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CHAPTER I
INTRODUCTION

Flush mounted antennas for the space shuttle vehicle will
generally consist of dielectric covered slots in a metallic surface
where the dielectric cover is employed as a protective heat shield
for the re-usable space vehicle. A typical local antenna geometry
is illustrated in Fig. 1 where the truncated dielectric cover is
shown recessed and flush mounted in a perfectly-conducting surface.
The work described in this report deals with the analysis of the
electromagnetic radiation from such an antenna configuration. In
particular, it is the purpose of this analysis to assess the effects
of the structural discontinuity caused by the truncation of the
dielectric cover (at A and B in Fig. 1) with a view towards pro-
viding analytical and numerical results which may be useful in the
design of such antennas.

In the present work, the configuration illustrated in Fig. 1 is
two dimensional, and the infinitely long axial slot excites only TM
type electromagnetic fields; here TM implies that the magnetic field
intensity is entirely parallel to the axial slot (i.e., it is directed
normal to the plane of the paper). This configuration supports
surface waves excited by the slot (in addition to the fields directly
radiated by the slot). In the present analysis, the thickness, b
and the relative permitivity, er of the dielectric cover are chosen so
that only the dominant TMg surface wave is excited for a given op-
ating frequency. The radiation pattern of this antenna can be con-
veniently calculated via the geometrical theory of diffraction[l];
however, the diffraction and reflection coefficients associated with
the truncation of the dielectric cover must be found. Expressions
for these coefficients are derived in this report.

In terms of the geometrical theory of diffraction, the total
far-zone field is composed of a geometrical optics field, and a dif-
fracted field. The geometrical optics and diffracted fields are
indicated in Fig. 1. The geometrical optics field for this con-
figuration is the direct radiation from the slot to the field point P
along the ray path s0; whereas, the surface waves excited by the
slot impinge on the terminations at A and B to produce singly dif-
fracted waves which arrive at P via the ray paths s-| and 52. The
surface waves excited by the slot also produce reflected waves at
the terminations. These reflected surface waves are in turn inci-
dent on the opposite terminations thereby producing additional re-
flected waves, and also diffracted waves which arrive at P along
the ray paths s-j and sg, and so on. The diffracted field at P
is therefore the sum of the fields associated with the singly
diffracted and multiply reflected-diffracted rays arriving at P.
The latter contribution can be summed into a closed form using a



self-consistent method. The geometrical optics field and the field of
the surface waves (incident on the terminations) are obtained from the
solution to the problem of a narrow slot radiating through a dielectric
covered ground plane of infinite extent. .The diffracted and reflected
fields produced by the terminations at A and B are described in terms
of the appropriate surface wave diffraction and reflection coefficients
just mentioned. -

—00

PERFECTLY-CONDUCTING
SURFACE

CD

DIELECTRIC COVER

Fig. 1—A typical antenna configuration involving a dielectric
covered slot in a perfectly conducting surface. :

It is apparent that the superposition principle can be used to
extend this analysis for the single narrow slot directly to an
array of slots radiating in the presence of a dielectric cover, """
or to an extended aperture in the presence of a dielectric cpver.'

Figure 2 illustrates the canonical problem pertinent to the ;
analysis of the terminated dielectric cover shown in Fig. 1. The
semi-infinite dielectric slab recessed in a perfectly-conducting
surface is excited by a TM0 surface wave which is incident from ' *
the left on the dielectric termination at z = 0. In this report,
three methods are employed to solve the above canonical problem;
they are:

T. a formally exact solution using the generalized scattering
matrix technique combined with function theoretic methods,



2. an approximate solution.using the variational technique,

-'and .. - ;• . • . . -
U •" .'' . . . - .

3., an exact solution of an approximate model wherein the
;iboundary conditions pertaining to the grounded dielectric .slab

are replaced by an equivalent surface reactance for x = .0. and
z < 0 as illustrated in Fig. 3. One notes that this model also
approximately describes the diffraction of a surface wave on the
complementary structure of Fig. 4. It is conjectured that the ter-
minated surface impedance model (Fig. 3) is a better approximation
for the "dielectric slab on the ground plane (Fig. 4) than for the
recessed dielectric slab configuration of Fig. 2, because the latter
structure has an additional discontinuity in the form of the step in
the ground plane. This is evident by noting that as the relative
permittivity of the dielectric slab approaches unity, the
former structure reduces to the smooth ground plane, whereas a
residual step is present in the latter structure. In Chapter IV
it is shown that this conducting step significantly affects the
reflection coefficient quite apart from the terminated dielectric
slab.

The.boundary value problems associated with the configurations
shown in Figs. 2 and 3 are not amrnenable to solutions by the
separation of variables technique due to the complicated nature
of'the boundary conditions. The configuration in Fig. 3 is identi-
fiable as the junction of two semi-infinite sub regions thereby
suggesting a solution based on the Wiener-Hopf type factorization
procedure. Thus, the two-part boundary value problem of Fig. 3 is
formulated in .terms of dual integral equations that can be solved
exactly using the method of factorization. The factorization for
this problem is achieved via an appropriate limiting operation on
the Wiener-Hopf factors associated with a related closed region
boundary value.problem (a closed region problem is one for which
no radiation takes place); this technique was originally used by
Bates and Mittra[2] in their Wiener-Hopf solution, to the problem
of waveguide excitation of dielectric and plasma slabs. Such a
factorization procedure allows one to obtain factorization functions
which are generally far more convenient/for numerical processing
than those obtained by a formal factorization scheme. The details
of this solution are presented in Chapter II. This solution yields
the expressions for the surface wave reflection and diffraction
coefficients for the.approximate configuration in Fig. 3. Several
authors have treated two-part boundary value problems whose solutions
contain the solution to this problem as a special case; however,
most of these authors do .not provide numerical results, and where
numerical results are given, they are only for the magnitudes of.
the quantities of interest. One of the reasons for this is the
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PERFECTLY CONDUCTING
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DIELECTRIC SLAB

PERFECTLY CONDUCTING
SURFACE •" '

Fig. 2 —Geometry of the canonical problem for analyzing
the configuration of Fig. 1. ;'
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REACTIVE SURFACE-^
( X = 0 ,Z<0)

CONDUCTING SURFACE
( x = 0 , Z > 0 )

Fig. 3 —An approximation of the configurations
shown in Figs. 2 and 4.

SEMI-INFINITE
DIELECTRIC SLAB

INFINITE GROUND
PLANE

Fig. 4 —A configuration related to that in Fig. 2.



complicated nature of their solutions. Our primary aim in treating
.the two-part boundary value problem of Fig. 3 is to obtain solutions

'''to-quantities of interest in a form which is convenient for cal-
^culation and subsequent application to antenna design. Only one

reference (Weinstein[5]) appears to provide analytical results which
are tractable for calculation? in this case, the values obtainable
from the present results and from those in [5] (which are based on
a different factorization scheme) provide a valuable mutual check.
There appears to be an error in the expressions for the surface wave
reflection and diffraction coefficients given in [5]; if one changes
the final results in Reference [5] to make them consistent with the
development which preceeds the final results, it is found that
the numerical results calculated via [5] agree well with the calcu-
lations based on the results derived in this report. In particular,
the values for the magnitudes of the reflection and diffraction coeffi-
cients calculated by these two methods agree perfectly, whereas, there
is only a slight difference in the corresponding values for the phase
of these coefficients.

The complexity of the solutions and expressions for the parameters
of interest which are given by Kay [3] and Maliuzhinets[4] appear to be
fairly representative of what one might encounter when consulting refer-
ences dealing with two part boundary value problems; their expressions
for the phase of the reflection and diffraction coefficients contain
integrals which appear intractable for numerical computations; in fact,

rthe results for both the amplitude and the phase of these coefficients
. available in Reference [4] appear intractable for numerical computations

(when the results are specialized to our case).

Angulo[6] has given an approximate solution to the problem il-
lustrated in Fig. 4. Using the continuity of the tangential .com-
ponent of the magnetic field in the aperture z = 0, x >_ 0, Angulo ob-
tained an integral equation for the equivalent magnetic current. He
employed the yariational method to obtain a stationary expression for
the aperture impedance of the incident surface wave. However, in his
solution, he approximated the aperture distribution (magnetic current)
with only the surface wave field. In related problems treated here we
show that such a trial function is too crude to obtain accurate values
of the surface wave reflection coefficient. It is clear that the radi-
ation pattern can be calculated from this single term trial function
without using the variational method; these patterns are found to be
reasonably accurate, except at the lower power levels.

The configuration in Fig. 2 has a transverse discontinuity (due
to the step) in addition to the longitudinal discontinuity which
defines the junction of two semi-infinite sub regions (in the longi-
tudinal direction); hence, this problem gives rise to a modified
Wiener-Hopf equation. Instead of solving the modified Wiener-Hopf
problem, the solution to the problem in Fig. 2 is built up from
the solutions to two simpler problems which can be treated via
the Wiener-Hopf technique. Specifically, the solution to this



problem is formulated using a generalized scattering matrix[7],
in which the elements of the generalized scattering matrix are
deduced from the Wiener-Hopf solutions to two appropriate auxiliary
canonical 'problems.: Both auxiliary problems give rise to identical •-.
Wiener-Hopf factorization functions. It was indicated previously ('
in the discussion dealing with the solution to the problem in
Fig. 3 that the-Wiener-Hopf factors for the open region could be
found from a limiting operation on the Wiener-Hopf factors for the '•
related closed region, and that this is to be generally preferred .
over the formal factorization procedure for reasons of convenience
in calculating the factors; unfortunately, the Wiener-Hopf fac-
torization function associated with these auxiliary canonical
problems do not yield a convergent representation for the factors ' *.
obtained via the limiting procedure (see Appendix I, Section III). ,'
It is therefore necessary to resort to a formal scheme in order to t"
factorize the Wiener-Hopf Kernel for the auxiliary canonical .:-
problems (for details, see Appendix II). It should be noted the
generalized scattering matrix formulation leads to a formally f
exact solution for the boundary value problem corresponding to
Fig. 2. The results for the reflection and diffraction coefficients
obtained from this solution are expressed in terms of appropriate
scattering matrices which are of infinite order; however, accurate
computations are possible by truncating the size of the matrices so
that one deals with finite order matrices. For a given dielectric
constant, operating frequency, and slab thickness, the size of the
finite order matrices is determined by the accuracy desired.
Numerical calculations indicate that in most practical cases,
sufficiently accurate results may be obtained by dealing with a
relatively small matrix. A discussion of the auxiliary canonical
problems, their solutions, and the manner in which these are used
to determine the generalized scattering coefficients appearing in
the expressions for reflection and diffraction coefficients, is
presented in Chapter III. In addition, an approximate solution to
this canonical problem which .is based on the variational technique
is given in Chapter III.

The use of the surface wave diffraction and reflection coeffi-
cients to analyze the radiation from the antenna configuration of
Fig. 1 via the GTD is described in Chapter IV. Chapter IV also
contains numerical results for the reflection and diffraction
coefficients which are derived in Chapters II and III. By a
comparison of the numerical results, it is concluded that the
approximate physical model in Fig. 3 is not adequate for analyzing
the configuration in Fig. 2 unless the conducting step in Fig. 2
is extremely small (much less than '1/50 x^, where xj = the wave-
length in the dielectric); hence, the formally exact solution
given in Chapter III is to be preferred even for relatively thin
dielectric slabs. The technological relevance of this research to
the design of arrays radiating in the presence of a dielectric cover
and to the design of surface wave antennas is pointed out in
Chapter IV.



An e time convention is used in this report; this time
convention is generally employed.by physicists; whereas, the.
electrical engineers prefer an e110* time dependence. The e~l
time dependence is employed here because it is commonly used for
solving problems by the Wiener-Hopf method,and the notation and
definitions employed are directly connected with this time con-
vention.

The authors have benefitted from the helpful discussions with
Professors H. D. Col son, J. H. Richmond and L. Peters, Jr. Special
thanks are due to Professor D. C. Chang of the University of Colorado
for pointing out the utility of the generalized scattering matrix
technique .to the authors. .



."••'.", CHAPTER I I • - - • - . . - •
TM0 SURFACE WAVE DIFFRACTION BY A REACTIVE SURFACE WHICH

IS TERMINATED IN A PERFECTLY-CONDUCTING SURFACE

This chapter deals with the solution to the canonical problem ,T.
illustrated in Fig. 3. As noted in the previous chapter, the
boundary value problems described by Figs. 2 and 4 are approxi- ,
mated by the boundary value problem indicated in Fig. 3 where ;

the grounded dielectric cover is replaced by a reactive surface;
one expects such an approximation to be valid when the dielectric
coyer is sufficiently thin. This technique of replacing the , .
original boundary conditions by the approximate impedance boundary ''
conditions for the purpose of simplifying the analysis is not new; . . . . - ,
it has been employed extensively in the past for analyzing cor- r

rugated surfaces, surfaces with finite conductivity, and for thin,
grounded, dielectric slabs (a discussion on the impedance surface
approximation for the grounded dielectric slab is available in
Reference [8]). The main advantage of utilizing the impedance ;
surface is that it simplifies the original problem to an approximate
problem which can be solved exactly via function theoretic methods;;. :
the exact solution for the original problem is much more difficult
as will be seen. The impedance surface for this problem is in-
ductively reactive since the thin dielectric cover is assumed to be
lossless. The normal surface impedance, zs associated with the
impedance boundary (for x=0, z<0) for an assumed e-lut"time dependence
is

The surface reactance, x is given by

(2) xs = zo kx (tan kxb) (^r M"1

where z0 is the free space impedance and er is the relative
permittivity of the dielectric slab. ,The quantity kx is found
from the TM surface wave disperrion relation given by

kxtan kxb =

The quantities k and b are the free space wave number and the thick
ness of the dielectric slab, respectively. Finally,

kd =/7rk in (2). When kxb « 1, xg £ ZQ ( ( er-l)/£r)kb.

Only a single component of the magnetic field intensity exists
for the TM excitation; for our problem, this component of the
magnetic field is y-directed, and will be denoted by u(x,z). Let



u (x,z) denote the y component of the magnetic field intensity of
the incident surface wave; this surface wave is incident from the
left as indicated in Fig. 3. In the analysis, ui(x,z) is allowed
to exist even for z>0 as the "unperturbed" incident field so
.that the y component of the scattered magnetic field intensity, us(x,z>
accounts for the effects of the perturbation arising from the surface
impedance discontinuity.at z=0, and x=0. The total field is thus given
by a superposition of uMx,z) and us(x,z), or

(3) u(x,z) = u^x.z) + us(x,z).

The form of the incident surface wave field u1(x,z) is known:

(4) ur(x,z) = e"ax e l6Z , for |z|<~ and 0<x<=°

where

(5) a = iwe0zs = U>EOXS ,

and

(6) ' 3 = U2 '> k2)1/2

with

(7) k = u /y E = free space wave number (yo and EQ are the free
"* space permeability and permittivity, respec-

tively, and oj is the angular frequency 2uf).

a and 3 are the usual surface wave attenuation and propagation con-
stants, respectively. The total field, u(x,z) satisfies the two di-
mensional (2-D) reduced, sealer wave equation

2 2
(8) (3 + 9 + k2)u(x,z) =0,

9X 9Z

and the following boundary conditions

(9) U + au = 0; for x=0, and z<0,
oX

and .

(10) |£ = 0; for x=0, and z>0.

In addition, (4) gives

(11) - ^ - + 0 ^ = 0 ; for x=0 and |z| < co



and one requires that

s ' 2 2 1 / 2(12) u satisfy the radiation condition as |(x +z ) ' |-*» for;ariw
e~ time dependence. .,f.--

One next defines the following Fourier transformations

(13) u(x,s) = -L f u(x,z)e isz dz = u+(x,s) + u_(x,s)

where

(14a,14b) . • . - . . . • - • • • • . . . - o f

u+(x,s) = -±r P u(x,z)e isz dz; u_(x,s) = -L | u(x,z)e isz dz,^

(15) us(x,s) E ' J=; us(x,z)e1sz dz = uj'fx.s:) + uf

with

(16a,16b)
' s i s z s s 1 s z

u ( x . s ) E - u (x , z )e dz ; O ( x , s ) E - - u (x ,z )e dz ,
x/2jO ' ;

and

(17) uJCxis) ' = T^r u1(x.z)e'1sz dz -' f rt J /\

(one uses (4) in obtaining the R.H.S. of (17)). The incident field,
u1 satisfies the 2-D reduced wave equation so it follows from (8)
that

(18) (aL-+ 3 + k
2)us(x,z) = 0.

3X 9Z -

Fourier transforming (18) and using (15) one obtains

10



(19) (3_+ AX )US (X,S) = 0
3X^ X

where

(20) JT¥ =

The general solution to (19) is given by

s = * = x(21) Gs(x,s) = u* + Of = C(s)e

X "1 A

+

In order to simplify some of the analysis, one introduces a small
loss in the medium above x=0; i.e., one lets k (and AV) be complex

X

(22) k = k + i k, (k « k ; k > 0, k > 0).

This loss may be set equal to zero once the analysis is completed.
From (12) one notes that us must satisfy the radiation condition
as x -> oo so that D(s) = 0. Thus

^c
(23) us(x,s) = C(s)e

with

(24) /I = / k2-s2 = +i /7-k2 ,

where the choice.of the branch of /AX is the one for which Im JTx" > 0,
One notes that u1(x,z) already satisfies the impedance boundary con-
dition; therefore

(25) iy_ +a u
s = Q; for x = 0, and z < 0 .

oX

Furthermore, (10) indicates that

(26) 1^1 = . IMl ; for x = 0, and z > 0 .
O A O A

11



.

In order to apply (25) and (26) to us(x,z), one takes the inverse '^
Fourier transform of (23) to obtain

us(x,z) =- f us(x.s)e-1sz ds
/T J-v/£ir ..

or.

- V'-' ' i ; r Vv isz' • " ' ' - • • VC .K ' ; J -- ;
(27) , us(x,z) = -± \ C(s)e x . e"TSZ. ds"." " ' .''^''' ". ,, •"[

Substituting the result on the R.H.S; of (27)' into.-(25:) V;'; V..;:? ;!;
and (26) leads to the following pair of integral eqyatioris ^ VG,

(28) f C/T-ia)' C(s)e" isz ds = 0, z < 0
I A - • ' . - ; . -• \
* — o o . * . - . • * ( •

(29) 7 C ( s ) e - i s z ds = -iayS el6Z, z > 0

It-is convenient to define

(30) -V(S) =^ C(s)

and

JTX 172 "2
(31) L(s) = W— *- -- ^ k " s

so that an alternate set of dual integral equations is obtained by
substituting (30) and (31) into (28) and (29); thus

, ,1 "

(32) L-1(s) <j,(s)e'1szds = 0, z<0

, z > 0

12

(33) f <(,(s)e"iszds = -i
i —CD



One may now solve for <|>(s) given in (32) and (33) via a factorization
procedure.

Let : ', ' v ""!-''

(34) s = o + it ,

The region in the complex s plane for T > -k2 will be denoted by
U.H.P. (upper half s plane), and the region in the complex s
plane for T < k2 will be denoted by L.H.P. (lower half s plane).
Initially, one assumes that L~ ' (s) <}>(s) -»• 0 in the U.H.P. as
|s| -»• « there, and one also requires that <|>(s) -»• 0 in the. L.H.P.
as |s| -»• » there. It will be indicated aposteriori that these
assumptions are true. Under these assumptions, one may employ
Jordon's lemma to close the contour of integration in the U.H.P.
for (32) and similarly close the contour of integration in the
L.H.P. for (33) so that

(35) j L"](s) <j>(s)e~ iszds = 0, z<0

£>
and

(36) f <(.(s)e"1szds = -1^ aeiez, z > 0

$ . . . . . .

From (36), one requires that <j>(s) have a pole in the L.H.P. to
provide a residue contribution corresponding to -iV^ •ae1"-Bz. From
(35) one may write

(37) L - ( s ) + (s) = A+(s)

where A+(s) is as yet an unknown analytic function in the U.H.P.
Similarly, one may define another as yet unknown analytic function,
A_(s) in the L.H.P. such that

(38)
a M«>

A - B S + B -

If one employs (38) in the L.H.S. of (36), one then obtains the
value on the R.H.S. of (36) via the Cauchy Residue Theorem.
Eliminating <(.(s) between (37) and (38) yields
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A (s)
(39)

The unknowns A+(s) and A_(s) can be found by factorizing L(s) into
L+(s) U(s). (where L+(s) is analytic in the U.H.P. and L.(s) is
analytic in the L.H.P.; L+(s) are referred to as the Wiener-Hopf
factors). Clearly L_(s) is proportional to A_(s) /A_( -e) ; hence

L_(s) A_(s)
'^O/ 1 l_o \ = A I_ D 1 • ',

(The proportionality constant in the above equation is unity since
the R.H.S. equals unity where s = -6 ). Thus, it follows that

(41) A+(s) =

The explicit forms of the functions L+(s) and L_(s) are derived in
Section II of Appendix I. These L±(s) functions are deduced from
an appropriate limiting procedure on the factorization function I
for a related closed region boundary value problem; this technique
leads to factors which are convenient for numerical processing* One
notes that if the boundary conditions (25) and (26) were employed in
the transformed domain (x,s-domain) instead of in the spatial domain
(x,z-domain) as done in this analysis, one would have obtained a .
Wiener-Hopf equation for the unknown <j>(s). However, the solution
to the Wiener-Hopf equation requires decomposition functions in
addition to factorization; thus, by formulating this problem in
terms of the dual integral equations one avoids any decomposition.
The solution to the Wiener-Hopf equation also requires an analytic
continuation argument which is not essential for the solution of
dual integral.equations by the factorization procedure. Some
author's prefer to use the analytic continuation argument even to
solve dual integral equations by the factorization method; in
contrast, the procedure outlined above allows one to by-pass the
analytic continuation argument to solve for A+(s). Incorporating
(41) in (30) via (37) yields ' ~

L (s) .,
(42) C(s) " ' ]

^L>6)y^-2(s+g) • " '

One may next utilize (42) in (23) to obtain

14



(43)

Inverse .Fourier transforming (43) leads to a formal solution for
us(x,z) in,terms of an inversion integral with known terms in
the integrand;

I 2 2
«> . / x i k -s x

s . I f L _(s )eJ _isz
(44) us(x,z) = ̂  a e !sz ds . .

11 " L_(-g)Jk2-s2(s+B)

An evaluation of the integral in (44) leads to the complete solution
of our problem. Before preceding further, one may check aposteriori
if the assumptions concerning the behavior of <j>(s) in the L.H.P.,
and of L- ' (S)((>(S) in the U.H.P., have all been satisfied. From the
asymptotic behavior of the factors L+( |s |-~») as given in Appendix I
(Section 1 1)1.- one notes that L±(s) 'v (constant). Hence, from (41),
A+(s) XrcKs-'); so that 1-1(5 MS) * 0(s- ]) and $(s) -v 0(s-'). It •
is now 'easily 'Verified from these asymptotic behaviors that all the
previous assumptions are indeed true. The contour of integration
in (44) : may be closed in the U.H.P., and the Cauchy residue theorem
applied to obtain the fields which exist in the region z < 0, x ^ 0;
whereas one may close the contour of integration in the L.H.P. to
obtain fields which exist in the region z> 0, and x >_ 0. The
singularities of the integrand of (44) in the complex s plane and
the deformed -paths of integration are indicated in Fig. 5. One
notes that~L- (s) contributes the pole at s = -3 (see (44)). The
original contour may be deformed to one in the L.H.P. as follows •

(45) f = -;• f +[ + (f>
V •J- LJcz>0 Jcbr. l+Cbr.2

for z > 0

Similarly, the deformation into the U.H.P. is given by

f°° f f r r "I
(46) = _ + +Q) , for z < 0.

I J r I r ' j. r ' Tr •J-°° LJ Cz<0 JCbr. 1+ Cbr. 2 'CBJ

The contributions to the integral from
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2<0

Z>0

Fig. 5 —Contours of integration in the complex s-pjane
which occur in the solution to the problem in
Fig. 3.

and

'z<0

vanish. The integrals over Cbr. 1+Cbr. 2 and cbr. l+Cbr. 2 yield
the radiation field which may be asymptotically evaluated in closed,
form yia the saddle point method; whereas, the integrals over Cg
and Cg yield the transmitted and reflected surface waves, respectively.
There can be no transmitted surface wave above the perfectly con-
ducting surface (x=0, z>0); however, the transmitted surface wave
arising from the integration over the circular contour Cg exactly
cancels the incident surface wave field which was assumeB to exist
for z>0 in the analysis. The transmitted surface wave field for
z>0 is given by the residue at s=-s as: l

16



(47)

cxL (s)eWk2-S2X

6 L (-3)\/k2-s2(s+3)

e-lszds = -2.1

(Note:>/k -3 = ia has been used in deriving the above result)
Similarly, the reflected surface wave for z<0 is given by the residue
at s=3 as:

(48)
's x

3 L (-3)Jk2-s2(s+3)
e ~ d s = . 2iri

L_(-3) ia (2Tr}(23)

where

(49)
dq

from Appendix I (Section II). The symbol P.V. in front of the integral
denotes the principal value of the integral. The quantity «£ (e) may
be identified as

(50) = - Residue of L (3) = - 11m (s-3> L (s)
S+3

i.e.,

(51)

Since the value of the surface wave field at x=0, z=0 is unity, the
reflected surface wave denoted by ur(x,z) for z <0 may be expressed
as

(52) ur(x,z) = e-igz,

17



where RI denotes the surface wave reflection coefficient for this
canonical problem. From (48), (49) and (50), R, is explicitly
given by

(53)

1 f •
1/2 -!-P.V. In1

e17 •'o

o o
IIT-q -

-2—2 dq •q +a

The radiation fields obtainable from C^r -\ + Ckr> 2 ancl chr 1 +

Cbr. 2 via an asymptotic evaluation are the fields diffractefl by the
impedance discontinuity at (x=0, z=0). It is sufficient-,to evaluate
the branch cut integral either in the U.H.P. or in the L.H.P. by the
saddle point method (both lead to the same result). Instead of
asymptotically evaluating the integrals by deforming the contours
Cbr. 1 + Cbr. 2 into a steepest descent contour which passes through
the*saddle point in the s-plane, it appears to be more convenient to
employ a polar transformation in the integral of (44) and later evaluate
the transformed integral via the saddle point method. The use of polar
transformations is a common procedure for evaluating integrals of the
type given in (44) (see [8,9] for example). The. polar transformations
are ' ' ' ",'""' ...";." '':

(54) s = k sin

(55) x = p cos 4> and z = p sin

Figure 6 illustrates the quantities p and <K these correspond" to t;he
polar coordinates at the field point. The polar transformation yields
a single valued integrand in the transformed plane (complex c-plane).
The new contour in the 5-pl.ane may be deformed into the steepest
descent path denoted by C$DP in order to obtain the saddle point :
contribution to the integral. The saddle point contribution gives the
diffracted field contribution; whereas, the residues corresponding to
the poles, which may be crossed in .deforming the original contour in the
g-plane to the G$pp contour give rise to surface wave contributions to
the field. In this problem, these pole contributions in the s-plane
are identical to the pole contributions arising from contours Cg
and Co in the s-plane as given by (47) and (48); hence, these will
not be calculated again. The complex s-plane representation appears
more suitable for calculating surface wave contributions to the
field; whereas, the c-plane representation appears to be more
convenient for calculating the diffracted field. The-,details of
the transformation of the integral in (44)'from the s-plane to the
£-plane, and the complex s-plane topology will not be presented
for the sake of brevity. The final expression for the integral over
the steepest descent path is denoted-by ud, where
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I , X

Fig. 6 —Polar coordinates for the field point.

" d r L (k sin 5)
(56) u(P,*)=|M L"(.e)(e+k sin e)e

LSDP "

The above integral is evaluated asymptotically by the saddle point
method; and the leading term in the resulting asymptotic solution,
for large kp is

(57)
ikp

L.(-3)(6-k sin

.Since the value of the incident surface wave field at x=0, and z=0
is unity, one may express u^ as

(58)
ikP

where D] represents the surface wave diffraction coefficient for
this canonical problem. From (57) and (58) D, is thus given by

(59)
4 L (-k sin

Substituting for L_(s), DI(<|)) becomes
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(60) D, = e
2L
4 sin <j>)

' 9 9 2 .
(3 -k sin <j>)

CO

Ip.V. f in '
>ff Jn

sin a dq

The; derivations for the surface wave reflection and.diffraction,
coefficients given above complete the solution to the canonical
problem of Fig. 3. ,
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CHAPTER III . ,
TM0 SURFACE WAVE DIFFRACTION BY A RECESSED SEMI-INFINITE

DIELECTRIC SLAB WHICH IS FLUSH MOUNTED IN
A PERFECTLY CONDUCTING SURFACE

This chapter deals with the solution to the canonical problem
illustrated in Fig. 2. Two approaches for solving this boundary
value problem are explored. One approach is based on the generalized
scattering matrix technique (henceforth denoted by GSMT) which was.,
recently developed by Pace and Mittra[7] for analysing a class of
waveguide discontinuity problems; the generalized scattering .
matrix approach leads to a formally exact solution for the problem.
The scattering matrices involved are found from the solution of
associated problems by the Wiener-Hopf method. The second approach
is based on the variational technique which leads to an approximate
solution. The details pertaining to the solution of this canonical
problem via the GSMT is indicated in section A of this chapter;
whereas, section B of this chapter describes the variational
solution to the same problem.

A. Solution Based on the GSMT

The GSMT was originally developed for analyzing the effects of
discontinuities in closed waveguide regions [7]; however, more
recently, Lee and Mittra[10] extended the application of this
technique by solving an open region problem involving the dif-
fraction of a plane wave by a thick conducting half plane (they
actually considered plane wave diffraction by a dielectric loaded
parallel plate waveguide which reduces to the case of a thick
conducting half plane when the relative dielectric constant tends
to infinity). Kashyap and Hamid [11] later extended the results
of Lee and Mittra to treat the diffraction by a slit in a thick-
conducting screen via the GSMT. The concept of the generalized
scattering matrix is closely connected with the scattering matrix
theory used for describing microwave networks. The basic dif-
ference between the ordinary scattering matrix and the generalized
scattering matrix is that the former considers only propagating
modes; whereas, the latter considers both evanescent as well as
propagating modes. As a result of the extension to include
evanescent modes, the generalized scattering matrix is of infinite
order, and is non-symmetric (the symmetry in the ordinary
scattering matrix results from the normalization on the propa-
gating modes such that they carry unit power; such a normalization
cannot be applied to evanescent modes). In general, boundary value
problems whose geometrical configurations can be identified as
being composed of two or more junctions can be solved via the GSMT,
provided that the generalized scattering matrices associated with
these junctions can be found. In the GSMT, the formally exact
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solution to the boundary value problem is obtained by systematically
summing up field contributions arising from the multiple scattering
between these junctions. The multiple scattering process between "the-,
junctions can be described by a convergent Neumann series whose terms
contain these generalized scattering matrices [7]; however, one can .;.;
directly arrive at the same result via a self consistent method f o r - ,
multiple interactions. The latter viewpoint wi l l be employed in our ?.
analysis. The formal solution arising from the multiple interactions;
contains infini te order matrices. In most practical cases it is ,;
possible to obtain accurate results by truncating the matrices f !

to a reasonably small size as seen from [10] and from the results,: [I
obtained i n this report. ' , . . ' . ( /

At first glance, the canonical problem illustrated in Fig. 2 does,
not appear to be composed of two junctions. However, if one assumes
that the dielectric slab is extended by an "infinitesimal" distance, ,
6 into the conducting region (i.e., into the region 0 <_ z < 6;
0 < x < ^ b ) , one creates physically identifiable junctions "̂ 1) and
(2J~ as indicated in Fig. 7. When 6 + 0, the problem illustrated
in Fig. 7 becomes identical to the canonical problem illustrated in

For later convenience, one defines the regions ' (§), ® ...
surrounding junction Q) such that region ® exists for
[z| < «), region (D exists for (0 < x < b; z < 0), and

exists for ( 0 < x < b ; 0 < z < 6 ) . These regions are also
indicated in Fig. 7. The geometries of junctions Cpand (g) are in-
dicated indicated in Figs. 8a and 8b, respectively. The properties
of junctions (D and (2) may now be described in terms of their:,
respective generalized scattering matrices.

Fig. 7—Junct ions 0 and ©-fpr the recessed slab
in Fig. 2.
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In order to introduce the generalized scattering matrices
for junction 0, one begins by considering the geometry for this - .
junction alone as shown in Fig. 8a. Junction 0 is, excited by the,
TM0 surface wave which is incident from the left as in Fig. 7. .This
incident surface wave is scattered by 0 such that a part of it is
scattered into region © and the rest is scattered into regions, ©;
and ©. The fields transmitted into region © are described by.the
generalized scattering matrix denoted by $21; whereas, the fields
scattered into' regions ® and ® may be described by the • . .
generalized scattering matrix denoted by $n. The scattering .... t
processes described by $21 and $n are indicated in Fig. 9a. The , ;
field transmitted into region © impinges on junction ® from which
ft is reflected towards Q) . The field in region .© is represented
by a sum of TMon waveguide modes (for n = 0, 1,2, ••• °°). Thus,,
any TMon mode which is incident at 0 after reflection at © is
partly scattered back into the waveguide region ©, and the rest is
scattered into regions ® and ®. The field scattered back into ©
is described by the generalized scattering matrix denoted by $22! -"••
whereas, the corresponding scattered fields in regions (§) and tl) are
described by the generalized scattering matrix denoted by $12- The
scattering processes described by $22 and $12 are shown in Fig. 9b.
It is clear that the matrices $n and $21 may be obtained from the
solution to the problem illustrated in Fig. 9a; whereas, the matrices
$22 and S{2 may be obtained from the solution to the problem illustrated
in Fig. 9b. '.The problems illustrated in Figs. 9a and 9b may be re-
garded as auxiliary problems associated with the original canonical
problem; the solutions to these auxiliary canonical;problems are
instrumental to the solution of the original canonical problem
illustrated in Fig. 2. The generalized scattering matrix for junction
© is denoted by r..< r corresponds to the reflection coefficients of
the TMgn modes which are reflected at (2); it is easily seen that r
is an identity matrix of infinite order.

The explicit forms of the generalized scattering matrices
Sll, $12, S21 and $22 are derived next. The derivations for S]i
and $21 are indicated first; these are followed by the derivations
for $12 and $22. 'It is a trivial matter to determine r:, and hence
the derivation for r is not presented here for the sake of brevity.
The surface wave reflection'and diffraction coefficients are then
constructed from these scattering matrices by considering inter-
actions between the junctions 0 and (2).

Derivation o f S and S:

The generalized scattering matrices $n and $21 are obtained
from the. solution to the auxiliary problem illustrated in
Fig. 9a as mentioned before. The excitation for this problem is a
TM0 surface wave incident at 0 from the left as^shown in Fig. 7.
For the TM case, the magnetic field intensity is y-directed;
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Fig. 8—Geometries associated with the individual junctions.

TM0
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Fig. 9 —Auxiliary canonical problems associated with
the recessed slab problem.
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hence, in the following analysis one defines the sealer fields $ ,
$, and ** to respectively correspond to the y-directed components
of the incident, scattered and the total magnetic field intensities.
For the purposes of anlaysis, it is convenient to assume that $i
exists even for z > 0. The final solution will contain a con-
tribution to $ which exactly cancels the incident field for z > 0.
The form of the incident field $1 is

(61)

with

(62)

e-a(x-b)+1BZ . x>b ,z| <

cos

c o s k b
/\

2 2 2
x + kd • f

; 0 < x < b, Izl <

(63) a2 + k2 =

where a and 3 are the TM0 surface wave attenuation and propagation
constants which are found from the TM surface wave dispersion
relation

(64) kx tan kxb = jyx

k and kd are the wave numbers in the regions x > b, and 0 < x < b,
respectively. Thus,

(65)

where er is the relative permittivity of the dielectric in 0<x<b.
The total field $t is a superposition of $"• and $.

(66) *.

* , 91 , and $ satisfy the homogeneous, 2-D, reduced wave equation.

(67) i_tl
\ ax az
r^T+'-S-* k2)$(x,

az /
z) = 0; x >^b, |z|

25
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and

(68) (I.
U2

2 2
3

T+ -2-7.+ k^ U(x,z) = 0;; 0 < x7< b, |z|-'< co-
ax^ 3z^ ~ ~

In addition, $ must satisfy the following; boundary conditions and
the radiation condition.

(69) -|i
9X x=0

=0; for |z| < «•

(70) x=b, = ' f o r z > 0

z < 0

(72)
9X x=b x=b

; for z < 0

2 2"1/2(73) $ satisfies.the radiation condition as |(x +z ) | -»-
for an e"""^ time dependence.

One defines the following Fourier transformations:,.^. •

(74) $ ( X f S ) =.J_

where

(75a,75b)

*+(x,s) =

.

f $(x,z)e1szdz; « (x,s) = -L f *(x,z)e iszdz
J " 2 - ' - c o
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and s = a + ir as in Chapter II. Also

(76a,76b)

*l(x,s) = -LJ ^(x.zje^dz; $j'(x,s)

From (61) and (76a), one easily obtains

.-"(x-b)

°° _.i
Q .
e dz

(77)

and

(78)

=
cos kxx 1
cos kxb

•; -<

a tt-a(x-b) 1
s+e *

sin

cos k b s+e*

x > b

0 < x < b

x > b

0 < x < b

Fourier transforming (67) and (68) w.r.t. z yields

f,2 2 2
(79) -<*-«.- (s2-k2)

9X

and

(80) -<

f " ^\
2- 2 2

2~ " ^s ~ d'9x a

^ ' -

>• $(x>ss) = 0

r S(x ,s) = o

Where x^ and x< denote values of x for x >_ b and 0 <^ x £ b.
respectively; thus, x> -»- b+ and x< -* b_ as x + b. General
solutions to (79) and (80) are

(81) 5(x>.s) = A(s)e 'Y X+ B(s)eYX

(82) *(x<,s) = C(s) cosh y-|X + D(s) sinh y - jX
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where

(83) Y =Js2 - k2 = - i Jk2 - s2

and

(84) YI = Js2 - k2

Here, the choice of the branch of y is the one for which Re y > 0- '•'•
For ease of analysis, one introduces a small loss into the regions
x > b and 0 < x < b; i.e., one lets k and k . be complex.

• ~ ~ ~ r . - i s - . " . - • •

(85) k = k1 + ik2, (k2 « k] ; k] > 0, k? > 0)

and

(86) kd = k3 + ik4, (k4 « k3; k3 > 0, k4 > 0)

The radiation condition (73) requires that B(s) = 0; and (69)
requires that D(s) = 0. Thus, . -•, . , f,r.

(87)

(88) $(x<) = C(s) cosh Y]x = $+(x<) + S_(x<)

Employing (71) in (87) and (88) yields

(89) 8+(b+) - S+(b_) = A(s)e"Yb - C(s) cosh

Similarly, from (72), (87) and (88) one obtains

(90) £r*;(b+) -*;(b_) = -erYA(s)e'Yb-Y1C(s)sinh Y]
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where primes indicate differentiation w.r.t. x. Employing (70),
and (78) in (90), one arrives at the following result after some
manipulations (and the use of (64))

(91) erYA(s)e~Yb = -Y-, C(s) sinh ^b

One next defines

(92) J+(s) = i+(b_) - S+(b+) . , _

Utilizing (91) and (92) into (89) gives

(93) . -J+(s) * YA(sje'Tb G'^s)-

where

(94) G(s) = (YY-, sinh Y-,b)(Y1 sinh Y^b + erY cosh Y^)"1

From the fact that

(95) $;(b+) + ^(b+) = -YA(s)e"Yb,

and

(96) s;(b+) = 4|'(b+) ,
one obtains

(97) 4|'(b+) + $l(b+) = -YA(s)e-vb .

Finally, incorporating (97) into (93) and using (78) allows one to
obtain a Wiener-Hopf equation
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(98) J+(s) G(s)'=.*l.(b+]

From the behavior of <Kx,z) and 3.<)>(x,z)/9x as |z| •*• », it is evident
that the transform $(x>) is analytic in |T| < k2*, whereas, <J>(x<) is
analytic in |T| < k4. Also, J+(s) is analytic for T > ~[Min(k2,k4)].
G(s) is analytic for |T| <Min(k2,k4), and $l(b+) is analytic for
Thus, (98) is analytic in the strip |T| < Min^.k.). One begins
solving (98) by factorizing G(s), i.e. , • - . - .

(99) G(s') = -G+(s) G_(s) :

Where G+ is analytic in the U.H.P. (i.e., for T > - Min(k2,k4)) and
G_ is analytic in the L.H.P. (i.e, for T < Min(k2,k.4)). The ,
factorization functions G±(s) for this problem are derived in
Appendix II via a formal factorization procedure since the limiting
type factorization scheme indicated in Appendix I is shown' to cause
convergence problems in the integral representations for the factors
G±(s) (see section III of Appendix I for these details). The use
of (99) in (98) yields

$'(b }
(100) G+(s)J+(s) = g" + ' ia

The R.H.S. of (100) is analytic in L.H.P. except at s=-e. = It is
convenient to put the preceeding equation into the form

(101) AI ; ,

G (S)J . (s) - ==i* - = ¥%r- + - k - [G"1 (s)-G'1 (
+ + s '

The L.H.S. of (101) is analytic in the U.H.P.; whereas, the R.H.S.
of (101) is now analytic in the L.H.P. Hence, the R.H.S. and the ,.
L.H.S. of (101) together define an entire function denoted by P(s).
Since G(s) ̂  0(s) as |s|-»« in the strip of analyticity, G±(s) ̂  oU
as |s| -»• «, in their regions of analyticity. The edge condition for
this problem dictates that the magnetic field intensity must behave
as p+T/2 -jn tne neighborhood of the edge as p -»• 0 (p = radial distance
away from the edge at x = 0, z = 0), which correspondingly implies
that J+(s) ^ 0(s~3/2) as |s| -»• <» in the strip (since J+(s) may be
interpreted as the transform of the current density on the plate at
x = b for z > 0); the edge condition for this problem is deduced by
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an application of the technique described in [9]. The entire function
P(s) therefore equals zero from the asymptotic conditions for large s.
Hence, each side of (101) is zero. It follows that

la(102) J+(s) =

Utilizing (102) in (93) gives

-iaeYb G (s)
(103) A(s) =

From (103) and (91), one can obtain an expression for C(s) in .
terms of known quantities. Incorporating this value of 0(s) in (87),
and the above value of A(s) in (88) one obtains .

-iaeYbG (s)e-YX>
(104) $(x ,s) = —: ,

J2uY G_(-e) (s +e)

and

ie <* G (s)cosh Ylx^
(105)r ^

G ( - e ) ( s + e )

Finally, inverse transforming (104) and (105) yields

, f» -iaG (s)e ." .
(106) »(x ,z) = -5- ~ e 1szds

> . ZTT | -

and .

°°- ie^aG (s)cosh Y,X
(107) «(x<,z) -^ ' r • ] <

-~ Ylsinh
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thereby completing the formal solution to this canonical problem.
One may close the integration contours along the real axis in (106)
and (107) by semi-circular contours at infinity (except for the
deformations around the branch cuts) so that the fields represented
by $(x>,z) and $(x< ,z) may be calculated via Cauchy's residue
theorem. The semi-circular contours at infinity provide vanishing
contributions to the integral. If one closes these contours
defined along the real axis by a semi-circular contour at infinity ,.
in the U.H.P., the fields for the region z < 0 are obtained; whereas,
if one closes the path of integration defined on the real axis by a
semi-circular contour at infinity in the L.H.P., the fields for
the region z > 0 are obtained. The pertinent contours in the
complex s-plane are shown in Fig. 10. Clearly, the residue at the
pole s = -3 in the L.H.P. which is obtained by closing the contour
of integration in the L.H.P. exactly cancels the incident field
for z > 0, as was anticipated.

/ ORIGINAL
/CONTOUR DEFINED

/ON THE REAL VAXIS

INFINITY IN THE

SEMI-CIRCULAR
CONTOUR AT
INFINITY IN THE

L.H.P.

COMPLEX S-PLANE

T_=MIN ( k 2 , k 4 )

T+=-MIN { kz,k4)

Fig. 10— Contours of integration in the complex s-plane
which occur in the solution to the auxiliary
canonical problems.
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The diffracted field in region (§) may be obtained from (106)
via an asymptotic approximation to the integral. This diffracted
field arises from the branch cut contributions to (106). One
begins by introducing the usual polar transformations

(108a) s = k sin a,

and

(108b) x = p cos <j>, z = p sin

Incorporating the above transformations into (106) leads to the
following integral along the contour O in the complex a-plane

G (k sin ) ..
(109) *(P,«) = - - - '— - e-lk cos

G (-s)(k sin a + B)
a

The quantities p and $ are indicated in Fig. 8a. The contour O
may be deformed into the steepest descent contour for the above"
integral in the a-plane, and the resulting integral may then be
asymptotically evaluated for large kp by the saddle point method,
to give the result for the diffracted field denoted by <&d as

.
(110) *d(p.*)

where

, aG (-k sin * )e-ikb cos * -i
(111) ^(0)=-^= e

3-k sin di)

Since the surface wave incident on the discontinuity at z = 0 in
Fig. 8a has unit amplitude, it is apparent that FA(<j,) is a diffraction
coefficient for this auxiliary problem. It is interesting that it has
the same form as the diffraction coefficient D-) for the diffraction of
a surface wave by a discontinuity in surface reactance (see (59))
except for the factor e~lkb GOS * which is due to a difference in
the origin of the coordinates for the two problems.
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The TM0 surface wave which is reflected from (J) is obtained
from the residue at the pole s = g of 6_(s) in (106) for the
reflected surface wave in the region x ^ b and z < 0 (i.eY, for
the part of region (§) for which z < 0), or from the residue at'-
the pole s =0 of G_(s) in (107) for the reflected surface wave
in region® (i.e., 0 <_ x < p; z < 0). The result for the r

reflected surface wave field in region (§) (for z < 0) which is
denoted by $r is indicated below; it is obtained in a straight-
forward manner by closing the .contour of integration in (106) by ;

a semi-circular contour at infinity in the U.H.P. and evaluating
the residue at s = $, and by replacing G (s) in (106) by G(s)/G+(s)
for convenience.

e-a(x-b) e-iez

x > b . z < 0

where .

(113a) ^ = Residue of G(g) = lim (s-e) G(s)

Using (94), Y£ is found to be

\ - £Y

One may now express $r above as

(114) $ r= Rswe-a(x-b)e-i3z ; x > b, z < 0

sw •where R is the TMQ surface wave reflection coefficient at

*n ^(115) Rsw, o ._Jo

2B G
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(since G_(-s) = G+(s) as indicated in Appendix II).

The fields transmitted into region (C) are given by the
residues at the poles of (YI sinh Ylb)~' in the integrand of
(107). Before evaluating this contribution it is convenient to
re-write (107) as .

2 2 -isz

(116)
(s)cosjk .-s x^ e

<-

sinjk2-s2b G+(3)(s+B)

ds

/~~2 2 f~2 2The zeros of^kj-s sinjk,j-s b corresponding to the fields for z>0
occur -- - - - - -•- ------- -

(117)

occur at s =-3 . e is given bym m

pm = - Mr- J m= 0, 1, 2,

The fields transmitted into the waveguide region © are thus
obtained by closing the contour for (116) in the L.H.P. and by
summing up the residues contributions arising from the poles of

I 2 2 1
sin>/kd-s b) at s = -3^.

Let the transmitted field in region © be denoted by $ .

oo C ( }rn* — y p m

(118) * = -£ra Jn FT" m

j-s2

s=-e,m
or

(119) $r =<

VG+(kd)e

ikdz

, for m = 0

. G (-6m)cos &• x e
-e « I " m

m

m
m=l (-irbB_6 m'

, for
and m=l ,2,3,"'

may be expressed as

(120) ** = I Tm cos V-Z- x< e ; for 0 < x < b and z > 0
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where T denote the modal coefficients of the fields transmitted
into region From (119) and (120) one may" define"!" as

(121)

wi th

/ ,.>m

2 . for m = 0

1 for m t 0

The generalized scattering matrix STI for junction vP
describes the fields scattered in regions J§) and ® when a
TM0 surface wave is incident at junction (]J; this scattered field
is composed of a reflected TM0 surface wave field and a diffracted
field contribution. If one is interested in the reflected surface
wave calculation, one defines s-n to be Rsw of (115); on the other
hand, if one is interested in calculating the diffracted field in
region @, one defines s,, to be FA(<j>) of (111). Thus,

(122) '11

Rsw for reflected surface wave field calculations
in regions ® (for z<0), and (D

F (<[>), for diffracted field calculations in
region (§).

The generalized scattering matrix 521 represents the modal:., _
coefficients of the field transmitted into the waveguide region (D
when a TM0 surface wave is incident at 0 from the left. The field
transmitted into © is given by (120). Hence, sgi-may be
conveniently represented by a matrix whose elements are TO,

S21
Tm
as

where T_ is defined in (121). Thus, one defines

(123)

m

Tl T2 m JlxM

where T is the transpose operator,
which M •* ».

is an M x 1 matrix in
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Derivation of s,2 and s^o

The generalized scattering matrices s-|2 and $22 are obtained
from the solution of the auxiliary problem illustrated in Fig. 9b.
The excitation for this problem is a TMon waveguide mode which is
incident at G) from the waveguide region (£) (i.e., from the
right). One denotes the y-component of the incident, scattered
and the total magnetic field intensities by $j, $n and $, .
respectively. Then $n = $* - $i where the incident field, $J| is
assumed to exist even for z < 0 for convenience of analysis. The
final solution will contain a contribution to <3>n which exactly
cancels. the incident field for z < 0. The form of the incident
field is

. . .-•• -ie z '
(124) « = cos x e n ; for 0 <_ x <_ b and |z| <

where

' "• 0 ,1 ,2

and kd has been defined in (65). Bates and Mittra [2], and Angulo
and Chang [15], have solved the problem illustrated in Fig. 9b for
the special case when the structure is excited by a TEM waveguide
mode; this corresponds to the n = 0 case in our problem. ^
satisfies the 2-D, reduced wave equation

(126) f-^- + ^5-+ k^ I*" = 0; 0 < x < b, Izl <

P = 0 everywhere else. Also, $p satisfies the 2-D, reduced wave

— + k *. x,z = 0; for x > b, zl <

equation; hence, $ must satisfy

(127)

and

(£ £ 7\
(128) [^-2-+ -̂ -y1- kjJ $n(x,z) = 0; for 0 <_ x <_ b, |z| < .
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In addition, ^ satisfies the following boundary conditions and
the radiation condition.

(129)
3X x=b

= 0, for z > 0

34_
030) -JL

x=0
= 0, for |z| <

°31) '"'x-b • "I + VU • *»•*«>

. _

<132' -

(133) $n satisfies the radiation condition as

for an e"la) time dependence.

As before, one defines

(134) $n(x,s) =±= dz = $*(x,s) + 8~i

where

(135)

^(x,s) 1sz$ (x,z)e'^dz;
°- M'• Ji;J.

Similarly,

(136) $J-(x.s)
II

0
 $Ij(x,z)e iszdz = cosfHj
o \
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and

037) "

DJL cin Ik.- x
b b

Fourier transforming (127) and (128) w.r.t. 2 gives

(138) /3-_ - Y%n(x>ss) = 0

where y and y] are identical to (83) and (84). Also x> and x<
have the same meaning as before. The general solutions to (138)
and (139) are

(140) £ ( x» s ) r S ( X ) = A(s)e^x> + B(s)eYX>

cosh Ylx< +

B(s) = 0 and D(s) = 0 from (133) and (130), respectively. Thus,

(142) Sn(x>)S) = *+

(143) Sn(x< ss) = 3*(X<) + *'(x<) = C(s)cosh

The steps leading to the final solution for $n(x,z) are similar
to those previously followed in the derivation of s,, and s2-i.
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From (129) it follows that

(144) *n'(x=b
±) = °

Using (132) together with (144) yields

(145) -e Y A(s)e"Yb = YI C(s)sinh Y]b

From (131) one obtains

(146) $-(bJ =

(Eq. (136) has been used in obtaining (146)). One may re-write
(146) via (142) and (143) as

(147) A(s)e-Ybr«J(b+) oH/H? + C(s)cosh Y]b - «*(b

It is convenient to define

(148) J*"(s) s$*(b_) - $p(b+)

Equation (147) becomes via (148)

(149) A(s)e"Yb - C(s)coshY1b =
w^ns - Ln,

Eliminating C(s) between (145) and (149) leads to

(150) YA(s)e-Yb G-1(s) = H)H )" . j+(s)
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in which G(s) is identical to that in (94). One notes from (142)
\ and (144) that A(s)e-Yb is given by

051)

Utilizing (151) in (150) yields the Wiener-Hopf equation

(152) G'^s) *~'(b+) = J+(s) + ^=^

From the behavior of 4>n and 8<j>n/8x as |z| -*• «, it is evident that
<j>~'(b+) is analytic for T < ko and J+(s) is analytic for T > -
Min(k2,k4). Also G(s) is analytic for |TJ<Min(k2,k4). Hence, one
notes that Eq. (152) is analytic in the strip |T| < Min^jk^.
Factbrizing G(s) into G+(s)G_(s) leads to

i + i(-DnG+(s)
(153) *• (b+)G:1(s) = J+(s)G+(s) +— i

The L.H.S. of (153) is analytic in the L.H.P.; whereas, the R.H»S.
of (153) is analytic in the U.H.P., except at s = $n. For con-
venience, (153) is re-written as

i i(-i)nG+(en) +
054) $' (b+)G:1(s) -- 1-B-. j+(s)G+(s) +

The L.H.S. of (154) is analytic in the L.H.P.; whereas the R.H.S.
is analytic in the U.H.P. Thus, the two sides of (154) together
define an entire function Q(s) which can be determined from the
asymptotic behavior of (154) as |s| -»• ». As before, G±(s) ̂  0(
as |s| -*• « in their respective regions of analyticity. The edge.
condition for this problem dictates that the electric field intensity
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1 /p
can become singular no faster than p ' in the neighborhood of
the edge (at x = 0, z = 0) as p -»-'Q; since the transform of the
electric field is p^portional to <j>-', the edge condition there-
fore Implies that fa (b+) % 0 (s-V2) as |s| -»• « in the strip.
This is also deduced via techniques discussed in [9]. Thus, one
concludes that Q(s) = 0 from the asymptotic conditions for large sV
It follows that the L.H.S. and the R.H.S. of (154) are each equal
to zero; hence,

iH)nG+((3n)G (s)(155) " '

Equation (154) via "(151) becomes

Yb i(-l)nG+(Bn)G (s)
(156) -YA(s)e Yb = + " r

Also using (145) in (156) one gets

' D n G ( e ) G (s)
"(157) - - Y , - C(s)s1nh.Y,b =

Incorporating the values of A(s) and C(s) from (156) and (157) ;into
(142) and (143), respectively leads to

-i(-l)nG+(Bn)G (s) -Y(x -b)
(158) , ( x . s ) - * >

7 Y(S - Bn)

and

. , r + n _
(159) *n(x<ss) = - ^— B - cosh Y IX<

The formal solution to this problem is now complete since $n(x>,z)
and $n(x<,z) are respectively obtained from (158) and (159) by the
inverse transformation: Thus, .
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\

\

- i ( - i )G + (e_)G (s)
"

^^v
and- ,

iH)ns.G+(B )G (s)

( s - g ^ s lnh cosh Y* e ds

As before, the integrals in (160) and (161) may be evaluated via the
Cauchy Residue theorem after closing the contours defined on the real
axis by semi -circular contours at infinity. The semi-circular
contours at infinity give vanishing contributions to the integral.
The pertinent contours in the U.H.P. and the L.H.P. are indicated in
Fig. 10. The fields for z > 0 are obtained by closing the contour
of integration in the L.H.P. Whereas the fields for z < 0 are
obtained by closing the contour of integration in the U.H.P.

The field radiated into region (§) is obtained from (160)
via an asymptotic approximation to the integral. This radiation
field arises from the branch cut contribution to (160). Introducing
the polar transformations given by (108a,108b) into (160), and
deforming the transformed' contour of integration in the a plane
to the steepest descent path provides one with the necessary form
of the integral for a saddle point evaluation. The saddle point
result which is valid for large kp yields an expression for the
radiated field denoted 'by $ra^ as

(162)

where
., -1 kb cos <f> + £

in <D)e L 4JG.UJG (-k sin <j>)e
(163) F°U) E . n " ; n=0,l,2,.

(k sin <f> + 3 )

(Figure 8a illustrates the coordinates p and $ for the observation
point.)

The TM0 surface wave which is launched into regions®and®
(for z < 0) due to the TMon waveguide mode incident at CD (from
(D) may be obtained from the residue at the pole s = e of G_(s )
in (160) for region ® (for z < 0), or from the residue at the
pole s =3 of G_(s) in (161) for region d). The residue cor-
responding to the pole at s = B is obtained by closing the
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contour, of integration in the U.H.P. The res ult, for the. <TM0 surface
wave launched into region (§) (for z < 0) is denoted'by:<i>swi' where .:

(164)

in which T^w is the surface wave launching coefficient given by

Mcc\(165)
sw (-l)\(6n

- ; n = 0, 1, 2,

was defined earlier in (113). One notes that G_(s) in (160)
has been replaced by G(s)/G+(s) to arrive at (165).

Finally, the fields reflected back into the waveguide, region-:©
are given by the sum of the residues corresponding to the poles at
at s =-3m of (YI sinh Y]b)~l in the integrand of '(161):.; The . :,
residues at these poles are obtained by closing the contour of> -, :
integration in the L.H.P. Before evaluating these residues, it. : . . ,
is convenient to re-write (161) as

(166) ds

2 2 / 2 2 ' -1As indicated earlier, the poles of '(>| kj-s sin^kn-s b)~ cor-
responding to fields in the region z >. 0 occur at s =-em. Thus,
the field scattered back into © which is denoted by * is
given as

(167) *s = (-l)nerG+(en)
=0 G (-3 )cos ££ x er - b <

m=0

iBmz
m

m

One may therefore express «s in (167) as

0681
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where Rnm denotes the reflection coefficient at 0 for an mth
waveguide mode reflected back into region © ;due to ansn.th.\-.v-<~
waveguide mode incident at 0 . R_mn

(169) mn

where

(170)
2, for m = 0

1, for m ? 0

(in going from (167) to (169), one again uses the relationship
G^(-s) = G+(s) which is indicated in Appendix II).

The generalized scattering matrix s-|2 describes the fields
produced in regions © and (g) by a TMon waveguide mode which is
incident at (I) from the waveguide region © (i.e., from the right),
The fields produced by the incident TMon mode consist of the
radiation field in regions (§) and ©, and a TM0 surface wave
field which is launched into regions (f) and © (for z < 0). If
one is interested in calculating the radiation field produced in
region (§),then one defines s-]2 to be F^(^>) of (163); whereas, if-
one is interested in calculating the TM0 surface wave field which
is launched into regions (§) (for z < 0; and (D, then s,9 is
defined to be TJ>w of (165). Thus, '*

for calculating the surface wave field .
which'is launched into regions © (for z<0)

•and ( i ) • - . . - - . - - , - • _ • : . . . . . , . , - . -
071)

R
for calculating the fields radiated into
region (£).

Clearly, s,2 may be expressed as a 1. x M matrix where M -*• «. Thus,

(172) s12 =[T^W T^T|W ... Tjw....]lxM; for regions ® (when z<o,)

or

(173) •• 'JlxM*
for region ©
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The generalized scattering matrix 532 represents the modal
coefficients of the fields reflected back into © due to a TMon
waveguide mode incident at (f) from ©. The field reflected back
into the waveguide is given by (168). Hence, it is clear the $22
i_s an MxM,matrix (M •> °°) whose elements are R, of (169). -Thus,,

(174) '22 JMxM
10

mn

R01 R02
<12 ...

MxM

Determination of the surface wave
diffraction coefficient by the GSMT

Referring to Fig. 9a, it is seen that the incident TM0 surface '
wave field is scattered by junction CD to produce a diffracted field
in region ®; one denotes its magnetic field by u9, where u? is ;

given via (122) as ' '

(175) u° = S u1 ^=-= F^^u1 £=r- ; in region

u in (175) denotes the magnetic field of the incident surface wave
evaluated at Q). The part of the incident surface wave field which
is scattered by (J) into region (C) becomes incident at (2), from
which it is reflected; this reflected field is incident back at G)
where it undergoes further scattering into regions ®, (B) and (c),
and so on, thereby giving rise to multiple interactions between
junctions Q) and (g). The fields resulting from these multiple
interactions may be expressed, in a convergent Neumann series as
done by Pace and Mittra[7]; however, an alternate procedure based
on a self consistent method leads directly to the same result.
The self consistent method will be used in this analysis; the
use of this method is described with the aid of Fig. 11, Let UT?
represent the value of the magnetic field incident at Q) from (2)
after taking all the multiple interactions into consideration.
Similarly, let U2i represent the value of the magnetic field '.'.•
intensity incident at @ from (f) after taking all the multiple ^
interactions,into account. The total diffracted field in region "^
denoted by ua is thus
field diffracted into

superposition of the field
due to u-|2 incident on 0

, and u°, the
Thus,

(176) ud =

where u may be expressed as
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H PikP R PikP
(177) t£ = s19u,9 — = [F"]u19 — ; in region <§).

HI I c. \ f. r~~ n I c. i^

R RS12 = tFn3 i" tnis case and Fn is defined in (163). The expressions
for u-|2 and U2i for 6 ->• 0 (see Fig. 11) are given in terms of s2,
and s0o as

(178) i21 ~ *21U T 322U12

(179) u =r

where r is the generalized matrix for junction ©; it corresponds to
the reflection coefficient at @ and it is an identity matrix of
infinite order I as mentioned earlier. Eliminating 1112 between (178)
and (179) yields

(I - s22)u21 = s^u1

Hence it follows that

(180) u21 = (I - S22)"
1s21u

1

From (179) and (180) u12 becomes

Incorporating (181) in (177) yields

A 1 1 Pikp

(182) u^s^U-s^r^u1^
>Jp

Finally, combining (175) and (182) according to (176) yields
the expression for the diffracted field ud as

(183) ud =[S]1 + s12(I - Sgg)'^ V
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REGION (A)

U' = TM0 SURFACE
WAVE

FIELD AT (7)
U1 *

m

JUNCTION (f

REGION C)

U2I U2I

ru2,'-

JUNCTION (2J

Fig. 11— Multiple interactions between junctions (J). and
for the calculation of the diffracted field.

Eq. (183) may be written as

(184) ud = D2 u
1

•/P -

where D2 is the diffraction coefficient for the canonical problem of
the recessed, truncated dielectric cover which is flush mounted in
a perfectly-conducting surface (see Fig. 2). Thus, the formal
expression for 03 in terms of the scattering matrices of junctions
CD and Q> is obtained via (183) and (184).

(185) = s11 (I - '22

Since s-j] = F( ( j ) ) , and $12

(186) D = FAU) + [F

, (185) becomes

where s22 and s21 are given by (174) and (123), respectively.
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Determination of the surface wave
reflection coefficient by the GSMT

The expression for the surface wave reflection coefficient for
the canonical problem illustrated in Fig. 4 is derived in a manner
analogous to that for the diffraction coefficient discussed previously.
Figure 12 illustrates the self consistent procedure for determining
the reflected TM0 surface wave field for the canonical problem.
The reflected TM0 surface wave field is denoted by ur. The incident
field at © is denoted by u1 as before. Also, U]2 and U21 used
here have the same meaning as in the previous discussion for the
diffraction. coefficient. The field ur is a superposition of the
field expressible in terms of the scattering matrix sn at (D
denoted by u-T, and the field contribution due to multiple interactions
denoted by u. Thus

(187) ur = ujj" +

where

(188) uj = sn u1 fsw

and

(189) ,£ = S12u,2fsw

The quantity f in (188) and (189) is defined by
SW

(190) sw

e-a(x-b)e-iBz

cos k x -
- — e 1pz

cos k b
A

in region

in region

(for z<0)

The quantities a, e and kx in the expression for fsw are the same as
in (62) and (63). Following the procedure for the diffracted field,
one may write
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REGION (A) (FOR Z<0)

OR REGION (5)

U

JUNCTION (T

REGION

Utz

JUNCTION C2J

Fig. 12-- Multiple interaction between junctions 0 and (2
for calculating the reflected surface wave field.

(191)

so that (189) becomes

(192)

and u becomes

(193) ur = s12(I - unfsw

The above expression may be written as

(194) . ur= R u1fsw

where R2 is the TM0 surface wave reflection coefficient for the
canonical problem of the recessed, truncated dielectric slab which
is flush mounted in a perfectly conducting surface (see Fig. 2).

is given via (193) and (194) as
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(195) R,, , RSW [T-] '22r
1.21

,sw rSW-because s-\-\ = R3VV and $12 = [Tn ] for the surface wave reflection
coefficient calculation. Rsw and T^w are defined in (115) and
(165), respectively. The quantities s~9 and s?1 are given by (174)
and (123), respectively. ^

Fig. 13— Geometry for the vanational solution.

B. Solution Based on the Variational Technique

In this section, a van"ational solution to the canonical problem
is briefly indicated. The geometry for the problem is indicated in
Fig. 13 above; it is identical to Fig. 2, except for a shift in the
origin of the x-z coordinate system. The region defined by (x > -b
and z < 0) is denoted as region I; whereas, the region for (x >~D,
z > 0) is denoted as region II. The excitation for this problem is
again a TM0 surface wave incident at (x = 0, z = 0) from region I
(i.e., from the l.eft). The incident and the total magnetic fields
are denoted by $| and $. Here, $ = $j in region I; whereas, $ E
in region II. " "

(196) J _

-<xX i gZ
e e ;

cos k (x+b)
X

cos k bx

for x >

e i f5Z;

0 and z

for -b

< 0

< x < 0, and z < 0

where a, e and kx are identical to those in (62) and (63). One may
express the fields $ and $, in terms of special Green's functions
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and Gil for regions I and II, respectively, as..,

(197) «j-(x,z) = $j(x,z) - J Gj(x,z;x',0) jp-
z'=0

for .region I, and

(198) *n(x,z) = Gn(x,z;x',0) II
z'=0

dx1 ,

• • - -- , ^

for region II.. The term (<J>j(x,z))* in (197) refers to the complex
conjugate of $j(x,z) and is present as a result of the boundary
condition given in (200) so that in effect there is a perfectly-
conducting wall at z = 0, x > -b. The special Green's functions
GI and GU satisfy the following differential equations and boundary
conditions.

(199a)
2 2

ft\ o X 9Z

2] 6I(x,z; 1 ,Z') = -6(X-X'

for x > Oj and z < 0.

(199b)
,2 .2

GT (x,z;x ' ,z ' ) = 0;

for -b < x < 0, and z < 0

9G,
(200) - = 0

z=0

(201)
3G,

9X
= 0

x=-b

(203)
x=0+ 3X x=0-
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(204) 2 2 1 / 2Gj satisfies the radiation condition as |(x +z ) |-*»
for an e~1to time dependence. ;

The quantities, k,: kj and er appearing above are the same as those
in (62) and•••(63).-. me 6 in (199a) symbolizes the Dirac delta
function.

* £-+/)
9Z '

aGT T

( 2 0 6>, ; aF1
z=0

= 0

for x >^ 0, and z >^ 0.

3GII
- 3 X

'= 0
x=0

2 2 1/2(208) GTT satisfies the radiation condition as I (x +z ) |
i t

for an e" w time dependence.

The derivations for the special Green's functions GI and
will not be presented here for the sake of brevity; only the final
forms of Gj and G,, are given. . ,

(209)

where

(210) , x > 0

and

32 V *•>' z < 0
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Here, x< refers to values of x for which x < x1, and the quantities
x>, ^> and z< are defined in the same manner. '

(212)

and

(213)

with

(214)

R =
b + n'JXxl s1n,xxl b

cos fx~l b * MAxl sin

The contour Cx in (209) encloses the singularities of G (x,x') in
the complex A plane. Also,

r» _iu|x-x'| ^ miu(x+x') ijk -
(215) 1

II

iu|x-x' | iu(x+x') i>
du e e cos

The Green's functions GI and GJJ given above have been constructed
via the techniques indicated in [12,13]. The integral in (209)
may be re-written as a superposition of a pole contribution
and a branch cut contribution associated with the singularities of
Gx; the pole contribution may be expressed in the form R1($](x,z))*
in which the complex constant R' is unknown at present; whereas, the
branch cut contribution has the form (after employing a change of
variables u2 = xxo)

(216) jlf
J

iu.(x+x')

• z '=0
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Hence, one may rewrite (197) and (198) as

(217) Mx.z) = *}(x,z) + (l-R')(*}(x,z))* - 27f f du T
i -oo J

dx
fe iu|x-x'| + £ eiu(x+x')

2 2-irz

and

(218)

cosjk2-u2;

1 r f°° fp iu|x-x' I + piu(x+x')
,z) = 5-75- du dx1 1-—£Tri \n i * ^r

J-oo ^O I J ,C Z

12 9
^ 8$

—
8Z z'=0

The fields $j and $u must be continuous across the aperture defined
by z = 0 and x > 0. Also 9$i/3z' | ,_n and 3$T I /8z ' | ,_n must be
continuous.

(219)
PII

z'=0 z1

z'=0
= K(x')

Equating $j(x,0) to $n(x,0) and utilizing (219) one obtains the
following integral equation

oo

(220) (1 + R3)*|(x,0) = j r (x,x ' )K(x ')dx l

where
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(221) R3 = 1 - R1

and

(222) r ( x , x ' )
I Q 7?7k2 - u

2

The quantities R3 and K(x ' ) in (220) are unknowns. It is clear
from (217), that Rj as defined by (221) represents the surface
wave reflection coefficient which is of interest. Multiplying
both sides of (220) by K(x) and integrating on x gives

00

(223) (1 + R ) f K(x)*j(x,0)dx = f f K(x ) r (x ,x ' )K(x ' )dx l dx6 Jo * J O J Q

One may represent K(x) by a sum of discrete surface wave modes
(arising from the discrete spectrum of the integral operator in
(220)) and an appropriate integral (pertaining to the continuous
spectrum contribution); hence,

(224) K(x)=|Ir [^(x.z'J+Rg*} (x.z

= 1e(l-R3)*5(x,0) +-«c(x,0) .

The present analysis is restricted so that obly the dominant surface
wave mode exists. The term $c(x»°) denotes the contribution to -
K(x) arising from the continuous spectrum. . The surface wave modes
are orthogonal to the continuous spectrum; thus (224) when multiplied
by $t(x,0) and integrated with respect to x gives

GO

(225a). ( l -R3 )=| f f K(x)*}(x,0)dx
J IB J 1

in which
00

(225b). f [«1
T(x,t))]2dx- fVaX)2dx=i-

JQ l JQ Za

has been used. From (223) and (225a) one obtains the following
stationary form for (1+R3)/(1-R3)

56



a" CO
K(x)r(x,x l )K(x ' )dx l dx

,„-., „ _ . , ~ o ; . .
I2<?ba; TIB" ~ 9T—rTS—~—T~ "—T?

K(x) *J(x,0)dxr

To solve for R3 in (226a), it is customary to assume that K(x) can
be approximated by the incident and' reflected dominant surface wave
modes, i.e.,

K(x) £ 10(l-R3)*J(x,0) .

When the above approximation is chosen as the trial field, (226a)
becomes

(226b) T - jj^=2ias f dx f dx1 $j(x,0)r(x,x' )${{x' ,0)
1 • K3 {O h l L

The integral on the R.H.S. of (226b) can be simplified by performing
the integrations on x and x1.

(227) f dx f dx' e"axr(x,x')e'axl = i P.V. f
J J J -oo

r . 2 _
L «Z + U - u

The symbol P.V. in front of the integral on the R.H.S. of (227)
indicates the principal value of the integral which is evaluated
numerically to calculate R$. The evaluation of the diffracted field
is discussed next. The branch cut contribution to

/

[
V

.

GT— - dx1
1 9Z '

gives rise to the diffracted field in region I denoted by $j. Thus

(228)

.-..IL r du r* . " ' " • i .n. iu^- j^AK ( x , ,
" '- >° * ~
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The branch cut contribution to the field 4>n corresponds to the
diffracted field in region II; the diffracted field in .region II is"
denoted by $?L. Thus, ; ; S.

(229)

du :'"'***'>VlJk2-u2;

Employing K(x ' ) £ ie'(l-R3)$i(x^O) in (228) and (229), and inte
grating on x1 yields

(230) 2-u z f

and

(231) du
iux Pijk2-u2ze e

jk2 - u2 .
16(1-R) -ZTT fa + U I

One may evaluate (230) and (231) asymptotically for large kp via the
saddle point method.. As before, one introduces the polar trans- '.'.'
formati on

2 2
(232) u = k sin 5 , J k - u = k cos

and

(233) x = p cos <f>, z = p sin $ .

The coordinates (p,<|>) at the observation point are indicated in
Fig. 13.
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(234)

$d - 1 [ Jkp si
I ~ ' Ziri L

ieM-R _I—— + liiLSIILil1BU a + ik sine a - 1k

The contour C^ in the complex £ plane is deformed into the steepest
descent path, and the integral is then evaluated via the saddle
point method to obtain

(235a)
iS(l-R3)A0 R(k cos

a + ik COS<() a - ik COSij)

d .

f e
lkp; -ir/2«f><0

Similarly, the saddle point result for $" is

(235b)
eikp

/T
; 0 < 4> < fr/2

The constant AQ is introduced so that M^O) = <t>u( =0); there is
no other analytical justification for its presence. The quantity
R3 in (235a) and (235b) is evaluated from (226b). Clearly, the
quantities which multiply the e1'kP/Vp~ factor in (235a) and (235b)
correspond to the surface wave diffraction coefficient for the
regions -v/2 < - $ < 0, and 0 < $ < ir/2, respectively; this surface
wave diffraction coefficient which is based on the variational
solution is denoted by D.

•R
3)Ao. 1

a + ik COS

2cx

COS

+ R(k cos
a - ik cos <f> ; -IT/2 < <)> < 0

0 < 4> < iT/2
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CHAPTER IV
RESULTS AND DISCUSSION

The TM0 surface wave reflection and diffraction coefficients
associated with the termination of the dielectric cover in Fig. 2 '
have been obtained in ;this report; these coefficients allow one to '
employ the GTD method to calculate the fields radiated by a con- '
figuration such as that shown in Fig. 1. The GTD method is chosen '
because

a) it is simple to use, and yields accurate results
in high-frequency problems;

b) it provides some physical insight into the radiation
and scattering mechanisms involved; and

c) it can be used to treat problems for which exact
analytical solutions are unavailable.

Furthermore, the GTD method has been employed successfully in the
past to calculate the radiation from a dielectric covered slot in
a finite, ground plane in which the dielectric completely covers
the ground plane [14], thereby providing an added confidence in the
method.

In the GTD method, the total field at P is obtained via a
superposition of the geometrical optics field along the ray s0,

'and the diffracted "field at P which arrives via the ray paths si
and S2, as illustrated in Fig. 1. As in Chapters II and III the
y-directed magnetic field is denoted by u. Let the geometrical
optics field be denoted by ug o.» an<j the diffracted field from
the terminations A and B by ufl and ug, respectively. Ug<0 cor-
responds to the direct radiation from the slot to P given By

(237) "g.o.

The slot also excites surface waves which diffract from the termi-
nations A and B. The surface wave excited by the slot is denoted
by usw, where

(238) u s w = K0e± 1 e ze-a X , for z I 0
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in which a and 6 are the surface wave attenuation and propagation
constants discussed previously in Chapters II and III. The
quantities C0 and KQ are deduced from the solution for the fields
of a narrow slot radiating through a dielectric covered plane of
infinite extent, as shown in Fig. 14. The quantities C0 and KQ
will not be derived here since they may be obtained via techniques
similar to those outlined in [8] for an electric line source ex-
citation of a grounded dielectric slab. Only the final results
for C and K are presented below.

(239)
e M cos <j> e

-sin <j> sin k |e_-sin <j>b + i e_cos <j> cos•j i j r

and

-we. k a M.

sin (!>bf

(240) K =
kxe(ab+er)cos

2 2 2The quantities kx and b correspond to (erk - 3 ), and the dielectric
slab thickness (in meters), respectively. The quantity MQ in (239)
and (240) refers to the strength of the equivalent magnetic line
source associated with the electric field in the aperture of the narrow
axial slot. The total field radiated at P by the configuration in Fig.
1 is obtained by superposing the geometrical optics contribution in
(237) and the diffracted fields u9 and u2, respectively, where

iS£Q
 A

 iks
B

K e

1-R e

and i f

(241b) u '

1-R e

for the case when the narrow axial slot is equidistant from the
terminations at A and B (the distance being £0); the corresponding
expression for the case when the slot is not equidistant from A
and B is not presented here, but it can be derived in a straight-
forward manner. In Eqs. (241 a) and (241b) the contributions from
all surface waves multiply reflected between terminations A and B
have been included. The quantities R and D in (241a,b) refer to the
TM surface wave reflection and diffraction coefficients associated
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with the terminations at A and B, respectively. Thus, the total
field, u (P) at P is

(242) u (P) = ug^ + u H- U

where ug.0., UA and ,UB are given in (237) and (241 a, b).. Although
examples of this type are two dimensional , the patterns obtained are
identical with those of a related three-dimensional problem, in a
plane of symmetry perpendicular to the axis of the slot.

DIELECTRIC
SLAB

AXIAL7//^
/SLOT- / ///I/ / / / • / / / / / \

(

PERFECT CONDUCTOR-

Fig. 14 ™ Narrow axial slot in an infini te-ground plane
covered with a dielectric slab of infinite
extent in .the z direction.

As indicated in the introduction, the quantities'^ and D in
(241a,b) are derived by three different methods, namely:

'' . ' " ! ' • ' •

(1) An exact solution to the canonical problem of Fig. 2
based on the GSMT; the details of this solution are given
in Chapter III. The expressions for R and D obtained
by this method are denoted by R2. and D2, respectively.
R2 is given in (195) and D£ is given in (186);

(2) An approximate solution to the canonical problem of
Fig. 2 obtained by the variational method; the details
of this solution are given in Chapter III. The ex-
pressions for R and D obtained by this method are
denoted by $.3 and 03, respectively. RS is given in
(226b) and D3 is given in (236);
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(3) an exact solution of the problem pertaining to the
approximate physical configuration of Fig. 3 in which
a reactive surface approximates the dielectric cover
of the exact configuration of Fig. 2; the details of -
this solution are given in Chapter II, and the ex-

.: pressions for R and D obtained by this method are
denoted by Ri and Di, respectively. R] is given
in (53) and DI is given in (60).

The numerical results for the TM0 surface wave reflection
and diffraction coefficients R and D, respectively, which are
calculated by the three different methods are presented in this
chapter. A comparison of the numerical results based on the
different methods is made to estimate the accuracy of the
approximate solutions. The numerical results for the TMo
surface wave reflect! oh'coefficient are given first; these are
followed by calculated curves for the TM surface wave diffraction
coefficient.

We wish to compare the reflection and diffraction coefficients of
the terminated surface reactance model with those of terminated dielec-
tric slab structure of Fig. 2. This is made possible by the relation-
ship between Xs and b'for a given er, see Eqs. (2) and (5). Thus,
in the following R-j and D-j are given both as functions of Xs and
b (for a fixed er). Calculated values of the surface wave reflection
coefficient RI are listed in Table I as a function of the normal
surface reactance. The thickness of the grounded dielectric cover
with the same normalized surface reactance is listed in column two.
The values of |R-|| given in Table I are in agreement with those ob-
tained from Kay's solution [3]'to the problem in Fig. 3; however,
the phase of the reflection coefficient in Kay's solution is not in
a form tractable for numerical computations, and therefore it cannot
be compared wrth the phase of R-j presented in Table I. As mentioned
previously it appears that the only reference which contains a solution
from which phase,.calculations are tractable is that of Weinstein [5].
However, the results in [5] have an error in the final form; the error
is corrected fairly easily and the numerical values for the reflection
coefficient based on the corrected results are included for com-
parison. Both the magnitude and the phase of the reflection coefficient
calculated from [5] are also given in Table I; it is seen from there
that the values calculated from the corrected results in [5] agree
well with the values of RI. The magnitudes are in complete agree-
ment; onlythe phase of the reflection coefficients calculated by these
two methods differ slightly. Thus, we have a valuable mutual check
between the solution given in Chapter II, and the one in [5] obtained
by a different factorization method.
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The value of the reflection coefficient R£ obtained by the
formally exact GSMT solution for the configuration of Fig. 2 are
given in Table II. These values are also presented graphically
in Fig. 15. The GSMT result for R2 involves infinite order
matrices which are truncated to finite orders for numerical cal-
culations; it is found that accurate computations are possible
with only moderate size matrices because the results converge
rapidly with an increase in matrix size. In these numerical
calculations, the largest matrix inverted is 5 x 5; in fact, for
all practical purposes, most of the results obtained here are
found to converge with only a 3 x 3 matrix. In some cases, an
even smaller matrix is adequate. The convergence of R2 as a
function of the matrix size is shown in Table III for several
cases.

TABLE II

Reflection Coefficient R£ (for the problem in Fig. 2)
Based on the GSMT Solution
.e = 2.49, f = 8.9 GHz,

free space wavelength \ = 0.0337 meters

Thickness of the
dielectric eover,
b (meters)

.001

.002

.003

.004

.005

.006

.007

.008 :_

.009

Magnitude
of R2

.01545

.06955

.18441

. 38495

.62913

.80077

.88505
-.9260
.9483

Phase of R~
(degrees)

-8.8990
-15.878
-20.758
-20.978
-15.309
- 8.643
- 4.674
- 2.734
- 1.747

(Note: A plot of the values
shown in Fig. 15).

in Table II is

Values of the surface wave reflection coefficient R3 calculated
from an approximate solution by the variational method for the exact
canonical configuration of Fig. 2 are listed in Table IV. It is
seen from Tables II and IV that the values of |R3| calculated by the
variational method are consistently lower than the corresponding
values of |R2| which are based on the exact solution. Similarly,
Hwang [17] has found that a variational solution for the problem
illustrated in Fig. 3 also gives numerical values for the magnitude
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Fig. 15--Magnitude and phase of R2 based on GSMT solution,
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TABLE III :

Convergence of R2 as a Function of the Matrix Size
2.49, f = 8.9 GHz, free space wavelength XQ = 0.0337 meters

Thickness of
the dielectric
cover b
(meters)

.001

.004

.007

Order of the
largest matrix
inverted

N

1
2
3
4
5

1
2
3
4
5

1
2
3
4
5

Magnitude of R,,

.015362

.015430

.015444

.015449

.015450

.3468

.3777

.3824

.3841

.38495

.83465

.87939

.88319

.88445

.88505

Phase of R?
(degrees)

-8.5226
-8.8028
-8.8678
-8.8946
-8.8990

-23.926
-21.478
-21.138
-21.028
-20.978

-15.899
- 6.188
- 5.148
- 4.821
- 4.674

TABLE IV

Reflection Coefficient RS (for the problem in Fig. 2)
base~d on the variational solution

er = 2.49, f = 8.9 GHz,
,free space wavelength XQ = 0.0337 meters

Thickness of the
dielectric cover,
b (meters)

.001

.002

.004

.006

.007

.009
r~

Magnitude
of R3

.0072

.0349

.2061

.4320

.4812

.5105

Phase of R^
(degrees)

-19.02
-30.80
-37.37
-23.93
-18.76
-13.76
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of the reflection coefficient which are consistently lower than the
corresponding values of |RI|; a graphical comparison of the values
of |R-j| with the variational calculations of Hwang is made in J
Fig. 16. '

0.3

UJ

o
£ 0.2
u.
UJ •
ou

u
UJ

UJ
cc.
UJ
X

UJ
o

o
<
2

O.I

VARIATIONAL (HWANG)

I

= FREE SPACE WAVE
NUMBER

b= THICKNESS OF THE
DIELECTRIC .QOVER

€r= PERMITTIVITY OF THE
DIELECTRIC: COVER

XS= NORMALIZED SURFACE
REACTANCE

2
2kb
J I

XS=O.II28 XS = 0.358I Xs = 0.6245 Xs=0.9047 Xs= 1,035

Fig. 16— A comparison of the variational and exact calculations
for the reflection coefficient pertaining'to Fig. 3.
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The numerical results for the TM0 surface wave diffraction
coefficients are given next. The magnitude of DI for the con-
figuration in Fig. 3 is plotted in Fig. 17a as a function of the
aspect angle <f>, and for different thicknesses of the dielectric
cover (or equivalent surface reactance). Corresponding numerical
results for the phase of Dl are shown in Fig. 17b. The values of
|Di| agree with the corresponding values which are calculated from
Kay's result [3] for the surface wave diffraction coefficient; how-
ever, the expression for the phase of the diffraction coefficient
in [3] is in a form intractable for numerical calculation and hence
cannot be compared with the values of the phase of DI (shown in
Fig. 17b).

The numerical values of the surface wave diffraction coefficient,
DZ calculated by the GSMT for the configuration of Fig. 2 are shown
in Figs. 18 through 22. These values are normalized such that 0 dB
corresponds to the maximum value of the quantity 20 logic V^ID2l
for the thinnest dielectric cover considered; namely for the
dielectric cover whose thickness, b = 0.001 m. Also, the 0 dB
level in Fig. 17a is identical to that in Figs. 18-22. Curves for
the phase of D2 as a function of aspect are plotted in Figs. 23 through
26. The formal result for D2 which is based on the GSMT solution
also involves infinite order matrices which must be truncated to
finite orders for numerical calculations. Figures 20, 22 and 25
show the convergence of the calculated values of Dg as a function of
the size of the matrix being inverted; indeed, it is seen from these
results that the convergence is very rapid. The R2 and [£ calculations
require an increasing matrix size whenever the thickness and/or the
permittivity of the dielectric cover increases.

It is noted that the calculation of the field in the neighborhood
of the edge (x = 0, z = 0 in Fig. 2) requires an increasing number of
modes, i.e., an^increasing matrix size; in fact the proper edge be-
havior can result only if one includes an infinite number of modes
(i.e., if one uses infinite order matrices) .as indicated in [10].
Fortunately, in this problem, one is interested only in the far-zone
radiation field, and the reflected surface wave; both of which are
evaluated sufficiently far from the edge.

Figures 27, 28 and 29 give a comparison of the numerical values
of !D l l> I°2| and l°3| "for a fixed thickness of the dielectric
cover. It is seen from Figs. 27, 28, and 29 that the values of
|D-|| and |Dj| agree well with the values of |D?|in the forward
aspects defined by 0 < <j> < ir/2, which is also the region of higher
field levels; the differences between |D2| and |D-|| are approxi-
mately 6 to 10 dB in the backward region of space defined by
-TT/2 < $ < 0. It is seen that the agreement between |D3| and |D2|
improves as the thickness of the dielectric cover increases; this
occurs because the diffracted field along the aperture (z = 0,
x > 0 in Fig. 13) becomes weaker with an increase in the thickness
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of the dielectric cover, thereby making the trial field in the
variational solution correspondingly more accurate for pattern
calculations. The strength of the diffracted field becomes
weaker with an increase in the thickness of the dielectric cover
because the surface wave is now more tightly bound to the
dielectric-air interface, thereby increasing the magnitude of
the reflection coefficient; this in turn results in a corresponding
decrease in the energy diffracted by the termination.

It is seen that the diffraction coefficient 03 is more
accurate than the diffraction coefficient DI when the latter is used
to approximate D2. The surface wave diffraction coefficient is
proportional to the radiation pattern function, and hence Figs. 18-
22 describe the radiation patterns associated with the diffraction
of a surface wave by the termination of the dielectric cover. The
nature of the radiation pattern is intimately connected with the
value of the reflection coefficient of the surface wave reflected,
by the termination; this may be explained as follows. The radiation
pattern may be considered as being produced by an equivalent magnetic
current distribution located at x = 0 and for z <. 0. This current
distribution is well-approximated by the incident and reflected
surface wave fields at x = 0 and z <_ 0. One may therefore .consider
the equivalent current to be proportional to ei&z + R e-1 Bz for
z <. 0 where R is the surface wave reflection coefficient. The
radiation pattern in the forward region is primarily produced by
the termination of the incident surface wave at z = 0; whereas,
the radiation pattern in the back region is primarily produced by
the excitation of the reflected surface wave at z = 0. When R«l,
the radiation pattern is expected to be much higher in the forward
region than in the back region; whereas, when R-*l, the pattern
levels are expected to be nearly equal in the two regions. This
viewpoint is supported by the curves in Figs. 15 and 18-22. From
the values in Tables I, II and IV, it is apparent that the surface
wave reflection coefficients R3 and R-j are not in close agreement
with the values of R2. The variational solution is expected to be
somewhat inaccurate because the present trial field cannot properly
account for the significant diffraction effects, especially in the
vicinity of the truncation of the dielectric slab; one notes that the
present choice of the trial field in the aperture is equivalent to
the commonly used Kirchhoff approximation (this approximation is
also used by Angulo [6] in his variational solution for the problem
in Fig. 4). One would expect the variational solution to be
improved by incorporating a correction term to the surface wave
fields in the aperture so as to provide some information on the
fields scattered by the edge (x=0, z=0 in Fig. 2) along the aperture.
Although the nature of this correction term is not known apriori, it
could be based on the high frequency diffracted field in the aperture
together with a modification which would provide the proper behavior
in the vicinity of the edge.
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The inaccuracy in the values of D] and R-j for the surface
reactance approximation to the grounded dielectric cover of
Fig. 2, appears to.be due largely to the fact that it does not
properly account for the effect of the conducting step at z=0
and 0 < x < b in Fig. 2. As mentioned in the introduction, the
surface reactance approximation indicated in Fig. 3 also serves
to approximately describe the diffraction of a surface wave by
the complementary structure of Fig. 4., It is conjectured that
the terminated surface reactance model, of Fig. 3 approximates
the configuration of Fig. 4 better than it approximates the
configuration of Fig. 2, because the latter structure has an
additional discontinuity in:the form of the step in the ground
plane; as mentioned previously, this; is evident by noting that
the former structure reduces to the smooth ground plane as er^U
whereas the latter structure has a residual step present. The
importance of this residual step on the radiation properties of
the junction may be demonstrated as follows. If one maintains
the effective surface reactance of the grounded dielectric
cover constant while- decreasing the thickness of the slab for
the configuration of Fig. 2, one tends to reduce the effect of
the step without changing the discontinuity in surface reactance.
The time average power ratto of the fields outside the dielectric
to the fields inside the dielectric increases rapidly as the step
size is decreased, while.maintaining the surface reactance fixed
thereby substantiating the argument that the effect of the.step
is reduced as the step size is decreased. Under these conditions
one would expect the results for the configuration in Fig. 2 to
approach .those corresponding to the surface reactance configuration
of Fig. 3. Indeed, this is found to be the case as shown in
Figs. 30(a) and 31(a), where it is seen that |R2| approaches |RI|
for a given surface reactance, Xg, as the step size decreases.
One notes that the relative permittivity, e^ of the dielectric
cover increases with diminishing step size in order to keep the
equivalent surface reactance a constant. The phase of R2. also
approaches the phase of RI until a certain minimum step size b0
is reached, see Figs. 30 and 31; however, for any further decrease
in the step size, the phase of R£ tends to deviate from the phase
of R-j. This anomalous behavior for the phase of R2 is not in-
dicated in Figs. 30(a) and 31(a); it may result from several -
factors which are considered next. The phase anomaly occurs
whenever the permittivity (er) of the dielectric slab increases
most rapidly with decrease in the thickness, b of the dielectric
slab. It is seen that er increases extremely rapidly with only
a slight change in b for 0 < b < b0. One reason for the phase
anomaly may be the possible existence of undetected numerical
inaccuracies in the computer programs for evaluating the Wiener-
Hopf factors of G(s) of (94) whenever er becomes very large (the
factors of G(s) and their numerical evaluation is discussed in.
Appendix II). Another factor contributing to the phase anomaly
may arise from the following possibility. It is found that as
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the height b of the step is decreased, the electrical thickness of
the dielectric slab decreases only slightly and then actually
increases; this increase in the electrical thickness .becomes most
rapid where er begins to increase most rapidly. It is possible
that when the electrical thickness of the step increases rapidly,
one may not be able to isolate the junction effects into those
which are assumed to arise independently from the discontinuity
in surface reactance and from the presence of the step.

In summary, it is seen that approximations based on the
surface reactance model and the variational solution, where the
trial function consists of only the surface wave fields, do not
yield accurate values of the reflection coefficient for the
canonical problem shown in Fig. 2. On the other hand, these
approximations do predict the radiation pattern in the forward
region with reasonable accuracy, but they fail to yield accurate
patterns for the backward region. As noted, the former is just
another example of the success of a Kirchhoff- type approximation
in predicting the main beam of a radiation pattern,, whereas the
failure to predict the patterns in the rearward region is largely
the result of errors in the reflection coefficient resulting from
these approximations.

We conclude the chapter with some remarks concerning the
technological relevance of the research described in this report.
It has already been noted that the results of this study are of
importance in the analysis of slot arrays radiating in 'the presence
of a dielectric cover. As a matter of fact, it was pointed out in
the first chapter that this motivated our research; in particular,
we wished to assess the effect of the termination of the cover on
the performance of the antenna.

A dielectric cover is generally used for the purpose of imped-
ance matching of the array (since the presence of the dielectric intro
duces an additional parameter into the problem thereby providing a
means to improve the scanning capability of the array by adjusting
and optimizing the parameters), and/or as a protective coyer for
the array, i.e., as a flush mounted radome. The dielectric cover
is of course intended to have a minimal effect on the pattern of
the array. However, the work of Wu, Galindo, Lechtreck, Allen[18,
19,20] and others have shown that if a surface wave is strongly
excited in the cover, the energy radiated by the array can drop
sharply thereby modifying the radiation pattern substantially.
This condition is referred to as the forced surface wave resonance.
Also, the use of dielectric cover for impedance matching may increase
the frequency sensitivity of the array. Furthermore when the surface
wave reaches the termination of the dielectric cover it radiates
contributing to the pattern in a manner not intended in the original
design. Using the diffraction coefficient derived here, a calcu-
lation of this effect can be made. If the surface wave is strongly
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reflected from the terminations of the dielectric cover (see Fig. 1),
a large standing wave is created in the cover; this can have an
undesirable effect on the input impedance and bandwidth of the array.
This standing wave can be found from the surface wave reflection
coefficient given here.

The results of this study are also important to the design of
surface wave antennas; a good review of the subject is given in
Reference [21]. It is pointed out there that a surface wave guided
along a uniform structure can radiate only at points of discontinuity,
so that the terminal and feed radiation patterns are of interest.
The configuration shown in Fig. 2 can be regarded as the termination
of a flush mounted surface wave antenna, and the surface wave
reflection and diffraction coefficients (which characterize the
discontinuity in Fig. 2) may be used to advantage for analyzing
the effect of the termination. It is seen from the results in
this chapter that the magnitude of the surface wave reflection
coefficient can be made small by decreasing the thickness of the
dielectric panel; this in turn increases the level of the radiation
field in. the forward region. In the case of a thicker dielectric
cover,.it may be desirable to gradually taper the dielectric slab
near its termination to reduce the magnitude of the surface wave
reflected by the termination; this in turn improves the forward
radiation characteristics of the end-fire surface wave antenna.
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APPENDIX I
A WIENER-HOPF FACTORIZATION PROCEDURE

c .

I. In this section, a method is discussed for factorizing the'
function L(s) into L+(s) and L_(s) which are respectively analyti<
in the U.H.P. and the L.H.P. As before, s =-a + ix and L.H.P.
refers to the region in the complex s plane for which x! i< x_
(where T_ is taken to be positive for convenience), whereas, U.H.I
corresponds to the region in the s-plane for which x > x^-(x+ is
taken to be negative for convenience). L(.s.) has the properties

(A-r) L(S) = L(-S-) • • - • • ' ;; . (-

(A-2) L(s) is analytic and zonzero in the strip T+ <'x < x_

(A-3) L(s) <v C.sv, when s -**> in the strip T+ < x < x.

C. and v are real constants.

(A-4) Outside the strip of analyticity, L(s) may have simple
poles, simple zeros, and branch points.

As a consequence of (A-l), the poles, zeros and branch
points occur in pairs, symmetrically with respect to
the origin. For example in the case of the branch
points s = Ik (k = k-j + ikg*, k2 « k-j and k, > 0, k2 >^0) .

The factorization of L(s) is achieved via a limiting operation
on a related function K(s,a) which has only simple poles and simple
zeros; the factorization of K(s,a) is usually trivial. Specifically,
K(s,a) is chosen such that

(A-5) L(s) = lim K(s,a).

K(s,a) need not be unique, even though its limit as a ->• «> is :unique
and equal to L(s). This technique of factorizing a function L(s)
with branch points at s = +k through a limiting operation on a
related function K(s,a) which has no branch points, was first de-
veloped by Bates and Mittra [2]; they treated specific problems
by this technique. Such a factorization technique generally leads
to factors which are convenient for numerical calculation. More
recently, Bates and Mittra[9,16] generalized their results in [2]
to factorize a class of functions denoted here by L0(s) which
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asymptotically behave as CASVC" for large s; C/\, v and b are
real constants. L0(s) also satisfies the conditions indicated in
(A-l), (A-2) and (A-4) for L(s). An integral representation for
the Wiener-Hopf factors of L0(s) is initially conjectured by the
authors in [16]; their conjecture is based on the form of the
factors obtained earlier in [2]. In [16] the authors demonstrate
their integral representation to be consistent with all the re-
quirements on their factors, which lends credance to their fac-
torization method. In this appendix, a derivation for the Wiener-
Hopf factors of the function L(s) (with an asymptotic behavior
indicated by (A-3)) is presented without requiring that the form
of the factors be assumed as an initial step. The present develop-
ment unlike that in [9,16] requires the introduction of a related
factorization function K(s,a) as defined in (A-5); however, the
final result for the factors is independent of K(s,a) even though
the development of this factorization formula is based on initially
introducing K(s,a) and later carrying out the limiting operation
on,the factors of K(s,a) as a -»• °°. In addition to (A-5), K(s,a)
must be chosen such that it satisfies the following conditions;

(A-6) K(s) = K(-s)
i

(A-7) K(s) is analytic and non-zero in T+ < T < T_;
elsewhere it has simple zeros and simple poles.

(A-8) K(s) -x. CBSV, where Cg is a constant.

(A-9) lim K(s,a) -> L(s), regularly in s

(A-10) lim K'(s,a) L ' (s) , regularly in s

where the primes denote differentiation
with respect to s.

One may factorize K(s) into K+(s) and K_(s) where the +
subscript implies analyticity in the U.H.P. and the - subscript
implies analyticity in the L.H.P. as before. K (s) are given
as [22]
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-X (s) *
(A-ll) K+(s) = [K(0)]

1/2 e °

. >
~ ' e

m

" (1 + f-) e n

n=l qn

where K(s) has simple poles at s = iqn and simple zeros at s = 1 pm.
(Here, n = 1,2, 3 ••• and m= 1, 2, 3 .-•). The function K_(s) is
obtained from (A-ll) via

(A-12) K_(s) = K+(-s).

X0(s) is at present an undetermined entire function; it is chosen
such that (A-8) is true.

(A-13) X0(s) = - XQ(-s);

moreover X0(s) depends on 'a1; i.e, X = X (s,a).

The representation in (A-ll) is converted to a contour integral
as:

K+(s) = "X ' exp -
'UHP

The contour Cy,,p is indicated in Fig. A-l,

ZEROES OF Ms) IN U.H.P.

POLES OF K(s) IN U.H.P.

C,'CO

Fig. A-l —The contour CUHP in the complex s plane.
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The contribution to CMUD from C vanishes so that
Unr oo

(A-15)

K+(s) =

Define

-X0(s)
.

(A-16) lim X (s,a) = X(s) ,

The limit as a-x» of (A-15) therefore leads to

1/7 -X(O f ~\
(A-17) LX(S) = [LW\ e M5' exp ^V

"*" \t TTl

In

Let L(s) have simple zeros at s = 1 ^ (m = 1,2,3 • • • ) and simple
poles at s = trp (n = 1,2, 3«"). In addition Ll§Lhas branch
points at s = ik arising from the presence of Vk^-s2 tyee_terms.
The proper branch for ^k2_s2 is the one for which Im/s2-k2 > 0:

(the above is consistent with the development in Chapters II and III).
One may now close the contour in (A-17) by C^ in the U.H.P. (with a
deformation around the branch cut) and use the Cauchy Residue
Theorem to obtain

(A-18) L+(s) = e - * < x p
(• fe IJ" (-»)-«]

Sf*l
f I1n=l V
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Fig. A-2 —The contour C~ in the complex s plane.

The contour Cgr is shown in Fig. A-2. The contour -Cf3r may be
mapped into the contour fy parallel to the real axis via.the
usual transformation ^ = (k^-w2)V2. without going through the
details of this transformation, the final result for the integral
in the complex w-plane is given below:

(A-19) L+(s) = -X(s) ext
|2iri

w

s 1 L'(A2-w2)

m=1

dw

rV&m/

A (• • t)
.2 .2The prime on L ' ( \ /k -w } now denotes differentiation w.r.t. w. The

contour C, is indicated in Fig. A-3.w
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-K

Im W

C W = C 2 + C ,

R e W

Fig. A-3-- The contour GW in the complex w-plane.

The contour Cy may now be deformed to the real w axis. If L(-Jk -w )
has a.zero at w = 0, the contribution from w = 0, which is denoted
by (1/2) v_ must be included.

(A_20) w
L(Jk2-w2)

Hence (A-19) becomes

- [L(O)]1/2 -

m

— e

L1

dw
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The P.V. indicates that 1/2 (residues) of any other zeros ofn r 2L(Vk -w ) encountered along the real axis must be included. The
infinite integral in (A-21) may be re-expressed as a semi-Infinite
integral:

(A-22)

L+(s) =

v S

-X(s) - jr—
2k

m

exp

where

(A-23)
/ 9 o

L(|k-w2)

X(s) in (A-22) must be chosen such that L+(s) has the proper asymptotic
behavior as indicated in (A-3). For specific problems, X (s ) may be
determined from a knowledge of the asymptotic behavior of the infinite
products and of the integral

1 P.V.

which occur in (A-22); a typical procedure for the asymptotic
evaluation of these terms as s-x» in the strip x+ < T < T_ is in-
dicated in Sections II and III of this appendix. (Also see [2].)
It is noted that the final form of the factors L+(s) indicated
in (A-22) is not dependent on the choice of an appropriate closed /
region function K(s,a); one may therefore proceed directly to the
expression in (A-22) for L±(s) without ever specifying a closed
region function K(s,a). One notes however, that K(s,a) was
introduced in order to arrive at the final expression for L+(s).
In some cases it may be difficult to evaluate X(s) in the ex-
pression for L+(s) directly from the asymptotic behavior of the
terms in (A-22;; when this happens to be the case, it may be
worthwhile to specify an appropriate closed region function K(s,a)
for the problem in order that one may now obtain X(s) from the
operation X(s) = lim X (s,a). The function X (s,a) appearing in (A-ll)
can usually be determined quite readily.
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II. Application of (A-22) to the Factorization

of Jl??(Jk2-s2 - ia)"1

The function L(s) to be factored is

(A-24) L(s) = Jk "s

where a is a real constant. This function is encountered in the
solution of the problem illustrated in Fig. 3. If one places a
conducting boundary at x = a in Fig. 3, the function to be
factor! zed becomes

(A-25) K(s,a) =
sin

Clearly lim K(s,a) = L(s) which is also seen from physical con-
a-x»

siderations (i.e. moving the conducting boundary at x=a to °° yields
back the original problem of Fig. 3). K(s,a) has no branch points
in the s-plane. Both L(s) and K(s,a) satisfy the requirements
indicated in Section I. Without re-deriving all the details in going
from K±(s,a) to L+(s), one proceeds directly with (A-22). <£(w) for
this problem is

(A-26) -let
w(W-ia)

Also

(A-27) vn = lim
0 w-»0

= 1

and

(A-28) 2 2
W + a
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. 2 2 2
L(s) has no zeros; it has poles at s = IB (where k -3 =-a ) and
branch points at s = +k. Hence we may write L (s) for this problem
via (A-21) as

/2 -X(s)- -/

. p^ r LA + _s y s "i -is*
e wl j-»L V Jk2.w2y Jî Iw2-!""

Also,

(A-30) L_(s) = L+(-s)

One knows from (A-24) that L(s) ^ CoS°, where C0 is a constant.
Hence, L+(s) ^ Cy2; one may now use this condition to find X(s)
in (A-29). °

,00

The P.V. in (A-29) may be written as
1 —CO

(A-31)

P.V. f = -vfr - f - [ = -2iri . i (Residue at w=0) - f
J- ICS ^ JcBr JcBr

The contours C$, z and C&r are shown in Fig. A-4. The integral
over z gives a vanishing contribution. Only the

ln(l + s/,/k2-w2)

term in the integrand can exhibit an algebraic behavior in s for
L+(s) as s-*»; hence, one considers this term first.

(A-32K1P.V. f In (1 + O • /(w)dw = i In (1 + f) - f
27ri .La, V J^J * \ V JcBr

It can be shown that is bounded and is a constant. Hence the
CBr
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i, Im W

o Id

Re W

Fig. A-4 —The contours GS, z and Cgr in the complex w plane.

term r- dominates over as s -* °° so that

(A-SSVexp^P.V. | ln('+M 'jf(« (Us1'2)

Utilizing (A-33) in the asymptotic behavior of L+(s) in (A-29), one
obtains • ;

(A-34) 4

fk2-w2

dw

/ c \'
(since the ( 1 + f ) factor i
i s Y! -1^1 + ^-J behaves as s ).

- I / O

in (A-29) behaves as s ' whereas

Clearly the proper choice of X(s ) such that L+(s) ^ constant as
, is

(A-35) ' x ( s ) = - - - P.V fiw)

Ik2-w2

dw .
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Incorporating the above result in (A-29) and converting the ,infinite
integral representation of (A-29) to a semi-infinite integral
representation given in (A-22) gives the final form for L+(s) as

(A-36) L

L_(s) may be deduced from (A-36) via (A-30); alternatively, L_(s)
may be obtained from the relation

(A-37) L_(s)=L(s)/L+(s).

The numerical evaluation of the integral for L+(s) is carried out
using a ten point Gaussian quadrature.

III. Application to the Factorization of G(s)=(YY-,sinh Y,b)-

rY cosh Y-|b)~

The factorization of G(s) = (YYI sinh Y-|b)(Y-|sinh Yib +
erY cosh Yib)~l is essential to the solution of the problem/___^
discussed in Chapter III. As before, Y = Vs^-k^, and YI =J sz-k£.
In this section, the factorization of G(s) will be carried out by
proceeding directly to the expression for L+(s) in (A-22) without
specifying an appropriate closed region function K(s,a). Here,
G(s) corresponds to L(s) of Section I, and'Cj(w) will be defined
to correspond to£(w) of Section I. Since the details for the
factorization of G(s) are lengthy, only the important results leading
to G+(s) will be given. Let

(A-38) w1 =/-k +k^ + w , where k and k^ are given in Chapter III.

One May write j(w) as

H
G (J k -w )

(A-39) M -= "W

G(Jk2-w2)
where

(A-40). iww> Sin W'b
-w' sin w'b-ie w cos w'b
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Hence, ^/(w) is given by

4 2 3 2 3
w1 sin w'b+ ie bw w1 +ie w w1 sin w'b cos w'br r

w[w' sin w'b + ie w w1 sin w'b cos w 'b ]

Also

(A-42) » +3(-w) = 2f
e w2b JJr - w')e

r
 Sln w'b cos w'b

2 2 2 2 2w' sin w'b + er w cos w'b

It is easily verified that v = 1, since

(A-43) v = lim w^(w) = 1
0 w+0

One may write G+(s) in terms of the above results via (A-22) as

i/p -X(s) -
(A-44) G+(s) =

+t)(-w)f dw
1

where the zeros of G(s) occur at s = lgm, m = 0, 1, 2 ••• and e0 = k
(see Chapter III for definition of em). The poles of G(s) occur at
s = Is (corresponding to the TM0 surface wave poles). The choice of
X(s ) is such that G+(s) behaves asymptotically as s ' /2 when s-*»; the
latter is a consequence of the fact that G(s) ^ 0(s) as s-»« in the
strip within which G(s) is analytic. The asymptotic behavior of the
integral
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•v* r inO+7f^-i*)+3(-w)Up
'0

(or of it's alternative respresentation which involves the infinite
integral

occuring in the expression for 6+(s) in (A-44) is ascertained in a
manner identical to that in Section II of this appendix (see (A-32)
and (A-33)). The infinite product,

s
co (, . s \ ~ "BinIT I I + — ) e

m=l V iny

occuring in (A-44) is replaced by

. isb

n=l V TV/

so that it's asymptotic behavior is readily obtained via [9]; thus

' ^ isb sb isb f , ,
oo r \ ~~n~~ -1/2 T~ rn

(A-45) T T ( I + — J e ^ ^ s ' e e u l
n=l ^ n>^

&rg |— ^ 1 77.

One notes that changing the exponential factors in the infinite
product is justified since the negative of these exponential factors
must also be present in a similar representation for G_(s ) ; these
exponential factors are required to ensure the convergence of the
infinite products. One notes that TO in (A-45) is defined as

Euler's constant = 0.5772156649.

It is easily seen that the proper choice for X (s ) which ensures an.
algebraic growth for G+(s) as s-*» is

X(s) -
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where

(A-47) I(s) E-S.

Hence G+(s) is

(A-48) G+(s) - G ( 0 )

w r b _ et(w)+3(-W) i
L* ^ J-

1/2( s + k ) ( s + k d )
d

00 _

j g(s,w) I- £ + 6(w)J dw
,P(s)

isb

where

(A-49) G]/2(0);
i sin k b |l/2

2
-k. sin k.b - ie k k. cos k.b

(A-50) g(s,w) E in (1
('

(A-51) G(w) = ̂  - -!-

and

, e w b +( ^r - w1] e sin w'b cos w'b

u w'2 sin2 w'b + e
2 w2 cos2 w'b

(A-52)

Finally, G_(s) is identical to G+(-s). The representation in (A-48)
is not suitable for numerical computations, because I(s) in (A-52)
is not well behaved. If one consideres the contribution to I(s)
over the range w0 < w < » where w0 is an arbitrarily large number,
then one may accurately approximate the integrand as follows:
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w) +^M
Wb

The integration of the above from w0 to °° would converge if the term

o - wb.

was purely oscillatory (i.e., behaved as sin w); however, the
£r

\

term in the brackets oscillates about a non-zero mean value equal
to

(which will equal unity only if er=l), thereby implying that the
integral I(s) of (A-47) is non-convergent for ertf- There are no
other terms in G+(s) which can compensate for the divergent
behavior of I(s), thereby making the above representation for
6+(s) unsuitable for numerical computations. This factorization
procedure has been applied to a number of examples in the past
without difficulty; hence, the present result is unexpected. In
this sense it is a peculiar case. In Appendix II we find G+(s) by
a formal factorization procedure.
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APPENDIX II
EVALUATION OF THE WIENER-HOPF FACTORS OF G(s) VIA THE

FORMAL FACTORIZATION PROCEDURE

I.- It was indicated in Section III of Appendix I that the limiting
type factorization procedure of Appendix I although ordinarily pre-
ferred over a formal factorization procedure for convenience in cal-
culating the factors, strangely leads to a representation for the
factors of G(s) which fail to converge. Therefore, the factorization
of G(s) is carried out via the formal factorization scheme described
in this appendix. Since the well known texts on the subject of
Wiener-Hopf methods such as those by Noble[19] and Mittra and Lee[9]
deal with the development of formal factorization formulae, only a
summary of the results will be given and then applied to the factori-
zation of G(s).

Consider the complex function F(s) of the complex variable s with
the following requirements:

(A-53) F(s) is analytic, regular and non-zero in the strip
y+ < T < T_ (where T = Im s; s = a + it). Figure 10

, indicates the strip of analyticity for F(s).

(A-54) F(s) -> 1 uniformly as |o| -»• » in the strip
T+ .< T < T_.

It can be shown that F(s) may be factorized in the folliwing
manner:

(A-55) F(s) = F+(s) F_(s)

where

" T k n
| "dzVF

TTl J ,. . Z-S IJ-«+IT. I
(A-57) F_(s) = exp U^f
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The contours of integration for the integrals in (A-56) and (A-57) are
shown in Fig. A-5(a). F+(s) is regular and non-zero in the upper half
s plane defined by T > T+, whereas F_(s) is regular and non-zero in
the lower half s-plane defined by T < T_. It is possible to evaluate
F+(s) for Im s < ra and F_(s) for Im s > rb by deforming the contours
of integration in Fig. A-5(a) to enclose the point s as indicated in
Fig. A-5(b) (for s = s, with Im s, > TU and for s = Sp with Im

G(s) of (94) may be factorized via the formulae of (A-56) and
(A-57). G(s) is re-written below for convenience.

< .

(A-58)

where

G(s) = (YY-| sinh Y-,b)CYl sinh Y-jb + erY cosh

(A-59a,b) Y = Js2-k2 = -ijk2-s2, Y = J= ./s2-k2, and

k and kj appearing in (A-59a,b) correspond to the wave numbers in
free space and in the dielectric slab (of thickness b), respectively.
The zeroes of rjsin hY]b in (A-58) occur at s = ik^ and at s = ii|6nl
(where n = 1,2,3,«"). Since the problem is restricted so that only
the TM0 surface wave propagates, the only zeroes of (Y-| sinh Yib +
erY cosh nb) in (A-58) are at s = ±3. The branch points of G(s) occur
at s = tk and at infinity. The branch points, zeroes, and poles of
G(s) are indicated in Fig. A-6. For convenience of analysis, k and
k(j are made complex by allowing them to possess small imaginary
values (this corresponds to introducing a slight loss in the medium
as indicated in Chapter III) so that

k = k, + A with
Vand

« k,
> O

and kd = k3 + ik^

this allows G(s) to be analytic and non-zero within the strip, defined
by T+ < T < T_, and |a| < °°, in the complex s plane. r+=-min(k2,k4)
and T_=min(k2,k4); T± -> 0 as k£ and k4 both approach zero. Figure
A-7 indicates the locations of the poles, zeroes and branch points of
G(s) when k and kd are allowed to be complex. Since G(s) ^ 0(s) as
js| ^ co in the strip, it is not possible to factorize G(s) directly
via (A-56) and (A-57) since the condition in (A-54) is violated. It
is therefore necessary to re-express G(s) as

(A-60) G(s) =

where

G2(s) GS (S)
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CONTOUR
FOR

! OF INTEGRATION A
R F_(s) ON T iz = i
T + <Ims<rb<r_

Im 2
wni^n i+^ j.m 5 ̂  »b T—

f

T_

T"
To _

CONTOUR OF INTEGRATION FOR F+(S) ON
WHICH T_>Im s > ra > T+

( a )

Z =Z.+

iza= iimz

CONTOUR OF INTEGRATION
FOR F _ ( s , ) WHEN Ims,>Tb ;
THE CONTOUR FOR F+(s,) IS
UNCHANGED AS IN FIG. Ya

T_ V

CONTOUR OF INTEGRATION FOR F+(s2)
WHEN Ims2<T0 ; THE CONTOUR FOR
FOR F_(s2) IS UNCHANGED AS IN FIG.Ya

(b)

Z=Z, -» - i z 2

Fig. A-5— Contours of integration for the Wiener-Hopf factors.
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ir = ilms

-0 -k

- i | * i l
> - i | / 3 2 | s =cr -»- IT

Fig. A-6 --Poles, zeros and branch points of G(s) in the
complex s plane.

Ims(OR Imz )

CONTOUR OF INTEGRATION
63 (s) IN THE
Z-PLANE

*. -^•Res
' (OR Rez)

POINT Z = S TO

IN THE
COMPLEX
Z=PLANE

CONTOUR OF INTEGRATION;
FOR G+(s ) IN THE

Z-PLANE

S = o- + ir PLANE
OR

'Z, -MZ2 PLANE

Fig. A-7 —Zeros and singularities of G(s) when k and kj are complex,
and the contours of integration for 63(5) in the z plane.
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(A-62) G2(s) = (s2-k2)/(s2-e2)

and

(A-63) G3(s) =
sinhjs2-k2b

9(s)

with

(A-64)
/ 9 9 I ? ?

g(s) = >/s -k£ siring -kjjb coshi

G-|(s) and 62(5) may be factorized by inspection, or via the
procedure given in Section I of Appendix I. Thus,

(A-64a,b)

and

= G|(S) G^(s); G{(S) = (-i

(A-65a,b) G,,(s) = G+(s) G;(S); G+(s) = / A = Q~
£ £ £ £ • P f i i « > i ^I1 + rJ

(-s)

63(5) is analytic and non-zero in the strip (T+<T<T_; |a|-~°);
furthermore, 63(5) -+ 1 as js| •> » in the strip. Thus, G^(s) may be
factorized into G+(s) Gi(s) via (A-56) and (A-57).

o o • .

(A-66a)'" ' r oo+i >

I , f
 Ta In G.(z)

G^(s) = exp k+(s) = exp ^ z . s dz
[ , ;-~*-ita S > T > T ,"a T

(A-66b)

G'(s) = exp k_(s) =

, •

Tb In G3(z)

-oorflT
z - s dz
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The quantities k+(s) and k_(s) are the terms which appear inside the
brackets on the R.H.S. of (A-66a) and (A-66b), respectively. The
contours of integration and the location of z = s in the complex z
plane for (A-66a,b) are indicated in Fig. A-7. One may express
k+(s) as .

c a In G-(z)
rh 3

Z - S
•I 0+1 TL a J

oo- i Taa

0-1,

In G3(z)
J e\T

z + s dz

One now lets k£ and k4 approach zero (reducing the loss in the medium
to zero); this allows one to express k+(s) above as

(A-68)
ln

dz

where the contour of integration C+ is indicated in Fig. A-8(a)
whenever s is real and positive. A similar representation for
k_(s) when k2 and k4 are set to zero (i.e., when the strip of
analyticity for 63(5) shrinks to the real z-axis, except for the
singularities at z = k and z = s) is given by

(A-69) k_(s) = -
In 63(z)

dz

where the contour C_ is depicted in Fig. A-8(b) for positive real s.

i z 2 <

0

iz2

0

TO +CO

V k s /
* ^ * v ̂  * i

^CONTOUR C+

(a)

» ^ * k XS * -

^-CONTOUR C_

(b)

Fig. A-8 — Contours C+ and C_ associated with G^s) and G^s) for real s
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It can be shown that the contribution to the integrals in (A-68)
and (A-69) arising from the branch point at z. = k is vanishingly '
small; hence, these integrals may be expressed as principal value
(P.V.) integrals over a semi-infinite range along the real z axis
after taking into consideration the effect of the pole at z = s
(by including one half of the residue arising from this pole).
Therefore,

r In G~(z) ,
(A-70) k . (s ) = f - P.V. oo dz + j - In G7(s); fo r s>0

' JO z - s

and

f°° In G~(z) ,
(A-71) k (s) = ^- P.V. oo dz + 4- In G,(s); for s>0

17T Jo z - s^ * J

Thus, one may factorize G(s) into G+(s) G_(s) where

(A-72a) G+(s) = G|(S) G^s) G^s)

and

(A-72b) G_(s ) = G'(s) G'(s) G'(s)

with Gf(s) and G^(s) indicated in (A-64b) and (A-65b). G|(S) in
(A-72a,b) are defined in (A-66a,b) with k+(s) and k_(s ) given by
(A-70) and (A-71), respectively. Equations (A-70) and (A-71) are
valid for s>0; when s<0 (i.e., s=-| sp one may employ the relations

\ ^»"" ' *^" 9 D / K . \ "* j S j J "~ K ^ | S | y j K v ~ |^ | / "" ^j. \ I I / •

The relations indicated in (A-73a,b) follow from the fact that
G 3 ( - |s | ) = G3( |s | ) . Clearly,

(A-74a,b) G^( |s | ) = Gl(-lsl), and G^( - I s l ) = Gl ( ls l ) ,
O »3 »3 *5

whenever (A-73a,b) are valid; therefore, it follows via (A-72a,b)
that

(A-75) G+ ( |s | ) = G (- Isl) .
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The factors of 65(5) when s is complex may be evaluated directly via
the, formulae in (A-58) and (A-57) with the corresponding contours of
integrationVindicated in Fig. A-5. The relationships

(A-76)

and

(A-77)

G+
3(s) = G-(-s)

G+(s) = G_(-

are.valid even for complex values of s. ;

Specifically, one needs to evaluate G+(s) at s = 6, ,s.= kn , . -
s = gn (='i|3n|, n = 1,2,3 • • • ) and s = k sin <f> (with | < j > | . < n/2)j''r ,
in order to construct the surface wave reflection and diffraction.'^.,
coefficients pertaining to the configuration of Fig. 2; however, ^
before proceeding to these cases, it is desirable to re-write
(A-70) and (A-71) in a form suitable for the numerical evaluation
of the integrals.

The quantity

f In G-(z)
- T7 p-v- 9 ? dz

I7r JO z2 - s2

in (A-70) and (A-71) may be re-expressed for the purposes of numerical
computations as ^

{A-78)

•
- ITT

P.V.
0

+

±

s
iir

S
itr

lim"
_e->0

lim^
5*0|

' f k -
llo

rh\.
M

*l

S-6 rS-e (-S+6 (c°
+ +

JS-6 -"S+e -"s+a
,for s>k>0

S-e

S-6

/•S+6 rk-e r~

+ +

Js+e •'S+6 •'k+e
t

for 0<s*k

One notes that the integrand in (A-78) is real whenever z>k and s is
real. It is desirable to split the integral as shown above since it
allows one to substantially reduce any numerical roundoff errors
arising from the numerical evaluation of the integral in the neigh-
borhood of the pole at z = s; the integral in the deleted neigh-
borhood of the pole is then evaluated very accurately in closed
form as discussed below.
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63(2) is analytic at z = s as well as for all positive
real values of z excluding the point z = k; hence, In G3(z) in the
integrand of (A-78) may be accurately approximated in the immediate
neighborhood of z = s by it's two term Taylor Expansion as

(A-79) l n G 3 ( z ) * l n G 3 ( s ) + [ 1 4_
L J

(z - s)
z=s

The integral from z = s-6 to z = s + 6 excluding the point z
which occurs in (A-78) may be written via (A-79) as

= s

(A-80) 4- lim
lTr e->0

s-e In G-(z)
dz

L ;s-6

s+6 In G? (z)
dz—o-^—p-

s+e -T - s^

= + 4- lim

The extent of the interval 26 about z = s is chosen such that the
R.H.S. of (A-79) is a sufficiently accurate representation for
In G3(z) within the interval. After some straightforward manipu-
lations (A-80) becomes

(A-81) ± ijj- lim
rS-e In G-(z)

e->Ol ;S-6 z2 - s2
dz

s+6 In G-(z)

= i I-11m
In G,(s)

2 2
S+e z^ - S^

G ' ( s )

dz

2s'

In 63(s) G3(s)

2s

Incorporating (A-81) in (A-78) yields
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(A-82)

i-rr
=< or

+ 1

lim"
e-»0

' \
lim'
e->0

-P.V.
7T

(fk"e '
1J°

fS-6

Jo <

•

ln
'0 2z

H f5"6

'k+e

h fk"£

•U+6

G3(z)
° rc?

Iz =
-s

,00 1+ u.
.00

Jk+e

~ ITT
s>k

i
+ JL.
~ ITT

In G3(s)

2s

In G,(s)
o

2s

G3(s)

GTTjy

ITT

s>0

The result given in (A-82) may be directly employed in the integrals
on the R.H.S. of (A-70) and (A-71) to evaluate K+(s) and K_(s) ,
respectively when s is real. When s has a non-zero imaginary part
(s is complex), the representation for k+(s) and k_ (s ) is taken
directly from (A-56) and (A-57) respectively, together with the
corresponding contours of integration indicated in Fig. A-5.

II. Evaluation of G3(e): The factors of G3 for s=8 where £>k>0 are

obtained via (A-70) and (A-82); in particular,. 63(3) equals
where

(A-83)
6-6 In G3(z)

2 2
Z - 3

6 +

dz

In G3(B) G3(e)

+ £ In G3 (e)

The term, In 63(6) appearing in (A-83) is calculated via

(A-84) In G,(3) = In lim G,(z) = In [

where "^ is the residue defined by lim (z-g)G(z) which was introduced

in (113). The quantity G 3 (e) in (A-83) is presented later in (A-88).
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2 2 • 'One notes that the ratio (z -g )/g(z) occuring in the ex-
pression for 63(2) (see (A-63)) is sensitive to any slight inaccuracy
involved in the numerical evaluation of 3 whenever z is in the
neighborhood of g. Thus, it is apparent that the numerator and the
denominator of 63(2) may not simultaneously attain a zero value at
z=3 if a sufficiently precise value of 3 is not available. In order
to make the integral in (A-83) less sensitive to any small errors in
3, the integral from k+e to 3-6 and also from e+6 to °° are further
split as follows

f3-6 r
(A-85) + J

J\e+c flk+e 3+6

3-T rB-6 f3+T

k+e Jg-T Jg+6

and the term g(z) which appears in G3(z) for the integrals over 3-T
to 3-6, and over 3+6 to 3+T, is replaced by it's four-term Taylor
expansion about z=3. The interval 2T about z=3 is therefore chosen
such that g(z) is accurately represented by four terms in a Taylor
expansion for g(z) about z=3. In the interval 3-T < z < 3+T, g(z)
is therefore given by . .

(A-86) g(z) *g (3 ) + g'(3)(z-3) + 1 g"(3)(z-3)2 + lg'" (3)(z-3)3

= Cg'(3) + lg"(g)(z-g) + }g"'(3)(z-3)2](z-3)

since g(is) = 0. The quantities g ' (z ) and g"(t) are given below in
terms of Y(=Jz2-k^ = - ijk2-z^) and yl (=Jz^-k2) which have been
defined earlier; these quantities are evaluated at z=3 and employed
in (A-86) above.

(A-87a) ' g(z) = Y-I sinh .Y|b + epy cosh Yjt> /

(A-87b) g'(z) = — sinh y-|b + zb cosh Y-jb + e - cosh j,

z b •*- sinh

sinh Ylb _2 2.
(A-87c) g"(z) = • -^ sinh Y-|b + ^-y cosh Y-,b +

Y1 Yi Y
1 1

2.2
+ b cosh Y,b + —— sinh Y,b 4-
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(A-87c)
(Cont).

cosh Y b A
YYV

sinh

2 2 '
:s-irih Y

sirih Y,b.

The expression for g" ' (z) is rather lengthy, but can be obtained by
a straightforward differentiation of g"(z); hence, it will not be
presented here. The quantity 63(5) in (A-83) may be expressed in
terms of g ' (e) and g"(6) as

(A-88) G3

g' (3)

? 2
-t-erb

(k2-32)

- g"(3) • 3

III. Evaluation of G-Ckj): The evaluation of G3(kd) where k(J>3>k
proceeds in a manner similar to that for 63(3) discussed earlier.
Specifically,

(A-89)

= exp(k+(k(j)) where

lim
k-e In G,,(z)

dz
0

kd"<5 In G,(z)

k+e
9

z -

In G3(z)
dz 1 J lnG3(kdL G3(kd)
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and

b(k2-B2)
(A-90) G3(kd) = —±= ; In G3(kd) =

b(k2-B2)

Also

-91). G'(kd) = - 2kdb • G3(kd) -

k.b(k2-B2) o od d . .3, .2
o o K .D V K . - t 5

(k2 - k2) d d ' G3< kd>«

Since e lies in the interval k + e < e < kj - 6, it is desirable to
re-express the integral over k + e to kj - 6 in (A-89) as

kj-6(A-92) f = r + fe+T
 + f•"k+e •'k+e JB-T i

kd-6

'B+T

The g(z) term in 63(2) for

B+T In G3(z)
9 ?

B-T z2-k
dz

of (A-92) is replaced by it's four term Taylor expansion about z = B as
indicated earlier for G+(B) for the purposes of making the calculation
of G3(z) insensitive to any small differences which may exist between
the calculated value of B and the true value of B.

IV. Evaluation of G3(i|Bn|):

where '
G3(i|Bj) = exp k+(i.|Bn|)=

as indicated in Chapter III, and
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(A-93) K+(i|en

-e In G~(z)

Z2+ , ,

,B-T In G~(z)
+ - 3_

W z2+|g2
dz+

r3+T In G~(z) f» In G~(z)
+ I 9

 6
 9 dz + i-_

z2+|3n|2 J

r3+T
dz

The term g(z) in G3(z) which occurs in the integral over 6-T < z < 3 + T
in (A-93) is approximated by it's four term Taylor expansion about z = 3
as done previously for Glj(e) and G^kj), and for similar reasons. One
notes that the integrand in (A-93) possesses "pole singularities on
the imaginary z-axis unlike that for k+(e) and k+(k,j) for which the
singularities occur on the path of integration.

V. Evaluation of 63 (k sin <(>): Since \$\ < v/2 (see Chapter III for

detail^, it follows that |k sin <j>| < k. Thus, &3(k sin ^>) = exp
k+(k sin <)>) = exp k+(±|k sin < f > | ) , for $ ̂  0. It was indicated in
Section I of this appendix that one can relate k+(-|k sin < j > | ) to
k_ ( | k sin < j ) | ) by the equality

(A-94) k+(-|k sin <j,|) = k _ ( | k sin

The quantities k+(|k sin <() | ) are given by

(A-95)

In G~(z)dz

•k-e

|k sin

In G3(z) dz
P P

z - |k sin < f> |

B-T In G-(z') dz

z - | k s in

g+T In G 3 (z )dz

6-T z - |k sin
* dz

In G3 (z)dz
n O

z -|k. sin f|
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(A-95)
(Cont)

in G3(|k sin 4, ) G'(|k sin .
+ —

171 2|k sin *| G-(|k sin <f
3

~ In G3(|k sin <))|) , for 4> > 0

and

(A-96)

k _ ( | k sin <f, |) =' -' 1n
p .

z2-|k sin<|,|2

k-e , In 63(z) dz

|k sin <f)|+6 z -|k sin < f > |

In G3(z) dz

z2-|k sin <H2

3+T In G3(z) In G3(z)

5-T z - k sin e+T z -|k sin
dz

Wn G_ ( | k sin <( ) | ) GU|k sin < f > | )
* O _i_ ^

2|k sin 4>| G3 ( |k sin
6 +

+ p- In G7(|k sin 4> |) , for <f> <0.
£ 0

In order to evaluate G 3 ( j k sin <|>|) one must set z = |k sin <f>| in

(A-97)

G3(z) =
sinh coshYlb)(2z)-(z -3^

Yl

sinhY-jb
b COSh

coshy-,b

-I sinh Y-jb + erY cosh
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(A-97)
(Cont) (Z2-B2)Z

sinh

sinh
b cosh

2
Yl .

Finally, the term g(z) in 63(2) which occurs in the integral over
3-T to 6+T in (A-95) and (A-96) is approximated as in (A-86) for
the purposes of making the numerical evaluation of the integral
less sensitive to any small differences which may be present in
the calculated value of 3 from it's true value.
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