Xα Calculation of Transition Energies in Multiply Ionized Atoms

D. A. Ringers

and

M. H. Chen

Department of Physics, University of Oregon
Eugene, Oregon 97403

The Xα method has been applied to the calculation of ionization energies in multiply ionized atoms. It is shown that the accuracy of calculations can be improved if appropriate (different) values of α are used for each configuration. Alternatively, one can use the Slater transition state, wherein a total energy difference is related to a difference in single-electron eigenvalues. By a series expansion, the value of α for an excited configuration can be related to its value for the ground-state configuration. The terms Δα(∂E/∂α), thus introduced, exhibit a similar dependence on atomic number as the ground-state values of α. Results of sample calculations are reported and compared with experiment.

*Work supported by the U.S. Army Research Office-Durham and by the National Aeronautics and Space Administration (Grant No. NGR-38-003-036).
An increasing need has recently arisen for comprehensive theoretical work on transition energies, x-ray emission rates and Auger transition probabilities pertaining to multiply ionized atoms. Theoretical information on these atomic quantities is required to interpret a growing body of data derived from ion-atom collision experiments and beam-foil spectroscopy, and data expected to arise from astrophysical processes and new experimental programs.

In order to compute transition energies and probabilities, it has previously been necessary to calculate both the initial-state and final-state total energies. However, the computations can be substantially simplified by using the "Xα method"; this simplification is important when a large program is envisioned.

The Xα eigenvalues and eigenfunctions agree closely with results from the Hartree-Fock (HF) method for closed-shell atoms and from the Hyper-Hartree-Fock (HHF) method for open-shell atoms. And, with its local approximation to the exchange, the Xα method requires less computing time than either the HF or HHF methods. The concept of the transition state, whereby the ionization energy, a difference in total energies is well approximated by a single-electron eigenvalue, follows directly from the Xα theory. The transition-state concept avoids the necessity of carrying out two double-precision calculations, one for the initial-state total energy and one for the final-state total energy, which is usually necessary in the HF or HHF frameworks. Instead, it is possible to calculate directly a total energy difference. The Xα method can also be extended
to molecules and solids, whereas the HF method is in practice only useful for isolated atoms. It can be shown that Fermi statistics and the Hellman-Feynmann and virial theorems are inherently satisfied.5,6 The transition-state concept is finding increasing application and has been providing results in good agreement with experiment. So far, however, the method has not been utilized to achieve the accuracy of which it is capable. Thus, deviations of 10 eV from experimental binding energies of ~200 eV have been noted.7 Considerable improvement is possible, as indicated below.

Generally, in an atomic (or molecular, or solid) Slater transition-state calculation, a value of α for the neutral-atom ground-state configuration is used.8 This procedure does not achieve the potential inherent in the method, particularly for inner shells. The problem lies in the fact that the value of α which is appropriate for the ground state is not appropriate for an ion with one or more inner-shell vacancies. As has previously been shown by Slater,6 the $X\alpha$ method satisfies the virial theorem; thus one might expect different values of α to satisfy the virial theorem for the ground and excited states. To calculate the difference between the ground total energy $E_0(\alpha_0)$ and an excited-state total energy $E_e(\alpha_e)$, it is therefore necessary to relate the excited-state α_e to the ground-state α_0.

The original Slater transition-state concept for the process of ionization can be expressed by the relation

$$E_0(\alpha_0) - E_e(\alpha_0) = \frac{\partial E}{\partial n_i} = e_i,$$ \hspace{1cm} (1)
where ε_i is a single-electron eigenvalue of a state with occupation number halfway between the initial-state and final-state occupation numbers, and n_i is this occupation number, which formally need not be integral. We expand

$$E_\varepsilon(\alpha_e) = E_\varepsilon(\alpha_o) + \Delta \alpha \frac{\partial E}{\partial \alpha},$$

where $\Delta \alpha$ stands for the difference $\alpha_e - \alpha_o$. Taking account of the change in α, we therefore have

$$E_\varepsilon(\alpha_o) - E_\varepsilon(\alpha_e) = \varepsilon_i - \Delta \alpha \frac{\partial E}{\partial \alpha}.$$

It has been common to use $E_\varepsilon(\alpha_o)$ instead of $E_\varepsilon(\alpha_e)$, neglecting the term $\Delta \alpha (\partial E/\partial \alpha)$; this is reasonable for outer shells. However, for inner shells it is often necessary to retain the additional term. In particular, this term cannot be neglected in calculations of Auger and Coster-Kronig transitions, in which the energy of the emitted electron can be of the order of only a few eV, and its wave function is very sensitive to the energy. If neither the initial nor the final state is the ground state, two terms of the form $\Delta \alpha (\partial E/\partial \alpha)$ appear on the right-hand side of Eq. (3).

We have determined these additional terms and computed certain transition energies for a few multiply ionized atoms in order to test the approach. Preliminary calculations indicate that $(\partial E/\partial \alpha)$, while differing for each shell of a given atom, can be reasonably well approximated for most shells by the corresponding value calculated by Schwarz for neutral atoms. The factor $\Delta \alpha$ seems, from our preliminary
calculations, to be a nearly linear function of Z for a given shell, behaving in much the same way as the ground-state α's\(^{9}\) (Figs. 1-3).

Selected nonrelativistic values of \(\Delta \alpha(\partial E/\partial \alpha)\) are listed in Table I. With these terms, relativistic binding energies were derived that agree quite well with measurements\(^9\) (Table II). As a further test of the method, we have calculated the energies of a few selected x-ray satellites and tentatively identified them with measured non-diagram lines (Table III).

Recent work\(^{10}\) has indicated that the energy difference between the K\(\beta'\) satellite in aluminum, which has been attributed to a \(KL_{2,3} + L_{2,3}^2 M\) transition\(^{11}\), and the K\(\alpha_3\) satellite, which is due to a \(KL_{2,3} + (L_{2,3})^2\) transition\(^{12}\), should be equal to the energy of the \(L_{2,3}\) satellite \((L_{2,3})^2 + L_{2,3}^2 M\) and have a value of 15.2 ± 0.3 eV. Calculation of these transition energies by the Xα method yields a value of 13.8 eV, which is in good agreement with the experimentally obtained value. It thus appears that the present method can lead to reliable values of transition energies between multiple-vacancy configurations in atoms.

The authors are indebted to Professor B. Crasemann for helpful discussions and comments.
References

TABLE 1

Values of \(\Delta \alpha (\partial E / \partial \alpha) \) for Selected Transitions

<table>
<thead>
<tr>
<th>Removed Electron</th>
<th>AI (eV)</th>
<th>Cl (eV)</th>
<th>Ar (eV)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1s</td>
<td>-9.81</td>
<td>-10.46</td>
<td>-10.41</td>
</tr>
<tr>
<td>2s</td>
<td>7.38</td>
<td>11.15</td>
<td>12.28</td>
</tr>
<tr>
<td>2p</td>
<td>-2.66</td>
<td>-2.29</td>
<td>-2.02</td>
</tr>
<tr>
<td>3s</td>
<td>-0.93</td>
<td>1.97</td>
<td>3.40</td>
</tr>
<tr>
<td>3p</td>
<td>0.23</td>
<td>-0.74</td>
<td>-0.81</td>
</tr>
</tbody>
</table>
TABLE II

Relativistic Binding Energies in Neutral Ar (in eV)

<table>
<thead>
<tr>
<th>Electron</th>
<th>$\epsilon_i(\alpha_o)$</th>
<th>$\epsilon_i(\alpha_o) - \frac{\Delta \alpha \beta E}{3\alpha}$</th>
<th>Experimenta</th>
</tr>
</thead>
<tbody>
<tr>
<td>1s</td>
<td>-3220.6</td>
<td>-3210.2</td>
<td>-3206.0</td>
</tr>
<tr>
<td>2s</td>
<td>- 314.8</td>
<td>- 327.0</td>
<td>- 326.3</td>
</tr>
<tr>
<td>2p\textsubscript{1/2}</td>
<td>- 252.1</td>
<td>- 250.1</td>
<td>- 250.6</td>
</tr>
<tr>
<td>2p\textsubscript{3/2}</td>
<td>- 250.1</td>
<td>- 248.1</td>
<td>- 248.5</td>
</tr>
</tbody>
</table>

aMeasured binding energies, from Ref. 9.
TABLE III

Experimentally Observed X-Ray Satellite Lines and Theoretically Derived Transition Energies in Multiply Ionized Atoms

<table>
<thead>
<tr>
<th>Element</th>
<th>EXPERIMENT</th>
<th>THEORY<sup>a</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Initial Vacancy Configuration of Satellite</td>
<td>Final Vacancy Configuration of Satellite</td>
</tr>
<tr>
<td></td>
<td>Diagram</td>
<td>Satellite</td>
</tr>
<tr>
<td>Al</td>
<td>Ka<sub>2</sub></td>
<td>Ka<sup>-</sup></td>
</tr>
<tr>
<td></td>
<td>Ka<sub>2</sub></td>
<td>Ka<sub>4</sub></td>
</tr>
<tr>
<td></td>
<td>Ka<sub>2</sub></td>
<td>Ka<sub>5</sub></td>
</tr>
<tr>
<td></td>
<td>Ka<sub>2</sub></td>
<td>Ka<sub>6</sub></td>
</tr>
<tr>
<td>Cl</td>
<td>Ka<sub>2</sub></td>
<td>Ka<sup>-</sup></td>
</tr>
<tr>
<td></td>
<td>Ka<sub>2</sub></td>
<td>Ka<sub>3</sub></td>
</tr>
<tr>
<td></td>
<td>Kβ<sub>1</sub></td>
<td>Kβ<sup>-</sup></td>
</tr>
<tr>
<td>Ar</td>
<td>Kβ<sub>1,3</sub></td>
<td>Kβ<sup>-</sup></td>
</tr>
<tr>
<td></td>
<td>Kβ<sub>1,3</sub></td>
<td>Kβ<sup>v</sup></td>
</tr>
</tbody>
</table>

^aPresent work

^bScaled from graph in Ref. 11
Figure Captions

Fig. 1. The term A_a, as a function of Z, for the 1s shell of selected atoms for which the outermost electrons are in the 3p state.

Fig. 2. The term A_a, as a function of Z, for the 2s shell of selected atoms for which the outermost electrons are in the 3p state.

Fig. 3. The term A_a, as a function of Z, for the 2p shell of selected atoms for which the outermost electrons are in the 3p state.
Figure II

The graph shows a linear relationship between \(\Delta a \) and \(Z \) with the following data points:

- \(\Delta a = 0.0116 \) at \(Z = 13 \)
- \(\Delta a = 0.0115 \) at \(Z = 14 \)
- \(\Delta a = 0.0114 \) at \(Z = 15 \)
- \(\Delta a = 0.0113 \) at \(Z = 16 \)
- \(\Delta a = 0.0112 \) at \(Z = 17 \)
- \(\Delta a = 0.0111 \) at \(Z = 18 \)

The graph is labeled "2s."