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ABSTRACT

ON SOME PROBLEMS IN A THEORY OF THERMALLY AND
-MECHANICALLY INTERACTING CONTINUOUS MEDIA

BY
Yong Mok Lee

Using a linearized theory of thermal.y and mecﬁéni-
cally interacting mixture of linear elastic solid and
viscous fluid, we derive a fﬁndamental relation in an

. ntogral foru called a reciprocity relation. Tuis recipro-
city relation relates the solution of ene initial~boundary,
vaiue problem with a given set of initial and boundary data
to the soluticn of a second initial-boundary value problem
sorrespon@ing te a different initial and boundary data for
a given interacting mixture. From this general intégral
zelation we derive reciprocity relations for a heat-con«
ducting limear elastic solid, and for a heac-conducting
viscous fluid. |

zn this theorv of intaeracting continua we pose and
solve aa initial-boundary value problem for the mixture of

linexs a2lastic so0lid and viscous fluid. Wo consider the
‘mixture to occupy a half-apacé andi its motion €O B¢ 2a-
stricted to one space dimension. We prescribe a step
function temperature on the face of tx~ halfe-apace wiare
tae frce is constrained rigidly against motion. With the
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aid of the Lapiace transform and the contour integration,
"a real intcgral representation for the displacemcnt‘of ﬁhe
solid constituent is obtained as one of the principal re-
sults of this analysis. In addition, carly tine scrias'

expansions of the other field variables are given.
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I
INTRODUCTION

Using a liheﬁrizcd theory of thermally and medﬁanically |
interacting mixtﬁre of;linear elastic solid and viscous
fluid, we derive a fundamental relation in an integral form
called a reciprocity relation. This reciprocity relation
x:lates the solution of one initial~boundary value problem
with a2 given set of initial and boundary data to the solu-
tion of a second initial-boundary value problem corresponding
:0 a d%ffarent initial and boundary data for a given inter-
a&ﬁing mixture. From this general integral relation, we
Qerive reciprocity relations for a heat-conducting linear
elastic solid, and for a heat-conducting viscous fluid.

In this th;ory of interacting continua we pose and solve
an ihiﬁial-boundary value problem for the mixture of linear
elastic solid and viscous fiuid. We consider the mixture to
occupy a half-space and its motion to be restricted to one |
rspace dimension. We prescribe a step function temperature on
the-face of the ha;f-space where the face is constrained
rigidly against motion. With the aid of the Laplace transform
and the contour integration, a real integral representation
for the displacement of the solid constituent is cbtained as
one of the principal results of this analysis. 1In addition;wh
early time series expansions of the other field variables are
"given.

lChapter I.includes a historical survey of early works and

the various descriptions on mixture theory.
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ChapterIII presents modern mixture theories based on mathe-
matically sound concepts of continuum mechanics. In Chapter
I1I we derive the general integral reciprocity relation for
a linearized version of an interacting mixture and in

'chapter IV we pose and solve a basic one-dimerisional problem

using the linearized theory.



CHAPTER I. HISTORY

1.1, DNarcy's Law

The theoretical description of the dynamics of
situations in which one substance interpenetrates another
has beea o matter of interast to mathematicians, physiciats
and eugincers for many years. The case in which a fluid
permzaies a solid is appropriate to a wide range of problems
surn as soil mechanics, petroleum engineeriné, water purifie-
gation, industrial filtration, ceramic engineering, diffu-
sion problems, absorption of oils by plastics and the re-~
antry ablation process for spacecraft. A survey of earlier
works on this subject up to 1959 is given by Scheidegger [1]*.
An 2arly work on:this subject was the study of fluid flow
through a porous solid with the assumption that the solid is
ureformable. Intuitively, "pores" are void spaces which must
be distributed more or less frequently through the solid if
t}: latter is to be called "porous." Extreme small voids iﬁ a
mli&‘are called "molecular interstices," very large ones are
¢lled “caverns." "Poréé" are void spaces intermediate bee
ween caverns and molecular interstices; the limitation of
their size is therefore intuitive and rather indefinite.

Darcy [2] performed an experiment concerning the flow -

g
throuch a homogeneous porous solid. A homogeneous filter

bed of height h is bounded by horizontal plane areas of

g
Mamber (s} after name(s) refer to the list of references to
e found at the end of this paper.

This experiment was originally performed by-Daré? in 1856.

3



&
equal size M. Theso areas are congruent o that corres-
ponding points could be connected by vertical straight lines.
The filter boed is percolated by an incompressible liguid.
If open mancmeter tubes are attached at the upper and
lcwer bauﬁdaries of the filter bed, the liguid rises to the
heightal h2 and hl raspeﬁtively above an arbitrary daﬁum
level. 3y varyving the various quantities involved, one can
deduce the following relationship:

- ¥A{h. - h,) .
Q = A (1.1)

Yere, Q 1is the total volume of fluid percolating in unit
time, and X is a constant depending on the properties of
the fluid and of the porous solid. The relationship (1.1)
is known as Darcy's law. Darcy's law can be restated in

, terms of the pressure p and the density r  of the liguid.
At the upper boundary of the bed, whose height is denoted |
by Zg e the pressure is Py = rg(h2 - 22}, and at the
lowgr béundary, whose height is denoted by 2q » the

L)

sressure is Py = rg(hl - z,). Here g is the gravitational

constant. Inserting this statement into (1.l), one cbtains
Q = = KA({p, - py}/(xgh) + 1)

or, upon introducticn of a new constant K',
Q= - K'A(pz - Pyt rgh) /h ) (1.2)

A constant of the type K', however, is not very satis-

factory becduse onc would like to peparate the influence of
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the porous s0lid from that of the liguid. By 1933, the

empirical relationship
K' = ®/u | (1.3)

vas gencrally accepted where 'u is the viscosity of the
iluid and k the "permeability" of the porous solid. -
Thysically, permeability measurements are very simple. The
rxpe}iments are performed whereby in a certain system a
pressure drop and a flow rate are measured. The solution
of Darcy's law corresponding to the geometry of the system
and to the fluid employed is calculated, and a comparison
hatween the c¢alculated and the experimentally found results
immediately yields the only unknown quantity X. Darcy's
law (1.2), when accounting for the separation of the general
constant into “permeability" and "viscosity," is expressible
as follows: .

q®Q/A =~ (k/uip, -~ p; + rgh)/h (1.4)

If the solid is isotropic and if we consider h as an infinie-
tesimal, then the expression (l1.4) naturally extends to a

vector form of Darcy's law:
g =« (k/W) (grad p -~ r9) (1.5)

where ¢ is a vector in the direction of gravity.
Engineering uses of Darcy's law are limited to flows
exnibiting small pressure differentials and to constant

viscosities and permeabilities. However, for’liquids at high
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velocities or for gases,relation (1.1) is no longer valid.
Purther if k and B are variab;e then this law must be
modified.

The validity of Darcy's law has been tested on many
occasions, and has been shown that it is valid for a wida
domain of flows. For liquids, it is valid for érbitrary
small pressure differentials. It has also been used to
measure flow rates by determining the pressure drop aoross
a fixed peorous solid. For liquids at high velocities and
for gases at very low and at vary high velocities, Daroy s
law beccmes invalid.

For given boundary conditions Darcy's law (1.5) is Yw

itselZ not sufficient to determine the flow pattern in a

.

orous solid béecause it contains three unknowns (q, p, 2).
w0 furtber equations are therefore regquired for the comy Llete
snecification. of a problem. One is the connection betwe. |

o+ ant p of the fluid:

,_. r = r(p) (1.8)

and the other a continuity equation, viz.:
dr .
= P 3% = div (rq) .7

where t is the time and P is the porosity defined by the .
fraction of void to the total volume of the porous solid. A
'great variety of methods for the measurement of the porosity
are described by Séheideggeé[l].?he physical conditions of
flow for which solutions might be sought are (i) steady

state flow, (ii) gravity flow with a free surface, and (i. )

T

. -



-
uns teady étate flow.. Of these, steady state flow solu-
tions for incompressible fluids are most easily obtained:._
they are simply represented by solutions of Laplace's
equation. Except for a few other special cases, Darcy's
law leads to nonlinear differential equations.

As an application of Darcy's law we'will consider the
steady state flow of an incompressible fluid. wWith the

help of the equations (1.5) and (1.7), one may obtain

ar

P 3¢ = div ((rk/u) (grad p - rg)) {1.8)

Due to the steady state condition, incompressibility and

the porous solid being homogenecus, one has:

As an example of a steady state solution we give the solu-
tion for two-dimensional radial flow of an incompressible
fluid into a well which is completely penetrating the fluide
bearing medium. Assuming that the well is a cylinder of
radiug Ry » with pressure Pq ¢ and that the pressure at
distance R, from the well is Py the required solution

follows easily by considering equations (1.5) and (1.9) as

271
Q Ll (Py = Py

=% 1log {Rl/Ro) ——
"where Q is the total discharge per unit time.
A major limitation in this theory is due to the

assumption that -the solid is rigid. In most applications
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this is simply not true. To incorporata the effects that
a deformable s0lid imposes upon the flow, it is necessary
to develop some connection beiwzen the atresses and the

corresponding strains of Hoth the fluid and the solid., We

will coasider the case of soil consolidation.

1.2. Bict's Work

A soil under load does not assume an instantaneous
deflection under that load, but settles gradually at a
variable rate according to the load variation as in clays
and sands saturated with water. A simple mechanism to
explain this phenomenon was proposed by Terzaghi [3] by assume
ing that the grains constituting the soil are bound together -
by molecular forces and constitute a porous material with
eiastic properties while the voids of the elastic skeleton
arn Zilled with water. 2 load applied to this system will
pr~Auce a gradual settlement, depending on the rate at which
the water is Deing sqQueazed out of the voids. Terzaghi
azplied these concepts to the analysis of the settlement of a
colu n 6f soil under a constant load and prevented from
late 2l expansicn. The rcmarkable success of this theory in
precd: 2ting the settlemant for many types of soils has led to
th2 « thension to the three-dimensional case and the establishe-.
ment Y7 eguations valid for an arbitrary load variable with
time. 12 will review extensiva worl done by Maurice A. Biot

in this dield,
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Biot [4) assumed the following basic properties of the
soil:s (1) isotropy of the material, (2) reversibility of
stress-strain relations under final equilibrium conditions, °
(3) linearity of stress=-strain relationa, (4) small strains,
{5) the water contained in the pores is incompressible, (6)

the wator may contain air dubbles. {(7) the water flows

through the porous skeleton according to Darcy's law. We
efer the points in this continuous medium to a rectangular
cartesian éystem, X, 0 i 3'1,2.3. Consider a small cubic
elament of the consolidating soil, its sides being parallel
with the coordinate axes. This clement is taken to be large
ar agh compared to the size of the pores so that it may be
tzeated as homogeneous,=ana at the same tlme small enough

-ampared to the scale of the macroscopic phenomena in which
wa are interested, so that it may be considered as infinie
tesimal in the mathematical treatment. FPhysically the
" stresses of the soil are composed of two parts; one which is
caused by the hydrostatic pressure of the water filling the
porés:\the other caused by the average stress in the skelaeton,
They must satisfy the well-known equilibrium conditions of g -
. stress field. Let Gij denote the stress components and leét
x, denote axes of the cartesian system.

' B¥ oij we shall mean the Jjth stress component of the -

skeleton acting on the face x; constant, Then according to |

the egquilibrium for the inf;nitesima; element of volume we

have



F.. . =20 : (1010)
and

C,. = 0., o {1.11)

Denoting by u, the component of the displacement in the

L

Xg direction, and assuming the strain to be small, the

values of the strain components are
1
=5 {ug oo+ oug L) (1.12)

In order to describe completely the macroscopic
condition of the soil, an additional variable giving the
amount of water in the pores is considered. The increment

of water volume per unit volume of soil is called the variae

o

tion in water ‘content and is denoted by 8, and the incre-
ment of water pressure is dencted by o¢. Let us consider &
cubic clement of soil. The water pressure in the pores ﬁay
be considered as uniform throughout, provided either the
wize of the element is small enough or, if this is not the
case, nrovided the changes occur at sufficiently slow rate
to ren”~r the pressure differences negligible. Since it i=m
assur~? that the changes in the soil occur by rever51b1e
processes, the macroscop;c condition of the soil must be a

definite function of the stresses and the water pressure, ~'°

l.e.; the seven variables e. 8 must be definite funoe

ij '’
tions of the variables %5 and 0. Furthermore if the

. _
ALl evhacripts run over values 1,2,3, and, when repeateé
indiec*n n avw on the index avar 1,2,3. The notation £, 5

-»l

denotes differentiation with respact to the th 1ndepehdent
variable, i.e., 3f, /ij.
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styains and the variations in water content are assumed to
Yo small guantities, the relation between two sets of
varicbles may be taken as linear. Consider fﬁe cage wheré
o = 0. Tho gix components of strain are then functions only
of the zix stress components Jij + Assuning the soil to
have i-ofiropic nropertiss, th2ce relations reducs to the

#4131 Fnovn expressions of Hookes' law for an isotropic

nlastic Lody in the thaory of clasticity

1 * %
B, T

i T 30 (1.13}

v
e o &
(935 = Toewr %22°i5)

rhere the constants G, v may be interpreted, respectively,
as the shear modulus and Poisson's ratio for the solid
skeleton.
K

The effect of the water pressure 0 is now introduced.
By reason of tha assumned isotropy of the soil, this effect is
limited to a dependence upon the three strain components
€11+ €5s¢ @5 and such dependence is uniform in each direction,

[

Hance toking into account the influence of O, the relatioas

a

™
(1.13) become

€., i (g g

v .'4
i3 * 26 %53 = Trer Ty to3E by Al 9

where H is an additional physical constant which plays the
role of a bulk modulus. These relations cxpress the six str: !
.components of the soil as a function of the stresses in the

50il and the pressure of the water in the pores.

e
™ The Krsnecker delta, denoted by éij' is defincd as 1

if i=3 and © if i i 4,
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T0 dexive the dépendence of the increment of water
content 8 on these sama variables Biot considers the

<anaral ralaticon
{1.15}

G “1611 * 62622 + a3u33 T804t agl,, a6°13 + a,0,
znd arques that because of the isotropy of the material a
‘hange -in sign of 0140 Oy3¢ Op; cannot affect the water
rontent. Therefore ay = ag = ag = 0 and the effect of
e shear stress components oen 6 vanishas. Purthermore,
L1 three directions X0 Xy, Xy must have equivalent
rroperties so that a; = a, = a,;. Relation (1.15) may be
written in the form

_ 1 s |
:‘ 8 = 351 Oﬂ + B (1.16)

vhere Hl are R are two ngw physical constants. .

To this point in the derivation Biot has used assump-
rions (1), (3), {ﬁj. He now uses {2} to show that the five
csonstants can be reduced to four. This assumption, i.e.,
~ the existence of a potential energy, means that the work
inne to bring the soil from the initial state to its final
3tate of strain and water content is independent of the way
by vhich the final state is reached and is a definite
Tunction of P and 9 only. The potential energy of the.

J
~=nil per unit volume is

.+ 09) {(1.17)
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As a result of some olementaxy méhipulations, Biot shows

that H = Hl' and we may write the equation (1.16) as

i

8 =3 %k *

wia

(1.18).

Relations (1.14) and {1.l8) are the fundamental
relatione describing completely in firet approximation the .
properties of the soil, for strain and water content, under
equilibrium conditions. They contain four distinct physical_
constants @, v, E and R. Solving eguation (1.14) with
respect te the stresses, then auhatituting into the equilibo

r;um conditions (1.10), one obtains

2 G de 14
GY u, + I:a;-a;; - a s;; = O {1.19)
with
2(1+v)} €
= 3(1-2v) H (1.20)

‘Theére are three eguations with four unknown u; . g, In
onrder to have a complete system, one more eguation is needed.
Thiq\géuation is derived Irom Darcy's law goverhing the flow
of water in a porous medium. An elementary cube of soil is
considered and the volume of water flowing per second per .
unit area through the face of the cube perpendicular to ths
gi-axis is denoted by v, ; According to Darcy'e law theso
three components of the rata of flow are related to the Water

' pressure by. the relations

29 (1.21)

%3

Vi

i b
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whora thn mhysical constant Xk is the cocaflicient of
permea®ility of the scil, and @ ic the viscosity of the

vater, Oineo the water is asoumed to be incompressibdle, one

obtains

%—g— o e -53?-. (1023'

X 2 ae _1-'“@_2 ‘A
mvafsc. -z;"'g T : {(1.23)
whare '
L_1_ga
Q@ R N

T™e four dAifferential eguations (1.18) and (1.22) are the
basic equations satisfied by the four unknown u. 0.

In a paper by Biot and Willis (5], methods of measure=
ment Zfor the four distinct physical censtants G, v, H and .
R are described and the physical interpretation of the con-
stants in various alterrate forms is also discussed.

*in a later work by Biot [6] the stress~strain realationn
which are valid for the case of an elastic porcus medium with
nomuniform porosity, i.e., for which the perosity varies from
point to point are derived and thcese relations lead to the
g1 equaticna for the gix compenents of the unknown diablace-n.‘
wons vectny £ields w  £for solid component, £ fo& £luiad

cremanent,  The stressestrain relatione are

934 = 2y ST Gij(xQ - aMi) (3.2%)
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Pg = -~ aMe + M§ (1.24))

where the coefficients M, 1, 7. & and Pg of eQuations
{(1.24a) and (1.24b) are eguivalent to the constants -Q.,
2Gv/{1~V}, G.. 8 and o of g:he equations of (1.19) and
(1.23). The six equations for the six components of the

unknown vecter fields u and £ are

23—:;- (n ei.j’ + 3-3: {(\e ~aM8) =0 {1.4ka)
3£ w (k/u) grad (aMe - M§) = 0O (1. 350)

Wo will consider a uniferm porosity case, i.e., let us conw
sider a particular case where the coefficients %, A, a,

N and Xk/u are constants. In this case equations (1.25)

becone _ :
n vzu-i- (n+ \) grad e -~ cMgrad § = O (1.26a)
2 - (/Mo grad e - (KM/W) grad €. (1.260)

| Theze equations can be written in the form of equations

{1.49) and (1.23) by the application ef the divergence operatar

 to the equation (1.26b). With the aid of the general Papkovith~-
- Bousginesq solution for Lame's equations of the theory of

' elastigity, the general solutions for the equations (1.26) are

obtained as

W= grad (g + o) = 22DEd g - Bl graa ¢y (127w

t
£e grad § - ﬁ‘-;ﬁ-“ﬁ- [” graa giv g4 (2.27)

- ..
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whexe ¥, and '1 are solutions of Laplace's equation,
r is the pv~'~ion vector anéd ¢ satisfies the difé sion

equation

%{- = (k/u) MY34 .

Utilizing equationé (i.24a) and (1.24b), and con:t dere
ing the dynamical case, Biot [7] established eguatione for
acoustic propagation in the elastic isotropic porous e::lid
contéininq a viscous fluid by addihg suitablé inertia terms -
in the previous theory, and discuassed the propagation »~*
three kinds of body waves. For simplicity of ndtation'fat
will use a new set of coefficients which are related wi+h the

coefficients of equations (1.24)}:
. . 2,
N=1n A=X\+Ma-P)° B =Pla-P)M, C= P {}.28)

where P denotes porosity. With the vector notation

u= (ux. uy. uz)

W= (Ux. UYQ Uz)
szu + grad{(A+N)e + Be¢) = iii-(p u + p,.0) {1.2%9a)
- aes 11 12
grad( ) = 22 ) (1, 29b)
rad(Be + C¢g) = —= (p,. .0 + p,.U) "2
g | ac2 A2 22 y

where divu = a, divU = ¢, and Py1+ Pyge Pyy are the masa
coefficients which account for the fact that the relative
fluid flow through the pores is not uniform. Applying the

divergence operation to equations (1.29), one obtains o
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2

v2((a*2N)a + Bg) m*itf (plle + plzc)
t

&

2 2 |
v"({Be + C¢) = at2 ‘Plze + 922"

(1.30a)

These two equations govern the propagation of dilatational

waves which involve coupled motion in the fluid and the

solid, Similarly, applying the curl eperation to equations

(1.24) one obtains
X '
""‘—atz (in + plzﬂ) = NV®

32

ez Py Nt P 0) mO
3 12 | 22

where

curl u = @, curl U =10,

{1.31a)

{1.31b)

These equations govern the propagation of pure rotational

waves. But there is only one type of rotaticnal wave because

equations (1.31) reduce to

. p2 2
szg = pll’ {1 - —&_, -.-a-_"y.

P11P22" a¢2

p
0=«-12 @

Pa2

{1.32a)

{1.32b)

An additional result found in [7] is that there is possibly ---.

A wave such that no relative motion occurs between the fluid

and solid when a certain relation is satisfied between the

elastic and dynamic constants,
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Another type of mixture theory was conaidered by
Truesdall and Toupin [8], In fhia theory'the concept of
superimposed cqntinua is introduced: i.ea., it is assumed
that the neighborhoed of each point of a materiél is
occupind by all members of the mixture. We define the den-
sity of the mixture to ke the sum of the individual deneities
of sach constituent. The velocity of the mixture is defined
by the reguirement that the mass flow of the mixture is the
sum of the individual mass flows. Then the position of each
particle cf the mixture is defined Dby an integrétion of the
velncity of the mixture: but such particles, in.general. bear
no simple relation to the particles of the constituents.

The main results of the woxrk of Truesdell and Toupin are
the following.

{n) The mass of the nixture satisfies an equation of centie
nuity if the mass cupply of the mixture is zero. This equa- ‘
tion of continuity ias precisely that found for crdinary
cogtinuum mechanics. |

(b} Let the ﬁatal streags of the mixture b2 cafined as the

s;m of partial stresses plus the stresses arising from dif-

fusion. Then a necessary and sufficient condition that

Caushy”’s firot law holds for the mixture is that momentum

"

supplicd by unidalanced inextial forces of the soveral con-
'stitnnﬁts'plua momentum supplied through the creation of
constizuont diffusing masses ghall add up to zero.

(¢) We definc the internal energy ¢7 the misxture ies the sum

of the internal cnergies of the conntituents plué tha kinetiec
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energies of diffusion. This definition leads to the fact
tﬁat the energy supplied by an excess internal energy rate,
“plus tho energy supplied by the work of the exéess inertial
forces agalnst diffudion, plus the enexgy due to mass supply.
yust add up to zero for the mixture.

Trussdel)l and Toupin's work on the mixture theory was
incomplete in spite of the above results. However, their
work inspired a number of researchers who haversihce made
these theories more complete. For example, Adkins [92], [10],
(11}, Green and Adkins [12] among others have given discus~ 
sions concerning nonlinear constitutive equations., Kelly [13]
has extended this work to include electromagnetic effects
while others hayg accounted for chemically reacting mixtures.

Recently, éonceptually more simplified theories have been
developed. The basic equations of mass and momentum balance
in these theories are eguivalent to those proposed by Truesdell
and Toupin. These theories have led to the formulation of
1iqearized equations governing thermomechanical disturbances.
siﬂze the present work is within the framework of these

theories, these theories will be reviewed.



CHAPTER 1Z. THEORY OF INTERACTING CONTINUA

2.1+ Jonlinaear Theo*y

For simplicity, attention is confined to two constit=
uent continva ia the *theory {14]. 172 consider a mixture
of two continua s; and s, which are in relative motion
to each other. Weo will ;Qree to éall sl‘_a solid and 5,
a fluid. ﬁe assume that each point within the mixture is
occupied simultaneously by 84 and S, and refar the
motion of thé continua to a fixed system of resctangular
cartesian axes. 'The position of a t?pical particle of 8y
at time «r -is denoted by x; (1), where ‘

LY

: w* .
'..":i('r, & ri(}tlnngxar'r) (-G<T£t)' (201)

i

X, is a reference position of the particle, and lower and

upper case Latin indices take the values 1,2,3. We use

the notation

and can express {2.1) in the alternative form

xi(w) H,xi(xl.xz.xa.t;fi' {(2.2)

ax, (1) ax, (7) :
. where !ax I P Op lax I >0, . (2-4’
, *a 3 -

Similarly, for a typical paxticle of 8y, We have

20
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. yi(’:) e l’i(rlltrzaysa T)r yi(t)m Yi (““”<T.<.t) ‘2-5)

[

or

vyl yi(:flo:fz.y:ﬁft. 7) (2.6)
together with
ayiif) ayi(T)

We assume that the particles under consideration occupy

the same position at time ¢ so that

Yi = 'xi - {2.8)

velocity vectors at the point By =Yg in 8y and 8,
at time t arxe

]
.‘

(1) (2)
D x, Dy,
f o) -———ml 3 _—1
Y " pe ¢ Vi ® Be (2.9)

where ﬂfl)/bt denotes differention with respect to ¢
holding xj £ixed in continuum 8, and D(z)/bt denotes
a similar operator for Sqe holding Yj fixed. These

operators may &lso be written os

LY ‘
(1) (2) ‘
D - N 2 D s 2 2- 2
Dt 3¢ " Ym T ¢ Dt 3t * Vm 2y (2.10)

k .
Acceleration vectors at time t are denoted by £, and
A ,
9y where
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. (1) (2),
A u A v .
ég o D i ' Qi L= D ! o (2011’

Dt Dt

Y

The densities of 8, angd 8, at time t are, respec-

tively, ¢ and p,, and the rate of defurmation tensors
1 2

at time ¢t ' are defined to be

2dij = uilj < uj.i"A zfij L] vicj + vjpi ‘2012)

where a comma denotes partial differentiation with'raspecﬁ
to or y,. We also define a mean velocity w; be

the equation

Wy B PJUy F PV e PRy Py (2.13)
and put
D.. 2. e ;
Dt = Y “+ Wﬁ axm e ‘2!14’

It then follcws that

(1) (2) .
D D D |
Pype— *Pape— =P pE ° (2:15)

Let 2B be an arbitrary fixed closed surface encioaing a
vofume B and let n, be the outward unit normal to 2aB. -
Let U be the internal energy ﬁer unit mass of the mix=-
ture. The externally applied body forces per unit masses

.of 8y and 5, are denoted, respectively, by the vectors

P, and G,. And these vectors are defined through their
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_rate of work contributions Fiu, and 6V, for arbitrary
velocity fields uw; and v, . The surfaco force vactor
t; per unit area of 3B is such that the scalar tiﬁi'
for arbitrary Uy is a rate of work per unit area of 3B,
And a similar definition can be made for the vector Py
associated with the velocity vector v; « The scalar «x
is the heat supply function per unit mass of the two con~
tinua due to radiation from the external world and heat

sources. The flux of heat across B is denoted by a scalar

h per unit area and unit time.

Ttheorem (Green and Naghdi)

Let us postulate an energy balance at time ¢t in the

form

2 _‘ 1 1
T ,{,“91 * PRIV + TPyusuy ¢ PV VIV

+ -f; (ny {pyuy + Powy)U + %.;'plnk“kuiui + %‘Pz"k"k"i"i]d"

= | (pr +NFiu, + pzsivi}dv

v
+ J (tu, +pv)dh - [hadr (2.16)

A A
Then it follows that | | -

20, o | | (2.17)

De ¥ P,k T
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which states that masc elements of tha mixtures ara conw
served. Tﬁe vectors tys P; - are defined with referenco to
an arbitrary sarfacoe A, When the svrface at a point % |
is perpendicular to the. xk~axis, wa denote the correspond=-

ing valnes by Opeso Ty and refer to these as stresses.

Then it also follows freom {(2.16)} that

(Ops T Tyqd g * PyFy + PGy =

§%(Plui)_+ g%(pzvi) - sﬁr(pluiuk + pyvivy) (2.48)
<
which is the eguation of motion.
Now let the mixture be composed of an elastic solid and
*a non-Newtoniéﬁ viscous fluid. The kinematic gquantities
entering into the theory foxr the solid are the velocity u.‘a
strain tensor o, a rate of deformation tensor @ and a
vorticity tensor T: 2znd, for the fluid, the velocitj v,
a rate of deformation tensor £ and a vorticity tensor
A'. Xn addition to the body forces previously defined we
have for the solid éonstituent the following mechanical
guantities: a partial stress tensor ¢ for the solid
and a similar tensoxr T for the fluid. Due to the inter-
ﬁgction of the two constituvents, the theory gives rise to '
_ a diffusive resistance vector @. “he thermodynamic

quantities, referring to the mixture as a whole, are the

temperature T, the specific entropy S, the specific
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Helmholtz f{ree onergy A, the heat fflux vector Q@ and the
heat supply function ». Jor such a mixture the constitu=

tive equations zro given {15} in carenical form as

*

A=A, pp - | (2.19a)
s = (e, pye T | (2,150)
g = gle, u-v, gead T, Par 2) {2.19¢)
0 = Eﬁ(grad 7, grad Par s Ny, ™

+ e, A £ T-A, u-v, P (2.194)
c.algﬁo, . B, T=A,v-v, Py T) (2.19%9e)
T = Fle, 4 £ T-A,u-v. Par T (2.198)

Further restrictions upon eguations (2.19) arise from a
-general principle of invariance under superposed rigid

body motions and a material invariance associated with the
assﬁmed isotropy of the'solid constituent [16,17]. It has
been shown that in order to arrive at a determinate linear-
ized theory it is sufficient to adjoin to thae linearized
forms of the field eguations (2.18) a system of linearized
forms Of the constitutive eguations (2.19). We now examind

the linecarized theory moxe closzely.

2.2. Linearized Theory
\ Assume that the mixture undergoes a disturbance in
which:” (a) the material points of the solid constituent
‘are displaced by only small amounts from their positions
in an equilibrium state of the mixture in which the densi-
ties of the solid and fluid constituents and the tempera-

ture have the uniform values '31,'32. and T, respactivel
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ana (%) the cpeed of the £fluid constituent is small. We
refer tha points wilth respect to a £ixed system of rec=-
tangulasr cartesian coordinates. o ‘

We consiéaxla thermodynanic process in which the
motions of the solid and fluld conntituants of the mixture
and the temperature ficld 7T cach adnit power series
renresertations in teorma of a pesitive real nunber €. We
choose ¢ L0 be a measure of the extent to which the mixe
trre Qewvarxts from some reference state. As our reference
conf‘:$xption e take the eguilibrium state of the mixture

in whieh

xcxgmwnﬁi . (2.20)

'\'
!

#a

If a(x,t) is a fie)ld guantity, we denote its €=expansion

by aﬁ(x,t); thus

a mt) = =& al™ 0. (2.22)

We assume the following e-c¢xpansions
A

x = :i-n—:c(x,t}, ¥ = ?.v:'-t-rze(x,t), =T+ ee(::,t}. (2.23)

From equations (2.9} e-expansionz for the velocity vectors

u Aare
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LER AR AAF AP (2.24)
We suppose that each of the expansions (2.23) and (2.24)

is absolutely convergent with an interval of convergence
0% €<E¢g, The linearization of equations {2.9) to

{2.15) is obtained by replacing cach of the variables by
the ¢-expansions given in (2.22) to (2.24). Without

further details it follows that the linearized displacemeite
strain relations for the solid arxe

oW, &

1 =

From (2.17) the individual continuity equations become

" ap
[e— z ——
The ' vorticity components of the two constituents are

- given in terms of the velocity components by

The application of the principle of invariance under
superposed rigid body motions of the mixture to equation

(2.18) leads to the follewing equations of motion:
\

A A
Upi'p"' Wy + 91F§.=Plgi; Trpi-'p + wy + sziﬂngi {2.28)

On entering the ¢€-expansians for the various field

‘We use the notation A 4y = BlAy 5 Ry, 500 ey T
ALy =Ry
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quantities into equations (2.16), {2:.17), (2.26) and
(2.23) an eating thn coefficlents of €, we obtain the

linearized field equaticna for the mixture as follows.

Equations of motion:

- - aui o
%pi,p T WL Y OFL TP T 4n 8%, s 30 (2.29)
Toip ¥ W * PGy = P, 3 in B, t >0 (2.30) -
Energy equation:
Tem 28 7 3T, QA :
p{T 3t 8 I TiY +wp(u vp3 + a(pq)dpq
*7 (o) “pa * °[pq) Tap ~ Aqp’ ~9p,p*PE = O

In (2.31), p = 3'1 * Py is the total initial density of
the mixture and -“-’i' Eij' Fij are the diffusive resistance

and the partial stress tensors in the equilibrium state.

The lidearized constitutive equations cbtained from (2.19)

are
PA = p A > @0, + a, (P, -35'2) + a, (T=-T) _ (2;3;)
PS m = (Gy+ Ggep + G1lP, =Fy) + a (T-T)) . (2.33) .
q; ==kT, = K'(u, -?vi) | {2.34)

*Sev notations vsad in Theorem on Page 31,

Tt
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o
;
{+

2
Wy ® G C1%mp, &

T ", . ™ o ‘| . .
. * a. eapq‘“m AE;QF . (2:35)

7

1

L]

L]

(@ - (22 : - "
. ‘(1:“ = (“1 - ("'_":}_-';‘ 2N -G‘a)ﬁpp+(§ Ca ‘Fca} {pz - pa)q.ag ‘T“T}*

o> "'ldpp + Aa fpp) ﬁij +2 (al -H:s)eij
Tig) = (=P8, *+Fy (-r;:- a, =g ep” (——2-3 oy + "z"s’ (pz-pz)

. ,Fgalo(i‘nﬁ * ,‘4dpp + hpr) Bij + 2p4dij+2uf£j (2.37)
a{ij] - -'ﬂ'[ij] = Deijp(up "VP) -yt (rij - Aij) - (2-38)

We note that there are total of 24 constants Gyeoseelyq
Ao Ao g e Rgo bye Mo bys by a,a'',b, D', k,K' which have to be
determined by an experiment for the mixture. The entropy=-
. production inequality [14] imposes restrictions upon the
constitutive equations which, in the linearized theory,
fequire the material constants to satisfy the following

inequalities:

*We use the notation’ A(19) n.é(Aij-u-Aji).'A“” ™
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Ay F 20 200 1 20, 3R H2p20, 120, (gt ug)? <4y u.
3y + 20+ g+ 20 % <A +2u) 3420 (2.39)

420, D'* 30,(a'' =D)2 <4ap' ',k 20,K'? <4Ta k

This linearized theory is well posed in the sense that the
nunber of.the field and constitutive equations equals the
nurnber of f£field quantities to be determined. We would ex~
pect that the boundary conditions for the initial-boundary °
value'problems for the mixture are similar to the classical
boundarv conditions for the elasticity problem in which
the stresses, strain, and displacements are sought. Wae

"\, recall that thg classical houndary conditions are: (a) the
forces may be given on the surface of the body, (h)_the
dispiacements may be given on the surface of the body,
(¢) the forces may be given on some portions of the body
surface, while the displacements are given on the other
poEEions. Indeed, the proper form of the initial and
boundary conditions which should he adjoined to the field
aqd constitutive equations of the linearized theory of '
interacting continua so that the sufficiently smooth aolu-

" tions of the field and constitutive equations are deter-

, mined uniquely are quite similar to the classical boundary
conditions of the eclasticity except that we have the

temperature terms and we have to specify the boundary con=

ditions to cach component of the mixture. These conditions
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are specified in the following theorem.

Theorem (Atkin, Chadwick, Steei) {18]

Let 3 be a bounded regular region of three-dimensional
Euclidean space occupied by a mixture of an ealastic solid
and a viscous fluid undergoing a disturbance of small
amplitude during the time interval t 2 O. We dencte byl

o

3B the boundary and by B the interior of B. We use

—

notation 331. 382 and @ 1’ 332 for arbitrary subsets

of 3B and their complements with respect to 3B and n
refers to the unit ocutward normal vector field on 3B .
Suppose that the constants ll,ul.x.x3.u3.x4.u4,a,u.a'.n.n',
k and K' satisfy the conditions (2.39) and that

Gy 1Qins0y Qg s Ggaly and ag satisfy the inequalities |

Q.+ .0 ?=ca+a. 0,a 03(-2-8-3--1-)+a +-2-u (o]
1¥% 2 0. 5 %2*% 2 0.¢, <0, Gy = 73 4% 30520,
_ _ (2.40)
%
1 1. 2 2 1 2 2.
(Zoy = =@, + ag) 7 £ (o (=5 - Ftagriag) (Sag + ag)

Then there axists at most one set of functions Vie Py of

* elass c1 and wio T of class c2 which satisfy equations '
{2.25), (2.26), (2.27), (2.29), {(2.30), (2.31), (2.34)

A.-\ . . :
to (2.38) and the subsidiary conditions '

w, = @ u, = & v‘ = 3 Ppa = Pat A T wmT %
g7 Wi Uy B U Vi S Ve P m Pyt P *
{2.41)
en B at t =0,
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ui - Y. = Ri' (Gp-

i + T )n. @z on 3B,

3 pi’"p i
]

(2.42)

W = U, vy =V, on 3 y for t 20,

T =T+ 6 on 3B, @0, = F on 3B, for £ 20,  (2.43)

A A

A
where ' wi' uip Vi,

A . ,
Py #. R, Z, U, V, 0, F and F, .

G, T are prescribed‘functions on the appropriate
domains and Ei. 35. T are given, strictly positive,
.constants. h

It is well kncwn that for the dynamical motions of
linear isotropic elastic solid, the displacement vector w

may be represented as a sum of two components representing

motions of dilatational and xotational types, i.e.,

w = grad ¢ + curl ¥,

where o® and ¢ satisfy the wave equations in which
appéar the”speeds of propagation of dilatational and rota=
tional body waves respectively. This representation is
known to bhe complete in the sense that every sufficiently
smooth‘soluticnlw of the eguation of motion of linear
isotropic elastic solid is expressibie in the stated form

where the scalar and vector functions o, Y satisfy the

above mentioned wave eguations and in addition, div ¢ = 0.
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For the motions of the interacting cgntinua of an
elastic solid and a viscous f£luid, Atkin [18] has estabe
lished a decomposition of its motions into components
representing motions of dilational and rotational-typeg;
Fach part of tho decomposition is somewhat simpler in
form than the original system of the differential equations
{2.26), {2.29%) to (2.31) and (2.35} to (2.38), but con~
siderably more complicated than the wave equation. The
main merit of this new formulation for the motions of the
interacting continua is ‘that it allows the investigation
of the propagation of small aﬁplitude plane waves in a
non~heat conducting mixture of an isotropic solid and an
inviscid fluiﬁ:a We define new material constants by the

"following conmbinations of the material constants.

2 Py 9 -2 2
=g v 5ag + o2 =mg) G =elagrsag).
- v . Py
P b
- - Ta,
By= ~Tog, Bymp,Teyee B=D-a% cq= S

" Introducing the vector differertial operator

’ L{E,n] = § grad div. - n curlz : (2.45)

and suprosing that body forces and heat sources are absent,

the governing eguations take the form
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-

| Py + 3'2 dive=0 (2.46a)
I'["1+2u1' u1+§n"]xfa+n[x3+2u3. by ~ 4D" v

- {o '+{:¥ curl) (w - v) + 4K, 'l--';l Gy 16y v
-g:.'.'ad(.Kapz/'ﬁzi-BlB/?} - F]. W , {2.46Db)
:.[14-4-2”4. Mg :bu"]é-n-x,[xz-i-z_pz, My + 40" v

+ {a +B curl) (w=-v) +I.[K3.0]w

- grad(K, p, /P, +B,8/T) = 5 ¥ ' (2.46¢)
RN o . 2
P Cq8+div(Bw+B,v=-K' (W~¥)) = kv" g {2.464)

Equations (2.46) contain twenty material constants of which
nine, the )\'s, u's and D", may be regarded as viscosity
coefficients, the three K's as bulk moduli, Gy as a
shear ;bdulus, Bl and B2 as products of bulk moduli,

Of the remaining five constants, K' is associated with

" the transfer of heat in the mixture Que to the relative moe-
tion of its constituents, Xk is the thermal conductivitj,
cd‘ is the épecific heat at constant deformation, «, P
-arise from the interaction of the two constituents through
the diffusive resistance and antisymmetric parts of the

partial stress tensors.

A dot above a variable means partial derlvatwe of the
variable with respect to time.
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Suppose now that there are scalar functions 9 {x,t) and

¥, (x,t) which satisfy the equations -

“‘1"2”1‘ vz:c'pl + (x1 +§ GI} vchl + (13 +293) vzqaz -u(bl- cpz)

“Kylpy /Py = 3) =By 8/F=F)§y m0 | (2.478)

(ag +2u0 V28 + K920, + (1,720 o, +aldy - o))

""'K2 (pa /32 - 1) - Bz eﬁ";zé’a = O (2041b,
k928~ (By=K') v2g, ~ (B, +K') 0lq, =Fcy 8 = O (2.47¢)
and

6, +5‘2v2¢2 =0 (2.48)

and vector functions el(x.t) and vz(x.t) satisfying

the equations

(g +4D") vzil + lezgl + (uy = 40" vztz

~(a+B cuxl) (§, = §,) =P, ¥4, = O (2.49a)

(ug = §D“)v2_§l +{u,+ én")vzvz x

+{a +6 curl) (§; = ¢,) =P,¥, = O (2.49D)

If the functions @ilx.t), 4 (x,t) are sufficiently
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di'fferentiable, then w(x,t), w(x,t), given by
w=grad ¢ +curl ;. v=grad g, +curl Vg (2.50)

pz(x,t), and 6(x,t) constitute a solution of

(2.46). Now the converse question: if the functions
Pz(x-t). wix,t), v{x,t), 6(x.t) satisfy equations (2.46),
are ﬁhere gcalar and vector functions ¢i(x,t) satisfying
equations (2.47, 2.48, 2.49) such that (2.50) hold?
The answer is given affirmatively, and the representation
{2.50) is complete. These results are given in the followe

ing theorem:

Theozem (Atkin)

Let pztx.t) and 0(x,t) be scalar functions which are
twice continuously differentiable on B and let w{x,t)
and w(x,t) be vector functions whose fourth and third
partial derivatives respectively are HSlder continuous on
B, the' four functions together satisfying equations (2.46)
in B. fThen there e#ist scalar and vector functions
¢i(x.t). wi(x.t) which satisfy equations (2.47),(2.48),
(2749) 'sﬁch that w(x,t) and wix,t) admit the represen=-
t;tions (2.50)' in B. Moreover, it is possible to choose
_the vector functions wi(x,t) 80 that the dilatational

conditions

div ¥ = o
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are satisfied in B.

with the aid of this theorem, the propagation of
small amplitude waves in a non~heat-conductihg nixture of
an isotropic elastic solid and an inviscid fluid was
studied by Atkin [12]. BEquating to zmero the viscosity
coetficients Ay uy (321, 3, 4), D' and the thermal cons
ductivity k, then differentiating cach term of equations
(2.47a) and (2.47b) with respect o ¢t and eliminating

Pq and 0§ by means of {(2.47¢) and (2.48), one obtains

A a 2 (1) L) ‘esd
ci v @ tcy o2 9y = all=£} (o, ~@,) =7§ (2.51a)

2 2-' ’ 2 2 [ - e . !
Cy ¥ qak-a-czv %"’aﬂ@l'@z’ = Py (2.51b)

\By the same process from equations (2.49a) and (2.49b), one

obtains
2.2, : o2 _

where £ = 31 / 52 is the fractional contribution of the

solid constituent to the mass of the mixture and
c? a (K, +4C, /3 +3% /PFe.) /P
PR L Tk T R WA L o
cz( +Bg/3°¥c ) /P ' ‘ {2.51e)
2= U5+ 5, a’ /Py .
c2 = (K, #ByBy/F Feg/iy, ¢2 o (Ky+ByB,/F To/F,

‘k;a“Gl/El .
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Equations (2-51&& and (2.51lb}) govern tha propagation of
small amplitude waves of dilatational type., that is,
motions of the mixture in vhich the vectozs w and v
are irrotational, and eguations (2.5l¢) and f2.51d)
describe motions of rotational type in which these vectors
are solenoidal. Thus by the thecorem (Atkin) all suffi-
ciently ragular motions of the mixture can be decomposed
into dilatational and rotatiomal components. From equations

{2.51a) and (2.51b) one may obtain

2 2
2 2 D 2 2 2
(v FY = e} (v T° o )
Pl ata Y'p2 ‘ atz

2
""‘a_ 2 2 =) mam } "
- @ @t{ng v atgki 555310:92} w O . ‘2'52)

where

2 2

2 2,2 2.2
1 + e, Yy - 4 )

17%2 ¢

v
= -&:(c

V2

1,2
= -——(c +
vk

v + {le

PL

™

2
Vp2

2 2,2 2.2
5 " ((cl-cal + 4c3cy)

3

s

¢ cd) » (10 (c2 + &)

»

1 . : '
It ha; been shown that if Vo1 and Vpy are real, Vp3
_ is also real and the “hree dilatational wave speeds satisfy

the inegqualities

Vpa S Vp3 £ Vpy (2.53)
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The form of equation (2.52) suggesta that at high frequen;
cies there are two modes of dilatational wave propagation
associated with the speeds vy, Vpat while at lcw fre-
quenciaé,thexe is only one mode of wave propagation,

associated with the grood Vpye the cecond mode belng a
diffusad disturbancs,

From equations (2.52¢) and (2.51d) one may obtain

s v“-«;a ralede? - -ﬁ-wi (2,54)

The form of equation (2.54) svgoests that rotational dig-
turbances of the mixture comprise a single mode which has
E wave~like character at all freguencies, the speed of
ﬁgopagation being of fﬁu in the limit when frequencies
appreoach to zero and Y in thé limit when frequencies
appreach to ipfiniﬁy.

So far we have reviewed the recent developments'of
the iQteractimé continua of an isotropic elastic solid amnd
a viscous fluid. Due to the complication o7 the system,
comparatively little progress has so far been made cdncern—
ing'the application of the lineazized tﬁeory to particulay
physical aiﬁuations, or the properties and understandings
of tha characker of the‘éyatem ¢f the partial differeniial

equations.
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7.3, Summary of the Dguations and Other Formulations
A, Trully Couplel Mixturo Theory S
At this faint we'éummarime the pertinent eqﬁations
which govern.ﬁhé motion of a thermally and me¢hanica11y
inteacting continuous mixture according to the theory ex-

pou':,f'.ad by atkin, chﬁmick and Steal {(18]. We call this
prchhom'by the name "fully coupled mixture theory,®

strain-displacement equations

eiﬂ = w(i.j) (2.25)
rate of defornation-velocity equations
ﬂij = Wiy, 4)0 fj.j = Vi) .(2.12)
voxtici;y-valnciﬁy equations
?ij =V, 410 Aiy = Vi, 4] | (2.27)
equatgzgs of motién
-"5.3,; - -;--31 Fy = 31 _a%% ' ' _‘fr?”
4,4t w5.+ Ei‘cj = P, 3;%_ . (2.30)°

- continuity equations

- ¥y - '
Py = Py (heegyds ~=2 45, fi4 = O - {226
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energy equations

2T - P £,
95 3¢ * %%m = P2%0 fam * =7
k . K - | w
+ %_» T . ¥ -,i.-‘“m.m vm.m)‘ =0 . (3.31).

censtitutive equations

| .l | -
“in ° (o, - {%- aq ~auleL + (-‘:;4- ag) (P, = P,) -

+a9('r- T) + Aldkkwi- s‘:’t‘fm‘:]aij

T & [=p.,a, +P. (Ela cGp) 8y = Pal ('r-"f').
(13) = F7Pa%2 T P21 %2 7% %k T F2%10

p+p

L SN -7
= Gy + P 0g) (Py = 0p) + Agdiy + My 1844
\« *2u84 + 2ufyy . - {2.36)
. Py Py
e AL Pa, g +alyy =vy) (2.37)

sam € (T = Ay
9431 "T(491 "0 GugplUp Ve PN (TyymAgy)  (2.38)

The complete initial-boundary value problem is speci-

fied by the above equations and: the initial conditions

*Obtained from (2.31) by using (2.32) te (2.38) in (2.31),
Usually the form so obtained is called heat equation.



42.

(2.41), the boundary conditions (2.42), (2.45), and the
material inequalities (2.39), (2.40). The problem is
solved if one can obtain at each place X and t >0

the functions Wi' Vi’ plg pz and T.

B. The Mixture Theory of Green and Steel.

~ In a series of papers by Green and Steel [20], Green
and Naghdi [14], Steel [21], a more tractable initial=
boundary value prcblem than the fully coupled mixture :
theory of section 2.3 A has been presented. The major
difference between the linearized version oflthe theory
presented in {15] and that of A lies in the constitutive
relations, Gg?en and Steel's relations follow from A if

one sets equal to zexo
llﬂ la' 1&4' ull bb! U4l (2!55)
all' Dp bu-

C. Uncoupled Theory.

By the term uncoupied theory we shall mean the
initial=boundary value procblem as specified in section
2.3A using the constitutive equations of Green and Steel
presented in section 2.3B and in addition, neglecting

‘the time rate of change of the dilatational effects of
the solid and fluid components in the-energy equation.

If,this is done, then the heat equation is uncoupled from

the eéuations-af motion and the temperature may e treated
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“as’ a known function of space and tima.

2;4. Single Constituent Theories,

‘8o that we can make a comparison of the mixture
theories presented in the previous sections with the clasge-
sical theories of elasticity and viscous fluids we record
here the changes that must be effected. Our purpose is
two fold: it allows us td draw ﬁpon the vast literature
available in the classical theeries of single constituent
continuous media and it allows us to give meaningful in-
trepretation to thé mechanical and thermal material
pfoperties'used in the mixture theory of subsections 2.3.

L

A Lineaé'Tharmoelastidity

If the fluid component is not present then the body
nay be'intérpreted as a linear elastic solid undergoing
thermal deformation in which the variation in temperature
is small {22},([25],{24}. One secks to obtain the compo=-

nents of Eisplacement w, and the tenmperature T which

i
‘satisfy equations (2.25), (2.26), (2.29), in the absence
of the fluid component and,with certain modifications'of
the heat and constitutive equations, satisfy (2.31) and
(2.35?; These modifications aré formally equivalent to

_employing (2.55) and setting
alq'lgazgaﬁaaaialej }\B 'Q;K' ‘2!56) .

equal to zgzro.
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Equation {2.36) is then iﬁterpreted as the ciaésical

linear elastic stress-strain law if we identify

where y.. Ap are the Lamé elastic constants, ¥y is the
coefficient of linear thermal expansion and K, is the

isothermal bulk modulus, K, = & (2ug+3)g). From (2.31)

the modified heat equation becomes

a-‘: "aﬂ?‘—'_ A 9 3
,kw.m pe, v YTK, at m-ﬂ-pr 0 (2.58)

where 5' is the total density of the bod}. Co the

spec;f;c heat at constant strain. These coefficients are

related to a7 by

— . {2.59)
7 T

The material inequalities (2.39) and (2.40) simplify to

kK20, uyp 20, ¢, 20, 2upg+Irg =3K, 2 0. {2.60)

A properly posed initialwboundary value problem of
e;gsticity consists of finding wifand T of'class cz'which
saéisfy the modified equations and the following initial
and boundary data:
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‘Wi“",}i’ uim{}i, TsT+% on B at tao,

Gijnj = Ei on 3By,

wy = W, on 2B, for t 20, (2.61)
T=T+ & on aBZ,

QM = F on 3B, for t >0

A A
where W, Uy, @, Ei P wi.e.s. and Fi are prescribed
functions on the appropriate domains.

We close this subsection with the remark that if the

term
YT K -j-at @ (2.62)

is ignored in {2.58), then the resulting thermoelastic
theory is known as the ¢lassical uncoupled thermoelastic
theory. [22]., [23]

B. Linear Viscous Fluid

If the solid component is not present then the bkody
may be interpreted as a fluid undergoing thermal deforma-
tiéns in which the variation in temperature is small. One
seeks to obtain the components of velocity v and the
‘temperature f which satisfy equations (2.12), (2.27),
(2.30), {(2.26), in the absence of the solid component, and

with certain modifications of the heat and constitutive
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equaticns (2.31), (2.36). These modifications are: form=-
ally equivalent to employing (2.55) and setting

Cle alo'q-‘lo 35. aa. Q'.g : | (2o63)

equal to zero.

Equation {(2.37) is then concefned with the unsteady
linearized compressible flow about a state of rest of a
heat~conducting viscous f£fluid, if we identify

A ™" 'p'cz2 . 32 {% a, * osﬁ). Falo of which | and u'
are the coefficients of viseoaity of the fluid, Fag
ig the pressure of the £luid in the rest state,

P?Ea

p , P

‘vxis the product’of the volume coefficient of thermal exe

, + @z} is the isothermal bulk modulus and F“lo

pansiétn and the isothermal bulk modulus.

From “(2.31) the medified heat eguation becomes

To oL 7 ‘ Pr =
pcvat-!-VKT'l‘pr-!- RT'pp“"P’: o} {2.64)

where Cv is the specific heat at constant volume, v is
the volune coefficient of thermal expansion, Kp is the

isothermal bulk modulus, and k is the thermal conductivity.

The coefficient <, is related o oy by
c, = - %a.i . (2.65) '

The material inequalities (2.39) and (2.40) simplify to
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IM+2u20 U220 k20, 2a,+a, 20, a, 20

P 7

x,r_;o and C, 20.

‘A properly posed initial<boundary value problem is then
to find Ve o P of class al and T of class C2
which satisfy the modified equations and the following

init?al and boundary data:

Vi ® Vie PP +P, T=T+T onBat t=0

wpinp - 'i on . aal.

v; =V, on 2B, for t 20 -~ {2.66)
o

», - P
T T+8& on 2aB.,

qknk = P oOn aaz. for € >0 -
A A '
where Vi P . LI vi. e P Gi and. r are prescribed

functions on the appropriate domains.



CHAPTER IIZ. RECIPROCITY THEOREMS

3.1, Introduction

Prior to considering the reciprociéy relation in the
mixture theory, wa will review the well known rec;p:ogiéf
theorem of elasticity. -

suppose that an alastic body is subjected éo two
systems of body and surface foxces. The work that would
be done ﬁy the first system's body and surface forces in
acting through the displacements due to the second system's
forces is egual to the work that would be done by the
second system's body and surface forces in acting thraugh“'
the displacements due to the first system of forces. Mathe~
matically this is incorporated in the Betti~Rayleigh re-
\eiprocal theorem.

Theorem (Betti~Rayleigh) [25] .

Consider two equilibrium states of an elastic body: one
with displacements ug ‘due to the body forces F, and
surface forces Ty » and the other with displacements u{ due
to body forces Fi and surface forces T, . Then it follows
that '

’ L . [ 4
gB Tgu, ds + J;Fiui dv = {BlTi_ui ds + J;Piui av .
A-generalization of the reciprocity relation to dynamic
problems is given as follows.
. Theorem (Ffung) [26]
Consider two problems where the applied body force and

<he surface tractions and dispiacements are specified

ny

48
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differently. Let the variables involved in these two
problema be distinguiahe& by superscripts in parentheses
such that the body force is 259 (%, 1¢), . the cpecified
surfgce traction is féj)(xkrt) .on 331. and the speci-
fied displacement is géj’txkst) on . aE; where 3§ = 1,2.

Assuming that the action starts at t > O in each case,

we have
+ .
) X§1)(x.t-y)uiz)g3,y) dy dv
B O .
: t | :
+ I e ey iy ay as .
331 o] : .
SIS (2)
“' + J' JO aij (x‘t'y)gi (pr)nj dy ds
“% | ¥,

L) * t ‘
= ]| x{z’tx.t-y)uil’{x.y) dy av
B O

As an jillustration of this theorem consider the follow~
ing problems. By problem 1 1let us mean the displacement
and stress field in an infinite region that results Gue to

the body force system

x{1 o P aipy) 8(e)
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whexe p, is a fixed point in the medium and Fél)
refers to a force magnitude, For problem 2 let us find.
the displacement and stress field in the infinite xegion

due to the traveling impulsive foxce system
2 o8 e - XL s sixy)
i- i U 2 37"

Then substituting intc the reciprocal theorem and using

the properties of the Dirac delta function we find that

(1’ (2> (pl’ t)
(3.1)

(2 rrre(x,) 6(x,) 6x, dx, d jto( 2y, t-y) &
= F; j'j'j' (x,) 8 (x5) dx, dx, x3o Y= 57 (% 0% %50ty Y.‘

X

= F(Z)I il)& 100,0,t ~‘——q dx, -

From this relation u(z}(p ,t) can be found when

%y
il)(xl.o O, - —n) is known. When F(l) =1

(1) . (l) -
F°0 = Byl =0,

and

payton [27] has determined u‘l)

by apply-
ing thﬁ Laplace and Hankel transforms to the elastic equations

of motion. The solution is

) t
(1) t (L) %y X2
u (x,t) = G(x,,R,t), u (x,t) = F(R,t)
1 4rr® 1 T2 arr?
» (3'2) .
u3 {x,t) = " 2 P(R, t)
ATR
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A

F(R,t) = 2 H(t-R/c;) + )

b(t=R/o;) ~F H(E=R/ey) = 5-8(t-R/0y)

2 . 2
Glx R, t) = 25 - 1L H(e-r/Gy) + —Esb(t-R/c,)

R clR
2 R 2 2 Q 2
R R 2
Y
2

R = (xf <+ xg <+ xg)

Ry _and ¢, are the speeds 0of the
propagation of dilatational and eguivoluminal waves.
Payton used the equatiocns(3.1) and (3.2) to compute

(2)
the u; .

3.2. Reciprocal Relations for Mechanically and Ther-~
mally Interacting Mixture

We will investigate & reciprocity relation for the
inthracting continua of an elastic solid and linear viscous
fluid us#ng the theory derived in section 2.

We put

x; = Xi + Wi, Py =Pyt N, T =T+ 8 {3.3)

where ‘xi is a reference position at time t = Q, x,
is a position at time ¢t » Py is the density of the fluid
component at (x;,t), T is the temperature at (xi,t),'ﬁ

is the initial temperature: then from ({2.26)

#

an - dvy '
ol Py axi = 0 (3.4)

all quantities aow keing regarded as functions of xi

and t. Since initially. the medium is in equilibrium
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under zero total applied force it foliows that
pzaaa . - (305’

Let us consider the problems in which the body forces
Fitxi,t), Gi(xi.t), the spscified surface tractions

£, g; . and the apecified velocities u;, v; are given
functions of time and space, respectively, for solid and
fluid which starts its action at ¢ >0, with the initial

conditions
awi
wia-—s-E—mO, Viﬁocﬂﬁgp 0 =0 for gsol (3.6)

Let the Laplace transform of a function u(xk.t) ba
written as ﬁ]xk.9) vhere
~ P <Pt
Ul P) = | 7" ulx,t)de.,
) o .
We apply the Laplacé transform with respect to the time ¢t

to every dependent variable. From (2.29), (2.30), (2.35),
(2.36), (2.37), (2.55), (3.4) and (3.6) wo obtain

Opi,p = Uy + PF; = PPy : | (3.72)
Toip By + BE, = P, . (3.70)
w, = 12254 - -éfl o, i * OBV = 7)) (3.7¢)
. P N

'&'ik = %— dik + (a, = i_f_fé-;zmawz(aﬁas;gm (ag+ %}-)?{ 843

t Gy 8 b5y _, (3.74)
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To complets the problem let us consider the boundary
3 as the sum of the disjoint sets aal and aﬁi or as
the sum of the sets (disjoint) 2B, and 23B,. We specify

. 2
foxr €220,

u, - v, = Ri on BBl (3.8a)

(Gij * vij}ni - Zﬁ on 9B, (3.eb)
u, =U,v, =V, on Bﬁi (3.8¢)
T=T+0 on 2B, (3.84)

q,n, = F on 352 (3.8@)

To aid in the computations we introduce the following

combinations of material constants:

1%

_ -
B, £ a, - . By =ag+ L (3.9a)
P P
- 32 + 3 ’ ‘
By = @y + Qg Yy = POt = L (3.9Db)
) 70
Yo = Poy '("aa + ]......2) (3.9¢)
P .

- Now consider two problems specified by equations (2.26),
(2.29), (2.30), (2.31), (2.35), (2.36), (2.37), (3.6) and
(3.8)., We identify one problem by a superscript one on all
f%eld variables and a second problem by a superscript two on
all field variables. For example u{l), v}, o(1) 4y
satisfy (3.6), (3.7) ana (3.8) for R{Y, T{M o) {1,
G(l), ?‘1). while uiz), v{z), 9(2) are solutions of (3.6),
(3.7, (3.8) o~ aifferent R{Z, B{, ulP, v{2, ol 2,
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To derive the reciprocal theorem we begin with the
equations of motion and the constitutive equationé to which
we havae applied the Laplace transform and used the initial
conditions as specified in aguation (3.6). For the sake of

L

convenience these are

g - w  5FD = By (3.10a)
;jzp . mé§?+ p,6. = p,pv(3) (3.10b)
— 5 P
B =2, 59 - 20, 5 e - v(j)) (3.10¢)
P P
$H _ % ~(4) ~(3) ~(3), (5)
Tk =% Six * Poonm Oy + 48530 4 B RV, * ag¥9 6,y
. (3.104)
o P2 T ) L Lt (4) (4) |
Ty == 3 ey = vyl + yaa o "Pz m%' ]"1 ""‘?raik
. 2“,51.(.}3;) . (3.10@)

for j =1,2.
"
Multiplyi=~ aguacion (3.10a) for j = 1 by '{i’i(_?" and

~{1})

i
then integrating over the region B, we obtain,

again for j = 2 by u;”’, subtracting these two results and

(2} =) o P (2 = =)
{aui PMP S\ jx; i Pp By dv

- 152 g1 av (3.11)

B

= 33 52 (1) = =(2)
"'J;ui Plpdv+1u plF dv
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whrre dv is the element of volume of B.
Consider the first integral on the left and let us

apply the divergence theorem to it. In this way we obtain

[ s ;3{29 av = | G2 ;i)npds - jE" Eﬁx}: a;i’ av  (3.12)
B

where ds is the element of surface area of 9B, We note
that the first integral on the ri t of (3.11l) can be manip~-
ulated in the same way and the xer ‘1t is the same as (3.12)
with the superscripts interchanged.

Considexr nowlthe third integral on the left. From the

constitutive equation (3.10¢) we may write
1

182 &0 ags I, i {2) a(wm - ¥ )ay

- —-

+ pwfz’[ 1ﬁ§?) + nn-az nil)]n ds
3B 9 . P
(z) Pz ~(1), P31~ |
-yl [ - Gy Oy * T %y M Jav {3.13)
B ) P ,

A similar result is obtained after the superscripts afe
exchanged. Using the constitutive equation (3.,10d), we

have for the second integral on theright of equation (3.i2)

\ . .
3(2 7 gy o ~(2) (1) Ay -
g i,p pi av J PW;i 5 Opi OV (3.14)

- ~{2} (.L)
J Pelp px av

= [ g e zls v 2p, P”]av

"2 mm pi
Fre(2 ay (1) ALY
B
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A similar resulit is obtained for the middle integral on the
riéht'of equation (3.12) after the superscripts are inter=
changed. When the equatioxlxs (3.12}, (3.13), (3.14) along
with the eguations afier the suparsceripts are intarchanged

are substituted into equation (3.11l}, we havc

~ (2) = (1) (2) (1) ”(2) (1)
I, PyFy  av + {Bu Go3 Pgds + J Pa W av  {3.15)

L] g p ~ p ~
- ] el - 2a5 :i;’ + ....az.nm]n an + | pen(é) 1 2n(1)_dv
oB ° _ P ‘B F.'
C a2 3 ~(1) (1)
= JB Peip ( E:R pj_ + ﬁ'l'ﬂ Gpi + ag@ | api]dv

= [ & (1"51";2)6!; + fu(‘” (2)1‘1_ ds + J Fa.w(l) (Z)dv

B . B pl
y Py . P Py w
- j' Pwil.)[- -:_§- aie:—.nﬁ) t -_-3-’- %a7 ‘2) Jn,ds + j' Pe(” L a,n (2)3‘, .
B/ P o 3
£ Y P RPN o) #(2)
- JB Peip {3 691._ * By 6pi. + agl api.]ﬁv

By the, same process used to derive (3 15) from (3.10a), we
£ind that from ({3.10Db)

[FP5,5Way {Bv;m #Pads o+ | o 3D May
B

£ J D P2q 1o + -2 anW n e+ [ 1D P24,50) 4,
oB P ) s et F o

- J‘ ‘7(2) pl - 5 T oyt Vg - P o100 ) *pi 19V

i Plp

+

=J‘ vil)pzc(?)dv + ! T2, a5 4 j Pav(n u’dv
B )



cm(l) e P2 () 31 {2) (1) 32 (2)
+ J vt === qa,e + == 0L nds + | v -= .0 0 dv
‘lagi g rtm U og Iny I vils 5 A%
~(1) . P2 ~e(2)_ 2
- -L;Vz..p[" F Y;ae_zfup)' P08 28 lav . (3.16)

Before we add (3.15) and (3.16), we notice that the following

volume integrals

~(2) P2 Py0,
f vizi pesal i (l)dv + J Pn(l) l eé;’dv
B F) p A
Ce(2) P 1
- JB % p & F %2t Mee Sam = Paoaof 1oy av

- J ?"(2)[ "ﬁ'ﬁpi - ﬂlwtl}bpi + ag 9(1)6 glav

;.1a3{\be recast by.amsing (3.7} " and (3.9) as

E O, Q. a ~ .
! P?i(zj'[(—aa =y en(ut)" "E»% - aloam Jav (3.17)
P P ’
i 02 (4 ot -~
R ¢ 2T - o o i e,
B L

With the aid of (3.17) the sum of (3.15) and (2.16) can

be written as

{(3.18)
~ - 2)— 1 2 1l
J;‘(i(.Z)PZ fg dav + j u:f_ ) lF( )dv + J vf_ ) ;1) pds + Januiz) ;i)npda

-
— —-‘

(2 pe(2)y o P2 2, Pa ) a1
-p.faB(vi P ) (- Palm + pazn )n,ds

Pooy . N | ity
* {B‘ _%2' Vrfnm - alwxf\?)mmds * J;Bu) (Pzaloféf_)- czgpeg))dv
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~ ly= {2
n.£V£ pzsiz)dv + J u{ )pl (2 av + j :‘_1) ;i)npds

+ J "il)";f)npds

o @ - _a a 8 4 ,___,%
a8 3 P
Py ., o ~
+ [ (22T - a@Mingae + Le T2 B 010k - ag¥iny ) av.

3B

Fz))nids

Let the flux of heat and heat supply function be incorporated

into (3.18)}. The energy equation (2.3l1) reduces to

20 - 1
@ 3t aadpp = Pa%1o%pp - T 9.,p

Application of.Laplace transform to (3.19) leads to

[ d ~

Pay8 + PagSmy P%10fpp ~ 5 qp,p £=0. (3.20)

ralrpu

Consider the last integral on the left in (3.18). Using

{3.20) it becomes

JB 7 ‘ qP!P T * “

+3)

and if we now apply the divergence theorem to the qé% ""(1)
’

texm we may write {using (2.34) and (2.39))

F) (2 P g2 1 gigz(2)
Pa_ o 9 dv + L av - 0 ds
) 7 =[? v T J‘aa % O’

B T B
-k DT, - K risy (2) - 5240 .
.'.r..fB v J}; . Vo av (3.21)

P AP -%—
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Wa note that a similar expression can be obtained for tha
last integral of (3.18) by interchanging indices.

| Substituting {3.21) into {3.18) and employing the

cransformed boundary conditions (3.8) leads to the general

reciprocal theorem in the I.apla.cia transformed staté. Bé- '

fore giving this expression we introduce one ndd:l.ticnal

condition. We set

Em gl 4 oD | C (3.22a)
and require
opiny = £{3) | (3.220)
#Pi- - 9{3) (3.220)

on the boundary, 2,;. This introduction somewhat simplifies
the notation but it must be recognized that only the total
stress vector Ei is specified on 2B, .

Thus, by (3.8), (3.18), (3.21) and (3.22) we have

i) ?{z)ﬁzﬁfl}dv + [ 8 ( P F‘ndv +
B B 14

(2) u)ds + { \?{”?{”d( :
Bl ' '

By
~ | ~(2) (13
i 7oy npds + {E A, npds

. o~ P -
+ J = 8- ?a,‘.( 2 .55, + e, G- *z’f'lnidﬂ

« ] G . ”‘2’)[-— -;-u ( 2 - 53N /5, ¢ Py, B -;)/-]nida
7S
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PG - O P.es, .

v 5 B EPnge s | BT - 0P, e
- 3'51 '

+ EJ "(l)*(Z)dv - __j‘ 9(1)"*‘5(,2)n dg = é] ""(?n.)',.f'(Z)ds
T B iy 28, T .

- EI 9(1) (u(2) (Z)dv
B P

= f G‘él)“zgiz)dv + f uil)_ F(Z)dv + J vi(_n u’ds-i-j' u!_”f("’ds
B | B B, 9B,

+ .|_ i(.l) p(f)n ds + | U(n ;f)npds

2B 1 3B.

1
~) . P2 P1 -5 ~2) _ P2
+ [ (-R yi- "%"Gl( !/_ + pl 2Py = -;}/E]nids

. 381 ’

e P
* i_ @ - —93 ay =k - F12) /5, + Fra, B2 - -—)/“]n ds
B o ‘
1

L Py . Poa
+ | ("'%"g‘) (- (1))nmds + ) (-—- Vu’ - a,W ril))nmds.
‘BB} BB

PR pTRFMy L L E@FM, g - L FOF,

T T P T \3
3B, 35,
! ~ ~ ~ '
X -’;_— JEAEH - vithar | (3.23)
. B - .

- 8ince the inverse transform of the product of two functions

is the convolution of the inverses, we cbtain:
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. Relation for Heat Conducting

-.A x A j

mixture).

Let B be a bounded regular region of three-dimensional
Euclidean space occupied by a mixture of elastic s0lid and a
Newtoniaﬁ viscous fluid undergoing a disturbance of small
amplituds during the time interval ¢ > O. We denote by 2B

o)

the boundary and by B~ the interior of B and introduce

regions 2, 8’ of 3§ace-time-aafined DY
‘ o ‘
&=(lp,t): p €B, £20), & = ((p.t):t p €8%, £ 20).

We use notation 3B, 332 and a‘iil ) @5‘2 for arbitrary sube-
sets of 3B and their complements with respect to 2B and n
refers to the unit outward normal vector field on 3B.

Suppose .that the constants A\, u, 4, k and K’ satisfy

I+ 2WD0, w20, a0, k20, K'2 < 4Tak, and that

Cys Gpr Gps gy Bgoo Oo and Og . satis€y the inequalities

2 %, 4
al'l‘GsaOa ?32‘3‘0’620: a7$°9 01{":5_*3')4'(14
2 i, _8% 2 P21 2
+ 5 g 3'9"-“1 i “2"'“‘"9’ £ (ul( i 3) + a, * 3“5)
p P P .
2
(_a.2+c26} .

)
Let the mixture of elastic solid and viscous fluid be sub~

jectdd to two systems which are distinguished by superscripts -
in parentheses. Let t%o funsiicis vj(_j’, Péj) , ui(.i)' of

.class cl and '3?‘3) of clasa C

on £ which satisfy
equations (2.26), (2.29), (2.30), (2.31) on Bo . equations
(2.25), (2.27) and {2.34) to (2.38) on £ and the

subsidiary conditicns
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wiHO.uiHO.ViBO.ﬂ’BO.BBO on B at t.OQ

o) v < rf, oy w e, 2ln g,

;g,np " .,,-lgl) ny aE{j)* on 3B, t'ox: t20

u, = o, v, s v on ¥, for t20,
) T4 ol on 3B,, qlg:’) = F"U) on ai!‘z for t 20,
. where R(J) f(J) :i. U(j) V{J) 9‘3) FU) F(J) G(j)and g(3)

are prescr:bed functions on the approprzata'domaina and

pl. 92' T are given, positive, constants. Then the work that
would be done by the first system in acting through the
velocities of the second system and the work that would ke
done by the.secc?d gystem in acting through the velocities of |
th;\first systeé satisfy

7, | j v{? (x.t.-y)s“’ (. ) dy dv+p11' { u{” (. t'Y)Fm (x,y)dy av
B

t
+ .r I vi('z) ‘x: t-Y) g:i(_l) ‘xty) dy das + I I (2) {x, t-y) ftl’ (x,y) dy ds
aalc . 2,0

t ' - c
+ I .I; vid (x.t-y)vlg) (x,y)n,dy as +[ J; 0{® (x, tep) am (x, Iy dn
85, o 5,
t -p _
- I R e [ =2 o) By-p Y (ke |
0 PyP | .

- p a
+ ""L""(pzl) (x,y) "Pz)] ni. dy ds +
P

Jll I

'M:tention is called to the fact that only Ei. is known on azl
and hence only the sum fi + gy ie given.
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e @, (2) P2
+ I3 v e <o o) (- 22 6y Fep ) ko)
28, Py P |

. Pla

(P(l)(x.') - p,))n, 8y d
5 Pz]i Y 8

| t
- J‘ .r P:z“z*’m )(':.t-y)nn dy s ¢+ | J v(m (%, tey)
aal | g _1

- uﬂ“z’ (%, €=y} In_ dy ds

L

1ot

4 ' .
J;%r(z) (%, t-y) 9(7:) (x,¥)dy av .

¢
(2) oo afl)
J[a I leg JSrot=y) 8 (x,y) In, dy ds

\20

+3] ||--

. 193 ' t
,l' f Pl ey 0 2,16y as - K J ) ol (x, tep)
T o P '

»EI] 11-0

- v}gz) (2. t=y) ]9.(,1\) (.3 @y av

t - |
= }5‘2 [ v (1) (x,t-y)c(? (x,y)dv av
50 i i _
. _
+ Py '\f _[{') ui‘.l) (x.t-y)s'i_m’ (x.‘y) dy dv
B‘

* .f .r Vi(_l) (%, t-Y)Q(a) {x,y)dy as

BBL

+ j' j' \a(l) (2, t-y)f(z) {x.¥)Cy s
BB :
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+ .f f‘f () (x, t-mn‘m (x.y)n dy ds
aal

+ ] U(n (X, tey) 0(2) (x.y)n dy ds
B/, °

: Py

i Jo Rm (x, ty[ - ;";" oy (py = p{ Y (09))
g 1

/

+ g]_‘- EPzz) (%) - P)] n, dy ds

. n't | y P
5 oD ey () (x, tey) ) [~ =2 altp]_-pf’ (x,¥)}
25, © : P3P
1 . 1
s } 2)
* 2 aylpy” (xiy) = p,1] 0y dy a8
Q N
-J ] paugau‘ln {x; t=y) n, dy. dc
s
1

A AR P v ey - el (n,tey) ) 0 ay as
2 F L (2)
t2 Ll e e et Y ey av
J J' (1) (x,t-)0(2) (x,y) n, dy ds
38 ,
(1) (2) K + & |
F $Ey) 0 ¥ d - = -
{a Lo e vay da - X1 [ i (x,eey)

1 .
v; ’(x,u-yne";’ (x,y) dy av (3.24)
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3.3, Special Cases

A. Reciprocity Relation for Heat Conducting Mixture

of Linear Blastic S0lid and Non-ﬂewtdnian Viscous Fluid:

Let 2 b3z a bounded regular rvegion of thres-dimensional
Euclidsan space cccupied by a mixture of elastic solid and a
non=Newtonian viscous fluid undergoing a disturbance of small
amplitude during:the time intezval t 2 C. When the viscous
£luid is non-Newtonian, tﬁe restriction (2.55) does not hold
in general. Let the mixture of elastic solid and noneNewtonian
viscous fluid be subjected to two systems which are distine
guished by superscripts in parentheses, where each of these
gystems has same initial and koundary conditions stated in
the pravious thporem. Then the reciprocity relation is again
an xntegral relatiun obtained by adding the following equality to
(3.24), ‘_" .

- a* j Iy um(x.t y)Glm(rgg(x. - 480 (x9)) ay av

-2 T iy (x, =) Ogtiy G 8 + 2 w2 ) ay av
B ,

£
(2) (1) . p (1)
+ a v (x,tey) € F {2.¥) - '
JB ‘Io. | “¥) € g ¥)- hog' (x0¥)) dy dv

t
- v een o) )8y + 20,88 (,9)) ay av
B .

mea® [ 5L (2) o a2 '
a JB Jo ug ™l (%, tey) elmtrpq (%,¥) = Ay (x,¥)) dy av
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- Z'i]; N af) (e 05812 Gruy) 0y + 2uyelB Gy)) ay av

t oy |
P i ey € 0B eoy) = A2 x,9)) oy av
o ) .

- {; (1)(x.t-y)(x4d‘2)(x.y)b 1 + 2u, éi’lx.y)) ay dv
B
(3. 25)

B. Regiprocity Relation for Mixture of Linaear Elastic
$0lid and Newtonian Viscous Fluid in Isothermal Process

Let B be a bounded regular region of three~dimensional
Buclidean space occupied by a non~heat conducting mixture of
alastic s0lid and a Newtonian viscous fluid undergoing a
disturbance of small amplitude during the time interval t 2 0.
Let Ehe m;xture be subjected to two systems which are dis-
tinggished by superscripts in parentheses, and lat the process
be isothermal. Moreover, except the temﬁeratu:e terms, we let
each of these systems have same initial and boundary condi=-
tions state% in the previous thaoxém. Then the reciprocity
relation is given as following:

- i lt - ,
Pa J Viz)(x £ Y)Gil)(x.y)dy dv
B O

-~ .\
+h I e ey FY o ay e

w

.ro viz) (x, t'-Y)gil) {x,y)<y ds

t .
+ f .f u{z)(x.t-y) fgl)(x.y) dy ds +
351
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. b .
+ I vf e r ) (g,yin_ gy as
- ) i P
BBI
t
+J [ "(2)(* t-y) ﬂ‘l)tx.y)n dy ds
35, ©
1
t . . -p
-f IR e [ =2 0, By - p (x
?fBln L plp 1\l pl ¥))
fJ'cz
+ '*.5:" {p (1) (x.w-pz) In; dy ds

. j_f @ (x, tey) -0 P (x.t-—?))[- P2 ay (p 1051 (x,9)
CF) . g

|...u

e

]
+-“%—g (pél) (x,y) = '52) ]ni dy ds

-

J;“1":: 5202 Bar! (ki tey)ng dy as + [ .f ?3%, "‘2""""“’"’
n 35,
1

f=alwg2)(x.t-y))nm dy de

e t .
"0y io 9:1)(x.t-916{2’(x.¥) dy av
+h \r o ey B may) ay av

t | |
J;_ (}1 (x, r...y)g‘z’ (x,¥)dy as +j‘ j u{“ (%, t-wf‘” (x,y)dy ds
. 1 ) I

+
oF
g

*

+* J J; V“’) {x, t-y)fr(z) (x.y)n dy ds | ' : -

BBI

L

t

+ f Uy (1) (8 t-y) 0(2’ (x.y)n dy ds
am © pi

&
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t B
=1 1R it (- =220y By - 3D (xey))
1
+:Naytp 2’(:: ) - F,))n, dy a
. 2 Y Pz y ds
b |

+ f I (v(“ (X, toy)= U (1) (x, t=y)) [= = _.EL “1["’1"9{“ )

Bl plp

-+ "..'%' Gztpztz) (x,¥) = Fz] ]ni dy ds

- [ j p2 2 Rél)(x.t “¥in, dy da + I [ i“z'vél)‘“'t‘y)

aal aal °
1W,§” (x,t-y)) n, dy ds
. . (3.20)

C. Reciprocity Relatiop for Heat Conducting Mixture

of Linear Elastic Solid and Newtonian Viscous Fluid Occupying

Infinite Region
Let three-dimensional Euclidean space be occupied by a

mixture of elastic solid and a Newtonian viscous fluid under-
going a disturbance of small amplitude Quring the time interxval
t > 0. Since there is no boundary in this infinite region
case, }egularity conditions will be considered in the place

of boundary conditicns. Let the mixture be subjected to two
systems which are distinguished by superscripts in parentheses,
where each of these systems has same initial conditions stated
in the previous theorem and satisfies the fellowing regularity

conditions:
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o) o) =) ) gth) -

13 ¢ a3 20 as [x| »= for im1,2

Then tho reciprocity theorem (3.24) reduces tos

'iL'.
2§ I viP wemefP iy oy av
B ‘ :

- t
By d ) v ey P,y ay av
B 8]

+

t , .. P y '
(2} 1y covy o (L) Ky (2) 1 oo
{a J{‘?.r Yt o ey av = .JB Io (ug (x.f: y)

+
= ol

T PRI Y -
Vo {2, ¢ y)lﬁ,p (x,¥) dy av

. |
=5, [ v mene Py ay ev
B

- t (1 ‘
+ P N IQ ué;)(x.t-y) 3{2)(x.y) dy dav
B S

- <. , ' t ;

#2 0 e mep o yay av <K J LT 0lV (x,tey)
§F B O - | T B ‘0 P -

- v;“ (:;.t_-ﬁrn ef;’ (x,y) dy av (3.27)

where the integration on B 1is over the entire three~

dimensional space, (x| <=, |[v}|< =, |2] < o,

D. Reciprocity Relation for Heat Conducting Blastic

Solid
Let the elastic solid be subjected to two systems which
are distinguished by superscripts in parentheses. Let the

2

functions wéja and T(j) be of class €° on B and the



eubsidiary gonditiong are
g 70 C=n en B at ¢t =0,

cpinm @ ﬂéj? O By, ug = Wéj) on -anl for £ 20,

23 o F . o) on Baz.g;j)np o 73 on %L, for t 20,
vhare Féj), r(j), féj), ng), @cj) and E‘j) are -
preseribed functicns on tha appropriate domains, énd

P, T are given positive constants. Then by the result
of Section 5.4 Part A, it follcows that the work that
would be done Ry the Lirst system in acting through‘the
displacament of the second system and‘the‘work that would
be doane by the second system in acting through the dis-

placenent of the Lirst system satisfy the following re-

lagébn. ’

Ff I w@ {3, toy) 5‘3‘.” (x.y) dy av ‘
LY
s f P ol ey £ om s
b .
2B, ,% |
4 f f “ig’(x,t»v)o(l)(x-J)n dy ds
a?a*i‘ -
< g’ I ququ.tny)ﬁtl)(x.y) dy dv
TQ B o
-2 1 7 e Gy ay as
-3

- b e D ey oM (n,y) ay as
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=.p J j‘ w{n {x, tey) F{m {%,y) Qy dv
B .O
¢ (2 (12)
+J .[0 Wy )(xct“y) £, (x,y) dy das

t
. " g {l) . {2}
+ J_' J; Wi (%, L=y} Gpi. (x.}')np dy ds
3B .
1 .
<
J I e (x't-Y)O(Z) {x,¥) dy av
B O . |

+
&) o}

01 e 0ot xying ay as
2, °

[ |
»)

t : . . ‘
fop eV -9 0 (x,9) ay as (3.28)
38.2
We re:qarlé that this result agrees with the well known

3| I

leciprocity relation for elastic solid in isothermal case, -

'E. Reciprocity Relation for Heat COn.ducting Viscous
duid

Let Xhe viscous £fluid be subjected to two systems whioh

ire distinguisheh by superscripts' in parentheses. Let the
functions vij) be of class c1 and T(j) be of class t‘.:2 en

3 and the subsidiary conditions are
rtEQ, neO, 8§20 on B at t =0,

Toilfp © géj’_ on Wy vy = V{j) on 38, for t 20, |
1.'(” =7+ o3 on 2B, qéj’np = {3 on a'é'z. for t 2 0,
where {3, v{3), o), pU3), 63 ang o)

are prescribed functions on the appropriate domains and '5 T
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are given, positive, constants. The# by the result of
géction 2.4 Part B, it follows that the work that would
be done by the first system in acting through the
valocities of the second system and the work that would
be deno by the gsecond system in acting through the veloc-
ities of the first system satisfy the following relatioﬁt

7 J:f v{? (et (r,y) ay av

+J .f (2) (%, t=y) (gm x,y) + ¢ a,ng) dy ds

+J f Vm (x.t “y) {vm (x.y)n + P L 1’ dy. ds

B, -
2 015 e @ ke o (x,y) ay av

T B (o : -
I NI ) YO ¢ § I '

= ia joqp (x,t=y) 0" (x,¥In, dy ds

2 A R

Ly g° (2 (1) |
-2 ] P ¥t 0'M (x,y) ay ds

T, ©

2

- t . .
-p .L j; v{“ (x.tww{” (x.y) dy Qv

o+ .f .f (1) (.x-t-'Y)‘(gi(z) (x,y) + P a,n;) dy ds
B -
i.
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+ _f j' v“‘) {32, t=y) ('n'“) (x.y)np + P a,n 1) dy ds
3B.

1
T e ), {2)
+ & | e et (x,y) ay av
T 8 o
-1 J : j‘t (1) x t-y)éw) (%.¥)n, dY ds
T 3. © O e
2
L f o (2) . | |
-2 Fo7lx, tey) 89 (x,y) dy de ' (3.29)
T 3 | |
2
F. Ap Application of Reciprocity Relation in Mixture .
Theory. o

Suppose that infinite three-dimensional Euclidean 'spaca
is occupied by:a mixture of elastic solid and Newtonian |
vi.scous; fluid undergoing an isothermal disturbance of small
amplitude during the time interval t > 0. Let the mixture
be subjected to two syatéms which are distinguished by super-
scripts in parentheses with the following specified body force .
systems: | | ' |

| p‘l’ = a(l)b(pl)ﬁ(t)

G(l) = 0

where p, is a fixed point in the region and a{n refaxs
to a férce magnitude, _ T e L

F.(z) a O

6{? = alPsip))ote)

where p, is the same fixed point in the region and ai‘_z’
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rofers to a force magnitude. Let us assume that the velocs
ity fields of these preliminary problems are known, that is,

- (1) , (l) {2} (2)

¢ and vy are known. Suppose that tha

mixtura :Ls subjectad to an axbitrary body force system

Py ang 6‘3’

Then the velocity fields -ui(__s) and v{” at the point
p, at time t are given by the following integrals as 8
result of (3.28): ' '

(1} 3’ (pllt) = 92 J J v(l) {xtt"'y)c(3) (x.y) dY av

»

f" 31 ! ,r 1’ (xit-Y‘F(B) {x,¥) dy dv,

) 0o
X

~— - - t
paiz)vf” (pyet) = p, jB .L V{Z) {x, t-Y)GP) (x,y) qy dv

J j W e ef xy ay v, | (3.30)



CHAPTER IV.
A FUNDAMENTAL ONE-~DIMENSIONAL

INITIAL-BOUNDARY VALUE PROBLEM

4.1. Introduction

In linear thermoelasticify, for one dimensional model,
a series of papers by Danilovskaya [28], Sternberg and
Chakravorty [29], and Muki and Breuer [30] have answered
some of éhe basic questions concerning the effects of the
inertia terms in the elastic¢ equations of motion and the
effect of the mechanical coupling term in the Fourier heat
conduction equation.

Recently, Martin [31] studied the initial~boundary value
problem cbrrespgnding to Danilovskaya's in the framework of
the linearized'interacting mixture theory. 1In [31], [32] a
mixture of linear elastic solid and viscous fluid occupying
a half-space undergoing deformation due to a transient tem-
perature on the boundary was considered. Method of the
solution waﬁ_that a parameter occuring in the diffusive re-
sistance vec;or was used as the basis for a perturbation
procedure in the equations of motion.

Here, we consider the same problem but use a different
method o; solution. Let the mixture occupy a half-space
and let its motion be restricted to one space dimension. We )
‘prescribe a step function temperature on the face of the
half-space whore the face is constrained rigidly against

motion.

75
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4,2. PFormulation of the Problem

Deparxting from the indicial notation, we describe the
cartesian coordinates as (x,vy,2)} and consider the mixture
of an elastic solid and a viscous fluid as occupying the
region x%x >0 [31]. We assume that the mixture is subjected

to a time-dependent temperafure fisld of the form
T = T(X,t) ' {4.1)

and is restricted to uniaxial motion so that the displace-

ment vector of the elastic selid has components
wi = (w(x,t), O, 0) (4'2)
and the fluid welocity vector is

vi = (V{x't), 0; O)o . (4-3,

It is convenient to define a nondimensional temperature

field in piace of T in (4.1) by

olx,t) = L&) =T (4.4)

T

where T denotes the temperature of the equilibrium state.
Substitution of (4.2) and (4.3) into equations (2.12),
3 =

(2.25) 'and (2.26) shows that we may write

: ’ de 2
_ 8w oV X _ w
ex = =, fx = —-ax ‘ (:l:'c = St = 3tax {4.5)

pl(xot) = 3.1(1 - %;'E')a (4.€)
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00, ~ v

as the only'ncnnvanishing kinematic relations, and we note
that all other strain, rate of deformatior. and vorticity
components are identically equal to zero. The constitu~

tive eguations (2.35) to (2.37) under the restriction (2.55)

" become
Py0y a2, P19, ¥,
. 5 o + oy +O‘.""—“"V):W = =0 (4-8)
" ¢] ax3 o) £ Y z
P.a .
: - - 1-1 _ ow
- o,
P
cy(x,t) = 0 (x,t) =
Py dw - e 1
- (==—ieg, )i ta T+ {(=+a,)n+a, , (4.10)
5 47 3x 9 3 8 1l
axy =0, = cyz = 0, ‘ {(4.11)
31‘12 W o= =
\ Trx(x.t) (2u+k)—-+92( > ~aa)-§-pzam‘1‘9
P +p,
- az-ppz BT p2 gt (4.12)
P

Fl oW = r—
(xot) ""'TT (xat) == lax"'Pz( p z”aa)-a';‘pzaloq?e
P+P

- ( 0'2 + 9236) - 9202 ’ (4913’

5
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oy =T Tyz = 0. (4.14)

The equationsof motion (2.29), (2.30) and the energy equa-

tion (2.31), under the constraints {(4.2) to {4.4), become

20 _ .2

E bl M T & (4.15a)
ot

. an _
s;ﬁ tow =Py %% ' (4.15Db)
2, o T+K' 2 D0, \THK'
TR0, 20,2 w2030 v _
a,T SF+k ax2+( = Yoene - ¢ = ) 5 = Os (4.16)

To complete our formulation of the initial-boundary value

problem we prescribe that for t S0

o wix,t) = %_'f-(x.t) = v({x,t) = 0,
Py = Pyr 01y, t) = Oe (4.17)
In addition, we reguire that on the boundary x = O,

8@ t) = ne)”, Lo,8) =0, v(o,t) = o, (4.18)

while as x=«, we stipulate that

o{x,t),w(x,t). Py (%, %), v(x,t), o (x,t), T (% t), Gy(x.t)

angd ﬂ\vy(x,t) approach to zero. (4.19)

At this point, we introduce dimensionless variables. For

"this purpose we use the notation introduced in (3.9)

* hit) is thé Heaviside unit step-~function defined to be

zexo for t <« O and one for ¢ > 0.
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wherein the relation (3.5} is used. A direct ﬁﬁbstitufion

of (3.9} into (4.9) vields
- W, ™
ox(x,t) = (52+253)ax+a9:re+ﬁln+al (4.20)

which, if the material were elastic, would lead us to ex-
pect B, + 28, to play the role of the Lam¢ constants
{(\g + 2up) while 0.9"5 would play the role of

(2ug+ BXE)C:E where «a, is the coefficient of linear

dnad

thermal expansion of an elastic material. With ﬁﬁis in

mind we choose a velocity ey

=3

B, + 2B |
F = ~Ed (4.21)

Py

“ -
which would be the irrotational velocity of sound if the

material were elastic. Since Oy < O by (2.40), we define

@)2 = “":;lé . (4.22)
C!L.;T

By a digensional analysis we have that ¢; is a velocity
while (4.22) has dimensions of length squared per unit

tire. Thus, 1if we take

]
a=-‘é‘-—3t=

(4.23)
cy 0

HQN[EM

then a dimensionless x-coordinate and time are given by

2
C.X Lo Jn o
1 t 1 :
g - E = e ’ rr = TR =N « (4'24)
a wz to wz
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Procceding further, we introduce non-dimensional partial
stresses, solid displacement, fluid velocity, densities

and diffusive force by

o a g
A A A A Y
o = FT3IE, W& °0=5'+12b © % "B RIE, °
2 3 2 3 2 3
A T ANyt A T'rz
r VS Q , T = - .
X 52-+293 s Y Bz-+2g3
P "E; pl-;;l A au‘x
i) = 2... 2 ¢ M =TI + W= m- * (4.25)
Py Py 2 3

In addition, the fellowing guantities are conveniently

grouped:
. o2 2UE) g = gt 4 _P%157
= " ' = [] iy L

to(52+2d3) 1l ﬁ2+2ﬁ3 2 Lz .253

P. y PEY) pLa
2 2 2 172

5 1 a2~+25 o B2+233 1l 5

faz pzyl -~ a9T+K' p2 10T4-K'

272 "2 4t &s =2 (4.26)
~ e ‘plc.l 0,7'1' : a.?'r

Incorporating all of these changes leads us the following
summary: .

Canstitutive equations

G (2, ) =o°+ﬁ‘ii’u-?;-+ a; 808, M+ (1-5) T, = &, In, (L, )

(4.27a)
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. : A . T ‘ A . .
#x(;,'r.) --G°+32 -a—v—g-gl-'f-’--t- (61 +f3°)3-"’-§-€.¢-ﬂ- - aza(l;, 7)
= =T ) (L, (4.27b)

2 A
B(g, 1) = =20, T nea-ad, o
o

at | _
+ -:—9- ['g-g"( o) = v(L, T} ], (4.27¢)
Py
A Ba |
oytc.-r) =52+253 Y4 (L, 7) +d19(§.v)
A A ) )
+{(1=£)0, = 8y In, (L 7) + O, (4.274)
ng;.-r) - éy(c.'r). : (4.27e)
N
F UL 1) = e 2 0eh s e a0
y & TR, T 28,0 o0 ot A ETIN T = da80n,
A A
+[ by = {1~£) colnztl;.-r) -0, » (4.27¢£)
#z(l;, )2 #y(r,. ). : | (4.27g)

Equations of motion

2A at A . 4 2 2A '
(£ 5 )8 -2 (%"’;-9) +dy 23-4y -a—n{% = 2%, (4.28)
v %8 By a7
2A 2A at AN, P. A
LY 9—% + 52 ‘L—;--l-_ 9 (--;-3) -dz %%-b 6:“,-3-1-12—*---_,_--a .gl;., (4.29)
Y+ W° Py Py
2 2A A |
S 6_28 _ ¢ AWM x 3V
R Y 1 3c87 *€2 3¢ o, {4.30)



*Initial Cendi tions_

For ¢ £ 0, we take
A au,Av . . A o
wi(l, 1) "'F‘.J"(';p'r) wyv(L,T) "ﬂa(';o T)mgl,1) = 0. {4.32)

Boundary conditions

At (= 0.. we take

8(0, 1) mu(1), -g%o. 1) =0, V(0,1) = O, (4.3
As § e, we take |
8L, M) WL 1L, VLT, my (81,8, (8,1,

- T lLs ) s O, L 4a24)

For this initial-boundary ‘'value problem specified By aqua=
tions (4.27) to (4.34), we assume that the initial stress

of the soliid constituent is zero, i.e.,
N

A
OO = 0. ‘ (‘035)

that the mechanical coupling terms in the heat conduetion
equais:\ion {4.30) can be neglected

€ =0, & =0, (4.38)

and that the constante of the mixture satisfy

| 2 | 2 .
$>r - 52:»61 >> t>0,-62-61 >>» £ 20,1 >>- 52, (4.37)
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pl pl '

The assumption of (4.36) is analogous to neglecting the
effect of the mechanicél coupling terﬁ in the Fourier heat
conduction equation in linear thermoelasticity theory [22],
[23) and is justified by the conditions (a) and (b) of
Section 2.2. |

Various material constants vhich appeaf in (4.37) have
to be determined experimentally for the mixture. The:re-
strictions on the material constants, (4.37), are the results
of (2.39), (2.40), and their interpretations in Section 2.4,

single Constituent Theory. For additional references consult

[33] to [36]. - |
With the aid of (4.35) to (4.28), the equations (4.28) to

{(4.31) are written

—:%%--t§§+t¢+al-§%-ala—;£=§‘-§-, (4.39)

61-252’-:-\t%‘%+ 52%—&-:12%3-» 62%2-=rg—€,(4.401
g oy

.:%%_%%=o, | (4.41)

:2% + %%-= o. (4.4;).

4,3. Solution by Integral Transforms
We denote the Laplace transform of a function F{({,7T)

with respect to T by F({,p), where
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Flop = | rig.ne® ar, (4.43)
, o | L
cHim 2
2ri F(g.1 = [ F(g,p)eP” ap. | " (4.44)
c=1im ' -

In (4;44) ¢ is a pbsitive real number such that the path of
'i‘nt;egraticn.is a’ny vertical line to the right of all singu= .
1ar1t:.e'3 of E‘(c.p) in p-planee. | |

The solution to the thermal problem, equations (4 41)..
(4 32} to (4.34), in the ({,p) plane is

'5 T = -:j exp(-p%c) . (4.45)
. Nﬁw\j:ransformiﬁq the equations of motion (4.39), (4,49) and
the équation of continuity (4.42), then combining these
equa-'t:i.ona‘l with the solution ‘tQ the t_'hermal prnble;rl (4.45)

gives

5 _
)T e exp(-pém (4.46)
. pl .

: .6
(D -pt-p)w-e-(l 2,

. & 4a
(61D2-+pt)§'+[ (52 _E@‘,}DQ -t - pr];e - % exp(-p%t) (4.47)
p .

vhere the differential operatoxr is defined by

!

‘a
D= at

" Due to equatmns (4. 32) to (4.34), the transformed boundary

conditions and the regularity ccnd:.tions are

v({0,p) = 0, v(O,p) a,o . .. {4.48)
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and as { =

wit,p)s V(C,p) 20, (4.49)

501ving for the displacement of the sclid constituent and
the velocity of the £luid constituent from equations
{4.46) and (4.47) for the homogeneous solutions only whioh"

conform with (4.49), we have

— LI
W, (0} = B{p) exp(-%g; (5, +9,)¢)
2

- ‘ | < %
Vn = [p{(e4p) (ps?=0,) +t 8)) = 3plg;+a,) ?)B(p) exp( - TG

Pl

LY

+[p( (t4p) (ps®=s,) +t 8} =Zp(9,=9,)%10(p)
% : '
axp(-gg; (gl-gz)t), . | {4.51)
where B(p) and D(p) are integration constants, and
g2 (p) = (pe2-5,) (pHt) +(pret) 42t &y

+ 2p§(p32-5§-62)%(pr+t+tr)*, (4.52)

: gg(pl==(psz-éz}(p+t)+(pr+t)+2t &y

- 2p¥(ps?- ai-az)é(pr-n-t;u) % (4.53)

20y s we? g2
£1{pP) =ps” - &; ~ &, - {4.54)



Here we have assumed that

Y, s » ,
Re(§§5(91+93)§) » 0. and Re({%ﬂf(91'ga)C)%?_0 (4.55)

for p such that Re(p) > 1 » 0, and we will show this to
be so later. Let us indicate particular solutions to the

equations (4.46) and(4.47) by a subseript "p". Then we have

- Dy
v, (8.p) = Ay exp(—pv" £) (4.56)
VP(C'p) =
2 Ay

p{83+3, -ps?+toy +(ps2~6, ) (pit) }==

= _ 22
p(ts24r8y )+t (65065,
.“95261-5261+6162
1 2 *
P -
e L S 20) (4.57)"
B(tsBarsy)+e(5,-65)
vhere
Ay = d;(p(s2-r)=d5-t)+d,s {65+¢t), (4.58)
1z, . '

As ® pp é(psg-éfméz-t-pr-(t+p)(p33—62)=3t61+pzr+pt+ptr).

| ‘ | | (4.59)

The entire soluticiis arsa .

,\.‘G{Crp) = ‘;h(gtp) 'v+ “-JP(CSP}: | (4.60)
‘6(';:9) = ;;h(CJP) + GP{CJP}- (4'61)

To deternine B(p) and p(p) we substitute equations {4.60)

and {4.61) into the boundary conditions (4.48). Then

2a1{p) :
B(p) + {3} + E:"S'p' y TV (4.62)
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(g91+93)?
B(p)p({p+t)(ps? =5, )+tdy= 14 — +

1-92 )2
D(p)p[(p+t)(ps?~bg )+tby~ R ;gz

Fo

+ [p(83+8,-ps3 4ty +(psS =5, ) (p+t)

{ps2~85)d,y 51523
t57 =0 | F4.63)

+
1
p.’” p

Solving for the unknowns B(p) and D(p) from equations

(4.62) and (4.63) simultaneously, we have

Ay 2 1 . :
3:3;3;{61+62-ps2+ ij(ps -62)§p+h)+{pr+t)+2t61]]

{{ps2-65)dy + 6143} Ay
L L (4064)

B(p) =

+ -
\\ -: 1
PP /29'3.‘33

-A 2 1 -
D(p) = 3;5&3; [6y+6y-ps2+ E{(ps3u6,)(p+t)+(pr+t)+2t61}]
{(ps2~63)a; + 654,31} A -
- — - (4.65)
PP "2g59, 2 :

The Laplacé transformed displacement of the solid constitu-
eﬁt and velocity of the fluid constituent are now explicitly
given by equations (4.50), (4.51), (4.56), (4.57), (4.60),
(4.61), (4.64) énd (4.65). These quantities constitute the
compleée solution, in the transform plane, to the initiale "
.- boundary value problem posed by equations (4.32) to (4.34),
(4.39) tﬁ (4.42). strosses of each constituent may he-ax-
pressed immediately in terms of the transformed displacement

of the solid constituent and velocity of the fluid
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constituent by means of the constitutive equations (4.27a)

to (4.27g). Now that the Laplace transformed displacements
of the solid constituent and velocities of the fluid cone
stituént are in their simplest form we proceed to invert

these expressions.
4.4. Inversion
A. Location of Zeros of gi(p)gg(p)

As a first step toward the inversion of w({.p). we
examine the multiple valued functions appearing in eguations

(4.52) and (4.53). set

2
~01 - &g
62 = -“'_'l—ﬂ—'t : t'r . . (4-67)

Then equations (4.52) and (4.53) become

g;(p)=(psgh¢a)(p+t)+(pr+t)+2t6;+2r1/3sp’/’(9+€1)1/“(p+Ez)1/°.
- * _ (4.68)

gn(p)w(psa-éz)(p+t)+(pr+t)+2t61-2r1/3591/’(p+e1}1/’(p+ea)1/”-.
(4.69)

We také the domain of definition of p /3 as the entire
p-plane cut along the negative rcal axis, and we choose a
. 1 .
*branch of p /3 through the reqguirement that

91/3 =Jg for p = g > 0.” (4.70)

ﬂff refers to the positive rcot for real positive 2.
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We take the domain of definition of (p-i-e;)"/2 as the entire
prplana cut from =€53 tOo =W along.the negative.reai axis,'
and we choose a branch of (p+e1)1/2-through ;ﬁq requirement
. R
(p+cl)1/3 = N j+cy for.lp = § > -¢4 ¥ (4.71)
We take the domain of definition of (p+ea)1/a 'as the
entire p~plane cut from =-¢; tO =0 along the ncgtive real

axls, and we choose a branch of {p+cgy) */a through the re=-

guirement that

(p+ez)1/2 =Ni+tey, for p = f > =¢g o (4.72)
Now we will choose a domain in which g3 (p) and g, (p) are
single“valued. In view of (4.70), (4.71) and (4.72), we
find that g,(p) does not h&ve branch points but gy (p) does.
7o see this we note th3t all possible branch points of |
gi(p) or gz(p) are the zeros of g3 (p)gz{p) which is a
fourth deq:ee polynomial,

2(ts?-r~85) 2t (=14254=0g~21)
2 3
2 il )*p { 2 N

s 8

g2 (p)g3lp) = s4(p* + p3(

'[(ts?+r-62)3+4r(6i+62)]
g4

+
+p[(1+261~63)(tsz+r-63)+(2+2r)(61+63‘]-%

2
fz (14251 -89)21 . | (¢.73)

**Due to (4.66), (4.67) and (4.37), we have 0 < ¢; < €3.
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We now usa (4.37), i.a. O<t<<l, and expand {4.73) to texms
of order ¢. Then (4.73) may be written
4r{d3+69 ) +(r=64)3

9:(9)9:(9) = sdlﬁq*gb(“r~éa+o(t))p:' —_—

- Q[ (14264 =by ) (r=55 ) +(2+22 ) (53484 )40 ()]
+
P 4:(6i+63)+(r-&3)“

- t—— p

£2 (1425, -8, )2

+ ey
4y (63 +59 )+ {z~0y)2

. and the zeros are easily found to be PB,, Pg. Pi, P; where
1¢ ¥3 2

r+62 J?G“:_
P =~ 10(t) + 2i[——— +o0(t)] (4.74)

. o

»t[(£+261-62)(r-éa)+(2+2r)(62+63)ﬁ3(t)]

P2 =
4r(6§+63)+(rﬁ62)2

(4.75)

.

N (b2 by ) (L2410, +2528 =206, 65 (1 )+63 +52+2r 0, +22 53 40(t) )
_ 1 192 2 2 _

+2ti - 2 2 ’
dx (63 +65 }+{x=55)

and p; is the conijvagate of pi.+ Here we note that the

expressions under the square root signs are positive due
to (4.37}).

B. Determination of Branches for g1 (p) and g5 (p)

" All the zeros of qi(p)gg(p) are the zeros of g, (p) bew
cause, due to (4.63), (4.70) to (4.72), (4.74) and (4.75),

+

For computational purposes it is déesirable to have Py« p;
in a series expansion of t. See Appendix l. '~
. 1 -



90

wa find that

Re ga(P1) = SE(r+d5~262) + o(t) (4.76)
In g5 (p,) > %-sbfzi > 0, (4.77)

Since g,(p) never vanishes on the entire p~plane with
negative real-axis being deleted due to (4.70) to (4.73),
g1 (p) does not have branch points. Moreover, we find from

equations (4.73), (4;74)'and (4.75)

galp) = ;ﬁ-ﬂ (p=p1)"/2 (p=p%) /2 (pepy )*/2 (p-ps) /3,
(4.78)

and this shows that py, p:. Pae p: are branch points of
order one for q;(p). We define the domain of the gy (p) to
be the entire p-plane with negative-real axis being deleted,

and choose the branch g;(p) by the requirement that

g1 () =9 (282-65) (4+t)+(Lr+t)+2td, + N21 sV A 2+eff%§§f
for p=g >0 (4.79)
We define a domain in which gy (p) is single valued such
that the_domain is the entire p-plane cut along the follow=-
ing curves; | .
' (a) the negative real axis
(b) the line joining p; and pi. that is, the locus of
points p such that Re{p) = Re(p,) and
im(py) = im(p) = Im(p,)
(¢) the curve joining p; and p;, that is, the locus

of points p along ' V;?V
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(1) the line such that Re(p) = Re(p;) and .

In(pa) = In(p) = Re(p3 ),
(2) the portion of circular arc whosae radius is

equal to - 2 Re(p,) and whose argument lies

317' 3r
4 )

(3) the line such that Ra(p) = Re(py) and Re(py) =

batween and

In{p) < Im(p;). ,
We choose the single-valued branch of g;(p) by the zequize=

ment that : .

ga(p) # (28245, ) (g4t )+{fr+t)+2t6,~ VO oV A Breyy £es
. for p = g > 0. (4.80)
Due to, (4.79) and (4.80), we fina

1/, " X _
91(p) =ps( + E7m s of)) @ pe o (48]
| (p) = ps(1 L +02) a8 p= o (4.83)
gailp P m P P »

We £ind that =g, < Re{py) < Im(pj) < O with the aid of (4.37),
(4.38), (4.67) and (4.75) as in the Figure 1. |

C. Formulation of w({,p) in Convolution Form

%
. -

It is expedient to define G(i)(;,p), G(a)(;,p),
w(z)(cfr) and w(z)(C.T) such that

#(2.p) = G‘l)(CtP);(a)(;rE)a ~ (4.83)
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cut for ga(p.)

L/

cut for g,(p)

N\

Figure 1. The p-plane.
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W) = e 1T a) (Cplenp(pr) ap with § = 1,2
. C=i30 (4 34)

so that by the conwvclution theorem

w(t,r) = f: w(l)(c,u)wgz)(t,rmu) du. (4.85)
From (4.50), (4.56), (4.60), (4.64) and (4.65) set

-(1) - 1 ' 58
w AFC.p) ;{7:?;:;? | §4 84)

Ay

'(3) =
W (L.p) (3:'—52 )p(p-a) ‘519

( i+6z~psa+—((psz~6a)(p+t)

. 1+ (p+b) ((ps?=65 )81 +6,4: )
+(PF+t)+2t61)- * 9192

: Ay 1/
2(]:'*52 )p(pua) ¢ P‘ ofq :(gllga)t

Ay
‘[ {6 O = 21.3‘. 3_6
© (xs?)e(p-a) S5y (aveaee? o {(ps ) (pre)
. (p¥b){(953‘5a)d1+51531
P9193

+(pr+t)+2t61)3*

. Ay | 1/
r2(r-sz)p(p-a)]exp[ 5T, Em(g1~92)¢)

Ay a2 . .87)
i (r~s?)p(p-a) explop T20) (4 57

"with a and b in (4.86) and (4.87) defined from (4.59) such

that
pa(p) = (r-o3)pp/2(p=a)(pwb).  (4.88)
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Here a and «b are zeros of

pszuéi-ﬁa-twpx-(p+t)(paaubg)-3t63+pt+ptr‘u 0

and they are

a = i [r+ts’-33-63-t-tr-[(89~r-t53+6,+t+tz)3
2(x-s2?) :
/

| ‘-4(2-53)(-6?-62—t+t53-2t61)]1 2) (4.89)

b = - {r+ts2=52 =5y ~tetr+[(s3r-tsd+5y+¢t+tr )2
2(r~53)

-4(r-52)(-62-63-t+t63-2t61)]1/3] ' (4.90)
and we find that a > 0, b » 0 by the relation (4.37).

The inversion of G(1>(£,p) of (4.86) is found with
Zthe aid of the table [37} |

L4
-

| Vi
w?l)(c.?] E-J% f;rexp(-h(f-z’)) dz. _(4.91)

To e¢btain 2 real inﬁégral xepresentation of w(a)(q,r)

for 1 *» {, consider the integral

?%%E / ﬁﬁa)(C:P)exp(PT) dp (4.,92)

evaluated along the closed contour shown in Figure 1.

D. ZiInversion of Q(Q)(;,p) by Contour Integration
'4 .

1

...

Je express G(B)(c,p) in a simpler form from (4.87);

" a(3) ; ___Bs3(p) 1 Ay -225'
w (o) ((r-sz)p(p-a) 4192 2(r-sz)p(pqa))exp( 2f1(91+93)‘1
. -ASI(P) 1 Al -&14-
((r-sz)p(p-a) 193 Z(r-sz)p(p—a))exP( Zr;(91-92)8)
T {rfSQ?;(p-a) exp(-"/2¢) R (4.93)
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wheare

: _1 ' i i
Ay (p) = 59183 (x-s9 )pd+(s? (Grd;+dy 85~ 59,d;)

1 i ; 1 1 1 1
+ x(8ydy= 54165~ Fd1r)+ts? (- 5d;8345d,+5d,r45d; ) )p?

1

2 1 1 1 1
. (x(-dy81= 5d185~ 50201 )+ 53206105~ 5d;63+t(s? (54, -d;

2

’ )
* dyda=dy8;1= 5d56,) " édlréa-dlr-§1r61+6163+r61d3-6163

1 1 1 1 1 1
+ 5A302= 355 85 +5rds ) 412 (5d,8%~ 5d,8% ) )p+ 5t((61d,

‘dzéz)(53‘1“351)*2(dz'd1)(5:+53))

+ 23 (d=dy ) (=65+1426; )

With the aid of (¢.81) and (4.82) we find that

1/ '
exp(- Bx=r(gy+g2 )¢ +pt) = ocexpcg(r-m as p = o0,

2L,
2 (/212
exp(- Bz~ (91-92)¢ +p7) = 0(exp(pr- EmBnt))

as p —> W,

and consequently as p —> ®

(4.94)

(4.95)

(4.96)

) _ 2agpt/
) (£,p)esp(pr) = o(ﬁexp(p(r~c))+ 0(§exp(pr- =)

-

+ 0(%exp(pf~91/’t))-

(4.97)

From {4.97) we conclude that the contribution to the integral

(4.92)" from the large circular portion of the contour goes

to zero as the radius tends to infinity when

T > G

From

(4.73) and (4.93) we sce that the contributions from the

small circles around the branch points of g3(p) g0 to zerc

as the radii tend to zero. Let us consider the centribut.on
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to tra inte,ral from the small circle around the origin as

the radius tend to zero. We may express G(’)(;,p) of
(4.93) as

1

WU Ne.p) = 2 (p) L fexp (- Eg?(raxw:)t:]

(x-82)p(p-a) 9193

1

/
- exp{—'%;;i(gl-gg)c]]

Ay 1/, :
- - Eﬂ-—
2 (rstJp(pma) T E L 2E (9379 )

1 .
+ exp (- 29‘5;3'(91"‘32)C]'zexp('Pl-/“C)l- | {4.98)

We note that

_ 21/2 N 91/3
expty ST, (g91+93 )¢ ) -exp(- 2};-491‘92)5)

1/q o
2 - EE;— gsl +0(p) as p == 0, ' (4.99)
1 1/

| /
exp(~ §r—(9:1+92)¢ +exp(~ Br—(9:-05 )2)=2exp(-p*/22)

g3
= 2917%(1- gF, 1+ 0(p) as p =0, (¢.100)

Combining (4.98), (4.99) and (4.100), the contribution to
the integral (4.92) along the small circle around the crigin
goes to zero as the radius tends to 2exo. Aiso. from (4.93}
we see-that the contribution from the small circle around -
~'pP ® -iy goes to zero as the radius tends to zero because _
the integrand is bounded around p = =e€5. These consideras
tions, with the aid of (4.89), (4.83) and Cauchy's integral

theorem, lead to
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lim (%FT f 5(3)(c.p) exp(pt)dp)

R T Rt AR N S S S S
oN HM ML

)
T KI "HGy GGy FgF,

+f [ + [ + + f + f + [

F,E DC BA N'C* "M'N® L'M' "J'K*

+ f + + f + + + [ )

GiH' GGy 'FiFp E'F; C'D° 'A'B?

(—2al8) Ay (a) a2 .
" (r-s2)ag;(a)ga(a) 2a(r—s=))ex9(“ ﬁ?ITET(g1(a)f93(a))C*ax)
- Ay (a) Ay (a) _ a’-/a )
((r-s’)agl(a)gg(a) " 2a(r-sz))exp( ze (a7 91(2)-ga(a))trar)
+...211...(..E.1.2_..exp(~ 31/2{;-{-&1)" | (4.101)
a(r-s2) o

r

in wﬁich the integrand of the integrals in the brackets is
G(n)(g,pjexp(prl and “lim" refer to the limit process such
that the large radius tends to infinity and the small radii
tend to zero. The values of pl/z, £1(p}, 9.(p), 92(P).

which are needed to evaluate the integrals in the parenthesis
aie to be determined consistently with the coastruction of
the Riemann sheet described in (4.70), (4.71), (4.72),

(4.79) and (4.80).
D-1. Evaluation of gi(p) along the Contour

For this purpose it is expedient to introduce new

" functions

z,(p) = g% (p) i=1,2 (4.102)
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Lo - ‘

vhere we defina a cut for G(Z;) to be the negative real

axis on the Z;-plane such that

G(L) =42 fox £ >0
and - (4.103a)
G(=£) = iV for L0 . |
Then we shail choose proper signs along the contour in Fig. 1.
in the expression

g, (p) = * 6(z,)

so that gi(p) for i = 1,2 are consistent with the Riemann
sheet described in (4.70) %o (4.72), (4.79) and (4.80).
Due t¢ (4.79) ‘and (4.80) we may udlize te Schwarz reflection

principle, and in this case we have

g, (p*) = g,*(p), (4.104)

and since the contour in Fig. 1 is symmetric with respect
to the real line, we determine the value of gi(p) along

the contour which lies in the upper half-plane only and
utilize (4.104) for the lower half~-plane. Considering the
mapping of the contour in the half-plane of Fig. 1 into the
Ti*nlane, and then into the'G-plane under the restriction

of (4.37), we £ind that

G(2.(p)) along HG;G,, FyF,E, DC, BA, JX, IM (4.10§)

gy {p) =

g:(p) = - 6(2:(p)) along NO - (4.106)
gz (p) = G(Zé(p)) along HG,Gy, BA, JK, LM (4.107)
gz (p) = "G(Zg(p)) along FaFy4E, DC, NO. (4.1081
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We are now ready to evaluate the integrals in the parenthesis

of (4.101}).
D-2. 1Integration along ON-N'Q' for 7 Z ¢ and ¢ < C*

Along ON, p = ~f with €3 < £ < o, and by (4.106)

wa find that

—mm—----—2 - . ......_.-,_2 o
gy= -jx*“’? X +ij x**’?*"— (4.109)

where

i

X % 892 - (rats3-0, )p+t+2t0,~td,

Y = 2r1/25£1/3(£-€2)1/2(2"51)1/2-
The contributign to the integral of (4.92) along the

contour ON-N'Q® is then

1 ° *Al("g) . A3("£)
1 VI
T f€1 (r-sz)8(£+a)51n( ) (@-52)3(£+a)]g112

Au(od) )sin(ﬁ (Irﬁ g1)8)) exp(-£7) a2 (4.110)

-.2(r-53)£(£+a) si-e;

for 22 and <t < .

D-3. Integration along the Arc NM=-M'N* for v X2 [ and
r < ¥ '

We next consider the contribution to the integral of

(4.92) along the arcs NM~-M'N®. Near p = -e;, we have

that 91/2(91‘92) and

*For T < f, see Section D=7.
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Az (p) - A1{p)
(x-s? )p(p-algi9y 2(x-s?)p(p-a)

are analytic due to the

fact that along ML, p = =4 and

g1=i‘[~"'52 £3+(I+tﬂa"63 )g”(t+3t61"t63 )*2&/; JEJ bmegN ey =g, (4 .111)
g2 = 91

and along ON,’
gy = g wherxe g, is given by (4.109).

Relations (4.52), (4.53), (4.54), (4.66) and (4.67) lead to
a3 a /
gy = g3 = 451/2f1P1’3(P + 62)1/2

or

IJ1 <+ Ja 2r1/2p1/3 (p -+ €2)1/2

_ : (4.112)
2f, 91 - 92
and this Tast relation shows that the contribution to the

integral (4.92) from the summand of the integrand, i.e.,

2le) . —2ulp) ‘)eﬁp(* Eiii(g1+ga)§+pv}
(r~s? )p(p~a)grg, 2(r-s?)p(p-a) N2 PR -
2Rl exp(-p/2gapr),

(x-s%)p(p~a)
vanishes as the radius of the arc NM-M'N' approaches tc zero.

But the contribution to the intecral (4.92) from the summand

of the integrand, i.e.,

A, (p) Ay (p) e Eiﬁ? )
(x-52)p (p-a)g19z F(r-s?)p(ama) 04" 2 (38 92 )0 +pT)

kis'hot readily established because f£,(p) has a branch point

at p = -¢y. Wa g¢onsider the wapping:

i
w=(p+e )2 (4.113)
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F g
which maps the contour in Fig. 2 onto the semi-circle ¢°

in Fig. 3 with the direction clockwise in both cases. We

def .rme

. |
Tr = o7 [_2(w) exe(- !éﬁl + (28 - en)r) du (4.114)

whe: e
1{u) = 2ua; (u2-¢, )
' (1*52)(“2'51)(“2“51“3)91(“"E1!GQ(“3‘51)
- uas (u?-cq1) , (4.115)
(x-s2)(u2-¢,)(ud-¢;y~a)
1/, |

viu) = (v? - &) /ﬂ(gl(ua-el)-ga(u3~e1))- (4.116)

Now we considexr the branch of (p + 51)1/3 such that
(p+e;31/2 = = Ni+e, fox p = f > =€,4, (4.117)

with the cut from =€, to - along the negative real axis.

Wwe consider the mapping

Wz (p+eg)/o. (4.118)
If we were to go over the circular arc twice in Fig. 2,
than we see that the mapping (4.118) will map the circular
are into the semi-circle C® shown in Fig. 3. As we did in

(4.114), we define

I, = 5%; fcnx(u)exp(- vuu) + (uB~ey)r) du. (4.119)

If we add (4.114) and (4.119), then by the residue theorem

Ip + I = Residue (1(u)exp(- %&21 + {ud-eg)e)) (4.120)

R
where u = 0 is the only singularity enclosed by the centours
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C'-C". cConsider Now I, as given in (4.119) where the
branch defined by (4.116) is used. Due to (4.118), (4.118),
'we:sQe that the integration IL of (4.119).vanishes as

the radius of the arc NM=M'N' approaches zero.

p=plane - u=plane

e/

Fig' 2 . ' Fig- 3
p-4. Integration along KJ-J'K' for 7 Z {

Along KJ, p = =f with 0 < £ < €3, and by (4.103) we
find that ' '

Ty ] - s va
Y Y =

- whare

X = 8333 «~(x+tBd-8,;)04t+2t8;, L0y

Y = 2:1/2321/2(51.1)1/2(52-3)1/2..



- 103

For © Z {, the contribution to the integral of {4.92) along

the contour KJ-J'K* i3 found to, be

1 fa, | A, (-8) .._ s (-2)
z 1, (a;n{%?%:f?faa gl)c)(g(r-gﬂ)g(£+a)_ (r-a?)s(s+a) g, |?

A;("'-E)
(r-82)g(g+a)
where A, {p), Az(p) and "a" are given by (4.58), (4.94) and

- 8in(VZ Q) ) exp(~-£r) a4 (4.122)

(4.89).

D-5. Integration along ML-L'M' for v 2 { and 1 < ;‘

Along ML, p = =f with €3 < 2 < €35, and with the aid of

(4.105) and (4.107) we find that the contributicn to the

integral of (4.92) along the countour ML-L'M' is

¢ A (-4)
€z (82-r)g(i+a)

> sin(VZ ¢) ag (4.123)

for T2¢ and T < L.

D-8. Integration along DC-BA-A'B'~C'D' and HG;=G;G3~-
F3F1=F1E=E'F]~FiF}~03GiCiHy for v X {
For T %2 {, the utilization of (4.104), (4.105) and
(4.108) lead that the contribution to the integral (4.92)
along the contour DC~BA-A'B'~C'D' and HGy~G;G3=«FgFy~FiE~

E'F!~F{F3-G3G,-G1H; vanishes. (4.124)

* »
For 1 < [, see this section D-7.
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D-7. Modifications on Integrations for «~ < {

When 7 < {, tha contribution to the integral of (4.92)

from tha summand of the integrand,

Az{p) ay(p) 1/, | |
- - . ) - B A
. (x~s3 Jp(p-23)g193 2(r-az)P(Pfa) e 2f, (g;+?23:;§;)

along the Bromwich contour vanisﬁea becausae we let the
contour for this summand be closed by the right arc of the
eircle which is shown as a dotted curve in Fig. 1. Then
the centribution from this circular arc to the integral of
{d4.125) approaches to zero as the radius gets large. Hence
for 7t < {, some modifications should be made on (4.122)
and {4.124), but the results in (4.i10). (4.120)..(4.123)

exe not affected.

D-8. Integration along DC-BA-A'B'~C'D°’ and HG,<=G1G3~
FaFy~F3E~E'Fy ~F31F3=G3G1=G3H; for v < { '
Along DC, p = Re p; + ig with 0 =% 2 2 1m p,
anli we let |

pl/n = a4 + iaa

(p + €3 )1/2 = b; + ib3 (‘-126)

(p + E;)l/’ =cy +ics.
' Hith the aid of (4.52), (4.53), (4.102) and (4.103), we have
Z, = Xy + 1Y, s (4.127)

where
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Xy '® 5% (ReZpy =43 )+r+ta2=5; JRe py+teltl, -téy

+ 2ri/’s(c1(a1b1-aaba)“Ca(axba*aab1))

1 Z24s%Re 91+£(r*t53’52)+2f1/33(°1(31hz‘a;bx)
+Cq (albl-azba ) )
and .
23 = X + 1Y, I (4.123)
where

Xa = 82 (Re?p;~4%)+{r+ted -5, )Ra py+t+2tdy=té,

- 2:1/ag(c;(a1h1-aaba)‘da(azbz a,b;))

Ys = 2s%Re pl+£{r+tsa-63)-2:1/3s(c;(a1ba'azb1)

+ Cq (a]_bl"aaba))
From (4. 105) and (4.108), we have that
g3 =6(2)
gz ~ ==(2.)

and the contribution to the integral of (4.92) along DC-BA

~A'B'-C'D' when v < {, is

exp(- 1/291;*-9)

1 AR P2 2f; 915THT 1/

L e e i 0
2A3(p) cosh(E—i g2L))1d4. | (4.129)

9132
Along FaFy, p = Re pp + if with Imppy Z 2 2 2*/3ge P2, and

by (4.105) end (4.108)

g1 =G(2y)



i06

g2 = ~6(2a)
where 2;, 2, are given by (4.127) and 4.128), and the con=
tribution to the integral of (4.92) along GyGg=FaF3=F3F;=G361

for 1 < { is

1/g . .
VaRe py exp(- P g1{+pT T) . 1/,
1 2 2f P
- R A inh T
T {m Pa ot (s3-r)p(p-a) ( 1 (Ploinh f1 92¢)
225 (p) 1/a '
- gjg cosh(§?r g928))) &z . (4-130).

Along GyH, p = 21/2Re paexp(if) with 0 2 ¢ Z 37/4, and
by (4.105) and (4.107)

g1 = G(2;)

9y = G(2;3)
where 2y, 2, are given by (4.127) and 4.128), and the
cohtribution to the integral of (4.92) along HGi=F,E~E'F{
~GiH' for T < § is

1/

21/’(Re p2) o exp(~ 3 E-" g3 §+pT) YA
, (sing{Im{ [-1(p)sinh{zr—gsl)
i "{”/ 4 (r-s? )p(p-a) ’ 2
1/g
223§p) cosh(;- 920N}
91/3
exp(~ 5r— 91{+pT) 1/3
_+ cos 6{Re (r-sz);(p-a) (31(p)sxnh(§--g,§)
S . s
Pale) coshtzf 92¢))] }as (4.131)

9193 |
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" D«9. Integration along KJ«~J'K' for v < ¢

The contribution to the integral of (4.92) along KJ-

J'K' for v < { is sasily deduced from (4.122) ae

% fo exp(~£7)ein(VL) Az{-4) ap. (4.132)
. Eq

(x~s?)g(L+a)

D«10. wcz)(g,r) Obtained by Inversion of ﬁ(a)(;,p)

We consider two cases, i.e., T 2 { and v < {. For

t 2 £, we have that from (4.101)

(2) .3 Ag(a) Aa)) ot a*/3
e = e e ey T T el angeyleste)
f Aa(e) . ma(s)
+ ga(a))e+at) ~(Goygmy ¥ —r—)exe (- —f—(-;y(h(&)

- gz(a))C+af}+31(a)exp('al/zt*aT)l - 1.(L.7)  (4.133)

where I3(L,7) = zmr lim( f + f + f + j
+ [ + [ +f +
N'O! M'N® L'M* JAR?
whose integrals are evaluated in (4.110), (4.120), (4.122)
' and {4.123). For 71 < {, we have that from (4.101) and the

vanishing of the integration of (4.125)

Ag{a)

(e, = (As(a)oxp(-a*/3grar)(s=roy—res

a(r-sz)

1(a))e xp{ - o—f—'(—)'('ax(a)*%(a Yerat))=I3(L,v)  (4.134)

where
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T(Cot) sgmr i [ + [ + [ 4 f +[ +[ &
! OoN - NM ML KJ HG,y G1Gg FqPy

+ f +f +f +«f +f + + [ + f
FiE DC BA N'O' M'N' L'M' J'K* GiR’

* f s '+ f 3 '+ f v °+ f ’ l+ f tQe
GaGy FiFgp B'F, C'h A'B

'hose integrals are evaluated in (4.110), (4.120), (4.123), -
4.129), (4.132), (4.130) and (4.131). '

E. Inversion of w{({,p) in Real Integral Form

combining (4.133), (4.134), (4.85) and (4.86) leads

0 the complete description of the displacement field of

the solid component w(Z,7t)

3 e 3 (2)
W\C;T)ﬁJ;JGfo exp(-p(u-z )) dz.ﬂ. (¢,7=u) a@u. (4.135)

prom (4.133), (4.134) and (4.135) we see that w(f,t)
satisfies the boundary and régularity conditions specified
by (4.33) and (4.34). |

Since the material constants have to be determined by ex~
periment for the mixture and such an experimént has not
yet been devised, we shall not attempt any further investi=

~gation about the behavior of the displacement field of the

-,
-

s0lid component at thiz peint, even though we have the
, exact solution given by (4.1353) which may be evaluated

nunmerically by conputers.
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4.5, Early Time Solutions

The numerical evaluation of {(4.135) does not seem to
ke an easy task. One way to aveid this difficulty is to
represent ﬁtg,p) in a power series with respect to %  for
sufficiently large p, and then invert the ctesulting expres=
sion term by term, "~ This procadure leads to an early
time solution for W(f,t).

"As p -+ @, we have that

1
211/3591/?(p+€1) /a
i M M M M M
= 2991/23 /35[1.;.4 g . +f__§_ b o=t 25 +o(2‘-.—)]
p p?  p? pt  pd pe
- (4.136)
where '
32 (t+ix )-r (63 + 65 )
1 = - erzm )

~(£2 (8246, )4ors? (tetr) (82 46, ) +84 (t+tr)?)

Mg =
8rg®

(83485)%  (%esy) (tetr)?

Ma = Tg(- - gt ¥ regd
2
2 £2ur8p )7 (ever) | (eeer)?y
. ‘ rsl;‘g 33
. o oL 5(Ertr)s 20(t+tr) (05+8,) _ 2(t+tr)2(83+6,)3
4 = 1o v + »35% - r2g4

. 2
5(t+tr)(62+8,)2 , B(81+0,)"
rs® 58
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7(t+tr)s 5(t+t:)4(6 +8,) 2(t+t:)3(6§+51)a
M5 = 256( x5 ‘ rdga © r3sd

2{t+tr)?(83+46,)3  5(t+tr)(63+65)4 ?(6§+52)5)
+ ' rase - ’ rg8 = ’ si@

with the aid of (4.68), (4.69), (4.79), (4.80) and (4.138),

wae have that as p > @

g1(p) = ps(d + 33 + 22 , 12 +§1'+——7-N3 +§-6-+—-7-N7
1 T 7 i 1
_ F:7; = 993 2 p? p2p /2 p4 pip /3
1
- Eg_ + Ng - + Nig + __ﬂ_.;%_ + o(-—-)] (4.1378)
p*  pip p® pép /2 p®
{p) 1 - + s N Ve
- + —— —— -
¢aip) = ps{ -7- "“7" -""'7? "'7
pd F1% 2 =° )
where
r1/2
Nyo=
(ts? - 65)
N 3
3 252‘
N Mgr(tsz"ég)
3 2s9
2
{14261 =5, ) , Mg
N4 - 252 " - NINS - T
Ii'/st
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Ng =<lN;Ng -~ NagNy4 =~ "%
r1/2M3
Ny = - NyNg = NalNg = NaN,
Nz
Na = -Nqu - NzNG - NaNa - 5_
. rl/ﬁmé _
Ny = S « NyNg =~ NoNy = Nglig = Ny4Ng
a
N5 *
Nio = -NiNg = N3Ng ~ NNy = NyNg - g~
Ni1 = —3 ~ N1iNjo = NaNg = N3Ng = NgNy = NgNg.

As p = @, we have that E;-%‘P_)- is, due to (4.54), (4.66),

2 3
1 1, 1 3¢ 35 €
£.(p) P’-/as‘z:‘ 2P E 3323

357 ¢} 3-5.7.9 el

41214 ; R ICH

p5 b—-)) (4.138)

Equations (4.137) and (4.138) lead to, as p —» @,

exp(~ B~ T *(91493)8) = exp[-pL-(N;- )¢ [1- Q(N; mz-%ex)

Ny€q 3Ng€% 3*5 3 1 elug. 3 2.3
+ —LNg+ - - + €3 * SNy~ = + = ¢
p:a[ et 3 3iga 3 2.( 3 g €1) &l
Ngeq 3N,c? 3-5 3 3-57 ;
+ %[”Ng+ > " g g Nyey- €1
p ' 323 4124
CiN, 3 2 Ns€y 3 3.5 3
(Ng- ——= + ge1)(Ngm —— + §'Nz€1 g‘;‘é’;‘ex)ﬁ
2,3
(Ng~€iNa+ T €1) 1
- 1) L] + 0(—; N, (4.139)

P
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1/a o |
P (Ng-€,N./2)C
exp(=~ 5?:‘(91'933 C)“exP['Pl/’ﬂxﬁlll' - :,: —
. | o
R (Ny~eyNy /2)2¢3 l(%ﬂ;ei- %ﬂaex Ny )C+(Ng= %N161)°C3]
% pp'/2
(Ny~ éﬂlﬂz)(%ﬂi¢i' %Naex + ¥y )¢° 1 :
+ pg"_ + 0(1;;-17;-)] . (4.1{0)
Lot us consider LBl oiven in (4.56), (4.57) and (4.58).
m g . N ) ] []

As p = o we have

A (p) _ Ay 1 1, 3
Az (p) pap‘7z[1+ P(Rl Rg)+ pa(Rﬂ Ra=RiRa ) -

1, 3 2 2 , 3
- ;;'(21?3113 =Rg +RyRg "Ry Ra )+ l:‘(Rs «3R3Ry +R; +2R1RgRy "R;R: )
‘ o P

2
+ -’-‘-;(-33,32-:-43333-n;'-u-n,ng-sha,a,-m;a;‘) + 0(5;»)1 (4.141)
P . : p .

. where

{dg (£+8, )/, 6,4t

Ry =
82 -r

Ry = 83er+d,+t(l+r~s2)

Ry = "621"63"'&(1-62'!'261 ).

From (4.73) we immediately have

.-._-

2 2 PO Cy Ca Ca  C4 -

Q;(p)qz(p) =Pt + =+ 4 =+ =) (¢.142)
where : .

C; =

83
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26 (~14265=62=22)  (t8B+4r=-5, )2+4r (6246, )

s st

C.s = -2—2-[(1 o+ 261~63)(1:_3%:-62)-1-(2-:-2:)(6? +65 )]

3
04 'E;(l = 261-62 )2-
5

With the aid of (4.142), we find the asymptotic expansion

of i
9‘1(9)93 (p)

as p —> ™

1 1 \
g1 (P92 (P) p“sﬂ‘ g—-+ (. 2«3

Cs 3 5 '
pa(‘ = + g°162 = 3¢ 1)* ““( §‘ +-—(c3+2c1c3)

15 _2 B.5.7 1 : .

. -2-f- CiCqy + ci) + 0(53'))- (4.143)

wWith tha aid of (4.143), we find the asymptotic expansion
of B(p)'and D(p), given in equation (4.50), is
8y 82 83 .
B(p) =—'7"(1 +'—'+;;+;3+0(—-)) (4.144)
where

61d3"d153 (t39+r-63-2$3 ) Cy

- - E——

8,

dy5? ' 252 4
82 = = + ==Cy- g=( = Ry+Rz~ -
. T 42 4 d152 sa

(t(1+261—63)+2(6§+6zj+(31‘32)(tsz*r“62"2sﬁ)

252
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(~Ry+Rg ) (£ (1426182 )42 (63 +6,))

282

S3

.QR%+R3+RIRQ)(ts’~6,+r-2s’) c

1
=3 {'R:+Ra+3139

+
2g?

(£(14255-85)+2(63+55)) (g1"32)(t5"52+¥‘259))

3 " - —
(‘Cz 3_ 3 2(8,d;-d;8;) (te34r-6,-25%)
+ (e p - O - Rq+Rn=
' 4 4'3 1 ( dlsz 31 3 Sa
Ca 3 - 3
+ (= g+ 501G - g7 C1)s
p(p) = % (Dy + 2-1--+ Dz + 0(1—)) (4 145).
. 2p3p173 ° T p p? p?
where . .
2(61d2"d1 62) : (ts’+r-53-2sa) Cq
D = 2R "2R b 4+ +
0 1 2 dls"' <2 T
' C, ¢y 2(6ydg=dy8;)
2 2 3 .2 1
Dy = 2R2 -2R3-2R133+ 5 - -§ Cy + -:-,:-( " - Rl"'R:
d,s
(ts?+refy=252) : 2 |
= 7 )+ 1a{t(1*251'63)+2(51*53)=;l. .
s s

+ {(Ry+Ry ) (ts2-b54r=283})
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(£(1426, -8, )+2(83+5))

g®

Dy = 2({2RyRa-RI+R;R3-RyRy )+(Ry =Ry )

(4R§+R3+r1R3)(ts3+r-63 -282) ¢

1 2
- - + 7~(=Rz +R3+R1Rg

(t(14255 565 )+2 (6?,-%-63 }}  (Ryi=Ra }(ts2+r=6,-283%)

g% _ - g%

(gca Cz‘ 2(6,d5-d;6,) Boar. (ts2+x -84 -258%)
sviT 7 a7 1+Rz —

C3 3 5 _3
“ (=3 + 7 C1Cy ";:Cﬂ-

(4.141), (4.144) and (4.145) and inverting term by term,

we have that for early time

“ ~ 8/,

w({;‘-r) = dl(—ér)?/ziaerfc ﬁ'; +(R3"R1)[4T_). /315erf.c WP;
7

+(R3+’31R3-R:)(41‘) /2 i7Terfe ﬁ; +

+exp((-Np+ i—-)cm(rmc (I.Tg"z 1L (s

N 3 .2
Na€q 3 /2 S-S N €103 3 ¢
-C(N4- ) + 3 51))4. T 9 3 ( 2 1C( 4= T3 8 1)

' - 3 _2,2
- 2+ > €3)
CNjcy 3 3 .5 .3, (NgmeaNa/2+ & &3
+(~Ng+ ; - F Nzey + o7 Ex+ L)+ -

4 2

‘ ./ M8 »p Nje Nsl
%&(47)5/3 iderfc ;I_-- + -%E( g Ns)(é-r) iSerfo ——
T T

DO N1C1 2
(D1t g=(N5= ~5==)"¢2) N
' z 2 (41)7/2 iTerfe --1-5- + e (4..46)
- T
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Here erfc(x) is the complimentary error finction defined
by - . !

. 5 @
erfe(x) -7 fx exp(~n?) dm,

and the repeated integrals of the compleméntary errer Eunce
tien are defined by |

i®erfe{x) = arfe(x),

N ® nex

iterfe(x) = [ i erfe(t) dt, n 3 1,2,-+,
. X “

See [38) for example.

A similar procedure may be used to find an early time
solution fer v(Z,v). We begin by finding the asymptotic
expansions of the factors in equations (4.51), (4.57) as
p = o . ,The following factor is written as a serxies

expansion in terms of {%)

1
(pik+p)(psP=b, )+tdy )= Fp(g1+9,5)2) '
( '2 1/” gF\a - xo.,.‘f.’:..,..‘fg.-ro(l;) (4.147)
{p{ts3+rbdy )+t (06;1-83)) ' P P P
where
£(6y8, ) =52 (2N, +Ng )
Ko =
ts’-i-rbl
~28% (Ng+NaNy ) t(01~6; )(t(ﬁl‘az.)"sg(zulﬁzgn | s
Ky = - i
! ts2+4r6, (te2+r5,)?
Ky = =(t(51=65 )53 (20, 4M3 ) )+ (Hg+gNy)
(t53+rél) (ts"'ﬂ:é;)

- 8% (2Ng + 2NgNg + N3)+
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The following factor is written as a series expansion in

1,
erms -
terms of (P;

(p{{t+p) (ps?=8; ) +ts, )= %P(gx‘gz)a)
‘(Pt53*151)+t(51”52))

= LoP’+pr+Lu*°(%)
(4.148)
where
g3
ts24xdy

Lo =

tSz-bz-SzN: tsz(él‘ég)
Ly = -
- t8d+4rd,y {ts2+r5,)3

€382 (8,-6,)3  £(81~85)(ts3-83-69N7)  t(6y=65)=283N,Ns
+ ®

Ly = - ,
(ts2+rd, )3 (ts2+r8, )2 - (ts3+rs,y)

.l

fhe following factor is written as a series expansion in

terms of (l)

0(6,+5, ps3+tdy+{ps®~8, ) (p+t),A BTt 7z + ;r7;

p(t52+r61 )+t(61"62)

-d 3y 3
. et (Jo+ =2 + =2 4+ 0(32)) (4,148)
pp {2 (ts?+rd,) P P p

‘here

dy

: 2
'1 = Sa(Rg'Ra'RIR=)+(R1‘R3)+t53'62”$3)+(61+63 +t61“t62)

da t(ﬁl"éz)
1 (t33+r61)
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£3(8y-5,)° L dg .-
Jg = (83 (Rg=Rg )+t52 =52« 2 8 )
(ts24r8, )? dy

t(65-63) '
- ——— (92(32'33‘3133}¢(31‘Ra)(tﬂz*ba'“’)
(ts2+rsy)
+ (5?*52*t51'?§z))+53(23333‘Rg+313:'3133)
+ (t82=5;~83) (RE-Rg=RyRy )+ (Ra=Rp ) (624854 (62=63)
with.the aid of (4.51), (4.57), (4.61), (4.138), (4.140),
{(4.141), (4.145), (4.147), (4.148) and {4.149), and with

the elementary ihversion process, we have that for early

time
~Jo / &
' " (ts24r6, ) N7
J J -

(ts”+r61, 2T (ts?4réy) .Y

Po (T~5) */a T1(T‘C)5/=
+exp((-Nz* --e1)C1H(‘!"CH r(572 *TT7Z)

Tp {1=C) /2 . Nyl
+ 2?(9/2) + ] + ;3(41)1/3'11§;fc —1:_
2z Ny €
Z(en)e sderse -2 4 evy - 4.150)
5( 2Nt (
where
To = Ko

1 3 2
Ty = Ky + Ko(S1~8(Ns= 5 €12 + § €1))
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Ty = ByKy( (S2-C(Ng= FeaNa+ § 1)) #Ko[5a-81¢ (Mo Feama+ §e2)

' 3 3.3
(Mg~ %Naex + 5 €1)

1 2 5_ .3
+(‘N8* Fe€r~ %Na€1)+ ;T €1t

Zy = Dolp

o]
iy
]

= - LDoLo(Ns~- %‘€1N1)a

Lo (Dy + 5DoC® (N3~ 5¥1€1)%) + DoLy .

o
1

We note that these early time solutions of Ww({,T) and
9(;,%) are in effect without any restrictions beyond the
conditions of (2.40) and (2.41). aAnd the early time
solutions of all other field variables follow trivially

from the equations (4.27), (4.146) and (4.150).



. SUMMARY AND CONCILUSIONS .

In this thesis, we have reviewed the major contribue
tipng to the development of a thaory of mechanically and
thermally interacting continuous media. Beginning with the
work of Darcy and Terzaghi we have traced the work of Biot,
Truasdellhand Toupin and the recent work of Green, Naghdi,
Steel, Atkins and Chadwick. As is usual, the theeretical
development hﬁs preceded tﬁe number of applications and in
this thesis we have athempted to utilize & linearized
vergion of the mixture theory to derjive results which are
readily applicable to practical boundary value problems.

our first result is in the form of an integral rela~
tion commonly known as a reciprocal theorem. It relates
the solution of one problém to that of another problem
each of which is due to different boundary and initial
data. We have indicated how thia theorem reduces to a
theorem applicable to a single constituent and we have
. shown how one might use such a theorem. Indeed, we intend
to exnlore its uses in future research much along the lines °
vied in classical elasticity.

our second majer resuit Consists of a aolution of a
fundamental initial boundary value problem using the

linearized mixture theory. It is the first actual‘bounda:y'

i20
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value problem to be solvad uzing 2 mixture theory. Due to
its complexity the results are given in integral form only.
“Further development must await experimental evidence con-
cerning the size of the material properties. Such experi=~
ments, incidentally, are a second possible line of future
research and it is cur intention to attempt to devise
simple analytical models which will lead to estimates of
the material constants. We will be guided by those methods
used in single constituent theories. ‘

The integral representation of the solution of the
boundary value problem given in Chapter 4 is exact .to
terms of order t2 but, due to the complexity of the inte-
grands in the integrals, not much can be inferred about
the displacement field. For this reason we have given the
starting solution, i.a., tha early time approximation.
This solution may prove more useful as far as actual compu=

tation is congcerned.
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APPENDIX
The location of the zeros of (4.73) may be given in a
powér series of t as follows,
23 3
P1 = -(-%-t t—%E;-n-tH %) (=3 - 3Es) + 0(t3))
1. .2
i (4k1+2¢oBy~ 5By 95-0¢%:)
+§-N4¢o-¢§+t 2 ~
2 Vayy - 9

1 1 2.1
(4K3 2¥oPa={FE190+ §¢1)2'¢o(§ﬂz'32/3)3
2 ; 4'{[10 - ¢'
' , 1 2 2
(k1424 0¥ 15819600031 )

e t’{

)+ 0(t3))
8 (dy, - 03) 12

1 1 2 i '
Pa ° - %0t ((Ei- 50) + (GRaEL/B)E 4 O(R))

(Jr4(ka ‘WoBzﬁ éwo{*Ez %ETQ

1 2 1_2
4 Ba)~ 396 (BE1= =) (Ea- 381)
. (k3= Wo 3 015F1- o) Wa” gR1) o(t3))
2 J4 0ca= 30082 - 300 GE1- 20

and thgixr conjugates p:s and pa, where we used the fol-

lowing'abbreviations
. 2(r + &3)

an--—u——

52

(r-62)2+4r(6i + 8g)

v .
L+) s-{\
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2{=1+2 &; = 264-r)
82

] '3:( c1'+261*ﬁ3 ) (r'ﬁa )+(2+2r) (62 +53 ) ) .

2
= ;5-(14'2 61"63)
i, s
= -;%-1‘1'}261—63)

=« 1o /36
8 3% /12 = Yoy, /18

= (0a¥at2ya~dye)/12 = (y3 + 290 )/36

- - y3/108
= - Won/SG + Ooioia /24 .

- ”(¢o + ¢o¢1)/36+(°0W1¢3+Wo(¢o¢a+3Wz‘4¢4))/24

+(4¢o¢a'¢o¢s‘¢a)/3

((x-85)2+4x(83+55))°

- '4 5((14285~65 ) (r=85)

332658

+(z+ér)(a§+a,))= (i%;:.-m,)& f;((r-a,)aﬂr(oi+a,))

64r52
-+

((r'éz) +4r (54465 ) ) (1426, -0, )2

“ “T:E“T("" Wo(2°0W4*33¢1¢4*¢3¢a**“"‘ Vo (6 So¥ale

o/ 2339

*ﬁwzwa‘¢o¢z¢a'z¢owg*2a¢oWa$4)' 563

+ e (=3300¥1¥3 + 20043))
2%3% " |

Vo

(3a¢oWa¢4*°oW1$a
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