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INTRODUCTION

tn this report, three coding schemes designed for improved data communi-
cation are evaluated., 1In Part A, four block codes are evaluated relative to
a quality function, which is a function of both the amount of data rejected
and the error rate.

Part B is an evaluation of the Viterbi Maximum Likelihood Decoding Al-
gorithm as a decoding procedure. This evaluation is obtained by simulating
the system on a digital computer.

In Part C, Short Constraint Length Rate 1/2 'Quick-Look' Codes ére

studied, and their performance is compared to general nonsystematic codes.



PART . A



PERFORMANCE OF BLOCK CODES

1. Introduction:

Although the use of error control coding techniques in digital space com-
munication systems has become falirly routine in recent years, there still exists
a great deal of uncertainty as .to the actual effectiveness of coding in achieving
more reliable communication, The reason for this is to be found in the fact that
the commonly used performance parameters do not take into account all the perti-
nent aspects of the coded transmission system, Thus, for example, the widely
used Probability of Word Error criterion totally ignores the possibility that
the decoder may incorborate some degree of data rejection. Likewise, the mini-
mum distance criterion, ancther popular measure of code performance, is com-
pietely independent of the decoding algorithm and several other important system
factors,

As a consequence of this state of affairs, it is virtually impossible to
compare, say, a coding system with error correction and data rejection to one
with error correction alone, using any of the existing criteria of performance,
and it is therefore of value to define and evaluate measures which incorporate
most, if not all, of the quantities afFecting'the overall system reliability.

This s the objective of the present work.

Il. Definition of Performance Measure:

For the simple types of block codes normally employed in space communi-
cation systems, the complexity of the encoder and decoder is of little conse-
quence, since the use of integrated circuit technology allows the construction
of the basic components in an inexpensive fashion. Furthermore, the complexity

is essentially independent of the particular code-decoder used.



The processing speed is generaily a function of the type of logic used and
the technology in the construction of the integrated circuits. Although one
could probably obtain cost figures as a function of processing speed, the im-
portance of these costs in the overall system considerations ‘is difficult to
assess. Also, as with complexity, processing speed is not a strong functioen
of the code-decoder combination.

Thus, the important factors determining the overall coding system perform-
ance are:

I. The accuracy of the data after decoding,
2. The amount of data rejected by the decoder,
3. The amount of redundancy in the code, and

k. The relative importance of data accuracy, data
rejection, and data transmission rate.

Let us consider a situation in which N blocks of received digits from a
binary (n, k} block code are to be decoded. The decoder generally rejects N-X

blocks, leaving X blocks after decoding, of which Y are correct. {See Figure 1)

. N=-X BLOCKS REJECTED

N BLOCKS
—»{  DECODER X _BLOCKS -

Y CORRECT BLOCKS

FIGURE 1. GENERAL DECODER CONF)GURATION
The amount of data passed by the decoder is measured by the guantity

1
F] = ﬁ-E{X} s



the accuracy of the data after decoding is measured by the quantity

e E)
2 E{XT *

and the amount of redundancy in the code is measured by the quantity

number of data digits per block
total number of digits per block

—.}E.:
3w

Here E is the usual expectatioﬁ operator.

We also define a quantity 0 < o < 1 which measures the retative importance
of data accuracy and data rejection.

As an overall measure of performance of the code-decoder combination, we

then take quantity

_q =g g (1-0)
F=1-F"°F

as a function of the energy per information bit-to-noise ratlo, Eb/No‘
When the N blocks are transmitted independently of each other and are
treated as such by the decader, 1 - F reduces to the probability of word rejec-

tion. ‘for a decoder with no data rejection, F, becomes the probability of cor-

2
rect decoding. Thus, in the two limiting cases a = 0 and a = 1, F reduces to
the probability of word error and word rejection, respectively.
[11. Evaluation of F for Hamming Type Block Codes Over the Binary Symmetric -
Channel:
We assume that N blocks are transmitted independently and with equal pro-
bability over a binary symmetric channel whose digit error probability is

P = 1-q. The codes of interest are of two types: The standard (n, k) Hamming

code described by the parity check matrix



- -
0 0 1
0 0 1
H =
D 1 . . . 1
0 0 o . . 1

whose columns are all 2" - 1 nonzero binary m-tuples {m any integer greater
than 2}, and a modified Hamming code whose parity check matrix differs from
the above only In having an additional row of ones on top. The first code has
block length n = 2" - 1, k = n-m information digits and minimum distance 3
and is thus able to correct all single errors. The second code has the same
block length, k = n - m - 1 and minimum distance 4 and can be decoded in either
a single-error-correcting, double-error-detecting mode or a triple-error-
detecting mode,

For both codes, the first step in decoding a received block v = (VI’ Va s

, vn) consists of determining its syndrome. This is a binary (n-k)-tuple

given by

s = vHT

where T denotes matrix transposition and the multiplication and addition opera-
tions are module 2.
We now consider four cases, including, for purposes of comparison, the

uncoded transmission of data blocks of length n.
Case 1. No Coding - (n, n) Code

Decoding Rule: Pass every block unchanged

Evidently, X = E{X} = N and since a block is correct at the

decoder output if and only if it is correct at the Input, we

have E{Y} = Nqn



and
o - qn(l—a)
Since F3 = 1, the relation between the channel error probability
. 1
p and Eb/No isp=x erf ¢2 Eb/No

Case 2. Single-Error-Correcting Hamming Code
Decoding Rule: |If the syndrome is zero, pass the block., If
. the syndrome is not equal to zero, assume a single error has
occeurred, correct it, and then pass the block.
Again, E{X} = N, For E{Y} we have
E{Y} = N{Probability that a block has no error or a
single error before decoding}

= Ng" + ng™ ! p}

k -
Therefore, F3 =T F1 =1, F2 =q + ng p

and

]
It

§ - (q" + npq" )

where p Lo erf v2k/n EbeO

z

Case 3, Single-Error-Correcting, Double~Error-Detecting Hamming Code
Decoding Rule: If the syndrome is zero, pass the block, |If
the first digit and at least one of the remaining digits in the
syhdrome are one, assume a single error has occurred, correct
it, and then pass the block. For all other syndromes, reject
the block.

k=1

We have F3 = !



FT = Eﬁil = {Probability that a block has zero syndrome

or the first and at least one of the remaining

digits equal one}

n-2i

n-2i + 1 2i + 1}
2i 9 P

Zi N
o R R TSI

where Aj s the number of codewords of weight | of the Single-
Error-Correcting Hamming Code,
and for F2 we obtain

_ELY} . _ |
Fr = E0%7 © FT {Probability that a received block is correct

or has a single error}

Case 4. Triple-Error-Detecting Hamming Code
Decoding Rufe: |[Ff the syndrome is zero, pass the block. Other-

wise, reject the block,

Sl
Here, F3 == s
_ E{X} _ A
F1 =N = {Probability that a block has zero syndrome}
n-1
2
=21 2i
=2 A, qn ,
1 =0 21
and
F =E{Y}=H_n.
2 E{X F

The Hamming code weight spectra required for Cases 3 and 4 may be obtained

as the coefficients of the polynomial.



n+1

n-i
Z (1-x) 2,

fi{x) = -1;1_-1- ()" + n{14x)

where Ai is the coefficient of x'.

IV. Evaluating the Performance Criterion:

A Fortran language program, reproduced in Appendix A, was written to evaluate
the function F for the four cases described above. The program calculates F for
101 equally spaced values of Eb/NO ranging From.Z db to 10 db and al} va]ueé of
redundancy fromm = 3 to m = 10,

A major part of the program is devoted to calculating the coefficients of

the function

a-t o+l
2 2 )

F(X) = ;}T (0™ + n(14) 2 (1-X)

which are used in Cases 3 and 4. The main difficulty in this computation is

300 for large values of n.

Overfiow on the IBM 370 occurs with numbers as small as 1077. To overcome this

that some of them have magnitudes on the order of 10

problem, most calculations are done using logarithms, Thus, for example, the

logarithms of the coefficients of (1+X)n are stored in an array called LGCOEF.

n+1/2

Similarly, the compeonents of (1+X)n-l/2 and (14¥X) are stored in LCNMI and

LCNP1, respectively. Note that LCNP1 contains the logarithms of the coeffi-

)n+1/2 )n+1/2

cients of (1+X and not (1-X , since the latter has negative coeffi-

cients whose logarithms do not exist. The variable SIGN, which always equals

n-1/2

+1, is used to convert the coefficients of (14X) to the coefficients of

(I_X)n+1/2

when making calculations of f(X).

A special procedure is used throughout the program to achieve addition
of these very large numbers, Obviously this addition cannot be achieved di-
rectly using logarithms. To illustrate thls procedure consider adding the

298

numbers A = 7.3147 x 10 and B = 2,1532 x 10295 given the logarithms of these

humbers.



]
]
It

ALOG = log(A) = 298.864196 = 3,864196 + 295.

log(B) 0.333084 + 295,

295.333084

BLOG

U

Let Z = X+Y and ZLOG = log(Z).

0.333084)

ZL0G = Jog(103-864196 L 4 + 295

log(7314.7 + 2.1532) + 295
log(7316.8532) + 295

3.864324 + 295
298.864324

Thus, the log of the sum has been calculated using numbers no bigger than
7316,8532. Since the calculations on the IBM 370 have only 16 significant
figures, numbers whose magnitudes differ by more than 1016 are not added by
the above method. In this case the sum is set equal to the larger of the
two numbers,

The coefficients of f(X) are calculated using the aforementioned tech-
niques and stored in an array caljed RIGHT. The variable RINOM is set equal
to the logs of certain binomial coefficients, and 't is used in calculating

terms of F1CAS3 (F1 for Case 3; i.e., F, for SEC-DED) of the form
((?) - Ai)qn"pl.
These terms are stored in COEF(C3.
In order to calculate the parameters for each case for any particutlar
value of S/N, values for g and p, which are dépendent on the code rate, must
be evaluated. The dependence on code rate requires calculations of Q1 and PI1,

Q2 and P2, and Q3 and P3 for use with Cases 1, 2, and 3 and 4 respectively,

Since Case & has the same code rate as Case 3, Q3 and P3 are applicable to both.

Y. MNumerical Results and Conclusions:

[n Figures 2-49, we have plotted the performance mzasure F as a function

of the signal-to=nolse ratio Eb/NO of the binary symmetric channel in db, for

9
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~

all four cases described above, and for n = 7, 15, 31, 63, 127, 255, 511, 1023,
and o = 0, 0.1, 0.3, 0.5, 0.8, 1.,0. We draw the following conclusions. Ffor

the extreme values of alpha the relative importance of each case remains fixed
for all values of Eb/No. When o = 0, indicating an interest only in the quality
of the output, the relative ratings from best to worst are: TED, SEC-DED, SEC,
No coding. As expected, when a = 1, indicating an Interést only in the quantity
of output data, the relative ratings are just opposite to the a = 0 cases. For
a = .5and n 2 15, the relative order also remains fixed: SEC, SEC-DED, No
coding, TED. Notice that the extreme cases of large quantity of output achiev-
able with no coding and high quality of output achievable with a TEC system

are both glven poor relative ratings for this value of alpha showing no pre-
ference of quantity over quality or vice-versa. Also, for a = ,5 n =7, no
coding becomes preferable to SEC-DED at signal-to-noise ratios below 4.1 db.
This would be due to the increased data rejection by a SEC-DED decoder as the
noise becomes greater.

A preference for quality over quantity without total disinterest in the
latter is explored by the a = .1 and a = .3 cases. No coding for these values
of alpha is never preferable to any other of the choices considered except TED.
As S/N increases TED becomes relatively less desirable as triple errors become
less likely and its low transmission rate becomes dominant. Similarly, as
Eb/No increases SEC-DED becomes less important than just SEC. However, as the
block size increases, TED and SEC-DED become more important since the proba-
bilities of the errors these decoders are designed to correct increase,

Finally, when quantity is somewhat preferred over quality as with a = .8,
as might be expected the relatively extreme quality achieved by TED is shown
to be undesirable for all values of S/N tested since this quality is achieved
at the expense of quantity. The SEC decoder which employs no data rejection

yet achleves some degree of error correction is found to be the best of all
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four cases for all values of Eb/No considered. At very low noise levels the
error correcting properties of SEC-DED make 1t more desirable than no coding,
while at high noise levels the data-rejection of SEC-DED make it less de-
sirable than no coding. For example, for n = 1023, SEC-DED is preferable to
no coding for Eb/No from 4.4 to 6.9 db.

More insight into the nature of this function can be gained by lookiﬁg
at what is necessary to achieve a desired level of effectiveness. A typical
example {s shown in Table 1, Here the desired value of F is set at .01.

With no coding or SEC, a higher value of Eb/N0 Is required as quality becomes
more preferable. However, with SEC-DED or TED a lower value of Eb/NO is re-

quired to achieve the same value of F as emphasis is switched to quantity.

Eb/No IN DB REQUIRED TO

ACHIEVE F = .0t FOR n = 255

Alpha No Coding SEC SEC-DED TED
A 8.88 7.36 6.64 7.68
.3 8.72 7.20 6.88 8.540
.5 8.56 7.04 7.12 8.72
.8 8.00 6.64 7.28 8.96

TABLE 1
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DIGITAL SIMULATION OF THE VITERBI
MAXIMUM LIKELJHOOD DECODING ALGORITHM
. Introduction:

The Viterbi algorithm is a method for determining the most likely sequence
of states of a time-discreet Markov process; and, as such it is an cptimal
method for decoding convolutional codes. An evaluation of the effectiveness
of this algorithm as a decoding method is accomplished herein through simula-
tion on an IBM 370 computer using a main program written in the Fortran lan-

guage and three subroutines written In Assembler language.

Fl. The Simulation Procedure:

A block diagram of the simulation is shown in Figure 50, A pseudo-random
number generator is used to independently generate binary sod?ce bits of equal
probability and binary noise bits whose probabilities depend on the assumed
channel characteristics. The source bits are encoded with the appropriate
parity check bits in blocks of two. Each bit is added to a noise bit using
modulo-2 arithmetic (simulating channel noise). The information nolise bifs
and parity check noise bits are generated independently, The corrupted bits
are then decoded using the Viterbi algorithm, Accuracy of the decoding al-
gorithm is measured as

E = limit E = (Number of correct information blts)/{Total bits)
o
" where En is the ratlo after information bits have

been transmitted.

111, The Viterbi Algorithm:
Given an observed output sequence Z = (21, Zyy oo e Zk)’ the purpose of

the Viterbi algorithm {s to determine the most 1ikely input sequence X = (xo,
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Xps 0 v e xk). The subscripts refer to the discreet time states. Since the

pProcess is assumed to be Markov, the probability of state X, depends only on

+1

the state xi:

l.e., Pr(xi+1|x0, Xpp o ey xi) = Pr(xi+1|xi).

The channel is assumed to be memoryless so that the observed output z, at time

i depends only on the transition from state X; to state x, .. This transition

[+1

is symbolized as t.. We want to determine the maximum a posteriori Pr(X, Z).

Because of the aforementioned Markov and memoryless assumptions:

Pr(X, Z) = PriX)Pr(z|X)
k-1 k-1
= ?=0 Pr(xi+1, xi) ?=0 Pr(zi|ti)

The‘Viterbi algorithm 1s a method of determining the shortest path be-
tween two points, We, therefore, assign a 'path length' between each pair
of possible states from time = | to time = i + 1. This length lambda(ti) is
defined as

lambda(t ) = -1In Pr(xr+1!xi) - In Pr(zi|ti).

The total length for some input sequence X would be
k=1
-ln Pr(X, Z) = 1ambda(ti)
(=0
Since path length is a negative logarithm of the probability, the shortest

(critical)} path length between two points (i.e., the initial and final states)

would be the one with the highest probabillty. This is the maximum a posteriori

probability we are seeking. The Viterbi method of finding this critical path
Is based on the observation that at any given time |, each state X; has associated
with it a shortest path to the Initial state. This shortest sequence Is called

a survivor, designated X(xi). The path length of survivor X(XI) is designated
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gamma (xi). Extending these survivors to time 1 + 1 requires merely adding
the appropriate digit (Ybit' for our purposes} to the existing survivor and

adding the corresponding path length gamma (x,

(+1° xi) for comparison purposes

in determlning the survivors for each state at time i + 1. At the end of the
sequence (time = k) the survivor corresponding to the state with the shorFest
survivor path iength is optimal.

For the purpose of convolutional code decoding, the states correspond to
the possible binary state permutations of a block of m shift registers. Asg-
suming that for the source Pr(0) = Pr(1) = 4, it follows that for all possible
transitions between states the term Pr(x.+1|xi) = %; and, since it is a con-

stant for all possibie transitions, it may be Ignored when calcutating the

optimal path. Thus, only the term Pr(zi ti) is significant. For systematic
codes, the observation z corresponds to both the information bit and the parity
bit received as a block at time = i.. For non-systematic codes, z, corresponds
to a block containing a parity bit for each subgenerator polynomial. These
probabilities are pre-calculated for each state and each possible received

block before decoding begins.

Since we are concerned with a communications system with a semi-infinite
number of bits transmitted, corresponding to a semi-infinite sequence, and
since storing the resulting semi-infinite survivors is impractical, a limit
must be placed on the number of bits stored as a survvoer {i.e., the survivor
length). Call this limit delta. Thus, at time = i, a decision must be made
concerning the bit at time = i - delta (I minus delta). This survivor trans-

action becomes insignificant for delta large enough because survivors tend

to converge to the same state nodes.

63



V. The Simulation Program for Rate i Codes:

A Fortran language main program was used in conjunction with three custom
written Assembler language subroutines. The main thing to be aware of when
using the program {s that the delta defined in the program is one greater than
.the corresponding delta as defined in the Viterbi algorithm {e.g., if you wish
to gef results for delta = 75, set delta = 76 in this programl). For eacﬁ
state at time | there are two possible states to which It can branch at time
i + 1 (one of which has an Incoming O bit, the other has an incoming 1 bit).
These possible transitions are stored in an array called NEXT. NEXT(1,1) cor-
responds toc the branch of state | with an incoming 0; whereas, NEXT(l,2) cor-
responds to an incoming 1.

Probabilities which determine the path lengths are calculated prior to
the main iterative loop. These calculations are done for all four possible
two bit permutations corresponding to a received block containing an informa-
tion bit and a parity check bit in the systematic case, or two parity check
bits in the non-systematic case. Array POFZLN stores these predetermined
path lengths. Thus in the main iterative loop the increase in the total path
length GAMMA of each state can be determined by a simple table reference
(i.e., POFZLN). Survivors are stored and saved by arrays SURVIV and SAVUR,
while the corresponding path lengths are saved using arrays GAMMA and SAVE.

The appropriate subgenerator vectors are stored in the array GEN, |In
the case of a systematic code the second subgenerator is a 1 followed by m - 1
zeros. For example, the subgenerators for an m = 5 systematlic¢ code would be:
10000 and 17011. Note that the subgenerator 10000 merely generates the in-
formation bit. SHIFT2 saves the contehts of the simulated encoding shift

registers.
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All random bit generation is done independently for each application,
Source bits of equal probabllity are generated using a Scientific Subroutine
Package member called RANDU. These source bits are stored in PRSOUR. The
generated noise bits (Pr{0) = q) are stored in PNOISE. Decoded bits are stored
in PROUT for comparison.with the original source bits in PRSOUR.

Many different counters are used to keep track of time states corresponding
to source bits, noise bits, and output bits. 10UT determines the printed in-
crements for En. During the course of this research, I0UT was set equal to
1000 so that the accuracy En was printed out for n = 1000, 2000, 3000, etc,

The n refers to the number of decoded bits and is called NDECOD within the
program,

Read and punch statements are included to save the information necessary
to restart the program where it left off. Thls feature is desirable to enable
the programmer to check the convergence of the accuracy figures and compare
them with other data in order to determine the desirability of decoding a
greater number of bits. However, due to the fact that hexadecimal double
precision accuracy used by the IBM 370 computer is equivalent to about 16.7
decimal digits, and the data cards are punched with decimal numbers, there is
a slight loss in accuracy that is sometimes noticeable but generally insignificant.

Three Assembler languages subroutines were written to expedite the execu-
tion of the program. These are COPYAR, SHIFT, and TESTBT. COPYAR simply copies
SAVSUR into SURVIV. SHIFT is used to shift the survivor of a row in SURVIVY,
add a 0 or a 1, and transfer the resulting survivor to the row specified by
NEXT (n the array SAVSUR for the next time increment. TESTBT determines whether
the bit at time = k - delta (Viterbi definitjon of delta) is a 0 or a 1 in the

survivor of the current state whose total path length is the least.
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Typical decoding rates are shown in Table 2. The number of bits refers to
the total number of both parity and information bits. To obtain the number of
information bits decoded per second, multiply the rates shown in Table 2 by the
code rate, which in all cases explored here is 4. Note that decoding an m = 7

code is approximately twice as siow as decoding an m = 6 code since the latter

has half the possible states of the former.

TYPICAL DECODING RATES

m delta bits/sec
5 31 578
5 52 506
6 31 324
6 59 275
7 27 165
7 59 145
TABLE 2

V. Program for Simulating A Viterbi Decoder
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Read: MAXBIT, N, M,
NROWS, NCOL, GEN(M),
DELTA, STON, NXMTD,
IXSOUR, IXNOIS(N).
Define: N2, K, K2,
DELM1, IDEPTH, IDEPCP,
IBIT, MAXDEC, NSTATE,
{
Determine the two
branches for each
state: 1i.e.,
NEXT(I,l),
NEXT(I 2)

l
Print initial values

lof IXSOUR and IXNOIS. .

No
NXMTD = 072
! Yes |
Initialize: ERRORS, Read: ERRORS,
NTOTAL, NCOUNT, NTOTAL,

NDECOD, PARCK (N),
SHIFTZ (M),

GAMMA (NSTATE) ,

| SURVIV (NSTATE,NCOL) .

Define I0UT.
Initialize NPLOT.
Print STON and Q.
Establish P with a
lower limit of
1.D-75.

(Define: OQLN, PLN.

t
Calculate POFZLN.

PNOISE (NCOUNT, N},
PRSOQUR (NCOUNT) ,
PARCK {N),

GAMMA (NSTATE)

SURVIV {IDEPCP,NCOL},
SHIFT2 (M) .

This array contains the
predetermined branch
lengths based on the
probability that a

given state 1is correct
for the block of bits
received. i.e.,

POFZLN (I,L0OC) contains
the probability, ex-
pressed as a path length
that state I is correct
for block number LOC
which can be any of 2*%*N
permutations.

!

X

67




X

-

Call random number
generator and generate.
a source bit,

}

Increment: NXMTD,
COUNT.,

Store source bit in

PRSOQUR,

Shift source bit into

SHIFT2.
1

{Generate parity bits.

Y
|Add noise. |
+

Determine the location
LOC in POFZLN corres-
ponding to the block
of corrupted parity

bits.

¥

For each pair of states
at time = NXMTD:
Determine GAMCHK at
time NXMTD-1.
Determine and save
GAMMA in array SAVE
for state at time
NXMTD.

Save new survivors in
SAVSUR at time

| NXMTD.

|

Determine the state
IMIN which has the
shortest overall
path length.
Determine GAMMAX,
the maximum

stored overall

Path length.

50 No

'Reduce all
Gamma by 10

gelues of

-

GAMMAX<10

Yes
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Y

J

Call COPYAR to copy
SAVSUR into SURVIV.

'No
NDECOD< 0?

Yes

3

Call TESTBT to make
a final decision on
the bit at time
NXMTD- (DELTA-1)
based on survivon
of state IMIN.
Store this bit

Lin_ PROUT.

Increment NDECOD and

QTAL,
_J

XMTD>MAXDEC?

Yes

Set IOUT =
NDECOD-1

¥
[;pcrement NPLOTAJ
&

Determine cumulative
number of noise bits
on each block bit
corresponding to
TOTAL information
its using PNOISE
nd store in PARCK,
3

for the decoded bits
by comparing PROUT
to PRSOUR,

etermine total errors
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'/

I

Reset
NCOUNT
DELM1
and
NDECOD
1.

Il

~

Transfer
last
DELM1
source
into
first
DELM1
positions
of
PRSOQUR,

Determine current
accuracy and store

lin FpLOT

_ )

Store noise counts
in PNPLOT,

[Store NTOTAL in
MTPLT .

Transfer

last DELM1}]

nolise bits
into first
DELM1
positions
of

PNOISE.

No

Print: M, GEN, DELTA,
table headings, bits,
accuracy, noise,

-

Punch data for restart.
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PROGRAM FOR SIMULATING A VITERBI DECODER

FOR STORAGE REASONS DELTA IN THIS PROGRAM SHOULD BE SET TO ONE MDRE

THAMN THE CASE BEING SIMULATED.
[.£. TO SIMULATE DELTA=13, SET DELTA=14.

THE FOLLOWING MINIMUM ARRAY DIMENSIONS MUST BE ALLOCATED:

PNOISE (TOUT+DELTA,N)

PRSOUR (TOUT+DELTA)

PROUT (TOUT}

PNPLOT  (I0UT4N)

GEN  (MyN}

SHIFT2 (M}

L (M}

NEXT (NSTATE,2}

PAR  (N)

quTPutT (N

XMTPLT (NUMBER OF LINES PRINTED={NUMBER OF INFORMATION
BITS DECODED THIS RUN/IDUT)

FPLOT ({SAME AS XMTPLT}

PARCK (N}

POFZLN  (NSTATEN2=2%%N)

GAMMA  {NSTATE)

SAVE {NSTATE)

IXNOTS (N}

SURVIV AND SAVSUR MUST BE DIMENSIONED EXACTLY (NROWS.NCOL) WHERE

K

NROWS MUST BE AT LEAST 2#%%«M AND NCOL MUST BE AT LEAST IDEPTH

INTEGER PARSUM
INTEGER*2 PNOISE(1064,3}),PRSOURILINGS)
INTEGER GAMCHK, TEST
INTEGER®*2 PROUT(IC0D)
INTEGER PNPLOT(1I0die3)
INTEGER®2 GENIB,3)+SHIFT2(8),JKL, FOUT .M, K2,DEL TA,DELTAL
INTEGER®2  DELML,NSTATE,L(8),LRyNEXT{256,2),PAR(3),PARITY
INTEGER®*2 QUTPUT(3),LDC,S0URLE
INTEGER SURVIV{256,2),SAVSUR(256,2)
INTEGER XMTPLT{1000)
INTEGER PARCK (2}
REAL %R POFZLN{25644) s GAMMA{ 256} 4 SAVEL 256)
REAL*8 FPLOT(1CD)
INTEGER NTOTAL, ERRORS s NPLOT . NCOUNT ¢ NDECOD s NXMTD y MAXBI T, IXNOIS(3)
REAL*8  Q,P,DFLOAT,STON,DERF,DSQRTyQLN,PLN
REAL®8 DLOG,GAMMIN,GAMMAX
MNPLOT AND PNPLOT STORE INFO AMD PARITY NOISE COUNTS RESPECTIVELY
MAXBIT IS THE MAXIMUM NUMBER OF BITS TO BE XMTD
READLLIO4,MAXBIT
FORMAT{IT)
N IS BLOCK LENGTH
READ110G,.N
N2=2Z%%N
[S THE NUMBER OF INFORMATION BITS REPRESENTED BY A BLOCK
OF LENGTH N,

THIS PROGRAM WILL ONLY SIMULATE CODES OF RATE 17N,
THEREFORE K MUST ALWAYS EQUAL 1,
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K=1
K2=2%%K
€ M IS CONSTRAINT LENGTH
READ1ILOCO, M
1103 FORMATII)
READL1C4 4 NROWS
READL1M:4,NCOL
C GEN IS SURGENERATOR VELTOR
DO 1506 J=14N
1506 READL1IJ2,{GEN(TsJ)s1I=1,M]}
1192 FORMATI(9I1)
PRINTSE98
698 FORMAT(*17,t %) .
€ DELTA=SURVIVOR LENGTH PLUS ONE
READ11C6,DELTA
11C6 FORMAT(I3)
C STOM IS THE SIOGNAL~TO-NOESE RATIO IN DECIBELS.
READLLILE,5TON
1108 FORMATIDLS.T)
0=.5N0+.50C*DERF (NSORT (DFLOAT(K) /DFLOATIN}#10.DO**(STON/10.001) )
€ . NXMTDO=TOTAL SQURCE BITS XMID
READZ2OUN g NXMTD
2000  FORMATI([201}
C IXSODUR AND IXNOIS ARE RANDDM INTEGERS USED AS STARTING
C POINTS FOR THE RANDOM NUMRER GENERATOR.
READZ2 300, IXSOUR
DO 1510 I=14N
1510 REANZ2OMG, IXNOIS{I)
DELMI=DELTA-1
c IDEPTH IS THE NyHBER OF WORDS REQUIRED TO STORE ONE SURVIVOR.
IDEPTH=DELM1/32+1
IDEPCP=NCOL+1-1DEPTH
IBIT=DELTA-32%{INEPTH-1)
MAXDEC=MAXBIT+DELM]
NSTATE=2%%M
Ml=M+]
Lo 9 I=1|M
9 L(r)=1 .
D0 16 I=L1.NSTATE
00 11 LR=1.,M
IF{LILRIILL, 14,11

11 LILR)=T
GO 7O t5
14 L{LRI=!L
c NEXT IS AN ARRAY CONTAINING THE NUMRERS CORRESPONDING
c TO THE 2 STATES THAT AMY GIVEN STATE CAN BRANCH ToO.
1% NEXT(T,1)=1
DO 39 LM=2,M
3an NEXTIEL)=NEXTUT+1)42%%(LM=-2)%L{LM)
16 NEXT(T-2)=NEXT([+1)+2%%([M-])

PRINT1138, IXSOUR
1138 FORMAT('")?, 1 [XSOUR=",120)
DD 1139 [I=1,N
1139 PRINT114D,1,IXNOIS(I)
1140 FORMATLTO0 " [XNOIS{ "y TI1e")t=t,120)
IFINXMTD.EQ.DIGC TO 13G0D
REANZ2255G,ERRDRS
READ2OGOZ.NTOTAL
NCOUNT=DELMI
NDECOO=1
2001 FORMAT{T721I1)



PO 1550 J=1,N
1550 READ2001,{PNOISE(I4J),1=1,NCOUNT}
READ27%1, IPRSOUR(T) » T=1,NCOUNT)
DO 1551 I=1,N ‘
1551 READ2DQD,PARCK(1)
DO 1332 I=1,NSTATE
1302 READ29U2,GAMMALT)
2062  FORMAT(D23.16)
DO 1303 I=1,NSTATE
DO 1363  J=IDEPCP,NCOL
1303 READ2905, SURVIVII,J)
© READ20DL, (SHIFT2(1),1=1,M)
GO TO 1361
1300 CONTINUE
INITIALIZE RANDU SOURCE AND NOISE
ERRORS=NUMBER OF DECONING ERRORS
ERRORS=0
NTDOTAL=TOTAL BITS PRINTED
NTOTAL=1-DELTA
NCOUNT PLACES QUTPUT BITS IN CORRECT VECTOR POSITION
NCOUNT =0 , _ .
NDECOD=NUMBER OF BITS DECDDED
NDECOD=2-DELTA
PARCK=TOTAL NUMBER OF PRINTED PARITY CHECK BITS CDRRUPTED BY NOISE
DO 1552 [=1,N
1552 PARCK(I}=0
C SHIFT2=CONTENTS OF ENCODING SHIFT REGISTER
DO 1 TI=lyM
X SHIFT2{1)=0
GAMMA(1)=0.00
DO 60 I=24NSTATE
60 GAMMA( 11=1.D40
DO 61 I=1,NROWS
DO 61 J=1,NCOL
61 SURVIVII,J)=0
1301 CONTINUE
C IOUT=NUMBER OF BITS PRINTED PER LINE
10UT=1000
C NPLOT COUNTS NUMBER OF TIMES PRINTING ALGORITHM IS USED
NPLOT=0
PRINT998,STON
998 FORMATI =Y, ¥S/N =2,D15.7)
PRINT76G4,Q
104 FORMAT{*+?,T30,%0=",015.7}
P=1,00-0
IF{P.LT.1,0~-75)P=1.D~75
QLN=-1.D0*DLOGI{O)
PLN=-1,DR*DLOGIP)
DO 49 [=1,M
49 LiI)=1
DO 50 [=1,NSTATE
DD 51 LR=1,M
IFILILR})51,+52,51
51 LILR)I=O
GO TO 53
52 LILR}=1
53 DO 1500 [BITNR=14N
PARSUM=7
DO 20 I1=1,M
IM1=M1-T1
20 PARSUM=PARSUM+GEN{TL, IBITNR I*L{TM1)

O O o o o0
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150C PARUIBITNR}I=PARSUM-PARSUM/2%2
DO 21 13=14N
21 OUTPUTII3}=1
DO 5C J=14N2
DO 55 1&=1,N
I4MINL=N+1-14
TF{OUTPUT(T4MINL)Y)IS5,56455
55 CUTPUT{ T&MINL1}=0
GO 1O 57
56 QUTPUT{ 14MINLYI=1
57 POFZLNIT,J)=0.D0
D0 50 ILT77=1.N
IF(QUTPUTIILTT)LEQ.PARVILTTIIPOFZLN(I +J)I=POFZLN{I +J)+OLN
50 TFLOUTPUTLILTT) JNELPARCILZT)IIPOFZILNLL 4 JI=POFZILN(I . J}+PLN
699 CALL RANDULIXSOUR,IY¥SOUR,YSOUR}
IXSOUR=1YSOUR
SOURCE=L
IFIY50UR-0.5)1511,1512,1512
1512 SOURCE=1
1511 NXMTD=NXMTD+1
NCOUNT=NCOUNT+1
PRSOURAINCOUNT )=SCOURCE
DO 2 I=2+M
11=M+2-1
2 SHIFT2(I1}=SHIFT2(11-11%
SHIFT2(1)=SOURCE
C PARITY=PARITY CHECK DIGIT
D0 1516 TIBITNR=1,N
PARSUM=(
DO 1517 1T1=1.M
1517 PARSUM=PARSUM+GEN({TI1, IBITNRI*SHIFTZ(11)
1518 PAR{IBITNRI=PARSUM-PARSUM/2%2
D0 1530 I=1l.N
PNOTSE{NCOUNT,,1)=0
CALL RANDUCIXNOIS(I),IYNCIS.YNDIS)
[XNOISIT)=T¥NCOIS
IF(Q-YyNDIS)1531,1531,1530
1531 PNOISE(NCOUNT,I}=1
KPAR=PARIT)
IF(KPARLEQ.U)PARIT)
IFIKPAR.EQ.1)PAR(I]
1530 CONTINUE
C LOC= LOCATION IN PROBABILITY MATRIX CORRESPONDING TO BLOCK RECEIVED
LoC=1
DO 1504 LOCSUM=1.N
1504 LOC=LOC+2%% (N-LOCSUM)I*PARILOCSUM)

STATES ARE NUMBERED SUCH THAT 1 AND 24 3 AND 4y ETC. ARE
PAIRS THAT BRANCH TO THE SAME STATES.
1.E. DX AND 1X BOTH 8RANCH TD X5 AND X1, WHERE X REPRESENTS
A PERMUTATION OF M-1 BITS,

GAMCHK IS THE STATE OF GIVEN PAIR OF STATES WHICH HAS THE SHORTEST
TOTAL PATH LENGTH GAMMA,

OoOOOGOOO0OO 0000

DO 100 I=1+NSTATE,?2
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GAMCHK=I
IFIGAMMACT).GT.GAMMA(T+1) }GAMCHK=1+1
DL 141 J=1.K2
191 SAVE(NEXT{I4J) }=GAMMA{GAMCHK)+POFZLN{NEXT(1,4),L0C)
TROWS=NEXTII,11)
IROW1I=NEXT(I,2)
CALL SHIFT({SURVIV,SAVSUR,NROWS NCOLyGAMCHK ; IROWE, IROW1}

14N CONT INUE
DO 139 1=1.NSTATE
139 GAMMA(T)=SAVEZ(T)
142 GAMMIN=1.DT0
GAMMAX==-1.DTD
IMIN=1

DO 145 I=14NSTATE
TF(CAMMACT Y .OTJGAMMAXIGAMMAX=GAMMAL T
[FIGAMMA{ ]} ,GE.GAMMINIGO TO 140
GAMMIN=GAMMAL(T]

IMIN=T

143 CONTINUE
155 [FIGAMMAY . LE.1.D50)1G0 TQ 150
DO 141 I=1,NSTAVE
141 GAMMA{ [ )=GAMMA[T }=1,D5"
GO TC 142
is50 CALL COPYAR{SAVSUR,SURVIV:NROWS,NCOL}

IF(NDECOD,LE.S)IGN TO 715
CALL TESTBT{SURVIV(IMIN,IDEPCP),IBIT,TEST)
PROUT (NDECOD)=TEST
715 NDECOD=NDECOD+1
NTOTAL=NTOTAL+]
IF (NXMTD.GE.MAXDEC}GO TO 750
IFINDECOD.GT.IQUTIGO TO 729
GO TD 699
720 CCHTINUE
NPLOT=NPLOT+)
00 776  J=14N
D0 776 1=1,10UT
776  LF{PNOISE{I,J).EQ.1IPARCK{J)}=PARCK{JI+1
00 717 I=1,100T
773 IF(PRSAUR( I .NE.PROUT(T))ERRORS=ERRORS+1
FPLOT(NPLDT)=DFLOAT(NTOTAL~ERRORS) /DFLOAT (NTOTAL)
DO 1561 [I=1,N
1561 PNPLDT(NPLOT,[}=PARCKIT)
XMTPLT (NPLOT)=NTOTAL
IF(NXMTD.GE.MAXDEC)GO TQ 950
DG 778  J=1,N
nO 778 1=1,DELM1
778 PMOISE{ T4 J)=PNOISECIOUT+I,4)
DO 703 1=1,DELML :
793 PRSOUR(T}=PRSOUR{ IOUT+T)
NCOUNT=DELM1
NDECOD=1
GO TO 499
150 1DUT=NDECOD-1
60 TO T0%
959 CONT INUE
PRINTSNG M
500 FORMAT{*=*, *CONSTRAINT LENGTH=',13)
DU 1565 J=1,N
1565 PRINTSNAL,(GEN(T,J),1=1,M)
591  FORMAT(?9',"SUBGENERATOR="',1016)
PRINT1301,DELTA
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1071

602

1569
3101

320}

157G
3500

4000
3002
40G1
333

A407

FORMAT{'=1", *DELTA=",13)
PRINT&OZ
FORMAT( ')y T2, "BITS?,T19,"ACCURACY ', T37, *NDISE COUNT:

181F3, ETC.'}

DO 633 JS=1.NPLOT
PRINTEDG o XMTPLT(J) »FPLAOT(J ]} o (PNPLAT(JsI)sI=1,N1}
FORMAT(®* ¥, T2,17,T15,016.,8,739,819}
PUNCHLINS MAXRIT
FORMAT(ITTT73, *MAXBITY)
PUNCHI1354N
FGRMAT(I1,T73,'NY)
PUNCHI101,M
FORMAT(I1,T73,'MY)
PUNCH1136,NROWS
FORMATUIT,TT73, "NROWSY)
PUNCH1137NCOL
FORMAT({I7,TT73,*NCOLY)
DO 1566 J=1,N
PUNCHILI 3340 (GEN(TI o) I=1,M)
FCRAMAT(TT2,"GENERL{ "y I1,4*)"»T1,911)
PUNCHLILIOT+DELTA
FORMAT(I2,773,"DELTA)
PUNCHL1 TG, STON
FORMATIDIS.TsTTI,1S/NY)
PUKNCH3ROZO NXMTD
FORMATIIZS o TT3,,"NXMTE )
PUNCH3 1Ly IXSOUR
FORMAT{TI2C,TT3,IXSOUR!'}
DO 1567 J=1:N
PUNCH32:G0 s TXNOTSTJY 4
FORMATI{IZO s TPl oV IXNOIS( ' sI1,%)1)
PUNCH3ZDD, ERRORS
FORMAT(IZ20,TT3,*ERRORS )
PUNCH3 40U, NTOTAL
FORMATHL{I2G: TT73, "NTOTAL")
00 1569 J=1N
PUNCHILGL,Js (PNOTSE{IDUT+I,J),41=1,DELML)
FORMAT(T73,'PNDISE,I1,TF1.,7211)
PUMCH3Z2L 14 {PRSOURLIOUT+TI),I=14+DELMI}
FORMATITT73,"PRSOUR® ¢ T1,7211)
DO 1572 Jd=14N
PUNCHASIO,PARCK(J), 0
FORMAT{IZ2O0,TT3+"PARCK(",1I1,')?}
D0 406D I=1,NSTATE
PUNCHA20Z2,GAMMA( T,
FORMAT(D23.16,TT73,'1=",14)
DO 4731 I=1,NSTATE
DU 40401 J=IDEPCP,,NCOL
PUNCH3IZ0L o I+ JsSURVIV(I,J}
FORMATI{TTO " I=9,014," J=?,12,Tl,12%)
PUNCH340 14 SHIFTZ2(1)sI=1+M}
FORMAT{TTA,'SHIFTY,T1, 7211}
sTop
END
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TESTET PRCGRAM ,
#STESTRIT#**CHECKS VALUE CF ANY BIT TN A FLLL WCRD IN MAIAN STCRAGE.

] R1--ADCR OF ARGU¥ENT LISY
* €{l1) ACCR OF WCRD
& 411} ACCR CF YESTBIY
» B{1l} ACCR FCR RETURN CCCE
»
L 2.0111 ‘ LCAD ACCR CF WCRD TC BE SHIFTELD
L 44401} LCAC ACCR GF TESTBIT
L CeCla} . LCAC TESTBIY
LA 3,0 SET FCR CCMPARE
L G,C12) LCAC TEST MWCRC
LA 5¢22 LCAC 32 FCR SUBTRACLTICN
SR 5+0C ' FINC CCMPLEMENT
SLL 44CL5) SHIFY SC TEST BIT 1S IN TFE SIGN PCSITICN
CR &y3 CCMPARE RESLLTS AGAINST ZERC
aNL NCTANEG
LA 3.1 "LCAC CNE IF NEGATIVE
NCTNEG ECU *
L SeE(1} LGCAT ACCR CF RETURN WCRDO
ST A,0(5) STCRE BIT IN RETURN WCRO
sSTCP
ENC
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CCPYAR PRCGRAN
**¥COPYARAY**#CCPIES AN ARRAY THRCUGH THE USE CF THE MVCL INSTRUCTICA.

» INPUT?
*
*
*
*
*
*
C

CPYARAY ECQU
L
L
L
L
L
MH
SLA
LR
MVCL
S5TCP
ENC

R1--AODCR COF ARGUMENT LISTY

0(1) ACCR CF INPUY ARRAY

4{1) ADCR CF CUTPLT ARRAY

8L1} ACCR OF NUMBER CF ROWS IN THE ARRAYS
1271y ACCR £F NUMBER CF CCLUMNS IN THE ARRAYS

&

2¢41(1)
54C(11)
811
Ee12(1)
54,C(5)
Ee216})
LT

35

244

ACCR
ACCR
LCAC
LCAC
LEAC

CF ARRAYC

EF ARRAYI

ACCR CF NLMBER CF RCWS
ACCR CF NLMBER OF COLLPAS
NUMBER CF CCLUMNS

MLETIPLY NUMBER CF RCWS BY CCLUMAS
(ROWS * CCLUMNS) * 4

ccey
CCrPy
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SHIFTY PRCGRAM

#3$CCPYRCWS#**#CCONTAINS THE LOGIC NECESSARY TC CCPY ANC SHIFT

# THE SPECIFIC RCWS AS SPECIFIEC. CCPYRCWS WILL CCPY ROWI
INTC RCWC AND ROWls SHIFT THESE ROWS TC TrE LEFT CKE BIT,
AND SET THE RICHTMOST BIT OF RCWG ANC ROWl TC ZERG AND CNE

R1--ADCR CF ARGUFENT L157

]
*
* RESPECTIVELY.,
*  INPUT:
*
b Qtl1) ACOR
* 4(1) ACOR
X 8{1) ACCR
* 1241) ACDR
* 1611} AQCR
* 2C11) ADCR
* 24(1) ADECR
*
CCPYRCKS EQU *
LA 1.
L 12,8(1)
L 12:,0012)
SLA 1242
L 6:011)
L Be12(1)
L 8,G1(8)
L 2:4(1)
LR 3,8
BCTR 3,0
L 4,811)
MH 3,204)
LR Ge2
LR 1¢.3
LR 113
L 3,1611)
L 4,26(1)
L Se24{1)
L 3,613}
L 440 (4)
L S§4C(5}
BCTR 2,0
BCTR  4&,(
BCTR 5,C
AR Q2
AR 1C 4
AR 11,5
SLA G2
SLA 16,2
SLA 1142
AR Gk
AR 10,2
AR 112
MVC 0(4,10),019)
LA C.C
LR 2,10
AAL 14+SLICE
»VC Qla,111,0(5)
LA 0.1
LR 2911
BAL 14,5L10E
eCTR 8,C
Cr 8,7
BE THRU

INPUT ARRAY (ARRAYI)
CUTPLUT ARRAY ({ARRAYC)
NUMBER CF RCWS

NUMBER CF CCLUMNS
ROWI

ROWO

ROW1

ZERC CLT R7
LCAC ACCR CF NUMBER CF ROWS
LOAC NUNBER CF RCWS
MULTIPLY BY FCUR FCR CISPLACENMENT
LCAD ACCR CF ARRAYI
LOAC ACCR OF NUMBER OF COLUMNS
LOAD NUMBER CF CCLUMNS
LCAC ACCR CF ARRAYC
COPY NUMBER CF CCLUMNS FROM RS
SUBTRACT CNE FRCM NUMBER CF CCLUMNS
LCAC ACCR CF NUMBER CF RCWS
COMPUTE RCOKS#{CCLUMNS-1}
1%
*+ % CCPY ROWS*{CCLUMNS=1)
L L]
*h %
* % LCAC ADCRS CF RCWI+RCWC,ANC RChW1
hk®
LE L]
2 % LCAC RCWI,RCWO4AND RCW1
L E L )
*kd
% % CECREMENT EACH BY CNE
wh%
L2 2
*+ % ACC PROCUCT ANC ROWS MINUS CNE
LE L]
LR R
#+ % MULTIPLY BY 4 TC GBTAIN DISPLACMENT
TEX¥
T Y
*# * CCMPUTE ACTLAL ADDRESSES
*0k
CCPY LAST WCRL CF RCWI TC RCWO
INPUT FCR RCWO
INPUT FCR SLICE
BRANCH TC SLIDE
COPY LAST WCRC CF RCWI TC RCW1
INPUT FCR.RONW1
INPUT FCR SLICE
BRANCH TC SLIDE
CECREMENT COLUMN CCUNT BY CNE
COMPARE COLUMN COUNT AGAINST ZERC
IF ECUAL ENC
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EQu
SR
SR
SR
MVC
LR
BAL
MVC
BCT
ECU

OECACCR

TFRU

STCP

ARGLSTAL CS

»
G,.12

10.12

11,12
0(4,10}),01(5)
2¢10C

14,SLICE
Ql4,11),0{10)
€+CECADCR

*

E

L 23
¥ *
*5%
CCPY NEXT RCWI MEMBER TC RCWO

SET LP FCR SLICE--CARRY BIT ALREACY SEY
BRANCE TC SLICE

CCPY RCWO MEMBER INTC RCWl MEMBER
DECREMENT ANC TEST CCLUMN CCUNT

DECREMENT ACCRS BY RCW MEMBER CISTY

*ASLICEX**SHIFTS CNE FULL WORD Ik MAIN STCRAGE TC THE LEFT CNE EI

* SETTING THE RICGHTMOST BIT IN THE WCRE AS IKCICATEC BY RO.

THE

® ACCR CF THE WCREL TC BE SWIFTELD IS COATAINEC IN RZ ANC THE CARRY
* (CVER BIT IS5 PLACEC IN RC.

»
SLICE EQU
STM™
LA
L
CR
Sty
BNL
CARRY]

CARRYQ AR

SAVEREGS C5

*
A,4,5AVEREGS
4,C

3,021

3,4

1,1

CARRYOD

»

4,1

3,40

04

1,002}

1,4, SAVEREGS
14

2F

SAVE WORKING REGISTERS
LCAD ZE€ERC FCR CCMPARE
COPY WORC TC BE SHIFTED
CHECK FCR CARRY

SHIFY OVER CNE BITY
BRANCH ACCCREINGLY

WCORC NEGATIVE, THEREFORE SET CARRY BIT
SHIFT IN BIT @Y ACDITYICN
STORE CARRY VALUE
REPLACE SHIFYEL WCRC
RESTCRE WCRKING REGISTERS
RETURN 7O CALL--BAL 14:SLICE
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SHORT CONSTRAINT LENGTH RATE 1/2 'QUICK-LOOK' CODES

l. Introduction:

A binary convolutional code of constraint length K and rate R = % is com-
pletely specified by a set of two generators which In transform notation have
the form

G(j) (D) = QO(J) + g](j) 0+ gz(j) 02 .. .+ QK—‘] (J) DK-I(_] =1, 2)

with coefficients from GF(2). (Throughout we assume the codes are nondegener-

ate, l.e., at least one aof 90{1) and 90(2) are at least one of gK_1(]) and
9K—1(2) are one). |If
1 (D) =i, +i, D+1, 0%+
0 1 2 )

is a sequence of binary information digits, then the result of applying 1(D)

to the gncoder is

9 ) =1 s @ = e Do D020 Ga,

so that for each information digit ik the encoder produces a block of two digits
[tk(l), tk(z)] that are functions of 1, and the previous K-1 information digits.
The linear sequential circuit that performs this operation consists of a shift
register whose K stages are connected to two moduleo-2 adders in accordance with
the coefficients of G(I) (D) and G(z) (D), respectively. The outputs of the

2.

adders at time k then constitute the block [tk(1), tk For convenience we
denote the sequence of these blocks by T(D).

In certain situations such as system check-out it is desirable to be able
to recover the information sequence from the encoded sequence. Massey and Sain
(1968) have shown that this is possible if and only if the code is noncatastrophic,

i.e., if and only if

gcd {61 (0), 62 ()7 = o*
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for some & > 0. In this case, there always exists a linear sequential circuit
that produces |(D) with a delay of exactly L digits for any integer L 2 & and
it is completely described by two generator polynomials P(1) (D} and P(z) (D}

that satlsfy

e o) ¢ (o) + 28 (py 612 (p) = 0*
To illustrate these ideas we consider the code
¢ by =1 +pwp?+pd+pb

6 0y =9 + 02 + 03 &7 408

This code has a constraint length K = 7 and its circuit realization is shown
in Figure 51. [f the input sequence is
1 0 0 1 1 0 1 0 1

then TV (1) and T2 (D) are given by

1 1 [ 0 0 0 0 0 0
and
1 0 1 0 1 0 0 1 1
respectively, and the encoder output sequence will be
1t 1 ¢ 1 1 0001 0O0CO0CO0OI1 01
Since G(]) (D} and G(z) {D) are relatively prime, an inverse circuit with delay

zero exists and we may easily prove that P(1) (D) and P(z) (D) are given by

P o) =1 +p+ 0%+ 03+ Y

p(2) () = b + p
Two versions of the cjrcuit reallzaticon are shown in Figure 52,
Suppose now that the encoder output éequence T(D) is transmitted over a
noisy channel prior to its inversion. Then, of course, the resulting sequence

~

() will generally not be a perfect match of the original information sequence
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l(p). In fact, Massey and Costello (1971) have shown that over the binary sym-
metric channel and at high signai-to-noise ratios the probability of an error in

(D) is related to the probability of error in the channel by

P] = Apgsc
where A is the error amplification factor given by

a=wle" 071+ wr@ ()]

and WEP(E) (D) ] denotes the Hamming weight of P(i) (D).

» {1} ()

1(D) —e———pm ( \ 4 & T(D)

-T2 (D)

FIGURE 51, ENCODING CIRCUIT FOR THE CODE

[n our example above A has the value 7, so that an error in [(D} is seven
times more likely than an error In the channel, This is quite obvious from

Figure 52b. For a single error in the channel will, as it propogates through
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T(”(D) —_—i

+(2) (D) =l

FIGURE 52a. INVERSE CIRCUIT FOR THE CODE

*1 (D) = ODD NUMBERED DIGITS

FIGURE 52b, ALTERNATE [NVERSE CIRCUIT FOR THE CODE
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the circult, produce 7 errors in the output of the adder, assuming that the
channel errors are spaced far enough apart.

For low signal-to-noise ratios the simple reasoning leading to (1) no
longer applies and the value of the error amplification must be determined
empirically. Figure 53 shows the result for the code in the above example.

Consider next the system configuration of Figure 54.

At high signal-to-noise ratios a well designed decoder will be able to
correct the overwhelming majority of the errors introduced in the channel and
deliver an essentially perfect copy of (D). |If we then compare this output
with that of the encoder inverse we obtain an indication of the signal-to-noise
ratio in the channel,

With the binary symmetric channel, for example, we can get a good estimate
of P? by computing the ratio of the number of ones in which the outputs of the
decoder and the encoder inverse differ to the total number of digits processed.
Using (1) we are then able to determine the value of Pasce

The surprising fact is that this scheme also works for low signal-to-noise
ratios, where the decoder output also includes errors, and produces a cne-to-one
refjationship between Pesc and the measured quantity, which we denote by 5BSC'

Figure 55 shows the simulation results for the code in our previous example,
the binary symmetric channel and a 32 bit path length Viterbl decoder,

From Figure 53 it is clear that If one attempts to reconstruct the original
information sequence at the channel output without benefit of decoding, it is
desirable to have a code with as low a value of error amplification as possible.
The best in this regard are the socalled systematic codes for which one of the
P(i) (D) is one and the other equals zero, resulting in A = 1, Unfortunately,
the error correcting capability of these codes is.markedly inferfor to that of

certain nonsystematic codes when used in conjunction with sequential or maximum

likelihood decoding algorithms,
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ERROR AMPLIF!CATION FACTOR

2.0F
1.0 -
0.0 A A A ) i ]
0.0 1.0 2.0 3.0 4.0 5.0 6.0 7.0
E/N_ (db)
FIGURE 53. ERROR AMPLIFICATION FACTOR FOR THE CODE
1 1 1 1 0o 0 1
1 o 1 1 0 1 1
(D) NOISY
[ (D) et ENCODE ECODER
(0) R CHANNEL b
1 (D)
INCODER
INVERSE
FIGURE 54. CHANNEL NOISE MEASURING SYSTEM
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0.6

0.5 I~
CHANNEL: BSC

DECODER: VITERB1 - 32 BIT PATH LENGTH

0.4 |

0.3 p—

Pesc

0.2 f

0.0
0.0 0.1 0.2 0.3 0.4 0.5

FIGURE 55. MEASURED VERSUS ACTUAL CHANNEL BIT ERROR PROBABILITY FOR CODE
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For nonsystematic codes the lowest possible value of A is 2 and Is attained
by the socalled quick-lTook codes [2]. Our purpose in this note is to investi-
éate their relevant characteristics and in the process we obtain a number of in-
teresting and practically useful results, Since our primary motivation is the
application of quick-look codes to Viterbi decoding, we restrict consideration

to constraint lengths less than eight.

11, Quick~Look Codes:
We define a rate % quick-look code as any code in which the two generators

differ in exactly one coefficient, Theh

o ) + ¢ (p) = ot
for some 0 < L < K- 1 and an inverse ¢lrcuit with delay L and error amplifica-

tion factor A = 2 is given by

P (o) = p'2) (D) =1

This, of course, amounts to nothing more than the modulo-2 addition of
i
T( )(D) and T(Z)(D). Hence the word 'Quick-Look' [2].
Since we are dealing with nondegenerate codes only, it follows easily that

all quick~look codes havé

acd [61 (o), 69 ()7 = 1
Thus, there always exists an Inverse with delay zero, which is géneraily dif-
ferent from the quick-look inverse if L > 0.
For example, when L = 1, the zero delay inverse takes the form

i (J)
Pl (o) = L G-’ (D) (i # )

and its error amplification factor at high signal-to-noise ratios is
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a=wie" 7 +we® )] - 2

For L = 2 the zero delay inverse becomes

) ¢t9) ()

+ (1 + a1

DZ

. 1
P () - A

Here A has the same value as above if a] = 0 and is a function of the coefficients

of G(l) (D) and G(z) (D) if a, = 1.

1
As a concrete example, consider the constraint length 5 code
G(i)'(n) =140 +0%+0p"
G(Z) (D) =1 +0D+ p*
Clearly, L = 2 and the quick=look inverse circuit takes either of the forms in
Figure 56.
The inverse circuit with zero delay is given by
pU) (o) = 1 4 02 4 p3
P(z) (D) =D + p% 4 p3
and Figure 57 shows the two alternate configurations for this case. Note that

the error amplification factor increases from 2 to 6 over the quick-look

inverse.

P11, Maximum Free Distance Quick-Look Codes:

One commonly accepted measure of the performance of a convolutlonal code
in conjunction with sequential or maximum likelihood decoding algorithms is
free distance. For the codes under consideration here this is simply the smallest
nonzero number of ones in the set of semi-Infinite output sequences of the
encoder,

Qur objective is to find quick-look codes of constraint lengths 3 s K = 7,

with as large a free distance as possible.

\
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(1) (D) cr——

021 (D)

7(2) (p) =t

T(D) rem—

1(p) = DIGITS 5, 7, 9, .
FIGURE 56. QUICK-LOOK INVERSE CIRCUITS FOR THE CODE

To narrow the search for such codes we first note that the maximum free

distance of any rate % noncatastrophlc convolutional code 1s bound by

K+2: 3zKzsbéb
K+3; K=7
and that there always exists a code for which equality holds {(Larsen, 1973).
Second, since the input sequence 100 , . . produces as output sequence
from each modulo-2 adder of the encoder the coefficients of the respective

generator polynomial, the free distance of any code is evidently bounded by
de s w[a(‘) (0)] + WEG(Z) (p}]

Finally, if G*{(D) denotes the reciprocal polynomial of G(D), then the codes
(M (), 6@ (o)
and

a{Ms(ny, 6@ uqpy
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1 oy

) ()

T(D) —————

,1{D) = DIGITS 1, 3, 5, . . .

FIGURE 57. ZERO DELAY INVERSE CIRCUITS FOR THE CODE
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are equivalent. This follows readily from the relation
[r (0) & (0)]* = 1* (D) Gx (D)
and the fact that the weights of a polynomial and its reciprocal are identical,

We can, therefore, restrict our search to quick-look‘codes with delay
L < [K/2] and an appropriate number of ones in the generator polynomials (the
square brackets denote the Integer part),

Now Tet L = 0, Then each 1 in the input sequence [(D) will produce a 1
in the output sequence T(D) as it enters the encoder shift register and in ad-
dition the last 1 in 1(D) will produce two 1's in T (D) as it enters the last
stage of the encoder. Therefore,

WLT (0)] 2 2 + W1 (D)]
and it follows that in testing whether a code has free distance less than df
only Input sequences with fewer than df - 2 ones heed to be considered,

Since Bahl and Jelinek (1971} have shown that without loss of generality
input sequences with zero-runs of length K -~ 2 or more may likewise be ignored,
it follows that the length of the input sequences that must be tested does not
exceed

(de - &) (K- 2) +1

For L > 0, the first 1 in 1(D) produces two 1's in T (D) as it enters the
encoder and another 1 as it enters the (L +.1)st stage of the encoder. Every
subsequent 1 in 1(D) likewise produces a 1 in T(D) as it enters the (L + 1)st
stage. In addition, the last 1 in T (D} results in two 1's in T (D) as it
enters the last stage of the encoder. Thus, the total number of ones in the

output sequence satisfies

WwlT ()] 2 4 + W01 ()]
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and we can restrict consideration to input sequences with fewer than df -4
anes and length no larger than

(df -6) (K=-2) +1
Using these principles we tested all quick-look codes of constraint length
3 s Ks 7. Table 3 summarizes our results. Note that for 3 < K 5 6 the
best quick-look codes are comparable to the best general nonsystematic codes,
whereas for K = 7 the free distance of the best guick-look codes is one less
than the maximum achievable.

We also remark that the quick-look codes with L = 0 are uniformly inferior
to those with L » 0, a result that reinforces the notion that among the best
codes of a class there is always one whose generators possess complementarity
(Bahl and Jelinek, 1972).

Although under normal circumstances free distance is a good indicator of
a code's error correcting capability, this measure nevertheless depends only
on the code and thus completely ignores the nature of the channel and the
decoding algorithm., Even with the channel and deccder fixed, differences in
the welght spectra of two codes with the same free distance can give rise to
different decoder bit error rates.

For these reasons we have computed the decoder bit error rates of selected
codes from Table 3 used over the binary symmetric channel and in conjunction
with a Viterbi maximum likelihood decoding algorithm of 32 bit decoder path
lengths. The results are presented in Figure 58. Note that these quick-look
codes compare favorably to the best nonsystematic codes cbtained in [7] and
the complementary codes given by Jelinek and Bahl (1969).

in Figure 59 we show the error ampiification factor for the same set of
codes as above, as a function of the slignal-to-noise ratio of a binary symmetric

channel.
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(1)
K. Code # G {octal) L df dfmax
3 1 7 1 5 5
4 2 17 1 6 6
3 33 1 7 7
5 3
35 2 7 7
5 67 - i 8 8
6
6 75 1 8 8
7 153 1 9 10
163 1 9 10
9 127 2 9 10
10 1358 2 9 10
7
T 165 2 9 10
12 171 2 9 10
13 175 2 9 10
i 14 133 3 9 10

Best Rate 1/2 Quick-Look Codes

TABLE 3

Finally, Figure 60 presents the relationship between actual and measured
channel bit error rates for the same codes, the binary symmetric channel and a

32 bit path length Viterbi decoder.
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