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ABSTRACT

The motivation of the present investigation was

to carry out an experimental study of several different

processes with a view toward creating population dif-

ferences in the ground states of alkali atoms. (Cesium-

133 was specifically studied but the techniques de-

veloped are equally applicable to other alkali atoms).

Such studies may eventually lead to the development of

cell-type Cesium atomic frequency standards and cesium

masers. Both GaAs diode lasers and RF excited resonance

lamps were used for the present work. This report is

accordingly divided into two major parts.

Part one describes the details of the studies made

on GaAs-junction lasers and the achievement of population

inversions among the hyperfine levels in the ground state

of Cs133 by optically pumping it with radiation from a

GaAs diode laser. The laser output was used to monitor

the populations in the two ground state hyperfine levels

as well as to perform the hyperfine pumping.

By varying the injection current, a GaAs laser, oper-

ated CW at about 770 K, was used to scan the 85210A line

133
of Cs 3 . The intensity of the resonance scattering from

cesium vapor served as an indicator of the populations

of the two levels involved. Experiments were performed

both with neon-filled and with paraflint-coated cells

containing the cesium vapor. The Doppler broadened and
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pressure broadened line width of cesium in 
the neon-

filled vapor cell at 100 Torr was found to be 1300MHz

for the D2-transition.

It was discovered that the diode laser could ealily

be tuned by manually adjusting the injection current to

match either of the hyperfine components of the D2 optical

transition. The laser mode could be held on either com-

ponent for up to a few seconds by manually controlling

the current. This indicates that automatic locking should

be easily possible and practical.

Possible future applications, including a re-study of

light shifts, the construction of a cesium maser, 
and the

physics of optical pumping with coherent light 
are dis-

cussed.

Part two describes the details of the investigations

which were made for the development of the triple reaso-

ance coherent pulse technique for the creation of popu-

lation differences among the ground state levels in

cesium-133 and for the detection of the microwave in-

duced hyperfine trasistions by destroying the phase re-

lationships between the various ground state levels pro-

duced by a radio frequency (Zeeman) pulse.

Using this method we have successfully detected the

hyperfine resonances of the ground state of Cs-133. In

addition, we have succeeded in making paraflint wall-

coated Cs-133 vapor cells with very long relaxation

times for optically pumped alkali atoms. (Relaxation

iv



times over 250ms have been observed in 2.5" diameter

cells.) Moreover, these cells have been found to be

very stable and have not shown any detectable deteriora-

tion even after a period of one & a half years.

A 'pulsed Cesium resonance lamp' which was essential

for the success of the coherent pulse technique, was also

developed. It is well known that the rf discharge in a

conventional vapor lamp begins in an unpredictable way

some time after the application of the rf power. The

resonance lamp designed and operated by us showed very

clean and reproducible switching characteristics and the

formerly present time lag did not exist.
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CHAPTER I

GENERAL DISCUSSION

A. Introduction.

Applications using laser radiation for optical 
pumping and the

study of atomic states have been very limited 
in the past because of

the lack of available lasers which have output frequency 
to match the

desired atomic transition. Moreover, most laser lines are very narrow

and practically untunable. This is true for gas and solid state lasers.

Semiconductor lasers, dye lasers, and parameteric oscillators 
have re-

cently become sources of continuously tunable coherent radiation 
in some

selected regions of the spectrum. Based on recent developments in the

field of laser technology, it is quite reasonable to expect that 
within

a few years, narrow band, tunable, coherent sources will be available

over the entire spectral range from 0.2 v to greater than 100 p, which

will provide enough power per mode to do optical pumping, semiconductor

studies, spectroscopy, etc. Semiconductor lasers alone are capable of

providing radiation at all wave lengths from 0.3 11 to over 60 j although

they have many practical limitations. These difficulties are solvable

with future developments in the field of semiconductor material tech-

nology. A very recent breakthrough in this field resulted in the 
de-

velopment of Gallium-Aluminum-Arsenide heterojunction lasers 
which

1
operate continuously at room temperature

An outline of some of the possible methods which can be employed
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to generate coherent radiation for optical pumping 
of Rb8 7 and Cs1

33

and the limitations which presently limit their uses are discussed very

briefly in this chapter. Gallium arsenide injection lasers which we

have used for the optical pumping of Cs
133 , will be discussed in detail

in the rest of the report. In Chapter IV , we describe population in-

versions among the hyperfine levels in the ground state of Cs
133 achieved

by optically pumping these atoms with radiation from 
a GaAs diode laser.

The laser output was used to monitor the populations in the two ground

state hyperfine levels as well as to perform the hyperfine pumping.

The GaAs lasers were operated continuously at about 77
0K. By

temperature tuning, the laser mode could be matched to the 
8521 Ao line

of Cs13 3 . The intensity of the resonance radiation scattered from the

cesium vapor served as an indicator of the relative populations of the

two levels involved. Experiments were performed both with neon-filled

and with paraflint-coated cells containing the cesium vapor.

It was also discovered that the diode laser could easily be

tuned by manually adjusting the injection current to match either of

the hyperfine components of the D2-optical transition. The laser mode

could be held for a few seconds on either component.

Possible future applications including a re-study of the light

shifts, the construction of a Cesium laser, and the physics of optical

pumping with coherent light are discussed. No laser is yet available

to match the Rb-87 optical transitions. However lasers made out of

GaAlAs could match the D1 and D2 transitions in Rb-87 or Rb-85. Although

some GaAlAs lasers have been reported, the art of making them is still
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in the developmental stage. Injection lasers offer the advantage of

small size, high efficiency, ease of operation and modulation, 
low cost

and continuous coverage of a very wide range of spectral outputs. 
How-

ever the present restrictions to low temperature operation and degrada-

tion of output with time, are serious handicaps.

.. Tunable oirces of Coherent Light

1. Dye Lasers

Stimulated emission from a number of solid and liquid solutions

of organic dyes has been reported by a number of investigators. 
Soro-

2
kin and Lankard were the first to report laser action from dye solu-3

tions excited by a ruby laser pulse and later by a coaxial flash lamp

Laser action in plastic rods (containing organic dyes as the active

medium) excited by a flash lamp has been published by Peterson 
and

4
Snavely . CW operation of an organic dye laser excited by an Argon Ion

laser has been achieved for the first time by Peterson et al

The widespread interest in the development of dye lasers is

because they can provide simple, high power light sources continuously

tunable over a broad frequency range. Furthermore, a large number of

dyes with spectral emission in different, overlapping 
regions have been

6
discovered . In principle, by using a few different diffraction grat-

ings to optimize the output performance and a dozen dyes, 
the entire

spectral range from ultraviolet to the infrared can be spanned. 
Fre-

quency locking of the dye lasers to specific atomic resonance lines
7

has also been reported . However, the above stipulations are accom-

panied by serious practical difficulties. It is more true if one desires

14 <



to operate a dye laser in the continuous mode and 
in the far infrared

region.

2. Parametric Optical Oscillators

Work on parametric generation of light as sources of 
tunable

coherent radiation began as early as 19618 . It was followed by a

9 - 11
number of proposals and theoretical studies . It took almost four

years before a successful optical oscillator 
could be practically real-

ized 12 . Giordmaine and Miller
1 2 were the first to demonstrate a work-

ing parametric oscillator in the optical range. 
Continuous optical

13

parametric oscillations were first observed by Geusic 
et al in 1968.

Work on parametric oscillators has extended rapidly. It is now possible

to tune through most of the visible and near infrared with greater 
than

14
50 percent efficiency and thresholds as low as 3mw1. 

It has also been

possible to lock an optical parameteric oscillator 
to an atomic transi-

tion .

Some preliminary investigations were made on the possibility of

using a dye laser or an optical parametric oscillator to optically pump

the alkali vapors. However, the project was given up in favor of using

semiconductor junction lasers because they seemed to offer less diffi-

culties and more possible applications. One of the most important

applications, which we have on the back of our mind, is 
their use in

the making of ultralight weight atomic frequency standards.

3. Semiconductor Lasers

Since the first observation of electroluminescence in GaAs in

16
1955 and followed by the first observation of stimulated emission 

in
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it in 1962 1718 considerable progress has been made in the field of

semiconductor lasers. A variety of semiconductor binary compoundsl9

of the type A BVI (CdTe, CdS, CdSe, ZnSe, ZnS, ZnO, ZnTe)20,21,22,23,24

A III V (GaAs, GaP, AlP, InP, GaSb, InAs, AlAs, InSb)
1 7 ,18 ,25 ,26 ,2 7,28

A IVBIV (PbSe, PbTe, Pbs) 29 ,30 ,31 which provide discrete laser outputs

in the ultraviolet, visible and infrared regions of the spectrum, have

been discovered. Moreover, semiconductor lasers have been fabricated

from pseudobinary compounds prepared by alloying two binary compounds

containing a common element. Lasers fabricated out of these mixed

crystals provide coherent light covering the spectral range from about

3000Ao to 60 p (Figure 1 ) with a good chance of further extension at

both ends of the spectrum. This range can be continuously covered by

varying the composition of the alloying elements. For example,

GaAs P or Ga xAl xAs (0< x <0.45 2diode laser emits coherent output
l-x x  x 1-x

in the range 0.6 to 0.9 p. This can serve an ideal source to optically

pump Rb and Cs-alkali metals.

33
Asx P x(0< x <1) diode lasers cover the range 0.91 to 3.1 .

An important spectral range of 8 to 14 p , the atmospheric window, can

34
be covered by lasers prepared from Pb x Sn Te or Pb Sn Se.

Laser action in Pb xSn 1 xTe from 6.5 p to 28 p has been reported35

by varying x from 0 to .27. Longer wave lengths up to 60 p are anti-

cipated for X = 0.4. Further extension of the laser wave lengths is

possible because the conduction and valence bands in Pb xSn lxTe cross

36
when going from lead compound to tin compound . In brief, the semi-

conductor lasers can be 'tailor-made' to provide output wave lengths to

fit the desired application.
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Despite significant advances in Semiconductor Laser Technology,

it is not yet possible to fabricate pn-junction lasers to cover the

entire range of 0.3 to 60 p. It has been possible to completely cover

the spectral range from 0.6 U to 30 p by diode lasers made out of

mixed crystals. Out of these, GaAs lasers are the most studied and

widely manufactured lasers. They emit radiation close to the 8521 Ao

line of Cs133 when operated at about 770K. We also have studied some

133
of its characteristics and performed optical pumping in Cs

C. Gallium Arsenide Junction Lasers.

The GaAs diode lasers are p-n-junction devices. They are operated

at forward bias and at high current densities. GaAs lasers emit radia-

tion at a wave length of approximately 8500A
0 , when operated at 770K.

They are most frequently operated in the pulsed mode. Their operation

in the continuous mode is made difficult by the spiraling increase in

the threshold current due to the increase in the temperature of the

junction caused by the injection current. It is only by a careful

design of the junction that one can operate it in the continuous mode.

Three different types of junctions have so far been invented. Because

of their importance in relation to the CW operation of the diode lasers,

they are very briefly described next.

1. Diffused Junctions

Diffused junction lasers operate in the pulsed mode reasonably

well even at room temperatures. Their operation in the continuous

mode is possible at about 77 K or below. Operation at higher tempera-
o

tures, which may be desired to tune the output wave length to match the
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D2-transition in Cs-133, becomes difficult. The major disadvantage is

that this structure requires a very high threshold current density

creating a difficult technological problem of heat sinking. Typical

threshold currents of well constructed lasers are approximately

103 A/cm2(770K) and 3-5x10 A/cm2 (300K).

2. Epitaxial Junctions

An epitaxial junction is made by growing a layer of p-type

material on a n-type substrate (or vice versa). Epitaxial junction

lasers have slightly higher threshold current densities below 770K

and lower thresholds above 770K than for the diffused junctions. CW

operation at temperatures as high as 2000K has been demonstrated 
in

37
carefully prepared lasers .

3. Heterostructure Junction Lasers

A complex junction structure1,38 called 'Double Hetro structure

has recently been perfected. These lasers operate continuously at heat-

sink temperatures as high as 311Ko. Threshold currents as low as

1000A/cm2 at room temperature have been observed in some selected diodes .

Hetero-structure for GaAs injection lasers was first proposed
39

in 1963 predicting higher efficiency and low threshold. It was only

recently when single-hetero structure (SH) type of junction lasers were

40-42
made . The SH-structure is a three layer junction consisting of a

thin layer (1 p) of P+-GaAs sandwiched betweenN +-GaAs and P+-GaxAl _-As

where X = 0.5. This provides considerable improvement over the other

two types of junction structures. The band gap in Ga xAlx As is larger



than the band gap of GaAs and this structure results in a potential

step at the P -GaAs and GaxAl -xAs boundary. This potential step pre-

vents the injected electrons from diffusing into 
the P- region thus

increasing the average electron density in the 
active region for a giver,

current. This mechanism of confinement of electrons decreases 
the cur-

rent required for a given gain at the operating 
temperature. Conse-

quently, the threshold current density 42required 
at room temperature,

can be as low as 6000A/cm
2 . Where as the conventional laser, with

diffused or epitaxial junction,requires threshold current density 
(in

the pulsed mode) of about 40,000A/cm2(at 
3000K). Further improvement

in the threshold has been achieved by the use of a 
double-heterostructure-

(DH) Al Ga -xAs-GaAs-Al Gal_xA s- w i th a very thin active region. This

structure confines both electrons and holes injected 
into the thin

active region. DH also provides a better optical guiding. This results

in a considerable reduction in the threshold. Values as low as 1000A/cm
2

1

(for CW operation at 297
0 K) have been observed .

D. Degradation In GaAs Junction Lasers and Its Physical 
Basis.

It has been demonstrated that at moderate power levels the

degradation process is caused by fundamental changes in the material

in the vicinity of the junction. These changes are attributed to the

formation of lattice defects. It has been estimated4
4 from the work

45 46
of Weiser and Longini that the net energy required to excite a

Zn atom from its gallium substitutional to an interstitial site, 
where

46
the Zn atoms act as a donor , is 1.0ev. This is substantially less

20<



than the energy available from a recombining 
electron-hole pair. Zinc

atoms can thus be displaced to where they 
act as 'impurity' centers and

introduce interband states. The interband states are very effective

in the tunneling of the injected carriers. This is manifested as a

loss of carriers and hence an increase in the lasing 
threshold. The

increase in threshold current results in an excessive 
heat generation

at the junction thus increasing the laser threshold in a two 
fold way.

It has also been demonstrated 
4 4 that interstitial Zn ions diffuse more

rapidly than substitutional Zn atoms. 
Diffusion of interstitial Zn

ions across the junction is further enhanced by the forward bias, causing

a significant change in the doping levels. 
It is thus concluded that

stabler lasers would be possible if impurities with higher binding

energies are used. It is the task of material oriented research 
to

discover suitable doping materials with higher binding 
energies and

acceptable to the host GaAs lattice.

Another cause of degradation of GaAs lasers has been attributed

to surface damage 47 This is particularly important in the case of

high output GaAs lasers. Damage to the surface is predominently on

the p-side and results from the heating of the 
junction area of the

surface caused by the absorption of laser radiation at inhomogeneities.

Heat drives off arsenic atoms resulting in the destruction of the Fabry-

perot cavity. Moreover, with the increase in the photon density the

phonon density also increases. It might mechanically damage the laser

crystal.

1<



CHAPTER II

PROPERTIES OF THE GaAs LASER

A. Laser Modes.

1. Mode Structure of the Laser Output

The spectral. output of a GaAs laser, just above or close to 
the

threshold, may consist of a single mode peaking out near the 
maximum of

the spontaneous emission. Some selected diodes may oscillate in a

single mode at currents above their thresholds. 
In most cases a num-

ber of modes may get excited at higher currents. In some cases of

multimode operation the modes may come from different families of Fabry-

Perot cavity modes. This phenomenon has been attributed to cleavage

steps on the reflecting faces of the laser cavity. 
It may also occur

as a result of crystal defects leading to regions of differing refrac-

48
tive indices48. The above statements are supported by the spectra of

the diode laser (#3) when operated at 77
0K and at different currents

(Figures 2 a-c). We also experienced that in a multimode laser the

modes were unstable and the spectra could hardly be reproduced. Fig-

ures 2 b and 2 c illustrate this behavior. The two spectra were re-

corded one after the other without making any change.

2. Mode Separation of the Laser Output

Different modes will arise whenever an integral number of half

wave lengths are contained between the ends of the Fabry-Perot cavity:

2<
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n = II.1
L

2n

or

-2n L II.2
m

where m is an integer, n = average value of the index of refraction,

X = wave length, and L is the cavity length.

For a GaAs laser, X = 8500A, L = .4mm, n = 3.6, one finds m = 4 x 103

Noting that the index of refraction n is a strong function of X

(because X is very close to the absorption edge), spacing between the

two adjacent modes can be written as

2
X dn]-1 II.3AX [n-X 1n X 11.3
2L dX

Knowing q and -, X a can be computed. Calculated values agree very well

with the observed value of MA which is about 1.5 - 2.5Ao depending on

L. Figures 2 a-c show modes separation of about 2 - 2.25AO. The cavity

length of this laser was close to 400 .

B. Efficiency of the Diode Lasers.

Semiconductor junction lasers are operated to transform the

electrical energy directly into coherent radiation thus yielding a

theoretical internal efficiency approaching 100%. Moreover, they are

capable of yielding a gain almost equal in absolute value to the absorp-

tion coefficient because of the high density of the absorbing electrons.

Also, the magnitude of the gain in semiconductors is much larger than

the corresponding gain in other laser materials. Thus a semiconductor
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laser with extremely small dimensions can give rise to a relatively

large coherent light output. Diode lasers have experimentally been

found to have the highest external efficiency of all the lasers. It is

about 30% at room temperature 19 and more than 60% at low temperaturesl9

(~ 4°K). They can emit coherent outputs higher than 10W continuously

(at helium temperature). The highest power level observed by us was

close to 0.2 watts at 770K and at an efficiency of 8%.

C. Dependence of the Junction Temperature on the Injection Current

in CW Operated Diode Lasers.

The increase in the junction temperature results in less effi-

cient performance of the laser. There always exists a considerable

temperature difference between the junction and the ambient (which may

be the 'cold finger' holding the diode or the diode may be dipped in

the low temperature bath). This results from the finite conductivity

of the laser material and that of the 'heat sinks' attached to the diode.

It is thus important to review briefly the problem of flow of heat away

from the junction where a constant supply of heat is being provided by

the injection current. Detailed analysis of this problem and its experi-

mental verification has been discussed by a number of investigators 49 ,50 ,5 1

The rate at which heat is generated at the junction plane is JV

per unit area, where J is the current density and V is the voltage

applied across the junction. The value of V is very close to the energy

gap. The order of magnitude of this heat for a typical GaAs laser is

3 2 49about 3 x 10 watts/cm The rate at which one can transfer heat to
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liquid nitrogen by a boiling nucleus is less than 10 watt/cm
2 . However,

the heat transfer capability is greatly enhanced
49 (by a factor greater

than 103) by sandwiching the 'laser grain' between 'heat sinks'. These

heat sinks are made out of oxygen-free copper coated with indium to

improve the thermal contact between the crystal diode and the 
sink.

Laser so sandwiched can be either held between cold fingers or dipped

in the cold bath (liquid N2 or He) while in operation. Even with this

much heat sinking, the temperature of the junction can be about 10 to

600K higher than its ambient temperature depending on the current

through it.

D. Effect of Junction Temperature on the Threshold Current.

52
An experimental study reveals that the reciprocal of the gain

through the medium and hence the threshold current are almost constant

in the temperature range 0<T<20 0K. At temperatures higher than 1000K,

it varies as Tm (where m = 2.6 - 3) and as T3 / 2 in the vicinity of

53
liquid nitrogen temperature53

In physical terms, the main cause of the increase of the thres-

hold current with the rise in temperature is due to the decrease in the

degeneracy of the electron and hole populations in the participating

levels. In other words, the carriers get distributed over states in a

wider energy belt at higher temperatures. It thus requires an increase

in the injection current to produce the required degree of population

inversion. At low temperatures, the conditions are ideal in the sense

that a very high degree of degeneracy exists in the population of the

carriers near the conduction and valence band edges. Since the states

28<



18

near the band edges are close to full and any further decrease 
in the

temperature does not increase the population density and hence 
the gain.

Consequently,' a constant threshold is expected at very low temperatures.

Other factors contributing to the temperature dependence of the 
thres-

hold are losses due to the absorption of light, by the free carriers

and the scattering effects within the active region. Free carrier

absorption alone is known to be greater by an order of magnitude at

300 K than it is at 77 K 54

E. Shift of Laser Modes With the Rise in the Junction Temperature.

Spontaneous emission from gallium arsenide shifts to longer wave

lengths as the temperature is raised by about 1.2Ao/Ko at 770 K. This

essentially indicates the shrinking of the forbidden energy gap. The

energy of the gap at any temperature is given by the relation

Eg(T) = E (0) - BT2  11.4

where E (0) = 1.52 ev. and B 
= 1.2x 10-6ev/Ko2(For GaAs lasers).

g 55,56
The shift in the lasing mode position has been found to

be 0.4/Ko (at 770K and 8400Ao).

Since the temperature coefficient of an individual mode is

smaller than that for the spontaneous emission, the modes at shorter

wave lengths get out of step with the shifting spontaneous emission

and hence decrease in intensity and finally die; while new modes on

the longer wave length side begin to lase and increase in intensity.

Therefore, when doing the resonance scattering from Cs-133 vapors,

one has to be careful in distinguishing between the scattering from the

29<
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two hyperfine levels by the sweep of a single mode and the scattering

due to the onset of new modes. The latter is more likely to happen

if the junction temperature is raised very rapidly by injecting a square

current pulse.

F. Line Width of the Mode of a Diode Laser.

A theoretical expression for the line width Avcoh(full spectral

57
width at half intensity) of a GaAs is given by the following expression:

2Hhv (Av )2
Vho cay 11.5

coh P

where Av is the band width of the cavity, P is the coherent power in
cav

the mode, other symbols have the conventional meaning. The expression

for the cavity width as obtained by Armstrong and Smith58 is

2 C -aL -aL -1/2
Aa v = 4t L (1 - Re )(Re 11.6

cav 41n' L

where C/n1 is the group velocity (C/5.3) and R stands for the reflec-

tivity of the ends of the cavity. For a typical laser with its faces

Tn-l.2
cleaved, the reflectivity R = ( -)2 = .32 (since n = 3.6), absorption

coefficient a = 35cm- . For a laser with cavity length = .04 cm,

10
Av = 7.4 x 10 cps.

cav

At 8500Ao, the line width of the laser mode having imw of power output,

is close to 9.5MHz. For a laser giving out 250 mw. in a single mode, its

mode width should be 38kc. The narrowest observed line has been reported
39

ao<l~
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by Ahearn and Crowe. The line width was measured to be 150 KHz and

was limited by the system resolution. The measurement was made by

using a Michelson interferometer with a path difference of 3000 ft and

heterodyne detection. Their laser had the dimensions close to the one

for which the calculations are given above, (L = 400p). It was selected

from many and emitted 250mw of coherent light (cw) in a single mode.

The lasers operated by us were selected from those available to

us. They were selected not for maximum output but for their having a

mode at 85210A with a reasonable output power to give detectable pump

signals from Cs-133. The laser used in the pumping of Cs-133 had power

in excess of 10 milliwatts in a single mode and hence it is expected

to have a mode width less than 1 MHz.
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CHAPTER III

OPERATION OF THE GaAs LASERS

A. Problems Associated with the Matching of a GaAs-Laser Mode

with the D2-Transition of Cs-133.

As shown in Figure 3 , the D2-transition S 1/2P3/2 in Cs-133

corresponds to 8521.1Ao and of photon energy 1.454ev. Consequently,

the photons from the laser must have the same energy 
to excite these

atoms.

In GaAs, the band gap energy is close to 1.51ev, where as the

laser emission is generally below 8500AO (at 770K) i.e. slightly

greater than 1.454ev. This difference of 0.056ev is caused by the

creation of impurity bands near the conduction and valence band edges.

Because of the high concentration of the dopants, the impurity bands

form a continuum and effectively extend the conduction and valence

bands into the forbidden gap. The extended bands are called tails and

the laser emission occurs between states which form these tails.

It is clear that the extension of the bands and hence the photon

energy of the laser emission depends on how heavily the laser 
has been

doped and what dopants have been used. So one has to make a selection

of the laser by investigating quite a few to select the one whose output

might match the D2-transition in Cs-133.

Another way would be to operate the laser at a slightly higher

temperature than 770K. The band gap decreases with the increase in the
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temperature of junction. One would expect to be able to match the laser

output with the desired transition. This method of tuning has its own

problems. As the temperature is raised, the gain in the laser drops

and the laser may not operate CW at ambient temperatures higher than

770K. During our experimentation we came across a few of the lasers

which would operate CW when dipped in liquid nitrogen but would not

lase when put in contact with a copper sink partially dipped in liquid

nitrogen.

B. CW Operation of the GaAs Lasers.

1. General Discussion.

In the present application, the GaAs laser needs to be operated

CW and at slightly higher temperatures than the liquid nitrogen tempera-

ture so that the output mode could be matched to the 8521Ao optical

transition in Cs-133. It should be pointed out that, at present, it would

be impossible to obtain a diode laser which would operate continuously

(CW) at room temperatures and would also match with the 6P3/ 6S
3/2 1/2

optical transition in Cs-133.

Operation of the laser by simply dipping it in liquid nitrogen

does not suffice. While the laser is being fed with continuous cur-

rent, the heat dissipated to the surrounding cryogen boils it violently

causing large temperature fluctuations and hence making the frequency

of the output radiation fluctuate. Bubbling will also cause the out-

coming beam suffer unpredictable scattering. This type of fluctuations

in frequency and intensity are not only undesirable but detrimental to

3<
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to the success of the present experiment. Moreover, it was desired to

have the ambient temperature (as mentioned above) slightly higher that

770K. Consequently, the laser had to be cooled differently. It was

done by placing the laser in good thermal contact with copper blocks

cooled by dipping them partly into liquid nitrogen.

2. Construction of the Cryostat

A few different designs for the cryostat to house the diode laser

were tried with varying degree of success. In our early investigations,

the cryostat was designed to cool the laser from both sides. This was

necessary because of the high threshold currents of the available diode

lasers at that time. Relatively recently, the quality of the lasers

has very much improved. Our recent investigations with diodes obtained

from IBM have shown lower threshold current densities. The improvement

is almost by a factor of 2 to 3 in the threshold currents of lasers of

about the same size as used previously.

In view of these improvements it was decided to cool the laser

only on its p-side. This very much simplified the construction of the

cryostat.

Figure 4 shows the later version of the cryostat. It was made

by modifying the earlier cryostat. The p-side of the laser is pressed

against the copper rod by the spring action of a metal strip. An indium

sheet ( %.002" thick) is placed between the laser and the copper rod for

better thermal contact. The copper rod and the strip served as the two

electrodes. The copper rod is partially dipped in liquid nitrogen con-

tained in a thin wall stainless steel cylinder. The cavity ends of the
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laser face the glass windows in the outer 
stainless steel cylinder.

Vacuum is maintained in between the two cylinders with 
the help of a

vacuum pump. The cryostat when once filled with liquid 
nitrogen could

last for about an hour.

3. Output Power Versus Injection Current Characteristics

The laser was operated CW by DC current derived 
from a commer-

cially available low voltage power supply.

Figure 5 represents the power output versus injection 
current

of laser #1. (This # is for future reference.) This was one of the

early diodes and this characteristic was 
taken with the help of a chart

recorder. The laser was operated by dipping it in liquid nitrogen.

Wiggles on the power characteristic curve 
are due to fluctuations in

the power output caused by the bubbling of liquid nitrogen. Bubbling

also causes random scattering of the radiation resulting 
in fluctuations

of the energy reaching the detector. It will also cause local tempera-

ture fluctuations causing fluctuations in the output 
of the laser.

Lasers obtained more recently showed a very similar 
power-vs-

current characteristic but had lower thresholds. These lasers were of

about the same size (400 x 100) and had thresholds at 0.5 - 0.7 Amp.

4. Study of the Laser Modes and Selection of the Laser

A large number of GaAs diode lasers (~ 60) were investigated.

Spectral characteristics of these lasers varied 
from laser to laser.

Each diode behaved differently. Many had multiple mode structure and

some did not come close to the desired output length. 
These lasers

a<
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were first examined by dipping them in liquid nitrogen. It gave in-

formation about their threshold currents, approximate location of their

modes, etc. This mode of operation provides a quick check and is much

less time consuming. After the first check the selected lasers were

operated by putting them in contact with a copper rod partially dipped

in liquid nitrogen. The power output of the laser in this mode of

operation was very stable when operated at a constant DC current. Only

those lasers which showed strong modes close to 85210A are reported here.

The position of the mode could be shifted (10-20A) to match the D2 -

transitions of Cs-133 by varying the injection current.

Figures 6a and 6b show the spectra of laser #1 at different

injection currents. The laser showed a strong mode close to 8521.5A
°.

Moreover, the two spectra demonstrate that the laser mode could be

shifted by more than 10Ao. This laser was operated in the earlier

version of the cryostat which provided cooling on its both sides.

Figures 7a through d show the spectral distribution of laser

#2 operated at different currents. They also show, as above, the shift-

ing of the mode toward higher wave lengths as the injection current is

increased. This laser also showed a very strong mode close to 8521Ao

and this mode could be tuned over a wide range of wave lengths by simply

changing the injection current. It is important to note that the out-

put consisted of very strong single mode at 8521Ao and the mode could

be shifted either way by more than 5Ao without exciting any additional

mode.

Figure 7a showing the mode at 85210A was observed at a slightly

higher sensitivity than the other three to find out the relative strength
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of any other mode in its neighborhood. There was none on either side.

Observed width of the modes is no indication of the actual width

of the mode. It is very much limited by the resolution of the detect-

ing system. Moreover, the noise in the DC supply voltage can also give

some jitter to the position of the mode.

Observations with laser #3 have already been given in Figures

2 a-c. This laser showed a strong mode at 8502Ao at an injection cur-

r nt of 1.15 Amperes. The laser developed a multi-mode structure when

the current was increased. This laser showed an unstable mode close

to 8521A along with many extra modes.
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CHAPTER IV

OBSERVATIONS ON THE GaAs LASER INDUCED POPULATION INVERSION

IN THE GROUND STATE HYPERFINE LEVELS OF 
Cs1 33

A. Experimental Set Up.

A very simple experimental arrangement, as shown in Figure 8

was used to observe the resonance scattering from Cesium vapor cells.

The cells were held at room temperature, so no arrangement was provided

for maintaining the cells at higher temperatures, except in one situa-

tion where one cell was dipped in hot water and placed back in position.

This was done in connection with various tests performed to make sure

that the scattered radiation was from the Cs vapors. Radiation from

one side of the GaAs laser diode was focused by a lens on the Cesium

vapor cell. The laser mode was swept through the resonance lines of

Cs-133 (at 85210A) by modulating the injection current. Resonance

scattering was observed at angles normal to the incidence radiation

with a RCA 7102 photomultiplier tube. Arrangement was also provided

to observe resonance absorption. The laser output from the other side

of the laser was used to monitor its power output.

B. Modulation of the Injection Current.

In order to sweep the laser mode across the resonance transitions,

the current through the laser was slowly modulated. This modulation

was on top of the DC current. The value of the DC current could be
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adjusted independent of the modulation. This was done by using a pro-

grammable low voltage power supply (Kepco-CK-5M). 
Complete circuit

diagram is shown in Figure 9.

The current modulation was triangular in shape. This was es-

sentially dependent on the shape of the control voltage from 
the func-

tion generator. Voltage across a small resistance in series with the

diode laser, was used to monitor the change in the current. A sync-

signal from the function generator provided the trigger for the scope.

Amplitude and frequency of modulation could be controlled by adjust-

ing the amplitude and frequency of the control signal-voltage.

59,60

C. Population Inversion in the Ground State Hyperfine 
Levels of Cs-133.59,60

The laser mode was used to monitor the populations in the two

ground state hyperfine levels as well as to perform the hyperfine pump-

ing. The laser mode was swept through the resonance line of Cs-133

at 8521A0 . The intensity of the radiation scattered from cesium vapor

served as an indicator of the populations of the hyperfine levels under

observation. Observations made with two lasers are discussed below.

1. Observations with Laser #1

This was our first successful attempt to observe the resonance

scattering, though incomplete. We visually observed the two resonance

scattering peaks, corresponding to the transitions ending on the two

ground state hyperfine levels, on the screen of CRO. Before we could

get ready to take the picture, the laser died. The laser was examined

under microscope and a dark filament was observed as seen 
in Figurel 0
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FIG. 11. THE RESONANCE RADIATION SCATTERED BY A Cs-133 CELL

FILLED WITH 100 TORR OF NEON. ( TIME SCALE: 50 ms/cm,

VERTICAL SCALE: ARBITRARY )
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One possible explanation can be that the laser crystal 
broke under

excessive pressure from the holder. Another broken piece is seen on

the left side in the picture. Another possible explanation can be that

the current was excessively confined in a filament and it 
locally burned

the diode.

2. Observations with Laser #2

Observations with this laser provided the maximum useful data

and information concerning optical pumping effects in Cs-133. 
Figure 11

shows the resonance radiation scattered at an angle of 900 to the 
incom-

ing radiation as the laser mode was swept in frequency decreasing 
from

left to right. In this case the Cs-133 vapor cell contained 10cm of

Neon as a buffer gas. The transitions involved were 6P3/2 to 6S1/2

(F = 3 and F = 4) resulting in the two recorded lines. These lines

were observed as the injection current was increasing. This means that

the temperature of the junction was also increasing, and that the band

gap of the semiconductor material was decreasing. In other words, the

picture was taken during a time of increasing wave length of the 
laser

radiation. Therefore, the first peak on the left corresponds to the

transition which ends in the F 
= 3 state, and.the second one to the

transition ending in the F = 4 state. Since the separation of these

two transitions is 9192 MHz, and the oscilloscope time base is 50 msec/cm,

the laser radiation was sweeping at about 18GHz/cm in this trial.

The excited state hyperfine levels are unresolved because the

Doppler- and pressure-broadened line widths are greater than the hyper-

fine separations. Using the known separation of the two observed peaks,
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FIG. 12 THE RESONANCE RADIATION SCATTERED BY THE SAME CELL AS

IN FIGURE 11 BUT AT A SLOWER LASER SWEAP RATE. THE

LOWER TRACE SHOWS THE INJECTION CURRENT. (TIME SCALE:

200 ms/cm, VERTICAL SCALE IS ARBITRARY. )
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and assuming a linear sweep of the laser mode, the measured line width

of each of the two lines is approximately 1300 MHz.

The unequal amplitudes of the two peaks would be expected to

result from two effects: first, and mainly, the degeneracy of the F = 3

level is 7 and that of the F = 4 level is 9, so that the strengths of

the two lines are in the ratio 7:9. Secondly, the power output of the

laser may vary slightly with increasing current. However, an examina-

tion of Figure llshows that the ratio of amplitudes is not 7:9 but

closer to 1:2. The clue to the reason for this is shown in Figurel 2

in which the left two resonances correspond to increasing current (and

hence increasing wave length) from left to right, and the right two to

decreasing current (because of triangular sweep).

In this case, the ratio of the peak heights for each pair has

fallen closer to 7:9. The only difference in these two cases is that, in

Figure 11 the sweep rate is such that the time required to pass from one

resonance line to the next is about 25 msec, and in Figure 12 it is about

40 msec. This indicates that substantial number of atoms are being

pumped into the F = 4 level and that the hyperfine relaxation time is

long enough so that there is still greater than an equilibrium popula-

tion in the F = 4 state when the laser radiation sweeps through that

line 25 msec later but near to equilibrium population 40 msec later.

In the cesium cell being examined, the spin relaxation time was measured

to be about 18 msec. In the case of atoms for which the hyperfine

61,62 87
relaxation'time can be measured, for example Rb , the spin relaxa-

tion time and the hyperfine relaxation time are roughly the same at

54<
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FIG. 13 THE RESONANCE RADIATION SCATTERED BY THE W4ALL-COATED

CELL ( AND WITHOUT ANY BUFFERGAS ).(VERTICAL SCALE:

ARBITRARY;TIME SCALE: 200 ms/cm
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room temperature, so one might reasonably expect the hyperfine relaxa-

tion time for cesium in this cell to be close to 18 msec.

Additional evidence in support of the hypothesis of hyperfine

pumping is provided by the experiment displayed in Figure 13. Here

the sample cell has been replaced by one with "Paraflint" coated walls,

in which the cesium atoms have a spin relaxation time of over 200 msec.

It can be seen in this case that the ratio of the amplitudes of the peaks

of the pair on the ascending sweep is different from the ratio on the

descending sweep: on the ascending sweep there is pumping of the atoms

from the lower hyperfine level into the upper hyperfine level where they

can exist for times longer than the sweep time for the pair. On the

descending sweep the process is reversed, so that the relative ampli-

tudes are greatly changed. The above-mentioned observations with the

buffered and coated cells were consistently repeatable (except for minor

variations corresponding to the variations of the laser output) from

sweep to sweep and on interchanging the cells back and forth.

It was also encouraging to note that the laser mode could be

held for a few seconds on either of the absorption lines by manually

controlling the injection current, indicating that automatic locking

should be easily possible.

D. Conclusions.

It should now be relatively easy to make a cesium maser. The

power available in a single mode from a GaAs laser is considerably in

excess of what is required to operate an alkali maser. Since small

aperatures will suffice to let the resonance radiation from diode lasers
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into the cavity, it should be easily possible to make a cavity with a

high Q-value. CW operation of a maser may then be achieved by locking

the laser mode to the center of the shorter wave length hyperfine

absorption line.

Onealso could make a miniaturized, cell-type frequency standard

by utilizing the selective hyperfine pumping of cesium vapor. With

the foreseeable development of appropriate semiconductor lasers, it

also should be possible to make a rubidium maser and frequency standard

in a similar way.

It will be most interesting to experimentally examine the re-

sults of using coherent radiation from lasers in optical pumping experi-

ments. For one thing, it should now be possible to measure the hyper-

fine relaxation time of cesium atoms. Perhaps even more interesting

will be an examination of the effects of using a coherent light source;

if coherent radiation is used to perform optical pumping the behavior

of the atomic electric dipoles should be similar to that of magnetic

dipoles subjected to a radio frequency field. A restudy of the light

shifts of the ground state levels of alkali vapors will be worthwhile.

One could, for example, study the behavior of the light shifts as the

laser line is swept through the Doppler-broadened absorption lines.

Non-linear interactions between microwave and optical transitions ex-

hibited in the light shifts may be useful in relating these regions

of the electomagnetic spectrum. It should also soon be possible to

eliminate errors due to the light shifts of atomic frequency standards

by locking the laser line to the center of the hyperfine absorption

line.

57<
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CHAPTER I

GENERAL DISCUSSION

A. Introduction

In principle the operation of gas cell 
atomic frequency stan-

dards depends on the creation of an excess population 
in one of the

two M F = 0 hyperfine states which are otherwise 
almost equally popu-

lated at room temperature. In order to create optically the desired

population difference, it is necessary to 
irradiate the atoms in the

states to be depleted. However, the hyperfine lines of the optical

doublet emitted by a resonance lamp excite nearly equally 
the atoms in

both of the M F = 0 states. It is thus essential to filter out one hy-

perfine component in order to achieve differential 
pumping of the

MF= 0 states. In general, it is virtually impossible. Fortunately,

rubidium atomic standards are practical because of a unique energy lev-

el structure. One of the hyperfine optical transitions of Rubidium-87

happens to be nearly coincident with one of Rubidium-85. 
Thus, the

atoms of the one isotope may serve as a hyperfine filter for the radi-

ation from the atoms of the other and it is possible to selectively

pump the hyperfine levels of the desired isotope. 
In the case of

cesium, no such happy coincidence exists in a convenient source, and

a cesium maser or a practical cell type cesium atomic clock is yet

to be produced. However, since cesium atomic frequency standards

which operate upon a beam of atoms are capable of a high degree of

stability and reproducibility, and constitute the present international
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frequency standard, it seems highly desirable to operate a cesium maser

or a cell type cesium frequency standard.

One of the most important aspects of this investigation was to

develop a technique to solve the problem associated with the hyperfine

pumping of Cs-133. The new technique makes it possible to optically

detect the 0-0 transition in the ground state of the alkali vapors

(Cs-133, Rb-87, etc.) without using a hyperfine filter. A compendium

to this technique is given in this chapter after giving a brief review

of the concept of optical pumping. The details form the subject matter

of the rest of part I of this report.

B. A Brief Review of the Concept of Optical Pumping

The term optical pumping (Pompage Optique) means the creation

by optical means of non-statistical populations of atoms among a set of

quantum states at the temperature of the experiment. It is done by the

transfer of angular momentum or energy (or both) from polarized or un-

polarized photons to the atoms. It is one of the most important tech-

niques for obtaining non-statistical distribution of atoms among their

energy levels. The states in question might be electronic vibrational

or rotational energy levels, or they might be zeeman, hyperfine or

stark sublevels.

Brossel & Kastler1 were the first to draw attention to the pos-

sibility of optical orientation of atoms, in 1949. In 1950, Kastler2

expounded a detailed scheme to optically polarize atoms. His paper was

followed by a great deal of both experimental and theoretical work 3- 20

Presently, the methods of optical pumping and of optical detection of

magnetic or hyperfine resonances form a field of research that has

71<
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expanded rapidly in several directions during the 
last two decades.

They form a powerful method of investigating the atomic 
level structure

in the excited or ground state, including the precise determination 
of

nuclear hyperfine interactions and their light shifts and pressure

shifts, the determination of disorientation cross-sections and spin ex-

change cross-sections for atomic collisions. On the practical side,

these concepts have led to the development of the maser, laser, various

kinds of atomic frequency standards, and very sensitive magnetometers.

In the course of time, experimental techniques were refined,

and new concepts and techniques introduced. A novel method for the

optical detection of 0-0 magnetic hyperfine transition in the ground

state of Rb-87 was first conceived and 
demonstrated by C. 0. Alley.

16-1 8

This method relies on the destruction of the phase relationship between

the 0-states and their partner Zeeman states which are in a coherent

superposition state describing free precession. It provides a very

sensitive scheme for the detection of 0-0 hyperfine resonances, and

yields relatively large optical detection signals. Moreover, it makes

possible artificial line narrowing by exciting the hyperfine resonances

with two phase coherent microwave pulses separated in time to select

the long lived atoms.

In a typical optical pumping experiment, a beam of circularly

polarized photons is passed through a resonance cell containing the

atoms to be pumped. The light beam is in the direction of a uniform

D.C. magnetic field. The selection rules governing the process of ab-

sorption and re-emission dictate that AMF = +1 (absorption) and AMN = +1

or 0 (re-emission); consequently the atoms are gradually pumped from the

sublevels of low M to levels of high M values in the ground state.
F
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In the absence of ground state relaxation, all the atoms can ultimately

be forced into the state of highest angular momentum, resulting in a

non-zero magnetic moment.

Inert gas is generally added to the cell containing the atoms

to be pumped in order to inhibit the atoms from reaching the walls of

the container; because on collision with untreated walls, the atoms are

most unlikely to retain the state to which they were originally pumped.

Though the presence of buffer gases can prolong the life of the pumped

atoms in the ground state, it has an adverse effect on the attainment

of the degree of polarization when alkali vapors are pumped with D2

light. This is because when the atoms are excited to the P3/2 state

with circularly polarized D2 light, collisional interactions between

the alkali atoms and the buffer gas atoms mix the atoms among excited

state sublevels prior to de-excitation. An atom in the IF,F> ground

state may be excited to the P3/2 state where this collisional mixing

process makes its return equally probable to each of the ground state

sublevels. Thus it is lost to the pumped ground state to which it

originally belonged, and that state is depopulated. In the case of

pumping with D1 (S 1 /P 1 / 2 ) photons, the atoms, once pumped into I[F,F>

state, have zero probability for a+- D1 absorption. Thus they accumu-

late in the IF,F> state except for relaxation.

Consequently, if pumping with - D2 is desired, the atoms must

be contained in a cell with its walls coated with nonrelaxing materials

and buffer gas must not be used. Coated wall cells are also as good

when Pumped with D1 radiation

Any change in the distribution of populations between the hyper-

fine or Zeeman sublevels, produced by microwave or radio frequency
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fields, causes a change in the overall absorption or scattering of

light by the sample, and can therefore be detected by means of optical

photons. The superiority of this method of detection over others lies

-5
in the fact that resonances involving RF photons of 3 x 10-5 ev energy

are detected by optical photons of 1-2ev energy. This obvious gain in

energy considerably improves the signal-to-noise ratio of the detected

signals. Since the Doppler breadth of the photons does not enter in

this type of experiments, because information on the intensity or polar-

ization of the absorbed or scatterd light rather than its frequency

distribution is sought, it provides a very sensitive method of detect-

ing narrow magnetic transitions (hyperfine or Zeeman).

C. The Triple Resonance Coherent Pulse Technique for the Study of
0-0 Transitions

In what follows, we shall specialize this technique to the case

of cesium atoms contained in a wall-treated gas cells. In our experi-

ment, Cs atoms were polarized with ao+ D1 light along the direction of

the pumping light. (A weak magnetic field was also applied in the same

direction). The cesium atoms are thus pumped into the highest angular

ground state 14,4>. The polarized atoms are then subjected to a 90* rf

pulse at Zeeman splitting frequency to induce free precession in the

plane perpendicular to the magnetic field. The initial 14,4> state

becomes a coherent superposition of the partner magnetic states and can

be written as

=1 1143+C1-f, = 1 + 4 > + 14,2> + 8 4,1> + 14,0>
I.1

1 8
+ 4, -1> + 8 14,-2> + 14, -3> + 1 4,-4>

74<
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The original 14,4> state can be reproduced by a -90 0rf pulse

(i.e. coherent with the first pulse but phaseinverted) provided re-

laxation or other disturbing effects were neglegible. This sequence

of pulses would bring back the original state of polarization with the

same optical absorption (Fig. 1).

One notices in the coherent superposition state 0/2) that

the amplitude of the 14,0> state is quite large as compared to the

rest of the states. If it were coupled to the 13,0> state by micro-

waves at resonance with the hyperfine splitting, the wave function

would be altered considerably. In our experiment, the sample atoms

are subjected to a microwave pulse by getting the output from a

klystron which is phase locked to a highly stable crystal oscillator.

If the microwave pulse is followed by a -90* pulse, it does not pro-

duce the original 14,4> as it doesin the absence of the microwave

pulse. The net result of this set of operations is to change the

optical absorption of the sample from what it would have been if the

microwave pulse was absent or off resonance. By monitoring the light

passing through the sample and varying the frequency of the micro-

waves, the hyperfine separation in the ground state may be determined.

Some of the advantages of this technique are listed below.

1. One can study the hyperfine transitions by optical

means in atoms where hyperfine filtering is impossible.

A practical application of this method can be the

making of a cell type cesium atomic clock.
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2. The optical pumping radiation can be switched off

when the microwave fields are on. This eliminates

any perturbation of the hyperfine levels due to

the optical fields (light shifts) at the time,

when these levels are being examined with the

help of the microwaves.

3. The study of the interaction of the atoms with the

walls of the container (wall shifts) can be made

in the absence of light shifts.

4. The signal-to-noise ratio is much higher, so the

line width can be artificially narrowed by selecting

the long lived atoms. This is done by increasing

the time interval between +900 rf pulses and by

applying the microwaves for a longer interval or

in two coherently phased pulses at the beginning

and at the end of this interval. One expects the

line width to be of the order of the reciprocal

of the time interval between the microwave pulses.

However, this interval cannot be arbitrarily extended

due to the finite relaxation time and dephasing caused

by the very small but not insignificant instability

in magnetic field.
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This technique was first conceived and demonstrated by C. 0.

Alley (for the case of Rb-87). In his experiments performed at the

Princeton University, the time interval between the 90' - pulses

was limited to about 6msec or less due to the instability and in-

homogeneity of the magnetic field. In the present investigation,

an interval of over 50 msec. between the 90*- pulses has been used.

However, a small signal could be seen up to an interval of 80 msec.

D. Energy Spectrum of Alkali Atoms In a D.C. Magnetic Field

For a quantitative understanding of optical pumping, coherent

pulse technique and other related topics, a brief discussion of the

energy spectrum of alkali atoms in a weak magnetic field will be useful.

The Hamiltonian of the atom in a D.C. magnetic field Bo can be written

in the standard notation as:

B 3
H = ELJ + A + 21(2I-1)J(2J-1){3(. - (.) - I(I+l)J(J+l)}

1 + + 1.2- gnJB- g .
9 8 eo IB 0 tn o.

where ELJ is the multiplet and spin-orbit energy. For the ground state

of the alkali atom, J=1/2 and the electric quadrupole interaction con-

stant B vanishes. In a weak magnetic field, as in this investigation,

and 1 remain coupled due to the 1.1 interaction and there is a pre-

cession of each about the total angular momentum, =+.

Therefore, the energy operator that describes the magnetic in-

teraction of the nucleus with the valence electron (T.-) and their

interactions with the external magnetic field can be written as:

73- <
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AC . F(F+1)+J(J+l)-I(I+1)
H = H-EL = - MF o gJPe 2F(F+l)

SF(F+1)+I(I+1)-J(J+l) 1.3
I n 2F(F+)

where C=F(F+1)-I(I+1)-J (J+l)

The second term in the brackets is about 2000 times smaller than the

first and can be neglected. Thus

AC
Hm 2 g eMBo

F(F+1)+J(J+l) -I(I+1) 1.4
where g gJ 2F(F+)

Energy levels of Cs-133 for which I=7/2 is depicted in figure 2.

The magnetic dipole transition 14,0>+13,0> is vital to the construction

of Cesium atomic clocks. Its frequency is close to 9192.632 MHz.

The frequency of the other magnetic transitions between the Zeeman

levels 14,M F> was adjusted to 100KHz because of the availability of a

very stable source at this frequency.



12

CHAPTER II

THEORY OF OPTICAL ORIENTATION AND DETECTION

A. Theory of Optical Orientation

Attainment of optical orientation in the ground state of alkali

atoms essentially depends on the selective absorption of circularly

polarized resonance radiation and its re-emission. The degree of

polarization thus obtained depends very much on whether pumping is done

by D1 or D2 radiation. It also depends on the amount of disorientation

that may occur when the alkali atoms are in the excited state during

the optical pumping cycle.

Consider an aggregate of alkali atoms placed in a weak magnetic

field and subjected to right circularly polarized resonance radiation.

LetIF,g> and IFm> characterize the ground and the excited state re-

spectively. The transition probability from the state IF,p> to the

state IF:m> is given by

813v- I; 4:m>l2 PT - 8 I<F,e m P 11.1

where e is the polarization vector for the incident radiation and P is

the electric dipole moment (er) of the atom, P is the photon flux den-

sity at the frequency v. Equation II.1 can be conveniently simplified

by expressing e & P in terms of their spherical components and applying

the Wigner-Eckert theorem. The interaction matrix elements can then be

written as:

<F,I P I F:m> = <F,1 IF <F I IPI IF 11.2
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P refers to the spherical components of P. The second factor

on the right hand side is the reduced matrix element of P and is in-

dependent of the orientation numbers V,m, and X. The first factor

(called the Clebsh-Gordon coefficients) containsthe conservation of

angular momentum. The Clebsh-Gordon coefficients vanish unless

m= -X

and F' - F = 0, ± 1 11.3

F' = F = 0 being forbidden

In simple words, if the incident light is pure circularly polar-

ized a + , the absorption probability vanishes except for m = + 1 and it

is proportional to the square of the C.G. coefficients (<F,1 Flp<>12).

During the process of emission, the photon can carry an angular momentum

±11 or 0, and the change in angular momentum of the emitting atom must

be ±1 or 0.

Thus atoms in the ground state IF,p> absorb the a+ photon with

an axial angular momentum +1 and go into the excited state IF,p + 1>.

This excited state will decay releasing a photon a or ff with angular

momentum ±1 or 0. On the average,the atoms which originally started from

the ground state with an angular momentum p will return to it with an

increase in their angular momentum by unity. Thus if the atoms con-

tinuously go through the cycle of absorption and re-emission, principally

all the atoms can be pumped to the highest angular momentum state. How-

ever, relaxation processes in the ground and excited states severely

limit the applicability of the above argument. Relaxation of the polar-

ized atoms in the ground state leads to an equilibrium value between the



pumping and the relaxation processes. One obtains fewer atoms pumped

to the highest angular momentum state.

On the other hand, in the presence of high buffer gas pressures,

excited atoms may have relaxation times for disorientation within the

magnetic sublevels of the excited states shorter than their mean life

time; loss of memory in the excited state may even result in a negative

polarization in the ground state depending on the pressure of the 
buffer

21.
gas

Figure 3 illustrates the optical pumping cycle for the case of

Cs-133 being pumped by +D1 radiation. It is important to note that in

the case of pumping with D1 radiation, the atoms which once get into the

14,4> ground state cannot absorb the a D1-photons because there 
is no

level in the P1/2 state with a higher angular momentum. Thus the atoms

cannot leave this state except on relaxation. However, this is not

true when pumping with a +D2 -radiation is desired because there is a

level with higher angular momentum in the excited P3/2 state.

Atoms once pumped into the highest angular momentum ground state can

still absorb a circularly polarized D2-photon and may not return to the

original state. So pumping with D2 radiation is not as efficient as

with D1-radiation.

B. Optical Detection of the Angular State of the Atomic System in

the Ground State.

The angular state of an atomic system in the ground state can

be determined purely by optical means. The method is based on the fact

that the absorption coefficients of oriented atoms for resonance light
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is different from the absorption coefficient for atoms in the disori-

ented state. Any change in the orientation can be observed by the

corresponding change in the transmitted beam of resonance light. The

absorption cell containing the atomic vapors will be fully transparent

on complete orientation except for the small amount of light absorbed

to cover up the relaxation loss. To make the discussion quantitative

let us consider an atomic system whose ground and excited state are

designated by v and m . Let the density matrix elements in the

laboratory representation be denoted by a ij. Here a and amm will

represent the populations of the states p and m respectively. Obvi-

ously, the number of photons absorbed in a unit time by the system is

equal to the number of atoms that leave the ground state or arrive in

the excited state in the same time. Hence, we can define a moni-

toring or an absorption operator MA as

a a
d iu d mm

A j dt mdt

Neglecting the spontaneous emmission and the causes of population

changes other than the interaction between the monitoring light and the

atoms, one can write in the notation of Cohen-Tannoudji 19

_ dt = +iAE')E A
dt (2Tp p u

+ (-- - iAE') E A ,
gl2T1 , II.5

d 1
'mm T i'<m IA ><' I e-m >o 11.6< '
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where

S fu(k) IAk2 dk r/2 2-
2T-p 0 [k - (k + vj2 + r2/4

+p 0E = u(k) Akl2dk k - (ko + )

o [k - (k + kv)] + r/4
11.7

Al< , P e.* m><m e'.I '>

ko = k + AE

ko = Optical resonance frequency wave vector

= Electric dipole moment of the atom

r = The natural width & A E 
= self-energy ( of the excited state )

u(k)dk = Number of photons having energies in the range k to k + dk

IAk 2 = Probability of absorption for the photons of wave vector 
k

v = Velocity of the absorbing atom

So one can easily write

MA = E A ,
Tp UP lp ' 1 V 11 8

This equation dictates that if one Nwitches on photons of polarization

e at an instant t, their absorption is determined by the angular state

of the system at thr;t instant. Consequently any time variation in the

angular state of the system will give rise to a corresponding variation

in MA, the absorbed light. If the incident light is purely polarized

+ - trixoAa22
i.e. a , a-, orH, matrix A is diagonal and one can write

M =-EA a 11.9
A T ~i ~ii~

P1'~
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Equation 11.9 has been further simplified for the case of a circularly

polarized light by Alley 17 and by Bouchiat22 . It has been shown that

M --- 2 - <S >) For o+D -radiation II.10
A 3T (2 z 1

where <Sz >is electron longitudiRal polarization.

Equation II.10 is the restatement of what has been said earlier, that the

absorption MA approaches zero for a fully oriented system.

C. Optical Detection of Magnetic Resonances.

It has been shown above that by observing the changes of intensity

of the light coming through the absorption cell, one can determine the

state of orientation of the atoms. This forms the basis of a family of

optical methods of detecting the magnetic resonances in the ground state.

The system is first allowed to attain non-statistical distribution among

the various magnetic states under a certain set of conditions; then one

of the conditions is suddenly altered. It could be an rf pulse or a

change of frequency in the existing rf field at resonance. The monitor-

ing operator MA will vary with (w - ws) , where ws is the resonance fre-

quency of the system and w is the frequency of the applied rf field.

This enables one to determine the resonance curve and hence the reson-

ance frequency.

The most important advantage of the method of optical detection

lies in the fact that the emission or absorption of small energy radio

frequency photons are monitored by the high energy optical photons.

Since the high energy optical photons can be more easily detected than

the rf photons, this makes the sensitivity of the optical method of

detection far greater than the sensivity of the conventional methods

of the radio frequency resonance detection. In this way, the atomic

system itself acts as a quantum amplifier with an amplication of over

100 decibels
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It is important to point out that the doppler width of 
light is

not of much significance because it is the polarization rather 
than

the frequency distribution of light which is of significance. 
The

width of resonance curve is predominantly determined by the 
relax-

ation or the life times of the states involved.
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CHAPTER III

PHASE DESTRUCTION METHOD & LIGHT SHIFTS

A. Theory of the Phase DestruCtion Method Using Coherent

Pulse Technique.

A non-mathematical discussion of this technique was given in

Chapter I. In this chapter a quantum mechanical treatment is given.

In this treatment reference is made to cesium atoms only though the

theory is applicable to other alkali atoms as well.

Consider the cesium atoms contained in a cell and placed in a

weak homogeneous and stable magnetic field Bo. Let the cell be illum-

inated by + D1 resonance radiation from a discharge lamp to pump the

atoms into the 14,4> quantum state. A pulse of rf-rotating magnetic

field of amplitude B1 and frequency coincident with the Zeeman splitting

frequency, is applied with its plane of rotation at right angles to B

and sense of rotation corresponding to -y. (The direction of Bo is in

the z-axis which is also the direction of propagation of the pumping light.

The amplitude and the time duration for which the rf field is applied is

so adjusted that a coherent supperposition state describing free preces-

sion in the plane normal to Bo is formed. (This rf-field pulse will be

referred to as 900 -pulse).

It is shown in appendix I that the resulting wave function after

an atom originally in state IF,p> is subjected to a rotating magnetic

field pulse beginning at tI and ending at t2, can be written as
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S.(t2 ei z 't2 - ,tlD (0,wl (t2 - tl),O)JF,4> III,1

where w = the frequency of the rf field

Si = -yB1

B1 = the amplitude of the rf magnetic field. The direction of

B1 has been taken to be along the Y-axis in the rotating coor-

dinate system.

,p' = the ground state magnetic quantum numbers.

D , = the well-known D- ratation matrices .

When applied to the present experiment, wl(t2 - tl) = H/2 or H.

A general expression for the D , can be written as

Vl/2

DF  ()I.2D ,o) 0 - (F-t-s) ' (F-FI'-s) .s I (p-j'+s) .

DF , (0,,0) = (-1)F I-P 111.3

The values of matrices DF  ,(0,H/2,0)

for F = 4 (applicable to Cesium atom)

and F = 2 (applicable to Rubidium atom)

have been calculated by using the above formula and given in Tables I

and II. DF  ,(0,H,0) are skew diagonal matrices beginning with 1 in

the right top corner.

The initial state (14,4> for the case of Cesium and(12,2> for

the case of Rubidium) when subjected to a 900 rf pulse, becomes a co-

herent supposition state and can be written as (after absorbing the

phase factors in the wave functions):

S 0 <



43 2 1 0 -1 -2 -3 -4

- - - - - 1/16

4 1/16 8 8 8 16 8 8 8 1/16
r- -/-

-- - 14 - -/832/8 3/8 8
3- -8 - -

1 -1 -5 -1 1 I
2 8 8 4 4- 4 8 8

- - - -- - 4
_,I" .._i 1 -3 .0. -- / _

1 8 8 4 8 8 4 8 8
4/ 2

-5 3 -5 ,,_
So0 0 0 8 0 16

• - ,/- -IT - -- -3 - _. - " -,,z

-, - - - - 4 -

- - -7 --. " 3
-f _ , -_-

8 8 4 40/2 8

-3 -- 0 8 .8 8 8

/7- -5

-38 8 8 8

--4 -7 - -F 1
-4 . 16. 8 8 ..8 16. 8 8 8 16

TABLE I.

D ,(0,H/2,0)



-42 +1 0 -1 -2

+2 1/4 1/2 1/2 1/4
2-

+1 -1/2 -1/2 0 1/2 1/2

0 - 0 -1/2 0 r
2,7 2/

-1 -1/2 i/2 0 -1/2 1/2

-2 1/4 -1/2 r -1/2 1/4
.. .... . 21/

TABLE II

D ,(0,H/2,0)
14u
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.(11/2) - 4-4> + - 14,-3>-8 14,-2>+ - 14,-1>
Cesium 4241-

III.4
- 4,o>+ 14,1>+ 4,2>+ 1 14,3>+- \4,4>

+-16 T8 4V_ 6+

Cesiu 4,-4> 111.5
Cesium

1 1 li 12o>1
S(iH/2) = 2,-2>+ 12,->+ - 2,0>+ 1 12,1>+ 12,2>
Rubidium 2 2 4

V (1) 12,-2> 111.7
Rubidium

The time development of 'Yil/2) or T(H) after t2 will be obtained

by multiplying it by eiWz(t3t2) where t3>t2 . Thus each of the part-

ner state is multiplied by the same time dependent phase factor main-

taining coherence among them. Let us now see the effect of -900 pulse

following the +900 pulse. It can easily be described by the composite

operator

DNM EDKN (-e)DMK(6) 111.8
K

where:

e = (0,H/2,0)

-8 = (0,-H/2,0)

We know from the properties of the D- functions

DKN(-O) = DNK*(e)

and 11i.9

JDNK(e)DMK(e) = 6NM
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one gets

D NK *(,)DMK () = 6NM III.10

This shows that one can recover the original pure state by applying

a -900 pulse following a +900 pulse provided nothing happened to the rela-

tive phases of the wave functions and their amplitudes. In practice,

there will be some loss in their amplitudes and phases due to longitudinal

and transverse relaxation processes. If somehow these relaxation times

are made very large compared to the time interval between the 900 - pulses,

one can recover a large fraction of the original state.

However, if a pulse of microwaves at resonance with the hyperfine

splitting frequency is applied, the state 14,0> is coupled to the 13,0>

state and its phase changes with respect to the partner states. The

state formed by -900 pulse will no longer be the original 14,4> state

but a different state of supperposition for which the optical absorp-

tion is greatly different. It has been shown by C.O. Alley 7 the mag-

nitude of the change in absorption is of the same order as that obtained

by inverting the oriented population by means of a 1800 pulse.

B. Light Shifts in the Alkali Atoms.

The excited state of an atom acquires a finite life time or a

line width and self energy or an energy shift-due to its interaction with

the vacuum fluctuations of an electromagnetic field. The ground state

may also acquire a finite life and displacement when the atoms are irradi-

ated with the real optical fields. The shifts may be different for

different sublevels and hence relative shifts among the levels may result.

These shifts are called light shifts or 'lamp shifts'.

04<
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Barrat and Cohen Tannoudji 20 were the first to develop a formal

theory of the process of optical pumping and predict this shift. They

verified their result by observing it in mercury. Since then this shift
2324

has been observed in other atoms including rubidium-87 and Cesium-133. '

A more detailed theory of the light shifts has also been worked out by

Happer & Mathur25 and verified in the case of Rb-87. 26 The shifts are

proportional to the convolution of the spectral profile of the pumping

light with an appropriate spectral response function. The relative

shift increases with the assymmetry in the spectral distribution of the

light intensity until a maximum is reached after which it drops sharply.

It is also proportional to the pumping light intensity. It is of the order

of a few parts in 1 x 109 in Rb-87. Thus the frequency stability of

the optically pumped atomic frequency standards (like a rubidium maser

or a gas cell frequency standard) depends on the spectral output of the

resonance lamp and the temperature of the hyperfine filter cell. The

spectral output of the lamp is known to change with the age of the lamp

and its temperature. The performance of the hyperfine filter cell also

changes with age and temperature. Consequently one would like to elim-

inate such effects in the atomic standards. One way to achieve this is

to construct the frequency standards based on the principle of phase

destruction method of detecting the 0-0 transition as developed in this

report.

Experimental study of the light shifts by Barrat et al and Happer

et al has been done by using incoherent broad light sourceslike dis-

charge resonance lamps. It is only the integrated effect, arising from
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the assymmetry in the pumping radiation with respect to the absorption

line of the atoms, which is observed. It will be interesting to measure

the light shifts with tunable narrow band coherent sources of optical

radiation of known frequency and intensity. Such sources are not yet

easily available to match the lines of the alkali atoms. However, we

have been successful in matching a GaAs laser mode with the 8521.1Aoline

of Cs-133 to observe population inversion among the hyperfine levels of

the ground state. 2 7 Details of this experiment on hyperfine pumping

are discussed in Part II of this report.

SIG
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CHAPTER IV

ENHANCEMENT OF OPTICAL SIGNALS

A. General Discussion.

In most of the double radio-optical resonance experiments, it is

highly desirable to have the longest possible relaxation 
time of the

atoms optically pumped into a desired state. This is achieved in two

different ways. In the first, the walls of the container (cell) are

coated with long straight-chain saturated hydrocarbons like paraflint

or with different kinds of silicone compounds (e.g. SC-2 or SC-77 which

128
are mixtures of dimethyl-dichlorosilane and methyltrichorosilane.28)

In the second, noble gases like Ar, Ne, He, etc. are used at pressures

ranging from a few torr to several centimeters of Hg.

In the wall coated cells, the atoms tend to retain their char-

acteristic state on collision with the walls. In the case of cells

containing a buffer gas, the atoms are slowed down from reaching the

walls of the container because of collisions with the molecules of the

buffer gas. The disorientation cross-section for the atoms on colli-

sions with the buffer gas atoms is quite small and hence long relaxa-

tion times result (it takes on the average 106 10 collisions be-

tween a Cs (or a Rb) atom and the buffer gas atoms to produce electron

depolarization29). Relaxation of optically pumped Rb-atoms on coated

walls has been studied by Franzen
3 0 , Alley 2 8 , Bouchiat

3 1 , and others
3 2 ,3 3

Bouchiat's31 experiments on spin relaxation of optically aligned rubi-

dium atoms contained in cells coated with saturated straight hydrocarbons
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have shown that relaxation times are practically independent of the

length of the chain and it takes about 1.3 x 103 Rb atom-wall colli-

sions to destroy the orientation of a Rb atoms. However, we preferred

the longer chain parafins for coating our cells because of their higher

melting and boiling points and hence low vapor pressures at the working

temperatures.

We have used paraflint RG for wall coating and have developed a

technique which can give excellent coatings. Details of the method

are discussed in detail in Chapter VII. We have observed relaxation

times of 250 ms for Cs-133.atoms in the coated cells of 2.5 inch in

diameter. This amounts to about 103 Cs atom-wall collisions to des-

troy the orientt ion and is in good agreement with the results of

Bouchiat31

B. Relation Between the Longitudinal Relaxation and the Hyperfine

Frequency Shift in Coated Cells.

Collisions can effect the radiative process in two different ways:

They may quench the upper state of the radiating atom by releas-

ing the energy of excitation prematurely - They are called Non-adiabatic

collisions and result in an additional line width and reduction in line

intensity.

Secondly, they may weakly perturb the colliding atom resulting

merely in a small change in the spacing of the energy levels. They are

referred to as adiabatic collisions.

No4adiabatic collisions are insignificant when the target wall

is coated with saturated hydrocarbons. This is shown as follows:

98<
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Probability for transition during an atom-wall collision 
is

P = IV.1

where HI is the interaction hamiltonian 
and ta is the mean physical

absorption time for the colliding atom on the wall. 
Since the walls

are supposedly coated with saturated parafins, the 
surface is free from

unpaired electrons. Consequently HI may be regarded as the hamiltonian

of interaction between the electron (belonging to the alkali atom) 
and

the nuclear dipole moment of hydrogen atom on the surface. This argu-

ment is supported by the observations of Bouchiat
31 . It has been found

that the relaxation times are several times larger on deuterated hydro-

carbons than on ordinary hydrocarbons.

In order that such collisions are insignificant, the following

inequality must be satisfied.

P e a << 1 IV.2

e p

h
where =h

or
-8 3

t < (2x103 0 4x10- 8 sec. IV.3
a -23 - 2 0

The observed31 value for ta is of the order of 10
-11 sec. Hence

the above inequality is satisfied concluding that the non-adiabatic

collisions are negligible.
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The adiabatic collisions, as mentioned 
before, will cause a small

perturbation in the internal state of the 
colliding atom resulting in

a shift in its energy levels. We shall be interested in the (0-0)

transition in the ground state and shall 
compute the corresponding shift

in the observed frequency of the transition. The observed frequency

obs is the time average of the frequencies va and v corresponding to
obs

when the atom is absorbed on the surface and when it 
is 'free'. Denoting

by t and t the mean absorbed and 'free' times, one can write for vobs

vt +vt
oo aa a IV.4

obs t + t
o a

t and t are of the order of 10
-1 2 sec. and 10 sec. respectively,

a o

one can approximate the equation IV.4 in a more 
useful form as

t
a( - V t IV.5

obs o a ot

- a .IV.6

It has been shown by Adrian potential, Goldenberg et coati35, and Margena

et al36,37 that the change in the hyperfine energy when the 
atom is

absorbed on the surface can be written as:

E -E = E hv 1 1 2 IV.7
a o w AE+V V2

where V1 is the mean ionization potential of the coating material, V2

is the ionization potential of the alkali atom, and AE 
is the

l 0<
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difference in energy between the S and P levels in the alkali atom.

E is the absorption energy for the alkali atom when absorbed on the
w

surface. Combining IV.7 and IV.6, one gets:

t AV
a = _shift IV.8

t 1 2
o Ev +

wo AE + V V
1 2

Let us now investigate disorienting effect of atom-wall colli-

sions resulting in the longitudinal relaxation of the optically ori-

ented atoms. The probability of disorientation r resulting from a

collision of the alkali atom with a rare gas atom has been worked out

by Bernheim38 and is reproduced below:

2r 2H

r c IV.9

where u magnetic moment of the alkali atom, Tc collision time and H is

the magnetic field acting on the alkali atom and is supposed to have

the time dependence as:

H(t) = H exp (-t2/ /) IV.10

and is of the order of the field present in hyperfine interactions.

The expression IV.9 for the transition probability can be modi-

fied to the situation where the atom collides with a coated-wall: It

is experimentally known that the disorientation transition probability

is much higher in the case of collisions with wall than with the rare

gas atoms32 It has been argued by Brewer32 that it is mainly because

of the large difference in the time of interaction whereas differences

iJ <
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in matrix elements contribute negligibly and one can define r* for a

wall collision:

r* = r a IV.11

X is a numerical constant.

Conbining IV.11, 9 and 8:

2 X~AVshiftH IVr* = t o IV.12
o 9vE { 1 2

ow AE- + V
1 2

But the longitudinal relaxation time T1 is related to r* as 1/T1 = r*/to,

therefore
2 A 2

1/T = IV.13
SME { w  2o w AE + V1 V

This expression is in agreement, at least qualitatively, with the obser-

28 32 31 87
vations of Alley2 8 , Brewer3 2 , and Bouchiat3 . Large shift in the Rb8 7

hyperfine transition and small longitudinal relaxation time observed by

Alley and the small hyperfine shift and long relaxation time recorded

by Brewer in cells coated with paraflint are explained by equation IV.13.

The findings of Bouchiat that the longitudinal relaxation time for Rb87

in evacuated and coated cells is proportional to the diameter of the

cell, is explained exactly by the presence of proportionality factor

t in IV.13. It is also known that the relaxation times are about five
0

times longer when deuterium is substituted for Hydrogen in the paraffin

used for coating. This is partly accounted for by the factor H2 , the
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effective magnetic field which is proportional to the magnetic moment

of Hydrogen or Deuteron. The square of the ratio of their moments is

close to 10. The theoretical analysis assumes ideal conditions and d.d.

type of interaction, whereas the practical value is 5 and is on deu-

31
trated polyethylene with an impurity of 1.7% of Hydrogen31

Equation IV.13 is also in agreement with our observations (dis-

cussed later in this report). We have observed longer relaxation times

and smaller shifts than the results of reference 28.

IC', <c
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CHAPTER V

INSTRUMENTATION

A. General Description.

The apparatus consisted of the following main parts.

1. Resonance lamp

2. Wall-coated Cesium vapor cell

3. Stable and homogeneous-magnetic field producing set up

4. Pulse programming system

5. Electronics to produce rotating field pulses

6. Microwave source including stabilizing and pulsing arrangement

7. Optical arrangement.

This chapter discusses the details and performance of all the

different parts of the system excluding the resonance lamp and the vapor

cells, which are discussed in Chapter VI and VII respectively.

Figure 4 shows the photograph of the complete apparatus. 
In

the foreground is all the necessary electronics and the magnetic 
field

producing shielded solenoid lies in the background. 
On the right side

is the apparatus essential to the generation, monitoring, and stabili-

zation of the microwaves. On the left are the components required to

generate the time, the light, the RF, and the microwave pulses, and

other associated electronics. The klystron, along with its wave guide

circuit, is placed under the shielded solenoid and is partly visible

in the picture.

Figure 5 presents a schematic block diagram of the experimental

13i <
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arrangement. The flow of signal is indicated by arrows. The pulse

programming system, in a sense, controls 
most vital functions. It pro-

vides pulses separated by desired length 
of time. These pulses are

used to switch-on-off the optical, radio frequency 
and microwave fields

for any desired length of time and in the 
desired order.

A commercial pulse programming system made by Navigation 
Compu-

ter Corporation (Navcor) was used for timing the various 
switching or

triggering operations. The system consisted of an electronic switch,

a binary decimal counter, 3 shift registers, and 
a decade unit having

ten Tri-input coincident circuits giving 
out amplified outputs of

-15 volts. It was driven for its time base by a 100 KHz 
oscillator.

The light from a resonance lamp, after filtering, was circularly

polarized with the help of HNCP-7 polaroid 
circular polarizer. It was

concentrated onto the absorption cell with Fresnel lenses. 
Monitoring

of the signal was done by an RCA-7102 photomultiplier 
tube. Electrical

pulses necessary to switch on-off the 
multiplicity of functions were

preprogrammed into the pulse programming 
unit. The whole sequence of

pulsing and monitoring was repeated every 
800 milliseconds. This time

interval was .adequate to do the experiment with the pumped ground state

of highest angular momentum and to repump it back 
to its original value

for the next cycle of the experiment. Moreover, this interval was close

to three times the longitudinal relaxation time of 
the polarized atoms

encountered in this investigation; it was long enough 
for the atoms to

forget their history of the past cycle and 
not carry it into the suc-

ceeding cycle.
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The ±90 0-RF pulses were provided through two independent channels,

so that they could be phase-shifted by 1800 with respect to each other.

They were then made to go through a "mixer" so as to provide a common

path for the pulses to feed the same set of Helmholtz coils 
at differ-

ent times. An X-13 klystron was phase locked to a highly stable fre-

quency standard and served as a source of microwaves. A solid state

switch was used to pulse the microwaves. Details are discussed later

in this chapter.

In the early part of the experiment, great difficulty was encoun-

tered in switching on the resonance lamp in a predictable manner. After

the exciter oscillator was turned on, it took several milliseconds be-

fore the lamp was on. Moreover, this time delay was not consistent

from cycle-to-cycle. The delay also depended on the length of time for

which the lamp has been off during the cycle. To get over this diffi-

culty, a new lamp was designed which essentially consisted of two lamps

joined together forming a dumbbell. One of them was kept-on continu-

ously while the other was switched on-off. The results of this arrange-

ment were very good. The details of the lamp along with the exciter

circuit and the performance of the lamp are discussed in Chapter VI.

Preparation of the Cesium vapor cells was a project in itself.

Firstly a few cells were prepared with a buffer gas in them. These

cells gave relaxation times of about 18 msec. which were considered small.

It was then decided to prepare wall coated cells. Elaborate experimen-

tation was done to perfect the method of coating, in vacuum, a thin

layer of wax on the interiors of the glass cells. A few milligrams of

ic: <
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cesium were distilled into the stem of the cell before removing the

cell from the vacuum system. Details of the procedure to coat the cells

and the performance of the cells are discussed in Chapter VII.

B. Effects of the Instability and Inhomogeneity of the DC Magnetic

Field

1. Effect of Magnetic Field Instability

Instability in the magnetic field causes serious problems. If

the magnetic field is not constant but has a small time varying com-

ponent, the Larmor frequency of the atoms will be varying during the

interval between the ±900-pulses. All atoms will not stay in the cor-

rect phase relationship with the sequence of rf pulses. The signal

may not repeat itself and may thus be meaningless. Instability in the

field can be caused by two independent sources:

i. One is due to the slow drift in the power source used to

supply constant currents to the field producing coils. Initially,

mercury cells were used and it was soon realized that even the slow

drop in the voltage of the mercury cells was quite significant; more-

over, the effect of the voltage drop is cumulative in time and becomes

very significant after a couple of hours of operation. To correct this

difficulty, mercury cells were replaced by the best available stabi-

lized power supply (Model QHS -20- 1 Sorenson). This power supply has

a drift rate of 200 pv/week, temperature variation of 20 pv/co, and

voltage regulation of 30 -v for 20 percent change in the line voltage.

The power supply was fed from an AC stabilizer and kept on permanently

to minimize drifts.
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ii. The other source of magnetic field instability was the mag-

netic fields resulting from the utility lines and the associated appara-

tus in the vicinity of the solenoid. This noise in the magnetic field

was very significant even after its effect has been reduced by a factor

of 103 - 10 by three concentric cylinders of Mu-metal shields. It

was detrimental to the success of the experiment and its elimination

was essential.

An intuitive approach to the solution of this problem was one of

detecting the magnetic field variations with a sensing coil, amplifying

the induced voltage, and exciting a solenoid in a manner to produce

destructive interference with the unwanted field. This implies the

continuous measurement of the field and control through some sort of a

feedback system. Design and operation of such a feedback system is

discussed later.

An estimate of the tolerable limit of instability due to the

slow drifts in the power source can be made as follows. Since the relax-

ation times were very large, it was desirable to have a large time in-

terval between the ±900 -pulses. Let it be 50 ms. Let the current

through the main solenoid changes from I to I + AI. Denoting by A4 the

phase change of the atoms with respect to the phase of rf pulses, and by

the total phase angle, it is easy to see

AB = Al AV AR
B . I V R

Taking the worst case of AO = 1 radian

l!O< It



AB AV 'AR 1 ... 1 -3x0-5

B = V R 2Twx10x0.05

This value is of the order of temperature coefficient of the series

resistance or the power supply. The use of mercury cells which were

used earlier is out of question because the temperature coefficient of

its voltage is poorer by two orders of magnitude than the estimated

stability desired. Use of the DC power supply, the one mentioned earlier,

was quite satisfactory. A better stability can be obtained by putting

the whole thing in a temperature controlled chamber or by an elaborate

feedback control system.

2. Effect of Magnetic Field Inhomogeneity

If large field inhomogeneities exist, atoms in different parts

of the cell (containing buffer bases) will precess at different Larmor

frequencies and will get out of phase with one another in a time less

than that one would like to have between the two 900 pulses. In the

case of wall-coated cells with no buffer gas, the flying atoms experience

an average magnetic field and the inhomogeneity has no serious effect.

Details of the effect of field inhomogeneities on experiments involving

cells containing buffer gases can be found in reference 17.

C. Production of the DC Magnetic Field

For producing the DC magnetic field, the solenoid coils were

designed according to the theory of Garrett
3 9 , Franzen4 0 , and Hanson,

41
et al41. In addition to the main solenoid two correction coils were

employed to correct up to 4th order for the variation of the magnetic
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field. The coils were wound on a plexiglass cylinder 32" long and 13"

in diameter. The solenoid was shielded by three concentric Mu-metal

magnetic shields of permeability as high as 10

The 60 cps noise in the magnetic field produced by the utility

lines was almost eliminated by using a feedback system. A sensing

coil was used to detect the time varying fields in the vicinity of the

gas cell. The output of the sensing coil was fed into a Philbrick

(Model 45A) solid state operational emplifier. A complete circuit

diagram is shown in Figure 6. By changing the RC product of the feed-

back loop, the gain and time constant could be adjusted. The output

from the amplifier was coupled through a line matching transformer to

the correcting solenoid in a manner to produce destructive interference

with the unwanted fields. The effectiveness of the feedback system is

demonstrated in Figure 7.

The construction of the field producing coils was done by Hai-men

Lo in connection with his M.S. thesis. More details can be found in his

thesis4 2 . He made a detailed study of the field homogeneity and found

a value of better than 5 x 10
- 5 averaged over a 2" diameter spherical

space at the center of the solenoid.

D. Generation of the Rotating Magnetic Field Pulses

1. Need for 'Circularly Polarized' Resonance Radio Frequency Fields

A magnetic dipole i when placed in a magnetic field H precesses

about the direction of the applied field. The rate of its precession

(Larmor frequency) is given by the vector equation.

o = yHo



where y in the gyromagnetic ratio of the dipole which is assumed 
positive

in this discussion. An additional field H 1 (such that H1 << Ho ) applied

at right angles to the plane containing v and Ho, will exert a couple

4-4

(p x HI) tending to increase the angle e between P and Ho. Further, if

the small field H1 is rotated with vector velocity o , i.e. in synchron-

ism with the precession of the dipole v, this couple will steadily in-

crease the angle 6. Moreover, the dipole p will precess with frequency

* = yH . If, on the contrary, H1 rotates in the opposite sense or 
with

a different angular frequency from wo, the resulting couple (u x H1)

will vary in direction, as well as, in magnitude according to the rela-

tive phases of the two rotations. It is easy to see that this will re-

sult in small perturbations causing nutation with no net effect. It is

obvious, by now, that resonance effects will occur only when the angular

velocity of the rotating field H1 is equal to that of precession and is

in the correct sense.

However, a linearly oscillating field of amplitude 2H1 can be

effectively decomposed into two circularly polarized fields each of

amplitude H1 but rotating in opposite senses. The component which is

in the correct sense gives rise to resonance effect, the other one hav-

ing negligible effect. Unfortunately the situation is not so simple

133 87
when dealing with atoms of the type of Cs or Rb

133 87
In the case of Cs1 3 3 or Rb , gyromagnetic ratios corresponding

to the upper and lower hyperfines of the ground state are equal in

magnitude but opposite in sign. This results in resonance effects in

the magnetic states of both hyperfines, when a linearly oscillating

11$4<
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field is applied. There are always sufficient atoms in the lower hyper-

fine state and this makes the interpretation of the results difficult.

To avoid this difficulty, it is best to apply a circularly polarized

magnetic field rotating with the resonance frequency in the correct

sense.

2. Generation of the ±90 - Rotating Field Pulses

The rotating magnetic field was produced by two pairs of Helm-

holtz Coils. Each coil was 7" in diameter and consisted of 25 turns

of #28 copper wire. Each pair had its axis normal to the DC magnetic

field and perpendicular to each other. Coils of each pair were con-

nected in series and were fed with 100 KHz signals which were phase

shifted by 900. Pulsed rotating field was produced by gating the 100

KHz signal. To form the ±90 0-pulse, the following procedure was adopted.

The 100 KHz signal was first amplified and divided into two parts which

were phase shifted by 1800 relative to each other. The 1800-phase

shifted outputs served as the inputs for two independent gates. Output

from one gate served as an input for the 900-phase shifter. The two

outputs from the 900-phase shifter were fed to the two helmholtz pairs.

This formed a 90-rf pulse. The output from the other gate after going

through another 900-phase shifter and the mixing circuits formed the

-900pulse. (Circuits used in this connection are shown in Figure 8.)

In
3. Effect of the Stability of the 100 KHz Oscillator

It is very important that the oscillator from which the rf pulses

are derived should be stable. It is easy to see that its stability
105

should be better than 1 insso that the precessing atoms remain in phase
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with the phase of the 900-pulses. The oscillator used in this experi-

ment was of much higher stability (GR 1115B).

E. Transmission Gates.

Coherently pulsed 100KHz pulses which were needed to rotate the

atomic state by ±900 or 1800 were achieved by using two identical gates.

Each gate consisted of two MOS insulated-gate-field effect transistors

(MOS-IG-FET) placed in a series-shunt arrangement to the incoming 100KHz

signal (Figure 9). The FET which was in series with the signal was a

p-channel enhancement-type (3N155A), whereas, the shunt FET was an n-

channel depletion type (3N138). The operation of the gate was controlled

by a flip-flop circuit whose flip-flop action was controlled by 
programmed

pulses from the pulse programming system. The output from the flip-flop

was connected to the base of the 2N1195 transistor which acted as a

switch to give an output of +7.5v or -10v, appropriate to operate the

gates. This output of +7.5v or -10v was connected to the 'control

gates' of the FE-transistors. When the control gates are at +7.5v

the drain resistance of the series FE-transistor is greater than 1011

ohms and that of the shunt FE-transistor is about 250 ohms. Taking

into consideration the capacitative effects, an attenuation of about

105 (at 100 KHz) is easily achieved. When the control gates are at

-10v, the drain resistances of the MOS-FETS interchange their values

and under these conditions attenuation is essentially zero. The most

important advantage of using the MOS-IG-FET is that it has no offset

voltage as is the case when conventional transistors are used as gates.

Moreover, the attenuation achievable when MOS-IG-FET gates are used is
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much higher than that obtainable with transistors or 
diode-transmission

gates.

F. Performance of the Gates and the 90 Phase Shifters.

The gates and the phase shifters worked extremely 
well. Gated

outputs are displayed in Figure 10. Notice the 1800-phase shift in

the two outputs. Performance of the 900-phase shifter is displayed in

Figure 11. Output from one of the gates was used as input to the phase

shifter to get the outputs which are displayed in this figure.

G. Stabilized Microwave Sources.

The hyperfine lines to be studied are expected to be narrow

and should thus require a stable and very narrow microwave 
source for

their investigation. There are two plausible options :

i. One can start with a low frequency, very stable, crystal oscillator

and multiply it all the way to the X-band by building a noiseless

frequency multiplier chain.

ii. One can phase lock a klystron with reference to a standard fre-

quency. Phase locking of the klystron was preferred over an 
har-

monic chain multiplier, because of its flexibility and adaptability

to different desired frequencies for other experiments.

1. Automatic Phase Control System. (APCS)

General Theory of Operation of APC

The system operates in the following manner (refer to Figure 12).

A portion of the klystron power output is mixed with a 
comb of harmonics

12 <
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derived from a narrow band frequency multiplication of a reference

frequency Fx which is derived by multiplication from a standard refer-

ence. The heterodyne output - the IF - Carries the frequency instabili-

ties of the klystron output and the negligible residual instabilities

of the reference oscillator. The IF band width and harmonic comb spac-

ing is so selected that only one frequency of the reference comb pro-

vides a difference frequency in the IF band-pass at any one tuning

position.

The resulting IF is amplified, limited and compared in a phase

comparator to another reference frequency called IF-reference (FI).

The phase comparator output voltage is proportional to the cosine of the

difference in the phase angles of the two inputs. The error signal

after proper amplification is then fed in series with the reflector

voltage from the power supply, and it re-adjusts the klystron frequency

(hence the phase) to compensate for any mechanical or electrical change

that tends to shift its frequency. In an APC system, no steady state

frequency error can exist, since the system works on a difference in

phase rather than frequency between the klystron and the reference sig-

nals. Any change in frequency, and hence in the relative phase, is

integrated by the phase comparator which produces an error signal propor-

tional to the phase error rather than frequency difference. Hence a

stability of the locked klystron equal to that of the reference oscil-

lator is possible.

An attempt was made to build such a system. There was too much

noise in the system built by us and a stable lock could not be achieved.

122<
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A commercial unit made by Microwave System Inc. was acquired at a later

stage of the experiment.

2. Phase Locked Points

When the klystron is locked, its locked frequency Fo will be

given by
F = Nf ± nf

o r I

fr was taken from a frequency standard (5MHz), f - the intermediate

frequency was taken from a general radio synthesizer (1163-7CAD), N

and n are integers. In our case the reference frequency fr was 15 MHz

and was obtained from a frequency standard of 5MHz after multiplication

by 3. fI was close to 10MHz which when multiplied by n = 4, served

as the IF reference frequency. In fact fI was adjusted to match F with the

hyperfine resonance frequency. The klystron was made to lock at

N = 3 x 610 th barmonic.

3. Coupling of Microwave Fields to the Vapor-Cells

A horn was used to radiate microwave energy onto the vapor cells.

The cell has to be placed in the near fields of the horn because of

limited space. As a result, a parallel and normal componentsof the

B-field of the microwaves were present to excite the AM = 0 ± 1 transi-

tions, respectively.

4. Pulsing of Microwaves

The need of applying pulsed microwave radiation in the interval

between the 900 Rf pulses was discussed earlier. The microwaves can

be very conveniently controlled by a solid state microwave switch. The

microwave switch used was a broad band (6GHz-10GHz), coaxial type (Model

12 -33<
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UPPER TRACE SHOWS THE MICROWAVE PULSE SWITCHED ON

BY A 50v x 24mns VOLTAGE PULSE ( LOWER TRACE )
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3604A-Hewlett Packard). It consists of two silicon PIN- diodes which

are functionally integrated into 50-ohm miniature 
coaxial transmission

line. It has a minimum isolation of 80db and maximum 
insertion loss of

1.5db.

The switch required +50v for reverse biasing to 
keep it closed

and about 200mA forward current to keep it open. 
This was easily achieved

by a control circuit as given in Figure 
13. Timing the switch into the

on-off state was essentially programmed with the help of the pulse

programming system. Timed pulses from the programming unit 
trigger the

flip-flop part of the control circuit into 
'0' or '1' state. This in

turn biases the base of the transistor T positive 
or negative with re-

spect to its emitter. When T is positively biased, A is at about 
-6.8v

and the desired current, as controlled by the resistance R, passes 
through

the microwave switch; when the base of T is negatively biased, +50v

is effective in reverse bi-sing the microwave switch.

Performance of the microwave switch was exceptionally good.

Figure 14 shows the pulsing of microwaves at 9192 MHz.
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CHAPTER VI

CONSTRUCTION OF THE PULSED CESIUM RESONANCE LAMP

A. Difficulties in "Pulsing" the Resonance Lamp.

In this investigation, it was desirable to turn-off-and-on the

pumping light in a predictable way. Moreover, this was to be done by

the timed pulses from the pulse-programming unit. The simplest way to

do this would be to make a sillicon-controlled-rectifier switch (SCRS)

controlled by these pulses. In the early part of the experiment, cesium

electrodeless discharge lamps were constructed similar to the descrip-

tion given by Bell, Bloom & Lynch43(BBL). (In their design a Cs bulb

of about 1 cm in diameter is excited by an rf oscillator). To pulse the

lamp, the D.C. supply used to energize the excitor oscillator was pulsed

by the SCR switch which could be controlled by 1 volt pulses. It was

seen that there was considerable delay in the switching-on of the lamp

after the D.C. supply was switched-on. This delay depended on the time

duration for which the lamp was off in a optical pumping cycle and there

was too much jitter in it. This made it unsuitable for this experi-

ment. The delay could be minimized by operating the lamp at an exces-

sively high voltage and hence at the cost of making the lamp self-

reversed. Other possibilities like using a mechanical shutter, a rotat-

ing wheel, and an electro-optic shutter were also considered. These

possibilities were found unacceptable for one reason or another. The

best available electronically operated camera shutters have delay times
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from 10 to 20 ms. The rotating wheel arrangement suffers from the same

disadvantages. The third possibility was too expensive. It seemed

appropriate to construct the resonance lamp differently. Efforts made

in this direction were very successful and resulted in a new design of

44
the lamp

B. Considerations for the Design of the Pulsed-Cesium Resonance Lamp.

The main considerations in the design of the lamp were that the

lamp be switchable in a controlled way. Moreover, its switching time

must be negligible. Other features like compactness, high resonance

yield, etc., were of equal importance. The other essential considera-

tions in making the resonance lamp were its stability against short

term fluctuations (short compared to the duration of the repetition

time of the pumping and detection cycle - 800ms), and long term drifts

so that observations were reproducible.

C. Construction and Excitation of the Lamps.

The lamp was made in a dumbbell shape, as shown in the circuit

diagram (Figure 15). Each bulb was about 1.2cm in diameter, blown

out of a single pyrex tube of 7mm in diameter. The two bulbs were

separated by about 2cm. These dimensions are not very critical. This

was filled with a few milligrams of 99.95% pure cesium metal distilled

-7
under a vacuum of 10 mm Hg or better. Following the distillation

xenon was filled at a pressure of about 1.5 to 2mm of Hg at room temp-

erature. Xenon was chosen because it has energy levels close enough

to the D1 and D2 transitions in cesium so that it can excite cesium

12 9<
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THE BOTTOM TRACE SHOWS THE SWITCHING PULSE WHICH,AT ITS

RISING EDGE(ARROW), TURNS ON THE PRIMARY OSCILLATOR. THE

OTHER TWO TRACES SHOW1 THE LIGHT OUTPUT FROM THE SWITCHED
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THE MIDDLE TRACE RESULTS, AND WITH IT ON THE UPPER TRACE.

( THE TIME SCALE IS 1 ms/cm, VERTICAL SCALE IS ARBITRARY.)
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most efficiently yet far enough to be easily filterable from them.

Moreover, it is known to give best results in terms of its efficiency

and stability of operation4 3 . Each bulb was excited by an independent

oscillator. The oscillator used was of the same design as used by

43
BBL 3 . It was selected because of its low noise and compactness. Both

the oscillators and the dumbbell lamp could be put in a 4" x 2" x 2"

aluminum box.

Plate voltage to the tubes of one of the oscillators, the one

desired to be pulsed, was supplied through a silicon-controlled rectifier

switch. The switch was controlled by 1 volt pulses. The other oscilla-

tor was kept on continuously. The discharge plasma in this part of the

lamp facilitated the firing of the other part. In this way, firing of

the lamp was very uniform and was observed not to depend on the operat-

ing voltage of the secondary bulb, within its operating range. Moreover,

the switching times were very uniform and stable and did not depend on

the off-time of the lamp as it did previously.

Figure 16 represents typical oscillograms of the switching behavior

of the lamp (a) when the secondary oscillator is off and (b) when it is

on continuously. Note the delay in the switching of the lamp in Figure

16a and the absence of it in Figure 16b. As regards to the light output,

it was identical to the lamp of reference 43. The lamp was very stable

and its stability is demonstrated in Figure 17.

The usefulness of this kind of a lamp is not limited only to our

experiment. There are other experiments in which this capability of

accurate switching of the lamp can well be applied. One of the historic
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examples is that of the study of relaxation times of optically polarized

atoms where the lampneed be switched off for different lengths of time

and the polarization studied as a function of time. Another useful

area of its application would be where the pulsing rate is matched to

the zeeman frequency of the atoms to bring in resonances. There could

be other areas of similar nature where the ease and flexibility of

switching the lamp may be desirable.
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CHAPTER VII

PREPARATION OF WALL-COATED CESIUM VAPOR CELLS

A. Coatings with Paraflint.

Paraflint has been known28 to preserve spin orientation during

collisions between polarized atoms and the paraflint coated walls of

the container. Paraflint coated. walls have also been found to be very

stable46 though their reproducibility from cell to cell is still an

open question. The method of preparing the coatings has varied from

one investigator to the other
2 8'45 '46 . The method discussed in refer-

ence 46 has been followed by most authors after the publication of this

paper. In our early experiments with coatings by a similar procedure

as given in reference 46, we felt the method was unnecessarily com-

plicated. However, we did not take great pains in following up this

method; rather, we developed a more convenient procedure of wall coat-

ing. It is described in every essential detail in the following.

B. Properties of Paraflint
47 .

Paraflint is a hard, high melting point hydrocarbon wax. It

is essentially a mixture of saturated, straight chain paraffin hydro-

carbons, having an average molecular weight of approximately 750,

corresponding to approximately 50 to 55 carbon atoms per molecule

(CH3 - CnH2n - CH3). Its melting point is of the order of 100
0 c.

Paraflint is synthesized by burning coal in the presence of

oxygen, steam, and various catalysts to produce a wide variety of



hydrocarbons depending on conditions. Paraflint wax thus produced is

refined but still contains components with low boiling point. To get

rid of the volatile contents and to distill a suitable fraction from

the commercially available paraflint, the following procedure was

adopted.

C. Fractional Distillation of Paraflint.

It has been known45 before that if the low boiling point compo-

nents were removed by heating the paraflint at 2500C (under vacuum),

-6
the residue has a very low vapor pressure of less than 5 x 10 mmHg at

1200C. In view of this observation, we decided to use the highest

distillate for coating in order that the vapor pressure due to the paraf-

-6
lint was much smaller than 10-6 mmHg. The vacuum and the gas filling

system was used for the purpose of fractional distillation. This sys-

tem was equipped with an excellent baking facility and thermostat control

permitting any desired baking temperature up to 5000C. This proved to

be ideal for fractional distillation and our method of Wall Coatings.

Paraflint RG was contained at one end of a long glass tube; the

other end projected out of the oven and was connected to the vacuum

pump and to a side tube for collecting the distillate. The first frac-

tion collected for about 30 hrs. at 2750C was discarded. The next

three fractions were collected at 3000C, 3500C, and 3750C. Baking was

done for sufficient times to make sure that any particular fraction

was completely distilled over. About 1/10 of the original amount of

paraflint was left as residue by the end of the fourth distillate.

The last fraction was used for coating, other fractions were kept for

any eventual use.

<3;
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D. Experimental Procedure for Wall Coating.

A very simple procedure for wall-coating with paraflint was

developed. It gave excellent, reproducible, thin, and transparent

coatings. It was done in the following way: a couple of cells (well

cleaned, washed and dried) were attached to the vacuum system (Figure

18). They were baked at about 4500C for 24 hours under vacuum. A small

amount of wax (out of the distillate collected in the temperature range

3500C to 3750C) was kept at the farthest end of a 1/2 meter long tube

which was connected to the system at its other end. Wax was contained

in a glass tube to which a sealed iron slug was attached. After baking

and cooling, wax was brought closer to the cells and melted into a pre-

viously arranged tube. Wax container with the iron slug and the long

tube were removed without breaking the vacuum. The system was sealed

off from the vacuum pumps and rebaked for about 8 hours at 365 0C. When

rebaking, a small temperature gradient was provided in such a direction

that it helped in moving some wax into the cells. The system was then

cooled slowly. While cooling, attempt was made to have uniform tempera-

ture distribution in the oven.

The coatings obtained in this way were very thin and hardly

visible. An excessive distillation of wax into some cells could be

seen as a deposit of wax at the lowest position of the cell making it

slightly translucent. However, this part of the cell surface would be

equally effective in inhibiting relaxation of the polarized atoms as

the rest of the surface.

i 2c<
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rotated by 1800 in a time much shorter than the relaxation time of the

atoms. The observed relaxation time (T ohs), thus determined, is related

to the longitudinal relaxation time (T1) and the relative intensity I

of the applied resonance light by the relation
4 8

1 1I CI + 1
Tohs  T

Thus by plotting --T 1 against I/Io, where I is the intensity reduced
ohs

from the initial intensity Io by a neutral density filter, the value

of T1 is extrapolated. The values for T1 thus obtained for the five

cells were very good and are given below. A typical relaxation curve

is shown in the next chapter (Figure 20a). Figure 19 represents the

variation of relaxation times of cells II and V at various light in-

tensities. Behavior of other cells was identical.

Relaxation Time T

For

Cell I = 170 ms

Cell II = 263 ms

Cell III = 233 ms

Cell IV = 200 ms

Cell V = 171 ms.

Lower values of .the relaxation times in cell I and IV can be

attributed to the following accidents with these cells: a drop of cesium

fell into the cell IV from its stem (where the cesium is stored). Though

much of the cesium was carefully transferred back into the stem, very
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fine droplets are still visible. This contamination of the surface is

probably responsible for the lowering of its relaxation time. In cell I,

somehow, the stem of the cell got overheated when removing the cell

from the vacuum system. This might have resulted in an excessive flow

of cesium vapors into the cell surface. Settling of cesium on the sur-

face can possibly reduce the relaxation time considerably.

In view of the fact that relaxation time is proportional to the

diameter of the cell, the relaxation time of cell V is compatible with

that of cell III or II.

In a relaxation time of 263 ms, the atoms make about 1.5 x 103

collisions with the coated wall before their orientation is destroyed.

This number of collisions is very close to the one (i.e. 103) observed

in reference 46 for the case of rubidium atoms in paraffin coated

cells.

I 40<
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CHAPTER VIII

DETECTION OF HYPERFINE RESONANCES OF Cs-133

BY THE METHOD OF PHASE DESTRUCTION

A. Preliminary Results

1. Effect of 1800- pulses

It was discussed before that when the vapor cell attains a steady

state of polarization, it practically becomes transparent to the pump-

ing light. On the application of a 1800 pulse, the polarization is

reversed and the cell begins to absorb the pumping light and a decay

curve as shown in Figure 20a results. Another 1800 -pulse will bring

the atoms into the original polarized state and hence a state of no

absorption results, except to compensate for the relaxation. This

curve was observed and is shown in Figure 20b.

2. Effect of one 900- pulse

An application of one 900-pulse will result in a freely preces-

sing state of the atoms. The signal as seen at the detector was not

very much different from Figure 20a except for its initial amplitude.

In order to check the existence of the freely precessing state, a trans-

verse light beam was used. It is shown in reference 17 that in such

an experimental situation, the transverse beam will be modulated at

the frequency of the precessing atoms. Such a precession was observed

and is shown in Figure 21.

jA~g<
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3. Effect of +900-pulse followed by a -900-pulse

In this part of the observations as well as in previous experi-

ments (A - 1,2;above) the pumping light was kept-on continuously. We

shall see next that it pays to keep the pumping light off in between

the ±900-pulses.

It was shown in Chapter III that a -900 pulse after the +900

pulse will bring the atomic state into its original polarized state of

zero absorption except for relaxation. This behavior was observed and

is shown in Figure 22a through 22f. These figures were taken at in-

creasing time intervals between the ±900 pulses. (This time interval

will be denoted by T for future reference.) It is seen in Figure 22e

when T > 16 ms , that absorption dips to a minimum and then rises

again. This behavior is probably due to the fact that some atoms get

pumped in the Z-direction during the time T and then get rotated to the

freely precessing state by the -900 pulse, whereas the atoms in the free-

ly precessing state are brought into the Z-direction. Optical pumping

of the atoms, in effect, results in a loss of coherence in addition to

the loss of coherence due to thermal relaxation. As a result,the -900

pulse no longer forms a state of least absorption rather a complicated

state results which goes through a minimum in absorption during the

time of its formation. This effect can be reduced by reducing the

pumping light intensity as shown in Figures 23 a,b.

4. Pumping light off in between the ±90 0-pulses

In this case, the pumping light was turned off 1.6msec before

the +900 pulse and was turned-on 1.6msec before the -90 -pulse was

148<
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applied. These observations are shown in Figure 24a through 24j. One

clearly sees an improvement over the previous case in which the pumping

light is kept on during the interval (T) between the ±90 0-pulses. We

saw in this case that the signal indicative of the formation of the

initial polarized state began to be distorted for T larger than 16 ms.

On the contrary in Figures 24a through j, the discontinuity in the moni-

toring signal which is seen when a -90 -pulse is applied, is a clear

indication of the recovery of a substantial part of the initial polarized

state for the interval T as large as 65 ms. Smaller signals could be

seen for the time interval T greater than 80 ms.

B. Observations on the Hyperfine Resonances.

In order to observe the hyperfine resonances, microwaves were pulsed-

on for the time interval between the two 900-RF pulses. The pumping light

was switched-off in this interval and was switched on 1.6 ms before the

second 90 -pulse in order to monitor the phase destruction caused by the

microwave fields. The frequency of the microwaves was varied by tuning

the IF-reference frequency to match the (4,0) -+ (3,0) transition in the

ground state of the cesium sample. The detection of the resonance was

noted by observing the variation in the size of the signal following the

second 900 -pulse. A typical oscilloscope signal is shown in Figure 25.

Figure 25a shows the signal in the absence of any microwave fields whereas

Figure 25b displays the signal following the microwave pulse of about 50 ms

duration. The lower trace in Figure 25b shows the microwave pulse. To

display this pulse a part of the microwave energy was taken from the phase
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locked klystron source and fed into a crystal detector and its output

used. The frequency of the microwaves corresponding to the maximum re-

duction in the size of the signal determines the resonance frequency. A

set of such values found for different cells is given in Table III.

TABLE III

Resonance Frequency Corresponding to the

(4,0) +- (3,0) Transition

Shift from the Free Ato
Cell No. Resonance frequency in MHz Value (9192.631770 MHz

I 9192.6314 ~ -400 cps

II 9192.6311 ~ -650 cps

III 9192.6313 ±450 cps -450 cps

IV 9192.6313 ~ -450 cps

V 9192.6312 ~ -550 cps

............ .... ..
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in the results of the above mentioned authors is small ('15 cps);

whereas, in the present experiment it is large for reasons explained

earlier. Large dispersion in the values of the shifts, in the present

experiment, can possibly be due to different proportions of residual

paraflint wax vapors remaining in the cells after they 
were sealed off.

/
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APPENDIX I

EFFECT OF A ROTATING MAGNETIC FIELD PULSE ON A PURE

QUANTUM STATE IF ,v>

Let the atom under consideration have a magnetic moment p and be

in the quantum state IFp > (Note: the same symbol is used for the mag-

netic moment and the magnetic quantum number). It is subjected to a

constant magnetic field Bo along the Z-axis and a pulsed rotating mag-

netic field, pulse beginning at tl and ending at t2 . Let the magnitude

of the ratating be B1 and be along the Y-axis of a rotating co-ordinate

system, rotating with an angular velocity wz about the laboratory z-axis.

The plane of ratation of Y-axis and hence of B1 is normal to the labora-

tory Z-axis. The total magnetic field acting on the atom and hence the

Vave equation can be written as

BT = KBo + B (-iSinw t + jcosw t) (1)

ih D T
2H t = _1BT = -yF.BTY

Yh {B F + B (-FxSinwzt + F cosw t} ' (2)

h -i tF i tF
= - h {B F + B e z zF e z z2H oz 1 y

158<
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where t 2t>t

This equation is best solved by transforming it to a co-ordinate

system rotating round the Z-axis with an angular velocity wZ and 
sense

corresponding to the sign of -y (This is essentially the sense of rota-

tion of the rotating magnetic field.) The transformed wave function and

the schrodinger equation can be written as

S= e tFz (3)

ih - + yB ) F +h BF }' (4)
2H 1t r 211 z o z 211 y r

It is clear that the time dependence of the magnetic field has been

eliminated. In fact equation (4) represents the coupling of the spins

with an effective static field

S(5)
B = K(Bo + -) + jB (5)

Moreover, the spins will be quantized along the effective field in the

rotating frame of reference, the energy spacing being given by AE = , Br

As our rotating frame is coincident with the rotating rf-field which is

supposed to be at Zeeman resonance, so

wz = -yBo

Therefore the effective field is essentially the rotating field itself.

For computation purposes, the effect of this field can also be eliminated

159<
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by transforming to a doubly rotating co-ordinate system with a frequency

, = -YB1 rotating round the Y-axis 
of the rotating frame of reference.

In this doubly rotating co-ordinate system the wave function Yrr and the

effective field is written as

eiw tF
Srr.e 1 Yr (6)

= 1B = B + - = 0rr 1  y

Obviously in the doubly rotating co-ordinate system the interaction

hamiltonian vanishes and the states do not change in time. Therefore

one can write

Vrr (t2) = rr (tl) =  r (tl) (7)

Since the rf-field has been effective for a time t2-t1  and the

doubly rotating system has rotated by an angle -Wl(t2 -tl) round the Y-

axis of the singly rotating co-ordinate system, therefore , using (6),

-iW (t -t )F

rr(t) e 1 2 l(ttl)Fy r(t2)

Tr(t2) = e i(t2-t rr(t2)

=eiwl(t2-tl)Fy Yr(t )  (9)

Using (3) we have

r (t2)= eiw zt2Fz '(t2) (10)

(t1) e iz tlF z '(t l)r

IGO<
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Therefore,

iz t2F iw (t2-t )F -i t F

S(t2) = e ee zV(t)

Let Y(tI) bethe eigen functions of Fz and be denoted by IF,>. Then

after the 900 -rf pulse the transition amplitude from state IF,p> to

state IF, '> can be written as

a F ,(t2 ) = <F, ' e e (t2 -tl)Fye ztlF, > (11)

and the new state can be written as

V(t 2 )= - aF , . F, '>

where

F iwZ I 't 2 - tl) iwl(t 2 -tl)Fy
a F = e <F,p ' e IF,> (12)

F F
Here one easily recognizes that a , is nothing but the D , (a,,y)

unitary operator which connects the wave functions in a stationary system

to a rotated co-ordinate system. a,8,y are the Euler angles of rotation.

From the definition of the D-Functions one easily recognizes:

iwl (t-t l )F y  F

<F, 'i e IFi> = D (O,-Wl(t 2 - tl),0) (13)

= D ,(0, l(t2-tl) , 0 ) (14)

lip 1 21
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iz1( 't t ) F 1
Therefore y(t 2 ) = e z t D {0,)(t2-tl0} IFp '> (15)

which is the desired coherent superposition of the magnetic 
states.

162 <
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A Technique for Preparing Wall Coated Cesium Vapor Cells*

GURBAX SINGH,t PHILIP DILAVORE,j AND CARROLL O. ALLEY
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A convenient technique for the preparation of reproducible cesium vapor cells, coated with a thin transparent
layer of Paraflint, is described. Cells of 7.5 cm diam showed relaxation times of about 250 msec.

In many radio optical resonance experiments' one wishes nism for relaxation of the sample atoms into unwanted
to put the sample atoms into a particular quantum state quantum states is in the interaction which occurs when
and to keep them in that state as long as possible. In these atoms collide with the cell walls. To prolong the
evacuated, untreated sample cells, the principal mecha- average relaxation time, the sample cell is treated in one



NOT ES 1389

GLASS IRON

TO PUMPS TUBES- SLUG vacuum system could be enclosed in a removable electric

WAX oven .The glass components were well cleaned, first with

soap and water, followed by several rinses with a 2% solu-

SEAL OFF tion of hydrofluoric acid, then several rinses with distilled

POINT water.
SLUG With both the Paraflint and the cesium outside the oven,

BREAKABLE the system was baked for several hours at 4500 C to outgas

SEAL the glass. Then the system was cooled, the oven removed.

SThe final pressure was about 10-8 Torr. The seal-off point

S'--- at A was closed to prevent wax from getting into the arm

-OVEN containing the cesium. The wax was then moved, by means

of a magnet pulling an iron slug encased in glass, to point

SI B, and was melted down into the cup below B by gently

A E heating it with a heating tape. Then the seals at points B

and C were closed to isolate the system, which was baked
SLUG F at about 365*C. We discovered that an unavoidable slight

CESIUM temperature gradient, due to the vertical arrangement of

the system, was actually helpful in driving the wax into
CELLS,"" the cells, which were located at the cooler, lower section

FIG. 1. Arrangement for making Paraflint coated cesium vapor cells. of the oven. However, the gradient from bottom to top
should not be more than a degree or two.

After about two hours of baking, the system was cooled
or both of two ways: It is filled with a buffer gas so that slowly and the breakable seal at D was opened. Using a
the average atom is many mean free paths away from the relatively "cool" gas-air flame, the wax was driven off

cell wall, or the cell wall itself is coated with a material from the glass through which cesium was to come, includ-

with which the sample atoms can make nonrelaxing colli- ing the stems of the cells. It is essential that this be done
sions. The combination of the two methods can increase well, for hot cesium and wax combine chemically into a
the average relaxation time by several orders of magnitude. material which forever fouls up the vacuum system. The
For alkali metal vapor cells it is common to use the inert seals at E and F were opened and a small amount of

gases as buffers and rubidium vapor cells are frequently cesium was driven, by means of the same "cool" flame, into
coated with Paraflint. the stems of the cells. The system was then allowed to

Most of the previous work with wall coated alkali vapor pump for a length sufficient to remove any volatile sub-
cells has been with rubidium; very little has been done with stance possibly produced by breakdown of the wax. The
cesium. In addition, previous reports on coated cells have cells were sealed and pulled off the system.
been incomplete in detail and the reproducibility of such Cesium vapor cells prepared in this manner showed thin,
coatings is very much open to question. In this paper we transparent coatings of wax and were highly reproducible.
give, in sufficient detail for the procedure to be duplicated, Cells of different diameters and those made at different
a description of a simple method for preparing cesium times had about equal relaxation times when normalized
vapor cells whose interior walls are coated with Paraflint. to a unit diameter. The major variation in relaxation times
Following this method carefully, one can produce cesium was produced by varying the size of the opening to the
cells with very long relaxation times of over 250 msec. cell stem, which acts as a sink for optically pumped

Paraflint RG (regular grade),2 which was used as the atoms. At room temperature in 7.5 cm diam cells, the

coating material for our sample cells, contains volatile observed relaxation times were about 250 msec.
components which have a relatively high vapor pressure

at room temperature. By performing fractional distillation * Work supported in part by NASA, under Grants Nos. NGR

under vacuum upon the wax (Paraflint), we discovered 21-002-218 and 21-002-022, NSF Grant No. GY-9464, ARPA Con-
tract No. SD-101, and the U. S. Army Research Office, under Con-

that the fraction collected in the temperature range tract No. DAHCO 4-67-C-0023.

350-375 0C had the desired attributes, including a vapor t Present address, University of Maryland, Eastern Shore, Princess
10- Anne, Md. 21853.

pressure of less than 10-6 Torr at 1200C. I Present address, Indiana State University, Terre Haute, Ind.

A bakable vacuum system was constructed as shown 47809.
I Gurbax Singh, P. Dilavore, and C. O. Alley, IEEE J. Quant.

schematically in Fig. 1. It had a number of seal-off points Electron. QE-7, No. 5, 196 (1971).
and breakable seals such that the wax and the cesium I Paraflint is manufactured by Moore and Munger, Inc., 777

could be isolated from the main system and introduced, Summer Set St., Stanford, Conn. 06902, and is a mixture of sat-
urated straight chain hydrocarbons with an average molecular weight

in turn, at the appropriate times. The main portion of the of about 750 and 50-55 carbon atoms per molecule.
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GaAs-Laser-Induced Population Inversion in the
Ground-State Hyperfine Levels of Cs133

GURBAX SINGH, P. DILAVORE, AND C. O. ALLEY
Abstract-This paper describes the achievement of population lasers is of particular significance in this connection [4].

inversion among the hyperfine levels in the ground state of Cs"' The results of this investigation could equally well be
by optically pumping these atoms with radiation from a GaAs diode
laser. The laser output was used to monitor the populations in the applied to operate rubidium masers, pending the develop-
two ground-state hyperfine levels as well as to perform the hyper- ment of a suitable diode laser to match the rubidium
fine pumping. transition. (This laser would probably be one made of

By varying the injection current, a GaAs laser operated CW at gallium aluminum arsenide.)
about 77*K, was used to scan the 8521-A line of Cs't s . The intensity
of the resonance scattering from cesium vapor served as an indicator EXPERIMENTAL ARRANGEMENT
of the populations of the two levels involved. Experiments were
performed both with neon-filled and with paraflint-coated cells It has only recently been possible to obtain diode lasers
containing the cesium vapor. that would operate CW. Moreover, GaAs lasers generally

It was discovered that the diode laser could easily be tuned by
manually adjusting the injection current to match either of the emit radiation at roughly 8500 A when operated at

hyperfine components of the D2 optical transition, liquid nitrogen temperatures. In order to match the
Possible future applications, including a restudy of the light 8521-1 line of Cs"'33, the laser must be operated at a

shifts, the construction of a cesium maser, and the physics of optical somewhat higher temperature. We accomplished this by
pumping with coherent light are discussed. clamping the laser to a copper rod that is thermally

connected to a liquid nitrogen reservoir. The thermal
INTRODUCTION

resistance of this arrangement is such that it is easy to
NE circumstance that has made possible the adjust the temperature, and thus the emitted wavelength,
operation of rubidium masers is that one of the by adjusting the injection current. This can be done with
hyperfine optical transitions of Rb 7 happens to be sufficient stability so that the laser can be easily tuned to

nearly coincident with one of Rb"5 . Thus, the atoms of the match the optical transitions 6S1 /2 (F = 3 and F = 4)
one isotope may serve as a hyperfine filter for atoms of to 6P,, (Fig. 1). A simple experimental arrangement for
the other and it is possible to pump selectively the hyper- observing the resultant resonance scattering is shown
fine levels of the desired isotope [1]-[3]. schematically in Fig. 2.

In the case of cesium, no such happy coincidence exists Before the laser was used to produce resonance radiation
in a convenient source, and a cesium maser is yet to be for a cesium cell, its radiation was examined by means of
produced. However, since atomic frequency standards, a Spex Industries model 1400 monochromator. A typical
which operate upon a beam of cesium atoms, are capable spectrum is shown in Fig. 3. It was found that the strong
of a high degree of stability and reproducibility and mode close to 8521 A had power in excess of 10 mW and
constitute the present international frequency standard, could be tuned over a range of a few angstroms by varying
it would seem highly desirable to operate a cesium maser. the injection current. In order to observe the scattered
In fact, it should now be a matter of the simple optical resonance radiation at 8521 A from Cs33 atoms, the
pumping of cesium vapor contained in a suitably tuned injection current was varied by superposing a slowly
cavity using methods we shall describe here. We have varying triangular current pulse on a dc current. Scanning
been able to produce population inversions in the hyperfine of the 8521-A line by superposing a fast square pulse on
states of Cs'33 by using (as pumping radiation) light from a de current has been reported [5].
a gallium arsenide diode laser operated continuously at
about liquid nitrogen temperature. This method holds OBSERVATIONS
promise for the development of miniaturized portable and
durable frequency standards. The recent achievement of Fig. 4 shows the resonance radiation scattered at an

room temperature W operation of GaAs injection angle of 900 to the incoming radiation as the laser radiation
was swept in frequency decreasing from left to right. The
sample was cesium vapor contained in a glass cell of

Manuscript received November 30, 1970. This work was supported about 2 in diameter, which also contained neon at a
in part by NASA Grants NGR 21-002-218 and 21-002-022, ARPA
Contract SD-101, and the U. S. Army Research Office Contract pressure of 100 torr as a buffer gas. The transitions
DAHCO 4-i7-C-0023. involved were 6P 1, to 6S,, (F = 3 and F = 4). These
G. Singh is with the University of Maryland, Eastern Shore, involved were P a to Stio (F = 3 and F = 4). These

Princess Anne, Md. 21853. lines were observed as the injection current was increasing.
P. )i.avore and C. O. Alley are with the DCpartment of Physics This means that the temperature of the junction was also

and Astronomy, University of Maryland, College Park, td.20742. increasing [6], and that the band gap of the semiconductor

20742.~



81NOH et al.: aAS,-LASER-INDUCED POPULATION INVERSION IN CS
s  

197

F=5

213 MHz

6P3/2 F4

F=3
1.454 FV -=23

F=2
I 128 MHz

-- 0.5 A

I
tt P=4

6SS 9192.631 MHz
0 eV SF=3I0 Fig. 3. Mode structure of the GaAs laser used in this investigation

Fig. 1. Relevant energy levels of Cs" (= 7/2). (observed mode width is instrument limited).
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Fig. 4. Resonance radiation scattered by Cs"U cell filled with 100
torr of neon. Time scale: 50 ms/cm. Vertical scale: arbitrary.

Laser Diode Cs-Vapor Cell

Fig. 2. Block diagram of the experimental arrangement to observe
resonance scattering from Cs'" vapor cells.

material was decreasing [7]. In other words, the picture
was taken during a time of increasing wavelength of the
laser radiation. Therefore, the first peak on the left corre-
sponds to the transition ending in the F = 3 state, and the
second one to the transition ending in the F = 4 state.
Since the separation of these two transitions is 9192 MHz,
and the oscilloscope time base is 50 ms/cm, the laser Fig. 5. Resonance radiation scattered by the same cell as in Fig. 4,radiation is sweeping at about 18 GHz/cm in this trial. but at a slower laser sweep rate. The lower trace shows the

The excited-state hyperfine levels are unresolved injection current. Time scale: 200 ms/cm. Vertical scale: arbitrary.
because the Doppler- and pressure-broadened linewidths
are greater than the hyperfine separations. Using the increasing current (and hence increasing wavelength)
known separation of the two observed peaks, and assuming from left to right and the right two correspond to decreas-
a linear sweep, the measured linewidth of each of the two ing current (triangular sweep)
lines is approximately 1300 MHz. In this case, the ratio of the peak heights for each pair

The unequal amplitudes of the two peaks would be has fallen closer to 7: 9. The only difference in these two
expected to result from two effects. First, and mainly, the cases is that, in Fig. 4, the sweep rate is such that the time
degeneracy of the F = 3 level is 7 and that of the F = 4 required to pass from one resonance line to the other is
level is 9, so that the strengths of the two lines are in the about 25 ms, and in Fig. 5 it is about 40 ms. This indicates
ratio 7:9. Second, the power output of the laser varies that a substantial number of atoms are being pumped into
slightly with increasing current. However, an examination the F = 4 level and that the hyperfine relaxation time is
of Fig. 4 shows that the ratio of amplitudes is not 7:9 but long enough so that there is still greater than an equilib-
closer to 1:2. The clue to the reason for this is shown in rium population in the F = 4 state when the laser radia-
Fig. 5, in which the left two resonances correspond to tion sweeps through that line 25 ms later but near to
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equilibriun population 40 ms later. In the cesium cell

being examined, the spin relaxation time was measured

L (by methods reported in [1]) to be about 18 ms. In the
case of atoms for which the hyperfine relaxation time [8], [9]

i can be measured, for example Rb", the spin relaxation
time and the hyperfine relaxation time are roughly the
same at room temperature, so one might reasonably

cell to be close to 18 ms.
Additional evidence in support of the hypothesis of Fig. 6. Resonance radiation scattered by the wall-coated cell

without any buffer gas. Time scale: 200 ms/cm. Vertical scale:
hyperfine pumping is provided by the experiment dis- arbitrary.
played in Fig. 6. Here the sample cell has been replaced
by one with paraflint-coated walls, in which the cesium
atoms have a spin relaxation time of about 200 ms. it state levels of alkali vapors will be worthwhile. One

3 can be seen in this case that the ratio of the amplitudes could, for example, study the behavior of the light shifts
of the peaks of the pair on the ascending sweep is different as the laser line is swept through the Doppler-broadened

from the ratio on the descending sweep: on the ascending absorption lines. Nonlinear interactions between micro-
wave and optical transitions exhibited in the light shifts

sweep there is pumping of the atoms from the lower
hyperfine level into the upper hyperfine level where they may be useful in relating these regions of the electro-

can exist for times longer than the sweep time for the pair. magnetic spectrum. It should also soon be possible to
eliminate errors due to the light shifts of atomic frequencyOn the descending sweep the process is reversed, so that

the relative amplitudes are greatly changed. The above-
mentioned observations with the buffered and coated cells hyperfine absorption line.
were consistently repeatable (except for minor variations
corresponding to the variations of the laser output) from- ACKNOWLEDGMENT
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indicating that automatic locking should be easily possible. lege Park, who helped to perform the spectral analysis
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O NE can think of a number of optical pumping experi- characteristics are stable and reproducible, with a short

ments in which it is desirable to have a spectral lamp switching time and negligible jitter. One might also be

which can be accurately switched on and off. We are concerned with other features like the compactness of the

presently performing such an experiment to study hyper- exciting circuit, a high yield of usable radiation, etc.

fine transitions in alkali atoms, investigating wall and light It is possible, of course, to use mechanical shutters,
shifts of the ground states of these atoms by means of a rotating choppers, or electro-optic devices, but these have

triple-resonance coherent pulse technique. one or more of the disadvantages of slow speed, small

For this technique,1 in which the sample atoms are useful aperture, or high cost. In trying to switch on a con-

pumped optically into the highest angular momentum

ground state IF,F>, it is necessary to switch off the lamp r_- 1
for a time interval during which coherent rotating magnetic
field pulses at the Zeeman resonance and microwave

pulses at hyperfine resonance are applied to alter the ,

angular momentum state of the atoms. The lamp is then . - -

switched on to monitor the remnants of the F,F> state. '

The time duration for which it is necessary to have the
S lamp off may vary from a few milliseconds to over 1 sec, X

depending upon the relaxation times of the pumped states.
An example of another application of a switchable: i

spectral lamp is an experimental study of the relaxation
times of optically polarized atoms in the dark. For such ..
experiments, it is desirable to have a lamp whose switching

experients, it is desirable to have a lap whose switching F. 2. The bottom trace shows the switching pulse which, at its
rising edge (arrow), turns on the primary oscillator. The other two
traces show the light output from the switched portion of the lamp.

OSCILLATOR -IsoV With the secondary discharge off the middle trace results, and with
OSC.3V it on the upper trace. The time scale is 1 msec/div.

.oo

10K ...s 5~ , I T IOK St I 5K ventional lamp, one is hindered by the familiar fact that
5711 5718 .001 .05

S oV - the discharge begins in an unpredictable way some time
loon 2N2013 2N2013 after the application of the rf power.

The lamp we are herein describing is a modification of
100T a .O 10K the electrodeless alkali lamp described by Bell, Bloom,

" 10n T SI-°'IT ING and Lynch (BBL). This modification can easily be ap-
K "IO °  INPUTS plied to the lamp described by Brewer' and by Franz,'

.ool -,vY s.c.R.sWITcHING if higher intensity is desired, but the optical pumping
mARY cRcuIT signals obtained with the BBL lamp are large enough forOSCILLATOR

most applications.
RFi. 1. Schematic of the two identical exciter oscillators,

one of which is switched by the SCR circuit. Our lamp has a dumbbell shape with two 1.2 cm diam

. <



1517 NOTES

bulbs connected by a 2 cm length of 7 mm Pyrex tubing. Also, the formerly present time lag no longer exists. Since
The whole thing is blown from a single Pyrex tube and the switching is done by electrical pulses, the problem of
the dimensions are not critical. The lamp is filled with a synchronizing the lamp switching with the rest of the
few milligrams of pure cesium metal distilled in a vacuum apparatus becomes very much simpler. The light output
of better than 10- 7 Torr, and is then filled with a few is identical to that of the BBL lamp.
torricelli of xenon gas at room temperature. (Of the inert We gratefully acknowledge Carroll O. Alley for his
gases, xenon gives the best results.4 ) Each bulb of the lamp original suggestion for the experiment and his continued
is independently excited by means of an oscillator of the support. We also thank Douglas G. Currie for his helpful
13BL design which combines low noise and compactness. suggestion for the design of this lamp.
The lamp and both oscillators fit into a 10X5X5 cm *It is part of a continuing work supported by NASA (Grants
aluminum chassis. NGR 21-002-218, NAS 9-7809, and NGR 21-002-022), ARPA (Con-

tract SD-101), and the U. S. Army Research Office Contract DAIICO
In operation, a discharge is maintained continuously in 4-67-C-0023.

one bulb, while the power supply to the other oscillator (CC. O. Alley, in Quantum 19lero6ics, edited by C. H. Townes
(Columbia U. P., New York, 1960), pp. 146-155.

is switched by means of an SCR switch. A circuit diagram 2 W. E. Bell, A. L. Bloom, and J. Lynch, Rev. Sci. Instrum. 32,
is shown in Fig. 1. As is shown in Fig. 2, the switching 688 (1961).cR. G. Brewer, Rev. Sci. Instrum. 32, 1356 (1961).
characteristics of the lamp are clean and reproducible. 'F. A. Franz, Rev. Sci. Instrum. 34, 589 (1963).
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