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Abstract

A ring partielly filled with a viscous fluid has been analyzed

as a nutation damper for a spinning satellite. The fluid has been

modelled as a rigid slug of finite length moving in a ‘tube and resisted

by a linear viscous force, It is shown that there are two distinct

modes of motion, called the spin synchronous mode and the nutation

synchronous mode. Time constants for each mode are obtained for

both the symmetric and asymmetric satellite. The effects of a stop

in the tube and an offset of the ring from the spin axis are also

investigated. An analysis of test results is also given including

a determination of the effect of gravity on the time constants in

the two modes.
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Sy ibols

A, B, - transverse moments of inertia of the satellite

C - spin axis moment of inertia of the satellite

g - angular momentum vector with components Hu, Hv’ Hz

Ht - transverse anguler momentum #
I; - moments and products of inertia of the fluid slug

R ~ radius of the anmulus

a - radius of tube

b - h/R

cy - viscous damping coefficient

& g - gravity
g - S/Rna :
h - height of ammilus above setellite center of mass
k - (sin (7/2))/ (7/2) |
m - mass of fluid %

P,q,T - dimensionless angular velocity components

t - time !
) s & - offgset of certer of anmulus from spin axis |
8 - 8/R
€ - mR%/A7 N
ﬂ ‘ ¥ - angle of £111 of fluid in anmilus oW
y - fraction £ill, ¥ = 7/2q
. n ~ dimensionless damping coefficient .‘
v - angular position of offset in transverse plane ) !
) v - kinematic coefficient of viscosity '
Q - initial spin rate

® - angular velocity with components By Dy ©
@y - transverse angular velocity
T dimensionless time, T = it
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- C/A
- C/B
- 9/9,

mitation angle

- precession angle

Euler angle

- angular position of slug
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1. Introduction

A ring partially filled with a viscous fluid such as mercury
was one of the first nutation dampers used on spinning satellites.
The first analysis of the partially filled viscous ring damper was
performed by Carrier and Milesl’ 2. They assumed that the motion of
the damper did not appreciably affect the precession rate of the sat-
ellite but acted only as a source of energy dissipation. W&.th this
assumption the motion of the fluid in the tube was then treat . as
a fluid mechanics problem and an approximate solution to the Navier

takes equations was obtained. Their solution showed that the fluid
behaved as a rigid slug for a mutation angle greater than one degree.
At these large mutation angles the problem was then treated as bound-
ary layer flow over a flat plate with the width of the plate being
equal to the perimeter of the tube. However this analysis did not
completely treat the problem as there are two distinctive modes of
motion for a nutation angle 6 greater than one degree, and in one
of these the fluid does not behave like boundary layer flow. The
next analysis was performed by Ca.rwrightS’ h, et. al., in which they
assumed the fluid mass behaved like a particle of equal mass moving
in a tube with a viscous damping force. Their analysis revealed that
there are two distinctive modes of motion which they called the nuta-
tlon synchronous mode and the spin synchronous mode. Although there
were some minor errors in their equations of motion they correctly
analyzed the nutation synchronous mode but failed to analyze the spin
synchronous mode.

Interest was revived in this problem when the failure of the
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ATS=-5 satellite was attributed to the energy dissipation caused by
fluid motion in the heat pipes. Consequently it wos desirable to be
able to predict more accurately the energy dissipation in this type of
damper., Also other satellites such as Hellos will employ partially
filled rings for nutation dampers but during a portion of the flight
the satellite will be spinning about an axis of minimum moment of
inertia. Since this is an unstsble configuration it is rery important
to be able to predict the rate o? energy dissipaton.

As & result AJ_friends approached the problem in the game manner
as Ca.rtwright3’ h and obtained equations which spproximately describe
the motion in both the mutation and spin synchronous modes. The prob-
lem with this approach is that it must be accompanied with a method for
calculating the damping constant. Leibold6 suggested assuming steady
flow in straight pipe as a means of calculating this damping constant.
However there is an error in his equation deseribing the motion of the
satellite.

In this study the fluid is assumed to behave as a rigid slug but
but since the fluid may £i11 up to 50% of the ring it is assumed the
fluid is a rigid slug of finite length, not a rarticle,

In Section 2 a description of the mathematical model is given and
for a symmetric satellite approximate solutions are derived for the muta-
tion angle time history and corresponding time constants in both the
nutation synchronous and spin synchronous modes. These approximate
soluticns are then compared to those obtained by mmerical integrea-
tion of the exact equations of motion. In Section 2.2 the effect of
a small offset of the center of the ring fram the spin axis is inves-

tigated. This is necessary since an offset of 1/4" is planned on the
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Hellos satellite. An analysis of the test data was a part of this
investigation so the effect of gravity on the mutational behavior is
investigated in Section 2.3. An investigation of the effect of a stop
in the tube is investigated in Section 2.4, In Section 2.5 the results
of Section 2.1 are extended to the asymmetric satellite.

Several possible methods for determining the damping constant
are given in Section 3. An analysis of the test results is presented
in Section 4. Finelly a sumrary of the results and conclusions are

given in Section 5



2, Statement af the Problem

In the presentation of the analytical results the simplest problem,
which is the symmetric satellite with no grevity and no ring offset, is
gsolved first. The effects of gravity and ring offset on the dymmetric
satellite problem are then determined. Finelly the solution of the
asymmetric satellite with no ring offset and no gravity is given. The
symmetric problem is considered first rather than solving the asym-
metric problem and simplifying the results for the symmetric case bhe-
cause by solving the symmetric problem first one gains more insight
into the problem.

The mathematical model is an asymmetric rigid body (satellite) with
principal moments of inertia A, B and C and corresponding principal
axes represented by the x, y and z axes shown iﬁ Figure 1. The =z
axis is the spin exis. A tube of radius R 1is attached to the rigid
body at the point (Scosv, 8sinv, L,. & is the offset of the center of
the ring (tube) from the spin axis. Moving in the tube is a rigid
slug of mass m which fills a portion of the tube, the angle of fill
being 7. The other assumptions in the development of the equations
of motion are 1) the center of mass of the system and the center of
mass of the satellite are coincident, 2) the friction force on the
fluid slug can be represented by & linear viscous force, and 3) gravity
acts only on the fluid slug. The first assumption is made because it
simplifies the equations of motion considerably and the effect of the
motion of the system center of mass is negligible since it is of 0(62)
where ¢ is a small parameter which is defined later. Also, in th~ tests
the satellite center of mass is a fixed point. The third assumption is

made since gravity has an effect only in the tests and the satellite
- h -
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without the fluid was statically balanced before the tests.

The equations of motion which are derived in Appendix A are

(1+0.,.) (l-0,,) (d-o g
[ 212 + 212 coszs+1uu p'+ |~ = 212 sin'éts-luv q' ‘
-qu(r'*ﬁ") = f-I"m'*(l-Ulz)Sin?B]PB' + [I&v+(l-012)c0825]®' (2.1)

4 It'lz(r+B')B' + (z-+e')ﬁv- qﬁz + IVIu
(1-c, ) (1+0,.) (1-0y.)
[- 212 Sineﬁ-Iqup' + ( 212 - 212 cosga+Iw ql-Ivz(rI.’ﬁ")
(1-0,,)
= 5 Cos P+I P8’ + [-I"N-(l-clz)silﬁﬁ]@' + I,'rz(r‘*ﬁ')ﬁ' (2.2)
+pfl, - (e )R + R °
- qup' - Ivzq' + (Ul+Izz)r' * Izzﬁu = I‘lzpﬁ' * Iw'rzqa'
(2.3)
- Izz(r+a')s' + qﬁu - pH_+ Mz
~bkp' + (L+Ekcos(B-v))r' + B" = -18' - gksinfcos(y+s) z N
(2.4) R
# (F_ -1 -2 )pq - bk q(r48') + I'_(po+r?)
uu Vv uv q 4 zzp ;
where
ﬁa = Ha/m
f 5 - ¢
&,
L = Loy
aw 5

»
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The coordinate systems and angles are defined in Figure 1.
P, q and r are the components of the dimensionless angular velocity
aleng the u, v and z axes and B defines the position of the slug

in the tube. The Iaw and are the moments of inertia of the slug and

i
their derivatives are given in Appendix B. The independent dimensicnless
paremeters of the system are m, o,, €, b, N, y or Y, g & and v

where

o, = C/A

c/B

e = mR°/AY
b = ".L/R (2.6)

N = cd/mﬂ

g = g/Re°

o
[}

&/R

Primes denote differentiation with respect to the dimensionless time
T = 01 where 0 is the initial spin rate. 6, ¥ and ¢ are the Euler
angles with 6 being the nutation angle and ¢ the precession angle.
The Euler angles are determined from
' = p cos(i#B) - q sin(yp) (2.7)

¢ = [p sin(¥8) + q cos(v+8)]/s1né (2.8)

¥' = r - $'cosd (2.9)
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2.1 Symmetric Satellite with Zero Offset and Zero Gravity

Since there are no external forces the angular momentum is con-
stant. Letting the reference direction be 'I:I‘z (the vertical when
gravity is present) the nutation angle 6 can be determined from

tané =

H
— (2.10)
Z

instead of using (2.7). H, is the spin axis component of the angular

momentum and Ht is the transverse component, 4i.e.,

nf: - Hﬁ+H§ . (2.11)

Substituting for Hu and Hv and expanding in a power series in

€ gives
@4
tané = —&-+ o(e) (2.12)
where
£ - P
(2.13)
g = 0‘1 = 0'2

However to use (2.10) to obtain the variation of 6 one would have to
obtain p, q and r through O(e) whick is no easy task. Rather
than using (2.10) or (2.12) one can obtain a good approximation of
8 by differentiating (2.10) and then integrating the resulting

differential equation. Differentiation of (2.10) gives

H! H! pH_-~qH
v _1:_ - .z _ v T u
gt = T = il (2.14)

A t t

g rx o ma
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Substituting for Hu and Hv and expanding in a power series in € yields

6 = [l pr(u'h sin(y/e)]i%w(e?) (2.15)

The advaentage of (2.15) is that to determine € to O(e) one only
needs the first approximation of p, q and B.

Damper Motion

A symmetric rigic body which is spinning about its axis of symmetry
has a constant nutation angle when no damping is present. The transverse
angular v2locity vector O rotates at a rate of cQcos® and the body ro-
tates relative to @ at a rate of (1-0)Q., When no damping is present
the center of mass of the fluid slug will be flung outward as far as possi-
ble which will be along Wy or the plane formed by E and the 2z axis,here-
after called the nutation plane. The fluid slug will then be moving at a
constant rate of (1-0)Q with respect to the body. Introduction of a small
amount of damping causes the center of mass of the fluid slug to move off
the nutation plane to an equilibrium position where a component of the cen-
trifugal force balances the friction force. This type of motion is called
"mutation synchronous" motion3. In this mode the fluid slug is moving at
a constant rate with respect to the body, hence thL: energy dissipation rate
is a constant. If o > 1 the nutation angle decreases which causes a decrease
in the centrifugal force and the fluid slug center of mass moves further from
the nutation plane. Eventually the centri®ugal force is not lerge enough to
balance the damping force and the fluid slug begins to be dragged around with
the body while oscillating in the tube. This type of motion is called spin-
synchronous motion.

The purpose now is to determine the behavior cf the nutation angle in

these two modes as a function of the dimensionless parameters €,n,b,c and 7.
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Nutation Synchronous Mode
Expanding the equations of motion, Equations (2.1)-(2.4), in a

power series in € and dropping all terms of O(e) gives

r = 1 (2.16a)
p'+ (AB')g = O (2.16v)
q' - p'p = O (2.16¢)
p" + ' + g + ba(sin(y/2))/(7/2) = © (2.164)
where A = g-1,
Letting
a = B =M (2.17)

the solution to (2.16b) and (2.16¢) is

P = -a:tcosa
q = a)ts:'ma (2.18)

where it has been assumed that q = O and B = 0 at 7 = 0, Thus O measures
the position of the center of mass of the fluid slug with respect to the

nutation plane. Substituting (2.17) and (2.18) into (2.164) gives

w, cos (y/2)cos a

a" + na' + bow sina (sin(y/2))/(r/2)(1 - == ] = -9 (2.19)

A particular solution of this equation is « = ae where

tanbcos (y/2)cos & -
sina [1- = €] = - 2’17("'1)" (2.20)
bo tanbsin(y/2)

wher~ o, = otan 6 has been used. Thus the fluid slug will remain in

the mutation synchronous mode as long as (2.20) is satisfied. Once 6
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becomes small enough so that @, =t n/2 the fluid slug goes into the
spin synchronous mode. The transition angle Gt from one mode to

the other is

tend, = n|o-1] (2.21)
t 2 sin(y/2) .
bo -—-—;———(7 2)

Substituting for p and q in (2.15) gives

or = [1 - “aneg%i_g{%)‘ma]ezbsinasin(y/e) +0(e?) (2.22)

Swbstituting & = @ and dropping terms of 0(c?) one obtains

tand@ 6' = -M (2.23)

]

for which the solution is

cosfd = coseoexp (T/Tcn) (2 .214)
where
[+
T = ————— (2 25 )
B eny(e-l)

Thus in the mutation synchronous mode the cosine of the nutation angle
exhibits exponential behavior. If there are N dampers the time con-

stant is
(oL )/( z ":1"1;1) : (2.26)

It has not been assumed that & 4is small thus (2.2)) is valid for

0<8< gf2. For small 6 the mutation angle time history is

P

[\
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6 - 6 _2r y1/2 (2.27)

T
ecn o

A comparison of the approximate solution given by (2.24), to the
exact solution is shown in Figure 2. A comparison of the time constant
*
given by Equation (2.25) and an exact time constant obt.ined by inte-

grating the equations of motion, Equations (2.1)-(2.4), is given in

Figures 3-7.

Spin Synchronous Motion

Substituting (2.18) into (2.164) yields

2bo w%005(7/2)005(5-1T)
B" + 18" + -;—mtsin(y/e)sin(s-kT)[l_ — ] = 0 (2.28)

Assuming that o, << 1 and using the first iterate of a Picard iteration
scheme a good first approximation of the steady state solution of Equa-

tion (2.28) is

m
L

where’

3
"

M[32402)

n/ [3%472]

=
n

The nutation angle differential equation is

0 = -2y cos(p-2)+(148" )b sin(y/2)]stn(B->r) . (2.30)

The exact time constant is obtained by integrating the exact equations
over a suitable period of time, assuming exponential behavior for cosf
and calculating the time constant.

E%Etanesin(7/2)/(r/2)[E sin(Bo-lf)+F cos(Bo-lT)] (2.29)

‘Ri

e

.

d
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Assuming that 6 is small enough so that terms of 0(62) can be neglectet
and assuming that the change in B is small so that sin® = 88 and
cos 58 = 1 (2.30) reduces to

gt + e(;1—+ nlc0527\'r+nesin27\'r) = - %sin&/a)sin)\-r (2.31)
es

where

2 2
2(0-1 o=-1) +
(2.32)

T =
53 sl 5
°s Py (E r; 22 )

The solution of (2.31) is an infinite series but the k) and K, terms

contribute nothing to the exponential decay of the solution. Thus

the important part of the solution is

-1/t -r/T
6 = Oe s 4 %TM)_(_T sinhradr? (cosMr-e sy (2.33)
o) 22 cs cs
(A1 _+1)

cs
Comparison of Tes given by (2.32) and the time constant obtained from
numerical integration of the exact equations of motion is shown in Figs.8-12.
2.2 Damper O0ffset Effect

The purpose of having the center of the ring offset from the spin
axis is to guarantee that the fluid will act as a rigid slug. The
analysis of Carrier and Milesl’ 2 showed that for very small mutation
angles the fluid would spread out along the cuter wall of the tubde.
However, if there is an offset the centrifugal force will be greatest
(for very small mutation angles) in the direction of the offset and
the fluid will ‘end to lump there. Consideration of the physical
situation is an aid in determining the effect of the offset. Let
the offset angle be the angle between the spin axis and the vector

from the sateliite center of mass to the center of the ring., For

small offsets the offset angle is smaller than the
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transition angle. When 86 > GT and no offset the fluid slug maintainr
a fixed position with respect to the nutation plane since the centri-
fugal force is constant. The effect of the offset should be to cause
small oscillations of the slug about this equilibrium position of tie
slug. The result would a smwall change in the rate of energy dissipa-
tion which would cause a small change in Ton® -Numerical integration
of the equations of motion has verified these conjectures. For the
Helios satellite the offset of 1/L" caused less than a 10% change in
Ton® ('rcn decreases since the rate of energy dissepation increases.)
In the spin synchronous mode (6<9T) and zero offset the fluid
slug moves slowly around the tube while oscillating., Since the offset
would create a point in the ring where the centrifugel force is a
maximm the fluid slug should oscillate about this point instead of
moving slowly around the tube with the result that the change in Tes

should be minimal. Again mumerical integration of the equations of

motion verified these conjectures. Except for one case the change in T

cs
was less than 10% for the Helios satellite with a 1/L" offset. The one
e:_cceptiona.l case will be discussed in Section L,
2.3 Gravity Effect
3ince the satellite was bal anced without the fluid it is assumed
that the gravitational force acts only on the fluid slug. Following
the procedure of Section 2.1 the approximate equations of motion are:
r =1 : (2.34a)
p'+ (A-B')q = O (2.34)
Q' -(AB')p = O (2.34¢c)

B" + 1Bt 4+ iiylllpq + hokq + kg sinfcos(B+V¥) = O (2.344)
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vwhere 6 is the angle between the spin axis and local verti:al. Note

that the only term involving gravity is the last term of (2.34d). The

solution of (2.34b) and (2.34c) is

i

P -wtsin(lT-B )

2.%)

e
]

~m, cos (M)

Since gravity is present the angular womentum is no longer con-
stant, consequently E does not coincide with the vertical. ILet
Gh be the angle between 'IE and the spin axis. Then

t
H

Z

w, .
ta.nGh = i 3 (2.36)

Differentiation yields

91'1 = e‘?[Si;l7p+bk(l+6')]sin(B-}\'r) +e§k§sin(B-}vr)cosehcos (G-Gh) (2.37)
where
v = M - ,[/2 (2-38)

has been used.

The assumption is now made that the change in (G-Gh) is small compared
to the change in 6, and that 6 = Gh at T = 0, This allows one to use 8 = Oh
in the equations. MNumerical integration of the equations of motion shows

that this is a reasonable assumption. Equation (2.37) hecomes
or = e;[ﬁ%‘lp +bk (148 ' J+k & cos@]sin(B-Mr) (2.39)

Nutation Synchronous Mode

As in Section 2.1 define

@ = B - M (2.40)

Substitution into (2.344) gives
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a" + na'+ [wtbok+éksin9 -51;“10)? cos.@lsina = -nA (2.41)
There is an equilibrium value Q@ = ae which is given by

[bcek tand(1 + £-c0s6) - oztan26§i—nzcosa lsina = -} (2.42)
boe Y e e

The transition angle between the two modes is obtained by setting

a =t n/2, which gives

tan8 (l+-é—cose) = n(e-1) (2.43)
T 1::0‘2 T bczk

which for small 6 becomes

g - o2l (2.14)

T bcrek G

where
G = 1+ é/cab (2.45)

Substituting (2.42) into (2.39) yields

€ g-1 (2.)46)

tanb 0! =
[o}

which is the same equation one obtains without gravity. Thus the
only effect gravity has in the nutation synchronous mode is to change

the transition angle 6,,. The solution to (2.46) is

T
cosd = cosGOexp('r/Tcn) (2.47)
where
o
T = — (2.48)
 eim(o-1)

Spin Synchronous Mode

Using the procedure of Section 2.1 an approximate solution of
(2.34d) for small 6 is
88 = K(dsin(s -M)-ncos(s_-M)) (2.49)



-

b
AT S YA, T . s

o mtans

St s e

- 28 -
where

BTl (2.50)

K =
A(EP)

Substituting into (2.39) and using sindB= 8B and cosdB= 1 gives

o + T—l-e = -¢7bk G sinM (2.51)
cs
where
_ 2(e-1)[ (0-1)%417)
Tes = 23 20 ' (2.52)
€7b° PNk G

Thus gravity can have & substantial effect on the mutation angle in the
spin synchronous mode as the time constant is reduced by a factor 1/G2.

The approximate time constants given by (2.48) and (2.52) are com-
pared with those obtained by numerical integration in Figure 13. It is
seen that the agreement is very good.
2,4 Effect of Closed Ends in Tubes

The manufacture of heat pipes is simpler if there is a stop (closed
end) in the pipe. This analysis has been undertaken to determine if it
is advantageous from the standpoint of nutation demping to have a stop
in the tube. The physical situation is so complex that it defies an
accurate analysis, What happens to the fluid when it impacts the stop
is not known, thus a very simplified analysis has been performed to
try and determine if the stop increases or decreases energy dissipation.

It is assumed that the fluid slug is a.l point mass and that its motion
is governed by (2.16d4). Since the nutation angle is essentially constant
over one cycle it is also assumed that the nutation angle is constant.
Equation (2.164) is then integrated over a mmber of cycles taking into
accou t c~1lisions and the aversze amount ¢l energy dissipation is then
determined. This is then compared to the chanze in kinetic energy for

no stops which cen be computed analytically.

)
il




-29 .

qelL 94nbyy

¢Ot

4Ol

)

ejowixosddo

0%

6 ‘sa vy

T

gl 9inbiy
L

A v B e

T s bt

B T



I

>
1

-

e v €

- 30 -
For a continous tube the rate of energy dissipation is

262

- _ 3 2
T = -cdR

= =AeynQB!

The change in kinetic energy over one cycle is

T
o = fp‘fdt

o}

where Tp is the period and

T = 2R
P |0-1|9
This gives
- D ———
_ Aeyn” . ,2
o = 2x TP
— 2
where B'~ is the average value of B'~, Let
& - 2L
AcyQ
then
_ .2m arl
& = TG:TTB
In the nutation synchronous mode
p* = (1-0)
hence
X = 2;mfo-1]

In the spin synchronous mode.

Bt = z&ggzg;[lcos(Bo-3¢)+nsin(ﬁo-lf)]
+1

hence
Pl
|o-1] (0%4n2)

(2.53)

(2.54)

(2.55)

(2.56)

(2.57)

(2.58)

(2.59)

(2.60)

The change in kinetic energy when there is a s{;op in the pipe is

obtained by mmerical integration of (2.16d) and
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& - | (2.61)

To this we have to add the loss in kinetic energy from the collisions
which is determined by assuming the slug collides with an object of

infinite mass. The loss in kinetic energy ATC from a collision is
2
Eji = Q-_e__lﬁie
c 2

where e is the coefficient of restitution and Bi'_ is the angular

rate just prior to collision. .

Runs were made for both a stable and unstable configuration in

the nutation synchronous mode and spin synchronous mode, Table 2.1
gives the results for several values of the coefficient of restitution e.
As one can see the change in kiretic energy is relatively independent
of e. The increase in energy dissipation is significant in the nuta-
tion synchronous mode but small in the spin synchronous mode. This

is reasonsble since in the nutation synchronous mode the angular rate
of the slug with respect to the tube is |o-1| whereas in the spin
synchronous mode it is small. In tests run by Huges Aircrai‘tlo on

tie ATS-V heat pipes there was a 4O% increase in the change in kine-
tic energy in the heat pipes with stops. No comparison can be made
with the Hughes results because the damping constant 1n i1is not known.
However one can conclude that putting stops in the rings can cause a

gsubstantial increase in the energy dissipation which will result in a

decrease in the time constant.



Table 2.1

In all runs 1 = O.l

Nutation Synchronous

°=l.2,9=6°,b

&7 (no stop) o7( 1 stop) % increase in K.E.
0.126 0,969 670
0.126 1,002 T00
0.126 1.045 730
0.126 1.060 Th0
0.126 0.839 56¢

Nutation Synchronous

U=0.8,6=6°,b

&7 (no stop) o7 (1 stop) % incresse in K.E.
0.126 0.3T7 200
0.126 0,391 210
0.126 0.403 220
0.126 0.431 2Lo
0.126 0.520 13

Spin Synchronous ¢ =

102’6=1°,b=o-8

&7 (no stop) OT(1 stop) 9 increase in K.E.
0.0127 0.0162 27
0.0127 0.0163 28
0.0127 0.0166 31
0.0127 0.0163 28
0.0127 0.0178 Lo

Spin Synchronous ¢ =

008,9=l°’b=o.8

0.0040

AT (no stop) AT (1 stop) % increase in K.E.
0.0N39 0.0048 23
0.0039 0.0045 15
0.0039 0.0045 15
0.0039 0.0048 23
0.0039 3

,.
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2.5 Asymmetric Satellite with Zero Offset and Zero Gravity

In developing the approximate solution for the asymmetric satellite
it is advantageous to use the components of the angular velocity along
the x and y axes rather than the u and v axes. Let P, and q be the dimen-
y

sionless cumponents of the angular velocity along the x and y axes, then

px = p cosf - q sinf

(2.62)
q_y = p sinf + q cosp

Using the same procedure as in Appendix A the equations of motion become

(T
p}’c + (cl-cle)qyr = €y {Ju—z—w— -p;(+q_yr)

(T -1 )
+ ____‘uue A (-p}'c-qyr-eqyﬁ')cosa

(2.632)

+(-q]'r+pxr+2pxa')sin28] - Izzqy(ﬁﬁ')

+ I, [(r"48")coss~(r+" )Esin£3+qy (px005B+qysinB]}

. - (qu+1w) '
ol + (= or = ey ————(-y-p.r)
(1.1, '
+ — (+q}-p:-cr-2B px)coseﬁ

+(.-p1"-qyr-2s'qy)sin26] (2.630)

+1_p (r4p1) + I [(r'46")stmbs (rep" )aeose.

. -px(pxcos&qysirﬁ)]
-33 -
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oyt + (cr:l_z-l)q,ypx = ¢yp! (2.63¢)
(1-0 )
B" + N8 + Pyt Iu r{ (l+a -0, )qycosB (1+ 21)pxsinﬁ]
(2.634)

I -1 )
+—‘l“31"-—[(pi-q§)sin2ﬁ-2pqucos25] = 0

The method used to obtein tha behavior of the mutatior. angle 4in
the symmetric case can still be applied in the asymmetric case but the
resulting expression for 6', Equation (2.14), does not simplify to
@' = 0(e) because in the asymmetric case 6 4s not constant when there
is no damper. The result is that to use (2.1%) higher order approxi-
mations of p ard qy would have to be developed. To get around this
difficulty a variation of parameters approach will be used. When there
is no damper the nutation angle 6 oscillates, thus the time constant or
damping constant obtained will measure tre increase or decrease of
the maximum value of € at the end of each oscillatiom.

For € = O the equations of motion for the satellite are

' + (01- )q_yr =
(2.64)

g + (op-glor = 0

01-0'
%% To, wx T
The solutions for Py q,y and r an elliptic functions. It will now Le
assumed that the nutation engle is small enough or the asymmetry is
small enough so that the elliptic functions can be replaced by the
first term in their trigonometric expansions. This will limit the -

'ﬁ‘f " ‘ﬂ
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spproximate solutions to small angles. The approximate solutions

when (al-l) and (0'2-1) have the same sign are

P, = =».c0s (Mr+x)
q'y = -th sin(dr+y)
r = 1

where X 1is a phase angle and

. [o -1 1/2

2 - (1) (6,1)

The n. tetion angle for small angles is given by

1/2
H, (A2m5+32m;)
0 = 1? = o + O(G)
z z

In 'terms of the dimensionless varisbles this bheccmes

(pi-!» a;qg )1/:2
alr

Substituting (2.65) for P 9 and r gives

I +g, -2| IO‘ -G l
(L2 4 2 cos 2 (ir )t
01(02-1)

$
(2.65)
(2.66)

Lo

o

[}

o

(2.67) 4T
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A variation of parameters approach will now be used to obtain Wy

whieh #ill then give the aspproximate nutation angle time history.
Assuming W, and y to be functions of time, substituting for
. . 2

P L T 130 q& and r* into (2.63a,b) neglecting terms of 0(e“),

linearizing with respect to Wy s and solving for o! gives the following

t
differential equation for w,. [We do not need to solve fory ']

(L +I )
- quolw (0’ -o‘l)(cl 02+2-al-a'2)sin2(}\-r+x)

(I -7 )
uuvv(

%

- - 4 -G - 3 Y
+ 0,40, cloe)(cl+02 2)+28 (20102 a 02)}cos2ﬁsm2( T+Y)

T 1)
+ ugc - [ (o) 0,-0y-0, )'B'(°2+Gl)]Sin2Bcos2(l'r-|-x.)
1

172 1 2
(2.68)
(I_-I)
+ —-lr-;?ll-v—(ce-ol)ﬁ'COSQ()\T—fX)

- in
+ ;,‘E-[(a"coss-(w')asins)cos(M+x)+(8"si=ﬂ+(1+’3')2°°SB — J;IHX)]
X 12

+ (1481 )LMEL) sin 2 (3r+X)

Spin Synchronous Mode

Substituting (2.65) for p, and % into (2.63d) and neglecting

terms of O(mi) gives

LR -

’

-

e ¥
RIS wlf’*"’
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I, o, -1 1/2
B + 18! = — (0102+02-01) F/ cosBsin(dr+X)

(2.69)

--(cr1<12+ol-o‘2 )sinBeos (Am+X) | @,

As in Section (2.1) an approximate steady state solution is
developed by using the first iterate of the Picard iteration which

is just the solution of (2.69) with 8 = Bo on the right-hend side of

(2.69).

®B =8 - Bo = Klmtcosﬁ.o (ncosMr+hsindr) + Kamtsinﬁo (+nsindr-}eosdr)  (2.70)

. 1/2
qu( 0'102+02-ol) ( crl-l)

0T T et g

(2.T1)

qu ( crl 0Y2+ %" % )

K o= - 011(12+n2)

Yhus the first approximation of B gives an oscillation about Bo
with the magnitude of the oscillation proportional to Wy -

It has been assumed that wy is small, hence we can use

sinB sinﬁo + aﬁcosbo

cosp

<:osBo - assinﬁo

Using thee approximations and neglecting terms of O(a)i) after sub-

stituting for B and B* in (2.68) gives

o e e
.

mw‘.w

s nF
e w K

¥,
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wof + %;*"1sin2("f+x)+*2cose<lf+x) @, = ejlxysin(hrax)en,sin2(irey)]
(2.72)

where the Ki are constants and

2 2
0,0 .+0. -C. ) (0,040, ~0.) .
12 1 2 sinaao (2.73)

1 75k (0,9 2 17 e2p +
(o]

TR GO s venir wea -

Tes 201(12+q2) 102'1)

(ol -1 )

As in Section (2.1) the solution of ¢, is an infinite series but

the important part of the solution is the exponential decay given by

©, = 53te’7/ Tes (2.74)
The solution for the mutation angel € becomes
lo.+0 2| |, -0 | o, -t/T
= 12 ", 21 s 2(dr+y) /2 te cs (2.75)
2 2 cl

Thus the maximum value of 6 in each oscillation decays with a time

constant of T given by (2.73). Note that Tes is a function of the

position of the slug in the tube as shown by the prescence of Bo in

(2.73). Numerical integration and the second iterate in the Picard

iteraticn solution of (2.69) reveal that the siug moves slowly in the

tube in addition to its oscillation. The result is that TCS is a

slowly varying function of time. For a design criteria one should

use the value of Bo which gives the maximm time constant.

Comparison of (2.73) with an "exact" time constant obteined from

the exact equations of motion is given in Figure 1i. The comparison

is made for Bo = 0, In the numerical integration a very small offset

el

L
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was included in order to make the slug oscillate about B=0. The "exact"
time constant was oblained by assuming exponential behavior for the
maximum value of 8. From Figure 1L we see that the time constant given
by (2.73) is 2 gocd approximation of the exact time constant even when

(02-01) is not small.

Nutation Synchronous Mode

When o = 0, the slug maintains a fixed position with respect to
the mutation plane in the nutation synchronous mode. As the nutation
angle slowly changes the position of the slug changes slowly. In the
asymmetric case we would expect the behavior to be similar but in the
asymmetric case @ oscillates. Thus for smell oscillations in 6 we
would expect the slug to oscillate asbout some equ;'.librium point. For small
oscillations of the slug the energy dissipation resulting from this
oscillation would be small with respect to the total energy dissipa-
tion. ﬁe result should be a solution liké the one for the symmetric
case. However as lcz-cll increases or for large values of @ the magni-
tude of the oscillations in @ increases with the result that the energy
dissipation from the oscillations of the slug could become significant.
In this case we would expect a motion which is a combination
of the nutation synchronous and spin synchronous modes of the symmetric
case.

As in the symmetric case let «a define the position of the slug

with respect to the mutation plane,
B = M+y+a (2.76)

Substituting in (2.69) gives
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a" ' hua [(o, 0+ WM +(a, o+ )1si
+ na' + 261 0, O5+0,=0y M +(0; o5+0; -0, 1sina
+ [(010'2+ol-02)-(clce+ae-ol)M*]sin(2>vr+2x+a) = -5}
M 0 -1 1/2
where M = (=)
02—1

The coefficient of sin(@M +2X¥+a) is small compared to the coeffici-
ent of sina, in fact it vanishes as for o = 0, An approximate solu-

tion for a obtained by the lSt iterate of a Picard iteration is

- *
I zwt(c o.+ta +0.-0, )(1-M )

a=0a + —= 12 2 2 1 [22sin (2Ar42x+a_ M+ cos (@Mr+2y+a )] (2.78)
e L l(hlg 2 e e
9 +1°)
where
el (2.79)
sina = 2-79
e mt[ ( g, o, +0,=0, JM*+( 0102+ g - 027]

Thus the magnitude of the oscillation is proportional to w, or 8 and
Iaa-cll . This oscillation in & will be neglected in determining

the solution for w . Substituting a = o in (2.68) yields

- G0
ol = €7 —2— (14" )sin a,+ oscillatory terms (2.80)
4

The oscillatory terms contribute nothing to the decay of w, 80 they
will be dropped. Substituting for sin ae glves
= 3
eyniay

L — = . e -
wof = - = c-:m(or‘,2 1)

a,
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which has the solution
w, = [@-2eing, (g -l)'r]l/2 (2.81)
t A R~ .

Substituting into (2.67) the solution for 6 becomes

1/2 [a’i-%;ﬂdl(aa-l)r]l/z

1265 (0,-1)1Y/°

8 = [al+02-2|+|02- licos2(?~'r+x)] (2.82)

Letting 60 be the initial value of 6 and 'assuming it is the maxi-

mm for the first oscillation we get

1/2

|o.+0 -2|+| 0 -0, |cos2 (Mr+X)
1 2 271 (6§-2’r /Tcn31/2 (2.83)

loy+oy-2] +]gy-0y]

where

. 20,sign(o,+0.-2)
- 1.2 (2.8%)

G‘;ﬂ(l Gl+02-2l+' Ue'cl! )

T
cn

A comparison of the damping constant T, 8iven by (2.84) and an "exact"
Ton' obtained by numerically integrating the exact equations of motion
and assuming the maximmm value of & dquring each oscillation behaves

according to

Opax = (9‘2-27/ Ten)

is given in Figure 15. Figure 15 shows that the approximate sclution developed

is a good approximation even when (02-01) is not small,
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3. Fluld Dynamics

In Section 2 approximate equations were dev~rloped for the nutation
engle time history and the corresponding time constants. Comparison of
these approximations with exact solutions obtained from numerical in-
tegration showed excellent agreement. However, this means that the com-
perison is good for the mathematical model of the system. Two import-
ant questions which still need to be answered a.fe: 1) How good is the
mathematical model? 2) If the mathematicel model is valid how does one
calculate the damping constant? The answer to both of these questions

can come only from testing. In this section several methods for calcu-

lating the dawving constant 1 for symmetric satellites are presented.

The analysis of some test results is given in Section k4.

Nutation Synchronous Mode

In previous studies two approaches have been used to calculate the
demping constant. Both approaches have drawbacks in that certain assymp-
tions are made which are not completely valid. One approach is to model
the motion of the fluid as steady flow in a pipe, and the other approachk
is Fo model it as boundary layer flow over a flat plate with t"e width
of the plate being the perimeter of the pipe. Both of these approaches
must be considered for both laminar and hlrﬁulerxt flow.

A) Steady Flow in a P.pe

1. Laminar Flow
The development of steady flow in a straight pipe can be found in

almost any standerd fluid mechanics text such as Reference 7.

Solution of the Navier-Stokes equations with a flux of

-4 o
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Q = naaRﬁ' (3.1)

where RS 1is the velocity of the fluid slug relative to the ring and

a 1s the radius of the ring, gives

uw = 2R8(1-(r/a)?) (3.2)

The shear stress at any point is

ro= ' (3.3)

where u is the viscosity.
Thus the total vizcous force is

F o= (ena)®yiv| _ = BuR%y (3.4)

Equating this to the force determined from the dynamic analysis, i.e.,

cR8 = 7mARP (3.5)

=
"
e
<
(]

gives

n o= 8(%) (3.6)
- a Q
where v 1s the kinematic viscosity.
2
The quantity (a._.(_l_) is a Reynolds number but is not the standard Reynolds

v
number for this type of analysis. The standard Reynolds mumber is

R, = 22 (3.7)
v

Equation (3.6) holds for R < 2000 since the flow is lemin.: for R, <2000.
The analysis sbove assumed flow in e straight pipe but we have flow

in a curved pipe. The correction factor for flow in a curved pipe as

8
given by Schlicting is

o

v

\‘\2« e W WS Yt
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wfr. = 0.06M(R,(a/R)/21H/2 (3.8)

where o is the shear stress in the straight pipe and T 1is the shear

stress in the curved pipe. Equation (3.8) is velid for 101'6 < (a./R)l/ 21-'{e<103 . $
For R, = 2000 and (2/R) = 1/100 the increase in shear stress is 50%.

Therefore one should take into account the curvature of the pipe. Thus

for laminar flow the damping constant becomes

v \1/2 R\l 1/2
no= l2( / @) PRI (3.9)
a g )
The assumption here is that we have steady flow in a pipe but a
certain length is required for steady flow to develop. For flow from

a cistern into a pipe this length (Ref.8 pg. 301) is

8B = 0.05759.Re (3.10)

which for Re = 1500 is & = 86a. But the length of the fluid in many
cases may not be much more than 86a. Thus the length of fluid required
for steady flow to develop may he shout equal to the length of the fluid.
'ﬂn;s there is an error in assuming steady flow.
2. Turbulent Flow {

Blasius (Ref., 8 pg. 339) developed for the shear stress for steady

turbulent flow in a straight pipe the empirical result

T = 0,0791 R’t/h %puﬁ) (3.12)

vhere u_ 1s the mean velocity R§. This result is valid for R_ <10°.

Using the same procedure as before to calculate the dawping constant
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one obtalns

JRICEEEC SRR TR, (3.12)
a

The correction factor to teke into account the fact that the flow is

in a curved pipe is
t/r = 1.+ 0.075 B/ a/m)/2 (3.13)

The correction factor for turbulent flow is smaller than that for laminar
flow and can be neglected since it is usually less than 10%. With the

correction factcr the damping constant becomes
- 2, 1/

- 0.133(_;_0_)% By (o | M ar0.089E ) @M ¥ oa MM 3at)
8 v

If the flufd 1s free from disturbances at entry the flow in a smooth
pipe for some distance & from the entry will be laminar even though
turbulence develops further downstream. The Reynolds number at which the
transition occurs may be expected to have the same order of magnitude

as .the Reynolds mumber for transition in flow along a flat plate., When

rd

L — 4

the conditions are disturbed at entry the distance required for the velocity

R

to take 1ts final form is less but it depends on the amount of disturbance.

When the flow is fully turbulent the inlet length & has been found to be

5 = l.396aRt/h (5.15)

which for R = 10" 1 & = 13.86 which is considerably less than that for 4
laminar flow., Thus the erx;or which results from the assumption of steady N m;;-
flow in a pipe is less in the turbulent region than in the laminar region. o
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B) Flow Past a Flat Plate
1. Leminar Flow
S8ince the flow for some distance from the entry is similar to boundary

layer flow past a flat plate a reasonsble assumption is to treat the prob- #
lem as boundery layer flow as was done by Carrier and Milesl’2. The drag
force on a flat plate of width b and length 2 is
D = 0.6k ve/27M/2g32 (3.16)
From the dynamic analysis
D = chO = cdRB = nmﬂRé (3017)
The demping constant n becomes
- -11/2
v \1/2 jo-
v = L2 el (3.28)
a & y
The question which now must be asked is: What it the distarce or
length required for the boundary layer to disappear? Defining the bound-
sry layer thi~kness € as the distance for which u = 0.99 U, then
(Schiicting Spg. 122) — s
i
¢ ~ 5P . (3.29)
[
Setting € equal to the radius of the pipe ylelds
R ’
e
& = (e (3.20)

- %u‘:’

which may or may not be & substantial portion of the fluld slug. Thus

m—-——br s s = =
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in the laminar region nreither the steady flow in a pipe approach or tbhe
boundary layer approach may be a good approximation since neither is
valid for the entire length of the fluid.

2. Turbulent Flow
The drag force on a flat plate of width b and length £ when the

boundary layer is turbulent is (see Sc:hlic‘t;:mg,8 pg. 53)

Ut -1/5
D = 0.037puib £(—) (3.21)
v

Equating this to “he viscous drag force

d = d
one obtains
= 1/5
1 = 0.0Th(E) R)3/257 15| o |2 (3.22)
a

This equation is valid for
Ry T
5x 10° < (5)R, <10 (3.23)

Spin Synchronous Mode

In this mode the velocity of the fluid is not ccnstant but oseil '-
tory with respect to the ring. An approach suggested by Leibold6 to ob-
tain a damping constant is to use the results of Bhuta and Kovall®, who
analyzed the mitation damping of a satellite with a completely filled
viscous ring damper mounted on a plane parallel to the spin axiz, They
modelled the motion of the fluid as a fluid in an infinite pipe with the

pipe executing narmonic motion, and then chtained the energy dissipation

rate which leads to the dampl.ag constant,
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To apply their aralysis to this problem it is assumed that the
analysis is valid for a finite leagth of i‘luid, the energy dissipation
rate is then averaged over m cycles to determine the average rate of
energy dissipation. This average rate is then used to calculate the (3
damping constant. From zhuta and Koval the energy dissipation/unit-

length at the end of “he mth cycle is

6 2
o ® ~Lrm 2
_ eUulug ™n n " Uzu.m . [TF 7 = =
E = nfl (r '+ 2)° exp \—g— | -1 + =5 -ilViE IT) Vb T /T T
n

(3.24)

where IO and Il are modified Bessel functions of the first kind and

IJ. = Ij(J'i'E )
TJ. = IJ. W -it ) (3.25)
g - Sa.2

v

U is the meximum velocity of the tube with respect to the fluid, a is the
radius of the tube, s is the excitation frequency and the r, are the
zeros of J_ (rn). Letting g(f) be the average amount of energy dissipa-

o
tion/cycle/unitmass/vel.” cne obtains for the damping constant

f.
MR
H
}
{
§
H
1
!

n o= J—i;-l-s(t ) (3.26)
where
IJ?EII-\/'-_KZ-['I\ ® r6 hrzm,[
- Xy 0L o2y —T—n -—E—n -1 .27
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gt ) is plotted for several values of m in Figure 16 . Since g(f)
for m > 20 and g(f ) for m = « are approximately equal, it is reasonable
to just use the value of g(t ) when m = » which is

NI 1.1 -ViE I T
gt) = F|—== 01) - (3.28)

Io%o

The excitation frequency s 1is

s = [d—llﬂ .

s
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4, Test Data Analysis

In October 1972 a series of tests were run at NASA/GSFC on the
Helios damper. A total of 36 tests were run with four inertia ratios
(0.337, 0.50, 0.51, 1.126) and two damper locations (30 in. and 9 in.
above the satellite center of mass). In all of the tests the damper was
offset 0.25 in. from the spin axis. The test results and parameters

as reported by Hra.sterl‘l

are reproduced in Tables 4.1 and 4.2.

In each series of tests the satellite was balanced with the empty
ring attached, Therefore, during the tests one could consider that
gravity is acting only on the slug. With this assumption the effect
of gravity on the nutational behavior of the satellite was determined
in Section 2.3.

In analyzing the test data the first thing which must be determined
is in which mode, the mutation synchronous or spin synchronous, the sat-
ellite is operating. Because of the offset of the damper axis it is
reasonable to assume the fluid is behaving like a rigid slug. In all
of the tests the mutation angle time history appears to have an expon-
ential behavior, hence it is assumed the satellite was in the spin
synchronous mode. Using the development of Section 2 the effect of
gravity on the time constant was removed and using Equation (2.30) a
value of the demping constant 17 and the transition angle GT were
calculated. These resu’ s are given in Table 4.3. Note that the time
constant for zero gravity decreases with spin speed but the time constant
for the tests increassed with spin speed. Those tests for which there is
no entry in the n column there was no value of 0 which would give

time constant. However, for all of those except the last series of tests

a 10% chenge in the time constant would give.a reasonsble value of 7.
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Tablel .1
SEQ. NO. RPM ‘tc(sec) em(deg)
0.5 33.3 107 2.35
0.51 3.l 105 2.35
1.0 - 63.7 2049 5
1.1 61.3 994 1.5
2.0 81.5 1945 1.
2.1 79.8 2208 62
3.0 102.3 1900 1.2
3.1 103 2398 1.6
k.0 123.2 1738 25
L 124, 2769 1.5
efo 1.1 6.7 3.5
5.0 61.6 383 be
5.1 60.9 388 1.2
5.2a 60.% 376 1.k
5:2b 60 - 296 - 2.2
5.2¢c 60.14 2 L7
6.0 85.5 55 1.6
6.1 81L.2 574 15
7.0 '101.8 816 N ]
T.1 102.2 624 1.1 -
~ 8.0 119.5 1256 J2
8.1 119.5 803 37
c/o .5 118 2.5
9{0 62.7 879 .88
9.1 61.7 834 S5
10.0 82,1 1302 62
11.0 102.1 1468 62
n.a 99.7 1390 S5
12.0 120.0 2032 .31
17.0 62.3 155.9 very small
173 62.3 191.6 noom
18.0 81.1 19.1 " "
18.1 8L.2 - 20.9 " "
19.0 103.1 13.2 " "
19.1 102.6 1.5 ®.oo"
20.0 120 7.8 " "
20.1 120.8 10.25 " "
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Table 4.2

n = 0.152 kg.

R = 29 cm. & = 0.28 cm,
y = 0.25 y = gf2
v = 1.17 x 103 /sec
SEQ. YO. A(slug-£t°) v b=h/R c
0.50-k.1 59.37 0.337 2.63 6.35 x 10™
5.00-8.1 65.85 0.500 2.63 5.72 x 1o‘h
9.00-12.0 65.85 0.510 ' 0.788 5.72 x 10'“
17.00-20.1 40,05 1.126 0.788 9.2 x 1o“h
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Teble 1,3

2
SEQ.NO.| RMM t, t, (g-p) n O (deg) G
0.50 33.3 107 11,k400. - - 106.7
0.51 3.1 105 1k,350. - - 136.9
1.0 63.7 2049 25,800 102 ha 12.6
1. 61.3 996 14,000 209 7.3 4.1
2.0 815 1945 12,700 .168 9.2 6.54
2,1 79.8 2208 15,200 J1h1 7.6 6.89
3.0 102.3 1900 7,520 2kl 16.6 3.9
3.1 103. 2398 9,300 .183 1279 3.90
4.0 123.2 1738 4,920 32 26.6 2.83
L.l 124 4 2769 7,700 .184 15.2 2.78
c/o 3.1 T6.7 2,630 - - 3.3
5{0 61.6. 383 1, 9?*5 254 5.4 5.01
5.1 60.9 388 1,995 243 5.2 5.1k
5.2a 60.4 376 1,970 251 5.3 5.24
5.2b 60.L 29% 1,550 - - 5.2h
5.2¢ 60.4 295 1,550 - - 5.24
6.0 85 05 55’4 l,h9o u22"" 6.6 207
6.1 81.2 5Th 1,680 203 5.7 2.93
7.0 101.8 816 1,720 .48 L.9 2.11
7.1 102.2 624 1,310 209 6.9 - 2.10
. 8.0 119.5 1256 2,220 .093 3.4 1.77
8.1 119.5 803 1,420 154 5.6 1.77
c/o 3.5 118 30,900 A9 3.9 262.
9.0 62.7 379 20,500 220 6.9 23.4
9.1 61.7 834 20,500 .226 6.9 2l .6
10.0 82.1 1302 13,700 279 12.9 10.5
1.0 102.1 1468 8,780 - - 5.99
1.1 99.7 1390 8,800 - - 6.34
12.0 120.0 2032 8,500 345 2h.1 k.19
17 .0 62 .3 155 09 505 -2 - - 3.2’4
171 62.3 191.6 620.8 - - 3.24
18.0 81.1 19.1 b1.3 - - 2.16
18.1 81.2 20.9 4s.1 - - 2.16
19.0 103.1 13.2 21.9 - - 1.66
19.1 102.6 11.5 19.1 - - 1.66
20.0 12000 7.8 llo"" - - loh‘6 .
20 .l 120 -8 10 025 15 .0 - had 1 oh‘6

R




-57-

Using the analysis of Section 3 a value of 1 has been determined
for each test and the calculations are presented in Teble 4.k, Table
4,4 shows that the value of 7 calculated from the data is 4 to 5 +imes
larger than the predicted velue, It was originally thought that this
difference was probably due to the offset but investigation has shown
that the offset has very little effect on the time constant. Several
possible reasons for this difference bétween the predicted and actual
velues of 1 are: 1) the method of calculating N in Section 3 is not wvalid,
2) the effect of gravity on the tests, 3) the mathematical model of the
fluid behaving as a rigid slug in the spin synchronous mode, or 4) some
combination of the above,

In the faxth series of tests no value of the damping constant could
be evaluasted. It was originally thought that this was due to the offset
since the offset angle is 1.5 deg. and the mutation angle was less then
0.1 degrees. For nutation angles this small the offset did ceuse a
decrease of about 25% in the time constant but this is not enough to
explain the test results. Another contributing factor is that the
mitation angles were so small that measurement of the time constant
was difficult.

For the first two series of tests the time constant has been scaled
to the Helios satellite and is given in Table 4.5. A value of 1 = 0.1Th
was obtained by averaging the test data for @ = 95 rpm. The correspond-
ing time constant was then calculated.

Since there is no test data for motion in the nmutation synchronous

mode there can be no comparison between actual and predicted time con-

stants for that mode,
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Table UK

SEQ.NO. n(test data) n(pred)
0.50 - .0720
0.51 - OTh2
1 Io 0102 005,"'1
1. 209 .0550
2.0 .168 0485
2.1 Al 0490
3.0 241 Lo4ko
3.1 .183 L0438
.0 342 LOlok
L. 284 .0k03 .
h,0 . - .0633
5.0 254 L0469
5.1 243 LOLUTL
5.2a 251 LOUT3
5.2b - 4T3
5 uac - Od'l'73
6.0 224 0406
6.1 .203 L0415
7.0 A48 .0376
T.1 .209 .0375
8.0 .093 .0350
8.1 154 .0350
c/o 119 0623
9.0 220 0460
9.1 226 0463
10 .0 0279 .0!4-08
1.0 - L0371
]l ol - 0'0375
12.0 345 .0346
17.0 - .0216
iT.1 - 0216
18.0 - .0192
18.1 - .0192
19 .0 - 00173
19 .l - l0173
20.0 - 0162
20.1 - ,0162
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Table )4 .5

‘ Test 1

Helios A/B A/B
IT(SLUG-F‘I‘a) 332,2 59.37 65.85
Ig/Iy = © 0.385 0.337 0.50
h(IN) 30.23 30.0 30.0
o(RPM) P 95 95
1 (damping const) o;l7l+ 0.17h 0.17
t, (f1ight condi-tion) sec 48,500. 10, 350. 1,542, .
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5. Summary

A ring which is partially filled with a viscous fluid has been
analyzed as a nutation damper for a spinning satellite. Since it was
shown by Carrier and Mileg"@hat the fluid behaves as a rigid slug for
very small nutation angles the {luid has been modelled as a rigid slug
of finite length resisted by a linear viscous force. With these assump-
tions it has been shown that there are two distinct modes of motion, the

3,4 For the

nutation synchronous mode and the spin synchronous mode.
symmetric satellite in the spin synchronous mode the mutation angle
exhibits exponential behavior plus a small oscillation with the expon-

ential portion given by

-t/T
8 = 6e ©°8 (5.1)
o
where
- 2(o=1)((0-1)°+47] (5.2)
cs - 21(2 3 i ¢
eymbk o
In the nutation synchronous mode the cosine of the nutation angle
exhibits exponential behavior
T/r
cosf = cosf e cn (5.3)
g
T = — (5.4)
 eyn(o-1)
For small angles (5.3) becomes
1/2
6 = (- 2 (5.5)
en
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The transition angle between the two modes is given by

gy = UG (5.6)

Comparisons of T s and T n with "exact" time constants obtained from -

¢
numerical integration of the equations of motion are given in Figures
3-12, The agreement is good.

The demper was then analyzed for the asymmetric case and it was

found that the two modes still exist. For the spin synchroncus mode

- 2 (0, g,+0,-0. ) (0,0.,40,-0,)
1 eToK 12 2 1% 0Py 4l 1 2 402
= B | (5.7)
T 201[ (ul-l) (02_1 )+Tl2] (02-1) o Z cl-l ) o

In the spin synchronous mode the slug oscillates in the tube while
moving slowl, around the tube. In (5.7) B o 1s the position sbout which
the slug is oscillating. Since Bo changes slowly with time Tes is a
slowly varying function of time, it osclllates between the two values
of T,  obtained by setting B = OandB = n/2. For a design criteria
one should use the maxirnm value of Teg®

In the mutation synchronous mode for the asymmetric satelliite we

! have
|ol+0'2-2|+|02-01|c052}«r 1/2 2T 1/2
R X1 ey p -8

Ealsign(al+02-2)
Ten e Fo, 2+ o -0 1)

(5.9)

The equation for 6 is valid only for small mutation angles wheress

the results for the mitation synchronous mode in the symmetric case

NN €L 2R, TR TR e i, v s

oz -
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are valid for all nutation angles. Comparisons of Tes and Ten given
by (5.7) and (5.9) with "exact" time constants are given in Figures 1k
and 15.

The effect of an offset of the center of the ring from the spin
axis was investigated and was found to have only a very small effect
on T, and Tcn'

For a symmetric satellite an investigation was made of the effect
of a stop in the tube. Since the behavior of the fluid wlan it en-
counters a stcp in the tube is not known a very simple mathematical
model wus used., The results show that the stop increases the amount
of energy dissipation but no analytical resuit was obtaine- .o predict
tiie increase in energy dissipation. Some results are given in Sec-
tion 2.k,

Since Ten and T.g 27 8 function of the damping constant n s meth-d
of calculating n is needed. In Section 3 several methods of calculat-
ing 1 are developed from a consideration ¢f the fluid dynamics.

Analysis of the test results obtained from tests performed at
NASA6SFC on the Helios satellite is given in Section 4. Before analyz-
ing the results it was necessary to determine the effect of gravity on
the behavior of the system. For the symmetric satellite it was found
that gravity does not effect Ten but

T g (00 ETavity)
Teg(test) = -G%- o (5.10)

vhere

G = (1+%) (5.11)
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g is the ratio of the gravitationsl force tc the centrifugal force

which 1s the inverse of the Froude number,

g = gfRe’ (5.12)

Thus gravity can have a substantial effect on th2 test results.

The test results show that during the tests all motion was in the
spin synchronous mode. Thus no comparison can be made with the theore-
tical results for the rutation synchronous mode. The theoretical damp-
ing constant n developed in Section 3 was off by a factor of approxi-

mately 4 or 5 from the value of 71 calculated from the test results.
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Appendix A

Equations of Motion

The system is assumed to consist of an asymmetric rigid body (the
satellite) and a circular tube of radius R which is attached to the
rigid body at a distance h along the spin axis from the center
of mass. The center of the ring is offset a distance & from the
3pin axis. Moving in the tube is a rigid slug which fills a portion
of the tube, the fracticn fill being ». The only other assumptions
are: 1) the center of mass of the system and the center of mass of the
satellite are coincident, 2) the motion of the slug is resisted by a
linear viscous force, and 3) gravity acts only on the slug (the sat-

. ellite is statically balanced).

4 Referring to Figure 1 the x, y and z axes are principal axes of

é the satellite and 2z is the spin axis. The u, v, z sysiem rotates
about the z-axis relative to the x, y, 2 system such that the u
axis passes through the center of mass of the slug. Using the u, v,
z coordin~te system the equations of motion are obtained by equatine
the time rate of change of the angular momentum to the external moments
and using Lagrange's equation for the motion of the rigid slug in the
tube., The angular momentum of the system about the satellite center

of mass is

r4s]

e
A

(00 )1l - i1 - L))
+ {-[1-“-“-;21 sin28 + I:v]mu+ [L‘A‘—;Ez - L‘A-‘—;—Blcos 8+ I:_v]wv - I:z (wz"'ﬁ ! )} & (Al)

* * * .
+ {'quwu - Ivzwv * sz * IZZ ‘Dzﬁﬁ )}SZ
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where A, B and C are the principal moments of inertia of the sat-
*

ellite and the Ioz B are the moments and products of inertia of

the slug about the satellite center of mass. The ch 8 are given

*in Appendix B.

The gravitationel force is

F = -mg Ez = -mg[sinfsin(y+8 )su+sin9cos (y+8 )sv+cos922] (a2)

vwhere 6, ¥ and 4; are the Buler- angles of the satellite. The radius

vector to the slug center of mass is

r, = [Rktbeos(p-v)lg, - 8sin(B-v)e + he (a3)
where
sin(y/2
k = T (Al)

The moment due to gravity becomes

M = -mg {[-Ssin(ﬁ-v Jeos8-h sinfcos (Y8 )]'gu
+ [h sinBsin(i48 )~ (Rk+Scos (B-v) )cosH] & (a5)
+[ (Rk+8cos (B-v ) )sinfcos (y+8 )+8sin(B-v )sinbsin (v+8 )] e, }

The kinetic energy of the fluid slug is

1l 1 1l .2
T = ERVet3Ee T HagtERVertBlec@REL)  (6)

where Ve is the velocity of the center of mass of the slug, Yer

is the velocity of the center of mass of the slug relative to a coardinate
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system whose origin is at the satellite center of mass and whose axes
are parallel to the u, v, z axes, @ is the angular velocity of the

fluid slug and Hq is the angular momentum of the slug. Using (A3)

Vo, = -Blsin(B-v)e +cos(@-ve ] (AT)

The kinetic energy becames

2T (m-I-B) 21 ey 2T o, (0 46 )-2T . (o +6)]

TE‘S - _[qu u+Ivvmv zZ VvVuv uzu z vz V' 2z
‘ (a8)
-m&é[h(wvsin(s-v )-wucos (B-v) HRk (c»z-!ﬁ' Jeos (B-v )+8(mz+é/2 )]
The potential energy is
V- mrl,
V = mg Rk sinfsin(y+8 )+8sinbsin(y-v)}+h cosb] (a9)
The generalized force due to the line ~iseous force is
(A10)

Qﬁ = -C dRQB'

In the development of the approximate solutions it is advantageous to

use dimensionless verisbles and constants, The angular rates and time

are made dimensionless using @, the initial spin rate. Let

T = Ot (a11)
o = Qp
o, = 8 (a12)
o = r
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A suitable set of dimensionless parameters are

o, = c/a
9, = c/B

b = h/R

8 = B/R (A13)
N o= c,/nf
-
€ = —
Ay
= _ &
g =
RO®

In addition to these we have 7, the fraction fill, and v. ¢ is a
small parameter which is the ratio of the moment of inertia of the

tube filled with fluid to one of the transverse moments of inertia

of the satellite. It was chosen in this manner so that e would
remain constant when varying 7 or y. 17 is a dimensionless damping
parameter. g measures the effect of gravity and is actually the inverse
of the Froude mumber. Substituting (All)-(A13) into (AL), (A5), (A8),

(A9) and (A10) gives

*"J.
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H (1+e,.) (1-0,) (1-0.,.)
7\% = {[ 212 + 2L2L-cosea]p - 212 sin28]q

r - - ' a
t qup Iu.vq Iuv(r'"B )] AL

(1-0,,) (1+0,,) (1-0.,)
+ {_ [__2_32_55_1125]1) + [ 21—2—- 212 cos 281q (ALk)

+ L2t qu'Ivz(HB' )]} v

- - \
+{olr +[ IP Ivzq+Izz (r+f )]} e,

where
ap = %/% (a15)
S
() = & (a26)
M - -
Xg".‘g = —e7g {\[-Bsin(B-v)cosb-b sindcos(¥+B)le,
+ [b sinesin(xlﬁﬁ)-(k+5cos(B-v))cos9]gv (A17)
+[ (k+Bcos (B-v ) )sinbcos (48 )+Bsin (B-v )sinOsin(¥+8)] gz} L
_i?_ o oy A1 AT (r48')2-21 oI p(rp')-2I. a(r+')] ;\'\\X
mR292 R e R -2l Py P vl i
(a18) A
_#'[b(q sin(B-v)-p cos (B-v))+k(r+p" )ecos(p-v)+8(rp'/2)] b
.
-%—5 = [k sinbsin(yB )+ sinfsin(y-v)+b cos6] (A19) |
mR-Q ;
i = -Tﬁ' (A20) --."{
mRQQQ : ’,"‘

[
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Applying

dH

~
x =X

and

3
at

#]
w()
L

r
LY
and noting that

oT T o
* ag- -7
$-lp,q = const E E

H1

since p and q depend implicitly on B wvia

w = wcosf + wsi

u X B yn‘3
w. = = sinB + o cos
v ), sinB ¥ p

the equations of motion become

(1+ 012) (1- LS ) (1- %5 )

- S—————— -
[ 5 + 5 cos 2&+qu]p +[ 5 sin 28 Iuv]q'

-qu(r'-l-B") = [-I&u+(l-012)sin2ﬁ]pf3' + [Ii'w+(1-012)cosaﬁ]qs'

+ I&z(ﬂﬁ')s' + (r-rﬁ')ﬁv - qﬁz + Mu

(a21)

(a22)

(423)

(a2k)

(a25)
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(1-0.,) (A+0,.) (1-0,,)
[- —2-~—l—2-—sin23-1uv]p' + [ 212 - 212 cos 26+Iw]q’

(1'012)
-Ivz(r'+£5") = [—5——cos28+T IpB' + [-I;v-(l-cm)sin%]qﬁ'

' t v - 1 T
S (r+pt)p' + pHZ (r48 )Hu + 1
- LA 1 t L ¥ | 1 t t
qup vzq + (°l+Izz)r + Izz5 qupt3 + Ivzq'B
s t 1 i
- I, (r4pt)pt + qil, - PR+ 1

bkp' + (1+8k cos(B-v))r! + B" = -mB' - g k sinbeos (¥+8)

+ (1T T dpg - bk a(res )

vV ouv

= 2 2
4
+ Izz(_p +r7)
H
- o
where Ha—Iﬁ
- Ma
M = —
o Ane
oI
Ir = —%

(426)

(a27)

(a28)

Some of the terms in (A28) have been simplified by substituting

for the Iam their values given in Appendix B,

The relationship between the Euler angle rates and p, q, r is



-T2 -

écos(\HB) + ésinesin(qﬂ-ﬁ)
-ésin(v-lﬁ) + c;sinecos (y+8) (a29)

\Ir + $c059 $

s
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Appendix B

Moments of Inertia

(1-siny) 2 4
m{ 1-.,711’1 %*h" + 82540 (B-v)]

m[R2+2&R k cos(B-v )+52]

2
R-2—+h2 +28R k cos (B-v)+52cos2(ﬁ-v)]

-m8sin(B-v )[Rk +8cos (B-v)]

mh[R k +8cos (B-v)]

-nh 8sin(B-v)

(- 22 /2 + 2 + 5%5in(B-v)

(1+.-°%22)/e + b2 + 28k cos (B-v) + Bocos® (B~v)

1 + 2Bk cos(B-v) + 52
-Bsin(B-v ) k+Bcos (B-v)]
blk+8cos (B-v)]

~bosin(B-v)
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Esin2 (B-v)
28k sin(B-v) - Bosin2(B-v)

-28k sin(g-v)

~kBcos (B-v) - 52c052(ﬁ-v)
<bBsin(B-v)

-bBeos (B-v)
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