
N A S A C O N T R A C T O R

R E P O R T

N A S A C R - 2 4 1 2

CS
i

•<
uo
•<

TESTING TECHNIQUES FOR DETERMINING

STATIC MECHANICAL PROPERTIES

OF PNEUMATIC TIRES

by R. N. Dodge, R. B. Larson, S. K. Clark,

and G. H. Nybakken

Prepared by

THE UNIVERSITY OF MICHIGAN

Ann Arbor, Mich. 48105

for Langley Research Center

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION • WASHINGTON, D. C. • JUNE 1974



1. Report No. 2. Government Accession No.

NASA CE-2412

4. Title and Subtitle
TESTING TECHNIQUES FOR DETERMINING STATIC MECHANICAL PROPERTIES
OF PNEUMATIC TIRES

7. Author(s)

R. N. Dodge, R. B. Larson, S. K. Clark, and G. H. Nybakken

9. Performing Organization Name and Address

The University of Michigan
Ann Arbor, Michigan U8105

12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration
Washington, B.C. 205^6

3. Recipient's Catalog No.

5. Report Date
June 197!)-

6. Performing Organization Code

8. Performing Organization Report No.

056080- 20-T

10. Work Unit No.

501-38-12-02

11. Contract or Grant No.

NGL- 23-00 5-010

13. Type of Report and Period Covered

Contractor Report

14. Sponsoring Agency Code

15. Supplementary Notes

Topical report.

16. Abstract

Fore-aft, lateral, and vertical spring rates of model and full-scale pneumatic tires

•were evaluated by testing techniques generally employed by industry and various testing

groups. The purpose of this experimental program was to investigate what effects the

different testing techniques have on the measured values of these important static tire

mechanical properties. The testing techniques included both incremental and continuous

loadings applied at various rates over half, full, and repeated cycles.

Of the three properties evaluated, the fore-aft stiffness was demonstrated to be the

most affected by the different testing techniques used to obtain it. Appreciable differ-

ences in the fore-aft spring rates occurred using both the increment- and continuous-loading

techniques; however, the most significant effect was attributed to variations in the size of

the fore-aft force loop. The dependence of lateral stiffness values on testing techniques

followed the7;Vamejtrends .as that for fore-aft stiffness, except to a lesser degree. Vertical

stiffness values were found to be nearly independent of testing procedures if the nonlinear

portion of the vertical force-deflection curves is avoided.

17. Key Words (Suggested by Author(s))

Aircraft tires

Tire mechanical properties

Tire testing techniques

19. Security Classif. (of this report)

Unclassified

18. Distribution Statement

Unclassified - Unlimited

STAR Category 02

20. Security Classif. (of this page) 21. No. of Pages 22. Price*

Unclassified W $3.25

For sale by the National Technical Information Service, Springfield, Virginia 22151



TABLE OF CONTENTS

Page

SUMMARY !

INTRODUCTION 2

SYMBOLS ^

TEST PROCEDURES AND RESULTS 5

CONCLUDING REMARKS ,,„

111



LIST OF ILLUSTRATIONS

Table Page

I. Tire Descriptions 10

II. Tire Operating Conditions 11

III. Summary of Static Fore-Aft Stiffness, k (ib/in.) - 15
X

IV. Summary of Static Lateral Stiffness, k (ib/in.) 29
<y

V. Summary of Static Vertical Stiffness, k (ib/in.) 38
z

Figure

1. Tire coordinate directions. 5

2. Photograph of fore-aft test'apparatus for model tires. . 7

J. Photograph of fore-aft test apparatus for full size tires. 8

k. Typical fore-aft, increment load, force-deflection plots for
model and full size tires. 17

5. Fore-aft force-deflection loops illustrating effect of loop
size for a model tire. . 19

6. Fore-aft force-deflection loops illustrating effect of loop
size for a full size tire. 20

7« Dimensionless plot of fore-aft stiffness versus loop size for
all tires. 23

8- Fore-aft force-deflection loop illustrating tire slippage
during testing of a model tire. 2k

9- Fore-aft force-deflection loop illustrating small, unidirec-
tional slippage during testing of a model tire. 2U

10. Lateral force-deflection loop illustrating dog leg type loop
generated during testing of a full size tire. 25

11. Photograph of lateral test apparatus for model tires. 28

iv



LIST OF ILLUSTRATIONS (Concluded)

Figure Page

12. Photograph of lateral test apparatus for full size tires. 28

13- Typical lateral, increment load, force-deflection plots for
model and full size tires. 31

14. Lateral force-deflection loops illustrating effect of loop
size for a model tire. 33
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TESTING TECHNIQUES FOR DETERMINING
STATIC MECHANICAL PROPERTIES OF PNEUMATIC TIRES

By R. N. Dodge, R. B. Larson, S. K. Clar.k, and G. H. Nybakken

SUMMARY

Fore-aft, lateral, and vertical spring rates of model and full-scale

pneumatic tires were evaluated by testing techniques generally employed

by industry and various testing groups. The purpose of this experimental

program was to investigate what effects the different testing techniques

have on the measured values of these important static tire mechanical

properties. The testing techniques included both incremental and contin-

uous loadings applied at various rates over half, full, and repeated cycles.

Of the three properties evaluated, the fore-aft stiffness was demon-

strated to be the most affected by the different testing techniques used

to obtain it. Appreciable differences in the fore-aft spring rates

occurred using both the increment- and continuous-loading techniques; how-

ever, the most significant effect was attributed to variations in the size

of the fore-aft force loop. The dependence of lateral stiffness values on

testing techniques followed the same trends as that for fore-aft stiffness,

except to a lesser degree. Vertical stiffness values were found to be

nearly independent of testing procedures if the nonlinear portion of the

vertical force-deflection curves is avoided.



INTRODUCTION

Engineers measure and evaluate static mechanical properties of pneumatic

tires for various reasons. Often the numerical values of these properties are

exchanged among many engineering groups. This flow is an admirable exchange

of technical knowledge and an economic use of time and effort. However, the

indiscriminant use of such information can be unwise if these numerical values

are not measured and interpreted consistently from one source to another. Thus,

there is a definite need to investigate the effects of testing procedures and

techniques on the static mechanical properties of pneumatic tires. Also, if

it is evident that some properties are highly susceptible to testing techniques,

it is possible that guidelines could be established for such measurements.

The general purpose of the test program.discussed here was to systemat-

ically investigate the effects of testing techniques on three important static
s

mechanical.properties of pneumatic tires. These effects were to be studied on

both scaled model aircraft tires as well as full size tires. In addition, it

was hoped that this work would be useful in establishing criteria for measuring

those properties that are highly influenced by testing techniques.

The static mechanical properties cnosen for this study were vertical, lat-.

eral, and fore-aft spring rates. Each of these properties was to be measured

and evaluated-by various techniques and their results compared with one another.

The techniques were to be varied according to the numerous methods.used in the

past by various testing groups.

The research group concerned with this program has been actively involved



in establishing structural modeling laws of pneumatic tires [!]• Some validity

has been established for these laws by showing favorable correlation between

some mechanical properties of prototype and model aircraft tires constructed

according to the modeling laws. These model aircraft tires are used in this

investigation as well as a variety of full size automobile and aircraft tires.



SYMBOLS

English Letters

D - tire diameter

F - tire fore-aft force
x

F - maximum tire fore-aft force
xm

F - tire lateral force
y
F - maximum tire lateral force

F - tire vertical force
z

F - maximum tire vertical force
zm

k - tire fore-aft elastic stiffness
x

k - tire lateral elastic stiffness
y
k - tire vertical elastic stiffness
z

p - tire inflation pressure
o

x,y,z - tire coordinate directions (see Figure l)

Greek Letters

8 - tire fore-aft deflection
x

5 - maximum tire fore-aft deflection
xm

6 - tire lateral deflection
y
8 - maximum tire lateral deflection
ym

8 - tire vertical deflection
z

8 - maximum tire vertical deflection
zm



TEST PROCEDURES AND RESULTS

The two coordinate system used in this work is shown in Figure 1. The

mechanical properties discussed are described in terms of these coordinates.

The x-direction is referred to as the fore-aft direction, the y-direction as

the lateral direction, and the z-direction as tne vertical direction.

(Vertical)

Figure 1. Tire coordinate directions..

The stiffnesses or spring rates in these directions are defined in terms

of the ratio of applied force to resulting deflection. The fore-aft stiffness

k is defined in terms of the fore-aft load F and the corresponding deflection
X X

5 obtained when a stationary time is first inflated and loaded vertically and
X

then subjected to a varying fore-aft load. The lateral stiffness k is defined
t/

in terms of the lateral load F and the corresponding deflection 6 obtained
y y



when a stationary tire is first inflated and loaded vertically and then sub-

jected to a varying lateral load. The vertical stiffness k is defined in
z

terras of the vertical load F and the corresponding deflection 6 obtained
z z

after a stationary tire is first inflated and then subjected to a varying ver-

tical load.

Data necessary to investigate these properties were collected for both

model and full size tires. The model aircraft tires were built according to

.the modeling laws and procedures discussed by Clark, Dodge, Lackey, and Nybakken

[1]. The model tires used in these tests were scaled from kOx 12-lU PR Type VII

and U9x 17-26 PR Type VII aircraft tires. The full size tires ranged from a

foreign made 155 mm x 15 radial passenger car tire to a 2^ x 7-7-10 PR Type VII

aircraft tire.

Fore-Aft Stiffness

The test apparatus used to obtain fore-aft data for the model tires is

shown in Figure 2. This apparatus is a revision of the Static Testing Device

described in [1]. Its basic structure consists of a tire holding yoke attached

to a counterweighted 90-degree elbow arm which in. turn is attached to a fixed

base through a steel pointed hinge. The yoke assembly is loaded vertically

with dead weights, causing the tire to bear against a movable steel bearing

plate. This plate is supported by three barll bearings rolling in steel guides.

The bearing plate has a high friction surface bonded to it to minimize tire

slippage. The tire was positively locked in the yoke assembly to minimize

'6
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Figure 2. Photograph of fore-aft test apparatus for model tires.

wheel windup during the fore-aft tests. The three ball bearing supports had

low friction characteristics and the effective friction coefficient of the

total apparatus was 0.0158- This friction coefficient also held for tne lat-

eral tests.

Fore-aft data for the model tires were generally obtained by inflating

the tire to a prescribed internal pressure and loading the tire vertically with

a prescribed load. A varying fore-aft load was applied to the bearing plate

through the screw assembly. Force was monitored by a calibrated force trans-

ducer located between the screw assembly and the bearing plate. Displacement

was monitored by a Linear Variable Differential Transformer located between the

yoke and the bearing plate. The placement of the LVDT is important, especially

in fore-aft stiffness tests where the spring rate of the tire is high. The

spring rate of the tire in tne fore-aft direction can easily be of tne same

7



order as the support structure. Measurement of the true tire deflection re-

quires the relative displacement of the wheel hub and the bearing plate. Be-

cause of the positive locking procedures used in these tests, wheel windup was

found to be negligible. Thus, the relative displacement between the wheel yoke

and the bearing plate was used as the measure of tire deflection. The output

signals of both transducers were amplified through carrier preamplifiers and

recorded on a x-y plotter to give a force-deflection record.

The test apparatus used to obtain fore-aft stiffness data for the full

size tires is shown in Figure J. The apparatus is a modification of a Riehle

Figure J. Photograph of fore-aft test apparatus for full size tires.

Tensile Test Machine into a slow-rolling flat plank machine. The wheel is

bolted to the axle, which is rigidly bolted to the yoke which is bolted to the

loading head of the testing machine. The tire is loaded vertically through

8



the loading mechanism of the machine, causing the tire to bear against a mov-

able flat plank. The top surface of the plank directly under the tire has a

number 80 grit sanding belt bonded to it. The plank is supported by low fric-

tion rollers located directly under the loading area and is guided by ball

bearings located along the length of the plank and running against a stationary

steel angle guide. This plank arrangement results in low friction character-

istics and has an effective friction coefficient of 0.006, considerably lower

than the model tire system. The fore-aft load is applied to the end of the

movable plank. A tension-compression load cell is placed between the loading

screw and the plank. The displacement is measured with the same LVDT used in

the model tests. Again the LVDT is located between the plank and the yoke,

since wheel-axle windup was negligible with the rigid system used in these

tests.

The fore-aft data for the full size tires were obtained in the same manner

as the data for the model tires. One minor difference was caused by the nature

of the two loading systems. The model tires were always operating under a

fixed vertical load while the full size tires were always operating under fixed

vertical deflection. However, the basic operation of the full size test appa-

ratus was very similar to that used for the model tires.
\

A brief description of the model and full size tires used in these tests

is given in Table I. The A-series model tires are scale models of U0xl2-li* PR

Type VII aircraft tires with a scale factor of 8-65 and the B-series model

tires are scale models of k9x 17-26 PR Type VII aircraft tires with a scale

factor of 12. Each model tire had been run through a break-in period before

9



TABLE I

TIRE DESCRIPTIONS

Model Tires

A24

A2JP

B21

B23

B26

B291

Full Size Tires

1
2

3
4
5
6
7
8
9
10

10M

2-ply bias model of 40 x
crown angle 39°, 840/2

2-ply bias model of 40 x
crown angle 36°, 840/2

2-ply bias model of 1*9 x
crown angle 42°, 840/2

2-ply bias model of 49 x
crown angle 42°, 840/2

2-ply bias model of 49 *
crown angle 4l°, 840/2

2-ply bias model of 49 x
crown angle 34°, 840/2

12-14 PR Type VII,
Nylon, 10 EPI
12-14 PR Type VII,
Nylon, 10 EPI

17-26 PR Type VII,

Nylon, 28 EPI

17-26 PR Type VII,
Nylon, 28 EPI

17-26 PR Type VII,
Nylon, 10' EPI

17-26 PR Type VII,
Nylon, 10 EPI

24 x 7-7-10 PR Type VII, aircraft
8.00 x 14, 4-ply bias, automobile
7.50 x 14, 2-ply bias, automobile
7.50 x .14, 4-ply radial, foreign, automobile
5.90 x 15, 4-ply bias, foreign, automobile

155 x 15, radial, foreign, automobile
215 R 15, radial, automobile
7.50 x 14-8 PR Type III, aircraft
H78-15, belted bias, automobile
G78-15> belted bias, smooth tread, automobile

G78-15> belted bias, smooth tread, automobile

being used in any test. Most of the full size tires had not gone through such

a break-in period.

The operating conditions for the model and full size tires are given in

Table II. For the model tires, the vertical force is prescribed while the ver-

tical deflection is prescribed for the full size tires. The full size tire

vertical deflections were obtained by loading the tires to the approximate

rated load as specified by the Tire and Rirn Association and then measuring the

10



TABLE II

TIRE OPERATING CONDITIONS

Tire

A24
A23P
B21
B2J
B26
B29
1
2

3
4
5
6
7
8
9
10
10M

D
(in.)

4.55
4.55
4.oo
4.00
4.00
4.00

23.7
25.1
27-9
26.9 '
25-8
24.5
28.2

27.5
28.4
27.7
27.7

PO
(psi)

20
20

25
25
25
25
85
24
24
24
20
20
24
87
24
24"
24

Fz
(Ib)

41.6
41.6
31.6
31.6
31.6
31.6
4800*
1175*
1085*
1085*
770*
770*
1510*
5400*
1510*
1380*
1380*

bz
(in.)

• 327*
.319*
.211*
.216*
.224*
.197*
1.90
1.125
1.00
1.34
1.00
1.25
1.75
1.70
1.24
1.00
1.00

Fxm
(lb)

± 6
± 6
± 6
± 6
± 6
± 6

—
±225
±275
±250
±200

±175
±300
±500
±300
±250
±250

Fym
(lb)

± 5
± 5
± 5
± 5
± 6
± 5

—
±200

±225
±200
±150
±150
±250
±500
±250
±230
±230

*Approximate values.

deflections. Also shown in Table II are the maximum and minimum fore-aft load

F and lateral load F used for most of the tests,
xm ym

Eight different testing techniques were used to obtain fore-aft stiffness

data. Each of these techniques is described below by number and the results

from their use are discussed. All of the tires listed in Tables I and II were

not subjected to all eight testing techniques. For tests i-7, the model tires

were run on number 220 grit silicon carbide sandpaper and the full size tires

were run on number 80 grit sanding belt.

Test 1 - Increment loads, half cycle, slow loop.

The tire was pressurized and vertically loaded to the conditions given in

11



Table II. An increment of fore-aft load was applied to the system and held

constant for one minute, at which time the resulting fore-aft deflection was

recorded. The fore-aft load was then increased by the same increment and the

procedure repeated. This incremental loading was continued until the fore-aft

load had reached the maximum F given in Table II. The fore-aft loads were
xm

then decreased in a similar manner until the fore-aft load returned to zero.

The resulting force-deflection data were plotted and the fore-aft stiffness k
X

determined by averaging the best straight line fits to the increasing and de-

creasing portions of the plots. These best fit straight lines were obtained.

"by eye." The fore-aft stiffness k was also determined .by forming the ratio
X

of the maximum fore-aft load F and its resulting deflection 5 to obtain
xm , xm

(F /S ). The waiting time of one minute between increments "of load was. a
xm' xm . •

controlled attempt to allow the £ire to reach equilibrium before recording the

'i ' • .
deflection. This test procedure, Test 1, is representative of those used by

testing groups that only have the facilities for taking half-cycle, increment

load data.

Test 2 - Increment loads, full cycle, slow loop.

This test procedure was identical to Test 1 except the load cycle was con-

tinued ' in both directions, thus generating a full cycle of fore-aft load-

deflection data. The fore-aft spring constant k was determined by measuring
X

the slope of the line joining the end points of the fore-deflection loop. This

determination of k eliminates the observer's "eye" approximation used in Test 1.
X

Again the maximum and minimum fore-aft forces are those given in Table II.

12



Test 3 - Increment loads, full cycle, fast loop.

This test was a repeat of Test 2 except the loads were held constant for

15 seconds instead of one minute. This procedure was a controlled attempt to

determine time effects on increment load tests.

Test k - Continuous loads, slow loop.

This test was also a repeat of Test 2 except the loads were continuously

applied from zero to the maximum F , back through zero to the minimum F and
xm xm

back to zero. However, the test was not stopped after one cycle, but continued

for several loops. In these tests, the loops were continued until the gener-

ated loop "homed in" on a single path. In most cases the single path was gen-

erated on the second or third cycle. The time for one complete cycle was ap-

proximately one minute. The value of the fore-aft stiffness k was again de-
jC

termined by measuring the slope on the line joining the end points of the force-

deflection loop. This test procedure, Test k, is representative of those test-

ing groups that have the capabilities of obtaining a full loop of force-

deflection through a continuous loading system.

Test 5 - Continuous loads, fast loop.

This test was identical to Test k except the load cycle was completed in

approximately 10 seconds instead of one minute. This test was included to de-

termine time effects for continuous loading conditions.

Test 6 - Continuous loads, slow loop,__ plate deflection.

This test was also identical to Test k except deflections were measured

between the fixed base and the bearing plate. This test was included to illus-

trate possible errors when the wheel, yoke and support mechanism are assumed

rigid.

13



Test 7 - Continuous loads, varying force loop size.

This test was basically the same as Test k with a complete loop generated

in approximately 20 seconds. In this test, the maximum fore-aft force applied

F was varied over a range of values. This procedure resulted in h or 5 dif-
xm

ferent size force-deflection loops. The fore-aft stiffness k was determined
A

using the Test 4 procedure of connecting the end points.

Test 8 - Continuous loads, varying contact surface conditions.

This test was also basically the same as Test k. The high friction sur-

face test was the same as in Test U. After this test the tire was thoroughly

cleaned. The high friction surface was removed from the bearing plate and the

metal surface of the plate was cleaned thoroughly. The test procedure described

in Test k was then repeated. Next an oiled surface and then a dirty surface

(oil mixed with grit and sand) were tested in the same manner. Finally, the

plate and tire were thoroughly cleaned and the tire bonded to the bearing plate

with methyl-2 cyanoacrylate. At the instant of bonding, the tire was maintained

at the prescribed operating conditions given in Table II. The test procedure

was then repeated, again using the force loop size given in Table II. Due to

the possibility of tire damage during the unbending, the tires used in this

test, Test 8, were different than the tires used previously in Tests 1-7.

The results of Tests 1-8 are summarized in Table III. The friction forces

of the testing apparatus have not been taken into account in arriving at the

fore-aft stiffnesses given in this table. The results given in the table indi-

cate that all tires, both model and full size, have the same general trends.

However, the different in stiffness values between Test 5 and the preceding

14
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four tests is somewhat greater for Tire 2 than any other tire.

A number of specific observations can be made concerning the fore-aft

stiffness tests:

(a) The values of k determined from increment load tests, with the ex-
A

ception of Tire 2, ranged from 5-15$, lower than those determined from continu-

ous load tests. See the results for Tests 1-5-

(b) The values of k determined from full cycle increment load data from
.A.

model tires were 2-7$> less than those determined from half cycle increment

load data. On the other hand, the full cycle values for the full size tires

ranged from ± 10$, of the half cycle values. A further indication of the dif-

ferences encountered in determining k from half cycle and full cycle increment
J\

data is shown in Figure k. This figure presents typical increment load force-

deflection plots for a model tire and a full size tire. The friction force is

indicated by the bar in the figure, but has not been subtracted from the data

presented. It is apparent from these plots that the various interpretations

of k mentioned previously can lead to different values of k .
x x

(c) The slope of the line from the origin to the maximum force-deflection

point. F /§ , was usually lower than either of the values of k determined
' xm7 xnr J x

from the increment load techniques on Tests 1 or 2.

(d) The values of k determined from the fast increment loading loops
X.

were 0-9$, higher than those determined from the slower increment loading loops.

See the results of Tests 2 and 5.

(e) The values of k determined from the faster continuous loading loops,
J\

with the exception of Tire 2, were 0-6ffa higher than those determined from the
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A24
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Fz - 41 Ibs.
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-500-1-

Figure k. Typical fore-aft, increment load, force-deflection
plots for model and full size tires.
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slower continuous loading loops. See the results of Tests k.and 5-

(f) The values of k determined by measuring the plate deflection and
A

assuming it to be equal to the tire deflection were 25-̂ 0$ lower than those

obtained using the relative displacement between yoke and plate. See the re-

sults of Tests 5 and 6. This result is a clear indication of the role of yoke

and support deflections in measuring the relatively stiff fore-aft spring rate

of a tire.

(g) The values of k decreased from 12-50$ as the force loop size was in-
.X

creased from a small value to a maximum value. See the results of Test 7- A

further indication of this significant difference is clearly illustrated in

Figures 5 and 6. Figure 5 shows a typical composite force-deflection plot for

two different loop sizes for a model tire. Figure 6 shows the same type of

plot for a full size tire. Again the friction force is indicated on the two

figures, but is not subtracted from the data shown.

(h) The values of k varied less than 5$ for the tests conducted under
X

various surface conditions. However, when the model tires were bonded to the

surface, the value of k increased 16-25$, while the full size tire value in-

creased only 5$« It is n°t clearly understood why the increase is so different

between the model tires and the full size tire. The reason may be in the dif-

ference between the contact patch geometries. The model tire has a typical

aircraft tire geometry, with circumferential grooves and little rubber buildup

at the tire shoulders. When loaded to 30-35$ vertical deflection, the tire

has a rounded contact patch [1]. The full size tire is a typical automotive

tire with pronounced shoulders but with no tread pattern. The resulting

18



A24
P0

 = 20 Psi

Fz=41.6 Ibs.

Fx(lbs.)

10.0 -r

7.5 --

5.0 --
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^ ± 4 Ibs.

-0.0250 -0.0125 7 0.0125 0.0250 6 x ( i n . )

-5.0 --

-7.5 --

-10.0 -L

Figure 5. Fore-aft force-deflection loops illustrating effect
of loop size for a model tire.
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TIRE 8
7.50 x 14 Type in
Po = 87 psi
6Z =1.70 in.

Fx( lbs.)

Friction
Fx ^ ± 500

0.100 6x(in.)

Figure 6. Fore-aft force-deflection loops illustrating effect
of loop size for a full size tire.
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contact patch is almost a perfect rectangle. These contact patch geometry dif-

ferences may cause different deformation patterns when the tire is bonded to

the plate and distorted in the fore-aft direction. The fact that the fore-aft

stiffness does increase with bonding may have two possible explanations. The

first possible reason may be based on the restraining of the tire contact

patch from stretching- when the tire is bonded. The net deflection for a given

load is less, resulting in a higher spring rate. The second reason is based

on the restraining of local slip in those regions of the contact patch where

the vertical pressure distribution is small. This restriction on the bonded

tire again results in a smaller deflection and a higher spring rate.

From the results and observations discussed above, it seems there are sev-

eral important suggestions to be made in regards to obtaining and interpreting

/

static-fore-aft mechanical properties of pneumatic.tires. First, if. k is mea-
X

sured by loading a locked tire against a movable plate which in turn is loaded

in the fore-aft direction, care should be taken to measure relative deflection

between the plate and-the wheel and not between the ground and the plate. Even

using apparatus that appears to be fairly rigid can lead to substantial errors

in deflection measurement, as the results of Test 6 illustrate.

Secondly, a crude estimate of a tire's fore-aft stiffness can be obtained

by applying a single fore-aft 'load and measuring the resulting deflection. The

ratio of these two values gives a reasonable estimate for k .. In general, this
.X

estimate will be less than the true value.

Finally, it might be recommended that the most consistent and useful

method for measuring k is with a system that allows full cycle, continuous
jC
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load loops to be generated and recorded in the form of x-y plots. There are

several reasons for this recommendation. First, a consistent interpretation

of the value for k is possible if a full force-deflection loop is available.

This interpretation specifically defines k as the slope of the line joining
j\

the end points of the loop. This method eliminates the need for best fits or

other approximations. However, as the discussion above indicates, a value of

k can only be used and interpreted in a consistent manner if the operating
X

conditions for which the value was measured are well monitored and clearly in-

dicated. In particular, the inflation pressure, the vertical load, and the

fore-aft load loop size should be clearly defined. The inflation pressure and

vertical load can be fixed in relation to an easily obtainable rated condition.

However, no such specification exists for the fore-aft loop size. The effect

of fore-aft loop size on the measured value of the fore-aft stiffness can be

clearly seen in Figure 7- Figure 7 is a composite plot of k as a function of
J\

varying force loop size in dimensionless form for all the tires tested in Test

7- The results shown in Figure 7 indicate the size of the fore-aft loading

loop must be taken into account when comparing fore-aft stiffnesses of differ-

ent tires. A standard loop size might be defined as a fixed percentage of the

vertical load or the vertical deflection.

The continuous loading full loop also has the advantage of displaying un-

usual and, usually, unwanted characteristics of the load-deflection data. Fig-

ures 8, 9} and 10 are examples of force-deflection loops with undesirable fea-

tures. Figure 8 shows a fore-aft force-deflection loop where slippage has oc-

curred between tire and plate. Comparing Figure 8 with the usual loops in

22



10

+ YRadials
C7 _-/

Aircraft (Type HI

Models

0.01 0.02 0.03 0.04 0.05
F
X/P0D

2

Figure ?. Dimensionless plot of fore-aft stiffness
versus loop size for all tires.
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Fx(lbs.)

-0.0250 -0.0125

Figure 8- Fore-aft force-deflection loop illustrating
tire slippage during testing of a model tire.

Fx( lbs.)

-0.0250 -0, 0.0250 0.0375 6 x ( i n .

Figure 9. Fore-aft force-deflection loop illustrating small,
unidirectional slippage during testing of a model tire.
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100 --
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Figure 10. Lateral force-deflection loop illustrating dog leg type
loop generated during testing of a full size tire.
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Figure 5 and 6 illustrates the large flat portions at the high loads where

large deflections are occurring with no increase in load. Also, the absence

of a homing in on a single loop indicates that more slippage has occurred in

one direction than the other. Figure 9 illustrates this same effect, even

though the slippage is not obvious. In this case, the lack of a homing in on

a single path is caused by improper locking of the wheel in the yoke. Even

though the force continues to rise with deflection, a slight slippage has oc-

curred between the axle and the yoke. This slippage is unidirectional and re-

sults in the absence of a final, single loop. Figure 10 illustrates a dog-leg

type feature of a force-deflection loop. In this case, the dog leg was gener-

ated by running the plate into an unnoticed obstruction. The obstruction acted

like a stiff spring in series with tire at one end of the loop and caused the

stiffer portion of the loop. Dog-leg loops can also be caused by measuring

the deflection with respect to ground and having a support structure that is

stiffer in one direction than the other. .In this case the structure acts like

a spring in series with the tire but with asymmetric force-deflection proper-

ties. The resulting force-deflection loop will have a dog leg at the origin.

Although the undesirable characteristics of a fore-aft test might be obvious

when one looks at the resulting force-deflection loop, these characteristics

might go unnoticed in half cycle or increment loading tests or at least go un-

noticed until the data are plotted after the test. The simultaneous x-y re-

cording of the force and the deflection during the actual test can indicate

•

test difficulties immediately and obviously, especially when continuous load-

ing, full loops are generated. 26



Lateral Stiffness

The testing apparatus used to obtain lateral stiffness data for the model

and full size tires was the same as that used in obtaining the fore-aft data.

The only change in the model and full size equipment was to position the tire

holding yoke such that the tire was 90° from its orientation used in the fore-

aft test. Figures 11 and 12 show the model and full size lateral testing appa-

ratus. This arrangement provided a lateral force and deflection on the tire

as load was applied through the screw mechanisms of each apparatus. The forces

and deflections were measured in the same manner as in the fore-aft tests. The

same eight test techniques described for the fore-aft tests were used for the

lateral tests. The same tires and operating conditions listed in Table II were

also used, except for the standard lateral force magnitudes F . which are also
ym'

listed in Table II.

The results of the various lateral tests are summarized in Table IV.

Again, friction forces of the testing apparatus have not been taken into ac-

count for these values. Several observations can be made from these results:

(a) The values of lateral stiffness k determined from increment load
«y

tests were 5-15$> less than those determined by continuous load tests. See the

results of Tests 1-5. This result was very similar to that observed for fore-

aft tests,

(b) The values of k for the model tires determined from full cycle in-
«y

crement load data were 6-lC% greater than those determined from half cycle data.

This result is in direct contrast to that observed for the fore-aft tests.

27



Figure 11. Photograph of lateral test apparatus for model tires.

Figure 12. Photograph of lateral test apparatus for full size tires.
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However, the full cycle values of k for the full size tires were within ±
iX

of the half cycle values, as they were for the fore-aft tests. Figure 1J shows

typical increment lateral load-deflection plots for a model and a full size

tire. Again the friction force is indicated on the plot, but is not subtracted

from the data. Again it is apparent that different values of k can be deter-
«y

mined with different interpretations of the data.

(c) Unlike the fore-aft results, the ratio of F /& was usually between
ym' ym

the values of k determined for Tests 1 and 2.
y

(d) The values of k determined from fast increment loading loops were
«y

0-11% greater than those determined from the slower increment loading loops.

Again this result agrees with the fore-aft test results.

(e) The values of k determined from fast continuous loading loops were
*/

0-5$> greater than those determined from slower continuous loading loops. Again

this result agrees with the fore-aft test results.

(f) The values of k determined by measuring plate deflection and as-
tX

suming it to be tire deflection were 12-17% lower than those determined by

measuring the relative displacement between plate and yoke. This result is

lower than that obtained from the fore-aft tests and might be expected. Al-

though the testing system has the same effective stiffness as before, the lat-

eral stiffness of the tire is approximately 1/5 the fore-aft stiffness. Thus,

the percentage of the total lateral deflection due to the structure is lower

than in the case of the fore-aft deflection.

(g) The values of k decreased 13-2*4% as the force loop size was in-
•J

creased from a small prescribed value to a maximum size. This difference is
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Figure 1J. Typical lateral, increment load, force-deflection
plots for model and full size tires.
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clearly seen in Figures lU and 15- Figure lU is a typical composite force-

deflection plot for two different size loops for a model tire. Figure 15 is

a similar plot for a full size tire. A dimensionless plot of lateral stiff-

ness versus lateral loop size for all the Test 7 results is shown in Figure 16.

(h) For the model tires, the value of k varied less than 2tf0 for the dif-
«y

ferent surface conditions tested and increased 9~H$> when bonded to the surface.

A comparison of the lateral stiffness results with the fore-aft stiffness

results indicates that, generally, the effects of testing techniques on these

two mechanical properties are similar in nature, although the degree of influ-

ence on fore-aft properties appear to be greater. Thus, the observations and

recommendations made for fore-aft stiffness can also be made for lateral stiff-

ness.

Vertical Stiffness

The test apparatus used to obtain vertical stiffness data for the model

tires is shown in Figure 17. This apparatus is yet another adaptation of the

Static Testing Device described in [1]. In its use as a vertical stiffness

test stand, the wheel and yoke were rigidly blocked up off the movable bearing

plate. A "vertical" load was then applied horizontally to the tire by loading

a rigid vertical surface against the tire. The vertical wall was attached to

the bearing plate and the load was applied'through the screw mechanism. The

resulting "vertical" deflection was measured by the LVDT mounted between the

bearing plate and the yoke. The force was measured with the same force
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Figure 1̂ 4-. Lateral force-deflection loops illustrating
effect of loop size for a model tire.
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Figure 15. Lateral force-deflection loops illustrating
effect of loop size for a full size tire.

34



_
POD

1.6

1.5

1.4

1.3

1.2

1.1

1.0

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0
0 0.01 0.02 0.03

/p0D2
0.04 0.05

Figure l6. Dimensionless plot of lateral stiffness
versus loop size for all tires.

35



Figure 17• Photograph of vertical test apparatus for model tires.

transducer used for the previous tests. Again the output signals of the trans-

ducers were amplified and recorded on an x-y plotter.

The Riehle test machine used to obtain vertical stiffness for the full

size tires was basically that illustrated in Figure J. In this test the ver-

tical load was applied through the movable loading head of the test machine

and the resulting vertical deflection measured with a dial gage. For the ver-

tical tests, four testing techniques were used to obtain vertical stiffness

data. These techniques are described below as Tests A, B, C, and D.

Test A - Increment deflections.

The tire was inflated to the value listed in Table II. An increment of

vertical deflection was applied and held constant for one minute at which time

the vertical load was recorded. An identical increment of deflection was then

applied and the procedure repeated. This test procedure was continued until
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the maximum desired deflection was obtained. The increment deflections were

then decreased to zero. The value of the vertical stiffness k was then deter-
z

mined by measuring the slope of the line joining the maximum end point of the

force-deflection loop and the point whose coordinates were one half the maximum

deflection and the average force of the increasing and decreasing portions of

the loop at this deflection.

Test B - Continuous slow loop.

This test was a repeat of Test A except the vertical deflection was ap-

plied in a continuous manner. The time for one complete cycle was at least

one minute.

Test C - Continuous fast loop.

This test was a repeat of Test B except the loop was complete in approxi-

mately 15 seconds.

Test D - Looping about a predeflection.

The tire was inflated to the specified value in Table II and deflected to

one half of its maximum vertical deflection 6 . This deflection was taken as
zm

the center of a force-deflection loop. The loop was obtained by starting at

this point as zero reference and slowly and continuously applying an increasing

vertical deflection to a value short of 5 and then decreasing the deflection
zm

back through the reference point towards the real zero deflection, but re-

versing the deflection before zero was reached and increasing the deflection

to the reference point. The value of k was then determined by measuring the
z

slope of the line joining the end points of the loop.

A summary of the results from these four tests is shown in Table V. Again
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TABLE V

SUMMARY OF STATIC VERTICAL STIFFNESS

k (Ib/in. )
z

Tires

A2U
B21
B26
B291

1
2

3
l*
5
6
7
8
9
10

Test
Fzm
°zm

lUO
170
180
180

2630
1000
1030
810
750
610
8̂ 0
3060
1210
1380

A

kz

160
220
230
230

3260
1210
1200
900
81*0
690
950

1*070
ll*70
11*10

Test
Fzm
zm

11*0
170
180

" 190

2660
1030
1050
810
760
610
850
3090
1220
11*00

B

kz

160
220
230
2UO

3260
1290
1260
900
876
700
980

1*120
1500
11*6 o

Test
FZm
5zm

11*0
170
180
190

2650
ioi*o
1060
820
780
620
860
3130
121*0
11*20

C

kz

160
220
230
2UO

321*0
1300
1260
920
900
720
970
3980-
1570
11*60

Test
Fzm
6

150
180
190 '
200

2890
1180
1130
850
850
660
920

• 31*20
1320
1550

D

kz

160
210
220
230

3290
1320
1290
920
880
700
990

l*ll*0
1580
ll*90

some general observations can be made. First, in general, the variation of

the values of! k from Test A through Test D was less than 5/0- Secondly, in
Z

general, the ratio of the maximum load to the maximum deflection, F /& , was
zm' zm

appreciably less (5-20/J than the value of k . See the results of Tests A, B,
Z

and C. This result is clearly indicated in Figures 18 and 19, which show typ-

ical vertical force-deflection curves for the model and full size tires, re-

spectively. In these figures a definite nonlinearity is evident in the lower

portion of the curve. This nonlinearity diminishes as the contact patch be-

comes fully developed under, the influence of the vertical deflection. Thus,

the ratio of F /& was less than k because the F was proportionately
zm zm z z

smaller for the first half of the loop than'for the second half.
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Figure 18- Typical vertical force-deflection loop for a model tire.
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Figure 19. Typical vertical force-deflection loop for a full size tire.
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Finally, the value of k was not appreciably changed when determined from
z

the slope of the line through the end points of the loop generated by cycling

about 6 /2. This result is obvious after observing a typical loop and its
zm

corresponding full loop shown in Figure-18. It is evident in this figure that

looping about a predeflection point does not effect the value of k as long as
z

the loop does not extend significantly into the lower nonlinear region.

From these observations it might be recommended that the most consistent

way to evaluate k is to establish a definition which will eliminate the ini-
z

tial "soft" portion of the vertical load-deflection curve, such as the defini-

tion of k used in this study. The technique used to obtain the force-
z

deflection information seems to make little or no different in the value for

k .
z
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CONCLUDING REMARKS

Fore-aft, lateral, and vertical spring rates of model and full-scale

pneumatic tires were evaluated by testing techniques generally employed

by industry and various testing groups. The purpose of this experimental

program was to investigate what effects the different testing techniques

have on the measured values of these important static tire mechanical

properties. Of the three properties evaluated, the fore-aft stiffness

was demonstrated to be the most affected by the different testing techniques

used to obtain it. Appreciable differences in the fore-aft spring rates

occurred using both the increment- and continuous-loading techniques; how-

ever, the most significant effect was attributed to variations in the size

of the fore-aft force loop. The techniques which provided the most con-

sistent value in fore-aft stiffness was that of generating and recording a

continuous full-cycle force-deflection loop.

The dependence of lateral stiffness values on testing techniques

followed the same trends as fore-aft stiffness values, except to a lesser

degree. Vertical stiffness values were found to be nearly independent of

testing procedures and techniques; however, due to a characteristic initial

"soft" portion in the vertical load-deflection curve, consistent values of

vertical stiffness can only be obtained when its value is determined from

a definition that bypasses the initial nonlinear portion of the force-

deflection curve.

The research program described in this paper indicates that testing

techniques do have an effect on the measured values of the three static
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stiffnesses studied. As more tire user groups demand to know more tire

characteristics, the need for a uniform criteria to measure and interpret

values for these tire characteristics grows and it is hoped that this

study might be used as a preliminary indication of how such a criteria

may "be formulated. Eventually, slow rolling properties such as cornering

power, self-aligning torque, pneumatic trail, and relaxation length must

also be exhaustively studied if the values of these tire parameters are

to have meaning to the tire user group. However, the basic static tire

properties covered in this report are probably the most amenable to some

sort of measurement and interpretation standard. The results given in

this report do serve to provide some indication of the type of measurement

and the difficulties of measurement interpretation that must be thoroughly

investigated before such a standard can be proposed.
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