TO: KSI/Scientific & Technical Information Division
Attn: Miss Winnie M. Morgan

FROM: GP/Office of Assistant General Counsel for Patent Matters

SUBJECT: Announcement of NASA-Owned U.S. Patents in STAR

In accordance with the procedures agreed upon by Code GP and Code KSI, the attached NASA-owned U.S. Patent is being forwarded for abstracting and announcement in NASA STAR.

The following information is provided:

U.S. Patent No.: 3,606,470

Government or Corporate Employee: Nat'l Research Corp.
Cambridge, MA

Supplementary Corporate Source (if applicable): CalTech
Pasadena, CA

NASA Patent Case No.: XRP-10007-1

NOTE - If this patent covers an invention made by a corporate employee of a NASA Contractor, the following is applicable:

YES [X] NO []

Pursuant to Section 305(a) of the National Aeronautics and Space Act, the name of the Administrator of NASA appears on the first page of the patent; however, the name of the actual inventor (author) appears at the heading of column No. 1 of the Specification, following the words "...with respect to an invention of ..."

Bonnie L. Woerner
Enclosure

NOTE: TRANS. OF RIGHTS
An apparatus for sampling rock and other brittle materials which shatter during grinding due to a lack of plasticity.

The present invention relates to rock grinding and particularly to the sampling of rock specimens with good size control. The invention described herein was made in the performance of work under a NASA contract and is subject to the provisions of the National Aeronautics and Space Act of 1958, Public Law 85-568 (72 Stat. 426; 42 U.S.C. 2451) as amended. A license has been granted to the United States Government for practice of the invention and title to the invention and this patent has been reserved to the assignee, subject to voidability by NASA.

The present invention relates to abrasive sampling of rock and other brittle materials which shatter during grinding due to a lack of plasticity.

FIG. 1 is a schematic sketch of an improved sampling apparatus; FIG. 1A is a diagram showing a variation of the ridge cutter and FIGS. 1B and 1C show other variations of the apparatus; FIG. 2 is a bar graph showing size distribution of rock particles obtained using prior art grinding techniques; and FIG. 3 is a bar graph showing the improved distribution obtained in one example of use of the present invention.

Referring to FIG. 1 there is shown a rock 10 to be sampled, a tool carriage 12 traversing in the path and direction indicated by the arrow 14. Mounted on the carriage are a group of cut-off wheels 18 and a milling cutter 20 with wedge shaped teeth. The wheels 18 and miller 20 are driven by a motor (not shown) mounted in the carriage 12. The wheels 18 cut closely spaced parallel grooves 22 thus forming ridges 24. The milling cutter cuts the ridges down partially (but not fully) to produce a more controllable yield in terms of particle size. Only the milled powder is collected. A collection cup (not shown) is mounted on the apparatus for this purpose.

FIG. 1A shows a variation of the apparatus in which a single wheel with several parallel lands 114 is used instead of several grouped cut-off wheels. It should be noted that here the rock sample 110 has a narrow profile. The profile should preferably be preground (by the wheel 118 with abrasive on the flats 119 or a separate grinder) to the level 111 to provide a common level for groove and ridge formation.

FIG. 1B shows a variation of the apparatus formed as a rock drill for taking a sample in a pre-drilled hole. A wheel 118 (similar to the wheel 118 of FIG. 1A) and a milling cutter 120 are mounted on a common shaft 115. They are driven from support 114 for traversing on the same rotary path and wheel speed and grit size, individually rotated by gears 130.

FIG. 2 is a bar graph showing the highest yield of particles and in about the 74—149-micron range obtained by conventional grinding techniques. (The particle sizes indicated on the abscissa between 0 and oo are the sieve sizes used.) The distribution shown was obtained by traversing the rock at 12 inches per minute, using a 16-grit diamond wheel run at 440 revolutions per minute, and taking off 0.005 inch of rock per traverse.

FIG. 3 shows the improved sample distribution obtained from the same rock using the method of the present invention. Besides the improvement in immediate range of interest, which is shown shaded, there is a sizeable increase in the adjacent 149—250-micron range and a marked reduction in the under 44 micron range. Further peaking of the distribution about the desired 74—149 range can be obtained with further adjustment of ridge widths and heights as described below. The results shown in FIG. 3 were obtained using the following conditions: The previously described grooves were cut with a 60-mil width and 35-mil depth producing intervening ridges of 15-mil width and 35-mil height. The preformed surface was traversed by a flat tooth milling cutter rotating at 440 revolutions per minute and traversing at 30 inches per minute. The milling cutter took 0.008 inch off the ridges per traverse.

The reasons for the size control using the present invention are the following: The production of grooves removes considerable support from the remaining ridge material. As a result a reduction is effected in the amount of mechanical crushing pressure required to remove the
ridge material. A reduction in the number of fine particles therefore results. Within limits, the thinner are the ridges, the fewer are the number of fines that result. The ridge width is preferably about equal to the desired particle size or in the range of the desired particle size. The ridge height is usually larger than the width and therefore the upper size of the particles is primarily governed by, although not limited to, the height of the ridges.

Several variations can be made from the above-described embodiments. It is therefore intended that the above disclosure shall be read as illustrative and not in a limiting sense.

What is claimed is:

1. An apparatus for geological rock sampling or the like comprising a combination thin wheel grinding means for cutting closely spaced grooves in the surface to create the elevated ridges and a milling cutter means for machining said elevated ridges simultaneously with a common tooth cut of said multiple ridges and means for collecting the loose particles produced by said milling cut, the said grinding means and milling means being supported on a common pendulum mounting structure to sweep along a rock in a common path and common direction and spaced apart from each other on said mounting structure, said collection means being mounted on said mounting structure and constructed and arranged to collect rock particles removed by said milling means.

2. Apparatus for geological rock sampling comprising, a frame means, a pair of spaced parallel rotary shafts mounted on said frame means, a plurality of thin grinding wheels mounted in spaced apart relation on one of said shafts for cutting a plurality of closely spaced grooves in the surface of said rock and for creating elevated ridges between said grooves, a toothed milling cutter mounted on the other of said shafts and arranged to simultaneously reduce said plurality of ridges into a powder specimen, and collection means carried on said frame for collecting said powder from said cutter.

3. The apparatus of claim 2 wherein said grinding and milling means are constructed to sweep along the work in the same path.

4. The apparatus of claim 3 wherein said grinding and milling means sweep along the work in the same direction.

References Cited

UNITED STATES PATENTS

3,123,157 3/1964 Graham 175—58
3,374,034 3/1968 Conner 299—86
1,496,522 6/1924 Canning 125—4
1,580,155 4/1926 Niestradt 125—4

HAROLD D. WHITEHEAD, Primary Examiner

U.S. Cl. X.R.

125—3; 175—58, 308