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EFFECT OF OUTDOOR EXPOSURE AT AMBIENT AND ELEVATED

TEMPERATURES ON FATIGUE LIFE OF T1-6A1-4V TITANIUM

ALLOY SHEET IN THE ANNEALED AND THE

SOLUTION-TREATED AND

AGED CONDITION

By Edward P. Phillips
Langley Research Center

SUMMARY

Specimens of Ti-6Al-4V titanium alloy sheet in the annealed and the solution-treated
and aged heat-treatment condition were exposed outdoors at ambient and 560 K (550° F)
temperatures to determine the effect of outdoor exposure on fatigue life. Effects of expo-
sure were determined by comparing fatigue lives of exposed specimens to those of unex-
posed specimens. Two procedures for fatigue testing the exposed specimens were eval-
uated: (1) fatigue tests conducted outdoors by applying 1200 load cycles per week until
failure occurred and (2) conventional fatigue tests (continuous cycling until failure
occurred) conducted indoors after outdoor exposure under static load. The exposure
period ranged from 9 to 28 months for the outdoor fatigue-test group and was 24 months
for the static-load group. All fatigue tests were constant-amplitude bending of specimens
containing a drilled hole (stress concentration factor of 1.6).

The results of the tests indicate that the fatigue lives of solution-treated and aged
specimens were significantly reduced by the outdoor exposure at 560 K but not by the expo-
sure at ambient temperature. Fatigue lives of the annealed specimens were essentially
unaffected by the outdoor exposure at either temperature. The two test procedures —
outdoor fatigue test and indoor fatigue test after outdoor exposure - led to the same con-
clusions about exposure effects.

INTRODUCTION

Materials used as aircraft exterior skins are continuously exposed to the corrosive
action of an outdoor environment. Although it is widely recognized that the outdoor envi-
ronment could, and probably does, degrade the fatigue properties of these materials over
the long years of service, only a few outdoor-exposure fatigue studies have been conducted
in the past (refs. 1 to 4). Admittedly, definitive test results which could be included in



structural fatigue-life estimates would be almost impossible to obtain because the envi-
ronment varies with geographical location and with time and because of the long test
times needed, 10 to 20 years. Although generation of definitive data may not be feasible
shorter-term tests (1 to 4 years) in an outdoor environment should, at the least, lead to
more accurate corrosion-fatigue performance ranking of materials than the artificial
environments used in current accelerated tests. Data of this kind would be especially
useful for newer materials for which there is no vast backlog of service experience such
as is available for aluminum alloys.

The materials studied in the present investigation were Ti-6Al-4V titanium alloy
sheet in the annealed and the solution-treated and aged (STA) heat-treatment condition.
Titanium alloys, especially Ti-6Al-4V, are being used increasingly in aircraft structures.
They are particularly attractive for the structure of supersonic aircraft where elevated
temperatures in the range of 450 to 650 K (350° to 700° F) will be experienced. The
effects of outdoor exposure at both ambient and 560 K (550° F) temperatures were evalu-
ated in the present study. Two methods of conducting the outdoor-exposure tests were
investigated. In one test method, the specimens were fatigue tested outdoors by applying
a continuous static load and cyclic loads at regular intervals until failure occurred. In
the second method, specimens were exposed under static load but were fatigue tested in
the laboratory at the end of the exposure period. In both test methods, the effects of out-
door exposure were determined by comparing the fatigue lives from exposed specimens to
those of unexposed specimens. All fatigue tests were constant-amplitude bending of sheet
specimens containing a drilled-hole stress-raiser, stress concentration factor of 1.6.
Environmental conditions for the outdoor tests were those prevalent at the NASA Langley
Research Center, which is located near the Chesapeake Bay on the eastern coast of the
United States.

The physical quantities in this paper are given in both the International System of
Units (ref. 5) and U.S. Customary Units. The measurements and calculations were made
in U.S. Customary Units. Appendix A presents factors relating these two systems.

TESTS

Materials and Specimens

Specimens were fabricated from nominally 1.3-mm (0.050-in.) thick sheets of
Ti-6Al-4V titanium alloy in two heat-treatment conditions, the annealed and the solution-
treated and aged (STA) condition. Two sheets of material in each heat-treatment condi-
tion were used. Material chemical analyses and processing histories furnished by the
manufacturer are given in table I. The average longitudinal tensile properties were
obtained at the Langley fatigue research laboratory and are given in table II.



The configuration of the cantilever bending specimen used in the fatigue tests is
shown in figure 1. The dashed lines indicate the shape of a constant-stress cantilever.
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(2.63 in.)

108 mm(4.25 in.)
radius

Drilled hole' of
6.35 mm (0.25 in.)
diameter
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o
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Sheet rolling direction

Figure 1.- Fatigue-specimen configuration.

Maximum bending stress occurs in the section at which these lines are tangent to the
boundary of the specimen. The specimen contained a drilled hole of 6.35-mm (1/4 in.)
diameter in the maximum-stress section. Holes were deburred before testing. The
stress concentration factor K^ for this specimen loaded in bending is approximately
1.6 (ref. 6).

After fabrication, all specimens were chemically cleaned according to the procedures
given in appendix B. After cleaning, each specimen that was to be exposed at 560 K
(550° F) was instrumented with a thermistor and a thermocouple for temperature control
and monitoring, respectively (fig. 2). The specimens were exposed outdoors in a horizon-
tal position under downward static loads. To avoid extraneous failure sites and clutter on
the top surface, the instrumentation (sensors, sensor shield, and wire tie-down straps)
was spotwelded to the bottom surface.

Test Conditions

Groups of specimens from each heat treatment were subjected to test conditions
selected to determine the effects of outdoor exposure, exposure temperature, and test
method. Specimens for each test group were selected from locations within the two sheets
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Figure 2.- Location of thermistor, thermocouple,, and sensor shield
on "bottom surface of specimen.

according to a randomization procedure based on a table of random numbers. The test
conditions are summarized in the following table:

Outdoor -exposure conditions

No exposure

Ambient temperature

Continuous static load

Ambient and 560 K (550° F), about
half time at each temperature

Continuous static load

Fatigue-test conditions

Conventional indoor fatigue test (static and constant-
amplitude cyclic loading applied continuously at
room temperature until failure occurred)

Conventional indoor fatigue test conducted after out-
door exposure

Fatigue test conducted outdoors by applying 1200
constant-amplitude load cycles each week until
failure occurred

Conventional indoor fatigue test conducted after out-
door exposure

Fatigue test conducted outdoors by applying 1200
constant-amplitude load cycles at ambient tem-
perature each week until failure occurred

The no-exposure test group provided the base-line fatigue-life data to which the results of
all other test groups were compared in order to determine the effects of the outdoor test
conditions. The two temperatures are roughly representative of subsonic and of Mach 3
supersonic aircraft. For the latter condition, the specimens were at ambient temperature
for about half the time and at 560 K (550° F) for the remainder. The specimens were at



ambient temperature during an 8-hour period each night, when rain or snow was falling,
when cyclic loads were applied, and during maintenance work. The two outdoor test pro-
cedures were selected to determine if simple, static-load exposure tests would lead to the
same conclusions as the more difficult outdoor fatigue tests. From a test cost standpoint,
the static-load exposure method is obviously desirable, especially for test programs with
long exposure times.

The first day of the outdoor exposure period for all test groups was October 7, 1970.
The static-load exposure group remained exposed until median lives were achieved in all
the outdoor fatigue test groups. Thus, the exposure period for all static-load groups was
2 years. The exposure period for individual specimens in the outdoor fatigue tests ranged
from 9 to 28 months. Meteorological data for the duration of the tests were taken from
records of the Langley Flight Service Office and are summarized in table III.

All fatigue tests were of the constant-amplitude loading type. A single-stress-level
condition was used for all tests on each material. In terms of outer-fiber net-section
stresses, the test stresses were 172 ± 517 MPa (25 ± 75 ksi) for STA material and
172 ± 538 MPa (25 ± 78 ksi) for annealed material. The mean stress level was selected
on the basis of published information (ref. 7), which indicated that that level was a realistic
Ig design stress for a titanium-alloy lower-wing skin of a transport aircraft. The alter-
nating stresses were chosen to produce failures in approximately 10^ cycles on the basis
of preliminary indoor bending fatigue tests.

Test Apparatus

Outdoor tests.- The outdoor-exposure test apparatus was located in an open area
adjacent to the Langley fatigue research laboratory." The test area is about 5 km
(3 miles) from salt water in the Chesapeake Bay. The outdoor fatigue-testing machine
and the static-load exposure apparatus'were within 10 m (30 ft) of each other.

The outdoor fatigue tests were conducted with a machine that accommodates 76 spec-
imens at one time. A photograph of the testing machine is shown as figure 3 and a dia-
gram of the machine is shown as figure 4. Basically, this machine consists of a vibrating
table supported on coil springs and restricted to vertical motion by a system of flexure
arms (not shown). The table has a natural frequency of vibration in the vertical direction
of approximately 7.2 Hz (430 cpm) and was excited to vibrate at this frequency by an
adjustable crank and a clutch mechanism. The electric drive motor was started with the
clutch disengaged. When the motor reached operating speed, the clutch was engaged until
the table vibrated at an amplitude equal to the throw of the crank. A preset counter was
used to stop the machine automatically after a predetermined number of load cycles had
been applied to the specimens.
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Figure 3.- Outdoor fatigue-testing machine.
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Figure k.- Diagram of outdoor fatigue-testing machine.



The magnitude of the stresses induced in the specimens by the vibrating table was
predetermined by sizing two masses which were attached to the specimen. One mass was
rigidly attached to the free end of the specimen. Adjustment of the magnitude of this mass
was the primary method of controlling alternating stresses in the specimen. Another
mass was suspended from the first by a soft coil spring. The suspended mass was
adjusted so that the sum of the two masses produced the desired mean stress in the spec-
imen. The suspended mass was submerged in oil to damp out transient vibrations during
starting and stopping. A correction was made for the buoyant force of the oil.

The static-load exposure specimens were mounted and statically loaded in essen-
tially .the same way as were the outdoor fatigue test specimens. The only difference was
the use of a stiff rod, instead of a spring, to suspend the mass.

Each specimen exposed outdoors at 560 K (550° F) had a separate and complete
heating and temperature-control system. The system was composed of two 200-watt
quartz-tube radiant heating lamps and a reflector, a thermistor temperature sensor on
the specimen, and a solid-state temperature controller. Each specimen also had a ther-
mocouple attached to it for temperature monitoring purposes. The temperature of each
specimen was recorded at regular intervals by a central temperature monitoring system.
In addition to the radiant heating from the lamps, the specimens were heated in the grip-
ped area by conduction from cartridge heaters which were inserted into drilled holes in
the mounting plates. Heating the gripped portion of the specimen reduced the load on the
lamps and thus helped to achieve long lamp life and closer temperature control, especially
on windy days. .

A precipitation sensor was used to automatically turn off the heaters when rain or
snow was falling and turn it back on when the precipitation ended. The heaters were pro-
gramed to deenergize at 8 p.m. and energize at 4 a.m. each day.

Indoor tests.- Both the no-exposure and static-load exposure groups were tested
indoors on a small nonresonant vibration table which accommodated only one specimen at
a time. The stresses induced in the specimen were controlled by the same mass-
adjustment procedure that was used in the outdoor tests. Tests were conducted at a fre-
quency of 10 Hz (600 cpm).

Procedure

The loads to produce the desired stresses in the test section of each specimen were
computed with the flexure formula and cross-section measurements taken to the nearest
3 fxm (0.0001 in.). These loads were applied statically to the specimens by deadweight
loading and the specimen deflections were measured. The deflections were then repro-
duced in the tests by adjusting the masses attached to the specimen. Deflections were
measured with a stroboscope, a scale graduated in 0.3-mm (0.01-in.) increments, and a



low-power microscope. The large deflections of 30 to 36 mm (1.2 to 1.4 in.) associated
with the maximum-stress levels facilitated adjustment to within ±2 percent of the desired
level.

In setting up the tests to achieve the desired cyclic stress levels in the outdoor
fatigue tests, all specimens were first mounted on the testing machine and connected to a
specimen restraint fixture which prevented the specimens from being loaded when the
vibrating table was in motion. Then, one at a time the specimens were disconnected from
the restraint system and the masses attached to the specimen were adjusted to produce
the correct deflections. Approximately 2000 cycles were applied to each specimen during
the mass-adjustment process. When this process had been completed, all specimens were
disconnected from the restraint fixture and the test machine was operated for about 6000
cycles while deflection checks were made for several specimens around the periphery of
the machine.

Specimen positions on the outdoor-exposure test apparatus were filled by alternating
between specimens of the two heat treatments. Specimens were segregated according to
exposure-temperature condition.

For those specimens that were to be heated, a temperature of 560 K (550° F) was
desired on the top (tensile mean stress) surface. Since the temperature sensors were
located on the bottom surface, a correlation had to be established between thermocouple
readings on the two surfaces. To do this, specimens having the usual instrumentation on
the bottom surface and an array of thermocouples on the top surface were mounted on the
machine. The temperature indication of the bottom thermocouple corresponding to a
560 K (550° F) indication on the top surface was recorded and used as the control point
in the ensuing test. Temperature was controlled to within ±20 K (±30° F) of the desired
560 K temperature on calm days. Temperature fluctuations due to wind were generally
no more than an additional 20 K (30° F).

RESULTS AND DISCUSSION

Test Results

The results of all of the fatigue tests are presented in tables IV and V for the STA
and annealed materials, respectively. For each specimen, the number of load cycles
required to produce failure (separation into two pieces), the days of exposure, and the
number of hours exposed at 560 K (550° F) are listed when appropriate.

The fatigue lives obtained in all tests are plotted in figures 5 and 6 for the STA and
annealed materials, respectively.
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Figure 5.- Results of fatigue tests on T1-6A1-VV titanium alloy in the STA
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Discussion of Test Results

Examination of figures 5 and 6 indicates that all of the test groups exhibited large
scatter in fatigue lives and some groups exhibited a tendency for the data to divide into
short- and long-life groups. Specimen failures originated at one of four locations: (1) at
the hole on the tensile mean stress surface (the normal failure location), (2) at the hole
on the compressive mean stress surface, (3) at spotwelds on the compressive mean stress
surface where instrumentation had been attached, and (4) at accidental-damage sites
(scratches, dents, etc.) on the edges of the specimens. Two interesting points concerning
those specimens that did not fail in the normal location are that: first, they failed at lives
which were always longer than the lives of the majority of the normal-failure specimens
and, second, they occurred in the no-exposure test group as well as the outdoor-exposure
test group. In view of the latter point, failure location cannot be related to test environ-
ment, and, therefore, tests in which the specimens failed in a non-normal location can be
treated as discontinued tests of the normal failure location in the analysis of test results.
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As has already been mentioned, some of the test groups exhibited a bimodal life distribu-
tion behavior in figures 5 and 6, Treating the non-normal failures as discontinued tests
and considering that these specimens would have had longer lives if the tests had contin-
ued, a bimodal life behavior seems reasonable for all test groups rather than just some
of them.

To further examine the life-grouping tendencies of the data, the data in figures 5
and 6 are replotted on log-normal probability paper in figures 7 and 8, respectively. For
the sake of clarity, some of the discontinued-test data points are not plotted. The number
of discontinued tests with lives beyond the'longest life that is plotted is indicated for each
test group. Dashed lines have been used in figures 7 and 8 to indicate that the actual paths
are unknown because some tests were discontinued. Even with this uncertainty, the plots
provide sufficient information to clearly indicate that the life data from most of the test
groups cannot be adequately described by a single log-normal life distribution. The
abrupt changes in slope apparent in the data plots, for example in the no-exposure test
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<3> Ambient temp.- static-load exposure
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Figure 8.- Fatigue-life data given in figure 6 for annealed material replotted on
log-normal probability paper.
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group in figure 7, indicate that all of the data do not belong to the same statistical popula-
tion. Even for those test groups which do not exhibit the abrupt slope change in figures 7
(squares) and 8 (squares and triangles), the bimodal behavior appears reasonable, con-
sidering the number and long lives of the discontinued tests. Replotting the data on a
Weibull probability scale led to the same conclusions as did the log-normal plots. Inter-
pretation of the data in terms of life groups had an important impact on the analysis of
the data, as explained in the following paragraph.

As stated previously, the effects of the different test conditions can be determined
by comparing the results from the test groups. The conventional method of comparing
results from two test conditions is to perform some type of statistical test to determine
if the mean or median lives of the two groups are significantly different. Usually, the
results from all specimens tested under a given test condition are included in making the
statistical test. However, if the data for the various test conditions consistently divide
into two or more groups, an unconventional analysis approach is necessary. A conven-
tional approach will not effectively detect environmental effects which result in life reduc-
tions smaller than the life separation between groups. But, detection of relatively small
differences between test groups can reveal trends which may be significant when extra-
polated to longer exposure periods. The consistent occurrence of the bimodal behavior
for the various test conditions indicates that, regardless of the reason for the bimodal
behavior, the specimens for each test condition must be considered as having come from
two populations. Therefore, for the best analysis approach for data such as in the current
study, comparisons should be made between the corresponding short- and long-life groups
for each test condition.

The data in this study were divided into short- and long-life groups at the point of
gross slope changes in figures 7 and 8. In cases where a discontinued test could con-
ceivably belong to either life group, it was arbitrarily assigned to the long-life group.
Since the discontinued-test data prevented a quantitative definition of the long-life group,
only the short-life data were evaluated for effects of the outdoor test conditions.

TJ-6A1-4V STA.- Data for the short-life groups are plotted on log-normal probability
paper in figure 9. All of the specimens represented in figure 9 exhibited about the same
failure characteristics; that is, number of cracks, extent of cracking before failure, and
fracture surface appearance at a magnification of 60 times.

The data in figure 9 reveal a consistent trend related to exposure condition: the no-
exposure condition produced the longest lives, the outdoor exposure at ambient-temperature
conditions produced somewhat shorter lives, and the outdoor exposure at 560 K (550° F)
produced the shortest lives. The outdoor exposure at 560 K reduced median life to almost
1/2 of that obtained for the no-exposure group. These differences between test groups
were tested for statistical significance using the unpaired rank test (ref. 8) for differences
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between medians. These comparisons indicated that at the 5-percent significance level
both of the 560 K exposure groups were significantly different from the no-exposure
group, but that neither of the ambient-temperature exposure groups were significantly
different from the no-exposure group. Moreover, the static-load group exposed at 560 K
was significantly different from that exposed at ambient temperature.

The results from the two test methods (outdoor fatigue test and fatigue test after
exposure) did not indicate a consistent trend. The outdoor fatigue test method resulted
in shorter lives than the static-load exposure method for the ambient-temperature expo-
sure but resulted in longer lives than the static-load exposure method for the 5,60 K expo-
sure. At the 5-percent significance level, the unpaired rank test indicated no' significant
difference between the results from the two fatigue test methods at either temperature
condition.
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TJ-6A1-4V annealed.- Data for the short-life groups are plotted in figure 10 in the
same way as was done for the STA material data in figure 9. As for the STA material,
no differences in failure characteristics were noted among the test groups. The data for
all of the test groups are so closely bunched that no consistent trends are evident.
Accordingly, the unpaired rank test for difference between medians also indicated no sig-
nificant differences between test groups at the 5-percent significance level.

CONCLUDING REMARKS

The effects of an outdoor exposure at ambient and 560 K (550° F) temperatures on
the fatigue life of Ti-6Al-4V titanium alloy sheet in the STA and the annealed condition
have been determined. All fatigue tests were constant-amplitude bending of specimens
containing a drilled hole (stress concentration factor of 1.6). Effects of exposure were

14



determined by comparing fatigue lives of exposed specimens to those of unexposed spec-
imens. Two procedures for fatigue testing the exposed specimens were evaluated:
(1) fatigue tests were conducted outdoors by applying 1200 load cycles per week at ambient
temperature until failure occurred and (2) fatigue tests were conducted indoors at room
temperature after outdoor exposure under static load. The exposure period ranged from
9 to 28 months for the outdoor fatigue-test group and was 24 months for the static-load
group. Comparisons of the results from the various test groups were limited to the
short-life ends of the life distributions because the life data tended to divide into short-
and long-life groups and the long-life groups contained discontinued tests. From the data
presented, the following were concluded:

1. The outdoor exposure at 560 K reduced the fatigue life of the STA material to
about 1/2 of the no-exposure life. The outdoor exposure at ambient temperature also
reduced the fatigue life of STA material, but by a smaller amount. Statistical compari-
sons indicated that, at the 5-percent significance level, the reduction in life caused by the
560 K exposure was statistically significant but that the reduction caused by the ambient-
temperature exposure was not significant.

2. The outdoor exposures at both ambient and 560 K temperatures had essentially
no effect on the fatigue life of the annealed material. Statistical comparisons at the
5-percent significance level indicated no significant differences between medians of the
test groups.

3. The two test procedures - outdoor fatigue test and indoor fatigue test after out-
door exposure - led to the same conclusions about exposure effects.

Langley Research Center,
National Aeronautics and Space Administration,

Hampton, Va., February 20, 1974.
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APPENDIX A

CONVERSION OF SI UNITS TO U.S. CUSTOMARY UNITS

The International System of Units (SI) was adopted by the Eleventh General Con-
ference on Weights and Measures held in Paris in 1960 (ref. 5). Conversion factors
required for units used herein are given in the following table:

Physical quantity

Force
Length
Stress
Temperature
Volume
Frequency

SI Unit
(**)

newtons (N)
meters (m)
pascals (Pa)
Kelvin (K)
cubic meters (m3)
hertz (Hz)

Conversion factor
(*)

0.2248
39.37
1.450 x 10'7

9/5
264.2
60

U.S. Customary Unit

Ibf
in.
ksi = 103 lbf/in2

(°F + 459.67)
gallon
cpm

Multiply value given in SI Unit by conversion factor to obtain equivalent in U.S.
Customary Unit.

**Prefixes to indicate multiple of units are as follows:

Prefix

giga (G)
mega (M)
kilo (k)
centi (c)
milli (m)
micro (/j)

Multiple

109

106

103

10-2
lo-3

ID'6
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APPENDIX B

SPECIMEN CLEANING PROCEDURE

1. Remove metal markings such as manufacturer's stamp, crayon, and so forth,
with acetone or alcohol and cloth.

2. Perform alkaline cleaning consisting of six steps, using a separate tank for each
solution or rinse as follows:

a. Immerse in sodium hydroxide base alkaline cleaner, 45 kg/m3
(6 ozm/gallon) water, at a temperature of 360 to 370 K (180° to 200° F) for
10 minutes.

b. Rinse in hot water for 2 to 3 minutes.

c. Immerse in nitric acid solution, 20 percent nitric acid and 80 percent
water by volume, for 30 seconds.

d. Rinse in agitated hot water.

e. Rinse in agitated cold water.

f. Rinse in agitated cold water with continuous supply of fresh water.

3. Dry with clean cloth or paper wipers.
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TABLE I.- CHEMICAL ANALYSIS AND HEAT

TREATMENT OF MATERIALS

T1-6A1-4V (STA)

Element

C
N

Fe
Al

V
O
H

Percent by weight

0.02

.010

.17

6.2
4.4

.123
50 PPM

Heat treatment:
(1) 1185 K (1675° F) for 9 minutes, water quenched
(2) 950 K (1250° F) for 4 hours, air cooled

Ti-6Al-4V (annealed)

Element

c
N
Fe
Al

V

0

H

Percent by weight

0.02

.010

.17
6.2
4.4

.142

69 PPM

Heat treatment:

1075 K (1475° F) for 1 hour, furnace cooled to
980 K (1300° F), air cooled

TABLE II.- AVERAGEa ROOM-TEMPERATURE LONGITUDINAL

TENSILE PROPERTIES OF T1-6A1-4V IN THE

ANNEALED AND THE STA CONDITION

Heat
treatment

Annealed

STA

Ultimate
tensile

strength

MPa

1010
1040

ksi

147

151

Yield
strength

(0.2% off set)

MPa

972

1020

ksi

141

148

Modulus of
elasticity

GPa

121

121

ksi

17. 6 x 103

17.6 x 103

Elongation in
5 cm (2 in.),

percent

13.9

14.7

Based on nine tests.
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TABLE III.- METEOROLOGICAL DATA FOR TEST PERIOD

Month
and
year

Oct. 1970
Nov.
Dec.

Jan. 1971
Feb.
Mar.
Apr.
May
June
July
Aug.
Sept.
Oct.
Nov.
Dec.

Jan. 1972
Feb.
Mar.
Apr.
May
June
July
Aug.
Sept.
Oct.
Nov.
Dec.

Jan. 1973
Feb.

Average
temperature

K

290
284

280

276

280
281
286

291
297

299
298
296
293
284
284

280
278
282
286

291

295
298
297

295
289
283
281

278
276

°F

63
52

44

37
44
47
56
65
75
78
77
74
67
52
51

45

41.
48
56
64
71
77

75
72

60
50
47

40
38

Total
precipitation

mm

29.0
68.3
98.6

107.2
100.3
79.2
60.5

178.8
58.9

134.9
137.7
156.0
318.8

60.5
63.5

93.5
106.7
82.3
89.9
90.7

154.7
129.3
92.7

291.8
128.3
134.9
131.8

88.4
77.5

in.

1.14
2.69
3.88

4.22
3.95
3.12
2.38

-7.04
2.32
5.31
5.42
6.14

12.55
2.38
2.50

3.68
4.20
3.24
3.54
3.57
6.09
5.09
3.65

11.49
5.05
5.31
5.19

3.48
3.05

Days of
precipitation

9
11

7

14

12
11

6
13
8

13
6
3

16
6
6

11

14
9

12
11

12
10
9

11

8
13
16

11

10
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