
A NOTE ON PARALLEL AND PIPELINE COMPUTATION

OF FAST UNITARY TRANSFORMS

= by
i-

rn Bernard J. Fino and V. Ralph Algazi

U a Department of Electrical Engineering and Computer Sciences

F and the Electronics Research Laboratory

University of California, Berkeley, California
94720

Sand

SElectrical Engineering Department

University of California, Davis

s4/

' ABSTRACT
U)

SThis correspondence discusses the parallel and pipeline organization

= of fast unitary transforms algorithms such as the
Fast Fourier Transform

and points out the efficiency of a combined parallel-pipeline
processor

a of a transform such as the Haar transform in which (2 -1)
hardware

-'ri
Z a "butterflies" generate a transform of order 2n every computation

cycle.

H4
M4-I

.U

Algorithms for all fast unitary transforms, such as .the Fast Fourier

transform (FFT), fast Walsh-Hadamard transform (FWT) and other fast

unitary transform [1], require n stages of computation for transforms of

order 2n . Each stage of computation can be in turn decomposed into at

most 2
n -1 "butterflies" [2], each performing a rotation by a matrix of

order 2. Some or all of the butterflies at one stage of computation can

operate in parallel (see [3], [4] for FFT) and fast unitary transforms

have thus a greater potential in applications with the development of

low cost parallel circuitry. For example, we show in Fig. la the FFT

Cooley-Tukey algorithm of order 4 with 2 butterflies in each of its 2

stages of computation. If T seconds is the time required to perform a

butterfly operation, each stage can be performed in T seconds with the

highest possible degree of parallelism which uses 2
n - butterflies. Thus,

a transform of order 2n can be performed in nt seconds as compared to

n2n-T seconds with sequential computation (which requires only one

butterfly).

If a number of successive transforms have to be computed, it is

possible to increase further the throughput rate with several transformers

working simultaneously, each operating on a different input vector and

each possibly at a different stage of computation (see [5] for FFT):

this is generally referred to as a pipeline organization. Parallel and

pipeline organizations can be combined conveniently with n2 n-(at most)

butterflies working in parallel and one transform of order 2n is obtained

every T seconds on the average. Fig. lb shows a possible organization of

the FFT Cooley-Tukey algorithm of order 4. All stages of this pipeline

algorithm are identical: the 2 first butterflies perform the first stage

-I-

of Fig. la and the 2 last butterflies perform-the second stage.
The

input vector is entered in the first 4 cells
and its FFT transform

obtained in the same cells after 2 cycles. This algorithm can be wired-

in and will give the transform coefficients in any order
but it requires

a large amount of hardware and requires the access at its
input of two

sets of n2" storage cells.1

Some transforms, however, do not require 2
n -1 butterflies at each

stage of computation and then a pipeline algorithm
can be implemented with

much less hardware. We consider now in particular a pipeline algorithm

for the Fast Haar Transform.(FHT). Although less known, the FHT is

closely related to the FWT [6], has a fast algorithm [7], is certainly a

transform of interest for signal encoding [8], [9] and other applica-

tions [10]. A pipeline-parallel algorithm for the FHT requires only

(2 -1) butterflies and still produces a transform of order 2
n at every

cycle. We show in Fig. 2a the Haar matrix of order 8 and in
Fig. 2b a

possible organization of the FHT of the same order. The number of butter-

flies decreases for successive stages and this is the property which can

be exploited in a pipeline processor. In Fig. 3, we show a stage of a

possible organization of the pipeline FHT of order 8.

Many other transforms can have similar pipeline algorithms with

reduced amount of hardware: the Modified generalized discrete transforms

[11], the WFH transforms [1], the Slant Haar transforms [12] and other

generalized Slant transforms [13]. In all cases, the pipeline-parallel

algorithm needed to perform a transform of order 2
n in one cycle is the

total number of butterflies appearing in the flow diagram of the algorithm.

By contrast, parallel processing requires the maximum number of butterflies

needed at any stage.

-2-

REFERENCES

[1] B. J. Fino and V. R. Algazi, "A Unified Treatment of Discrete

Unitary Transforms with a Fast Algorithm," submitted for publication.

[2] L. R. Rabiner, et al., "Terminology in Digital Signal Processing,"

IEEE Trans. on Audio and Electro-Acoust., Vol. AU-20, No. 5,

pp. 322 - 337, December 1972.

[3] M. C. Pease, "An Adaptation of the Fast Fourier Transform for

Parallel Processing," J. ACM, Vol. 15, No. 2, pp. 252 - 264,

April 1968.

[4] B. Gold and T. Bially, "Parallelism in Fast Fourier Transform

Hardware," IEEE Trans. Audio and Electo-Acoust., Vol. AU-21, No. 1,

pp. 5 - 16, February 1973.

[5] M. J. Corinthios, "The Design of a Class of Fast Fourier Transform

Computers," IEEE Trans. on Computers, Vol. C-20, No. 6, pp. 617 -

623, June 1971.

[6] B. J. Fino, "Relations Between Haar and Walsh-Hadamard Transforms,"

Proc. IEEE, Vol. 60, No. 5, pp. 647 - 648, May 1972.

[7] V. J. Rejchrt, "Signal Flowgraph and a Fortran Program for Haar-

Fourier Transform," IEEE Trans. on Comput., Vol. C-21, No. 9,

pp..1026 - 1027, September 1972.

[8] B. J. Fino, "Etude exp6rimentale du codage d'images par les

transformations de Haar et Hadamard complexe," Ann. Telecomm.,

tome 27, pp. 125 - 208, May-June 1972.

[9] W-H. Chen, Slant Transform Image Coding, Tech. Rep. 441, University

of Southern California, May 1973.

-3-

[10] J. E. Shore, "On the Application of Haar Functions," IEEE Trans.

on Comm., Vol. COM-21, No. 3, pp. 209 - 216, March 1973.

[11] K. R. Rao, N. Ahmed and R. B. Schultz, "A Class of Discrete

Orthogonal Functions," to be published.

[12] B. J. Fino and V. R. Algazi, "Slant Haar Transform," to be published

in Proc. IEEE.

[13] B. J. Fino and V. R. Algazi, "Generalized Slant Transforms,"

submitted for publication.

FOOTNOTE

1The computation can be also performed "in place" with n2
n storage cells

only followed by cyclic shifts by 2n cells.

CAPTIONS

Fig. la : FFT Cooley-Tukey Algorithm of order 4

Fig. lb : Pipeline FFT Cooley-Tukey Algorithm of order 4

Fig. 2a : Haar matrix of order 8

Fig. 2b : Fast Haar Transform of order 8

Fig. 3 : Pipeline Fast Haar Transform of order 8.

-4-

Input Output
vector vector

VO Fo

V1 F

V2 -F 2

v3 -F 3

bit - reversal
ordering

S(a)

New input Transform vector
vector j for (p-2)th vector
(p th) in bit-reversal order

First stage A (A+B)
intermediate vector
for (p-l)th vector B -b b(A-B)

denotes a "butterfly"

(b)

1 1 1 1 -1 -1 -1 -1

/ . F - F - o o o 0o

o o 0 0 -5 -v5
1

[H 8
8 2 -2 0 0 0 0 0 0

0 0 2 -2 0 0 0 0

0 0 0 0 2 -2 0 0

0 0 0 0 0 2 -2

(a)

ORIGINAL HAAR TRANSFORM
VECTOR VECTOR

Vi VHI

V2V VH2

V3 VI VH3

V4 - 2 VH4

V5 2 VH5

V 2 VH6

V7 -I 2 VH7

(b)

New input vector
(p th)

First stage
Intermediate results
for (p-1)th vector

Second stage
int. res. for (p-2)th

Partial transform
coefficients for
(p-2)th vector

Partial transform
coefficients for
(p-1)th vector

AB

B stands for A-B

