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Abstract 

A ring p a r t i d l y  f i l l ed  with a viscous f lu id  has been analyzed 

as a nutation damper for  a spinning sa t e l l i t e .  The f lu id  has been 

modelled as a r igid slug of f i n i t e  length moring i n  a tube and resisted 

by a l inear viscous force. It i s  shown that  there are two distinct 

modes of motion, called. the spin synchronous mode and the nutation 

synchronous mode. Time constants for  each mode me obtained for 

both the symmetric md asymmetric sa t e l l i t e .  The effects of a stop 

i n  the tube and an offset of the ring from the spin axis are also 

investigated. An analysis of t e s t  results i s  also given includiw 

a determination of the effect of gravity on the time constants i n  

the two modes. 
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S y  lbols 

- transverse maments of inertia of the satel l i te  

- spin axis moment of inertia of the sa te l l i te  

- angular momentum vector with components HU, Hv, Hz 

- transverse angular momentum 

- moments and products of inertia of the fluid slug 

- r d u s  of the anmilus 

- radius of tube 

- viscous damping coefficient 

- height of d u s  above sateUite center of mass 

- mass of fluid 

- dlmensionless angulw velocity canponents 

- time 

- offset of cer.ter of anatlus frau spin exis 

- s/'R 

- angle of f i l l  of f lu id  i n  annulus 

- fraction f i l l ,  7 = ~ 1 2 ~  

- dimensionless damping coefficient 

- angular position of offset i n  transverse plane 

- kinematic coefficient of viscosity 

- i n i t i a l  s p a  rate 

- angular velnciey with components %, cog wZ 

- transverse aagules velocity 



9 - C/A 

=2 - C/B 
@12 - a1/@2 

8 - nutation angle 

d - precession angle 

4' - Euler angle 

f3 - angulas position of slug 



1. Introduction 

A ring par t ia l ly  f i l l e d  with a viscous f lu id  such as mercury 

was one of the f i r s t  nutation dampers used on spinning sa te l l i tes .  

The f i r s t  analysis of the par t ia l ly  f i l l e d  viscous ring damper was 

performed by Carrier and Miles1'*. They assumed that  the motion of 

the damper did not appreciably affect the precession ra te  of the sat-  

e l l i t e  but acted only as a source of energy dissipatim. With th i s  

assumption the motion of the f lu id  i n  the tube was then t reat  as 

a f lu id  mechanics problem and an approximate solution to the Navier 

Stakes equations was obtained. Their solution showed that  the f luid 

beheved as a r ig id  s l q  for a nutation angle greater than one degree. 

A t  these large nutstion angles the problem was then treat4d as bound- 

ary layer flow over a f l a t  plate with the width of the plate being 

equal t o  the perimeter of the tube. However this analysis did not 

completely t rea t  the problem as there axe two distinctive modes of 

motion for  a nutation angle 8 greater than one degree, and i n  one 

of these the f lu id  does not behave l ike  boundary layer f l o w .  The 

next analysis was performed by ~ a r w r i ~ h t ~ ' ~ ,  e t .  al., i n  which they 

assumed the f lu id  mass behaved l ike  a pasticle of equal mass moving 

i n  a tube w i t h  a viscous dan:ping force. Their analysis revealed that  

there are two distinctive modes of motion which they c d l e d  the nuta- 

t ion synchronous mode and the spin synchronous mode. Although there 

were some minor errors i n  the i r  equations of motion they correctly 

analyzed the nutation synchronous mode but fai led to  analyze the spin 

synchronous mode. 

Interest  was revived i n  t h i s  problem when the fai lure  of the ' 



ATS-5 sa te l l i t e  was attributed to the energy diss j-pation caused by 

f lu id  motion i n  the heat pipes. Consequently it xzs desirable t o  be 

able t o  predict more accurately the energy dissipation in this  type of 

damper. Also other sa te l l i tes  such as Helios w i l l  employ past ial ly  

f i l l e d  rings for a t a t i o n  dampers but during a portion of the f l ight  ' 

the sa te l l i t e  w i l l  be sginning about an axis of minimum moment of 

inertia.  Since thLs i s  an unstable configuration it i s  ,rery important 

t o  be able to  predict the ra te  of energy dissipaton. 

5 A s  a resul t  Alfriend approached the problem i n  the same mar-er 

as C a r t ~ r i ~ h t ~ ' ~  and obtained equations which approxinately describe 

the motion in both the rrutation and spin synchronous modes. The prob- 

lem with th is  approach i s  tha t  it must be accnmpmied with a method for  

6 calculating the a w i n g  constant. Leibold suggested assuming steady 

flaw i n  straight pipe as a means of calculating th i s  damping constant. 

However there i s  an error i n  his  equation describing the motion of the 

sa te l l i te .  

In th i s  study the fluid i s  assumed to  behave as a rig3.d slug but 

but since the f luid may fill up t o  50$ of the ring it i s  assumed the 

f lu id  i s  a r igid slug of f i n i t e  length, not a gasticle . 
In Section 2 a description of the mathematical model i s  given and 

fo r  a symmetric sa t e l l i t e  approximate solutions me  derived for  the nuta- 

t ion angle time history and corresponding tiPre constants in  both the 

wta t ion  synchronous and spin synchronuus modes . These approximate 

soluticns are then ccm~psred t o  those obtained by numerical integra- 

t ion of the exact equations of motion. In Sect?-on 2.2 the effect of 

a small offset of the center of the ring frcun the spin exis is imres- 

tigated. This is necessary since an offset of 1/4" i s  planned on the 



Helios sa t e l l i t e .  An d y s i s  of the t e s t  data was a p w t  of th i s  

investigation so the effect of gravity on the nutational behavior is  

investigated i n  Section 2.3. An investigation of the effect of a stop 

i n  the tube i s  investigated i n  Section 2.4. In Section 2.5 the resul ts  

of Section 2 .l are extended t o  the asymmetric sa te l l i te .  

Several possible methods for  determining the damping constant 

are given i n  Section 3. An analysis of the t e s t  results i s  presented 

i n  Section 4. Finally a summy of the resul ts  and conclusions axe 

given i n  Section 5 



2. Statement af the Problem 

In the presentation of the analytical results the simplest problem, 

which i s  the symmetric sa t e l l i t e  with no pe.vity and no ring offset, i s  

solved first, The effects of gravity and ring offset on the dymmetric 

sa t e l l i t e  problem are then determined. M n U y  the solution of the 

asymmetric sa t e l l i t e  with no ring offset and no gravity i s  giver,. The 

symmetric problem i s  considered f i r s t  rather than solving the asym- 

metric problem and s b ~ l i f y i n g  the results for the symmetric case be- 

cause by solving the syrmetric problem f i r s t  one gains more insight 

into the problem. 

The mathematical model i s  an asymmetric r ig id  body ( sa te l l i t e )  with 

principal. moments of iner t ia  A, B and C and corresponding principal 

axes represented by the x, y and z axes sbwn i n  Figure 1. The z 

axis i s  the spin axis. A tube of radius R i s  attached to  the r ig id  

body a t  the point (bcosv, Gsinv, I.). 6 i s  the offset of the center of 

the ring (tube) from the spin a x i s .  Mcving in  the tube i s  a r igid 

slug of mass m which f i l l s  a portion of the tube, the angle of f i l l  

being y.  The other asmnptions i n  the development of the equations 

of motion are 1 )  the center of mass of the system and the center of 

mass of the sa te l l i t e  are coincident, 2 )  the f r ic t ion  force on the 

f lu id  slug can be represented by a l inear viscous force, and 3) gravity 

. acts only on the f luid slug. The f i r s t  assunrption i s  made because it 

simplifies the equations of motion cdnsideralbly and the effect of the 

motion of the system center of msss i s  negligible since it i s  of 0(e2) 

where E IS a SmaY pasaneter which i s  defined la ter .  Also, i n  the t e s t s  

the sa te l l i t e  center of mass Is a fixed point. The third assumption i s  

made since gravity has an effect only in the tes ts  and the sa te l l i t e  

- 4 -  



without the fluid was statically balanced before the tests .  

The equations of motion which are derived in Appendix A are 





The coordinate systems and angles axe defined in  Figure 1. 

p, q and r are the components of the dimensionless angular velocity 

along the u, v and z axes and p defines the position of the slug 

i n  the tube. m e  lam and is are the moments of iner t ia  of theslug and 

their  derivatives are given i n  Appendix B. The independent dimensicnless 

parameters of the system are q, u2, E, b, 7, 7 or  5 ,  i ,  6 and v 

Primes denote differentiation wlth respect t o  the dimensfonless time 

T = fir where n i s  the initial spin rate .  8, Jr and 4 are the Euler 

angles with 8 being the nutation angle and 4 the precession angle. 

The N e r  angles are determined from 

6' - g cos (w) - q s 5 . d ~ )  (2.7) 



2.1 Symmetric Satel l i te  with Zero Offset and Zero Gravity 

Since there are no external forces the angular nomenturn i s  con- 

stant. Letting the reference direction be $ (the vert ical  when 

gravity i s  present) the nutation angle 8 c m  be determined from 

instead of using (2.7). HZ i s  the spin axis component of the angular 

m0ment.u.m and H i s  the transverse component, I.e., t 

Substituting for  H and Hv and expandbg i n  a power series i n  u .  

E gives 

where 

However to use (2 .lo ) t o  obtain the vwiat ion of 8 one w d d  have t o  

obtain p, q and r through 0 (E ), whit?. i s  no easy task. Rather 

than using (2 .lo) or (2.12) one can obtain a good approximation of 

8 by dsfferentiating (2.10) and then integrating the resulting 

differential  equation. Differentiation of (2 . la) gives 



Substituting for Y, and Hv and expanding i n  a power series in  E yields 

The advantage of (2.15) i s  that t o  determine 0 t o  O(E)  one only 

needs the first approximation of p, q and f 3 .  

Damper Motion 

A symmetric r ig id  body which i s  spinning about i t s  axis of synretry 

has a constant nutation angle when no damping i s  present. The transverse 

angular velocity vector gt rotates a t  a ra te  of cn cos9 and the body ro- 

tates relative to  cut a t  a ra te  of (1-o)Q. When no damping i s  present 

the center of mass of the f lu id  slug w i l l  be flung outward as fa.r zs possi- 

ble which w i l l  be along cu or  the plane formed by H and the z axis,here- 
, 4 n, 

after called the nutation plane. The f lu id  slug w i l l  then be moving a t  a 

constant ra te  of (1-o)Q with respect t o  the body. Introduction of a small 

amount of damping causes the center of mass of the f lu id  slug to  move off 

the nutation plane to  an equilibrium position where a corcponent of the cen- 

t r i fugal  force balances the fr ic t ion force. This type of motion i s  called 

3 "nutation synchronous" motion . In th i s  mode the f lu id  slug is  moving a t  

a constant ra te  with respect t o  the body, hence tI.2 energy dissipation ra te  

i s  a constant. If a > 1 the nutation angle decreases which causes a decrease 

i n  the centrifugal force and the f lu id  slug center of mass moves further from 

the nutation plane. Eventually the c e n t r i w a l  force i s  not lezge enough t o  

balance the damping force and the f luid.s lug begins to  bedragged &pound w i t h  

the body while oscillating i n  the tube. This type of motion i s  called spin- 

synchronous motfon. 

The purpose now i s  t o  determine the behavior cf the nutation angle i n  

these two modes 8s a fhction of the dimensionless pmameters c,  rl,b, a and y . 



Nutation Synchronous Mode 

Expanding the equations of motion, Equations (2 .I)- (2.4), i n  a 

power series in E and dropping a l l  terms of O(E ) gives 

where X = 0 - 1  . 
Letting 

a = p - X T  

the solution to  (2.16b)' and (2.16~) i s  

p = - (Ut COS a 

where it has been assumed that  q = 0 and f3 = 0 a t  T = 0 I Thus a measures 

the position of the center of mass of the fluid slug with respect t o  the 

nutation plane . Substituting (2 .l7) and (2.18) into (2.16d) gives 

A particular solution of th is  equation i s  a = ae where 

tanecos (7/2 )COS a - 
sin ae I1  - = - (0-I.)n 

b (2.20) 
t?tmesin(yp ) 

whel" at = o tan 6 has been osed. Thus the fluld slug w i l l  rrmrin i n  

the nutation synchronaus mode as long as (2.20) i s  satisfied. Once 8 



becomes small enough so that ae = f lr/2 the fluid slug goes into the 

spin synchronous mode. The transition angle Bt from one mode to 

the other is 

Substituting for p and q in (2.15 ) gives 

2 Substituting a = a and dropping tenus of O(E ) one obtains e 

for w M c h  the solution is 

where 

Thus in the nutation synchronous mode the cosine of the nutation angle 

exhibits exponential behavlor . If there are N dampers the time con- 

stant is 

It has not been assumed that 6 is Amn.ll thus (2,24).is valid for 

0 < 9 < n/2. For smBU 8 the nutation angle time history i s  
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Figure 5. Ta, vs. b 
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A comparison of the approximate solution given by (2.24)) t o  the 

exact sohition i s  shown i n  Figure 2. A comparison of Lhe time constant 
* 

given by Equation (2.25) and an exact time constant obt;.ined by inte-  

grating the  equations of motion, Equations (2 .I)- (2.4), i s  given i n  

Figures 3-7. 

Spin Synchronous Mot - ion 

Substituting (2.18) in to  (2,16d) yields 

Assuming tha t  cot C< 1 and using the f i r s t  i t e r a t e  of a Picard i t e ra t ion  

scheme a good f i r s t  approximation of the steady s t a t e  solution of Equa- 

t ion  (2.28) i s  

F = $tan @sin(y/2)/ ( r / 2 ) [ ~  s i n ( ~ ~ - b ) + ~  cos ( ~ ~ - k ) ]  (2.29) 

where' 

Tile nutation angle d i f fe ren t ia l  equation i s  

The exact time constant is  obtained by integrating the  exact equations 
over a suitable period of time, assuming exponential behavior fo r  cose 
and calculating the time constant. 



2 Assuming that  8 i s  small enough so that  terms of O(0 ) can be neg1ecte.i 

and assuming that the change i n  B i s  small so that  sin@ = 6p and 

cos 6 13 = 1 (2.30) reduces to  

where 

The solution of (2.32) i s  an in f in i te  series but the rl  and r2 terms 

contribute nothing t o  the exponential decay of the solution. Thus 

the important par t  of the solution i s  

Comparison of T~~ given by (2.32) and the time constant obtained from 

numerical integration of the exact equations of motion i s  shown i n  Figs .8-12. 

2.2 Demper Offset Effect 

The purpose of having the center of the ring offset  from the spin 

eyis i s  t o  guuantee tha t  the f lu id  will act as a r igid slug. The 

anslysis of Carrier and shuwed tha t  for  very small nutation 

angles the f luid would spread out along the outer wall of the M e .  

However, if there i s  an offset the centrifugal force w i l l  be greatest 

(for very smal l  mtat ion  angles) i n  the direction of the offset  and 

the f lu id  wiC '.end to lump there. Consideration of the physical 

si tuatian i s  an a,id in determining the effect  of the offset .  Let 

the offset  angle be the angle between the spin exis and the vector 

frcm the sa t e l i i t e  center of mass to the center of the ring. For 

small offsets the offset  angle i s  W e r  than the 
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Figure 10. Ta vs. b 



I exact 
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Figure 11. llc~l vS. 4 





transit ion angle. When 9 > BT and no offset the f lu id  slug  maintain^ 

a fixed position w i t h  respect t o  the nutation plane since the ceqtri- 

fugal force is constant. The effect of the offset  should be t o  cause 

small oscillations of the slug about th is  equilibrium position of tPe 

slug. The resul t  would a small change i n  the ra te  of energy dissipa- 

t ion which would cause a s m a l l  change i n  rcn. .Numerical integrat im 

of the equations of motion has verified these conjectures . For the 

Helios sa t e l l i t e  the offset  of 1/4" caused less  than a 1% change i n  

7 cn* (Ten decreases since the ra te  of energy dissepation increases .) 

In the spin synchronous mode ( B < Q T )  and zero offset  the f lu id  

slug moves slawly around the tube while oscillating. Since the offset  

would create a point i n  the ring where the centrifbgal force i s  a 

maximum the f lu id  slug should osci l la te  about th i s  point instead of 

moving slowly around the tube with the resul t  tha t  the change i n  rcs 

should be minimal. Again numerical integration of the equations of 

motion verified these conjectures. Except for  one case the change i n  T~~ 

was less  than lC$ for  the Helios sa t e l l i t e  with a 1/4" offset. The one 

exceptional case w i l l  be discussed i n  Section 4. 

2.3 Gravity Effect 

Ence  the sa t e l l i t e  was balance6 without the f lu id  it i s  assumed 

that  the gravitational force acts only on the f lu td  slug. Followin(: 

the of Section 2.1 the approximate equations of motion are: 



- 26 - 
where 6 i s  the angle between the spin a x i s  and local  verti:al. Note 

that  the only term involving gravity i s  the l a s t  term of (2.34d). The 

solution of (2.34b ) and (2 .34c ) i s  

Since gravity i s  present the m a r  mmntum i s  no longer con- 

stant, consequently H does not coincide with the vert ical .  Let 
r\, 

Bh be the angle between H and the spin a x i s .  Then 
r\, 

Differentiation ylelds 

where 

$ = -AT - fi/2 

\as been used. 

The assumption i s  now made that the change i n  (Q-Qh) i s  small compared 

to  the change i n  8, and that  6 = Oh a t  T = 0. This allows one t o  use 8 = 6h 

i n  the equations. Nimerical integration of the equations of motion shows 

that  this i s  a reasonable assumption. Equation (2.37) becomes 

Nutation Synchronous Mode 

As i n  Section 2.1 define 

a = p - A T  

Substitution into (2.34 d) gives 



There i s  an equilibrium value a = a which i s  given by 
e 

[ b a s  t a n e ( ~ +  -&pose) - Btm2&os a 1 s in  a = -71 
Y e e 

(2.42) 
ba 

The transition angle between the two modes i s  obtained by setting 

ere = f ~ / 2 ,  which gives 

which for small 8 becomes 

where 

G = 1 + ://W 

Substituting (2.42) into (2.39) yiel& 

which i s  the sane equation one obtains without gravity. Thus the 

ohly effect gravity has i n  the nutation synchronous mode; i s  to  change 

the transit ion angle BT. The solution to  (2.46) i s  

cose = c o ~ ~ ~ e x p ( ~ / ~ ~ ~ )  

where 

Spin Synchronous Mode 

Us- the procedure of Section 2.1 an approximate solution of 

(2.34d) for small 8 i s  , 

6 p -  kin (Bo-Xr )-qcos (po-h ) ) 



where 

Substituting into (2.39) and using sin6 f3 = 6 B and cosS B = 1 gives 

where 

Thus gravity can have a substantial effect on the nutation angle i n  the 
2 spin synchronous mode as the t ine constant i s  reduced by a factor 1 / ~  . 

The approximate time constants given by (2.48) and (2.5 2) are com- 

pared w i t h  those obtainel by numerical integration i n  Figure 13. It i s  

seen that the agreement i s  very good. 

2.4 Effect of Closed Ends i n  Tubes 

The manufacbe of heat pipes i s simpler i f  there i s  a stop (closed 

end) i n  the pipe. This analysis has been imdertaken to determine i f  it 

i s  advantageous from the standpoint of nutation damping t o  have a stop 

i n  the tube. The physical situation i s  so ccanplex tha t  it defies an 

accurate analysis. What happens t o  the f lu id  when it impacts the stop 

is not known, thus a very simplified analysis has been performed to  

t r y  and Cetermine if the stop increases or decreases energy dissipation. 

It i s  assumed that the f lu id  slug i s  a point m a s s  and that  i t s  motion 

i s  governed by (2.16d). Since the nutation algle i s  essentially constant 

over one cycle it i s  also assumed that the nutation angle i s  constant. 

Equation (2.16~1) i s  then integrated over a nanber of cycles .taking into 

accnc:t ~ ~ . U l s i o n s  md the averejc. mount o.O energy dissipation i s  then 

deterrmlned. This is  then compared to  the chanza in  kinetic energy for 

no stops which can be computed analytically. 





For a continous tube the rate  of energy dissipation i s  

3 82 i = -cd~262 = --P?~Q p (2 .53 

The change i n  kinetic energy over one cycle i s  

where T i s  the period and 
P 

This gives 

- 
where 8 t2  i s  the average value of 8 t 2 0  Let 

then 

In the nutation synchronous mode 

hence 

= 2fll~-11 

In the spin synchronous node. 

hence 

The change i n  kinetic energy when there i s  a stop i n  the pipe I s  

obtained by numerical integratton of (2.166) and 



To th i s  we have to  add the loss i n  kinetic energy from the collisions 

which is determined by assuming the slug collides with an object of 

inf in i te  mass. The loss i n  kinetic energy ec from a collision i s  

where e i s  the coefficient of restitu%ion and f3' i s  the angular 
i 

ra te  just prior to  collision. 

Runs were made for both a stable and unstable configuration i n  

the nutation synchronous mode and spin synchronous mode. Table 2.1 

gives the results for  several values of the coefficient of rest i tut ion e .  

As one can see the change i n  kir\etic energy i s  relatively independent 

of e.  The increase i n  energy dissipation i s  significant i n  the nuta- 

t ion synchronous mode but small i n  the spin synchronous mode. This 

i s  reasonable since i n  the nutation synchronous mode the angular ra te  

of the slug with respect t o  the tube i s  1 0-1 1 whereas i n  the spin 

synchronous mode it i s  small. In  tes t s  run by @s Aircraft1' on 

tLe WS-V heat pipes there was a 4C$ increase i n  the change i n  kine- 

t i c  energy i n  the heat pipes with stops. No ccuirparison can be made 

with the Ihxghes results because the damping constant 7 i s  not krwwn. 

However one can conclude that putting stops i n  the rings can cause a 

subs tant id  increase i n  the energy dissipation which w i l l  resul t  in a 

decrease i n  the time constant. 



Table 2.1 
r r  

In all runs 7 = 0.1 
b 

Nutation Synchronous u = 1.2 , 8 = 6' , b = 3 

e 

o .2 
0 .9 
o .6 
o .8 
1. .o 

- 
*(no stop) -. 

o .126 
o .126 
o ,126 
o .126 
o ,126 

Nutation Synchronous 5 = 0.8 , 8 = 6 ' , b = 3 

&( 1 stop) -..-- 
0 469 
l,oCr;! 
1.045 
1.060 
0.839 - -Ae.-- 

- & increase in K.E . 
670 
700 
730 
740 
565 - 

e 

o .2 
0.4 
o .6 
o .8 
1 .o 

G(l  stop) 
0.377 
0 391 
0.403 
0 . 4 3  
0.520 

G(no stop) 

o .126 
o . ~ 6  
o .126 
o .126 
o ,126 

& increase in K.E . 
200 
210 
220 
240 
3 3  

Spin Synchronous a = 1.2 , 8 = 1' , b = 0.8 

e 

0 .2 
0 .4 
o .6 
0 .8 
1 .O 

$ increase in K.E. 

27 
28 

(no stop) 

0.0127 
0 .OE7 

Spin Synchronous a = 0.8 , 8 = 1' , b = 0.8 

G(1 stop) 
0.0162 
0.0163 

0.0127 
0.0127 
0.0127 

- 
5 increase in K .E . 

2 3 
15 
15 
2 3 
3 

0.0166 3 
0 .0163 28 
0.0178 I 40 

G(l stop) 
0.0048 
0 .@5 
0.0045 
0.0048 
0 .oolco 

- 
e 

o .2 
0 .4 
o *6 
o .8 
1 .o 

- 
&(no stop) 

0 0939 
0 0039 
0 moo39 
0 0039 
0 moo39 



2.5 Asmet r i c  Satel l i te  with Zero Offset and Zero Gravlty 

In developing the approxhate solution for  the asymmetric sa t e l l i t e  

it i s  advantagesus to  use the ccolponents of the angular velocity along 

the x and y axes rather than the u and v axes. Let p x and q be the &hen- 
Y 

sionless crnnponents of the angular velocity along the x and y axes, then 

px 
= p cosp - q sine 

% = p sir@ + q cosp 

Using the seme procedure as i n  Appendix A the equations of motion becane 



\ ~w-l* ' + 2 2 
2 

[ (p  - ~ ) s i n 2 # 3 ~ 2 p x ~ c o s ~ l  = 0 
X 

The method used t o  obtain t k  behavior of the mtatior. angle i n  

the symmetric case can s t i l l  be applied i n  the a s m e t r i c  case but the 

resulting expression for  0 1 ,  Equation (2.14), does not s h ~ l i f y  t o  

8' = O(E) because i n  the asymmetric case 8 i s  not constant when there 

i s  no damper. The resul t  i s  that t o  use (2 .I!&) higher order approxi- 

mations of & a94 q would have t o  be developed. To get around this 
Y 

difficulty a vaziation of parameters approach wl i l  be used. When there 

i s  no damper the rmtation angle 8 oscillates,  thus tfke time constarnt n r  

damping constant obtaineC w i l l  measure the fncreaje or decrease of 

the mxbum value of 0 at the end of each osc i l l a t im .  

For E = 0 the equations of motion for  the sa t e l l i t e  are 

The solutions for p,, q, and r an elliptic fmctions. It will bow 

assumed tht the nutation aagle I s  m d l  emu@ or t 2 ~  aspmatry is 

n~lgugh so the& the elliptic f~nctioas can be w e d  by ths 

f l r r t  term in their t z 5 p m t r i c  expansions. a d r  wlU Wt Um 



rigproximate solutions to small angles, The approxhafe solutions 

when ( 5 - 1 )  and (u2-1) have the same sign are 

px = 4BtC0S ( h x )  

where X i s  a phase angle end 

The rr. tation angle for small angles i s  given by 

Iu 'terms of the dimensionless variables this becanes 

substitut- (2.65) for px, g, em3 r g ~ v e s  

Iq+.,~l lcr,-ql 
0 . r  2 + 2 cos 2 (h*x  )I 1/2 '=t 

(.,,-l)l@ 



A variation of parameters approach w i l l  now be used t o  obtain m t 

which d i l l  then give the approximate nutation angle time history. 

Assum5ng mt and x t o  be f'unctions of t b e ,  subs t ih t ing  for 

c$ and r t  2 
P,, 9 r, pi, into (2.63a,b) neglecting terms of O(E ), 

linearizing with respect t o  mt, and solving for  m1 t gives the following 

d i f f e ren t id  equation for  at. [We Eo not need to  solve  for^ '1 

Spin Synchronous Mode 

Substituting (2.65) for px and into (2.636) and neglecting %- 
2 

terms of O(ut t )  @ e r  



As i n  Section (2 -1) an approximate steady s ta te  solution i s  

developed by using the f i r s t  i te ra te  of the ~ i c & d  i terat ion which 

i s  just the solution of (2.69) with B = f3 on the right-hand side of 
0 

'I'hus the f i r s t  approximation of p gives an oscillation about B 
0 

w i t h  the magnitude of the oscillation proportion& to  mt. 

It has been assumed that at i s  small, hence we can use 

2 Using thee approximations and neglecting terms of O(ut) after  sub- 

st i tut ing for $ and B ' i n  (2.68) gives 



(2.72 ) 

where t3e K~ are constants and 

A s  i n  Section (2.1) the solution of q i s  pn inf ini te  series but 

the important part  of the solution i s  the eqonential  decay given by 

The solution for  the nutation angel f? becmes . 

Thus the maximum value of 8 i n  each oscillation decays w i t h  a t ine  

constant of rCs given by (2.73). Note that T~~ i s  a Punction of the 

position of the slug i n  the tube as shown by the prescence of p in 
0 

(2.73). Numerical integration and the second i te ra te  i n  the Picard 

i terat icn solution of (2.69) reveal that the slug moves slowly i n  the 

tube i n  addition to  i ts  oscillation. The resul t  is tha t  its is a 

slowly vaqtng function of time. For a design c r i t e r i a  one should 

use the value of B w h i c h  gives the maximum t h e  constant. 
0 

Cmparison of (2.73) w i t h  an "exact" time constant obtained f r a  

the exact equations of motion is given in  Figure 14. The comparison 

i s  made for  Po = 0. In the numerical integration a very smal l  offset 



m exact 

- approximate 

Figure 14 s, w. . 



was included i n  order t o  make the slug osci l la te  about B=0. The "exact" 

time constant was ob-hined by assuming exponential behavior for  the 

maximum value of 8. From Figure 14 we see that the time constant given 

by (2.73) i s  8 gocd approximation of the exact time constant even when 

(c2-5) i s  not small. 

Nutation Synchronous Mode 

When 5 = u the slug maintains a fixed position w i t h  respect to 2 

the mtat ion plane i n  the nutation synchronous mode. As the fiuthticm 

angle s la r ly  changes the position of the s!-ug changes slowly. In the 

asymmetric case we would expect the behavior to  be similar b u t i n  the 

asymmetric case 8 oscillates.  Thus for smaJ.l. oscillations i n  8 we 

would expect the slug t o  osci l la te  about some equilibrium poinD . Far  small 

oscillat5ons of the slug the energy dissipation resulting from th is  

oscillation would be small with respect to the t o t a l  energy dissipa- 

tion. The resul t  should be a solution l ike  the one for the symmetric 

case. However as I cr -a I increases or for large values of 8 the magni- 
2 1 

tude of the oscillations i n  8 increases w i t h  the resul t  that  the energy 

dissipation from the oscillations of the slug could beccune sigaificsnt.  

In th i s  case we would expect a motion which i s  a combination 

of the nutation synchronous and spin synchronous modes of the symmetric 

case. 

As i n  the symmetric case l e t  a def'ine the position of the slug 

with respect t o  the nutation plane. 

substituting i n  (2.69) gives 



* 0,-1 112 
where M = (') a 1 

2 

The coefficient of s i n ( 2 h  +q + a )  i s  small compared t o  the coeffici- 

ent of s i n a ,  i n  fact  it vanishes as for  5 = a2. An asproximate solu- 

tion for a obtained by the lst i tera te  of a Picard i terat ion i s  

* 
<z'Ut(q~2+~2+cr2-q ( l - ~  1 

a = a  + 2 2 [2hsin (2h.s+23i€te )+ 7 cos (21'r+2)(me ) 1 (2 078 ) e 4 9 ( 4 k  +v ) 

where 

J. s i n a  = e cu [ cr a +a -u )M*+(o u +a -o t ( l 2  2 1 1 2  1 211 

'Rrus the magnitude of the oscillation i s  proportional to ut or (3 and 

. I g-ql. This oscillation i n  a w i l l  be neglected i n  determir~ing 

the solution for at. ~ubs t i tu t ing  a = a in (2.68) yields 
e 

The oscillatory terms contribute nothing t o  the decay of a+, so they 

w i l l  be dropped. Substituting for  s in ae gives 



which has the solution 

Substituting into (2.67) the solution for 8 becomes 

Letting 8 be the i n i t i a l  value of 8 and'assuming it i s  the maxi- 
0 

mum for  the f i r s t  oscillation we get 

where 

A cctnparison of the damping constant T~~ given by (2.84) and sn "exactt1 

' T obtained by numerically integrating the exact equations of motion cn' 

and assuming the max:'umrm value of 8 during each oscillati3n behaves 

according t o  

i s  given in  Figure 15. Mgure 15 shows 'that the approximate s ~ l u t f o n  developed i 
i s  a good appoximrttion even when (h-ul) i s  not mall.. c 



9 exact - approximate 

Figure IS r, vs. U, 



3. Fluid Dynamics 

In Section 2 approximate equations were devlloped for  the nutation 

angle time history and the corresponding time c 3 n s t a . t ~ .  Cornpasison of 

these approximations with exact solutions obtained from numerical in- 

tegration showed excellent agreement. However, t h i s  means that the com- 

parison i s  good for the mathematical model of the system. Two import- 

ant questions which s t i l l  need t o  be answered axe : 1 )  How good i s  the 

mathematical model? 2)  I f  the mathematical model i s  valid how does one 

calculate the damping constant? The answer to  both of these questions 

can come only from testi.ng. In th is  section several methods for calcu- 

lating the &'ping constant 7 for symmetric sa te l l i tzs  are presented. 

The analysis of some t e s t  results i s  given in  Section 4. 

Nutat-ion Synchronous Mode 

In previous studies two approaches have been used to  calculate the 

damping constant. Both approaches have drawbacks i n  that  certain assymp- 

tions are made which are not completely valid. One approach i d  t o  mde l  

the motion of the f luid as steady flow in  a pipe, and the other approaek 

i s  to  model it as bounbry layer flow over a f l a t  plate  with Y - r  width 

of the plate being the perimeter of the pipe. Both of these approaches 

must be considered for  both laminar and turbulent flow. 

A) Steady Flow i n  a P-pe 

1. Leminarr Flow 

The development of steady flow i n  a straight pipe can be found in 

almost any standard f lu id  mechanics tex t  such as Reference 7. 

Solution of the NavierStokes equations with a flux of 



where F$ i s  the velocity of the f lu id  slug relative t o  the ring and 

a i s  the radius of the ring, gives 

The shear s t ress  at any point i s  

where y i s  the viscosity. 

Thus the t o t a l  v i~cous  force i s  

Equating th i s  t o  the force determined from the dynamic analysis, i.e., 

where i s  the kineaatic viscosity. 
2 

The ymsntity (e) - i s  a Reynolds nmber but i s  not the standard Reynol& 
v ' 

number f o r  t h i s  type of analysis . The standaxd Reynolds number is  

Equation (3.6 ) holds fo r  Re< 2000 since the flaw i s  laminam for  Re <2000. 

The enalysis above assumed flow i n  a straight pipe but we have flar 

i n  a curved pipe. The correction factor fo r  flaw i n  a cumred pipe 88 

8 
given by Schlicting i s  



where ro i s  the shew stress i n  the straight pipe and T i s  the shear 

stress in  the curved pipe. Equation (3.8) i s  valid for 10''~ < (a/R)l1% < lo3. e 
For Re = 2000 and ( a / ~ )  = 1/100 the increase i n  shear s t ress  i s  5%. 

Therefore one should take into account the curvature of the pipe. Thus 

for laminar flow the damping constant becomes 

m e  assumption here i s  that we have steady flow i n  a pipe but a 

certain length i s  required for steady flow t o  develop. For flar from 

a cistern into a pipe .this length ( ~ e f  . 8 pg . 301) i s  

which f o r  Re - 1500 i s  6 = %a. But the length of the f lu id  i n  many 

cases m a y  not be much more than %a. Thus the length of f luid required 

for steady flow to  develop may be a3out equal to  the length of the fluid. 

!l!hus there i s  m error i n  assuming steady flaw. 

2. Turbulent Flow 

Blasius ( ~ e f .  8 pg. 339) developed for  the shear stress for steady 

turbulent f l a w  in a straight pipe the empirical resul t  

mre la .W pgbctty d . TMS redt is for %<LO? 

Using the sane procedure as before to calculate the damping constant 



one obtains 

The correction factor to take i r~ to  account the fact that the flow i s  

in a curved pipe 4-s 

The correction factor for turbulent flow i s  smaller than that for laminar 

flow and can be neglected since it i s  usually less than lo$. With the 

correction factcr the damping constant becomes 

I f  the flcr4.d i s  free from disturbances a t  entry the f low in  a m o t h  

pipe for some distance 6 from the entry elx be laminar even though 

turbulence develops fbther downstream. The Reynolds nonber a t  which the 

transition occurs m y  be expected t o  have the same order of magnitude 

as the Reynolds number for transition in  flow along a f l a t  plate. When 

the conditions are disturbed a t  entry the distance required for the velocity 

to take i t s  final form i s  less but it depends on the emaunt of disturbance. 

When the flaw i s  fUly turbulent the in le t  length 8 haa been found to be 

4 which for Re = 10 is 8 = 13.86 whleh IS considerably legs +W that for 

lamlnar flaw. Thus the error which results from the assumption of s t e a d y  

flow i n  a pipe i s  less i n  the turbulent region thsn in  the l d m  region. 



B ) Flar Past a Flat  Plate 

1. Leminar Flow 

Since the flow for same distmce f rom the entry i s  similar to boundery 

layer flow past a f l a t  plate a reasonable assumption i s  to t r ea t  the prob- 

lem as boundary layer flar as was done by Carrier and Milesly2. The d r a g  

force on a f l a t  plate of width b and length i s  

From the dynamic an-sis 

The damping constant q becomes 

The question which now must be asked i s :  What it the d i s t a c e  oz 

length required for the boundary layer t o  disappew? Defin- the bound- 

ary layer th+ t?kness E as the distence for  which u = 0 .s U, then 

(s-icting,B pg . 122) 

Setting e equal to the radius of the pipe fields 

M c h  may or  msy not be a subs tant id  portlon of the fluid slug, Thus 



i n  the 1 . d n a r  region neither the steady flow i n  a pipe approach ar tbz 

boundary leyes approach may be a good approximation since neitl.:er i s  

valid for the entire length of the fluid, 

2, Turbulent Flaw 

The drag force on a f l a t  plate of ~d.fith b and length 4 when the 

boundary layer i s  turbulent i s  (see ~ c h l i c t i n ~ , ~  pg. 536) . 

Ewating t h i n  t o  5ile viscous drag force 

one obtains 

W s  equation i s  valid for 

Spin Synchronous k d e  

In this mob the velocity of the f luid i s  not ccnsta,nt but ortcil- * -  

6 toq- with respect to  the ring. An appro- ouggested by Leibold to ob- 
10 

tain a w i n g  constant i s  tx, use the results of Bhuta and Kcml , w'ho 

analyzed the nutation damping of a sa te l l i te  with a completely f i l l ed  

viscous ring damper m t e d  on a plane p a r a e l  t o  the spin e x i s .  They 

modelled the motion of the f lu id  as a fluid in an I n f i n i t e  pipe r l t h  the 

pipe executing 'hanmxdc motion, and then c%&lned the enerw dissipation 

rete w'hich leads to the damp:,% constant. 



To apply their  malysis to  t h i ~  problem it i s  assumed that the 

analysj s i s  valid for a f in i t e  length of fluid, the energy dissipation 

ra te  i s  then a-reraged over m cycles to  determine the average ra te  of 

energy dissipation. This average ra te  i s  then use3 to  calculate the 

damping constant. From 3huta and Koval the energy dissipation/unit- 

length a t  the end of <he nth cycle i s  

where IC, and I are nodified Bessel f'unctions of the f i r s t  kfnd and 
1 

U i s  the maximum velocity of the blbe with respect t o  the fluid, a i s  the 

radius of the tube, s i s  the excitation frequency and the r are the n 

zeros of J (r  ) . Letting g (f ) be the average amount of energy dissipa- o n 

tion/cycle/unitmnss/velO2 ane obtains for  the damping constant 

where 



g (c ) i s  plotted for several values of m i n  Figure 16 . Since g (5  ) 

for  m > 20 and g( {  ) for m = = are approximately equal, it i s  reasonaSle 

to  just  use the value of g(c ) when m = which i s  

The excitation frequency s i s  
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4. Test Data Analysis 

In  October 1972 a series of t e s t s  were run a t  NASA/GSFC on the 

Helios damper. A t o t a l  of 36 t e s t s  were run with four iner t ia  rat ios  

(0.337, 0.50, 0.51, 1.126) and two damper locations (30 in.  and 9 in. 

above the sa t e l l i t e  center of mass). In a l l  of the tes t s  the damper was 

offset  0.25 in. from the spin axis. The t e s t  results and parameters 

as reported by masterU are reproduced i n  Tables 4.1 and 4.2. 

In each series of t e s t s  the s a t e l l i t e  was balanced with the em--ty 

ring attached. Therefore, during the t e s t s  one could consider that  

gravity i s  acting only on the slug. With th i s  assumption the effect  

of gravity on the nutational behavior of the sa t e l l i t e  was determined 

i n  Section 2.3. 

I n  analyzing the t e s t  data the first thing which must be determined 

i s  i n  which mode, the nutation synchronous or spin synchronous, the sat-  

e l l i t e  i s  operating. Because of the offset  of the damper axis it i s  

reasonable to  assume the f lu id  i s  behaving l ike  a r ig id  slug. In a J l  

of the t e s t s  the nutation angle time history aspears to  have an expon- 

en t ia l  behavior, hence it i s  assumed the sa t e l l i t e  was i n  the sp in  

synchronous mode. Using the development of Sectfon 2 the effect of 

gravity on the time constant was removed and using Equation (2.30) a 

value of the danping constant q and the transit ion angle 8 were T 
calculated. These resu2 ks are given in   able 4.3. Note tha t  the time 

constant for zero gravity decreases with spin speed but the time constant 

for  the t e s t s  increased with spin speed. Those t e s t s  for  which there is  

no entry i n  the q column there was no value of q which would give . 

t3me constant. Hawever, for all of those except the last series of t e s t s  

a 1 4  change i n  the time constant would g i v e a  reasonable value of q. 



Table 4 -1 



Table 4.2 

p 

- 
m = 0.152 kg. 

R = 29 cm. S, = 0.28 ~ m .  

- 
7 = 0.25 Y = d2 

-3 2 v = 1.17 x 10 cm /sec 

SEQ. NO 

o -50-4 .I 

5 .OO-8 .I 

9 .OO-12 .O 

2  slug-ft ) 

59 .37 

65 a85 

65 -85 

17 .00-20 .1 1 40.05 1.126 1 0.788 1 9 . 4 2 ~ 1 0  -4 
I J 

u 

0.337 

0 300 

0.510 

b=h/~ ! E 

2.63 

2 -63 

0.788 

- 
6.35 x l o  4 

5.72 x lo9 

5.72 x 10 -4 



SSQ.NO 

0.50 1 0.51 
i 1.0 
I 1.1 

2.0 
2.1 
3 00 
3 01 
4.0 
4.1 

c/o 
5 .o 
5 -1 
5.2a 
5.2b 
5 .2c 
6 .o 
6 .i 
7 00 
7 01 

. 8.0 
8.1 

c/o 
9 -0 
9 -1 
10.0 
u. .o 
U el 
12 .o 

17 .O 
.17.1 
18 .O 
18 .l 
19.0 
19 01 
20 .O 
20.1 

* 

RPM 

33.3 
31.1 
63 -7 
61.3 
81.5 
79.8 
la2 -3 
103 
123.2 
124.4 

3 -1 
61.6 . 
60 .9 
60 .4 
60.4 
60.4 
85 05 
81.2 
101.8 
102 02 
119 5 
119 05 

3.5 
62 .7 
61.7 
82 .1 
102.1 
99 *? 
120.0 

62.3 
62.3 
81 .1 
81.2 
103.1 
l e  .6 
120 .O 
120.8 

t c 

107 
105 
2049 s 
1945 
2208 
1900 
2395 
1738 
2769 

76.7 
383 
388 
376 
296 
295 
554 
574 
816 
624 
1256 
803 

118 
379 
834 

1302 
1468 
1390 
2032 

155 -9 
191.6 

' 19.1 
20 .9 
13.2 
11 05 
7 08 
10.25 

Table 4.3 

tc (g=O ) 

Il, 400. 
14,350. ., 
25,800 
14,000 
12,700 
15,200 
7,520 
9,300 
4,920 
7,700 

2,630 
1,9 5 
19995 
1,970 
1,550 
1,550 
1,490 
1,680 
1,720 
1,310 
2,220 
1,420 

30,900 
20,500 

:;;% 
.8,780 
8,800 
8,500 

505 02 
620.8 
41.3 
45 .1 
21.9 
19 el 
11 -4 
15 .O 

V 

- - 
.la 
.209 
.168 
.lbl 
241 
.I83 
.342 
,184 

- 
.254 
.243 
.251 . - - 
224 
.203 
.148 
.209 
-093 
,154 

.419 
220 
.226 
0279 - 
.$5 

- - - 
o - - 
o 

o 

0, ( a e ~ )  

- - 
4 .I 
7.8 
9 *2 
7.6 
16.6 
12 59 
26.6 
15.2 

.. 
5 04 
5 02 
5 03 - 
6.6 
5 .7 
4 09 
6 -9 
3.4 
5 06 

3 09 
6 -9 
6 09 
12 .g - - 
24.1 

- - - 
o .. - - .. 

G~ 

106 .7 
1g.9 
12.6 
14 .1 
6.54 
6 -89 
3 0% 

3 090 
2 -83 
2 -78 

34 -3 
5 001 
5 014 
5 -24 
5.24 
5.24 
2 07 
2 -93 
2 .U. 

-' 2.10 
1.77 
1 e 7 7  

262. 
23 -4 
24.6 
10.5 

212 
4.19 

3.24 
3.24 
2.16 
2.16 
1.66 
1 ma 
1.46 . 
1.46 



Using the analysts of Section 3 a value of q has been determined 

for  each t e s t  and the calculations are presented i n  Table 4.4. Table 

4.4 shows that  the value of 9 calculated from the data i s  4 to  5 times 

larger than the predicted value. It was originslly thought that t h i s  

difference was probably due t o  the offset  but investigation has shown 

that  the offset has very l i t t l e  effect on the time constant. Several 

possible reasons for  th i s  difference between the predicted and actual 

values of 7 are: 1) the method of calculating q i n  Section 3 i s  not valid, 

2)  the effect of gravity on the tests,  3) the mathematical model of the 

f lu id  behaving as a rigict slug i n  the spin synchronous mode, or 4 )  same 

cornbination of the above. 

In the  f h t h  series of t e s t s  no value of the dimping constant could 

be evaluated. It was originally thought that  t h i s  was due t o  the offset  

since the offset  angle i s  1.5 deg. and the nutation angle was less  than 

0.1 degrees. For nutation angles th i s  smaU the offset  did ccuse a 

decrease of about 25% in the time constant but th i s  i s  not enough t o  

explain the t e s t  results.  Another contributing factor i s  that  the 

nutatioc angles were so small tha t  measurement of the time constant 

was diff icul t .  

For the f i r s t  two series of t e s t s  the time constant has been scaled 

to the Helios sa t e l l i t e  and i s  given i n  Table 4.5. A value of q = 0.174 

was obtained by averaging the t e s t  data for  O = 95 rpm. The correspond- 

ing t!me constant was then calcula;ted. 

Since there i s  no t e s t  data for  motion i n  the mttation synchronous 

mode there can be no comparison between ac5ua.l an(i predicted time con- 

stants for  that  mode. 



.a Table e 4  

5 

I 
SEQ .N3. 

0.50 
0 -51 
1.0 
1 .i 
2 .O 
2 .l 
3.0 
3 01 
'+ .O 
4.1 

4 ,o 
5.0 - 
5 -1 
5 .2a 
5 -2% 
5.2~ 
6 .o 
6 .I 
7 .o 
7.1 
8 .O 
8.1 

C/O 
9.0 
9 .l 
10 .o 
II .O 
U 01 
12 .O 

17 .O 
17.1 
18 .O 
18 .i 
19 00 
19 01 
20 .o 
20 .1 

? ( t e s t  data) 

- - 
.lo2 
.go9 
.168 
.141 
241 
.I83 
.342 
.it34 

. - 
-254 
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.148 . 
0209 
0093 
.154 

.419 

.220 
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-279 - 
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g 

- - 
o 

* 

g - 
o 

7  red) 

.a720 

.cu142 

.0541 
00550 
.&85 
.&go 
.&40 
.ob38 
.&d, 
.&03 . 

00633 
.0469, 
em 
.a73 
00473 
.a73 
.&o6 
.0415 
,0376 
00375 
-0350 
00350 

.a23 

.&60 

.0463 

.&08 
-0371 
*0375 
-0346 

.a16 
,0236 
.0192 
.wQ 
.0173 
00173 
.0162 
.og2 

J 

,' 



Table 4 *5 

b 

L 

Test 1 

I (SLUG-FT~ 

51% = u 

h(m) 

a(=W 
q ( W i n g  const) - 
tc (flight condition) sec 

Helios 

332 .2 

0.385 

30 023 

95 

0.174 

48,500 . 

A/B 

59 37 

0.33'7 

30 .O 

95 . 

0.174 

10,350 

A/B 
65.85 

0.50 

30.0 

95 

, 0.17 

1,542. . 



A ring which i s  part ia l ly  f i l l ed  with a viscous f lu id  has been 

analyzed as a nutation damper for  a spinning sa te l l i t e .  Since it was 

shown by Carrier and ~ l e  h 4 i a t  the f luid behaves as a r igid slug for  

. very small nutation angles the f lu id  has been modelled as a r igid slyg 

of f in i t e  length resisted by a l inear viscous force. With these assump- 

tions it has been shown that there axe two dis t inct  modes of motion, the 

nutation synchronous mode and the spin synchronous mode. 3y4 For the 

synanetric sa t e l l i t e  in the spin 'synchronous mode the nutation angle 

exhibits exponential behavior plus a small  oscillation with the expon- 

ent ial  portion given by 

where 

In the nutation synchronous mode the cosine of the nutation angle 

exhibits exponential behavior 

For small anglss (5.3) becoanes 



The transit ion angle between the two modes i s  given by 

Caparisons of its and T with "exact" t h e  constants obtalned Ram . cn 

numerical integration of the equations of motion are given i n  Figures 

3-12. The agreeznent i s  good. 

The damper was then analyzed for  the ssynrmetric case and it was 

found that  the two nodes s t i l l  exist .  For the spin synchronous mode 

In the spin synchronous mode the slug osci l la tes  i n  the tube while 

moving slowly around the tube. In  (5.7) Po i s  the position about which 

the slug is ~ s c i l l a t h g ~  Since Do changes slowly with time its i s  a 

slowly varying function of time, it osci l la tes  between the two values 

of obtained by sett ing Po = 0 and Po = 4 2 .  For a design c r i t e r i a  

one should use the rmdmm value of rcs 

In the nutation synchronous mode for  the anymmetfiic s a t e l l i t e  we 

have 

The equation for 8 i s  valid only for  smdl nutation angles where= 

the reeults for the nutation liynchronaus mode in the symm5ric case 



are val id  for a l l  nutation angles. Comparisons of rcs and T given cn 

by (5.7) and (5.9) with "exact" time constants w e  given i n  Figures 14 

and 15. 

The effect. of an offset  of the center of the ring fram the spin 

axis was investigated and was found to have only a very small effect  

on T and T co cn ' 

F o ~  a symmetric sa t e l l i t e  an investigation was made of the effect 

of a stop i n  the tube. Since the behavior of the f lu id  wL%n it en- 

counters a stcp i n  the tube i s  not known a very simple mathematical 

model WLS used. The resul ts  show that  the stop i n c r e ~ e s  ,the mount 

of energy dissipation but no analytical resui t  -8a.s 0btaine.i ;o predict 

the increase i n  energy dissipa%ion. Sam=. results are given i n  Sec- 

t ion 2.4. 

Since rCn and T a n  a m e t i o n  of the damping constant 7 s meth-.d 
C S 

of calculating 7 i s  needed. In Section 3 several methods of calculat- 

ing 7 axe developed *am a consideration c f  the f lu id  dynamics. 

Analysis of the t e s t  resul ts  obtained from t e s t s  performed a t  

NASA~FC on the Helios s a t e l l i t e  i s  given in  Section 4. Before analyz- 

ing the results It was necessary t o  determine the effect  of gravity on 

the behavior of the system. For the symmetric s a t e l l i t e  it was found 

that gravity tbes not effect  roll but 



i s  the ra t io  of the gravi tat iond force tc the centri-al force 

which i s  the inverse of the F'roude number. 

Thus gravity can have a substantial effect on tlw t e s t  results.  

The t e s t  results show that  durirg the t e s t s  all motion was i n  -the 

spin synchronous mode. Thus no cconparison can be made with the theore- 

t i c a l  results for the r~utation synchronous mode. The theoreticai d a g -  

ing constant 7 develuped i n  Section 3 was off by a factor of approxi- 

mately 4 or  5 &om the value of 7 calculated f'rm the t e s t  resu1.t~.  
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kppendix A 

Equations of &tian 

The system i s  assumed to consist of an asymmetric r ig id  body (the 

sa te l l i t e )  and a circular tube of radius R which i s  attached t o  the 

. r igid body a t  a distance h along the spin axis from the center 

of mass. The center of the ring i s  offset a distance 6 from the 

spin axis. bbving i n  the tube i s  a r ig id  slug which f i!l; a portion 
- 

of the tube, the fraction f i l l  being 7. The only other assumptions 

are : 1) the center of mass of the system and the center of mass of the 

sa te l l i t e  are coincident, 2 )  the motion OF the slug i s  resisted by a 

linear viscous force, and 3) gravity acts only on the slug (the sat-  

e l l i t e  is s t a t i c d l y  balanced). 

Referring t o  Figure l t h e  x, y and z axes w e  arincipal axes of 

the s a t e l l i t e  and z i s  the spin axis. The u, v, z system rotates 

&out the z-axis relative t o  the x, y, z s y s t a  such that the u 

axis passes through the center of mass of the slug. Using the u, v, 

z coordin-ke system the equations of motion are obtatnedby e q u a t i r ~  

the time rate  of change of the angular mamentum t o  the external mome~rts 

and using Lagrangets equation for the motion of the r ig id  slug in th? 

tube. The angular mmentum of the system about the sa te l l i t e  center 

of mass i s  

* Y 
+(.[y.,,+I* uv 1. U + 1 y - @ L o s , + 1  2 w v  I -1 v z z  u pv (a) 1 .  



where A, B and C are the principal moments of inert ia  of the sat-  
* 

e l l i t e  and the I 
a$ 

are the moments andgroducts of iner t ia  of 

the slug about the sa te l l i t e  center of mass. The I a;re given 
aB 

i n  Qpendix B. 

The gravitational force is  

where 8, and 4 are the N e r -  angles of the sa te l l i te .  The radius 

vector t o  the slug center of mass is  

r = [ R k + a ~ o s ( ~ - v ) ] ~  - ~ s i n ( $ - v ) ~ ~ +  
-& (A3 1 

where 

The moment due t o  gravity becomes 

The kinetic energy of the fluid slug i s  

where i s  the velocity of the center of mass of the slug, & 

i s  the velocity of the center of mass of the sluq relative t o  a coordinate 



system whose origin is a t  the sa te l l i t e  center of mass and whose axes 

me parallel  to  the u, v, z axes, i s  the angulas velocity of the 

f l d d  slug and i s  the momentum of the slug. Using 

The kinetic energy becomes 

The potential energy i s  

The generalized force due t o  the l ine  .iscous force i s  

In the development of the approximate solutions it i s  advantqeous t o  

use dimensionless variables and constants. The angular rates and time 

are made dimensionless using 0, the bitial spin rate.  Let 



A suitable se t  of dimensionless parameters are 

In  addition to these we have 7, the fraction f i l l ,  and v .  e i s  a 

small parameter which i s  the r a t io  of the moment of iner t ia  of the 

tube f i l l e d  with f lu id  t o  one of the transverse moments of iner t ia  

of 'the sa t e l l i t e .  It was chosen i n  th i s  manner so that, E would 

remain constant when vaxying y or  7. 7 i s  a dimensionless damping 

parameter. measures the effect  of gravity and is actually the inverse 

of the Froude nmber. Substituting (AJl)-(~13) in to  ( A l ) ,  ( ~ 5 ) ~  ( ~ 8 ) )  

( ~ 9 )  and (~10) gives 



H 0- u12 1 
n, + cos 2pIp - [ 2 sin 281 q z 2 

where 

u = 5 / a 2  12 



and 

and notfng that 

since p and q depend implicitly on f3 via 

the equations of motion become 

+ (1-Ul2) (1- ul2 1 
I 2  

+ 
2 cos q 3 + 1 ~ ] p ~  + [-  sin %-Iuy] qt 



( l - ~ = )  + u  (l-uE) 
s in@-Iuvl~ '  + [ 2 - 2 cos @+I,] 9' [ -  2 

(1-u12 12) 
I vz (rt+P") = [ cos + [-I? w -( l-%!sinaIa ( ~ 2 6 )  

+ I' vz (r tpl)pl  + pRZ - ( r e t ) R  u + RV 

-Iuzpv - :. vz qt + (cr1+1,,)rt + I,,?" = I&$' + I;,@' 

- Izz(r+PC )B' + qHu - pRV + flJ 

-blrp 1 + (I+& codp -v ) )r + p " = -* ' - k siriQos (*+ ) 

-1 - q - q )  ! ~28 )  
+ (=m w uv 

2 2 + I *  zz (p+r ) 

- 
where Ha = 

Some of the terms in  ( ~ 2 8 )  have been simplified by substituting 

for the Im their values given i n  AppendCu B. 

The relationship between the N e r  angle rates and p, q, r i s  





Appendix B 

Moments of Iner t ia  

* 2 2 2 
I W  

= m [ ( ( l + s i n 7 )  L + h 2  +26R k cos(p-v)+6 cos (B-v)] 
Y 2 

* 
Izz = m[1?+28 k cos ( ~ - v ) + 6 ~ ]  

* 
IUV 

= -mbsin(p-v)[R k +6cos (p-v)] 

* 
IUZ 

= mh[R k +6cos (f3 -V )] 
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