TO: KSI/Scientific & Technical Information Division
Attn: Miss Winnie M. Morgan

FROM: GP/Office of Assistant General
Counsel for Patent Matters

SUBJECT: Announcement of NASA-Owned U.S. Patents in STAR

In accordance with the procedures agreed upon by Code GP and Code KSI, the attached NASA-owned U.S. Patent is being forwarded for abstracting and announcement in NASA STAR.

The following information is provided:

U.S. Patent No.: 3,808,511

Government or Corporate Employee: U.S. Government

Supplementary Corporate Source (if applicable):

NASA Patent Case No.: XER-11,096-2

NOTE - If this patent covers an invention made by a corporate employee of a NASA Contractor, the following is applicable:

YES ☑ NO ☒

Pursuant to Section 305(a) of the National Aeronautics and Space Act, the name of the Administrator of NASA appears on the first page of the patent; however, the name of the actual inventor (author) appears at the heading of column No. 1 of the Specification, following the words "...with respect to an invention of"

Bonnie L. Woerner
Enclosure
A class of power converters is disclosed for supplying direct current at one voltage from a source at another voltage which includes a simple passive circuit arrangement of solid-state switches, inductors, and capacitors by which the output voltage of the converter tends to remain constant in spite of changes in load. The switches are sensitive to the current flowing in the circuit and are employed to permit the charging of capacitance devices in accordance with the load requirements. Because solid-state switches (such as SCR's) may be used with relatively high voltage and because of the inherent efficiency of the invention that permits relatively high switching frequencies, power supplies built in accordance with the invention, together with their associated cabling, can be substantially lighter in weight for a given output power level and efficiency of operation than systems of the prior art.

23 Claims, 11 Drawing Figures
LOAD INSENSITIVE ELECTRICAL DEVICE

STATEMENT OF COPENDENCY

This is a division of application Ser. No. 810,579 filed Mar. 26, 1969, now U.S. Pat. No. 3,621,362.

ORIGIN OF THE INVENTION

The invention described herein was made by an employee of the United States Government and may be manufactured and used for or by the Government for Governmental purposes without the payment of any royalties thereon and therefor.

BACKGROUND OF THE INVENTION

This invention relates to power supplies, and more particularly to power supplies of the kind known as DC to DC converters.

In the early days of the electrical industry it was common to convert alternating current to direct current by means of a resonant contactor tuned to interrupt the current at the instant of zero voltage. Tuning of the mechanical devices could not be perfect, and they were subsequently replaced by rectifiers which were not subject to wear but were substantially less than perfect switches. Now, solid-state switches approach the ideal in performance and there has been a rebirth of switching-type converters. A theoretically perfect switch dissipates no energy, so efficiencies approach 100 percent.

Moreover, switching schemes involving such techniques as pulse-frequency modulation and pulse-width modulation provide a measure of proportional control, while retaining the inherent high efficiency of the switching operation.

It is a common requirement that a power supply should maintain a constant output voltage. Devices, termed "voltage regulators" have been available which control a source or a flow of current to maintain a voltage constant across a load in spite of fluctuations in source potential or load current. These regulators provide control to any practical degree but at a cost in system complexity, reliability and efficiency.

Accordingly, it is an object of the present invention to improve power converters. It is a further object of the present invention to improve the efficiency of power conversion systems.

It is a further object of the present invention to convert power at a first potential to a second (higher or lower) potential, the second potential being maintained substantially constant despite changes of current in a load.

It is another object of the present invention to provide a class of power converters for supplying direct current at one voltage from a source at another voltage which includes a simple passive circuit arrangement of solid-state switches, inductors and capacitors by which the output voltage of the converter tends to remain constant in spite of changes in load.

The use of the term "inductors" herein comprehends chokes, autotransformers, transformers of two or more windings and the like, as the use requires.

Because available solid-state switches as exemplified by so-called rectifiers and more specifically, Silicon Controlled Rectifiers (SCR's), may be used with relatively high voltages, and because of the inherent efficiency of the circuits employed that permit a relatively high switching frequency, power supplies built in accordance with the invention, together with their associated cabling can be substantially lighter in weight for a given output power level and a given efficiency of operation than systems constructed in accord with the prior art. Reduction in weight is particularly significant in systems intended for use in spacecraft, aircraft, hydrofoil and hovercraft, or man-carried equipment, and the like.

SUMMARY OF THE INVENTION

A feature by which the above-mentioned objects are attained is through an interconnection of series-resonant circuits each comprising inductances and capacitors in the paths of flow of load current and eventually a terminal capacitance across the load, the interconnection such that the connections between inductances and capacitances may be closed and opened by semiconductor switches.

Before considering the invention in detail, it may be well to consider the relationship between input voltage and output voltage which is presented for purposes of clarification:

\[L_i = \eta r t_a \]

where

\[L_i = \text{output voltage} \]

\[\eta = \text{conversion efficiency} \]

\[r = \text{scaling constant} \]

\[t_a = \text{input voltage.} \]

The scaling constant \(r \) is determined to suit the specific objective. The arrangement of interconnections, as discussed further on, will be applied to achieve this purpose. The efficiency of conversion \(0 < \eta < 1 \) incorporates the departure from unity of power transfer, due to ohmic losses in the elements of power transfer and control.

With reference now to the present invention, the energy derived from an appropriate D.C. source is transferred along series and/or parallel paths or successive capacitors through successive resonant circuits in a succession of discrete current pulses. Each of these pulses is initiated by a timer circuit which causes the closing of the respective semiconductor switch, and terminated by the inherent inability of such a solid-state switch to admit a reverse current flow. The terminal capacitor and the smoothing inductor connected to it are the immediate source of current for the load. The charge on the terminal capacitor is replenished by a time-varying current through the inductor. When the preceding switch through the action of the timer circuit is closed to initiate an increase of inductor current, then the voltage on the next-preceding capacitor which feeds current to the smoothing inductor is at its lowest ebb. The heavier the load, the lower its voltage. Current surges into this capacitor in proportion to the difference between this voltage and the time-average potential of that capacitor. The lower the voltage drops, the greater the potential difference, and the greater the current. This current flowing in the surge which recharge this capacitor does not stop when it is recharged to source potential, but is then at its maximum strength and tends, by reason of the inductance to continue to flow through the switch and its associated inductor into the capacitor until the voltage crest is reached which exceeds the average potential by almost the same amount by which the average exceeded the capacitor potential when the surge commenced.

At this point, as the current falls to zero, the switch is opened to hold the peak potential on the terminal ca-
pacitor which then gives up its charge to the load as its C between the peri-

The invention accordingly comprises the features of construction, combinations of elements, and arrange- 15 ment of parts, which will be exemplified in the con-structions hereinafter set forth, and the scope of the in-vention will be indicated in the claims.

BRIEF DESCRIPTION OF THE DRAWINGS

For a complete understanding of the nature and objects of the invention, reference should be had to the following detailed description taken in connection with the accompanying drawings, in which:

The FIG. 1 is a schematic diagram of a simple three- 20 section embodiment of the invention;

The FIGS. 2a, 2b, 2c, and 2d are waveform diagrams useful in explanation of the operation of the circuit of the FIG. 1.

The FIG. 3 is an equivalent circuit of a portion of the 25 embodiment of the FIG. 1;

The FIG. 4 is an equivalent circuit of a further portion of the embodiment of the FIG. 1;

The FIG. 5 is a schematic diagram of a voltage step- 30 up embodiment of the invention featuring voltage-doubling capacitors;

The FIG. 6 is a circuit diagram of a further embodiment of the invention involving voltage transformation by a transformer;

The FIG. 7 is a further embodiment of the invention and illustrating the manner in which voltage step-down is accomplished;

The FIG. 8 is another configuration of the invention featuring voltage step-down;

The FIG. 9 illustrates still another configuration of a voltage step-down embodiment;

The FIG. 10 illustrates a portion of still another embodiment to achieve voltage step-down; and,

The FIG. 11 presents in block diagram form the con- 40 trol system for the converter which includes the timer and the current detector.

DESCRIPTION OF THE PREFERRED EMBODIMENTS

In the drawings, inductors, capacitors, diodes, silicon controlled rectifiers and resistors are designated by conventional symbols and by reference characters L, C, D, SCR, and R with various subscripts. In the specification and claims the reference characters for inductors, capacitors, and resistors may also be used as algebraic symbols to represent the inductance in henrys, the capacitance in farads, the resistance in ohms of the several parts. In each case the sense of the usage will be clear from the context.

Explanation of this circuit is simplified by the assump-tions that (1) the period of natural resonance of the low pass filter section composed of elements L and C is long compared to the time T between the periodic switch closures of the circuit, i.e., T_0 < \pi \sqrt{L_C / C_0}

Such that \frac{dV_0}{dt} = 0 for nT_0 < t < (n+1)T_0, which is to say the load current I_L is essentially constant from one switch closure to the next, and (2) the resistive com-ponents of the respective circuit elements are negligible. Both assumptions are justifiable in typical designs and analysis based on them is generally satisfactorily. The explanation is, furthermore, restricted to the steady state operation of this circuit under conditions of cyclic stability.

Solid-state switches are contemplated which may be the silicon controlled rectifiers CR, and CR, as illus-trated in the FIG. 1. These devices have an anode, a, a cathode, c, and a trigger gate electrode, g, (see the FIG. 5, CR). A timing circuit CL, provides pulses to cause the switches to assume their on state. The timer CL, as well as the timers of the other FIGURES, pro-vides periodical cyclically alternating trigger pulses to their respective SCRs. Each of these SCRs turned on only if the companion switch has completed its conduc-tion cycle and has furthermore, completed its opening process. These switches are turned off automatically when the current tends to reverse. Details of the timer and its operation will be hereinafter described.

With reference to the FIG. 1, a source of potential E, is shown having its negative terminal coupled to a com-mon conductor and its positive terminal connected to one end of an inductor L,. The other terminal of the inductor L, is coupled to the anode of a SCR CR,. The cathode of CR, is connected to a capacitor C, and an inductor L,. The gate electrode of CR, is coupled to a timer CL,. The other end of the capacitor C, is connected to a current detector 120 whose output to the timer CL, on a conductor 121 will control the cyclic operation of the switches CR, and CR,. The current detect-er 120 is then coupled to the common conductor.

The switch CR, is connected to the inductor L, while its cathode is connected to a capacitor C, a diode D, and an inductor L,. The gate electrode of CR, is connected to the timer CL,. A load indicated by R, is con-nected across the common conductor to the other end of the inductor L,. A capacitor C, is in parallel with the load R,. The other terminals of the capacitor C, and the diode D are connected to the common conductor.

The circuit configurations of the equivalent circuits of the FIGS. 3 and 4 will be discussed later with reference to the operation of the circuit of the FIG. 1.

In the FIG. 5, the source E, has its positive terminal connected to a pair of inductors L, and L,. The inductors L, and L, are in parallel relationship and are con-nected also to the switches CR, and CR, respectively. The gate electrodes of CR, and CR, are connected to a timer CL, via a pair of conductors 50 and 51 while the cathode of CR, is connected to an inductor L,. The cathode of CR, is connected to a capacitor C,2 the anode of a switch CR,. A capacitor C,3 and the anode of a switch CR, are connected in series, the other termi-nal of the capacitor C, being connected to the catho-de of the switch CR, while the cathode of the switch CR, is connected to the common conductor. The cathode of the switch CR, is connected midway between the capacitor C, and the anode of the switch CR,. The gate electrode of CR, is connected to the timer CL, via a conductor 52 so that it receives pulses at the same time as CR, and CR, through the conductors 50 and...
51. The capacitor C_{12} has its other terminal connected to a current detector 120 as in the FIG. 1.

The other terminal of the inductor L_{1} is connected to the anode of a switch CR_{9}, whose cathode is connected to a capacitor C_{5}, a diode D, and an inductor L_{9}. The gate electrode of CR_{9} is connected to the timer CL_{9} via a conductor S_{3} and it receives pulses at the same time as the gate electrode of CR_{2} via a conductor S_{4}. The other terminals of the capacitor C_{5}, the diode D, and the capacitor C_{9} are connected to the common terminal while the load R_{9} is impressed in parallel across the capacitor C_{9}.

In the FIG. 6, an embodiment is illustrated wherein a transformer T is employed to provide circuit isolation or voltage or current step-up as desired. The source of E_{9} has its positive terminal connected in series, respectively, with an inductor L_{9} and the anode of CR_{9}. The gate electrode of CR_{9} is coupled to a timer CL_{9} via a conductor S_{6} while the cathode of CR_{9} is connected in parallel with a capacitor C_{1}, winding W_{1} and winding W_{3} of the transformer T. The windings W_{1} and W_{3} form the primaries of the transformer T while a pair of windings W_{23} and W_{24} form secondaries. The switch CR_{23} is connected to the common conductor while a switch CR_{24} is connected to the other end of winding W_{24} and the common conductor. The gate electrodes of the switches CR_{23} and CR_{24} are controlled by the timer CL_{4} through a pair of conductors 63 and 65, respectively. A source of potential E_{9} has its positive terminal at ground while its negative terminal is connected in parallel to a pair of resistors R_{4} and R_{6} which are then coupled, respectively, to the anodes of the switches CR_{23} and CR_{24}.

The output windings W_{23} and W_{24} are connected to the common conductor while their other ends are coupled, respectively, to a pair of diodes D_{2} and D_{1}. The cathodes of the diodes D_{2} and D_{1} are connected together and to a capacitor C_{2}, a diode D, and an inductor L_{6}. A capacitor C_{9} is in series between the inductor L_{6} and the common terminal while the other terminals of the capacitor C_{9} and the diode D are also connected to the common terminal. A load indicated by a resistor R_{x} is in parallel relationship across the capacitor C_{9}. A current detector 120 is employed as in the other FIGURES.

The FIGS. 7, 8, 9, and 10 show embodiments of the invention whereby voltage step-down is accomplished. The circuitry of the FIG. 7 is easiest described by stating that a source of potential E_{2} has its negative terminal connected to the common conductor and the following elements are in series with the positive terminal of E_{2}: an inductor L_{7}, a switch CR_{17}, an inductor L_{72}, a switch CR_{34}, an inductor L_{9} and a capacitor C_{19}. The other end of the capacitor C_{19} is coupled to the common terminal while a load indicated by a resistor R_{x} is impressed in parallel across this capacitor. A capacitor C_{17} is connected mid point between CR_{17} and the inductor L_{7} and to a diode D_{7}, the anode of the diode D_{7} being connected to the common conductor. From the point common to the capacitor C_{17} and the diode D_{7} are the series elements CR_{17}, an inductor L_{72}, CR_{34}, and a capacitor C_{19}. The other terminal of the capacitor C_{17} is connected to a common conductor while its other terminal is also connected to the cathode of CR_{17}. A capacitor C_{72} is connected between the common conductor and the point common to CR_{34} and the inductor L_{9}. A pair of conductors 71 and 75 couple the timer CL_{1} to the switches CR_{17} and CR_{19} respectively, while a pair of conductors 73 and 77 couple the timer CL_{2} to the switches CR_{9} and CR_{23} respectively. The gate pulses are applied on the conductors 71 and 75 to the gate electrodes of CR_{9} and CR_{23} at the same time. Similarly, the gates of the switches CR_{17} and CR_{34} receive pulses at the same time via the conductors 73 and 77.

A further arrangement is illustrated in the FIG. 8 wherein an inductor L_{9} and a diode D_{9}, in series, are coupled in parallel to similar elements L_{19} and D_{9} which are then both connected in series to a switch CR_{9}. The gate electrode of the switch CR_{9} is coupled to the timer via a conductor 81 while the cathode electrode would be connected to charge a capacitor C_{81}.

Another configuration of a step-down embodiment is illustrated in the FIG. 9 wherein the anode of a diode D_{9} is coupled to the common conductor while its cathode is connected through a capacitor C_{9} to the anode of a diode D_{92}. In parallel with the diode D_{9}, the capacitor C_{91} and the diode D_{92} are series elements C_{92} and D_{92}. The cathodes of the diodes D_{9} and D_{92} are connected together and to an inductor L_{92}. The other terminal of the inductor L_{92} is connected to the anode of a switch CR_{9}. The cathode of CR_{9} is connected to a capacitor C_{90} and an inductor L_{90}. The other terminal of the inductor L_{90} would be connected to a load circuit. The other end of the capacitor C_{90} is connected to the common conductor. The switches CR_{91} and CR_{92} are controlled by a timer (not shown) on a pair of conductors 92 and 91, respectively.

In the FIG. 10, a portion of a circuit is illustrated that would be substituted, for example, for the lower portion of the circuit of the FIG. 5. As illustrated, the following elements are in parallel relationship: a source of potential E_{9}, a diode D_{19}, a capacitor C_{19}, a capacitor C_{193}, a capacitor C_{194}, and a load indicated by a resistor R_{9}. The lower ends of these elements are connected in common except that a switch CR_{19} is connected between the capacitors C_{193} and C_{194} while a second switch CR_{19} is connected between the source of potential E_{9} and the diode D_{9}, as illustrated. The switches CR_{191}, CR_{192}, and CR_{193} are controlled by a timer, not shown in the FIG. 10.

The switches CR of the present invention are controlled by the timer as previously set forth. The timer may take a number of different forms and the FIG. 11 is illustrative of a timer which may be employed in the practice of the invention. The timer normally will utilize a pair of output pulse bearing conductors as shown in the FIGS. 1 and 5; however, the embodiment of the FIG. 6 employs a three sequence operation so that three individual conductors 61, 63, and 65 emanate from the timer.

With reference to the FIG. 11, a current detector 120 is interposed at any convenient location such as between the capacitor C_{1} and the common conductor as illustrated in the FIG. 1. The current detector 120 will detect the flow of current as illustrated in the FIGS. 2c and 2d. The output of the current detector 120 is directed via the conductor 121 to a voltage discriminator 122 which detects, as illustrated on the waveform above the discriminator 122, when its output voltage is at the point 124, 125, or at the point 126. If the voltage is at the point 126, it will commence operation of a ramp generator 126 and if the voltage is at the point 127, a ramp generator 130 will commence functioning.
The ramp generator 128 is insensitive to voltages at all other levels whereas the ramp generator 130 is insensitive to voltages at all other levels.

With continued reference to the FIG. 11, a threshold detector 132 is coupled to the output of the ramp generator 128 and, similarly, a threshold detector 134 is connected to receive the output of the ramp generator 130. The threshold detector 132 will detect the level of the ramp generator 128 which corresponds to the time between the point 136 of the FIG. 2c and the commencement of the next pulse at T shown in the FIG. 2d. The time lapse between the point 136 and T may be adjustable by the setting of the threshold detector level. After the threshold detector 132 has detected the threshold signal of the ramp generator 128, a pulse from a pulse generator 138 is transmitted to CR, of the FIG. 1 or CR,1, CR,2, and CR,3, or other CR's, all of which may be termed the first group of switches.

The output of the threshold detector 134 of the FIG. 11 is coupled to a previously set single-pole double-throw switch 140 so that in the operation of a circuit similar to that of the FIG. 6, the switch 140 would be in its lower position so that the output of the threshold detector 134 is directed to a bistable multivibrator 142. For other embodiments shown in the FIGS, the switch 140 would be set in its upper position so that the output of the threshold detector 134 would be coupled only to a pulse generator 144, which is similar to the pulse generator 138. The output of the pulse generator is directed to what may be termed the second group of CR's such as CR,2, or CR,3 and CR,4 or CR,5.

It will be noted from the FIG. 6, that the timer CL is required to provide a sequence of three pulses on the conductors 61, 63, and 65 whereas the other circuits require only a sequence of two pulses. As noted earlier, during the operation of the circuit of the FIG. 6, the switch 140 would be in its lower position so that the bistable multivibrator 142 would alternately supply signals to the pulse generator 144 and a pulse generator 148. During the operation of this circuit, the sequence would be as follows:

the pulse generator 138 would first pulse CR, on the conductor 61; the pulse generator 144 would next pulse CR, on the conductor 63; the pulse generator 138 would again pulse CR, on the conductor 61; and, the pulse generator 148 would then pulse CR, on the conductor 65. Thereafter, the cycle repeats.

With reference to the FIG. 1, and starting at time \(t = 0 \), when both CR, and CR, are open and CR, is about to close, \(i(t) = i(t) = 0 \) and the capacitors \(C, \) and \(C, \) are charged to potentials of \(v(t) \) and \(v(t) \) respectively. The output voltage \(e_0 \) of the circuit is impressed across the load \(R, \). The current \(I_0 \) flows in the inductor \(L, \). The controlled rectifier or switch CR, closes at time \(t = 0 \). The current \(I_0 \) that flows after closure of CR, may be calculated with reference to the simplified equivalent circuit depicted in the FIG. 3, and, the corresponding waveform is illustrated in the FIG. 2d.

The voltage equilibrium in this circuit is given by the relation:

\[
 v(t) = L \frac{d^2}{dt^2} + v(t) = v(t)
\]

or

\[
 v(t) - L \frac{d^2}{dt^2} = v(t) + \frac{1}{C} \int^t_0 \left[\frac{i(t)}{C} - I_0 \right] dt
\]

Solution of the differential equation (2) leads to:

\[
 v(t) = v(t) + \frac{1}{C} \int^t_0 \left[\frac{i(t)}{C} - I_0 \right] dt
\]

where \(C \) is defined as \(C = \frac{1}{C} \), \(v(t) \) is defined as \(v(t) = \frac{1}{C} \), \(v(t) \) is defined as \(v(t) = \frac{1}{C} \), and \(\omega_0 \) is defined as \(\omega_0 = \frac{1}{C} \). The voltage \(v(t) \) during the time interval \(0 < t < \pi/\omega_0 \) is now readily derived from the relation:

\[
 v(t) = v(t) + \frac{1}{C} \int^t_0 \left[\frac{i(t)}{C} - I_0 \right] dt
\]

and using the initial conditions \(i(t) = 0 \)

\[
 L \frac{d^2}{dt^2} v(t) = v(t) - v(t)
\]

The voltage \(v(t) \) during the time interval \(0 < t < \pi/\omega_0 \) may be expressed by the relation:

\[
 v(t) = v(t) + \frac{1}{C} \int^t_0 \left[\frac{i(t)}{C} - I_0 \right] dt
\]

and using the initial conditions \(i(t) = 0 \)

\[
 L \frac{d^2}{dt^2} v(t) = v(t) - v(t)
\]

The voltage \(v(t) \) during the time interval \(0 < t < \pi/\omega_0 \) may be expressed by the relation:

\[
 v(t) = v(t) + \frac{1}{C} \int^t_0 \left[\frac{i(t)}{C} - I_0 \right] dt
\]

and using the initial conditions \(i(t) = 0 \)

\[
 L \frac{d^2}{dt^2} v(t) = v(t) - v(t)
\]

The voltage \(v(t) \) during the time interval \(0 < t < \pi/\omega_0 \) may be expressed by the relation:

\[
 v(t) = v(t) + \frac{1}{C} \int^t_0 \left[\frac{i(t)}{C} - I_0 \right] dt
\]

and using the initial conditions \(i(t) = 0 \)

\[
 L \frac{d^2}{dt^2} v(t) = v(t) - v(t)
\]

The voltage \(v(t) \) during the time interval \(0 < t < \pi/\omega_0 \) may be expressed by the relation:

\[
 v(t) = v(t) + \frac{1}{C} \int^t_0 \left[\frac{i(t)}{C} - I_0 \right] dt
\]

and using the initial conditions \(i(t) = 0 \)

\[
 L \frac{d^2}{dt^2} v(t) = v(t) - v(t)
\]

The voltage \(v(t) \) during the time interval \(0 < t < \pi/\omega_0 \) may be expressed by the relation:

\[
 v(t) = v(t) + \frac{1}{C} \int^t_0 \left[\frac{i(t)}{C} - I_0 \right] dt
\]

and using the initial conditions \(i(t) = 0 \)

\[
 L \frac{d^2}{dt^2} v(t) = v(t) - v(t)
\]

The voltage \(v(t) \) during the time interval \(0 < t < \pi/\omega_0 \) may be expressed by the relation:

\[
 v(t) = v(t) + \frac{1}{C} \int^t_0 \left[\frac{i(t)}{C} - I_0 \right] dt
\]

and using the initial conditions \(i(t) = 0 \)

\[
 L \frac{d^2}{dt^2} v(t) = v(t) - v(t)
\]
and then that
\[V_{\text{ser}} = \left(\frac{1}{T_0} \right) \left\{ \left(\frac{\pi}{\omega_0} \right) \left[V_{t0}(0) + \left(C/C_2 \right) \Delta V - \frac{1}{2} \left(I_d/C_1+C_2 \right) \pi/\omega_0 \right] -2 \left(C/L_2 \right)^2 \omega_0^2 \right\} \]
\[+ \frac{1}{2} \left[2V_{t0}(0) + 2\left(C/C_2 \right) \Delta V - \left(I_d/C_1+C_2 \right) \left(\pi/\omega_0 \right) \right] \left(T_0 - \frac{1}{\pi/\omega_0} \right) \]

Regrouping terms leads to:
\[V_{\text{ser}} = V_{t0}(0) + \left(C/C_2 \right) \Delta V - \frac{1}{2} \left(I_d/C_1+C_2 \right) \pi/\omega_0 -2\left(I_d/T_0 \right) \left(C/C_2 \right)^2 L_2 \]

The waveform of \(V_{t0}(t) \) is depicted in FIG. 2b and \(V_{\text{ser}} \) is the average value of that curve. So far it has been tacitly assumed that \(V_{t0}(t) \) returns after every completed cycle to \(V_{t0}(0) \) and finds a voltage of \(V_{t0}(0) \) on capacitor \(C_1 \) whenever the charge on \(C_1 \) should be replenished.

Consider the variations in capacitor voltage \(V_{t0}(t) \). It is assumed that at time \(t = 0 \), \(V_{t0} = V_{t0}(0) \). Then:
\[V_{t0}(t) = V_{t0}(0) - \frac{1}{C_1} \int_{0}^{t} i_2(t) \, dt \]
and at time \(t = \pi/\omega_0 \),
\[V_{t0}(\pi/\omega_0) = V_{t0}(0) - 2\left(C/C_2 \right) \Delta V - I_0 \left(C/C_2 \right) \left(\pi/\omega_0 \right) \]

This potential \(V_{t0} \) remains constant—after opening of \(CR_2 \)—until \(CR_1 \) closes and current \(i_2 \) starts to flow. The character of the current \(i_2 \) is that of a sinusoid as described in FIG. 2c. Voltage \(V_{t0}(t) \) at time \(t = \pi/\omega_0 - kT_0 \) is readily calculated as:
\[V_{t0}(\pi/\omega_0 - kT_0) = 2E - V_{t0}(0) \left(\pi/\omega_0 \right) = V_{t0}(0) \]
where
\[\omega_0 = \frac{1}{\sqrt{L_1C_1}} \]

An equivalent circuit for the path of \(i_2 \) is depicted in FIG. 4. Switch \(CR_2 \) closes at time \(t = kT_0 \). Relations (10) and (11) are solved for:
\[E_z = V_{t0}(0) - \left(C/C_1 \right) \Delta V - \frac{1}{2} \left(I_d/C_1+C_2 \right) \pi/\omega_0 \]

or
\[E_z = \left(C_1/C_1+C_2 \right) V_{t0}(0) + \left(C_2/C_1+C_2 \right) v_0(0) - \frac{1}{2} \left(I_d/C_1+C_2 \right) \pi/\omega_0 \]

Relation (8c) is rewritten as:
\[\nu_{\text{ser}} = \left(C/C_1+C_2 \right) V_{t0}(0) + \left(C_2/C_1+C_2 \right) v_0(0) - \frac{1}{2} \left(I_d/C_1+C_2 \right) \pi/\omega_0 -2\left(I_d/T_0 \right) \left(C/C_2 \right)^2 L_2 \]

A measure for the deviation of \(e_{\text{ef}} \) from \(E_z \) is gained by forming the ratio
\[\frac{E_z - e_{\text{ef}}}{E_z} = 2 \left(\frac{I_d}{E_z} \right) \left(L_2/T_0 \right) \left(C/C_2 \right)^3 \]

It is noted that:
\[C < C_2 \] since \(C \) is a series combination of \(C_1 \) and \(C \)
\[2L_2 < T_0 \] since \(\pi/\omega_0 < T_0 \) with \(\sqrt{L_2C_2} = 1/\omega_0 \) and
\[0.1 < \left(L_2/C_2 \right) < 10 \]
If, furthermore, \(|I_d| << E_z \), as commonly found with sys-

and becomes a negligible quantity when compared to the output voltage reduction due to regulation losses. This shows that
\[e_{\text{ef}} = E_z \]

as long as \(I_d << E_z \), which concludes the proof that the series capacitor DC transformer is ideally load insensitive, as long as the stipulated restrictions are observed.

The simple illustrative form of the network illustrated in the FIG. 1 and the explanatory drawings of the FIGS. 2, 3, and 4 will not find general utility since the source of electrical energy (the battery) itself provides a similar degree of load insensitivity. However, the principles which have been applied and the analysis as just developed may be applied equally well to the more complex circuits shown in the remaining FIGURES.

Reference will now be had to the step-up embodiment shown in FIG. 5. A pulse from the timer \(CL_5 \) to the switches \(CR_{11}, CR_{12}, \) and \(CR_{13} \) will permit current flow through the inductors \(L_1 \) and \(L_2 \) so that the pair of capacitors \(C_{11} \) and \(C_{12} \) are charged in parallel. By the surge charging method as described, the capacitors \(C_{11} \) and \(C_{12} \) are charged to peak potentials greater than the potential of \(E_z \) by an amount proportional to the load \(R_L \). The relative location of these capacitances within the basic scheme as described above is changed after the switches \(CR_{11}, CR_{12}, \) and \(CR_{13} \) open at the end of the charging cycle whereupon the capacitors \(C_{11} \) and \(C_{12} \) are now coupled in series by a pulse from the timer \(CL_6 \) which causes the closure of the switch \(CR_{21} \) (and the switch \(CR_{41} \)) and then discharged through the inductor \(L_2 \) and the now closed switch \(CR_{21} \) to charge the capacitor \(C_2 \) so that it will ascertain an average voltage of \(E_z \). A so called "free wheeling" diode \(D \) parallels the capacitor \(C_2 \) to prevent a negative polarity of the capacitor \(C_2 \) under transient conditions. The function of the inductor \(L_2 \) and the capacitor \(C_2 \) is to act as a filtering network for the load \(R_L \) so that a more constant output to the load is maintained. Subsequently, the cycle repeats through the action of the current detector and with the timer \(CL_2 \) initiating subsequent pulses so that voltage across the load \(R_L \) remains constant.

By similar circuits involving more than two capacitors charged in parallel, the voltage may be stepped up by any desired multiple (less than one, one, or more than one). Similarly, current may be stepped up, and voltages stepped down, by charging capacitors in series
and discharging them in parallel. For these circuits, attention is directed to the remaining FIGURES to be hereinafter described. In addition, input-output isolation may be achieved similarly by appropriate additional switching elements, also to be hereinafter described. An advantage of these capacitor arrangements is the elimination of a wire-wound transformer at the mere expense of one additional forward voltage drop in one solid-state switch (CR) per stage of voltage level change.

The arrangement of the FIG. 5 is deemed the preferred embodiment of the invention in the sense that some number of capacitors for voltage or current multiplication ordinarily will be selected, and an appropriate number of stages chosen as the design requirements for a particular use may require.

The FIG. 6 is a diagram of an embodiment of the invention wherein a transformer T is employed to provide circuit isolation or voltage for current step-up as desired. For more effective use of the iron core, a pull-down arrangement is preferred, as shown. The transformer T includes a pair of primary windings W_{11} and W_{12} and a pair of secondary windings W_{23} and W_{24}. The primary windings W_{11} and W_{12} are arranged with their turns opposed as conventionally indicated by the dots and arcs to discharge the capacitor C, alternately through the switches CR_{61} or CR_{62}. A pair of resistors R_{41} and R_{42} is coupled to a potential source E_{41} and the anodes, respectively, of CR_{61} and CR_{62} to assist the turn-off of their respective switch by balancing out the small magnetizing current.

The operation of the circuit of the FIG. 6 is again discussed after establishment of steady state conditions. All CR switches are operated from its respective timer circuit (see FIG. 11) which is programmed to suit the following discussion.

Switch CR_{1} is turned on by a pulse on a conductor 61 from the timer CL_{1}, current will flow into the capacitor C_{1}, charging it to its peak value. Subsequently, the switch CR_{1} opens and after the expiration of a time period as determined in the current detector 120 (and the ramp generators and the threshold detectors of the FIG. 11), a pulse appears on a conductor 63 from the timer CL_{4} to turn on the switch CR_{61} which results in connecting the charged capacitor C_{1} through the winding W_{11}. The resulting surge of primary current induces a voltage in the secondary windings W_{23} and W_{24}. Also current now flows through the diode D_{2} to allow the re-charge of the capacitor C_{2}. The switch CR_{61} opens and next, a pulse on the conductor 61 would again close CR_{1}, so that the capacitor C_{1} is again recharged. Thereafter, a pulse on the conductor 65 from the timer CL_{4} to the switch CR_{64} would induce a flux change so that current flows in the secondary winding W_{23}, the rectifier D_{3} and to charge the capacitor C_{2}. As previously set forth, the sequence of pulses from the timer CL_{4} would be on the conductor 61, the conductor 63, the conductor 61, and the conductor 65. Thereafter, the cycle repeats. During the sequence of charging and discharging the capacitor C_{1}, and the opening and closing of the switches, the capacitor C_{2} is available to supply current to the load R_{1} at a constant voltage.

The FIGS. 7, 8, 9, and 10 illustrate further embodiments and ramifications of the invention. For example, in the circuit of the FIG. 7, a pulse on the conductors 71 and 75 to CR_{11} and CR_{12} will cause the capacitors C_{11} and C_{12} to be charged in series. Thereafter, a subsequence pulse on conductors 73 and 77 from the timer CL_{2} to the switches CR_{27} and CR_{28} will discharge the capacitors C_{11} and C_{12} in parallel through inductors L_{72} and L_{73}, respectively, into the capacitor C_{23}. As illustrated, the capacitor C_{23} is available to supply a constant multiple of voltage E_{2} to the load indicated as a resistor R_{2}.

The schematic of the FIG. 8 illustrates the discharge circuit of another embodiment. Wherein the switches CR_{74} and CRhd 74 of the FIG. 7 are replaced by a pair of diodes, respectively, D_{74} and D_{72} so that upon the receipt of an initiating pulse on a conductor 81 from a timer to the switch CR_{91}, the load supply capacitor C_{93} will be charged.

The embodiment of the FIG. 9, illustrates a circuit for charging a pair of capacitors in series and discharging these capacitors in parallel. More specifically, a pulse on a conductor 91 to a switch CR_{90} would turn on CR_{92} so that the incoming current flow would be to the capacitor C_{91} and through the switch CR_{92} to a capacitor C_{93}. After the switch CR_{92} opens, a pulse on a conductor 92 from the timer would close the switch CR_{91} so that the capacitor C_{91} discharges through a diode D_{92} and the capacitor C_{92} discharges through a diode D_{93}. The current flow through an inductor L_{91} will charge the load capacitor C_{93}.

The FIG. 10 demonstrates the feasibility of DC isolation which may be desirable in the event that a common ground would not be used. Initially, the capacitors C_{100} and C_{102} would be charged in series similar to the function of the circuit in the FIG. 9 by a pulse on a conductor 103 to turn on the switch CR_{100}. The capacitors C_{103} and C_{105} would be charged to the reference level of the source E_{t}. Next, the switches CR_{101} and CR_{103} are pulsed together (as well as other switches above the dotted line and not shown). Then, the capacitor C_{103} and the capacitor C_{105} discharge by a pulse to the switch CR_{102} (which would also be applied to a switch not shown and above the dotted line) so that the capacitors C_{103} and C_{104} are charged to the reference level of the load indicated symbolically as a resistive load at CR_{1}.

The foregoing analysis and discussion is general and linear. The circuits of the present invention are operable over wide ranges of parameter values. The choice of the particular values depends upon the function to be performed. If reduction in weight is of primary concern, a relatively high operating frequency is selected which minimizes the size and weight of the inductors and the capacitors.

It will thus be seen that the objects set forth above, among those made apparent from the preceding description, are efficiently attained and since certain changes may be made in the above instructions without departing from the scope of the invention it is intended that all matter contained or shown in the accompanying drawings have been interpreted as illustrative and not as limiting.

The invention relates to switching circuits in which capacitors are being respectively charged in series and/or parallel combinations from a source of electrical energy in a pulsating manner, whereby the current is limited by insertion of an inductor in the path of the charging thus forming a resonant impedance in conjunction with the capacitors and causing resonant current turned-off in the unidirectional control and/or un-
An energy transmission circuit as defined by claim 10 wherein said timing means operate in a repetitive cycle having a period T_0.

4. An energy transmission system as defined by claim 3 wherein said filter means includes an inductor connected in series relationship to said load and an output capacitor connected across said load having a capacitance C_0 and wherein the product of said capacitance in farads, multiplied by the inductance L_0 in henrys of said output inductor is much greater than the square of said period in seconds.

5. A power converter for supplying power from a source of power to a load comprising:
 a first inductive impedance;
 a first switch;
 a first voltage storage means for storing current, said first inductive impedance, said first switch and said first voltage storage means being connected in series with said source of power;
 a second inductive impedance;
 a second switch;
 a second voltage storage means for storing current, said second inductive impedance, said second switch and said second voltage storage means being connected in series, said series connection being connected in parallel with said first voltage storage means, said load being connected in parallel with said second voltage storage means;
 a third switch, said third switch being connected in series with said first inductive impedance, said first switch and said first voltage storage means;
 a fourth switch;
 a fifth switch;
 a third inductive impedance, said fourth switch, said fifth switch and said third inductive impedance being connected in series, said series connection being connected in parallel with said series connection first switch, said first inductive impedance and said first voltage storage means; and,
 a third voltage storage means for storing current, said third inductive impedance, said third switch and said third voltage storage means being connected in parallel with said series connection third and fifth switches.

6. A power converter as claimed in claim 5 including:
 a current detector connected in series with said third voltage storage means; and
 a timer circuit connected to said current detector circuit and to said first, second, third, fourth and fifth switches for sequentially enabling said switches in a predetermined manner to allow said switches to pass current.

7. A power converter as claimed in claim 6 wherein:
 said first, second, third, fourth and fifth switches are first, second, third, fourth and fifth silicon controlled rectifiers, the gates of said silicon controlled rectifiers being connected to said timer circuit; and
 said first, second and third voltage storage means are first, second and third capacitors.

8. A power converter as claimed in claim 6 including:
 a LC filter circuit connected between said second capacitor and said load, the inductor of said LC filter circuit being connected in series with said load and the capacitor of said LC filter circuit being connected in parallel with said load; and
 a diode connected in parallel with said second capacitor.

9. A power converter for supplying power from a source of power to a load comprising:
 a first inductive impedance;
 a first switch;
 a first voltage storage means for storing current, said first inductive impedance, said first switch and said first voltage storage means being connected in series with said source of power
 a second inductive impedance;
 a second switch;
 a second voltage storage means for storing current, said second inductive impedance, said second switch and said second voltage storage means being connected in series, said series connection being connected in parallel with said first voltage storage means, said load being connected in parallel with said second voltage storage means;
 a diode, said diode being connected in series with said first inductive impedance, said first switch and said first voltage storage means;
 a third switch;
 a third voltage storage means for storing current, said third switch and said third voltage storage means being connected in series, said series connection being connected in parallel with said second voltage storage means;
 a fourth switch, said third inductive impedance and said fourth switch connected in series from the junction between said third switch and said third voltage storage means to the junction between said second switch and said second voltage storage means.

10. A power converter as claimed in claim 9 including:
 a timer circuit connected to said first, second, third and fourth switches in a predetermined manner to
allow said first, second, third and fourth switches to pass current.

11. A power converter as claimed in claim 10 wherein:
said first, second, third and fourth switches are first, second, third and fourth silicon controlled rectifiers, the gates of said first, second, third and fourth silicon controlled rectifiers being connected to said timer circuit; and
said first, second and third voltage storage means are first, second and third capacitors.

12. A power converter as claimed in claim 10 including:
a LC filter circuit connected between said second capacitor and said load, the inductor of said LC filter circuit being connected in series with said load and the capacitor of said LC filter circuit being connected in parallel with said load.

13. A power converter as claimed in claim 12 including:
a fifth silicon controlled rectifier connected in series between said source of power and said diode and having its gate connected to said timer; and
a sixth silicon controlled rectifier connected in series between said second and third capacitors and having its gate connected to said timer.

14. A power converter for supplying power from a source of power to a load comprising:
a first inductive impedance;
a first switch;
a first voltage storage means for storing current, said first inductive impedance, said first switch and said first voltage storage means being connected in series with said source of power;
a second inductive impedance;
a second switch;
a second voltage storage means for storing current, said second inductive impedance, said second switch and said second voltage storage means being connected in series with said first voltage storage means.

15. A power converter as claimed in claim 14 including:
a timer circuit connected to said first, second, and third switches for sequentially enabling said first, second and third switches in a predetermined manner to allow said first, second and third switches to pass current.

16. A power converter as claimed in claim 15 wherein:
said first, second and third switches are first, second and third silicon controlled rectifiers, the gates of said first, second and third silicon controlled rectifiers being connected to said timer circuit; and,
said first, second and third voltage storage means are first, second and third capacitors.

17. A power converter as claimed in claim 16 including:
a LC filter circuit connected between said second capacitor and said load, the inductor of said LC filter circuit being connected in series with said load and the capacitor of said LC filter circuit being connected in parallel with said load.

18. A power converter as claimed in claim 17 including:
a fourth silicon controlled rectifier connected in series between said source of power and said first diode and having its gate connected to said timer; and
a fifth silicon controlled rectifier connected in series between said second and third capacitors and having its gate connected to said timer.

19. A power converter for supplying power from a source of power to a load comprising:
a first inductive impedance;
a first switch;
a first voltage storage means for storing current, said first inductive impedance, said first switch and said first voltage storage means being connected in series with said source of power;
a second inductive impedance;
a second switch;
a second voltage storage means for storing current, said second inductive impedance, said second switch and said second voltage storage means being connected in series with said first voltage storage means;
a diode, said diode being connected in series with said first inductive impedance, said first switch and said first voltage storage means;
a diode, said diode being connected in series with said second inductive impedance, said second switch and said second voltage storage means;
a third switch;
a third voltage storage means for storing current, said third switch and said third voltage storage means being connected in series, said series connection being connected in parallel with said first diode;
a third inductive impedance; and
a third diode, said third inductive impedance and said third diode connected in series from the junction between said third switch and said third voltage storage means to the junction between said second switch and said second diode.

20. A power converter as claimed in claim 19 including:
a timer circuit connected to said first, second and third switches for sequentially enabling said first, second and third switches in a predetermined manner to allow said first, second and third switches to pass current.
21. A power converter as claimed in claim 20 wherein:
said first, second and third switches are first, second
and third silicon controlled rectifiers, the gates of
said first, second and third silicon controlled recti-
fiers being connected to said timer circuit; and,
said first, second and third voltage storage means are
first and second capacitors.

22. A power converter as claimed in claim 21 includ-
ing:
a LC filter circuit connected between said second ca-
pacitor and said load, the inductor of said LC filter
circuit being connected in series with said load and
the capacitor of said LC filter circuit being con-
nected in parallel with said load.

23. A power converter as claimed in claim 22 includ-
ing:
a fourth silicon controlled rectifier connected in se-
ries between said source of power and said first
diode and having its gate connected to said timer;
and,
a fifth silicon controlled rectifier connected in series
between said second and third capacitors and hav-
ing its gate connected to said timer.