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ABSTRACT

This report introduces the two-dimensional transform used in the

research TV source encoder, RM2. It is shown that both conceptually and in

terms of the number of required computations, the RM2 transform is consider-

ably simpler than the Fast Hadamard Transform. The latter can in fact be gen-

erated by extending the RM2 transform.
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I. INTRODUCTION

This report provides details of the two-dimensional transform used in

the research TV source encoder, RM2. For the uninitiated reader, adequate

background is provided for the main topic which is carried as far as some

implementation considerations.

It is shown that, both conceptually and in terms of the number of required

computations, the RMZ transform is considerably simpler than the Fast

Hadamard Transform (FHT). In fact, it is demonstrated in the Appendix that

the FHT can be generated by extending the RMZ transform.

Previously, the FHT had generally been considered the simplest trans-

form having practical applications to TV source encoding. The demonstration

that the simpler RM2 transform can be made quite powerful when combined with

other techniques will be the subject of subsequent reports. The reader may

consult the extensive bibliography by Wintz (1 ) to see what others have done

using transforms for TV source encoding.
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II. BASIC TRANSFORM

The standard representation for an arbitrary N by N matrix A with

elements a.. is given as linear combinations of the N 2 basis vectors

0 0
0

e..= -------- 0 0 1 0 0 --- i (1)
J 0

0

0 0

That is

A = a eij (2)

i,j

The 'eij are said to span the NZ dimensional space and are called basis vectors.

The scalar product for two arbitrary vectors in this space is defined by

< A, B> = aij bij (3)

i,j

The norm of a vector is given by

11AI1 (<A, A >)/ (4)

*Only the most basic abstract algebra is involved here. The reader is
referred to the introductory chapters of Ref. 2 for more details.
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If<A, B> = 0, A and B are said to be orthogonal. If in addition

Al = 1 they are orthonormal. One can easily verify that the

e.. form an orthonormal set. Also <A, e..> = a.. so that

A = <A, e.i> e.. (5)

i,j

It is a consequence of vector space theory that any set of N 2 orthogonal vectors

Ho' H1 ... HN2-1 span the space so that we can write

H~ k

ks k 1 I 2H

Thus, we see that (5) is just a special case of (6).

Now turning to the simplest non-trivial case of N = 2, consider the

Hadamard set of orthogonal basis vectors [ 3]

Ho = 1/4 [ ~ 1 - 1/4 1
(7)

H 2 = 1/4 1 H3 =1/4 [ -

The reader may verify, using (3) and (4) that H = 1/2 so that we can

write

A= 4 <A, Hk> Hk  (8)
k
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Now the first term, A = <A, H 0 > , is simply the average of the four elements

of the array A. Thus, if the other terms were deleted or set to zero, we would

have a new A' which has all four elements equal to the original average, A.

Adding back in the deleted terms one by one, we see that these coefficients,

<A, H.>, tell us how much the array tends towards H. from the all constant
1 1

array. For example, suppose<A, H > = 1, <A H2> = <A, H3> = 0.

Using (7) and (8), we get

A+1 - 1 (9)

These operations can also be interpreted as a linear transformation of the

vector A into another vector C. First rewrite A as

a 3  a 2

Letting T 2 2 denote this transformation

T Fa a 22 <A, H> <A, H > c c

A= 02 C = 0 1 (10)
a 3 a 2  <A, H3> <A, H2> c 3  c 2

In terms of matrix multiplication, we can write

C = 1/4 WAW. (11)

Where W is the 2 by 2 Hadamard matrix

4 JPL Technical Memorandum 33-6801
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Noting that WW = 2 I where I is the identity matrix, we get the inverse T22

defined by

A = WCW. (12)

Thus, other than for a factor of 2 2 (essentially, free in a digital system), the

inverse requires the same operations.

Let us consider these steps in more detail. Assume we start with 5

registers XO, X 1 , ... , X 4 with the first four initially loaded with the corre-

sponding coefficients, ai if transform, ci if inverse. These steps are,

enumerated in Table 1. At completion, requiring 8 additions, the four regis-

ters contain the desired result, transform or inverse.

The basic transform T22 described in Table 1 is really the Fast Hadamard

Transform [ 3 for the simplest case of an array of size 2 by 2. We have dis-

cussed it in detail because it forms a fundamental part of what follows. More

involved operations will be avoided by repeated usage of T 2 2 .

JPL Technical Memorandum 33-680 5



Table 1. T 2 2 Operations

Ope ration Register Contents

X 0  a 0

Initialize
X 2  a 2

X3  a 3

X 0 + X - 0  0 + 3

X 1 + X 2 - X4  a 1 + C2

X 2 + X 3 - X 2 +X
2 + 3

X 0 + X 4 - X 0  a 0 + a 1 + a 2 + a 3

X 1 + X 3 - X3 al + a 3

X 0 - 2X 4 - - X1 a 0 + a 3 - (a 1 + a 2 )

X 0 - 2 X4 a 0 + a 1 - (a 2 + a 3 )

X0 - 2X3 - X2 a 0 + a 2 - (a 1 + a 3 )

X4 - - X 3  a 0 + a 1 - (a 2 + a 3 )

Shift X. right 2 places if transform.1

6 JPL Technical Memorandum 33-680



III. HIGHER DIMENSIONS

Assume that our source data to be coded has been loaded into an array

J JJ
of size 2 by 2 which we denote C O . The most obvious way to use T22 in

J-22coding the source data is to apply it separately to each of the 2 two by two

subarrays. In this case, we would end up with 2 coefficients of each type

c 0 , Cl c 2 , and c 3 (see (10)). For the moment, let us assume these are

separately placed in four arrays of size 2J-1 by 2J-1 (in their same relative

location) and denoted respectively by C. - i = 0, 1, 2, 3. An example to

clarify this is shown below for J = 2 (Fig. 1). The additional notation is

self-explanatory.

"J-1 J-1 J-1 repeseJ-t
The coefficient sets C , C , C 3  represent data sources which1 2 3sources

are quite similar statistically in terms of their effect on reconstruction.

Statistically, they tend to be distributed about zero in a bell-shaped fashion.

Their effect on reconstruction is to add back in detail to the constant (equal to

~J-1
the average) two by two arrays represented by the C O  terms. On the other

"J- 1
hand, the C O  terms are quite different and so we direct our attention there,

'J-1 "J-1 J-1
leaving C 1 , C , and C arrays as described.

1 2 3

0o 1 0

0 c3 c2 c3 c2

a0  a 1  0  al c0 cI c cl

0 0 1 1 APPLY 0 0 1 1
DATA IN 03 a2 a3 02 T2 2 TO c3  c2  c3  c2

3 3 2 2 EACH 3 3 2 2
00 01 0g 01 2 BY 2 C0  ' 1  C0  C1

0 0 a2 C3 C 2 2 1 -1
03 0 

2  
3 1 2 3 c

2  
c 3 2

0 C1 0o 1
c3  c3  c2  c2

3 2 23 2
c3  c3  c2 c2

Fig. 1. Illustrative Example

JPL Technical Memorandum 33-680 7



-J-
The C O  array contains two by two averages and thus statistically looks

much like the original data except at one half the sampling rate in both dimen-

SJ-1
sions. This leads us to apply T 2 2 again to all the two by twos in C . We

"' J-2 J-2 J-2 -J-2
get four new arrays C O , C , C 2 , C 3  Again, we can draw the same

-J - 2

conclusions, with C 0  containing four by four averages of the original data.

We can now generalize. Let T denote the application of T 2 2 to all

two by twos of C O , j = 0, 1 ... J-1. The collection of coefficients ci,

'J-j-1 J-j-1 -J-j-1i = 0, 1, 2, 3 are placed respectively in arrays C J-- C , C  , and

C3-j-l all of dimension 2 - - by 2 - j - l. Applying T J - j successively, j = 0,
J-j-1

1, ... , J-I1 C will contain the average values of each 2j + 1 by 2j + l subarray

"J '0
of the original data array CO. At termination, j = J-l, C O is a single term

equal to the average of all elements of the original array. This process is

best described by the diagram in Fig. 2.

Number of Computations

We are interested in the total number of additions or subtractions required

to generate the arrays of Fig. 2. In Table 1, we showed that each use of T 2 2

requires eight and thus we need only determine the number of times T22 is used

J J-1 I
by T , TJ-, ... , T (i.e., the number of two by two's in each ... of the

CO, k 1, 2, ... , J). Adding these terms, we have 22j 1/4 + (1/4) + ...

(1/4)J j for a total number of calculations of

nT = (8/3) 22J - 1 . (13)

This compares with 24J direct calculations for the Hadamard transformation

or (2J)22J using the Fast Hadamard approach. For 64 by 64 arrays this means

the new transform requires approximately 1/4 the number of calculations as

the Fast Hadamard.

8 JPL Technical Memorandum 33-680
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Basis Vectors

J b J J
The 2 by 2 input vector A entered into C O in Fig. 2 can be represented

in terms of an expansion of the form (6). In fact, the expansion of Fig. 2

2J
actually generates the 2 coefficients, <A, Hk>, although we have not

explicitly exhibited these basis vectors, H k . This topic may prove to be of

interest to some and leads to an interesting relationship with the Fast Hadamard

transform. However, in order to avoid introducing unnecessary complications

into the main thrust of this paper, we defer this subject to the Appendix.

10 JPL Technical Memorandum 33-680



IV. ADDRESSING

The following discussion should be particularly useful in software

implementations of Fig. 2 using higher level languages such as Fortran (and the

Fast Hadamard in the Appendix).

~J J ZJ

Assume that array C 0 is a 2 by 2 random access memory initially

loaded with source data in the same pattern as it appears visually. The

standard two dimensional address of any element a.. is, of course, defined by

the row number i and the column number j.

'k 2k
Now the arrays C correspond to 2 memory locations. The operation

k  "k "k-I "k-l "k-l " k-1
T on C O produces four new arrays C O , C C2 , and C , each requir-

ing 2 (k - ) memory locations. Since C O is no longer required, no new memory

is actually required. Since this is true for each k, we can, by suitable

addressing, use the input memory C O for all coefficients generated.

Consistent with our labeling of coefficients, we label the quadrants of

any square array by the arrangement:

1-- (14)

4'-'

Clearly, the location of an element aij which lies in C 0 is uniquely specified by

giving J quadrant numbers (e.g., which quarter of the 2J by 2 array, which

quarter of the 2J - 1 by 2J - 1 subarray and so on). We need only to relate these

quadrant numbers to row and column numbers i and j.

Let k , I = 1, 2, ... , J denote the quadrant of the subarray of size

2 by 2 in which a.. resides. Define
1J

1 if X mod 4 > 1
U(X) = 0 otherwise

JPL Technical Memorandum 33-680 1



Then we can write the row and column addresses

= 1 + 2 - 1 U(k)

8=1

(16)

j = 1+ 21 - 1 U(kI + 1)

L=1

The first application of TJ in Fig. 2 requires that for each value of k 2 ,

Skj we apply T 2 2 to the four numbers obtained by setting k 1 equal to 0, 1,

2, and 3. The results are returned to the corresponding locations so that the

2 2 (J-l)coefficients of i1J-l reside in all i, j locations satisfying (16) with k 1 fixed

at 0, 1, 2, or 3.

J - 1 t J-1The application of T to C0 requires that we fix k 1 = 0 and then for

each value of k3, k 4 ... , k we apply T22 to the four numbers obtained by

2 (J-2) of -2setting k 2 = 0, 1, 2, and 3. At completion, the -2) coefficients of C-2 reside
k 2

in all i, j locations satisfying (16) with k 2 fixed at 0, 1, 2, or 3 and k 1 = 0.

In general, the application of TJ - to C 0  requires that we fix k = k

S.. = k= 0 and then for each value of k + 2 . . , k w e apply T22 to the four

numbers obtained by setting kl+1 = 0, 1, 2, and 3. We get the 2 2(J-f-1)

"J-1-1coefficients of Ck located in all i, j locations satisfying (16) with k

fixed at 0, 1, 2, or 3 and k k = . = k= 0.

Clearly, we can at any time retrieve desired subsets of coefficients for

coding purposes, simply by observing these constraints imposed on the k I

and on the i, j through (16).

12 JPL Technical Memorandum 33-680



V. SHIFT REGISTER IMPLEMENTATION

Figure 3 exhibits another way of looking at the construction of Fig. 2

utilizing shift registers.

Starting at the leftmost part of Fig. 3, input samples of C 0 are clocked

into the processor T J line by line at some sample rate t . The first line, and

subsequent odd-numbered lines, enter the 2J sample shift register SR . These

samples are combined in pairs with the corresponding samples from the

following even-numbered lines to form two by two input arrays which are then

processed by TZ2. Clearly, each pair of odd and even lines generates one

J-1 J-1
line of the arrays CJ- , j = 0, 1, 2, 3. In particular, the lines of C 0 1J '

sequentially enter processor T J - 1 which performs functionally in the same

JJ-2
manner as T to produce the arrays C , j = 0, 1, 2, 3. However, the input

sample rate to T J - 1 has been quartered and the shift register storage reduced

in half.

J-k J-k -2k
Generalizing, odd lines of C0  enter T at a sample rate 2 . t

These samples are temporarily stored in a 2J - k sample shift register, SRJ k '

Samples from SRJ- k are combined in pairs with the corresponding samples

from the following even lines to generate two by two arrays. T 2 is applied to

each two by two array to generate, line by line, the coefficients of arrays

-J-k-l
C , j = 0, 1, 2, 3.

Observe that the generation of all coefficients of all arrays is completed

almost simultaneously with the entry of the last data sample into T . The delay

is approximately the time required for J uses of T 2 2 .

*The same arguments hold with a column by column structure.

JPL Technical Memorandum 33-680 13



DATA &0 ODD LINES OF ag
IN

EVEN
LINES SR

0 CJ-I

2 22

3
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LINES SRJ-k

1 1 J-k-T- -7 2.
22

3

TT

1  F
Z! 2 SR

I

00
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APPENDIX

MORE ON THE TRANSFORM

BASIS VECTORS

We start out by labeling the coefficients in the arrays of Fig. 2. In

particular, for the 2 elements of C number them row by row using the

additional notation c.(k) to indicate the kth coefficient of C. Here k = 1, 2,

S21 in the first row, k = 2 + 1, 2 + 2, ... , 21+ in the second row and

so on. Similarly, we label the 2 subarrays of size 2 by 2 residing in

an array of size 2 by 2 (e. g., C0). This labeling establishes a one to one

relationship between any coefficient of C and the area over which it has influ-

ence in the input array C O . It is this one to one relationship which is important,

the particular labeling was chosen for convenience. An example is shown

below for an input array of size 2 by 2 , and subarrays of size 2 by 2

64 ELEMENTS 8 ELEMENTS

1 2 3 4 5 6 7 8 c(1) c(2) c(3) c(8)

9 10 11 12 13 14 15 16 c(9) c(16)

17 c(17)

8
ELEMENTS

kTH c(k)

63 64 c(64)

INPUT 64 BY 64 ARRAY WITH 8 BY 8 COEFFICIENT ARRAY 3 WITH COEFFICIENTS
SUBARRAYS LABELED LABELED

Fig. A-i. Coefficient and Subarray Labeling

JPL Technical Memorandum 33-680 15



Let S denote the 2 dimensional vector space spanned by the standard

basis vectorseij in(1). Now let SJ-1 be the 2J-2 dimensional subspace of S
13 0 0

spanned by the orthogonal vectors

"J-1 "J-1 J-1 2J-2
V 0  (1), V 0  (2), . , V 0  (2 ). (A- 1)

-J- 1 J  J
where 4 • V 0  (k) is a 2 by 2 array containing I's in all four positions of the

kth two by two and zeroes elsewhere. For example, V 0  (2) is given by

001100 . . . .. .... 0

0 0 1 1 0 0 . . . . . . 0 0

0 00 0 0 0 ..... ..

VJ-0 (2) = 1/4 2 (A-2)

00..........00

00..........00

We can similarly define subspaces S'-1 j = 1, 2, 3 spanned by the orthogonal

vector sets - (k) where 4 VJ- 1 (k), 4 VJ-1 (k) and 4 • VJ (k) are 2

by 2J arrays with

1-1 and 1-1

respectively in the kth two by two and zeroes elsewhere. We note that all

vectors are orthogonal with a norm equal to 1/2.

If we now take the scalar product of these vectors with the input vector

A we find

" "'J-1 J-1
<A, V. (k)> = c (k) (A-3)

16 JPL Technical Memorandum 33-680



Therefore, we can write

3

A = 4 c (k) T(k) (A-4)

j=0 k

Now specifically consider the subspace SJ-1. he projection of A onto this

subspace is simply the j = 0 terms in (A-4). We wish to represent this subspace

J-2 2J-4
in terms of a new set of basis vectors. Let SO  be the 2 dimensional

J-l
subspace of S-1 spanned by the orthogonal vectors

J-2 J-2 J-2 2J-4
V 0  (1), V 0  (2), ... 0  (2 . (A-5)

where 16 V 0 J-2(k) is a 2 by 2 array containing 1' s in all 16 positions of the

J-2
kth four by four and zeroes elsewhere. Similarly, we define subspaces S 2

J-2 J-2
j = 1, 2, 3 spanned by the orthogonal vector sets V (k) where 16 * V (k),

J-2 J-2 J  J

16-V 2  (k) and 16 * 3  (k) are 2 by 2 arrays with

1 1 -1- 1 1 -1-1 1 1 1 1
S1 -1- 1 1 -1-1 and 1 1 1 1 (A-6)

1 1 -1- ' -1-1 1 1-1 -1-1
1 1 -1 1-1 1 1-1 -1-1

respectively in the kth four by four and zeroes elsewhere. We note that

i J-2(k)I = 1/4 and <A, VJ-2 (k) > = cJ-2 (k). Therefore, the projection
j 3 3

J-1
of A on S O  in (A-4) can be replaced by

3

16 c C -2(k) Vj -2(k) (A-7)

j=0 k

JPL Technical Memorandum 33-680 17



The pattern should be established now. We continue to break up each

J-1 J-1-1 J-1 -1orthogonal subspace S into four new orthogonal subspaces S o  , S 1 -

J-1-1 J-1-1 J-1 "0 2Jo,2 and SJ- until S contains only one vector, V0(1), where 2 V 0 (1)

is the all 1' s array. Then our original input array A can be written as

3 J
2 0 '01 J-1 J-1A = 2 c0 (1) V0(1) + (4) c (k) (k,) (A-8)

j=l 1=1 k

A RELATIONSHIP WITH HADAMARD

In this section we demonstrate that the RM2 transform, using T 2 2 , can be

extended to generate the FHT.

Hadamard Transform [3]

First consider the standard Hadamard matrix of size two by two, given

earlier as

H1 1 -1 (A-9)

2 m m m+lIn general, given the 2 m by 2 m Hadamard matrix H , we can get H

by the construction

H H
H = -.. ... (A-10)

m m

The 2m rows (also the columns) of Hm contain only +1' s and -l' s. The

number of sign changes along a row (or column) is usually called "sequency".

Each row has a different sequency number ranging from 0 to 2 m - . We can,

therefore, conveniently use this sequency number to label the 2 m distinct row

(and column) vectors thus generated. Let rm(i ) denote a column vector equal
y y

to the column of Hm with sequency i . Similarly, let rm(i ) denote a rowy xx
vector equal to the row of Hm with sequency i.

x
18 JPL Technical Memorandum 33-680



The 2 2 m Hadamard basis vectors (2 m by 2 m arrays) are formed from

the dyadic products

m
2

y y y xx y x

The reader may verify that

'1 '

h (0, 0) 4 HO

h (1,0) = 4 H 1

(A-12)

h (1, 1) 4 H2

h (0, 1)- 4 H 3

where the Hk were given in (7). The h (ix, iy) can be made orthonormal by

dividing by 2 Zm-1

Returning to the construction in (A-10), we note that if r (i ) is a column
y y

m
of H , then both

m. m
r ( ) r (i )

2m and (A- 13)

m m
r M(iy) -r (i)

Zm  ,

are column vectors of Hm+1. A similar conclusion holds for the rows. Thus,

ifX = h (i, i ) is a Hadamard basis vector for the space of 2 m by 2 m matrices,

then

S , and , (A- 14)

are Hadamard basis vectors in the space of 2m+l by 2m+l matrices.

JPL Technical Memorandum 33-680 19



The Fast Hadamard from T 2 2

Define E (k), k = 1, 2, 2... 2 as the subspace of all linear

th icombinations of eij which have components in the k subarray of size 2 by

2.

For the simplest case, divide S into 2 2(Jl) orthogonal subspaces, each

of dimension 4,

J J-1
S o nE (1)

J J-1
S O nE (2) (A- 15)0

S n EJ-1( 2 Z(J - 1 ))
S0 (2

J J- I
Without loss of generality, choose S A E (1). This subspace consists of

four 2 by 2 arrays uO ul, uZ', and u corresponding to ell' elZ' e2 2, e2 1

respectively. We can represent these vectors by

v 0 = 1/Z (uO + u1 + uZ + u3)

v1 1/2 (u + u 3 - u I - uZ)

(A-16)
2 = 1/2 (uO + u - u I - u3)

v 3 = 1/Z (u 0 + u - u 2 - u 3 )

20 JPL Technical Memorandum 33-680



If we wish any scalar product <A, vi> we have from (A-16):

<A, vk> =~. <A, u0> <A, ul> A, > <A, u3> (A-17)

or more simply, we apply 2 * TZ 2 using Table 1.

From previous discussion, we see that the four non-zero positions of

v 0 , V1, v 2 , and v3 are the normalized Hadamard basis vectors for two by

twos. Clearly, this is true for all the subspaces in (A-15).

Now form four orthogonal subspaces:

S S O

S S10
(A- 18)

S2 S

JJ
3 0

where S. S consists of all linear combinations of vectors of the form v.
31 0 31J-1 J-1 J-1 J-1

generated in (A-16). We recognize these as S- , S1 , S , and S3

respectively by our earlier notation.

Now divide each such subspace into 2 2(J - 2) orthogonal subspaces:

k 2  = 1,2 .... ,2

(S ( EJ- 2 (k 2 ) (A-19)

jl = 0, 1, 2, 3

Each subspace contains four orthogonal vectors, each with the same two by

two Hadamard basis vector in its non-zero positions (which are located

respectively in the four quadrants of the kfour by four).

JPL Technical Memorandum 33-680 21



Using uO, ul, u 2 , and u 3 to represent these four vectors, we can again

use (A-16) to generate four new vectors which span this subspace. In particular,

let X. be the two by two Hadamard basis vector corresponding to each sub-
J1

space

( J J-2

Applying (A-16) to each subspace, we get 4 new orthogonal vectors whose non-

zero positions are (except for a normalizing factor) given in (A-14). Thus, we

have generated four valid Hadamard basis vectors of size four by four. Now

for a given k 2 (i. e., a given 4 by 4), the four Hadamard basis vectors gener-

ated must be distinct for each jl since otherwise the subspaces

(S n EJ-2(k 2 ), (SJ EJ-2(k), I Xi

could not be orthogonal. Therefore, this process has generated all of the 24

Hadamard basis vectors for each k 2 . The scalar product of the input vector,

A, with each of the vectors generated for a fixed jl and k 2 is again obtained

simply by a single application of 2 * T 2 2 .

Now form the 24 subspaces

S S S 1 j1 2 = 0, 1, 2, 3. (A-20)

where S. S. SO consists of all linear combinations of the 2 2(J-2) vectors
J 2  Ji 0

formed using v. in (A-16) on the subspace S S . Let X. . denote the
J 2  i1 0 32j 1

particular normalized Hadamard basis vector corresponding to non-zero

locations of these vectors.
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The pattern should be clear now. After the mth step, we have the 2 2m

orthogonal subspaces

S. S. . . . S. S (A- 1)
3m 3m-1 l 0

Where S. ... S consists of all linear combinations of 2 by 2 arrays, which

m 2(J-m)
have Hadamard basis vector X. . . in each of the k = 1, 2, .. 2

3m 3m-1 "'l m
subarrays of size 2 m by 2

m , and zeroes elsewhere.

We form the 2 2(J - m - 1 ) orthogonal subspaces of dimension 4

(S. ... S. E J - m - 1(k
m 1J

(A-22)

k 1= 1, 2, ... , 2 2(J-m-)
m+l

We then represent each such subspace by four new vectors using (A-16). Again

by (A-14) the non- zero positions of the new vectors are valid Hadamard basis

m+1 m+l
vectors of dimension 2 by 2 and denoted by X. . . . Fixing

km+l, this process must produce 4 distinct vectors for each value of jm'

jn-' .' j 1 since otherwise the subspaces Sm S. ... SO could not be

orthogonal. Thus, we have generated all the 2 2(m+l) orthonormal Hadamard

basis vectors. The process continues until m = J.

2J
To obtain the scalar product of the input vector A with these 2

Hadamard basis vectors requires one more application of 2 • T22 for each

quadruple of vectors generated. We can now add up the total number of

applications of T 2 2 .
2(J-1)

In the first expansion, there are 2 subspaces requiringa single

application of 2 * T 2 2 each. On the second step, we have 2 2(J-2) subspaces
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for each of 22 Hadamard basis vectors. In general, we have 2 2(J-1 ) subspaces

for each of 22.1 Hadamard basis vectors. The process continues until

1 = J-l. Adding all these together and multiplying by the number of computa-

tions per T 2 2 use (see Table 1), we get:

[No. of 3 2. 1 2(J-2) 2(J-1)
computations] = 2 [1 2 2(J-) + 2.1 2(J2) + + 2 2(J )

= (log 2 2J) 22 J . (A-23)

We recognize the latter figure as the number of computations required to

generate the Fast Hadamard Transform.
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