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CHAPTER I
INTRODUCTION

The diffraction by a, right-angled wedge is an important

geometry in the analysis of many radiating systems. Although the

diffraction of electromagnetic waves by a perfectly- con duct ing wedge

has been studied extensively, few results exist for the case where

one surface of the right-angled wedge is covered by a dielectric
slab, an absorber coating, slightly rough or is corrugated. Such

wedge configurations are of importance to problems of technology not

only because they occur in practical structures but also because of
design considerations where there is a need for the modification or

control of edge diffraction. It is extremely difficult to find an
exact solution to the diffraction by a wedge with coated or corrugated

surfaces; however the problem becomes tractable if the boundary con-

dition at this surface can be approximated by a surface impedance.

A one-side dielectric loaded right-angled wedge is depicted in

Fig. 1. If the dielectric slab is thin enough and the radiation from

the end face of the slab at the edge of the wedge can be neglected,

the dielectric-covered ground plane can be approximated as a reactive

surface. This approximate electromagnetic boundary condition depends

on the polarization of incident wave. For the TE case, the surface

admittance, yg, is given as

v - i (S<0 cotUd)
ys ~ " J z

where £d is obtained from the solution of the transcendental equation
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Fig. 1. The 2-D conducting right-angled wedge with one side
covered by a dielectric slab and a Tine source in
the cylindrical coordinate system. "

(Cd)cotUd) + j(er-l)(kd)2-Ud)2 = 0;

whereas for the TM case, the surface impedance

z
= 3 tan(cd),

where (?d) is determined from another transcendental equation

Ud)tan(ed) - ^(er-l)(kd)2-Ud)2 = 0.

k and z are the wave number and characteristic impedance of free
space, and d and e are the thickness and the relative permittivity
of dielectric cover. Admittedly the surface impedance is an 'approxi-
mate boundary condition of limited validity, but its use may be ade-
quate to approximate the important characteristics of the scattered



field; moreover, in principle it can be extended and improved[ll].
Other physical configurations which can be approximated by this
impedance model are a conducting surface coated with an absorbing

material, a special case of a rough surface[23] and a corrugated

perfectly conducting surface with rectangular grooves, providing the
groove spacing is small compared to the wavelength.

The problem considered in this report is the diffraction of

plane and cylindrical electromagnetic waves normally incident on the

edge of a right-angled wedge; where one surface of the wedge is repre-
sented by a uniform finite surface impedance and the other is perfectly

conducting or has a surface impedance of zero. The diffraction of an

obliquely incident scalar spherical wave is also treated. The solution

is formulated in terms of two scalar fields which satisfy a uniform

impedance boundary condition at one surface of the wedge and a Neumann

or Dirichlet condition at the other.

The difficulty of this mixed boundary condition can be overcome

by a simple functional transformation. The transformation is made in
such a way that the mixed boundary condition becomes a simple homo-

geneous one. The Green's function resulting from the transformation
can thus be found in the usual way. The final solution is obtained by
an inverse transformation. This idea was first given by Lewy[15] and

Stoker[24] who studied problems in water wave theory. The same idea
has been applied by Karp and Karal[7,9], Chu[l], Karalet al[8] and

Chu et al[2] for solving electromagnetic diffraction problems for a

right-angled wedge; one of its surfaces sustains a surface wave, while

the other is a perfectly conducting surface. The wedge is illuminated

by a normally incident plane wave, a magnetic line source on the
vertex or.an incident surface wave. In all the above cases, the

solution ..is obtained by requiring that after the inverse transfor-

mation, the derivative of the total field and the field itself must be
continuous across the positive y-axis: x=0, y>0 (see Fig. 2). The
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Fig. 2. The surface impedance model of a 2-D
right-angled wedge with one wedge
surface covered by a dielectric slab.

solution is given in the far zone. In the case of a normally incident
plane wave illumination, the diffracted field becomes singular at the

reflection and shadow boundaries. Karp[10] also obtained a two
dimensional Green's function for a right-angled wedge under an im-

pedance boundary condition which does not support surface waves. One
of the constants in his solution is, in general, difficult to compute.
Using a different method ve have obtained a simple expression for this
constant.



In this report the transformation technique is extended to solve
the diffraction of spherical waves. Also the relationship of the
scalar solutions to the EM problem are considered. The transformed
solutions consist of some special Green's functions which satisfy
Neumann or Dirichlet boundary conditions at the surfaces of the wedge.
Integral representations are obtained from the eigenfunction expansions
of these Green's functions. The integrals are then evaluated asymp-
totically via the modified Pauli-Clemmow method of steepest descent[20]
to obtain a far-zone approximation. The solutions are given in terms
of a geometrical optics field and a diffracted field. The geometrical
optics field consists of the incident field and the reflected field
which comes from pole contributions to the integral. Saddle point
contributions from the integral yield the diffracted field. A dif-
fraction coefficient is obtained which is also valid in the transition
region of the shadow and reflection boundaries. The geometrical optics
field is discontinuous across the shadow and reflection boundaries;
however the total field, which is the sum of the geometrical optics
field and the diffracted field, is continuous.

The scalar diffraction coefficients are derived in Chapter II.
The wedge illuminated by a line source is treated first. By letting
the line source recede to infinity, the diffraction coefficients for
plane wave illumination are obtained. The problem for a point source
illumination of the wedge can be related to that of a line source
illumination by a Fourier transformation on the z (edge-directed)-
coordinate. The scalar diffraction coefficients are composed of
trigonometric functions and Fresnel integrels which are easy to com-
pute.

In Chapter III, the diffraction of normally incident electro-
magnetic waves is treated. A ray-fixed coordinate system is introduced
to represent the diffracted electromagnetic field. When the components



of the, incident and diffracted fields are expressed in this'coordinate ^

system, and the only leading term in the asymptotic solution is re- '

tained, the resulting expression for the dyadic diffraction coefficient

reduces to a sum of two dyads; in the matrix notation, this diffraction-
coefficient is a 2x2 diagonal matrix. . -

It is shown in Chapter IV that the solution derived in the ;
preceding chapters can be reduced to that of a perfectly-conducting

wedge[20] and that it can be applied to a right-angled wedge with an
impedance boundary condition illuminated by a magnetic line source

at its vertex[9]. The radiation from a magnetic line source located

close to the -reactive surface of a right-angled wedge and the radiation

from slots in truncated, dielectric-covered surfaces are considered.

In both cases, the calculated and measured patterns are in good

agreement. Patterns are given for different impedance-loaded wedges ;-.•• ' -•

illuminated by a magnetic (or electric) current line source at dif-

ferent locations, and some observations are made concerning the •-: v
behavior of the scattered field. n>,,

We conclude this chapter by briefly describing the related work
of Felson[3], Malyughinetz[17,18] and Mohsen and Hamid[19]. Feflson

has solved the scalar wedge diffraction problem for an arbitrary- -I
angled wedge when the surface impedance is proportional to the radial
variable p. Because of this special boundary condition, the problem

is separable and a Green's function can be obtained by standard

methods. The uniform impedance boundary condition in our problem

makes it impossible to apply the separation of variables method

directly in this way.

*
Malyughinetz considered the scalar diffraction by an arbitrary-

angled wedge with different impedance boundary conditions on its^two.

surfaces; he restricted his solution to plane wave illumination. The

solution is obtained by a method analogous to the one used by



Peters[21] and Senior[22]. With this method the differential equation

and boundary conditions are expressed as a difference equation for the

determination of a regular function whose real part represents the

velocity potential. The exact solution thus obtained can be applied
to our problem for the plane wave illumination if one of the surface

impedances vanishes; however the integrals in his solution are diffi-
cult to compute because they are improper with meromorphic functions as

their integrands. At shadow and reflection boundaries, his solution

appears to be-singular.

Mohsen and Hamid have made a different approximation in their

approach to the diffraction of electromagnetic waves by a perfectly-

conducting arbitrary-angled wedge covered by a thin dielectric slab

on one surface. They treat the diffraction of an E-polarized plane

wave normally incident on the edge. It is assumed that the dielectric

slab is thin with the relative permittivity not much larger than

unity and that the slab is in the illuminated region. By imposing an

approximate boundary condition, Es * TE1, which is valid only in the
far zone, at the dielectric covered surface, where r is the plane
wave reflection coefficient for a dielectric slab on an infinite

ground pTane, the- solution is obtained in an integral form, which is

then evaluated asymptotically in terms of Fresnel integrals.

CHAPTER II
SCALAR WAVE DIFFRACTION

In this chapter the diffraction by a right-angled wedge is
formulated mathematically as a boundary value problem. One side of

the wedge surface satisfies a uniform impedance boundary condition;

the other a Dirichlet or Neumann boundary condition. Plane wave,

cylindrical wave and spherical wave illuminations of the edge are

considered separately.



A. Cylindrical Wave Illumination

Consider a z-directed, uniform line source of unit strength
radiating in the presence of a right-angled wedge with its edge also
oriented in the z-direction (see Fig. 2). The total field .Ua, which
consists of the incident and scattered components, satisfies the scalar
wave equation

(1) (V2 + k2) Ua = - 6(x-x ' ) 6(y-y')
1 b

with boundary conditions

aua

(2)

(3a)

—£ + x.ua = oji \/ a 018y b b

ua = o

*
9

•
>

$ = 0

, _ STT
ffl ™" 7 "̂̂

2

or

(3b) - 0

(4) Lim /p~ (Up,a + j k Ua) -^0 , 0 <
ir*"00 b b

and

(5) Ua is finite except at the point (x'.y
1).

b

Here v£ is the two dimensional Laplician operator, fi(x-x') is the Dirac
Delta function, k is the wave number of the linear, homogeneous, iso-
tropic medium surrounding the wedge. Condition (2) is a surface

8



impedance boundary condition; the subscripts a and b are used to
denote the different surface impedances required in the EM problem
to follow. In an acoustic problem, the surface impedance expresses a
ratio of pressure to velocity; in an electromagnetic problem, it is
a ratio of the tangential component of the electric field to the
tangential component of the magnetic field. An impedance boundary
surface may arise from an absorbing coating or thin dielectric slab
on the surface or corrugations in the surface. Condition (3a) repre-
sents a soft boundary for the acoustic case whereas (3b) represents a
hard boundary for the acoustic case; mathematically these are the
homogeneous Dirichlet and Neumann boundary conditions, respectively.
Condition (4) represents the Sommerfeld radiation condition and (5)
represents the Meixner edge condition. A time dependence,
assumed and suppressed.

1

Let us make a functional transformation

(6) V = (fp- + X) U.

For simplicity, let U represent either Ua or U^. By using the fact
2 2 3 3that the operators (v^ + k ) and (^- + x) commute and y- 6(y-y') =

g|r<s(y-y'), V must be such that

(7) (v* + k2) V = (̂ r- X) 6(x-x') 6(y-y')

and also satisfies the boundary conditions

(8a). V = 0 ; <{. = 0

and



V = 0
(8b) a

3V.

and the Soranerfeld radiation condition. It is worthwhile to mention

that this transformation technique cannot generally be applied to an

arbitrary-angled wedge since the boundary condition of V at the other

wedge surface does not become simple except for some special angular

space which, in this case, is a right-angled wedge. The function V

need not be finite at the origin because it involves a differentiation

of U. Let us consider a Green's function G which satisfies the

conditions

(9) (v* + k2)G = - 6 (x -x ' ) 6(y-y') , 0 < <0 < |^

(10) G = 0 * = 0

and conditions (3), (4) and (5) for the wedge. It can be shown that

(lla) G = -
m=0

- cos (*+*')], for (3a)

and

m=0 T -3

G - -
m=u

)], for (3b),

where .

10



0 <_ p, p1 < - ,

and

e m = 1 ' m = 0

= 2, m i- 0.

Jvm(kp) and Hv (kp) represent the cylindrical Bessel function

of the first kind and the cylindrical Hankel function of the second

kind, respectively, and

when P < P'

p > p1

p when p > p'

P' P < P'

r\

Applying the operator - (j-- - A) to G, we obtain a unique

function ty = - (T—r.- x)G, which satisfies not only the conditions
oy

imposed in U, but also condition (5). This function 4* is a particular
solution of U. The complete solution to U is the sum of the particular
solution and the homogeneous solution. By using separation of variables
and applying the radiation condition, it can be shown that the homo-
geneous solution is of the form

00

(12) I

This homogeneous solution is singular. Since U must be finite,

V cannot be too singular. Hence, of all the terms in Eq. (12), only

11



those terms for which vm < 1 are retained in the construction of V.

Note «m = 0 and vm = |m if Eq. (3a) holds, while &m = 0 and vm = ^2*1

if Eq. (3b) holds. Thus V contains some parameters which are to be
determined.

We shall now introduce another approach to obtain the homogeneous

solution for V[10]. Consider the Green's function W, satisfying the

conditions (1), (3), (4) and (5), and the boundary condition

(13) 0* 0 , + = 0. . . .

It can be shown that W can be given by a convergent eigenfunction
expansion as

(14a) W - - m=0

) for (3a),
%j

and

<14b) " • - U •. V1*''
(*+*')] for (3b)

From Eq. (1) we can prove that

(15) (7t
2 + k2) [|f, * W] . - (ji, + ^ «(x-x ' ) «(y-y) . 0.

SF ft W
Hence the function H = —- + — is a solution of the homogeneous wave

equation. Furthermore, this function, H, obeys conditions (3a) (or

(3b)) and (4), vanishes at 4> = 0, satisfies the radiation condition and

12



behaves at the origin like the non-vanishing terms in the series

Eq. (12) which was used to represent the singular solution to be added

to i|i. Therefore, we obtain a complete solution for V as

(16) V - - ( ^ - A j G + Cfffr+l j f).

where C is a constant to be determined.

Once V is found, we can obtain the solution for the problem

involving U since Eq. (6) can be integrated. A particular solution

of Eq. (6) is

.y

(17a) U = e~Xy eXC V(x,?)d5 , Re X > 0
P i _oo

.0

(17b) u.= -e~X y

P J
Re x < 0.

It should be noted that the above integrals are convergent and
hence exist. In the far zone, we observe that U, V, 6 and W have the
asymptotic formulas

(18a) 6 -»S_-__g( ( >;x ' i y ' )

(18b) w'-

(18C) V -*£-i-v(*;x'.yl)

and

(18d) ' U -

^

13



Here G, V and W are known functions and U is to be found. Since

the far-zone field is of interest, only those terms which are of
I g

0(—) are retained, the operator ^—• can be approximated then by

-j k sin<j>; thus we obtain

(19) (-j k sin* + x)U = V,

which can also be written as

U _, //+ *t \
(C-l)

In Appendix I, G and W are transformed into the integral repre-

sentations and then computed asymptotically for the large parameter

PPI . From the asymptotic solution, we can identify the ray-optical

behavior of the field. The incident field is

x - jksimj) x - jksin*
-
- j

-JM p2+P l2-2pp 'cosU-f))1)
x e Hlir-|<M'

where H(t) is the Heaviside unit function defined as

(21) , H(t)
_ To , t <
- \1 . t >

From this we obtain

(22) C = 1.

Thus Eq. (20) becomes

x - jksin<|>

14



The reflected field from the surface at <j> = 0 is given by

(24) Ur =-R x I- 2j

'cos (++* '))' 1 / 2

~JkJ p +p ' -2pp 'cos
HU-IWI).

where R is the reflection coefficient for an impedance surface, which

is given as

(25) R _ jksin<))+X
jksin<j>-x

s ^The reflected field due to the perfectly-conducting surface 4> = -S- is

(26) .4-
irk(p2+p|2-2pp lCOs(ir-U+* l))1/2

-j k Jp 2+p'2-2pp' COS (ir- (<))+(}. ') -
x e

where "-1" and "1" are the reflection coefficients corresponding to

the boundary conditions (3a) and (3b), respectively. The incident and

reflected field components are found from the pole contributions en-

closed in the appropriate closed path which is given in Appendix I.

The saddle point contribution yields the diffracted ray field. There-

fore, in accordance with the geometrical theory of diffraction, U can

be written as

(27) a
b

in which

15



D is the diffraction coefficient for the boundary condition (3a) anda
Db is the diffraction coefficient for condition (3b), which are given
as

A. Dc - jksin<j> Dnl
(28) D = a s - . 3'{* '

where

(29b)

and

. - jksin<f>a

(29a) D , = - ^—: i 2 sin*- [cos 4- + cos 5-]^ +

-

(29c) Ds = jd+(8-)F[KaV)] + d-(B

- [d+(e+)F[Ka+(e+)] + d-(3+)F[Ka'(e+)]j

(29d) d*(e)

X. D 0 - jksin<(. D.
D = b g2 h
ub x

16



where

r
- -(31 a) Dn9 = - 42 sinf [cos£- - cosS-] +92 3/2dT L 3 3 3

g(e+)F[Ka+(e+)] + d'(3+)F[Ka'(e+)]

(31b) Dh = [d
+(3")F[Ka+(3")] + d"(e')F[Ka"(

+ [d+(3+)F[Ka+(B+)] + d'(B+)F[Ka'(B+)]]

and

±
B~ = * ± *', K = ^. ,j

..2
(32) Ffca^e)] - 2j Ka*(B) e j K a ( B ) f _

'

dt.

where the positive branch of the square root is taken, and

- a±(3) = 1 + cos (-3+3 N**).

The value of N~ is determined by the integer which most closely
satisfies the equation:

3 N^ - B = ± ir.

Outside the transition regions of shadow and reflection

jtries, (Ka~(B) » 1,
can be simplified as

boundaries, ( x r a B ) >;> 1. F[<a±(B)] in Eq. (32) tends to 1. DS'and

17



(33)

and

(34)

D =

Dgl

92

4e sin|

COSY- - C0s|(4>-<|>' ) COSj1- - C0s|(*-*' )

cos cos

•f- - COST(<J>+<t>')
O O —

which become singular when

reflection boundaries.

) = ^- + 2Nir, i.e., at the shadow and

Thus, the region surrounding the wedge can be divided into three

regions by the reflection boundary <{> = u - <j>" and shadow boundary

4> = TT + 4 > ' , such as shown in Fig. 3.* The total field is given by

(35)

u u u

u + u

TT -

IT + <)>' < (j) <
3TT

When the line source is near the impedance surface and far from

the edge of the wedge, the surface wave is excited if the impedance

surface supports a surface wave. The strength of excitation of the

surface wave is assumed to be the same as those due to a uniform line

source located above an impedance surface of infinite extent. Let

DS be the excited surface field. It can be shown that ,

*We have chosen the example where only the surface <|>=0 is'illuminated;
the discussion for the two other possible cases follows in an
analogous way.

18
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Fig. 3. The reflection boundary and shadow boundary of a line
source illuminating on a 2-D right-angled wedge.

(36) x > 0

where 3 = Ik^+x1" is the wave number of the surface wave. This
excited surface wave propagates along the impedance surface 4>=0 and
does not radiate until the impedance surface is terminated by the
edge of the wedge. The source is assumed to be sufficiently removed
from the edge so that the infinite surface representation is valid.
Chu[l,2] studied the radiation field of the surface wave diffraction
by a right-angled wedge in which TE and TM surface wave diffraction
were considered. TE surface wave diffraction corresponds to our

19



problem with the boundary condition (3a); TM surface wave diffraction,
the boundary condition (3b). The TE surface wave diffracted field,
Usa, was given [1] as

Usa - Us Dsa

whereas the TM surface wave diffracted field

H 0-.ikp
(37b) U«b = Us Dsb S_

where

(38a)

and

sa B I?- *Bl Uk jksin<j>-x

(38b) [IT sinl-= A — - _ - _
sb rto Uk jksin<j)-x

A and B, are constants and are given by

(39)

1^/3
3 I

and

(40) n _
Bi

3 XI2 - k e

20



is the Laplace transformation of H '(k|c|) and

(41)
Sinvir

COSVTT -

2v"

where -1 < Rev < 1.

\
In summary, the solution is obtained asymptotically in the

far zone. When the impedance surface does not support a surface wave,
the total field is given by Eq. (35). If the impedance surface
sustains a surface wave and the line source is located close to the
impedance surface and far from the edge, the diffracted field due to
the surface wave excited by the line source must be taken into account.
Note that the strength of excitation of the surface wave is pro-
portional to e~ y . Thus the excited surface wave has an important
effect only when y1 is small (<t>' « |0« The total radiation field is
then given by

(42)

u + u u + u 0 <

u + u
u

TT -

IT +

Note that there is also a surface wave, C2 e~ y J , propagating

away from the edge due to the termination of the edge of the wedge.

The strength of this surface wave, Cp, can be determined by another

method which will be mentioned in Chapter V. This surface wave field

is significant only when y is small (^O) and it does not radiate

unless the impedance surface is truncated. The total field is the

sum of U given by Eq. (42) and C2 e"
Xy+jex which exists only in the

region {x>0, y>0}.

21



The diffracted field, U , due to the excited surface wave is con-
H

tinuous in the whole region. The diffracted field, U , yields a
uniformly asymptotic representation for the total field so that it
properly compensates for the discontinuity in the geometrical optics
fields, the incident field U1 and the reflected field Ur, across
the transition boundaries, thereby, yielding a total field which is
continuous everywhere.

B. Plane Wave Illumination

The plane wave incidence case can be treated as a special case
of the cylindrical wave illumination. By letting p1*08 in the line
source case of Section A and factoring out the "line source factor"

the result for the plane wave case can thus be obtained. The details
of the derivation are given in the Appendix I. Note that the total ^
field, UJj, due to a plane wave normally incident on the edge of the.'
wedge satisfies the 2-dimensional, homogeneous scalar Helmholtz
equation

(43) (v2 + k2) tig (p ,*;*') = 0,

where the subscript a (or b) indicates that the total field satisfies
boundary condition (3a) (or (3b)), in addition to (2), (4) and (5).

For a plane wave of unit amplitude and with its phase reference
located at the edge, the diffracted field is given by

(44)

22



where Da is given in Eq. (28) or Eq. (30). In the diffraction coef-
ficients, the large parameter -̂ -r = kp since p '-*».

C. Spherical Wave Illumination

Consider the case of a scalar point source illumination of the
wedge. The point source generates scalar, spherical waves. Let the
point source be located at s1 (p1 ,<j>' ,z') as shown in Fig. 4. For a
source of unit strength, the total field Ua(p ,<f>,z;p' ,<f>' ,z') due to
spherical waves incident on the wedge satisfies

(45) (v2 + k2)Ua(?,s~') = - 6(x-x')6(y-y')6(z-z'),
b

and conditions (2), (4) and (5) as before, U satisfies the additional

boundary condition (3a), whereas U. satisfies (3b). Note that
2 2 3^v = v. + —K- is the 3-dimensional Laplician operator. Because of

^ 3z^
the special geometry of the wedge, this 3-dimensional problem can be

reduced to a 2-dimensional problem via a Fourier integral trans-
formation. Let

f°°

(46) U a (p ,4> ,h ;p ' ,4> ' ,z ' ) = Ua(F,F') e"jhzdz
h J-oo h

(47) Ua(s,s') = 1- f ^(p.^h-.p'^'.z1) ejhzdh.

Equations (46) and (47) form a Fourier transform pair. Let

us assume the existence of the transform pair; then the Fourier trans-

form of Eq. (45) yields

(48) (v2+k?) Ua(p,*,h;p
l
s*',z

l) = - 6(x-x')6(y-y')t t
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Fig. 4. Geometry for a point source illumination
of a right-angled wedge.
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where k£ = k-h .

The z-variation of the function Ua is removed, and rewritting the

above equation as

(49) (v*+k*) Ua(p.*.h;r) e jhz ' = -

allows one to identify Ua(p,<(),h;?1 )ejhz' as Ua(p",P~') which is a

2 -dimensional scalar line source Green's function of (1), with the

exception that k now is replaced by k. in (1). Hence Ua(p ,<}>,h;s"')ej

is replaced by Ua(p,p';k t). The total field Ua(s ' , s ' ) is thus obtained
b /v b _ ,-u-i

by taking the inverse Fourier transform of Ua(p,<|>,h;s' )ej . It will

be shown in Appendix I that

,-Jkl?-?!
(50a) Ul =_ e

r = -(50b) Ur = R

and

4ir|s-s'|

-jk|?r?'|

In which

1 e-J'ks'
U ^ =—. r4irS '

F. is the image point of the source ?' and
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R = •<

1
-1

jksiri(|>-x

which depends on the boundary condition at the surface of reflection.
Da is again given by Eq. (28) or Eq. (30) with the exception that K is

x C C 2 1 I

replaced by ̂ f-r sin 8 . The . ' factor in Eq. (50c) is to be ex-
5*5 0 P/\

pected because of the conical spreading of the diffracted rays due
to oblique incidence from the point source. This conical spreading
is a consequence of the generalized Fermat's principle. [12]

So far we have solved for the fields diffracted by a right-
angled wedge due to different kinds of wave illumination^' we observe
that the solution of the problem of a cylindrical wave illumination
is essential for the cases of plane wave and spherical wave illumin-
ation. The plane wave illumination is treated as a special case of
cylindrical wave illumination when the source is removed to infinity

'*t
whereas the spherical wave illumination is related to the' cylindrical
case by applying the Fourier transform with respect to the z-variable.

The asymptotic approximation in each case in the far zone yields
a solution which can be interpreted in terms of the geometrical
theory of diffraction. The pole contributions in the asymptotic
approximation give the geometrical optics field which. consists of the .
incident field and the reflected field, whereas the saddle point
contribution gives the diffracted field. The geometrical optics field
is discontinuous when one crosses a shadow or reflection boundary.
This discontinuity in the geometrical optics field. is compensated by
the diffracted field. Thus the total field, which is the .sum .of

• ' 'j f *i

the geometrical optics field and the diffracted field,. .is Continuous
in the whole region.
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It is interesting to note that the diffraction coefficient has
the same form for the different wave illuminations. The only differ-
ence for the different types of illumination is in the large parameter
in the asymptotic approximation. If we let K = kl_, then

(51)

p for plane wave illumination

p£ i for cylindrical wave illuminationp+p
ss' 2-.. i sin B_ for spherical wave illumination.\ STS o

In the next chapter it will be seen that the scalar diffraction
coefficients D, and D. appear in the electromagnetic problem fora D
plane or cylindrical waves normally incident on the edge. Furthermore
it will be seen that when a ray-fixed coordinate system is introduced,
the dyadic diffraction coefficient is merely the sum of two dyads
or it can be expressed alternatively as a diagonal!zed 2x2 matrix,
These properties were noted earlier in the asymptotic solution of the
diffraction by a perfectly-conducting wedge[13,20].

CHAPTER III
ELECTROMAGNETIC WAVE DIFFRACTION

In Chapter II we treat the diffraction of a right-angled
wedge illuminated by plane, cylindrical and spherical waves. The
plane waves and the cylindrical waves associated with the uniform
line source are normally incident on the edge of the wedge; the
spherical wave, obliquely incident. In this chapter we show that the
solutions of these scalar problems can be directly related to the
corresponding electromagnetic problems provided that the electro-
magnetic waves are normally incident on the wedge.
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First, let us introduce the ray-fixed coordinate system des-
cribed in Reference [13]. As mentioned earlier, the use of this
coordinate system will enable us to write the dyadic diffraction
coefficients as the sum of two dyads or in the form of a 2x2 diagonal
matri x.

Let us consider the field radiated from the source 0 and
observed at P, as shown in Fig. 5. It is well known that the ray

Fig. 5. Geometry for the ray coordinate system
for electromagnetic wedge diffraction.

incident on the edge at QE in Fig. 5 gives rise to a diffracted field.
To account for this Keller[12] has introduced a class of rays which
includes an edge point such as QE on their trajectory. Applying his
generalization of Fermat's principle, the distance OQ^P along the ray
path is an extremum, and the law of edge diffraction results.
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Let the coordinates of the source 0 be (p',<)>') and the obser-
/K -

vation point P be (p ,<{>), as shown in Fig. 5. The unit vector d is in
vN

the direction of diffraction; the unit vector I is in the direction of
/\

incidence. The unit vector e is the unit vector parallel to z-axis
^ XV ^ A ^ A

(the edge of the wedge). Note that p = e x I, p . = e x d , and
*. * U

e = z. The orthogonal unit vectors associated with coordinates
(p1 ,<t>' ;p,<j>) form a ray-fixed coordinate system. It will be shown

•** /•*

later that when the incident field is decomposed into e- and p-directed
A. /v

components, and the diffracted field into e- and p.-directed com-
ponents, the diffraction coefficients can be expressed as a 2x2
diagonal matrix or as the sum of two dyads.

In the following sections the diffracted field components will
be determined first in the edge-fixed coordinate system, (p' ,<j>' ;p ,<|>),
which is the cylindrical coordinate system with z-axis aligned in the
direction of the edge of the wedge, and then transformed to the ray-
fixed coordinate system.

A. Cylindrical Wave Illumination

The diffraction of a normally incident cylindrical electro-
magnetic wave by a right-angled wedge is considered in this section.
The direction of incidence, which is normal to the cylindrical wave

/̂  s\ s\ s* s^

fronts, is given by the unit vector I. Note that I • z = I • e = 0.
Cylindrical waves can be generated by a uniform electric current line

y\ ^

source zl or uniform magnetic current line source zM located at
( p ' , < t > ' ) » where I and M are the current amplitudes of the uniform line
sources.

It can be shown that the axial incident electric field due to
zl and the axial incident Magnetic field due to zM are
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(52a)

and

(52b)

E z = k I x l - t " o

respectively. The primes are used to denote the source coordinate
system.

First let us consider the cylindrical wave behavior due to the
uniform electric current l ine source. The fields due to this l ine
source are

(53a) = 0,

(53b)

(53c)

and

(53d)
:i
"z

For large k p ' , the Hankel function H: ; ( k p ' ) can be replaced by
its large-argument approximation. Thus

-j(kp' - in
(54a)

and

(54b)

E1 =w

JOJE 4 Iff

H1 « J ' j l k -
, 4
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The equation kp' = constant, describes a cylindrical surface. The
direction of incidence

(55) I = - p'.

and

(56a) 1 - ^ = 0 ,

(56b) I • vf' = 0;

hence in the far zone, the EM field is a cylindrical wave with its
field vectors tangent to the wavefront, and perpendicular to its
associated rays. The EM field of a uniform magnetic current line
source can be shown to have the same properties.

The total axial fields (EZ and H ) excited by uniform electric
and uniform magnetic current line sources can be shown to be

(57a) Ez = ''

and

(57b) H, =

respectively. The special function Ua(p.p ' ) is the same as that of
Eq. (1). The solution of Eq. (1) is given in Eq. (23). By substi-
tuting the integral representations of Green's function G and W,
shown in Appendix I, into Eq. (23), it becomes

(58) lUpV) * e-jk(pV) [ Fa(e.M')
b 'L-L1 b \ /2
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where

(59a)

and

(59b)

6ig(x-jksincf>T

+ -i

Sl „(«*§!)
-jksin<f> x

Note that B* = <fr ± 4 > ' t f(0 = j(l+cosO and K =

The diffracted ray contribution to Eq. (58) is known from the

result of Eq. (A-36) in Appendix I. Thus the axial diffracted fields

can be written as

(60a)

and

(60b)

:d * E1 D
•z tz ua
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where EZ and HZ are given by Eqs. (52a) and (52b) with the Hankel
function replaced by its large argument approximation, and Dg and Dj.
are given by Eqs. (28) and (30), respectively.

For a problem which possesses cylindrical uniformity in
structure.and fields, the transverse fields F. and H. can be de-
termined from the longitudinal fields E and H using the following
relations

(61a> k \f \f \t""Ix l\ ™"ix

and

_ vt H z x v E
(61b) H. = - jk, -5—| - jooe 9 \ z ,

r Z k -k^ k -k^

2 2 2
where k = kt + k

z-
 In tne case of a normally incident EM wave,

kt = k and k = 0.

To evaluate E. and H. , it is first assumed that we can inter-

change the order of integration and differentiation when z x vt

operates on the integral, Eq. (58). Since only those terms of 0(—)
/p

are retained in the asymptotic evaluation of the integral, the
3 *"approximation v. = ^— p is made. Thus

(62a) V . E z ^ p E z e ^ k ( p + p l M -jk F.U.M,') x
t z z 'L-L1

eKf(c)C

and
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(62b) ( -Jk

jirk(P
2+P'2-2pp'cosO1/2

The diffracted field contribution to v E and v H is then
obtained from the asymptotic approximation of the above integrals via
the modified method of steepest descent with the result that

(63) P (-Jk) Da
b

-jkp

where Da in the above equation are identical to Da in Eqs. (60a) and

(60b). Substituting Eq. (63) into Eqs. (61a) and (61b), we obtain

the transverse fields

(64a)

and

(64b)

Et =

^ ^

P) PH D>
-jkp

Ht = (H1 • p) pd D.
-jkp

4 " *• •;
In deriving the above equations, we have used H • p = - y z E

—i " i ^
for a uniform electric current line source and E • p = z z H for ao z
uniform magnetic current line source.

Thus the diffracted field for a uniform cylindrical electro-
magnetic wave normally incident on the wedge is

(65a)

and

= 1= (E - z) z D
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. „ -jkp
(65b) TP = (H1 • p) p . D 5

Q a /~~

whereas the diffracted field for a uniform cylindrical electromagnetic

wave normally incident on the wedge is

(66a) E^ = (F1 • p) pd Db

and

(66b) tf1 = (H1 • z) z Db • .

Let us define two dyads DE and DH such that

~ /\ *N /V *N

(67a) Dp = e e D + p p . D.

and

(67b) D,, = e e D. + p p . D ,

We can rewrite Eqs. (65) and (66) in the form of the geometrical theory

of diffraction:

(68a) E^ ~ ^(Qc) ' Dc -
/P.

and

-A i = p'Jkp

(68b) IP * Hn(QE) • DH 5_ .

i
..Alternatively, expressing the diffraction coefficients in matrix

notation, we can write:
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(69a)

and

(69b)

-

a-

where EJ = t • e, E = • pd, E,(QE) = E Q g ) • e, and

E[(QE) • E1(QE) - p; Hj = H*1 - e, Hd
B - tf • pd. H]_(QE) = rf(QE) • e.

and Hj|(QE) = Hf1(QE) • p. Thus the matrix in the above equations is
diagonal because the components of the field components are expressed
in the proper coordinate system for the problem and only the terms
of 0(—r) are retained.

B. Plane Wave Illumination

For an electromagnetic plane wave normally incident on the edge
of the wedge, the total electric field is given by

(70a) f= z E

for an incident electric plane wave field z E1 , whereas the total
magnetic field is given by

(70b) H" = z H

" i Dfor an incident magnetic plane wave field z H , where Ug is the

solution of Eq. (43) and is given as
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(71) U.f Fa («,*.*')e
jkpcose

'L-L1

with Fa (£,<j> ,<{>') given by Eqs. (59a) and (59b).
b

The diffracted ray contribution can then be obtained by
asymptotically evaluating the integrals, Eq. (71), via the modified
method of steepest descent. Thus,

and

(72b) Hj.*Hj Db
*v

where E^ and H^ are evaluated at Qr, the point of incidence on the
edge, and Da are given in Eq. (28) and Eq. (30) with the exception that

K = kp in the large argument parameter.

The transverse components of the diffracted fields can be com-
puted in the manner similar to that of the cylindrical wave case
treated in the last section. Following the same procedure, we obtain

(73a) F"*f*(QE)

and

(73b) Hd'vHi(Q)

where D^ and DH are exactly the same as those given in Eqs. (68a)
and (68b), except that K is equal to kp in this case.
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Summarizing the results obtained thus far, the diffracted

electric field can be written as

(74) E^s) « r(QE) - DE(s,I) A (s ) e'jks,

where T1(QE) is the incident electric field at the point of dif-

fraction, A(s) is the spatial attenuation which describes how the

field intensity varies along the diffracted ray,

(75) A(s) = — for plane and cylindrical wave incidence,
/s

— ^ ^

DE(S,I) is the dyadic diffraction coefficient,

(76) DE = zz Da + ppd Db, .

where

and

where

and

(79)

A. D - jksin-j) D ,
n = S _ 91ua Aa - jksin*

'

Ab Da2 " J"ks1n<|1 Dh
°b • - Jksin*

(78) Ds = [d+(3~)F[Ka+(3~)] + <T(e')F[.ca~(e')]]

i
~ 4~ I— - +

5 2 sin 5- (cos |- ± cos 4-) +
o /9 L I <J <3 0
JvtiTN I—
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(80) d*{e) - -
-4

3/ZirF

in which 3 = 0~ = 4>±4>' and

4 - 0 0- 0 0

(82) F[Ka*(B)] = 2j|iKa*(3) e*** (e) j e'Jt dt

The parameters which appear in F(ica (3)) are

(83) a±(3) = 1 + cos (-3+3 N*ir)

in which N~ is the positive or negative integer whih most closely
satisfies the equations:

(84)
r3rrN+ - 3 = TV

3irN" - = - -rr

The quantity K = kL is the large parameter in the asymptotic evalu-
ation of the pertinent intergrals involved in the formulation of the

dyadic diffraction coefficient. The quantity L is given by

for plane wave illumination
(85) ....

for cylindrical wave illumination.

When the ray-fixed coordinate system is employed, the dyadic
diffraction coefficient can be expressed as the sum of two dyads.
One of the dyads involves D . the scalar diffraction coefficient for

Q
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TE (to 2) casei and the other, D. , for TM (to z) case. In turn, DD a
and D, are composed of trigonometric functions which are given by
d(s) and d (3) and F(<a"(6)) which involves the Fresnel integral.
The latter can be regarded as a transition function which plays the
most important role in the transition region of the reflection and
shadow boundaries. The geometrical optics field is discontinuous
across the reflection and shadow boundaries. It is this transition
function which compensates for the discontinuity of the geometrical
optics field and makes the total field continuous. Outside the trans-
ition region, <a~(e) > 10, F is approximately equal to 1. Curves of
the magnitude and phase of F as a function of kLa are shown in Fig. 6.
The scalar diffraction coefficients in the dyadic diffraction coef-
ficient are independent of the wavefront of the incident field outside
the transition region, as they are in the case of the perfectly-
conducting wedge.

CHAPTER IV
APPLICATIONS AND NUMERICAL RESULTS

The purpose of this chapter is to show that the diffraction
coefficients and the analysis described in the preceding chapters
are consistent with results obtained elsewhere for some special
cases of our problem. The radiation from a magnetic line source
located close to the reactive surface of a right-angled wedge and
the radiation from slots in truncated, dielectric-covered surfaces
are considered. In both cases, the calculated and measured patterns
are in good agreement. Also some calculated patterns are presented
to show the effect of surface impedance on wedge diffraction. We
begin with the diffraction of an electromagnetic wave by a perfectly-
conducting wedge.
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1. The Perfectly-conducting Wedqe^

A dyadic diffraction coefficient for the perfectly-conducting
wedge has been derived by Pathak and Kouyoumjian[20]. Our impedance
surface reduces to a perfectly-conducting surface when x •*•-* and

O

X. = 0. In Eq. (28), it is quite obvious that when X •*•--, D+D ,
0 a a 5

which is their soft wedge diffraction coefficient for the right-
angled wedge, and in Eq. (30), when X. = 0, D. = D. , which is their
diffraction coefficient for a hard right-angled wedge. Thus the form
of the dyadic diffraction coefficient, see Eq. (76), is the same for
the impedance loaded wedge and the perfectly-conducting wedge, and
so it follows that our solution reduces to that of the perfectly-
conducting wedge[20].

2. Vertex-excited Surface Waves on one
Face of a Right-angled Wedge

When one wedge surface supports surface waves, Re x>0. For
the line source placed precisely at the edge of the wedge, x '=y '=0.

a
The first term in the series g—r G. becomes singular. Thus the
factor C-l, which is zero, multiplied by a singular term becomes an
undetermined constant. Let the constant be C, and Eq. (16) becomes

(86) V = j |HJ2)(kr)cose + C-, HJ2 )(kr)cos |,
3

where e = ^- - <j> .

The above equation was also derived in a different way by Karp
and Karal[9] with a different constant coefficient in the first term;
their coefficient was given as jk/4. It can be shown that when
x-K), C,-*0. Thus V should reduce to the Green's function for a magnetic
line source located at the tip of a perfectly-conducting right angle
wedge, which is j^- HI (kr) cos e.. For this reason we believe that
our coefficient for the first term is the correct one.
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3. A Magnetic Current Line Source Exciting
a Right-angled Wedge

In this section the radiation from a magnetic current line

source located close to the reactive surface and far from the edge of
the wedge is considered. The geometry is depicted in Fig. 7. The

MAGNETIC CURRENT
LINE SOURCE

A A & A A A A A A A A A A A A A , l A A A A A A
T REACTIVE

SURFACE

CD
ZUJ

/UJ Z
a.oo

Fig. 7. Geometry of a line source radiating in
.the presence of a right-angled wedge.,

reactive surface is such that.it supports a surface wave. Since it
is assumed that the magnetic current line source is quite a few

wavelengths from the edge, i.e., the exciting source is located in
the far zone of the scattering from the edge, as noted in Section A

of Chapter II, the total radiation fieldn's the superposition of the

geometrical optics fields and the diffracted field due to the rays
incident on the edge and that due to the excited surface wave. Thus
Eq. (42) is used to compute the radiation pattern.

Chu[l] has considered this problem-by using /reciprocity in

conjunction with an exact solution and the, approximations involved in
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the superposition. It is interesting to note that the expressions .
of the total radiation field are exactly the same except that the
diffracted field, U , due to the rays incident on the edge was not
yet determined and neglected in his study. Figure 8 and Fig. 9 show

1.0

0.5

CHU'S
MEASURED

• • CALCULATED

140' 120' 100° 80° 60° 40* 20°
e

Fig. 8. The amplitude pattern of a magnetic current
line source exciting a right-angled wedge.
(e/k=1.05, L=10A, kh=1.5625)
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1.0

0.5

- MEASURED
• CALCULATED

140 120s

Fig. 9.

100° 80" 60° 40°
*—0

20° 0°

The amplitude pattern of a magnetic current
line source exciting a right-angled wedge.
(B/k=1.033, L=8.34A, kh=1.309)

the calculated patterns by Eq. (42) and those calculated and measured

by Chu[l]. The improvement by including the contribution of U is

evident in both cases. The ripple shown by Chu's computation in Fig.

9 disappears because the contribution of U becomes more important

when the magnetic current line source is closer to the edge. The

radiation field pattern of a right-angled wedge with a reactive surface

(3(k = 1.05)) and that of a perfectly-conducting wedge are shown in

Fig. 10. The wedge is illuminated by a magnetic current line source
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located at L = 10A and kh = 1.5625. The increase of the radiation
field in the shadow region of the wedge with a uniform impedance
surface is due to the fact that the energy stored in the trapped
surface wave is radiated by the termination of the edge of the wedge.

4. The Radiation from Slots in Truncated
Dielectric-covered Surface

Recently, Hwang et al studied the radiation from slots
in a truncated, dielectric-covered surface[6]; in particular they con-
sidered a narrow slot in the configuration depicted in Fig. 11.

Fig. 11. The rays emanating from a slot in a
dielectric-covered ground plane.

Employing the geometrical theory of diffraction, the far-zone field
is the sum of a geometrical optics field and a diffracted field. The
geometrical optics field is the direct radiation from the slot to the
field point P; it vanishes in the shadow region below the plane con-
taining the surface AB. The slot also excites surface waves which are
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incident at the termination of the dielectric cover at A and B. For
simplicity the thickness t of the dielectric cover is restricted so
that only the dominant TM surface mode is incident. The surface
waves produce rays singly-diffracted from A and B to the field point
P and to the lower edges C and D. They also produce reflected
surface waves at these terminations. The contributions from the
singly-diffracted rays and all significant multiply-diffracted rays
are summed to give the field at P.

The canonical problem for diffraction from edges A and B is
the surface wave diffraction from a right-angle wedge, one of whose
faces is perfectly-conducting, while the other is an impedance surface.
The canonical problem of the diffraction of a surface wave on this
right-angle wedge[2] is used to find the diffraction and reflection
coefficients, which are adequate for sufficiently thin dielectric
covers. However, the radiation from the vertical end faces AA1

(or BB1) of the dielectric cover cannot be neglected in treating the
thicker dielectric covers, i.e., the radiation from the field inside
the slab can no longer be neglected at its termination. The effect
can be taken into account by a Kirchhoff approximation using the
surface wave field along the vertical end faces of the slab. The
problem is then treated as the radiation from a magnetic line current
distribution on the perfectly-conducting surface of a right-angle
wedge whose other surface is an impedance boundary. This contributes
a second term to the diffraction coefficient previously obtained. In
Fig. 11, the ground plane length L is 12.12 inches, the height H is
1.71 inches, and the width is 22 inches. A 0.5 inch by 0.062 inch
slot is positioned 0.1 inch to the right of the center of the ground
plane, introducing a slight asymmetry in the pattern. The calculated
and measured patterns are shown in Fig. 12; the two patterns are seen
to be in good agreement.
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Fig. 12. Pattern of a slot in a dielectric-covered ground plane.
Frequency = 8 GHz. t = 0.1875 inch, er = 2.56.

5. Calculated Patterns of Impedance
Loaded Wedges

We conclude this chapter by presenting some numerical results

which show the effect of the diffracted field and surface impedance

on edge diffraction.
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It is shown in Fig. 13 that the diffracted field properly com-

pensates for the discontinuity in the geometrical optics fields, the

incident field and the reflected field, across the transition

boundaries, thereby yielding a total field which is continuous every-

where.

Figures 14 through 16 show the radiation patterns of a magnetic

current line source illuminating a right-angled wedge. In each case,

a magnetic line source illuminates the wedge from a distance p1 = IX

(wavelength) and at different 4>' locations. The normalized surface

impedance, x. /k, is chosen to be 0, 0.1 and 0.5. The case X. /k = 0

corresponds to that of a perfectly-conducting wedge. It can be seen

from these patterns that when the reactance surface is in the il-

luminated region, the side lobe in the vicinity of the reactance

surface, which is the largest when the reactance surface becomes

perfectly-conducting, is decreased, shifted and blended to the main

lobe as x./k varies from 0 to 0.5. Although the field may change

considerably in the illuminated region far away from the reactance

surface, it is almost the same in the shadow region for different

surface impedances (note that this is not the case where the magnetic

current line source is located close to the reactive surface which

supports a surface wave). When the reactance surface is in the shadow

region, the field does not change much as the surface impedance varies;

except in the vicinity of the reactance surface, the field tends to

decrease more rapidly as X. /k increases.

The radiation patterns of an electric current line source

illuminating a right-angled wedge are shown in Figs. 17 through 19.

The normalized surface admittance, X /k, is chosen to be -1.0, -10 and
a

-°°. The case X /k=-°° corresponds to that of a perfectly-conducting
a

wedge. It is noted that the radiation pattern does not change much
as the surface admittance varies.
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CHAPTER V
DISCUSSIONS

It has been shown in the last chapter that the solutions for

the radiation patterns of a line source in the vicinity of a wedge

with a reactive wall are quite good for the analytic models con-

sidered. As mentioned earlier, the effect of a coated surface which

is covered by a dielectric slab or absorber is approximated by a

uniform surface impedance. A uniform surface impedance boundary

condition is then prescribed by -r^- + xu = 0, where ^ is a normal
on o n

derivative of u at the uniform impedance surface. In an EM problem,

the value of X is given by either

for a normally incident TE wave or

b

for a normally incident TM wave, where y and z are the surface
admittance and the surface impedance of the surface, respectively, k
and zn are the wave number and characteristic impedance of free space

1and y = — . The reflection coefficient can be shown to be
o

R -R - jksin* - x •

In the case of a perfectly absorbing surface, the reflected field is

zero. If the surface is perfectly absorbing at 4> = j which is in

the direction normal to the surface,

(88) X = - jk.
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For a dielectric-covered ground plane with the thickness "d",
it is easy to show that the reflection coefficient is given by

jksin<f> + xa

Jksino, -(89)

where the subscript 'a' denotes the TE case, 'b1 denotes the TM case,
and

(90a) xa ; = - r, cotcd
a

(90b) x

with

(91) c = k je - cos2*r

The total field, Ua, satisfies the boundary condition:
b

(92) ( § 7 7 + X a ) U a = 0
dy b b

at the dielectric slab surface. Thus xa is a function of the
variable $. We assume that if the dielectric slab is not very thick,
Aa can be approximated as a constant which is obtained by solving
the root, ?d, of the transcendental equation

(93a) (Cd) cot?d + (er - 1) (kd)
2 - (?d)

2 = 0

for TE case and

(93b) (5d) tancd - e(e - 1) (kd)2 - (?d)2 = 0
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for TM case. The root of the above equations corresponds to the
surface wave mode if the dielectric-covered surface sustains a surface
wave. It has been found numerically that the diffracted field is not
very sensitive to the variation of the approximate surface impedance,
but as far as the reflected field is concerned, this is not the case.
Figure 20 shows the radiation pattern of an infinite, dielectric-
covered ground plane illuminated by an electric current line source.
The total radiation field is the sum of the incident field and the
reflected field. In Fig. 20 it is apparent that there is a great
deal of discrepancy between the exact radiation field and those
computed by using the surface impedance model. This analysis, of
course, shows an error in the reflected geometric field; A proportion
ate error will exist in the reflected diffracted field, i.e., the
diffracted field associated with the reflection boundary, if the
edge lies in the range 50°<(()1<1300 for this particular geometry. Out-
side this range, the reflected geometric field should be reasonably
accurate. The incident geometric and the incident diffracted will
be little changed by the presence of the reactive wall. Thus, we
suggest that when the dielectric-covered surface is in this illumin-
ated region, the exact reflection coefficient in Eq. (89) is used
instead of the approximate reflection coefficient obtained from the
surface impedance model for the geometrical optics field. This would
lead to a discontinuity of the order of 10 dB. The value of A should
be taken from Eqs. (90a) or (90b) at 4> = ^ in order to make the total
field continuous across the reflection boundary. When the dielectric
slab is very thin, it can be shown that

(94a) xa * - I ,

and

e^-1 9(94b) A, * -I— rd.
b er

Thus the uniform surface impedance is a good approximation for this
case.
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Fig. 20. Radiation pattern of an infinite dielectric-covered
ground plane (d = 0.127X, er = 2.59) illuminated by
an electric current line source (S = 0.4x).
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The total solution of a differential equation, is the sum of

particular solution and homogeneous solution. The homogeneous

solution of Eq. (6) is e" y f(x). When A>0v this solution is bounded

and therefore exists in the domain of interest, which is recognized

as a surface wave. Unfortunately our method, fails to find the ampli-

tude of this surface wave.

The strength of the surface wave was obtained for TM plane -

wave illumination and a magnetic current line source located on the

tip of the wedge by Karp and Karal[7,9]. The method they used is that

after the functional.transformation, the homogeneous solution of the

transformed differential equation is chosen to be

C1 H{2)(kp) cos |

3

instead of that given by H (see Eq. (15)). The function

C1 HJ2)(kp) cos |

3

does not satisfy all the conditions of the problem, since, following
the inverse transformation its x derivative is discontinuous at the

positive y axis. Thus the function ^2 e" ^ 1S introduced in the
total field in the region xHD, yMD to make it possible to satisfy
the continuity condition involving the x derivative of U. C, and
Cp are then obtained. For, the case of a magnetic (or electric)
current line source located far from the edge of the wedge, the
strength of the surface wave can be obtained in the same way. How-
ever, two cases should be considered separately: <t>' < ̂  and <)>' > |-.
In the former case, the line current source excites a surface wave
which propagates toward and away from the edge. The strength of
excitation of the surface wave is assumed to be the same as those due
to a uniform line current source located above the same impedance
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surface of infinite extent. The justification of this assumption is
that the line source is far from the edge, i.e., the exciting device
is in the far zone of the scattering from the termination which is,
in our problem, the edge of the wedge. The surface wave field is
well established and propagates along the impedance surface before it
reaches the edge. Thus in matching the continuous condition at the
line {x=0, y>0}, this excited incident surface wave should be included
in the total field. However, in the latter case, there is no such
incident surface wave included.

Several approximations have been made in deriving Eq. (90).
According to the geometrical theory of diffraction, it has been
assumed that the high-frequency diffracted field propagated along
its ray path perpendicular to the diffracted electric and magnetic
fields in the same way as the geometrical optics field. This approxi-
mation does not introduce a large error if both the source point
and the field point are far from the edge. Second, in deriving Eq.
(90), it has been assumed that kL is large. However, based on the
extensive numerical study of asymptotic solutions of this type pre-
sented in References [5] and [20], it would appear that this approxi-
mation generally introduces serious error only when kL < 1.

The preceding discussion has been restricted to the diffraction
by wedges with straight edges; however the geometrical theory of
diffraction can be used to treat the diffraction from curved edges[20].
The diffracted ray paths are determined by the generalized Fermat's
principle for edge diffraction, and the conservation of power flow
in the resulting astigmatic bundle of rays, see Fig. 21, leads to the
general spatial attenuation factor

(95) A(s) = I
}
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Fig. 21. Diffraction at a curved edge.

64



where the caustic distance p shown in Fig. 21 is given by

06) . .
c Pe

 Sln 8o

for spherical wave illumination of the edge[14]. In the equation
above

p is the radius of curvature of the edge
A

n is the unit vector normal to the edge
** /*

I ,s are unit vectors in the directions of incident
and diffraction, respectively,

*•» /V

B is the angle between I, e, the tangent to the
edge at the point of diffraction, see Fig. 22.

The expression for A(s) given in Eq. (95) will reduce to that

given in Eq. (75) if p is set equal to infinity for the straight

edge; furthermore, for plane and cylindrical wave illumination of

the straight edge, p = °°.

The diffraction coefficient is assumed to be independent of p

to a first approximation; this is a reasonable assumption because it

is independent of the curvature of the incident wavefront to this

approximation, as has been demonstrated in Chapters II and III.

Furthermore, the validity of this assumption has been confirmed in

numerical applications of the geometrical theory of diffraction to

structures with curved edges of a perfectly-conducting wedge[14,20].

Thus, in accordance with the postulates of the geometrical theory of

diffraction, Eq. (74) becomes

(97)
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where DE is identical to Eq. (76) with gQ = |-. Alternatively, if the

incident and diffracted fields are decomposed into components parallel

and perpendicular to the plane of incidence and diffraction, respec-

tively, we can write Eq. (97) in terms of matrix notation as

(98)
0 'bJ

|S(PC+S)
,-Jks

By introducing the ray-fixed coordinate system the polarization

effects of high-frequency scattering can be greatly simplified,

whether this involves the reflection from a smooth curved surface,

the diffraction from an edge, or the diffraction from a smooth curved

surface. Specifically, the polarization of the scattered field can

be related to the polarization of the incident field by a 2x2 diagonal

matrix.

Several important steps used to solve this boundary valued

problem are briefly described in the following to show the merit of

the method employed. The mixed boundary condition of a wave equation

is transformed to a simple homogeneous one by a functional trans-

formation. In general, the transformed wave equation becomes compli-

cated at the expense of the simplification of the boundary condition.

By using the fact that the operator, L = — + x, of the functional

2 2 3 3 ' \
transformation and (v + k ) commute and grrMy-y') = - g7Tr5(y-y')>

the solution of the transformed wave equation can be related to some

special Green's functions which satisfy the simple homogeneous

boundary conditions. Although the technique is applied for the

right-angled wedge in this report, Karp[10] pointed out that it could

also be used to simplify the boundary value problem for some special

angular spaces. Currently, this method is extended to treat an

arbitrary-angled wedge with one of its surfaces satisfying a uniform
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surface impedance boundary condition while the other, a perfectly-
conducting surface, satisfying Dirichlet boundary .condition. The ,far

zone approximation at the perfectly-conducting surface is made after

the functional transformation so that Dirichlet boundary condition
remains unchanged. Thus the boundary conditions of the transformed
wave equation still become homogeneous. The method can also be

employed for a right-angled wedge with two uniform impedance surface
walls. Recently, the diffraction of a two-part plane by a plane wave
illumination is already pursued by the Wiener-Hopf technique; one

part of its surface satisfying a uniform surface impedance boundary

condition while,the other being perfectly-conducting. The trans-
formation technique fails for this case since the boundary conditions

of.the transformed wave equation can not be simplified by using the

functional transformation.

In summary, Maxwell's equations can be solved exactly for few
problems with appropriate boundary conditions. Hence approximations

have to.be made to obtain solutions to useful.problems. High-frequency

asymptotic approximation is used to solve the diffraction problem.
Mathematically speaking, by making a transformation which .simplifies
the boundary condition and employing the modified Pauli-Clemmow
method of steepest descent, the diffraction coefficient has been

found for the right-angled wedge with one wedge face satisfying a
uniform impedance boundary condition. The introduction of a ray-
fixed coordinate system yields a compact, dyadic diffraction coef-

ficient for EM waves illumination. This diffraction coefficient is

also valid in the transition regions of the shadow and reflection

boundaries for a variety of edge illuminations. The geometrical
theory of diffraction is used to extend the solution to more general

cases, such as the curved edge. The diffraction coefficient is

composed of trigonometric functions and Fresnel integrals which are

easy to compute.
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APPENDIX I
AN ASYMPTOTIC APPROXIMATION FOR SCALAR WEDGE DIFFRACTION

VIA THE MODIFIED STEEPEST DESCENT METHOD

A. Cylindrical Wave mumi nation

Let us consider. a scalar field Ua which satisfies the wave
equation

(A-l) (V* + k2) Ua = - S(x-x ' ) 6(y-y')

with the boundary conditions

(A-2) (- + Xa) Ua = 0 ; 4> = 0.
* b b

= 0

(A-3) -< ; <j> = mr

and which also satisfies the Somnerfeld radiation condition and the

Meixner edge condition and n=1.5. In Eq. (20) the far-zone form of

U was shown to be

a] G - j
(A-4)

where G and W are two known special Green's functions given in

Eqs. (lla), (lib), (13a) and (13b), and C is a constant to be

determined. The geometrical configuration is depicted in Fig. 2.
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An integral representation for the product, Jv (kp')H^ '(kp)

is Reference [16]

1 f^'J00 ?tt-k (p +p' )t ] .2 ,
vm vm ffj '0 vm

2
where C > 0, v > - 1 and |p' | < |p | . Iv ( £p ) represents them m u
modified cylindrical Bessel function of the first kind. The integral

representation for Iv ( ?p ) is given by Reference [16]
m *•

v 2 • •
i,2 , T ry'+j" ^p cosg + jv C

(A-6) Iv (5_£e_) = _ ̂ _ I e
 t m dc

m 'Y+J°°

where - ir < y' < 0 and ir < y < 2ir. Thus

(A-

k2pp'

[vm(~T~") ^'L

or

2 , f ^-^
(A-7b) I (L£P_) = _1_ e t -m dc ̂

m L

The contours L and L1 are indicated in Fig. 22. Let 6 = <1>±<I>,

then Eqs. (lib) and (13a) can be written as

and
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COMPLEX
£-PLANE

•2ir —v —IT
I I

Fig. 22. The L and L1 contours for the integral representation
Of i (

k Pp ) in the complex ?-plane.
Ml t

where

(A-10) g(P.p';e) = - -4n

r

.2m+l
Note that coŝ p- is replaced by Ue* 2n + e 2n

Substituting Eqs. (A-6) and (A-7) into (A-10), we obtain
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L££_cos5
e t

L

+ 1L,
 e m=0

By noting that

,
(A-12a)

m=0

and

(,12b)
m=0

_ _ irt sin
(A-13a) I

m=0

(A-13b) I e =23 Sln(gl)
npO ^n

and Reference [16]

t ^L
° ,2 ' 2t « , K ( jZ),
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Equation (A-ll) can be simplified as

(A-15) g(p,p;B) =
L-L1

K0(JZ(0)

where K (jZ) is the modified cylindrical Bessel function of the second
o j s 5~

kind, of order zero and argument jZ, and Z(?) = kjp +p' - 2pp' cose.
We are interested in solutions for which Z(?) is sufficiently large
which will be justified later.

If |Z(0| is large, KQ(jZ(O) can be replaced by its large
argument approximation

K0(JZ(C))

In the asymptotic solution described later, it will be seen
2 2that p +p' -2ppcos5 » 0 in the neighborhood of the saddle points,

therefore

(A-17) „ -jkJ(P+P ')2-2pP '(l+cosO= e

-jk(p+p')[l - fifi ?(HcosO]
(P+P ')

Thus

(A-18) 15 f va-L1 \ JTTk(P
2+p |2-2pp'cos01/2

where
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lA-lto)

(A-19b). f(0 = j

and

cos?)

(A-19c)
P+P

Therefore the integral in Eq. (A-18) is in the proper form
to be evaluated by the method of steepest descent for a large
parameter. The saddle points of f(s) occur at

= 0
5=5,

but only £s = ± ir are considered because the steepest descent paths
through £s = ± -n allow us to close the (L-L

1) contour. It is clear
that in the neighborhood of these saddle points the inequality in
2 2p +p' »2pp'cos is satisfied, which justifies the approximation in

Eq. (A-16). Figure 23 shows the locations of the steepest descent
paths through the saddle points at C = ± TT. Therefore

(A-20)

JTrk(p2+p | 2-2pp'coS£)1 /2

= . p-jk(p+p') (

'[SDP(ir)

+ 9 ,-rfThe residues of the integrand
^J [by L-L' and SDP (±ir)

+ Branch cut contributions, if any.

'^pp'cosS)172

enclosed
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COMPLEX C PLANE

BRANCH CUT

Fig. 23. Steepest descent paths (SDP ± u) and
the complex £ plane topology.

The pole singularities occur at

5 = - 6 + 2nNir , N = 0, ± 1, ± 2, ••• .

The residues corresponding to 5 are evaluated only for those |c |<jr.

Let the poles contribution to g be denoted by g'3, thus

(A-21)

gp(p",p"';e) =
-jk(P

2+p l2-2pp'cos£

J7rk(p2+p'2-2pp'cossp)1/2
COSNir X
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where

(A-22) H(t) =

0 , t < 0
\ » t = 0
1 , - .t > 1

The saddle points contribution -to g, 'which is denoted by g ,

is derived via the modified steepest descent method[20], where the

pole singularity close to the saddle point, is taken into consideration.

Thus g can be wri tten as

(A-23)

where

(A-24)

with

g(p~,p"' ;e)

dg(3) = -

cos2(gi)

sin

in(t?r> +

(A-25)' F[Ka±(3)] = 2j
•+• .00 2

e
JKa" (e) e"jt dt,

where the positive branch of the square root is taken,

a±(6) = [1 + cost- 3. + 2nN±Tr)],

and

iP+P
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The value of N is decided by the integer which most closely
satisfies the equation

2nN±ir - B = ± IT.

Substituting Eqs. (A-21) and (A-23) into Eqs. (A-8) and (A-9),
we obtain

(A-26a) Ĝ (P~,P"') = gp(p~>p"';3~) - gp(p",p"';3 )

(A-26b) Gb(p~,p~') = g (iT.p"
1 "̂) - g (p~,p~';3+)

and

(A-27a) WP(P~,P~') = gp(p~,p~';3") + gp(p~,p~' ;3+)

(A-27b) Wd(p~,p"') = gd(p",p"';3") + gd(p~,p~' ;3+)

where the superscript p denoted the contribution from pole singulari-
ties; the superscript d, from the saddle points.

Equations (lla) and (13b) have been evaluated in the same manner
by Pathak and Kouyoumjian[20], in which G and W. are given as

(A-28a) G(P~,P~') =

(A-28b) G

and

(A-29a)

(A-29b) Wd(p",p~')
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where

(A-30)

and

JTrk(p2+p' -2PP'COS5

X H[ir- |-B+2nNir|],

-jk(p2+p'2-2pp'cosen)1/2

x e p

(A-31) Id(p~,p~';3)

with

1 2j_ -jkp'
4 \7rkp ' e

(A-32) d(B) = -

The superscripts p and d of I(p,p';g) denote the contributions from

pole singularities and saddle points, respectively.

Now, let us consider the pole singularity contribution for the

case N = 0 and 3" = <(>-<)> ' . The equation |<)>-<|>' |<tr, i.e., «j)<ir+<|»1,

describes an illuminated region for a cylindrical wave illumination

on a wedge (see Fig. 3). The spatial factor

e-jkjp2+p'2-2pp'cos ($-<(> ' )

\ p2+p l 2-2pp'cos(<f-<)>1)

indicates that this pole singularity contribution yields the incident

field. Thus, substituting Eqs. (A-26a), (A-27a), (A-28a), and (A-29a)

into Eq. (A-4) and recognizing that U is the incident field,
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_
4 irkp1

we obtain

C = 1.

Therefore Eq. (A-4) becomes

(A-33) Ua(p-,p-')
b

- jksin<j>Wa
b

- jksin<t>

The above inference can be reverified by considering the

reflected field, which is obtained from the pole singularity corres-

ponding to the case N = 0 and & = <$>+$' , we obtain

(A-34)

jksin<f>+Aa
b_

jksin<j>-xa
b

.4.
Trk(p2+p lZ-2pp' COS

x e

which is the reflected field from the reactance surface, <j>=0. Whereas
for the case N=l, &=

(A-35)

rar- *_ 4 Trk(p2+p' -2pp' COS (2mr-

-jk(P
2+P

l2-2pp lcos(2mr-(())+(|>
l)))1/2

1/2J

x e

is the reflected field from the perfectly-conducting surface, <|>=mr.
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The diffracted field component is then obtained from the

saddle point contributions to the function G and W, which is given

in the form of

(A-36)

where

c
D = a su

A Dc - jksin<j)D
_ ks.

a

n Xb Dq2
Db -- x

with

Ds = d(B~) + d(g
+)

h

and

Dgl = d (3~) ± d (3
+)

B. Plane Wave Illumination

The result for the plane wave case can be obtained by letting
p'-*-00 in the line source case of the last section A so that P-p, •*• kpp+p
in the expression for K. However, for the sake of completeness, we

shall treat this problem by starting from Eq. (A-5) in which p and p

are interchanged. In this case, kp' » kp . Thus, instead of the

approximation made in Eq. (A-16), we have
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(A-38) KQ(jkZU)) * Jkpcoss

which is given in Reference [16]. Therefore Eq. (A-18) becomes

(A-39) g(p,p ' ;8) F, (5,6) e j kpcos5dc
L-L1 '

Eliminating the "line source factor" appearing in the bracket and

proceeding in a manner similar to that of part A for cylindrical

wave illumination, we obtain

n jkpcosE
(A-40a) gp(p,p';B) = e p cosNir x H[ir-|-e+2nNir|],

and

(A-40b) g(p",p~';e) * d
,-Jkp

where d is identical to Eq. (A-24) except K = kp in this case.

The asymptotic form for G^ and W are also given by Eqs.

(A-26) and (A-27), respectively. Gfl and Wb for the plane wave illum-

ination are derived in the same way by Pathak and Kouyoumjian[20], in

which they give

(A-41a)

and

jkpcosC_
= e p H[ir-|-B+2nNTr|],

(A-41b) IQ(p,p';6) -v d
/

where d is the same as those given in Eq. (A-32) except the large

parameter, ~-r ^replace by kp. Gp and Ga are still given by Eqs.
P*P u U

(A-28) and (A-29).
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In summary, plane wave illumination on a wedge is a special
case of cylindrical wave illumination. The diffracted field com-
ponent for plane wave illumination is thus still given as

(A-42) Up-.p-') *U(QE)'D. —- ,
D D vp

where Da are given in Eqs. (A-37a) and (A-37b) with the large parameter
'-|rT replaced by kp. The reflection coefficient R is given as

P"1"? - !

' 1

(A-43) R = 4

jksin<j>-x

which depends on the boundary condition at the surface of reflection.

C. Spherical Wave Illumination

Consider a scattering field Ua(s,s ') which satisfies the wave
equation

(A -44) (v2+k2) Ua(?,D = - 6(x-x ' ) 6(y-y') 6 (z -z ' ) ,

and the boundary conditions (2), (4) and Meixner edge condition,

IL sata
yields

satisfies Eq. (3a); Uk> Eq. (3b). Fourier transforming Eq. (A-44)a D

(A-45) (v2+k2) Cfa(p,<l',h;p',*',z1) = - «(x-x') 5(y-y') e'jhz<

t t b

where Ua and &a are a Fourier transform pair given in Eqs. (34) and

(35), and k2. = k2 - h2. Equation (A-45) can be rewritten as
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(A-46) (VjWj;) t ra(P ,4, ,h;p ' ,<j> ' ,z ' ) e jhz< = - 6 (x -x ' ) 6(y-y')
t t

which is identical to Eq. (A-l ) with the exception that k is re

placed by kt in Eq. (A-l). Thus

where

(A-48a)
a

jhz '=

and

(A-485)

with ^

g(p,p';e

(A-49a) g(p~,p"',8,k ) = —J- [
1 8ir ni •'I -I

and

(A-49b) - -
8/nj L-L'

K

K0(jz(0)de

I 2 2
Z(O is given as kJp +p' -2pp'cos£ .

From the inverse Fourier transform relation and the approxi-

mation, T— ~ - jksin<{), made in the far zone, Eq. (A-47) becomes
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(A-50) Ua(s,r)
b

A] Ga - jkcsin<)»Wa
b b

A - jksin<f>

Ga and Wa can be written as
b b

(A-51aj

and

(A-51b)

where

= g(p

(A-52a) I(p,z;P ' ,z';3) =

L-L1 8 j n

and

(A-52b)

g(p~,z;P" l,z';B) =

By utilizing

I(p,z;p',z';B

dh,

dh,

(A-53) Kv(jZ) - - J 5-e H ( 2 )(z)v x '

and[4]
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(A-54) dh

= 2j

|p2+p | 2-2pp'coss+(z-z')2

-jk]p2+p |2-2pp'cos5+(z-z')2

1

Equation (A-52b) becomes

(A-55) g(p-,z;p-',z',$) =

I IL"L

where F S . B ) is given in Eq. (A-19a).

Note p=s sine and p '=s ' sing (see Fig. 4). Hence

(Z-Z')|1 /2 = (s+s1) coseo, and

(A-56) p2+p | 2-2PP
lcosC+(z-z1)2 = (s+s1)2 1 -

2ss'sin28

(s+s') '

(1+coss)

Substituting the above equations in Eq. (A-55) yields

(A-57) g(p,z;p ' ,z l ;e) =

1 -

2
2ss'sin £

(s+s1)2
(1+cos?)

(s+s1)2-2ss'sin2B0(l+cos5)
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As before, the integral over L-L1 is evaluated asymptotically for
kss ' 2

large r sin eQ, and the SDP (±TT) and L-L1 form a closed contour

which allows us to use the Cauchy Residue Theorem. The pole singu-

larities contribution yields

(A-58) P = 1-1_
4lT

1 -

2ss'sin23 (

(s+s1)2

j (s+s')2-2ss'sin2B (1+cosS )
COSNir X

where

and

x H(ir-|-B+2nNir|),

5 = - 3 + 2nN , N = 0, 1, 2,

By making the following approximation

(A-59)

1 -
2ss'sin26£

(s+s')2
(1+coss)

-jk(s+s'Kl -
ss'sinV

(s+s')2

the saddle point contributions to Eq. (A-57) can be obtained in a

manner similar to that for cylindrical wave illumination. Thus

(A-60)
-Jks'1_ e

4ir S1
l! e-Jks

' )

where d is given in Eq. (A-24) with the exception that < =

in this case.
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The integral I(p,z;p',z';e) is evaluated in the same way by
Pathak and Kouyoumjian[20]. Combining all the results we got thus
far, and recognizing that the pole contribution for the case N = 0,
8 = 4>-<t>' yields the direct incident field, we can determine that

as

Thus the diffracted field component of Ua(s,s ' ) can be written

(A-61) uj(s ,?•) + U1 Da O r̂ry e'jks

b b *

where Da are given in Eqs. (A-37a) and (A-37b) with the large parameter
2

sin B , and

4TTS'
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