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NUMERICAL COMPUTATION OF TWO-DIMENSIONAL VISCOUS

BLUNT BODY FLOWS WITH AN IMPINGING SHOCK

John C. Tarmehill and Terry L. Hoist
Iowa State University

SUMMARY

Two-dimensional viscous blunt body flows with an impinging shock

have been computed using a "time-dependent" finite-difference method which

solves the complete set of Navier-Stokes equations for a compressible

flow. For low Reynolds number flows, the entire flow field, including

the bow shock and impinging shock, has been "captured" in the computa-

tion. For higher Reynolds number flows, the bow shock is treated as a

discontinuity across which the Rankine-Hugoniot equations are applied,

while the boundary layer and interaction regions are "captured" as

before. Using this latter "shock-fitting" approach, a Type III shock

interaction flow field has been computed with flow conditions

corresponding to the Space Shuttle Orbiter freestream conditions at

61 km (200,000 ft).
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NOTATION

c = specific heat at constant pressure

C = constant in Sutherland's equation

D = diameter of cylinder

e = specific internal energy

E = total energy

i = unit vector in radial direction

in = unit vector in transverse direction

U = coefficient of thermal conductivity

K = local radius of curvature

Kn = Knudsen number

M = Mach number

n = outward unit normal to bow shock
s

p = pressure

Pr = Prandtl number, c

q . = heat flux vector

r = local radius of bow shock
s

r = local radial shock velocity
St

r = dr /o9
Sg S

R = gas constant

Re . = Reynolds number based on diameter

t = time

t = transformed time

. u ; = tangential velocity component
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U = local shock velocity
s

v = normal velocity component

V1 = fluid velocity normal to shock

y = transformed coordinate given by Eq. (16)

y = transformed coordinate given by Eq. (14)

z = transformed coordinate given by Eq. (16)

z = transformed coordinate given by Eq. (14)
s

Oi = transformation parameter in Eq. (Al)

P = stretching factor in Eq. (16)

P = stretching factor in Eq. (Al)

V = specific heat ratio

6 = local distance between body and outer boundary

T| = coordinate measured normal to body

9 = angle measured from stagnation streamline

M. = viscosity coefficient

S = coordinate measured along body

p = density

T. . ..= shear stress tensor . .
ij

Subscripts

1 = undisturbed conditions ahead of impinging shock

2 = conditions behind impinging shock

j = mesh point location in z direction

k = mesh point location in y direction

stag = stagnation point value without impingement

t = total condition

w = wall value





INTRODUCTION

An extraneous shock impinging on a blunt body in a hypersonic flow

has been observed to greatly increase both the heat transfer rate and

pressure near the impingement point. In fact, Hains and Keyes have

measured peak heating rates up to 17 times the ordinary stagnation

point rate and pressure peaks up to 8 times the freestream pitot pressure

as a result of shock impingement. Flow fields of this type will occur

on the Space Shuttle and other maneuverable re-entry vehicles. For

example, high heating rates and pressures can be expected on the Space

Shuttle Orbiter at the point where the bow shock from the nose intersects

the blunt leading edge of the wing if the sweep angle is not large

enough.

The intense heating and high pressures described above occur over

a small region where a disturbance, originating at the intersection of

the impinging shock and bow shock, strikes the body. The disturbance

may be a free shear layer, a supersonic jet, or a shock depending on the

2
location of the impinging shock and the shape of the body. Edney has

described six different types of shock interference patterns, which

include the various kinds of disturbances. The shock interference

pattern which produces the maximum heating rates and pressures is Type IV,

which is shown in Fig. 1. In this type of interference pattern, the

disturbance is a supersonic jet which is embedded in the subsonic

portion of the flow field.

During the present study,1 two-dimensional shock impingement flow



fields have been computed using a "time-dependent," finite-difference

method which solves the complete set of Navier-Stokes equations for a

compressible flow. The major advantage of the "time-dependent" method is

M

BOW
SHOCK

Fig. 1. Type IV shock interference pattern.

that the resulting unsteady Navier-Stokes equations are a mixed set of

hyperbolic-parabolic equations for both subsonic and supersonic flows.

As a result, a very complicated flow field, such as the one shown in

Fig. 1 where both subsonic and supersonic regions are present, can be

calculated as an initial-value problem. .An additional advantage is that

since the Navier-Stokes equations are solved in a conservative manner,

shocks are automatically allowed to form without previous knowledge of

their location or even existence.



For low Reynolds number flows, the entire flow field, including

the bow shock, can be "captured" using the so-called "shock-capturing"

approach. The computational domain for this type of calculation is shown

in Fig. 2. For higher Reynolds number flows, it is not practical to

COMPUTATIONAL DOMAIN

INCIDENT
SHOCK

M

BOW
SHOCK

Fig. 2. Computational domain for "Shock-Capturing" method.

"capture" the bow shock because of the numerical difficulties associated

with the large gradients at the bow shock. Instead, it is more

convenient to treat the bow shock as a discontinuity, across which the

Rankine-Hugoniot equations can be applied, while leaving the boundary

layer and interaction regions to be captured as before. This latter

approach is the so-called "shock-fitting" method. The computational

domain for this method is shown in Fig. 3. In the present study, both

the "shock-capturing" and "shock-fitting" methods have been used to
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Fig. 3. Computational domain for "Shock-Fitting" method.

compute two-dimensional viscous blunt body flows with an impinging shock.

Thus far, numerical difficulties have prevented the computation of

Edney's Type IV shock interference patterns. . However, Type III inter-

actions have been successfully computed in this study.



GOVERNING EQUATIONS

The fundamental governing equations for an unsteady flow without

body forces or external heat additions can be written in conservation-

law form for a two-dimensional body, intrinsic coordinate system (see

Fig. 4) as3

(1)

where

U = (1 + KT])

P

pu

pv

E

F = p + pu

pu

2

- Tir,

Eu + pu + q~
|T1 J

(2)

(3)

G = (1 + KID

PV

puv - T•n §
j. 2

•» + i" - Trm
Ev + pv + q.^ - ul

(4)



H =

0

K(puv - '
t

-K(p + pu'

0

(5)

and E is the total energy given by

E = p e +
2" 2

u + v
(6)

In addition to the above conservation equations, an equation of state in

the form

P = p(e,P) (7)

must be specified. For a perfect gas, this equation can be written as

p = (V - 1) pe (8)

For the case of air in chemical equilibrium, approximate curve fits

are available for Eq. (7) in Refs. 4 and 5.

OUTER
COMPUTATIONAL
BOUNDARY

L ,

M

Fig. 4. Two-dimensional body intrinsic coordinate system.



In the present study, the Navier-Stokes expressions were used for

the shearing stress tensor and heat flux vector; thus the components of

the shearing stress tensor and heat flux vector are .

3

where

e

and

-k

qri=

|TI 1 + KTI 9§ OTI 1 + KT)

KT1 O^

(11)

In order to complete the system of equations, it is necessary to

specify expressions for the viscosity (M.) and the coefficient of thermal



conductivity (k). For all of the present computations, Sutherland's

equation

% 1 + C/T
00

1 + C/T (12)

was used to determine the viscosity, and the coefficient of thermal

conductivity was computed by assuming a constant Prandtl number:

k = Y
(Y - l)Pr

Approximate curve fits for p, and k suitable for "time-dependent" computa-

tions are presently being developed for the case of air in chemical

equilibrium.

Two independent variable transformations are applied to the governing

equations listed above. The first transformation maps the computational

domain shown in Fig. 4 into a rectangular region in the transformed

(y, z) plane. The outer computational boundary in Fig. 4 is either the

bow shock (for a "shock-fitting" computation) or a freestream boundary

(for a "shock-capturing" computation). The equations of the first

independent variable transformation are:

y = 5

-z = 1 - ̂ - (14)

t = t . •

where 6 = 6(1, t) for a "shock- fitting" computation and 6 = 6(5) for a



"shock-capturing" computation. The relations between the partial derivatives

are given by

*_ _ 1_ . - & _d
•*£ ~ _ ̂  \L z) f. _
d5 d 6 oz

(15)(15)

-. fit a

The second independent variable transformation stretches the computa-

tional mesh in the direction normal, to the body so that the mesh may be

refined either near the body or near the outer computational boundary.

By refining the mesh near the body, it is possible to describe the

boundary layer more accurately. On the other hand, it may be desirable

to refine the mesh near the outer boundary for shock impingement computa-

tions, although the results from initial computations tend to dispute

this. The equations of this transformation, which were previously used

by Li , are

y = y

1 - e*z = - - (16)

t = t

The amount and type of stretching is determined by the value of P. If
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equals zero there is no stretching. If (3 is greater than zero the mesh

is refined near the body, and if P is less than zero the mesh is refined

near the outer computational boundary.

The relations between the partial derivatives for this second trans-

formation are given by

-s—
oz 1 - e

An alternative to the present transformation is given in Appendix A.

This alternate transformation makes use of a logarithmic function which

has been found to give better computational results when an impinging

shock is present.

After employing the two transformations given by Eqs. (14) and (16),

the final computational grid in the (y,z) plane is shown in Fig. 5 and

the corresponding grid in the physical plane (§, 1) is shown in Fig. 6

for P > 0. The final forms of the governing equations are



11

OUTER
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Fig. 5. Computational plane
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Fig. 6. Physical plane (P > 0)
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U = [6 + 62K(1 - z)]
P

pu

pv

E

(19)

F = 6

pu

p + pu - T
yy

puv - T
yz

Eu + pu + q - uT
y yy

- VT
yz

(20)

y-i

d-eP)

pv

puv- T
yz

p+pv - T
zz

Ev+pv-t-q -uT -VT
z yz z

(6 F+6tU) (21)

H = 6

0

K(puv-T
y
2

-K(p+pu -T
yy

(22)
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T = —
yy

2

Tzz = 3
(23)

T = u.eyz r yz

yy \1 + K6(l-z)

Su

zz 6(l-eP) dz
(24)

e =
yz

(l-z)6ype'

d-<

Ku

(1-c

qy =
-k

l+K(l-z)6

dr a-'X^fe" »
d-« ^ K Bz

(25)

(i-(

where

z = i In [1 - z(l-eP)]
P

(26)
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NUMERICAL SOLUTION OF EQUATIONS

Finite-Difference Scheme

7 8
MacCormack's finite-difference scheme ' is used to solve the govern-

ing equations at each interior grid point. This explicit, two-step

scheme has second-order accuracy in both space and time. When

MacCormack's algorithm is applied to Eq. (18), the following predictor-

corrector equations result

- n+1 _ Ji At , n _ n . At . n • n . . n
U j ,k - Yk Ay (Fj,k+l F j ,k> AZ <Vl,k G J ,k> At H j ,k

and

un+1
- At j . fc

(28)

where z = jAz , y = kAy, t = nAt and F" . = F(U° . ), F? , = F(U.n. ), etc.J i V T if 1 if n Vj,tv. J > "• J » ^ J j * ^

Note that the spatial derivatives in the predictor step are approximated

by forward difference, while in the corrector step they are approximated

by backward differences. The shear stress and heat flux terms appearing

in F, G, and H are evaluated using backward differences in the predictor

step and forward differences in the corrector step. The net result is

a central difference approximation for the shear stress and heat flux

9
terms .

Using the above finite-difference equations, the computation is

advanced in time from the initial conditions until the "steady-state"
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solution is reached. After each computational step, the flow variables

are obtained at each interior grid point from the U vector

U =

u1

U2

.
3

_v

= [6 + 62K(l-z)]

_

P

pu

PV

E
ta ~

in the following manner:

P = iy [6+ 62K(l-z)]

u

v =

2 2

(29)

(30)

P = P(e,p)

T = T(e,p)

During the present study, the latter two expressions were evaluated

using perfect gas relations. However, for the case of air in chemical

equilibrium, they could easily be evaluated using the approximate curve

fits appearing in Refs. 4 and 5.

Boundary Conditions

The flow conditions at the outer computational boundary in Fig. 7
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OUTER
COMPUTATIONAL
BOUNDARY

INCIDENT
SHOCK

OUTFLOW
BOUNDARY

| = 1 2 \
LOWER

BOUNDARY

Fig. 7 Computational boundaries

are necessarily different for the "shock-capturing" and "shock-fitting"

methods. For the "shock-capturing" method, freestream conditions are

maintained at all grid points along the outer computational boundary

below the impingement point. For grid points above the impingement point,

the flow variables are set equal to the conditions which exist behind an

oblique shock at the desired shock impingement angle. The impingement

point is placed, for simplicity, halfway between any two adjacent grid

points along the outer computational boundary.

When the "shock-fitting" method is employed, the flow conditions

at the outer computational boundary are those conditions which exist

immediately downstream of the bow shock as determined by the Rankine-

Hugoniot relations. Consequently, it is necessary to include logic
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which will permit this boundary to move with the bow shock as the latter

moves toward its "steady-state" position. The approach used here is

somewhat similar to the approach previously used by Thomas, et al.

and Kutler, et al. in their inviscid steady flow computations. Their

predictor-corrector approach has been modified for the present unsteady

computations.

The coordinate system used for the "shock-fitting" procedure

is shown in Fig. 8. The local velocity of the shock is given

BOW
SHOCK

by

Fig. 8 Notation for "shock-fitting" procedure.

U = U n
s s s

where n denotes the outward unit normal to the shock given by
S

(31)
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L - (r /T\
r V sfi s;

». - 2^~ (32)

[1 *<'.„".> ]%

The magnitude of the local shock velocity can be related to the radial

shock velocity (r ) by
St

U = r . n (33)
s s s

or

r

U = £ r-r (34)
S [1 + (r /r )2]%

S Q S

The vector component of the fluid velocity normal to and measured with

respect to the moving shock is given by

where q = v i + u iQ. When Eqs. (32) and (34) are substituted into
o> oo r oo 0

Eq. (35), the following expression is obtained for the magnitude of V1

r - v + u (r /r )
S. oo cox SQ S

v. - —£ 5^5 (36)
2 %

from which r can be obtained as
St
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r = V . L l + ( r /r )] + v -u (r /r ) (37)
S 1 V SQ S <= <s° V SQ S'
t o a

The above equations are used in the "shock-fitting" method in the

following manner. First, the shock wave radial distance is evaluated by

use of the Euler predictor

n+1
r = rn + At rn (2 ^ k ^ NK-1) (38)8* 8*

using Eq. (37) to evaluate r . The derivative r which appears in
s»- sot. 0.k k

Eq. (37) is evaluated using the second-order central difference formula

n = (rn - rn ) /2A8 (39)
S6 sk+l sk-l

K.

For the grid points immediately above (k = KS) and below (k = KS - 1) the

shock impingement point, it is not acceptable to use Eq. (39) because

of the discontinuity in the shock slope at the impingement point. Instead,

the derivatives at k = KS and k = KS - 1 are evaluated using the second-

order expressions

• _ n , n n
3r - 4r + r

SKS Sa SKS + 1

= I 4rn - 3rn - rn j /3A9

(40)
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where the radial distance to the shock impingement point (r ) is
s
a

determined in the predictor step using a second-order extrapolation

given by

- 10 r + 3 r
KS SKS+1 KS+2

(41)

Eqs. (40) and (41) were derived by assuming that the impingement point

(a) is halfway between the grid points KS-1 and KS.

The next step is to compute the pressures P

the bow shock using the modified MacCormack scheme

immediately behind

IT
n+]- _ TT

n M / n
Ul,k - Ul,k Ay VFl, k+l

At
Az

n

(42)

Once the pressures behind the bow shock are computed, V.. and p
1k 1>k

can be computed using the normal shock relations

n+l
71.

n+l
l.k - 1

(43)

nfl
Pl,k

n+l
Pl,k - 1

Y+ 1

1 + i\ fii/ P
n+l
k

(44)

The components of the fluid velocity behind the bow shock are evaluated

using relative velocity equations which give



n+1
u, , = u 1 -

n+1
Pl,k

n+1 . 1v, , = v +{ 1 -

21

n+1 ,
- v + u n+1 , n+1

r /r8e. skk

n+l . n+1r /r
sft s,

9k k

, , / n+1 , n+1
1 +|r /r

(45)

n+1 , / n+1, n+1r - v + u r /r

_n+l , n+1
n S,

where r" is obtained from Eq. (.37). The remaining unknown T"+?; is
S . 1 ,K

calculated using the state relationship T = T(e,p). This completes the

predictor step. The corrector step is identical to the predictor step

except that the shock wave radial distance is evaluated using the modified

Euler corrector

n+1 n At n
r = r + — I r
s, s. 2 I tk k t.

,
+rn+1 . (46)

and Eqs. (41) and (42) are replaced by

n+1
15 r

n+1
3KS-1

- 10 r
n+1
SKS-2

+ 3 r
n+1
5KS-3

1/8 (47)

and

U = _
l,k 2

.
l.k Ay V l , k Az l,k ,k

(48)
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In addition, the "predicted" variables (n+1) in Eqs. (43), (44), and (45)

are replaced by "corrected" variables (n+1) during the corrector step.

The calculation of the boundary conditions using the "shock-fitting"

method described above is performed before the predictor or corrector

steps are initiated at interior grid points. All other boundary conditions

are calculated after the predictor or corrector step is completed at

interior grid points. The flow conditions along the outflow boundary in

Fig. 7 are determined using a second-order extrapolation of interior grid

point data. For example, the pressure is obtained from

J,NK-1 " j,NK-2 j,

Along the body surface, the following conditions are imposed

Pk,NJ = Pk,NJ-l

T = Tk,NJ w

= Pk,NJ/RTk,NJ (50)

Vk,NJ - °

During some early computations, a different set of boundary conditions

was used at the body surface. In these computations the density at the

body surface was determined using a second-order extrapolation normal to

the body and the pressure was found from the equation of state. These

boundary conditions proved to be unstable, however, when applied to cases
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where the body was highly cooled, while Eq. (50) gave stable results.

The flow conditions along the lower boundary in Fig. 7 are determined

using either simple reflection about an axis of symmetry which is placed

midway between the k = 1 and k = 2 rows of grid points or a second-order

extrapolation of interior grid point data for the case of supersonic

outflow conditions.

Initial Conditions

In all computations performed thus far, the blunt body flow without

the impinging shock was computed first. The initial conditions for this

calculation are obtained by using an approximate curve fit for the loca-

tion and shape of the bow shock along with a Newtonian pressure distribu-

12
tion at the body. The approximate curve fit of Billig is used to find

r and r along the shock. Eqs. (36), (43), (44), and (45) are then used
S Sg

(with r set equal to zero) to find the initial conditions immediately
St

behind the shock. The initial flow conditions at the wall are obtained

using the known wall temperature in conjunction with the pressures from

the Newtonian pressure distribution. The densities at the wall are obtained

from the equation of state and the velocities are set equal to zero. The

initial flow conditions at interior grid points are obtained by assuming

a linear variation between the flow conditions immediately behind the

bow shock and the wall conditions.

After a "steady-state" solution is achieved for the undisturbed

blunt body flow, the impinging shock is introduced by resetting the free-

stream flow variables above the impingement point equal to the values
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which exist behind the desired oblique impinging shock. The computation

is then carried to a new "steady-state".

Stability

Since the present computational method is explicit, the maximum time

increment (At) must be limited to ensure stability. - For high Reynolds

number flows, the maximum time increment is determined from the usual
Q

C.F.L. condition . For low Reynolds number flows, the following equation

13
derived by Li can be used:
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NUMERICAL RESULTS

The computational methods developed in this study have been applied

to several 2-D viscous, blunt body flows with an impinging shock. Both

the "shock-capturing" and "shock-fitting" methods have been used.

Case I. ("Shock-Capturing" method)

The first test case consists of nitrogen flowing over a circular

cylinder at low Reynolds number. The flow conditions for this case

are

2
M = 4.2 p = .0735 newtons/m
00 00

ReT =200 T = 96.1 °K
D o°

(52)

Pr = .687 D = .6096 m

Y = 1.4 T = T = 435.2 °Kw t
00

The "shock-capturing" method is ideally suited for this computation since

the bow shock is relatively thick for low values of Reynolds number. For

this case, the outer computational boundary was a circle with a radius

equal to the diameter of the cylinder. The lower boundary (k=l) was

located along a ray 1 below the undisturbed stagnation streamline and

the outflow boundary (k=NK) was located along a ray 39.1 above the

undisturbed stagnation streamline. A mesh consisting of 21 equally

spaced grid points in both the y and z directions was used in this

computation.
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Initially, the blunt body flow without the impinging shock was

computed using freestream initial conditions at all grid points. This

computation took 1425 time steps to reach a "steady-state" and used

approximately 24.2 minutes of CPU time on the IBM 360-65 computer. The

results of this computation are seen in the contour plots of Figs. 9, 10,

and 11 which show lines of constant Mesh number, temperature, and pressure,

respectively. The finite thickness of the bow shock is evident in these

figures.

The variation of the computed temperature along the stagnation

streamline is shown in Fig. 12, along with the experimentally measured

wire temperatures of Ref. 14. Although the wire temperatures cannot

be compared directly with the computed static temperatures, they can be

used to indicate the location of the bow shock. The wire temperatures

have been normalized so that their values in the freestream and at the

body agree with the computed static pressures at these points. The

location of the bow shock in the present computation falls between the

experimentally determined locations in Fig. 12. This is the desired

result, since the present flow conditions are between the flow condi-

tions of the two experimental tests of Ref. 14.

An impinging shock was then introduced into the "steady-state" blunt

body computation along a ray 20 above the stagnation streamline of the

undisturbed flow field. This was accomplished by resetting the freestream

flow variables, along the outer computational boundary above the impinge-

ment point, equal to the values which exist behind a 20 shock. The

ratio of the pressures across this impinging shock was p? /p = 2.24.
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M =4.2
GO

-̂

Fig. 9. Constant Mach number lines,
Case I (no impingement) .
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TA =1.04
09

1.30

M =4.2
08

Fig. 10. Constant temperature lines,
Case I (no impingement).
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= 21

M =4.2

P/P -2.6 7.813.0 18.2

Fig. 11. Constant pressure lines,
Case I (no impingement).
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Fig. 12. Variation of temperature along
stagnation streamline.
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The computation was then carried to a new "steady-state" which took an

additional 2325 steps and used approximately 39.5 minutes of CPU time

on the IBM 360-65 computer. The results of this computation are shown

in the contour plots of Figs. 13, 14, and 15. The large effect of the

M=.4.0

= 21

Fig. 13. Constant Mach number lines, Case I
(20° shock impingement).
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Fig. 14. Constant temperature lines, Case I .
(20° shock impingement) .

incident shock on the undisturbed flow field is evident when these

figures are compared with the previous contour plots. Comparisons of

the surface pressures and heat transfers between the undisturbed

computation and the present shock impingement computation are shown

in Figs. 16 and 17. The incident shock causes an increase in wall
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K = 1

Fig. 15. Constant pressure lines, Case I
(20° shock impingement).

pressure of 72% and an increase in heat transfer of 49% over the un-

disturbed values at the point where the outflow boundary (k=21) inter-

sects the body.
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Case II. ("Shock-Fitting" Method)

This test case consists of air flowing over a circular cylinder with

the following conditions

M = 12.145 p =19.8 newtons/m
oo roo

Ren = 19,838 T = 254 °K
Do>

Pr = .72 D = .3048 m

Y =1.4 T = 1445 °K
w

These flow conditions are identical to those that will exist normal to

the leading edge of the Orbiter wing (sweep angle of 45 ) at 61 km

(200,000 ft).

The "shock-fitting" method was used for this computation since the

moderately high Reynolds number causes the bow shock to be relatively

thin. A mesh consisting of 51 equally spaced grid points in the y

direction and 31 equally spaced grid points in the z direction was used.

The lower outflow boundary (k=l) was located along a ray 61.5 below the

undisturbed stagnation streamline while the upper outflow boundary was

located along a ray 88.5 above the undisturbed stagnation streamline.

These boundaries were placed so that the flow passing out of each of

them was supersonic everywhere except in the boundary layer.

As before, the blunt body flow without the impinging shock was

computed initially. The results of this computation for g=0 are shown in the

contour plots of Figs. 18, 19, and 20. Only the results from k=21 to k=51
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|-M=2..2

Fig. 18. Constant Mach number
lines, Case II (no
impingement)

= 21
0.2
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Fig. 19. Constant temperature lines,
Case. II (no impingement).

=15-3

18.0

20.8

23.5
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Fig. 20. Constant pressure lines,
Case II (no impingement)

93-
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are plotted. The stagnation streamline is located halfway between k=21

and k=22. The boundary layer is clearly evident in these figures. This

undisturbed computation was repeated using both the exponential stretching

(Eq. (16), with 3=3) and the logarithmic stretching (Eq. (Al), with

P1 = 1.2 and a = 0). A comparison of the temperature profiles at the

stagnation point for the three different computations is shown in Fig. 21.

Included in this figure is the temperature profile computed by the

BLIMP boundary layer program, assuming a perfect gas. Excellent agree-

ment is achieved for all computations. Comparisons of the temperature

and density profiles at various points around the cylinder for the

logarithmic stretching case are shown in Figs. 22 and 23. Again, the

agreement between the present results and the BLIMP program results is

very good.

An impinging shock wave was then introduced into the previous "steady-

state" undisturbed computation. This relatively weak shock wave was

inclined to the freestream at an angle of 5% and impinged on the bow

shock at 6 = 39° (halfway between k=34 and k=35 along j=l). The ratio

of the pressures across this impinging shock was p_ /p.. = 1.42. The
OD OO

computation was then carried to a new "steady-state" and the resulting

contour plots for P = 0 are shown in Figs. 24, 25, and 26. These

figures clearly show the shear layer which originates from the impingement

point and passes out the upper outflow boundary. This shock interaction

pattern corresponds to Edney's Type III. The effect of the impinging

shock on the shape of the bow shock is shown in Fig. 27.

When the present shock impingement case was recomputed using

exponential stretching (p = 3), an instability developed which caused
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Fig. 21. Temperature profiles at stagnation point.
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IMPINGING
SHOCK

Constant Mach number
lines, Case II (5%
shock impingement).
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15.

IMPINGING
SHOCK

Fig. 25. Constant temperature
lines, Case II (5%
shock impingement).

30.], 21:
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Fig. 26. Constant pressure
lines, Case II (5%
shock impingement).
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NO SHOCK IMPINGEMENT

5 ]/2° SHOCK IMPINGEMENT AT 9 = 39°

Fig. 27. Shock shapes.
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the solution to "blow-up". This instability was believed to be caused

by the large grid spacing near the bow shock for the exponential type of

stretching. This difficulty was circumvented by using logarithmic

stretching with P1 = 1.12 and a = 0. This value of f3' gives the same

refinement at the body as the exponential type of stretching with P = 3,

but the grid spacing near the bow shock is smaller for the logarithmic

type of stretching.

Comparisons of the surface pressures and heat transfers between the

undisturbed computation and the present shock impingement computation

with logarithmic stretching are shown in Figs. 28 and 29. The incident

shock causes an increase in wall pressure of 33% over the undisturbed

values at the point where the outflow boundary (k = 51) instersects the

body. The large singular value of heat transfer near 6=5 for the

shock impingement case is the result of a numerical wave which emanates

from the impingement point and hits the body. This numerical wave is

evident in Fig. 25 and is believed to be caused by the finite values of

shock velocity which remain near the impingement point even after the

"steady-state" solution is reached. These finite values of shock

velocity alternate signs between the predictor and corrector steps but

have the same magnitude so that the shock position does not change after

a complete time step is computed. Work is underway to eliminate this

so-called "chattering" effect.

Attempts to introduce a stronger impinging shock or attempts to move

the impingement point further into the subsonic region for the present flow

conditions have been unsuccessful to date. Work is continuing in an

effort to overcome these difficulties.
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APPENDIX A

The transformation given below is similar to one developed by Roberts

and has been found in the present study to give better computational results

than the previous transformation of Li when an impinging shock is present.

This is due to the fact that the grid spacing near the bow shock using

this transformation is smaller than the grid spacing of Li's transformation

for an equal grid spacing at the body. The new transformation can be

used to refine the mesh near the body (a = 0), as was done in this study,

or it can be used to refine the mesh at both the body and bow shock

(a = %). The; equations for this transformation are

y = y

! f B' + z (2tt + 1) - 2o

~Z- a+ (1 - a) l n \P'

=

The relations between the partial derivatives are given by

-

- 20! p1 - z (2a+

2P'(1 - a) (2a
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where

z =
(P1 +

(20M

2 0 & I

- 1)

f 31 + 1N

VB1 - 1,

i +(& 'L1 vp-

z - ar a- . '
z - a

+ iV •«
- 1/ J

f 2a
(A3)

and P' is related to the thickness (c) of the "boundary layer" where

clustering is desired by

3' = (1 - c)' 0 < c < 1 (A4)


