issues
Clarification of the nature of robot intelligence

II. Practical Issues
A. Continued progress in converting the programming
language SAIL to run under the TENEX monitor

B. Investigation and specification of the issues
involved in the practical use of the ARPA network
for running several cooperating jobs at different
host sites

C. Assistance with the JPL Robot Project in
connecting JPL facilities to the ARPA network, in
running demonstrations, and in usina the BBN TENEX
facility

These topics are discussed in the following pages,

using the same outline as that given above. Included with

each topic is an indication of our plans for future work.

As no work was done this quarter in the experimental domain,

that aspect will not be discussed in this report.

Page 2

I. CONCEPTUAL ISSUES

During this quarter we have taken some time off from

direct work on our robot simulation (the experimental

portion of our work) in order to clarify the nature of the

"robot intelligence" that we are trying to develop. This

has involved us in considerable discussion of the nature of

intelligence in animals, since animals exhibit many sorts of

behavior that one might expect from intelligent, roving

robots. We have tried to focus on the properties of

observable animal behavior, rather than postulating

"intellectual" mechanisms derived from an analysis of human

thinking. In particular, we have concentrated on the notion

that sensori-motor skills may account for a good deal of

what we perceive as "intelligence" in the behavior of

animals and roving machines.

A. Some Characteristics of "Intelligence" in Animals

It goes without saying that what we call "intelligence"

in animals is not the ability to think great thoughts or

score well on IQ tests, but rather has something to do with

the quality of the animal's behavior in its struggle to stay

alive. Thus, cats are more intelligent than frogs, and

frogs are more intelligent than worms.

With regard to activities which an animal initiates of

Page 3

its own accord, such activities tend to be considered

intelligent insofar as they have a recognizable goal' For

example, when a cat stands on his hind legs and turns a

doorknob with his forepaws, we recognize the objective, and

therefore consider his action intelligent. When the cat

roams restlessly around the room, we do not readily perceive

his objective, and so we do not feel that this behavior is

especially intelligent. Yet, we should realize that this

exploratory behavior probably has some latent survival

value. Indeed, in many animals goal-directed behavior

occupies only a limited percentage of their waking hours;

the bulk of their time goes into apparently non-directed

activities such as exploration, play, or just sitting

around. It may not be wise to exclude non-directed

activities from the investigation of animal intelligence

simply because we do not understand how they relate to the

behaviors that are more recognizably "intelligent".

With regard to activities in which an animal responds

to events occuring in its environment, such activities tend

to be considered intelligent insofar as the response is fast

and appropriate. For example, many animals (including

humans) will follow you with their eyes as you walk in front

of them. When a movement-detecting electric-eye apparatus

or a painted portrait seems to do the same thing, you will

have the uncanny feeling of beinq watched, i.e. kept under

observation by some intelligence, even though you know these

Page 4

objects to be inanimate. Similarly, the immediate and

appropriate responses of the Venus's-flytrap give us the

eerie feeling that the plant knows what it is tryinq to do.

Even reflexes. then, give the appearance of intelligence

because they constitute fast, appropriate reactions.

The "appropriateness" of a response is measured partly

by its adaptiveness to the particular stimulus event. Thus,

a dog who is good at catching dog-biscuits seems less

intelligent if we discover that he will still snap his jaws

shut even when we don't actually throw the biscuit, but

merely feiqn a throwinq motion.

Finally, an action, either freely initiated or

responding to the world, seems more intelligent insofar as

its effect is removed from the animal's (presumed) ultimate

goal. For example, the cat turning a doorknob with its paws

is presumably trying to turn the knob so as to open the

door, and this in order to enter the kitchen, and this in

order to check out the food bowl. By contrast, the steps in

the performance of an integrated motor activity, such as the

footwork involved in a difficult jump by a cat, do not

appear to be intelligent, even though their actual logic may

be very much more subtle than the logic of turning a knob to

open a door. In a sense, the jump appears to be a less

intelligent act precisely because it is done more

proficiently: we are not able to analyze it into a discrete

Page 5

sequence of subgoals, so its component actions appear to

contribute directly to the main goal.

To summarize, we have said that some of the

characteristics of "intelligence" in animal activity are

goal-directedness, separation of the action from the goal,

and the speed, appropriateness, and adaptiveness of a

response. In all of this discussion we have carefully

spoken of activities seeming or being considered to be

intelligent -- for it seems clear to us that "intelligence"

is an attributed rather than an inherent property of

behavior. We have already seen a number of examples where

our perception of intelligence can be quite misleading with

respect to a total analysis of an animal's behavior: for

example, we disregard activities such as play because we do

not know their purpose, we write off the process of

coordinating a jump since we perceive it as a single action

leading directly to its goal, and we may even attribute some

aspects of intelligence to electric-eye systems, plants, and

portraits.

The fact that "intelligence" is an attributed

characteristic -- and one which does not adequately cover

the properties of animal behavior that we might be

interested in employing in machines -- is very important for

our work in developing a simulation of an "intelligent"

robot. In particular, it means that people (including us)

Page 6

will tend to judge the merits of the simulation on the basis

of its final behavior, rather than on the basis of its

mechanism, even though we are explicitly interested in

uncovering the mechanisms of intelligence and not in putting

on an impressive show. To put it another way, a simulation

model that appeared impossibly stupid on one computer might

appear quite "intelligent" when run on a computer that was

50 times faster, simply because rapidity of response is one

of the subjective indicators of intelligence. This means

that we must be extremely cautious in interpreting the

results of our simulations, and that the behavior of the

simulation is not a simple indicator of the merits of the

ideas on which the simulation is based.

B. The Motivations behind Intelligent Behavior in Animals

One of the most difficult problems in simulating a

cognitive system is to provide the simulation with any

motivation for thinking at all! An animal, when it is born,

sets about its business without being told what to do; but

the world's most "intelligent" computer system, when turned

on, will do nothing at all until it is given explicit

motivating instructions. Because this problem weighs

heavily on our robot simulation, we have given some thought

to the kinds of motivation that animals can be said to

experience. We can distinguish at least four categories.

Page 7

Drives: The notion of a "drive" has been used to

account for much of animals' freely-initiated behavior.

Usually, one simply postulates some measurable or at least

parametric quantity (hunger, drowsiness, lust, etc.), some

factors which affect the variable (e.g. activity increases

hunger and drowsiness, lust may have a monthly cycle, all

three perhaps increase with the passage of time, etc.), and

some sort of detector which spurs the animal into an

appropriate activity when one of these quantities becomes

more (or less) than the animal can bear. It is a form of

model that is simple, nearly tautological, and

indispensable.

Responses: We hardly need to mention that the ideas of

"response" and "reflex" have played far too large a role in

the traditional description of animal behavior, but that

they of course do represent important components of animal

activity. There is no obvious way of defining what a

"response" is, or even a "direct response" to an external

event. For example, consider the tracking of a moving

object that we mentioned earlier; it is performed by most

higher animals at rest, including humans, when a moving

object enters their field of view. Now, it is not at all an

elementary process from the sensori-motor point of view, as

we have learned from our own simulations of tracking

behavior. Yet, it is evoked in a manner that does seem

"reflexive", namely in an apparently automatic, non-directed

Page 8

fashion. There may be no easy way to define the point at

which "reflexive" response leaves off, and intentional

response takes over.

Goals: As we mentioned in the previous section, many of

the behaviors that we call intelliqent in animals are those

to which we can assign apparent goals or results. When an

animal stalks a prey that it has seen, frees itself from a

trap, or finds the warmest place around to sleep in, we feel

that we understand the structure of the behavior because we

understand the end toward which the behavior is directed.

Interestingly, the ultimate motivation behind most

goal-oriented behavior in animals is describable by a simple

drive (toward food, warmth, etc.). This means that a

concept which is vital in describina the behavior of men

(and of robots), namely the concept of constructive work, is

nearly irrelevant in the world of animals. That is, a man

will commonly be given (or give himself) a task such as

making a chair or learning to play the guitar, where the

basic motivation is very far from any obvious survival

drive. Similarly, we will certainly expect any robots that

appear on the scene to work for their living. But animals

by-and-large lead unconstructive lives, and they give us

only a few examples (such as beavers) of larqe-scale

activities whose end-result is not the simple satiation of a

drive (even if we are generous enough not to attribute

beavers with a simple "dam-building" drive). The notion of

Paqe 9

constructive work, then, calls for motivational models

beyond those which have arisen from the study of animal

behavior.

"Other": Although most animals do not work, many of

them definitely play, and we have already seen that play

belongs to a category of non-(apparently)-directed activities

whose purpose is so unobvious that we might wish to forget

about then altogether. Unfortunately, this class contains

types of activity that are vital to many robot applications,

such as "exploration", "curiosity", and "vigilance". And

although no one would intentionally build a robot that had

to spend a large fraction of its time sleeping, we have to

admit that the exclusion of sleep is a totally uninformed

decision, since we have no idea of its (apparently

indispensable) function in living systems. Then too, the

many facets of "learning" all fall under the category of

activities which are "non-directed", in that they do not

bring an immediate reward; yet they are absolutely vital to

any system that is to make the barest pretenses to

intelligence. In a word, we have almost no idea of how to

model the motivational basis of activities in this category,

since we only poorly understand their function. Perhaps

considerable progress in the understanding of intelligence

can be made by further investigation of this much-neglected

area.

Page 10

To summarize the discussion of the motivations that

underlie intelliaence, we may ask why an organism tries to

be intelligent at all, or indeed why it tries to do anything

at all. The answer is that there is no necessity: the

majority of living organisms, being plants or plant-like,

"do" almost nothing in the way of real activity. A minority

of organisms have found that they can live better by

actively affecting their environments, but such improvement

comes at the expense of greater complexity, and therefore a

greater investment in the safety of the individual. (That

is, plant species do not mourn the loss of billions of seeds

each season; ant colonies freely sacrifice hundreds of

individuals; but the higher animals place an increasing

reliance on the survival of a fairly high percentage of the

individuals that are born.) Intelligence, then, is a

parameter which describes the degree to which an organism

can adapt its environment to suit itself (for its own

betterment, e.g. it can go out and hunt food instead of

waiting for it to come by) and at the same time it describes

the degree to which it can adapt itself to suit the

environment (for its own survival, e.g. when it cannot find

food it may have to migrate). Because of this

activity-safety trade-off, the lives of the more intelligent

species are not "better" or even more "efficient" in any

sense than the lives of less adaptive organisms -- the

former are merely more exciting.

Page 11

C. The Basis of Intelligent Behavior in Sensori-motor
Skills

Putting aside now the question of motivation, let us

suppose that an animal or robot is in a given situation, and

needs or wants to do a certain thing or obtain a certain

result. What constitutes intelligent action? As we saw in

the first section, it is, in part, action which is quickly

produced, which is appropriate to the situation and the

desired result (i.e. effective in bringing about the

result). Now, nothing we have said so far precludes the

possibility of the system's action being "canne d", i.e.

memorized (or built-in) in advance, rather than being

extemporized on the spot. To put the matter baldly, we can

imagine a system which can discriminate only a relatively

small number of situations S1,S2,...Sn (where a "situation"

includes both perceived external conditions and given

internal motivations), and which is somehow already

programmed with the optimal responses R1,R2,...Rn

corresponding to each situation.

Within its limits, such a system is by definition

optimized and above cavil. Indeed, its quick, appropriate

responses may well impress an observer with their

"intelligence" ... until he discovers the element that is

missing: adaptability. But it is important to repeat that

intelligence (or adaptability) is not a necessity to life,

but rather an optional commodity which is present in

Page 12

different species to different degrees. Many lower animals

lead pleasant lives that are susceptible to the simple sort

of description just given. Moreover, there is every reason

to believe that species which do employ adaptive mechanisms

combine them with a system of "canned" responses, rather

than simply replacing the canned responses with fancier

means of deciding what to do.

This assertion, that "intelligent" systems maintain a

large reliance on a canned-response mechanism, is amply

supported by observations of instinctual behavior and

"innate releasing mechanisms" in higher organisms. It is

also supported by properties of skilled behavior in humans.

A human can stumble through any number of intricate

behaviors (playing a piano piece, weaving a reed basket,

driving a car, etc.), but he cannot perform any such

activity at all well until he has practiced it so often that

it comes "automatically" -- that is, until he is "skilled"

at it -- that is, until he has "canned" the behavior. For

this reason, we have identified the concept of a "canned

response" with the more dignified term "sensori-motor

skill". The use of the latter term also guards acrainst an

interpretation of our discussion in terms of

"stimulus-response" psychology, which addresses the same

issues with much the same perspective, but at such a level

of oversimplification as to be totally useless.

Page 13

The problem with simply dividing all behavior into a

finite number of possible situations and a corresponding

number of skilled responses is that the world presents an

organism with a boundless variety of situations rather than

just a few. The more discriminating the organism's sensory

systems are, the more work its cognitive system will have to

do in order to un-discriminate (i.e. recognize) what

situation faces the organism and what action should be

taken. This extra cognitive activity amounts to the

"intelligent" use of the otherwise primitive mechanism of

pre-programmed skills. It has at least three major aspects:

Generalization, or adaptiveness: At the simplest level,

"generalization" refers to the process of recognizing that

two situations are equivalent or similar with regard to the

response that they demand from the organism. "Adaptation"

refers to the other end of the same process, wherein the

organism tailors its response -- that is, modifies the

program that consitutes its skilled behavior -- so as to

suit the new variant of a previously-encountered situation.

It should be noted that fully-developed skills are, unlike

simple reflexes, open to extreme adaptation; for example,

the skill of "hitting a backhand" in tennis applies to an

infinite variety of initial conditions, and to a fair

variety of desired results, all imposed on the same basic

set of actions. What does it mean for a skill to be

"basically" well-defined, and at the same time open to

Page 14

infinite extemporaneous variation? This is one of the major

questions in capturing the essence of intelligent behavior.

Coping with the volume of experience: The aspect of

generalization which is' simplest to state but hardest to

explain involves the sheer size of the past history that any

higher organism has at its disposal for possible

generalization. A human being, for example, can be shown an

unusual object (such as a boomerang) and will often

recognize it in a matter of seconds, even though he has not

seen one for many years, and then only as a picture in a

book. Indeed our recognition of commonplace, standardized

objects (e.g. telephones) is no less remarkable, since the

potential search space of experience is presumably just as

large -- namely all the experience of a lifetime. Even when

all the other many difficulties of the "recognition" process

are put aside, the question of how we apparently search

through several decades of experience in a second or two is

one of the greatest unsolved enigmas in the functioning of

the brain, and one of the greatest unsolved problems in the

creation of computer models of intelligent behavior.

Coordination: An aspect of skilled behavior whose

importance is just becoming clear to us is that of the

temporal coordination of responses. Coordination becomes an

issue whenever a situation can be factored into two or more

recognizable sub-situations. For a system of any

Page 15

intelligence, this is almost always the case, since there

are usually several perceived objects in the environment,

which constitute "sub-situations". The problem, of course,

is how to respond to several things at once. Here are a few

typical examples from the life of an animal or a robot:

(a) the organism is sitting still, and wishes to look at

two nearby objects, but one is to the left and one is

to the right, so that it cannot look at both of them at

once;

(b) the organism is moving along a familiar path when it

suddenly notices a previously unseen object lying near

the path;

(c) the organism is moving toward an object in order to

pick it up, which involves simultaneously moving and

keeping its eye on the object, then slowing down and

stopping near the object on the basis of visual

judgements of distance from the object.

In the first example, two external sub-situations are

competing for attention; in the second example, a new

situation interrupts an ongoing activity; in the third

example, an intentional activity (going to pick up an

object) has two separate sub-activities (moving toward the

object and visually perceiving it) which are vitally

dependent upon each other. No simple "stimulus-response"

Page 1o

notion of the production of behavior can come close to

explaining these intricate coordinations which characterize

animal or robot behavior in even the simplest of tasks.

What is needed is a full-scale investigation and model of

what constitutes a coordinated skill.

We feel that the animals that we consider intelligent

possess a great number of highly-refined sensori-motor

skills, and the totality of these skills may account for a

substantial portion of what we regard as "intelligence" in

these animals. At any rate, flexible but pre-proarammed

units of behavior certainly form the substrate on which any

more adaptive intellect must be built. Therefore, we

foresee that the next step in our research will be the

formulation of a precise definition for the notion of

"sensori-motor skill" that will take into account

generalization, coordination, and other such problems which

arise in the behavior of both animals and robots. Our main

tool in formulating this definition will be our robot

simulation, which will allow us to test and refine our ideas

as rapidly as we can propose then. Then, once a workable

definition of "skill" is arrived at, the robot will

undoubtedly lead us directly into the study of the

acquisition and employment of skills, and their relationship

to intelligent behavior.

Paae 17

II. PRACTICAL ISSUES

For the past year, we have been providing assistance to

the JPL Robot Project in several miscellaneous areas such

as: the use of the ARPA network; configuring the JPL IMLAC

computer as well as developing software for it; Machine

Intelligence research; developing and running

demonstrations.

During this quarter we continued to provide this sort

of assistance, the general nature of which is outlined in

section C below. However, based on a year's experience and

on the feeling that some of the requested assistance (which

included requests from many more sources than we could hope

to satisfy) would not truly benefit the project, we decided

to attempt to get a clear overall understanding of the

project before fulfilling any particular request. (There

were excentions to this where the need was immediate and

clear -- see section C below.) Also bearing on this

decision is our feeling that our knowledge of

system-building and Machine Intelligence can benefit the JPL

robot project far more than our merely helping out with

almost incidental items as we are now doing. Thus we have

gathered together our various notes, started to discuss the

details of the project with each member of the JPL Robot

Project team (by telephone), and have planned a trip to JPL

early next quarter to continue these discussions in person.

Page 18

Our hope is that as a result of these discussions we will be

able to define those areas in which we can best assist the

project. The structure of the remainder of this report and

our recent work reflects the change in our involvement with

the JPL project in the following ways:

1) We are attempting to quickly complete the work on
converting the SAIL language to run on the TENEX
computing system, with the result that this effort
will no longer divert our attention from more
important issues of robot system development
(section A).

2) We are exploring (in some depth) issues which are
important to the JPL project: investigating and
specifying the issues involved in the practical use
of the ARPA network for running several cooperating
jobs at different host sites (section B).

3) We are continuing to provide miscellaneous support
as before, but will report it here and in subsequent
reports only in summary form (section C).

Page 19

A. Conversion of SAIL to TENEX

During this quarter, we finished Version 1 of BBN-TENEX

SAIL and made it available to JPL and the rest of the SAIL

community. Preliminary documentation was made available via

a file on the BBN-TENEX system.

In this initial system both the segment and the

compiler have been completely TENEXized. This means that

they do not use either the TENEX PA1)050 (compatibility)

program or DEC I/O instructions and monitor calls (UUO's).

Instead JSYS's, the TENEX versions of these monitor calls,

are used. Additionally, file names in TENEX format (an

extension of the standard DEC format) are recognized and the

TENEX "command completion" feature is implemented for

reading file names for compilation. (This last feature

necessitated the implementation of a completely new command

scanner in the compiler.) Finally, a package of ARPANET

utility functions has been incorporated into the system.

These functions are based on the XiNTLIB package developed by

the BBN-TENEX Distributed Computation Group.

Next quarter, we expect to deliver Version 2 of

BBN-TENEX SAIL. In it we hope to have some known bugs fixed

as well as to provide a new interrupt facility which is

needed by JPL.

Page 20

B. Investigation into the Possible Use of the ARPANET for a
Multi-Host Robot Program

1. Background

During this quarter we began to investigate the

possibility of using the ARPA network to run several

interacting programs simultaneously at different host sites.

By running concurrently and interacting with one another,

the programs would form a complete system to do a given

task. Ideally, we would like the different program

components to be able to run on different types of machines

on the ARPANET, taking advantage of machines with lighter

load factor or greater efficiency (e.g. a machine with a

highly efficient FORTRAN system could be used for a physical

world simulator). In addition, such a multi-host program

could be designed to continue running, even if some hosts

became temporarily unavailable.

Running several interacting programs concurrently on

different machines of the same type is a difficult enough

problem without introducing the vagaries of a method that

would allow programs to run simultaneously on several types

of machines. Thus, in this discussion we assume that the

programs will be run on many different physical machines,

but only on one type of machine -- namely, one using a TENEX

operating system.

Page 21

Although the ARPANET has been available for several

years, there has not yet been a great deal of investigation

of the problems of running mutually interactina programs on

several hosts within the network. The two major examples of

multi-host programs are the RSEXEC program which is an

ongoing attempt to create a unified operating system and

environment for the TENEX systems on the network, and

McRoss, a multi-computer air-traffic control simulator (also

operating on TENEX systems). Both of these have provided

experience in the techniques of organizing multi-host

programs, but neither provides the basis for something like

a multi-host robot proaram. In particular, neither provides

a system capable of taking the description of a multi-host

program, initiating it, maintaining control over it, and

providing the user with facilities for debugging the program

and communicating with its various components.

If the processes into which the multi-host program

would be split were all written in one programming

environment (e.Q. INTERLISP), or indeed if it were certain

that the decomposition of the program into independent

processes would not change over time, one might be tempted

to develop a limited, special-purpose system capable only of

initiating and controlling a particular multi-host program.

Since neither of these conditions holds for our robot

simulation nor for JPL's robot project, we have instead

begun to investigate and design the tools needed to work

Pa ge 22

with a more general class of multi-host programs. We are

not aiming for "full generality" (indeed, there is so little

experience in this area that it is unclear what would

constitute full generality), but instead are trying to

develop a system which will enable us to work conveniently

with a multi-host program as it evolves, and will still

provide a reasonable degree of efficiency.

2. Our Current Work on Multi-host Program Facilities

During this quarter we have proceeded on four parallel

tracks in the development of a multi-host version of our

robot. We have redesigned our current robot simulation,

splitting it into three independent processes. We have

investigated the facilities currently available for

implementing multi-host programs on the TENEX computers of

the network, including both the facilities available in

TENEX and programs written by individuals at BBN and XEROX

PARC. This has involved writing several small-scale

experimentation programs, including a LISP program which can

initiate jobs at several network TENEX sites. We have

investigated the additions to TENEX planned as part of the

BBN "Distributed TENEX" effort to determine which of them

could be used in a multi-host system. Finally, we have

tried to produce a preliminary description of the features

we would like to have in a facility for developing and

Page 23

running a multi-host robot.

3. General Description of the Operation and Structure of a
Multi-host Proqram

Considering only the computations to be performed by a

multi-host proaram, such a program might be described as a

network whose nodes were jobs residing on (possibly

distinct) TE:NEX hosts on the ARPANET. Each job would

perform part of the computation of the multi-host program

and would consist of one or more forks within the given

TENEX host. The arcs of the network would be the

communications paths (possibly ARPANET connections) between

the jobs on the different hosts.

Figure 1 shows a conception of such a multi-host

program with three nodes. The dashed lines delimit the

nodes of the network, the heavy solid lines represent the

arcs or data paths, with arrowheads indicating the direction

of information flow. Each node is a job whose fork

structure is indicated by ovals representing forks (with

arbitrary names Fl, F2, etc.) and thin lines representing

the relation between a fork and its immediate inferior

forks. In the remainder of this discussion we will refer to

such jobs in a computational network as Node Computational

Jobs or NCJ's.

Paae 24

Figure 1

---------- ----------

F1
F5

F2 F3

F4 F6 F7

L---------- -- L-----------

NCJ1 NCJ2

F8
.-- - _

NCJ3

Once such a multi-host program was debugged and

running, with NCJ's on various TENEX sites in the ARPANET,

it would be conceivable for the user to communicate with and

control the NCJ's by using the TELNET program available in

TENEX. However, distributing the NCJ's to different sites,

establishing connections, and controlling and communicating

with the NCJ's during debugging are non-trivial procedures.

Things would be simplified by the existence of a

"computational network control program" (CNCP), consisting

of a network of jobs (each called a "controlling node" or

CN) on various TENEX sites, coordinated by a central

"control program" or CP. Thus, in our view, a complete

multi-host computational system would consist of a

computational network (such as that shown in Figure 1)

Page 25

established, controlled and serviced by a Computational

Network Control Program.

The following sketch of a scenario for building and

operating a multi-host program will provide the framework

for later discussions of our ideas on the structure of a

multi-host system. The user logs on to some TENEX computer

on the ARPANET (possibly through a TIP) and then starts up a

Control Program (CP). The CP will provide him with control

over the Computational Network Control Program (CNCP), the

multi-host equivalent of loader, debugging system, and

TELNET-like communications facility. (See Figure 2.) Then,

either by typing in directly, or more probably by specifying

Figure 2

EXEC

USER
TERMINAL

CP

HOST 0

a set of files, he will provide the CP with a description of

the multi-host program that he wishes to establish. This

description will contain such information as the fork

structure of the various NCJ's to be run, the communications

channels to be established between the NCJ's, and the

Page 26

facilities (hardware, disk space, etc.) needed by each NCJ.

The Control Program will then determine which TENEX sites

are suitable for the various jobs (taking into account such

factors as machine load, charge rate, etc.), and will log in

(with the user's name, password, and appropriate account

number) at the determined sites. At each site it will start

up a copy of the Control Node (CN) program and set up the

communications and control paths to each node. (This is

shown in Figure 3.) It will then establish the ARPANET

connections and the copying forks (denoted by COPY in the

Figure 3

-- HOST 1

EXEC

HOST 2

CP

CNCN

EXECHOST 0

CP

HOST 3

Page 27

diagrams) needed for the inter-NCJ communications

channels.(*) (See Figure 4.) Each CN will then load the

corresponding NCJ from its files (on some TENEX system or

systems), setting it up as a subordinate fork structure, and

complete the inter-NCJ channels. (See Figure 5.) All of

this will proceed without the user performing any action

beyond indicating the desired network structure.

Figure 4

7 HOST 1

EXEC

CN

COPY -- o
COPY

CP

USER -E
TERMINAL

CN

EXEC COPY

HOST 0 CN
H O S T 2

COPY

COPY

HOST 3

* The details of our proposed implementation of inter-NCJ
channels are given below.

Page 28

On the user's command, the Control Program will cause

the CN's to start up one or more of the NCJ's in the

network. As the computation progresses the Control Program

will allow the user to conveniently direct input to any

desired job, to queue or receive output as desired from any

NCJ, and to monitor the inter-NCJ communications channels.

In addition, the Control Program will have various debugging

facilities. These will include such single fork debuggers

as DDT or the INTERLISP debugging package for each NCJ, and

mechanisms to permit the user to suspend the operation of

Figure 5

HOST 1

EXEC

SCOPY HOST 2

F2 F3 COPY
EXEC

IF4
NC CN

COPY

EXEC F5

IF6 F7
CN NCJ2L J

COPY

COPY

I I ,COPY

NL CJ3

HOST 3

Page 29

one or more NCJ's depending on the information flowing in

the communications channels or the state (e.g. breakpoint)

of some single job.(*)

We describe below some of the ideas we have developed

for implementing such a multi-host computational network

facility. These ideas are not to be construed as a final

description of the system we would like to see available.

They do provide a framework for describing such a system,

but in fact raise more questions than they answer. In

addition, the structure of the system described is based on

the existence of several TENEX facilities which are not yet

available, as indicated below.

When we started this investigation we discussed our

ideas with members of the TENEX development group at BBN.

They showed us their proposals for several new features in

the TENEX system which they thought might make our work

easier. The first feature is a system for trapping JSYS

calls to the monitor, to allow (among other things)

extension of user-level I/O facilities and the provision of

a "distributed file system" at the user level. At present,

the RSEXEC system allows the user to act as if the files he

* It would be desirable for the Control Program to monitor
the state of the various sites and network links and to
restart the computational network with minimal loss of time
and information if a site or connection went down. This

may, however, require capabilities not yet available at the
individual TENEX sites.

Paqe 30

has at a number of TENEX sites are available as a single

file structure, without his being concerned where they are

located. A JSYS level distributed file system, implemented

with the JSYS trap mechanism, would enable the user's

programs to operate in an equivalent environment in which

there would be no need to specify the host system for a

given file. A second proposed feature is the "byte-stream"

file, which is a pseudo-device which acts like a

communications pipeline between two programs (resident on

one TENEX system), having an input end on which one program

writes and an output end from which the other program

receives information. Our description below relies heavily

on the JSYS trapping mechanism and the byte-stream file.

The JSYS trapping mechanism has been programmed but is

available only in an experimental version of the TENEX

monitor. The byte-stream file mechanism has not yet been

implemented, and recent indications are that it may not be

available for some time due to higher priority TENEX work.

4. Mechanisms for Inter-NCJ Communication -- Byte-Stream
Files and Channels

Let us look in a little more detail at the

computational network. Each NCJ is a complete job on some

TENEX site, and can thus consist of an entire fork structure

of cooperating processes executing under the TENEX operatinq

Page 31

system. These processes might include ones coded in

INTERLISP, FORTRAN, BCPL, MACRO-~1, etc. However, as seen

from other NCJ's each NCJ is a unit with (possibly) several

input connections, and (possibly) several output

connections. While the functional characteristics of the

input and output connections are important, there is no

reason for one NCJ to know how the connections of another

NCJ are associated with its different forks. Thus, a

connection can be viewed as going from an output port on one

NCJ to an input port on another NCJ. This suggests that

each input(output) port on an NCJ be associated with a

network socket on the associated TENEX, and that a

communications connection between two NCJ's be simply an

ARPANET connection between the two network sockets. The

TENEX system makes it easy for a process to open a network

connection as a file for input or output, given the host and

socket numbers at both ends. Figure 1 shows a configuration

of three NCJ's connected in such a manner.

There are two problems, however, in simply implementing

inter-NCJ communication by means of network connections:

1) We wish to have the NCJ's precompiled, but the

distribution of NCJ's to network sites should be

determined on the basis of the load factors, etc., at

the time the multi-host program is to be run. Thus,

the compiled NCJ's could not contain fixed calls to

the TENEX system to open network connections, since

Page 32

although the socket numbers could conceivably be

fixed, the host numbers would not be known when the

NCJ is compiled.

2) In the process of debugging, and often in the process

of watching the operation of a running multi-host

program, it would be extremely valuable to be able to

monitor the information flowing through the various

inter-NCJ connections. It may be useful to have

copies of the information fed into script files or

monitoring programs, or to "dummy up" a

malfunctioning NCJ by replacing its output with the

contents of a file or with the user's own typed

output. There is no convenient way to do this if the

inter-NCJ connections are simply network files on the

TENEX system.

To solve these problems we propose a facility we refer

to as an inter-NCJ channel, which would be a named pipeline

carrying a stream of bytes across the ARPANET from one (port

on an) NCJ to (a port on) another NCJ. The NCJ's would be

specified to the CN:CP independently of the hosts on which

they were to be run, and the channels could be rerouted,

spliced into and multiplexed after the network of NCJ's was

established. The proposed byte-stream file capability in

TENEX would provide a useful set of primitive (and not so

primitive) operations for the type of interjob and

interprocess communication, synchronization and control

Page 33

needed to implement these inter-NCJ channels.

One possible way of using the byte-stream file is to

have all inter-NCJ channels mediated by such files. For

each input(output) port an NCJ would open a corresponding

named byte-stream file for input(output). The CN residing

on the same host would open the same byte-stream file for

output(input) and then create a fork which would copy all

bytes from that file out over (in from) a network connection

file which had been established by the CNCP to connect the

NCJ's involved. Figure 5 gives the proposed actual

implementation of the conceptual connections shown in

Figure 1. The byte-stream files would provide a clean way

to delay the binding of the named inter-NCJ channels with

the actual network connections needed to implement them when

the NCJ's were assigned to specific hosts. The names of the

communications channels could be used as the names of the

byte-stream files to be opened, and these could be compiled

into the actual NCJ proarams, without worrying on what host

the NCJ or its communications partners were to be run. The

ability to have byte-stream files opened for reading by more

than one process, and the ability to splice into byte-stream

files to provide intervening processing, would provide the

basic tools needed to allow monitoring, production of script

files, flexible reconnection, and other useful capabilities.

There is an inherent inefficiency in the approach

Page 34

described above, since there are two user processes

intervening between the communicating NCJ's: the process

which copies bytes from the byte-stream to the ARPAIET

connection and the one which copies them back out (both are

labelled COPY in Fiaures 4 and 5). It is conceivable that

these COPY processes would have to be scheduled for each

byte to be transmitted, with the obvious tremendous increase

in overhead. Of course, the actual transmission over the

network takes a noticeable amount of time, so it is unclear

how bad this overhead would be.

Because the TENEX byte-stream file capability may not

yet exist when the multi-host programming system is

implemented, an independent version may have to be built.

While doing this one could provide a hybrid notion which

combines the byte-stream file and network file connection.

The availability of a convenient mechanism to trap the JSYS

monitor calls used for I/O will make the project much easier

than might otherwise appear. Thus it should be possible to

provide a flexible and reasonably efficient mechanism for

implementing inter-NCJ communication.

5. Access to Non-Local Files

Many programs require access to previously established

data files, and many write information on files to be shared

Page 35

with other programs (or the user). Since the NCJ's are to

be able to run on any of a number of hosts, they must be

able to conveniently read and write on files which may be on

other hosts, and the program must be able to do this

independently of the host on which the NCJ is currently

running. Luckily, the current version of the TENEX RSEXEC

allows the user to maintain a "distributed file system" with

files at several ARPANET TENEX sites, and to access them at

RSEXEC command level without necessarily knowing where the

files are. When the JSYS trapping mechanism is available,

this distributed file system capability will be extended to

the JSYS (essentially machine code) level. It will then be

possible to run programs written in most existinq

programming systems on TFNEX and still he able to have the

programs access and write on the correct files independently

of the host on which they are run. Of course, scratch files

need not be accessed.on or written on remote hosts. In any

event, this problem seems to be one which will essentially

disappear (as far as the multi-host robot system is

concerned) as soon as the JSYS level distributed file system

is implemented in the TENEX operatin system.

Pace 36

6. Information Needed to Initiate a Multi-h:ost Proaram

In order to initiate the computational network, the

CNCP needs two types of information:

1) a description of the topology of the computational

network (i.e. the inter-NCJ connections to be

established) and a description of the structure of

the NCJ's themselves.

2) ARPANET TENEX status information (e.a. load

averages for the hosts on the ARPANET),

preferential sites for the user, user names and

passwords to be used, etc.

If we assume some sort of byte-stream file mechanism

connecting the various NCJ's, then the first type of

information -- a description of network topology -- can be

relatively simple. One possible format might be a set of

descriptors of the form:

CHANNEL = IRNCJIRBSF <=[SNCJI STSF

where RNCJ and SNCJ are user names for two node

computational jobs, and CHANNEL is the name used to refer to

the inter-NCJ channel on which SNCJ sends information to

RNCJ. RBSF is the name of the byte-stream file from which

RNCJ expects to receive information, and SBSF is the

Page 37

byte-stream file to which SUCJ sends information.(*)

Only enough of the structure of an NCJ must be

communicated to the CP to permit it to initialize the fork

structure of the NCJ. Given the current plans for

implementing file transfers in a multi-host TENEX

environment, there would be relatively little difficulty in

providing such a description. It is merely necessary to

give the name of a SAVE file for the top fork of the NCJ.

Multi-fork structures are usually created by each fork doing

a GET for each desired subordinate fork, so that the fork

structure of a process (and hence an NCJ) is defined by the

execution of GET's by the running program. The planned JSYS

trapping mechanism for distributed TENEX operation will trap

such GET's and determine where the desired SAVE file is

located, and whether it must be moved to the local disk to

be loaded.(**) or can be loaded directly from a network

file. Thus, each CN can simply perform a GET on the top

fork for its associated NCJ, establish the needed interhost

network connections to the other CN's, and attach them to

the proper ends of the desired byte-stream files.

* It is possible that there may be a need for other
information about the desired characteristics of the
communications link, such as the byte size, buffering
characteristics, etc. Such information could be easily
added to the channel descriptions above.

** Since shared files are PMAP'ed they must reside on the
local disk.

Page 38

Once all NCJ's have been loaded and all network

connections and byte-stream files have been initialized,

each CN can start to run the top fork of its associated NCJ.

The top fork of the NCJ will bring in lower forks as needed,

with the JSYS trap mechanism ensuring that the needed files

will be found without the user program having to worry about

their location. The various forks will connect to the other

sides of the byte-stream files created byv the CN, and the

computational network will be established.

Obtaining the second type of information -- that

relevant to the available TENEX sites on the network --

should not be difficult. ARPANET TENEX status information

is already maintained and updated by the existing RSEXEC

system in operation at the various TENEX sites. Information

about site preference for the NCJ's involves several

factors. The simplest and easiest to represent is the list

of sites on which the user has accounts. This might be

complicated depending on whether the user has varying

financial resources or use restrictions at different sites.

In addition to these essentially program-independent

administrative constraints, there are constraints on the

appropriate sites for each NCJ. The simplest, but least

desirable, way of indicating such constraints would he to

give a list of the acceptable sites (by name) for each NCJ,

without giving any explicit (i.e. available to the CNCP)

Page 39

description of what properties of the (computational

equipment of the) sites made them acceptable for the given

NCJ. It would be preferable to describe these constraints

in terms of functional capabilities (e.g. available disk

space, load, special I/O devices like an IMLAC, E&S display,

plotter, XGP, etc.) since then the description of the total

network job would be independent of the state of the

network. That is, if new TENEX sites with different

capabilities were added to the network, the CNCP would be

able to make use of them without the user having to

explicitly change his description of constraints on the

sites for the NCJ's. (Of course, in either case there would

be no conceptual problem if TENEX sites were removed, since

the CNCP alreadv has to deal with the fact of life that

sites "officially" on the network may be temporarily

unavailable due to machine or network malfunction or

administrative fiat.)

There are still many questions to be resolved: What

information is to be used in determining how the NCJ's are

to be distributed? What are the criteria to be met (e.q.

least cost, greatest speed, least load on particular

resources, etc.) and what algorithm is to be used to

determine how to meet these criteria? How is the user to

provide the necessary information (convenient formats)? Is

it better to have the information for the constraints for

each NCJ stored in association with the NCJ, or to have a

Page 40

single file describing both topology and node constraints?

Should the user-dependent information (i.e. sites,

accounts, passwords, etc.) be stored separately from the

description of the particular computational network? flow is

the CNCP to access both user-supplied and ARPANET-supplied

information? How are sensitive pieces of information (such

as passwords) to be stored in the files which describe the

computational network?

7. Controlling, Communicating With, and Debugging
Multi-Host Jobs

Once the computational network has been set up and the

NCJ's are running, there still remains the task of

controlling such a distributed job, and the more difficult

task of debugging it when it goes wrong. There is

unfortunately very little to go on in designing this part of

the system, so that the following ideas are merely a first

attempt to sketch the control, communications, and debugging

facilities which might be useful.

For communication, at the first level, the problem is

basically a simple one. The user has just one terminal, but

there are many possible sources of output and many places

the user miaht want to direct terminal input. For each NCJ

there are the primary input and output files for each fork

Page 41

in the job (though this usually reduces to a single teletype

input and output). Then, the user may wish to monitor

traffic on the various inter-NCJ input and output channels.

There is also a pair of inputs and outputs for the CN which

controls the given NCJ. In addition, it is possible that

the user may need the capability of making direct contact

with the EXEC level of the TENEX system at each of the

sites, acting as the controlling teletype for each NCJ.

Thus, we have a situation in which the user may need to use

a single terminal for at least three input streams and three

output streams for each NCJ. The possibilities for

confusion and error are obvious.

Controlling the input streams is probably the simplest

problem. It is merely necessary to give the user some means

of breaking back to the main CNCP input and then indicating

to which input file he wishes to connect his terminal. The

only system design problem seems to be to tread the thin

line between making the switching from one file to another

require so long a protocol that it is unusable, or making

the protocol so short and free of redundancy that no error

checking is possible. In the latter case it is likely that

garbage will be sent to many input files due to mistyping or

terminal errors. Another difficulty may arise if the user

is given the capability of typing ahead on one or more input

files. If part of the multi-host system goes bad, it may be

necessary to flush the type-ahead in various input streams,

Page 42

and it is not clear whether this should be automatic (under

what conditions) or left to the user (and hence sometimes

neglected or performed too late).

On the output side the situation is more muddy, since

there may well be several output channels contending to be

printed at once. Of course, they cannot just be

intermingled on a letter-by-letter basis, for this will

produce garbage. It might seem more reasonable to have only

one output channel connected to the terminal at once, but

that leads to the difficulty that a vital message on one

channel may never be seen, or may be seen too late. One

could connect several channels, allowing each one to type a

full line (starting with a channel-identifier) before

switching to another channel. This is open to the problem

of one channel never finishing a line, and thus locking out

other channels.

We have no solution to the output problem currently. A

tentative suggestion for a basic set of capabilities for

controlling output are the following (modified from the

current TFLNET system): The user could declare output

channels to be in three categories. The first category, the

"active" channels, would be routed to the terminal, with

channel-identifier whenever they transmitted output

(possibly with a provision for a single active channel to

continue printing out until the end of a line or some time

Page 43

limit has been reached). The second category,

"high-priority" dormant channels, would have their output

queued, and some sort of signal would be sent to the user

indicating that there was data on the channel. The last

category would merely be queued with no signal, for the user

to interrogate at his convenience. A possibly useful

modification to this scheme would be to permit the

specification as to "active", "high-priority dormant" and

"low-priority" to be made on a message-by-message basis,

with the transmitting program sending a header which

specifies the classification it requests for the current

message.

In addition to the problems of terminal I/O, the CNCP

should provide other facilities for controlling the

information flow among the various NCJ's. It would be

useful to send copies of the information flowing along one

or more inter-NCJ channels to one or more receivina

processes. This would make possible the creation of

"typescript" files for documentation or debugging, and would

facilitate the insertion of various monitoring facilities

which would be useful in debugging. When the information

flowing along a channel is directed to one of these

alternative processes, it should be possible to specify if

the information is to continue to flow to the original

destination. A further possibility would be to allow the

insertion of a process between the sender and receiver, to

Page 44

act as a "translator".

In the area of control primitives for allowing

debugging of multi-host programs, we are clearly in the

dark. Some possible ideas are:

a) Allow the user to splice in a local debugger (e.g.

IDDT) at each NCJ

b) Permit the user to specify breakpoints in one or more

NCJ's, and allow each breakpoint to suspend the

operation of a specified subset of the NCJ's, not

merely the one in which the breakpoint occurred

c) Allow the user to insert monitoring programs (see

above) in various inter-NCJ channels, and to halt a

subset of the NCJ's (as in b) when the information in

a given link meets some condition

d) Permit the user, or a process specified by him, to be

used as the input to a specified inter-NCJ link, to

substitute for a possibly malfunctioning NCJ.

In addition, it would seem useful if the directives

qiven to the debugger, and in particular the descriptions of

the conditions under which a break is to occur and the

operations to be performed at the break, were to be

specifiable in some convenient higher level language. This

is already the case for INTERLISP, but is certainly not true

for the current DDT package. This feature would be quite

useful in debugging current FORTRAN and MACRO programs, and

Page 45

would probably be of even greater use in the more

complicated environment of a multi-host system.

8. Final Remarks

We have attempted above to record some of our thoughts

on the design of a system for simplifying the construction,

debugging, and operation of multi-host programming systems.

Some of the facilities proposed for such a system are due to

the particular properties of the ARPANET. For example, the

exact structure of inter-host communications protocol and

file-transfer protocol has affected the design of the

inter-NCJ channels. Some of the facilities would be needed

for any system of several programs interacting by means of

communications links, rather than by shared core or flags in

an operating system (e.g. a facility for monitoring the

inter-program communications channels). Other facilities

would be useful in the context of controlling and debugging

several simultaneously active, mutually communicating

programs (e.g. communications facilities for the user,

debugging facilities able to control and monitor the

execution and comnunication of several simultaneously active

processes).

Page 46

C. Miscellaneous Assistance with the JPL Robot Project

The assistance we provided during this quarter to the

JPL Robot Project included the following:

1) The BRNJ ARPA network group consulted with the JPL
staff on the many hardware and software issues
associated with interfacing the JPL machines to the
ARPA network

2) The JPL IMLAC group was given assistance in putting up
and running the BBN robot world display software

3) TENEX corputer time and file storage space were
provided to various members of the JPL staff as
back-up when their other computer services were unable
to meet their needs.

