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PROCEDURES FOR EXPERIMENTAL MEASUREMENT AND THEORETICAL

ANALYSIS OF LARGE PLASTIC DEFORMATIONS

by Richard E. Morris

Lewis Research Center

SUMMARY

Large plastic strains were generated in spherical model containment

vessels tested in impac.t against reinforced concrete blocks. Strains were

calculated from measurements of the change in length of orthogonal pairs of

lines established on the surface of a spherical model. Methods were avail-

able for interpreting strains when the gage lines were parallel or perpen-

dicular to lines of symmetry on the deformed model. However, some method

was needed for interpreting strain measurements on gage lines randomly

oriented in a field of uniform strain.

Equations are derived and analytical procedures are presented for in-

terpreting experimental measurements of large plastic strains by using or-

thogonal gage lines established on the surface of a plate so that the orien-

tation angle between a gage line and a principal strain axis is random.

Gage lines are measured before and after deformation. The change in orthog-

onality is also measured. Equations are solved to obtain the orthogonal

principal strains and to locate the direction of the principal strain axes

with respect to the deformed gage lines. When the stress normal to the sur-

face is nonzero and unknown, deviatoric stresses can be found but the true

"stresses cannot b"e determined. When the stress normal to the surface is

zero or known, the principal stresses associated with the deformation can be

calculated.

The total error in strain measurement at the 1 percent strain level is

25 percent. Accuracy increases rapidly as the level of strain increases.

For nominal strains of 3 percent or more, the total error in strain measure-

ment is within the range of engineering accuracy.

The strain measurement system presented is particularly applicable to

the stress analysis of model containment vessels tested in impact against

reinforced concrete blocks. Other applications suggested include burst

tests of spherical or cylindrical pressure vessels and the augmentation of

small-strain instrumentation to provide data on large strains generated be-

yond the range of the small-strain instruments.



INTRODUCTION

Containment vessels are designed to contain radioactive materials

such as nuclear reactors, nuclear fuels, isotopes, or nuclear waste

products. The integrity of the vessel must be maintained even after

severe deformation resulting from an accident. Stationary containment

vessels may be subject to impact damage caused by objects in motion, for

example, a falling aircraft. Mobile containment vessels may be damaged

during an impact, such as in a collision or derailment of a train.

Nuclear reactors generate radioactive waste materials that must be

collected and stored. Waste contained in spent fuel must be shipped from

the reactor site to the reprocessing plant. Separated waste must then be

moved from the reprocessing plant to a storage location. Radioactive

materials being transported must be safely contained, even in the event of

a catastrophic accident, to prevent contamination of the environment. One

method of containing them is to enclose the radioactive materials in a

spherical containment vessel which is capable of surviving a high-

velocity accident.

The author's previous work (ref. 1) indicated that spherical

containment vessels could survive high-velocity impacts. A testing

program was initiated to obtain experimental data on the survivability

of model vessels tested by impact against reinforced concrete blocks.

Although models survived the high-velocity impacts, they were severely

deformed. One measure of the severity of the deformation is to measure

the plastic strain in the vessel wall and then compare that with the

ultimate strain obtained from dynamic tensile tests of specimens machined

from model material. If the total strain in the deformed model approaches

the ultimate strain for the shell material, failure of the shell could

result. Failure of the shell would result in the release of the radio-

active contents of the containment vessel. The safety of the population

and the environment requires that this condition must be avoided.

Impact forces between a model and a reinforced concrete block that

equal as much as 30 000 times the force of gravity have been observed in

a test (ref. 2). None of the many strain measurement instruments available

could survive the tremendous impact forces to provide data on the large

plastic strains generated in the shell of the model during impact.



An experimental method of strain measurement (ref.3) was devised

that involved establishing gage lines on the surface of the model.

Orientation of the model and target were controlled so that gage lines

were parallel and perpendicular to lines of symmetry on the model before

and after the impact test. Physical measurement of the change in length

of gage lines provided principal nominal strain data that could be

analyzed to obtain the maximum level of plastic strain in the model.

Control of the orientation of the model during impact was lost when

test procedures were changed to obtain higher velocity impacts. Strain

data were generated on deformed models that could not be analyzed because

the gage lines were not parallel to principal strain axes and thus the

experimental strain measurements were not principal strains. A method

was needed for the analysis of randomly oriented strain measurements to

obtain the direction and magnitudes of the principal plastic strains.

Analyses of finite strains contained in the literature on plasticity

were not applicable to the measurement of large deformations. The pro-

cedures for the experimental measurement and analysis of large plastic

strains and stresses presented herein were developed to solve this problem

of strain interpretation.

The measurements made in this study and used in the analysis were in

the U.S. customary system of units.. Conversion to the International

System of Units (S.I) was done for reporting purposes only.

SYMBOLS

E • •princlpal~nominial- plastic strain-, cm/cm —

EE AL/L on gage line, .nominal apparent plastic strain, cm/cm

G rise-gage length, cm
2

K strength coefficient, N/cm

L gage-line surface length, cm

L gage-line vector, cm

L' gage-line surface length after deformation, cm

L~' deformed gage-line vector, cm



n strain-hardening exponent

R surface radius, cm

X chord length of a gage line, cm

Y rise measurement, cm

g gage-line strain ratio, (1 + EE )/(! + EE )

y total shear angle, rad

y shear angle adjacent to E principal axis, rad
i i

y shear angle adjacent to E principal axis, rad
2 2

c true strain, ln(l + E), cm/cm

e equivalent strain by distortion energy theory, cm/cm

n principal strain ratio, (1 + E )/(! + E )

0 angle between gage line and principal axis, rad

a true stress, N/cm2

a" deviatoric stress, N/cm

a equivalent stress by distortion energy theory, N/cm2

Subscripts :

m mean

o equivalent

ANALYSIS

The following assumptions were applied in the analysis of large

plastic strains in surfaces of plates:

(1) The material is isotropic.

(2) Elastic strains are neglected.

(3) The state of plastic strain is constant throughout the element.

(4) Orthogonal principal axes of stress and plastic strain coincide,

(5) One principal axis of the .orthogonal set of stress-strain axes

is normal to the surface of the element during deformation.



(6) A gage line established on a metal surface has a uniform radius

before deformation. Although changed during deformation, the

radius of the gage line is assumed to be uniform after plastic

deformation.

(7) Plastic strains are proportional to and have directions parallel

to the lines of action of the stresses acting.

(8) Parallel lines are parallel before and after straining.

(9) Plastic strains result from monotonically increasing or decreasing

equivalent stress.

(10) Equivalent stress and strain associated with plastic flow in

the element are given by the distortion energy theory.

Most of the assumptions are common assumptions in plasticity. Assump-

tion 5 is made to avoid surfaces loaded with friction forces which cause

rotation of the stress axis away from the surface normal. Assumption 6

is needed for use in simplifying the measurement of the radii of the

metal surface. Assumption 9 eliminates stress calculation in locations

where stresses and strains undergo a reversal of sign. In such locations

the final level "of strain can be measured, but the final stress system

cannot be obtained. Thus, the assumptions delineated provide limitations

for the application of this system of plastic strain measurement and

analysis.

The procedure for the analysis involves presenting the geometry for

the strain measurement problem and solving geometric and vector equations

to obtain data on the principal nominal strains and stresses associated

with the large plastic deformations.

Figure-1 (-a)--shows -a- random -element on--a metal surface. Two

perpendicular gage lines are scribed on the surface of the element. In

the figure, gage line OA is perpendicular to OE~. Gage line OA~ makes

an angle 9 with the X-axis, a principal stress-strain axis. Figure l(b)

shows the same element after orthogonal stresses a and a have
1 2

plastically deformed the element. The stresses are parallel to the X-Y

axes as shown. The stresses cause uniform nominal principal plastic

strains E parallel to the X-axis and E parallel to the Y-axis.
1 2

Erecting OTT perpendicular to OA' forms the angle B'OC. This is the

shear angle y-

Physical measurements obtainable from the random element before and

after impact are the change in length of OA and OB~ and the shear angle

y. The principal stresses and strains remain parallel and orthogonal, but

the gage lines OA and OB rotate with respect to the principal X-Y axes.



Consequently, the change in the lengths of the gage lines cannot be direct-

ly interpreted as nominal strain in the random plate element. Relations

will be developed between the changes in the lengths of gage lines and the

shear angle so that the principal stresses and strains and the orientation

of the principal strain axes in the plastically deformed element can be

calculated.

Consider the case where the nominal principal plastic strain E is
2

greater than E . Referring to figure 2, let OA = OB = L, the initial

length of a gage line. Denote the coordinates of point A by (x , y )

and point B by (x , y ). The figure shows the gage lines before and
2 2 '

after plastic deformation. Primes denote the gage line and the

coordinates after straining.

According to assumption 3, each unit element in the plate parallel to

one of the principal strain axes undergoes a uniform plastic strain. The

principal strain parallel to the X-axis is denoted by E . Thus, the

element of length x from point A perpendicular to the Y-axis is

strained uniformly with the nominal principal plastic strain E . The

change in the length of the element is E x , as shown in figure 2.

Similarly, the element of length Y from point A perpendicular to the

X-axis is strained with the nominal principal plastic strain E . The

change in length is E y .

As plastic deformation takes place, point A moves to position A"

relative to the center of the coordinate system at point 0. As gage line

OA is rotated during deformation to position OA'', the shear angle y

is formed. Determination of the angle 9 + y will make it possible to

locate the principal plastic strain axis E on the deformed surface. In
i

a similar manner, point B moves to B' and shear angle y is formed.
2

Since, in general, y is not equal to y , only the sum of the angles y
i 2

can be measured experimentally.

Relations between the experimental variables and the shear angles can

be simply obtained by using vector equations. The undeformed and the plas-

tically deformed gage lines are expressed as vectors. Unit vectors i

and j are parallel to the x- and y-axes, respectively.

L = L cos 6i + L sin 0j (la)

L' = L cos 9(1 + E )i + L< sin 6(1 + E )j (Ib)
1 1 1 1 2 J

r = -L sin 6i + L cos 6j (Ic)
2 2 2 J



L' = -L sin 9(1 + E )i + L cos 9(1 + E )j
O O t f\ n •*

(Id)

Calculations are simplified by using the experimental nominal apparent

strain ratio 3.

1 + EE

1 + EE
(2)

In this ratio, EE is the nominal apparent plastic strain on gage-line

L and EE is the corresponding strain on gage-line L . Ratios of

final gage-line length to initial gage-line length are used to evaluate

1 + EE

1 + EE

The symbol n is used to simplify the nominal principal plastic strain

relations in the calculations.

n =
1 + E

1 + E

(3)

Using the definition of the ratio n and substituting in the vector

equations (1) yield

1 + EE = (1 + E ) cos eVl + n2 tan26 (4a)

1 + EE = (1 + E ) cos eVn2 + tan: (4b)

The ratio 3 is obtained from equations (4)



B = /tan26 + n? (Sa)
VI + n2 tan26

In the experimental plastic strain measurement problem, the ratio n is

not known. Equation (5a) can be solved for n.

n = /tan29 - B2 (Sb)

"W tan26 - 1

The minus signs are omitted from equations (5a) and (5b) since neither of

the ratios can be negative.

A relation for the total shear angle y is found by using the vector

equation

1 L" • L "1 2
= sin Y = ——~~~—:—

Substituting from equations (1) and simplifying yields

(n2 - 1) sin 9 cos 6
sin

{(n2 sin26 + cos20)(sin2e + n2 cos26)}V2

This relation can be simplified by using the trigonometric identity for

sin 26

7 o
sin Y = -7=— v '

2 sin'e + n2 cos^e + (n" * i)51^29]]1/2

Simplification of the denominator yields

sin y = (n2 - 1) sin 29 (6a)

[4n2 + (n2 - I)2 sin226] 1/2

A right triangle can be labeled by using equation (6a) to obtain other

functions of the shear angle, as shown in figure 3. Tan y is obtained

from figure 3.



tan'y = (I2 - PS"* 29 (6b)
2n

The equation can then be solved for n = f(9,y).

n2 sin 26 - 2n tan y - sin 26 = 0

= tan y /[tan y]2
n , sin 29 \/ sin 26

The minus sign is omitted on the radical since n cannot be negative.

The angle y betw

from the vector equation

The angle y between the two vectors L and ~L' can be found
i ' i i

cos Y
i

V(L )2(L')2

After substitution and simplification with the aid of trigonometric

identities, a relation for tan y is found.

tan y = 6 (8)
1 1 + n tan29

In a like manner when vector equations for L and L' are used, the
_ . . . . . . . . ' 2 ... 2

equation for tan y is obtained.
2

tan Y = (n - Dtan 6 . . (9)
2 n + tan29

Equations (8) and (9) indicate that, in general, y is not equal to

y . Setting the partial differentials of y and y with respect to 9
2 . 1 2

equal to 0 gives the location of the maxima.

8Y ' ., .
—L = 0 where (yj at 9 = tan'1 n /2 (10)
99 max



3Y
-^- = 0 where (y ) at 9 = tan"1 n/2 (11),-i '/a

O max

Substitution of values of 9 for maximum shear angles into equations (8)

and (9) reveals that the maximum shear angles are equal although the

maximum values 'occur at different angles of orientation with respect to

the principal axes of plastic strain.

(Y ) (Y ) ." = tan-1 i(nV2- n~V2) (12)
max . 2 max [_ J

A solution for angle 9 in terms of the experimental variables g

and Y is needed to determine the orientation of the gage lines with

respect to the principal plastic strain axes. The relation required is

obtained by eliminating n from equations (5b) and (7)

tan29 - 32 (5b)

.2 tan29 - 1 .

n =
sin 29 Vsin220

Let

A = tan

sin 29

r = tan26.- g2

6 2 i- ari 2 Q itan u i

Substituting A and C into equations (5b.) and (7) and squaring to
eliminate the radicals lead to .

C + J = 2(2A2 + 1)

Then let

10



. . x = sin 29

y = 1 + cos 29

Replace the values for A and C in the equation and substitute x and

y for trigonometric functions of 9. Note that

J- = tan 9

x2 + y2 = 2y

x2 - g2y2
 + 3

2x2 - y2 _ 4

The y term drops out upon simplification and results in an equation for

x2.

32 tan2y

(B2 - I)2 + (62 + I)tan2y

Substituting for x and simplifying results in

2g sin Y _ (13)
sin 26

V(32 - I)2 + 462 sin2

- Equation (13) can be represented by a right triangle with an acute

angle of 29, as shown in figure 4. The figure provides a simple relation

between the angle 6 and the variables 8 and Y. the experimental

measurements. .. ...

tan 26 = 23_sin_jr (14)

B2 - 1

This equation gives the angle of orientation 9 directly from the

experimental measurements of the nominal plastic strain on two orthogonal

gage lines and the shear angle measurement. Then equation (5b) or (7)

gives the value of the ratio ri-



The angle between the E! principal axis and gage line OA' in

figure 2 is 6 + y . From the figure

U + E2)Yi
tan (9 + Y ) = --- = 0 tan 6 (15)

At point 0 in figure 2, the principal nominal strain normal to the

surface AOB is E3. The nominal change in length of a unit gage length

normal to the surface of the deformed element with sides parallel to gage

lines OA' and OB' • is EE3. Strains E3 and EE3 coincide and are

therefore equal.

Volume is constant during plastic deformation. A unit cubic element

with sides parallel to the principal strain axes has a volume equal to

unity before and after deformation.!

(1 .+ EiM.l + E2)(l •+ -E3) -. 1 (16)

Also a unit cubic element with sides parallel to the orthogonal strain

gage lines has Asides of a parallelepiped after deformation. Two sides of

the deformed element are parallel to the plastically strained gage lines,

and the third side is normal to the surface. Constant volume of a unit

cubic element whose sides are not initially parallel to the principal

strain axes may be stated .

(1 + EEi)(l + EE2)(1 + EE3)cos Y = 1 (17)

Combining equations (16) and (17) and the definition of n yields a

solution for the principal strain EI.

(1 + EEjHl + EE2) - 1 (18)

From the definition of n, E2 can be found. Then E3 is found from

equation (16) . The true principal strains are obtained

e. = ln(l + E.) i = 1,2,3 . (19)

Assumptions 3 and 8 require that two parallel lines of equal length

12



will be parallel and have the same strain after deformation. In figure 5,

gage lines A~F and CD are perpendicular and of equal length. Line

ATT will undergo the same deformation as-if it were established in position

CTT. The shear angle developed during deformation in angle ECD will be

exactly the same as in angle AOD. The relations developed for gage lines

such as EC" and CD are therefore applicable to gage lines laid out as

mutually perpendicular at the midpoints of the gage lines, such as AB

and CD. The average plastic strains measured on a pair of gage lines

such as AB and CD would be more representative of the state of

deformation in the element since the nominal strains are more closely

average strains in a small element of surface area.

Flow equations are given by Faupel(ref. 4).

- E° Fa - -fa + o ll i'J»k = 1 » 2 » :

-i - F- L0i 2C°j ak->J i * j + k (20)

In these equations, o and e refer to the equivalent stress and"strain

given by the distortion energy theory.

s - fv<
The true stress-strain diagram obtained experimentally for the

material in the surface being measured is assumed to be linear in the

plastic range on a log-log plot. The equation for the stress-strain

diagram can be written in the form

% = Keo

In this equation, K is the strength coefficient and n is the strain-

hardening exponent. The equivalent stress and plastic strain given by

equations(21)and(22)are related by this equation. After the three princi-

pal true strains are known, the equivalent strain is determined from

equation(22). Then the equivalent stress is found from equation (23).

. 13



Deviatoric stresses are stresses from which the hydrostatic

components have been removed. Hydrostatic-stresses have equal components

in all directions. They do not contribute to distortion energy.

Consequently, they do not cause plastic deformation. The sum of a set of

deviatoric stresses is zero.

a + a + a
1 2 3

= ' 0 (24)

When the equation(24)is combined with equations(20), the resulting

equations reflect assumption 7.

ai 1,2,3 (25)

In equation(25), the deviatoric stresses are directly proportional to the

true plastic principal-strains. .

If the stress normal to the surface is zero or known,.the true

principal biaxial stresses in the surface of the model are obtainable.

For 0, the true stresses become

a a - a
1 1 3

a = a - a
2 2 3

(26a)

(26b)

' - a" = 0
3 3

(26c)

When a is some known value, the true principal stresses in the surface

are obtained by adjusting each of the three principal true stresses

obtained in equations(26)by the same hydrostatic component to give o , the

known value.

If the stress normal to the surface is nonzero and unknown, the true

stress system is indeterminate. For each set of deviatoric stresses, there

are an infinite number of sets of principal stresses. Each set has the

same value of distortion energy, but sets have different values of the

hydrostatic stress component. .-

14



The final level of strain can be determined in the presence of a

strain reversal, but stresses cannot be calculated. Any set of principal

strains can be related to a set of deviatoric stresses if there is no

strain reversal. If the stress normal to the surface is zero or known,

the principal stresses can be calculated, in addition to the deviatoric

stresses.

PROCEDURE

Procedures are presented for establishing gage lengths on metal

surfaces to obtain stress and plastic strain data. Punchmarks are used

to establish the gage lengths. The chordal distance between gage marks is

used with a radius measurement to obtain the surface length between gage

marks before and after deformation. Two gage lines are established

perpendicular to each other. The total shear angle is measured as the

difference between the angle after deformation and the original right

angle. Equations from the section ANALYSIS are used with the experimental

data to calculate the nominal and the true principal plastic strains.

Two stress systems related to the measured strains are considered.

The deviatoric principal stresses are determined. Then the principal

stresses are found for the case where the radial stresses normal to the

surface are zero.

Two perpendicular gage lines are shown in figure 5. Punchmarks are

used to locate the extremities of the gage lines AB and CD. Chord

lengths between punchmarks are measured as indicated in figure 6 by using

a micrometer caliper such as the one shown in figure 7. The instrument

designed to measure the rise is also shown in figure 7. The instrument

is set to zero on a surface plate. The arms of the rise gage contact the

surface, establishing a chord length equal to the rise-gage length, as

shown in figure 6. The rise is indicated on the dial indicator with the

gage spanning each pair of punchmarks.

The gage lines are established accurately perpendicular to each other.

As plastic strain occurs, the gage lines effectively rotate in the strain

field. The change in the right angle y between the gage lines is

measured for use as the total shear angle in the strain calculations. The

radius along each gage line is assumed to be uniform. The rise-gage length

and the rise measurement determine the radius of the surface.

Triangle AOB in figure 8 is used to solve for R as a function of

15



G and Y.

r2 Y

R - IY * I ^

The length of a gage line is determined by the chord length measured

between punchmarks , indicated by X in figure 6, and the radius of the

surface given by equation (27) .

L = 2R sin-1 fXl " (28)

where L is the length of the gage line before deformation and L'',. the

length of the gage line after deformation, is given by equation (28) using

R and X measurements obtained from the deformed gage' lines. Then the

nominal, strain on the gage length is obtained from • ,

L" - L
EE = . -* - l- • • " .. • • . • - • - : (29)

1 L . • '
- 1 ;

where EE and EE identify the nominal strains on -two originally
1 2 .

perpendicular gage lines and EE identifies the nominal strain. normal to

the surface of the two perpendicular gage lines. Measurement of .the shear

angle, the change in the right angle between two gage lines, completes the

experimental measurements.

The experimental nominal strain ratio g is obtained from the

definition, equation (2).

1 + EE
3 = - * - 2~ (2)

1 + EE
i

The original angle 9 between gage line L and a principal strain axis

(fig. 2) is a function of g and the shear angle measurement Y- The angle

6 is given by

e = 1 tan- if 2B sin y (14)
2

Then the principal strain ratio [eq.(3)] is obtained by using equation (5b).

16



(5b)
i2 tan29 - 1

The principal plastic strains are obtained with equations(18), (3), and(16>

= F005 V(\ + EE )(1 +• EE ) 1
i [_ n . i 2 j

+• EE ) /z - 1 (18)

E = • n(l + E ) - 1 (3)
2 1

E = — - 1 (16)
3 + +

The angle between the deformed gage line L' and the principal strain axis

E is 6 + Y (fig.2). The angle is obtained by using equation (15).

0 + Y = tan 'Hn tan 6) (15)

True principal plastic strains are found by substituting the nominal

principal strain data into

e± = ln(l + Ei) i = 1,2,3 (19)

Then the equivalent true strain by the distortion energy theory .is found. _.

from

eo = "rV^ - O2 + (e - e )2 + (e - e )2 ( 2 2 )
O 0 ^ 1 2 2 3 3 1

Dynamic true stress-strain properties of the model material are correlated

with the exponential equation(23)to obtain values for the strength

coefficient K and the strain-hardening exponent n. Equivalent stresses

are then found from

°o = Keo (23)

Deviatoric stresses can be obtained by using

17



~ e i = 1 > 2 ' 3 (25)

Finally, if the stress normal to the surface is zero, the true principal

biaxial stresses in the surface of the model are given by equations (26) .

a. = aT - a' " i = 1 , 2 , 3 (26)1 1 3

RESULTS

Analytical equations and procedures are presented for use in the

experimental measurement and analysis of large plastic strains on a metal

surface. Two orthogonal'gage lines of equal length are established on the

unstrained metal surface. The gage, lines may have a random orientation

with respect to the principal axes of plastic strain.

At a free surface of a flat or curved metal structure, the stress may

be zero or have some value normal to the surface in the absence of

friction. Any such surface will have a principal stress axis normal to the

surface. The other two principal axes of an orthogonal set will lie in

the metal surface. .

The change in 'length of the gage lines plus the change in the right

angle between the gage lines are measured. Equations are developed to

locate the principal axes of strain with respect to the deformed gage lines

and to evaluate the principal strains in the surface of the metal.

Equations based on the distortion energy theory are used to obtain

values for equivalent strains. Flow equations from plasticity are used,.....,

with the condition that the sum of the deviatoric stresses is zero, to

obtain a proportionality between deviatoric stresses and the experimentally

measured strains.

True stresses can be obtained if the stress normal to the surface is

zero or known. If the stress normal to"the surface is nonzero and unknown,

the true stresses are indeterminate. If a strain reversal occurred,

strains can be measured but the stresses cannot be calculated.

18



DISCUSSION

Experimental Data

The behavior of experimental strain data was investigated by plotting

variations of the experimental variables in a constant field of plastic

strain. The case selected for study was 50 percent nominal plastic strain

in simple tension since the method was developed for the purpose of

measuring large plastic strains. The nominal principal strains in the

uniform strain field are

E = -0.1835
i

E = 0.500
2

E = -0.1835
3

The nominal principal plastic strain ratio r\ is also constant.

1 + E
n = = 1.837

1 + E
i

The angle of orientation 6 was allowed to vary from 0° to 90° to study

the variation of the experimental variables in the uniform strain field.

Equation (6b) was used to obtain data for the graph of y as a

function of 9 shown in figure 9. The graph shows that the shear angle

Y is zero when the gage lines are parallel to axes of principal strain.

The angle y increases almost linearly with 0 to approximately 30°.

The maximum value occurs at 45°. The maximum value of y, 32.88°,

constitutes a considerable distortion of the original right angle between

the two gage lines.

Equations (8) and (9) provided data for the graphs of y and Y

shown in figure 10. The graphs show that the individual angles of

rotation of the gage lines are zero when the gage lines are parallel to

the principal strain axes. They are equal at an orientation angle of 45°.

The maximum values and the orientation of the individual angles of rotation

of the gage lines is a function only of the principal strain ratio n •
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Equation (10) gives the orientation angle 9 for the maximum value of y ,

and equation (11) gives the orientation angle for y • The maximum value,

which is the same for both angles y and y , is determined by equation
.•I 2

(12). As shown by figures 9 and lO^the total shear angle y is quite

sensitive to the angle of orientation. For this case of 50 percent

plastic tensile strain, the total shear angle y is about equal to the

orientation angle 6 over the range from 0° to 30°.

Data for the graphs of EE and EE shown in figure 11 were

obtained by using equations (4a) and (4b) . The apparent strain on a gage

line varies with the orientation of the gage line in the plastic strain

field. Principal nominal strains are equal to the nominal strains

measured on gage lines have values in between the principal values of

strains E and E . When the orientation angle 9 has a value of 45°,

the nominal plastic strains measured on gage lines are equal.

A graph of the experimental strain ratio 8 versus the orientation

angle 0 is shown in figure 12. Data for the graph were calculated with

equation (5a). Again experimental strain ratios are equal to principal

nominal plastic strain ratios when 6=0 and the gage lines are

parallel to the axes of principal strain. The graph passes through a

value of 1.0 at 9 = 45°. This reflects the fact that the nominal

strains on the gage lines are equal at that orientation, as illustrated in

figure 11. .

As shown by equation (8), y is a function of the principal nominal

strain ratio n and the orientation angle 9. The orientation angle for

the gage line L" in the strained position and the E principal strain

axis is 6 + y . This angle would be expected to be a function of the

same two variables since it is different from y by the angle 6.

Equation (15) is the required relation. Figure 13 shows the variation of

9 + y as a function of 6 for the special case of 50 percent nominal

plastic tensile strain.

The possibility of neglecting the shear angle y and using two

experimental strain measurements EE and EE as principal nominal

strains to calculate a value for equivalent strain was investigated. The

error involved in neglecting the shear angle was obtained by taking the

difference between the calculated value of strain and the uniform

equivalent strain of the 50 percent simple tensile strain field. Values

of apparent equivalent strain are plotted against the angle 9 in figure

14. Correct values of 0.403-cm/cm equivalent strain were obtained only at

0° and 90°. The maximum error, -7.45 percent, occurred at 30° and 60°.
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The error at 45° was -7.0 percent. If all gage lines were within ±10° of

alinement with the principal axes of strain, the maximum error in assuming

that measured equivalent strain was the true equivalent strain would be

-1.0 percent.

Accuracy

Sources of error in the measurement of permanent deformations include

instrument errors and punchmark deformation. Other sources of error to be

assessed in using this method of measurement include the effects of

averaging strain on the gage length and the effect of variation of the

radius over the gage length. The assumption that elastic .strains may be

neglected may incorporate error in the form of elastic strains associated

with residual stresses.

Errors in measurement varied with the level of strain being measured.

Strains less than 0.1 percent could not be detected. Accuracy of

measurement increased as the level of strain being measured increased.

Two experimental measurements are required to determine the length of a

gage line on a curved surface before deformation. Two more measurements

are needed to obtain the deformed length. Measurement of the angle

between two gage lines is a source of error. Errors were analyzed for

three levels of strain: 1, 10, and 50 percent. The total error in strain

measurement is the sum of the errors in the pretest and the post-test

•measurements. Results of the analysis are listed in table I.

The error analysis presumes that -the pretest gage lengths are laid out
/

and measured on a surface with a relatively uniform radius of 32 cm. .Post-

test error calculations are based on impact-deformed surface radii as short

as 4.6 cm. All errors are based on.gage lengths of 5.08 cm.

The error in a rise-gage reading was ±0.0013 cm when the jeweled dial

indicator was read to the nearest whole division. The gage length of the

rise gage shown in figure 7 is 3.175 cm. The rise-gage frame shown

separately has a gage length of 6.350 cm. The large frame is used to

measure surface radii greater than 10 cm. The smaller frame is used to

measure radii less than 10 cm. All the pretest radius measurements were

made with the 6.350-cm frame, and the apparent strain associated with the

rise-gage reading error was small, as shown in table I. The effect of

rise-gage error increased when the 3.175-cm frame was used to measure the
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minimum radius on the deformed model. The maximum in this case was 5.6

percent error in the measurement of 1 percent strain.

The error in a dial caliper reading was ±0.0013. cm when the dial was

read to the nearest division. This error caused an error of 2.5 percent

in the measurement of 1 percent strain. Error decreased as the level of

strain increased. This error component was the same for measurements

before and after the test.

Deformation of the model affected the fit between the punchmarks and

the points of the caliper. The centerline of a punchmark rotated when

the surface radius changed. The shape of the conical punchmark surface

was deformed by the plastic strain in the'metal surface. This source of

error was a maximum' for the greatest change "in radius during deformation

of the model. 'This error increased-as- the level of strain increased, but'

the percent error was 'the same at all thre'e levels of strain;

Applications

The strain measurement system is applicable to high-velocity impact

since the gage lines established on the surface of a model do not

contribute to inertia forces generated during impact. Strain gage lines'

have been established ori the surfaces of 0.61-meter- (2.0-ft-) diameter

model containment vessels tested under conditions of high-velocity impact

against a reinforced-concrete block. Extremities of gage lines were

located by punchmarks. The strain measurement system survived the impact

tests described in references 2 and 5.

As noted'in the section ANALYSIS, the assumptions applied limit the

application of this method "of plastic strain measurement. Wherever the'

assumption's are in question, the use of this strain measurement metho.d

must also be questioned. The method cannot be used on a surface in the

presence of surface friction forces. One of the principal stresses acts

normal to a free surface. A friction force-acts to change the direction of

that principal- stress^ so that it is not perpendicular to the surface, and

thus assumption 5 does not hold. Stresses and strains are assumed to

increase or decrease moriotonically. This assumption eliminates -the

determination of principal stresses in surface locations where stresses and

plastic strains undergo a reversal of sign." In such locations the strains

can be measured, but the final stress system cannot be obtained.

The stress analysis of the hollow-sphere impact test reported in
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reference 3 involved gage lines parallel and perpendicular to lines of

symmetry on the model before and after deformation. Thus, the orthogonal

gage lines were located parallel to the principal strain axes. The

equations developed in the analysis section of this report are presented

for use in the analysis of gage-line strain measurement data obtained from

surfaces where the orthogonal gage lines may not be located parallel to the

principal plastic strain axes.

This strain measurement system could be useful in tests of models or

structures where the plastic strains are greater than the strain range

measurement capability of available electronic or mechanical gages.

Strains could be measured in cylinders tested under conditions of combined

tension and torsion. Large creep deformation could be measured. Strains

generated during burst tests of spheres and cylinders could be measured.

Strain gage lines may be located on surfaces by other methods to

obtain lines capable of surviving other test conditions. For example,

gage lines might be established by etching or scribing lines or points on

surfaces of a model. Optical systems could be utilized to make possible

the use of smaller gage lengths in order to increase the accuracy of

measurement, or to obtain a more accurate measure of the average strain in

the model in the presence of strain gradients'.

This system of strain measurement could be used to augment other

instrumentation sensitive to small strains since the system presented in

this report cannot be used to measure small strains. The system can be

used to obtain reliable measurements of large permanent deformations on

metal surfaces wherever large strains are expected to occur.

The punchmarks defining two perpendicular gage lines were formed in

the surface of the metal with a four-punch tool so that gage lines were

accurately perpendicular before the test. After the test, angles were

measured to the nearest 0.2° so that the error in the determination of the

shear angle y was ±0.1°. Figure 9 is a plot of the shear angle as a

function of the angle of orientation in the strain field. The horizontal

slope at 0 = 45° corresponds with the gage-line orientation for the

maximum error in strain measurement resulting from error in the shear angle

measurement. As shown in table I, angle measurement error made the largest

component of total error at the 1 percent strain level. Shear angle meas-

urement error drops to 1 percent as the orientation angle goes to 0°. This

source of error is less than 1 percent for measurments in a 15 percent

strain area. The error decreases at higher levels of strain.

Total errors are the maximum errors that occur when all of the
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component errors are maxima and act in the direction to increase the

total error. Total errors are relatively large in areas of low strain.

The error is within the range required for engineering accuracy of ±10

percent at higher levels of strain. Figure 15 shows that plastic strains

above 3 percent have total errors in measurement of less than 10 percent.

In. the usual case, some errors will be nonadditive or compensating

so that the total error in a measurement will fall below 'the curve in

figure 15. Error in the measurement of small strains can be reduced by

keeping the.orientation angle between a gage line and a principal strain

axis as small as possible. Error contributions resulting from strain

averaging over a gage length, variation of the radius on a gage length,

or the presence of residual stresses and elastic strains must be.

evaluated .for each measurement problenv. Errors from these sources are in

addition to the total error graphed in figure 15.

CONCLUDING REMARKS .. ,.. ; . .

Equations are derived and analytical procedures are .presented for

the experimental measurement of large plastic strains in the surface of

a plate. Two perpendicular gage lines of equal length are established

on the surface of the plate before deformation. The change in the lengths

of the gage lines and the change in the right angle between the gage lines

after deformation constitute the required experimental data.

Analysis of the data yields the principal plastic strains and the

angle between an experimental gage line and a principal strain axis in

the surface of the plate. True strains can be calculated and used to

obtain equivalent strain. The behavior of the..experimental variables was

investigated by evaluating equations for the case of 50 percent permanent

plastic deformation in simple .tension.

Sources of error in strain measurement are discussed. It was shown

that permanent plastic strains of 3 percent or more could be measured

with engineering accuracy. Although the maximum error in the measurement

of 1 percent strain is about 25 percent, the accuracy increases for

larger strains. When the plastic deformation is the result of

monotonically increasing strain, an orthogonal set of deviatoric stresses

can be calculated. In addition, if the stress normal to the surface is
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zero or known, the true stresses associated with the plastic deformation

can be obtained.

Lewis Research Center,

National Aeronautics and Space Administration,

Cleveland, Ohio, November 19, 1973,

770-18.
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TABLE I. - ERRORS IN PLASTIC STRAIN MEASUREMENT

Measurement

Pretest :
Rise gage (R = 32.1 cm

nominal)
Dial caliper

Post-Test:
Rise gage (R < 4.65 cm)
Dial caliper
Punchmark deformation
Shear angle (±0.1°)

Total error, percent

Level of plastic strain, percent

1 10 50

Error, percent

0.2

2.S

5.6

2.5

2.0

11.8

24.6

0

.3

.6

.3

2.0

1.3

4.5

0

.1

.1

.1

2.0

.4

2.7

(a) Before deformation.

(b) After deformation.

Figure 1. - Random plate element before and after
uniform plastic deformation.
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Figure 2. -Geometry of plastically strained gage lines.

(H2-l)sin 29

Figure 3. - Right triangle for angle y.

20 sin r

Figure 4. - Right triangle for angle 28 from
equations (6).
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/- Punchmark (typical)

r
a

t
a -j— a

Figures. -Gage lines.

- Rise gage
r- Dial indicator

/ contact point

Figure 6. - Rise-gage measurement on a curved surface.
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Dial caliper

Figure 7. - Rise measurement gage with 3.175-cm (1.250-in.) gage
length, rise-gage frame with 6.350-cm (2.500-in.) gage length,
and dial caliper used for gage-line chord length measurement.

Y(rise)

R - Y

Figure 8. - Radius measurement using the rise gage.
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Figure 9. - Shear angle as function of orientation angle for
50 percent nominal plastic tensile strain.

., (n -1) tan 9l 5-
1+n tan^B

'U ten 85—
n + tan'fl

5 —I

20 40 ' 60

Orientation angle, 8, deg

100

Figure 10. - Shear angles yj and ̂  as 'unction of orien-
tation angle for 50 percent nominal plastic tensile strain.
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iff

~ 0

-.2

'<- EEj • (1 + Ej) cos 8 Vl+nZ tan%-l

EE2 • (1 + Ej) cos 8><i2 + tan^ -1

20 40 60 80
Orientation angle, 8, deg

100

Figure 11. - Nominal apparent strain EE on two perpendi-
cular gage lines as function of angle of orientation with
a principal strain axis.

2.0 r—

1.0

20 40 60

Orientation angle, 8, deg
80 100

Figure 12. - Strain ratio as function of orientation
angle for 30 percent nominal plastic tensile strain.
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.5

Sc .4

o 40 — 20 40 60

Orientation angle, 6, deg

100

Figure 14. - Apparent strain as function of orientation angle,
neglecting shear deformation and assuming that strains
on two originally perpendicular gage lines are nominal
principal plastic strains.

20 40 60
Orientation angle, 0, deg

80 100

Figure 13. - Orientation angle 8+Y i as function of orien-
tation angle 9 for 50 percent nominal plastic tensile strain.

35 40 4520 25 30
Permanent plastic strain, percent

Figure 15. - Total error in experimental strain measurement-as function of permanent plastic strain.
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