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ABSTRACT
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The objective of this 1nvestigation was to obtain a de-
tai1led description of the flow field within a vortex sink
rate sensor and to observe the tnfluence of viscous effects
on its performance.

The sensor basically consists of a vortex chamber and a
sink tube. The vortex chamber consists of two circular co-
ax1al disks held apart, at their periphery, by a porous
coupling. One circular disk has an opening to permit the
mounting of the sink tube, in such a manner that the vortex
chamber as well as the sink tube have a common axis of
rotation.

Air was supplied radially to the sensor through its
porous coupling as the sensor was rotated at various speeds.
Particular emphasis was directed toward an understanding of
the flow fi1eld in the sink tube region. Thus velocity measure-
ments at various stations along the length of the sink tube
as well as along a given radius at any designated station
were taken.
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A computer program was developed, for obtaining the
numerical solution of the Navier-Stokes equations, assuming
laminar flow, having generalily prescribed 1nlet conditions
and axisymmetric boundary conditions. Computational results
for various viscous flows and assorted boundary conditions
have been obtained.

For a specific mass flow rate and the geometry of the
vortex chamber, it was found that the flow in the vortex
chamber was only affected, locally (i.e., only near the
sink region), by the size of the sink tube diameter. How-
ever, within the sink tube, all three velocity components
were found to be higher for the smalier sink tube diameters.
As the speed of rotation of the sensor was increased, the
tangential velocities within the vortex chamber, as well as
in the sink tube increased almost in proportion to the speed
of rotation.

The only noticeable effect on the flow pattern, due to
the variation of the vortex chamber spacing, was found to be
at the entrance section of the sink tube. For a given mass
flow, the radial and tangential velocities in the vortex
chamber 1increased with an increase in the chamber diameter,
The same effect was also observed 1n the entrance region of
the sink tube.

A change in the flow rate had an appreciable effect
within the sensor and particularly near the sink tube en-
trance. As the flow rate was increased, both the tangential
velocity and tangential vorticity increased rapidly. At the
higher flow rates, vortices were produced at the corner of
the entrance section of the sink tube and thus the flow
became unhstable.

The theoretical predictions were found to be 1n reason-
able agreement with the experimental results.
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I. INTRODUCTION

An dinterest 1n vortex flows has existed for many decades.
The beauty and vigor of the whirling and swirling motions in
water and are has fascinated man from his earliest days. Vor-
tices may have been what inspired the Mediterranean artists and
craftsmen, well over 3000 years ago to create their spiral orna-
mentations. Today, manh describes vortex motions as the sinews
and muscles of fluid motion and the scientists through research
efforts attempt to harness the energy contained therein. Re-
searchers are attempting to utilize vortex flows in many energy
conversion schemes such as in aeroplanes and other 11fting bodies.
As the state of the art of vortex flow develops many new appli-
cations are brought into focus. In recent years, vortex flows
within confined chambers have become of considerable 1nterest.
This interest arose as a direct consequence of attempting to
Tearn more about the flow phenomena relevant to the gaseous
core of a nuclear rocket [28]*, electric power generation using
magnetohydrodynamic effects [12], and pure fluidic devices such
as the vortex amplifier and the fluidic gyroscope [15].

A search of the literature readily reveals that there have
been many contributions made to the study of vortex flows
through 1nvestigations pertaining to meteorology, the Ranque-
Hilsh tube, the cyclone separator, wing theory, compressors,
fluidics and others. To discuss here the voluminous literature

on vortex flows serves no purpose, thus a condensation of the

*The numbers 1in brackets 1ndicate references.



important contrthutions is presented.

Vogelpohl [61] was the first investigator to attempt an
analysis of a confined vortex. He obtajned an analytic
solution for the tangenttal velocity under the restrictive
assumptions that the radial velocity was completely indepen-
dent of the axial coordinates and that the axial velocity
was zero. These assumptions precluded the 1ncrease of the
radial mass flow within the boundary layers due to the action
of the pressure defect. Thus, his solution was not an
accurate representation of the vortex flow between two flat
plates.,

In the case of coaxial disks flow, by assuming the
ax{ial velocity to be radius independent, Kdrmén [25] obtained
a set of ordinary differential equations that described the
steady state viscous flow above an infinitely large rotating
disk. A numerical solution to these equations was presented
§y Cochran [9]. Aggﬁe;adt [41 solved the problem of a uni-
formly rotating fluid over an infinite stationary wall.

Batchelor [3] generalized the Kdrmadn's method to include
the case of two rotating disks and discussed, semi-quanti-
tatively, the nature of the steady flow between the two disks.
Additional comments on this problem have been presented by
Stewartson [57]. He also studied the boundary layer on a
semi~-infinite cylinder which was either rotating about its
axis in a fluid otherwise at rest or was stationary with a
rotating fluid inside it [59]. He also investigated the shear

Tayer at the boundary of a finite circular cylinder for a



fluid rotating uniformly about jits axis in the same reference.
Matsch and Rice [36, 37, and 38] studjed the inward

flow between rotating disks, which corresponded to the multiple-

disk turbine. Their analyses and results were for the

potential flow between the disks as well as for creeping flow

Detween the disks accounting for the cedtrifugal effects.

These analyses constdered bHoth partial and full admission of

the fluid at the outer periphery. The asymptotic flow was

shown to depend only on the fluid fiow rate and the radia}

Reynolds number (N }, while independent of the tangential

Re-u
velocity.

By employing the numerical method developed by Hall [20],
Stewartson and Hall [58] obtained a solution for a viscous
incompressible flow within the inner core of a nuclear reactor.

Theoretical investigations of unstable flows of the
second kind were reported by Ludwieg [33] and Jones [24].
Axisymmetric_and spiral disturbances were considered. Lud-
wieg presented stability criteria for the core flow of
Ha1l [19] and predicted 1nstability for small disturbances
if the pitch angle of the helical streamlines became too
steep and thus the Rossby number too small.

Rosenzweig, Lewellen and Ross [52] also analyzed the
two plate problem. They limited their analysis to the case
where the tangential velocity was much greater than the
radial velocity and the separation distance between the plates
was greater than the radius of the plates.

VYiscous effects in vortex motions driven by an inward



radial convection of an angular momentum were examined in
more detail by Lewellen [30]. Exact and some nearly exact
soluttons of the Navier-Stokes equations, applicable to this
case, were also obtained. These solutions were found by a
general expansion of the equations of motion for a large
swirl (i.e. for a small Rossby numbBer) and by linearizing
the equations for perturbations about known flows for a weak
swirl (i.e., a large Rossby number). He discussed the axijal
variations of flow. The results for large Rossby numbers
indicated that as the circulation decayed with increasing
axjal distance, the axial velocity in an annulus about the
axis actually 1ncreased faster than on the axis 1tself. This
caused a reduced axial pressure gradient along the axis. The
results for small Rossby numbers indicated that the axijal
pressure gradient could be reversed to produce a reverse
flow. It was found that in the flows dominated by rotation,
the flujd motion was forced to be two dimensional except for
a thin shear region where all necessary adjustments imposed
by the boundary conditions were satisfied by the flow.

Granger [18] studied the steady three dimensional
vortex flow for a specified vorticity distribution along the
axls of rotation within a vortex chamber whose disks were
an appreciable distance apart,

Kidd and Farris [29] ebtatned rathey .ynteresting results
from a flow produced by the interaction of a potential vortex
with a statronary surface. In the analysis they transformed

the full Navier-Stokes equations by a similarity technique



and then numerically integrated resulting ordinary differ-
ential equations., Very close to the surface, the radial
velocity was found to be directed towards the axis and there-
fore the flow was able to redistribute 1tself. Such problems
were of interest in the study of tornadoes and hurricanes.
Recently, they have become of 1nterest especially in the
design of nuclear reactors.

Donaldson and Sullivan [13] made an extensive study of

the class of solutions u = u(r), v = v{r), w = zu(r) for

Taminar incompressible flow conditions. The solutions by
Burgers [5] and Rott [53], in which u = -ar, v = v(r) and

w = 2az, {a = constant), were i1nhcluded in this class.
Donaldson and Suilivan began their work as a consequence of
an interest on "canned" vortex flows, where flujd imparted
with a swirl entered a cylindrical container through 1ts
side and discharged axially.

Yih I65] obtained a closed form solution of the Euler's
equations for an axisymmetric flow of a swirling and non-
swirling flow discharging 1nto a point sink. He, however,
made no provision for boundary tlayer development.

Ostrach and Loper [41] analyzed the vortex motion between
two closely spaced disks. The vortex was assumed to be
driven by the tangential injection of the fluid at the pe-
riphery of the configuration and was discharged at its center,
The momentum integral solution of this problem showed the
strong dependence of the boundary layer thickness as well as

the radial velocity on the imposed radial mass flow. The



results indicated that the boundary layer blockage effects
could be reduced By increasing the imposed radial mass flow.
It should be noted that they considered the case where the
relative tangenttal velocity at the periphery of the con-
figuration had a finite magnitude. Thus the results are
not applicable to the vortex rate sensor, where indeed the
relative tangential velocity at the periphery of the con-
figuration is zero.

Fiebig [15] studied the response of the radial flow to
harmonic oscillations of the sensor. The approach used was
to approximate the transport flow by a family of "parabolic"
profiles which satisfied the equation of continutty but not
the momentum equation.

Eglr, Kizjlos and Reilly [14] analyzed the radial flow
boundary layer on a circular flat disk. In their i1nvesti-
gation, the drain_was approximated by a Tine sink and the
radral potential flow was assumed to be unaffected by the
boundary layers.

Sarpkaya [54] studied the radial flow between two co-
axial disks. He computed the bBoundary layer development
by two methods. Similarity solutions of the equations were
obtained by employing an 1ntegral momentum technique through
utilization of an approximation suggested by Thwaits [60].
The result showed that the boundary layer thickness decreased
linearly to zero from the periphery to the center of the disks.

A theoretical and experimental 1nvestigation of the gain

and the frequency response 1n a vortex sink rate sensor was



conducted by Ostdjek [40]. He reported that the dynamic
charactertstics of the viscous flow within a rate sensor
operating in the fully deveioped range were signifrcantly
more favorable than those for the inviscid fluid within the
sensor.

Richards [48] applied the numerical techniques of the
implictt alternating directton (ADI) method, as well as of
the explicit iteration method to study the characteristics of
the flow in a vortex rate sensor in which flujd discharged
into a point s1nk. He compared his numerical results with
the experimental results obtained by HellbBaum [22] and found
that the agreement was good for values of r > 0.2 r,.

Roache and Multer [5l1] developed a numerical procedure
for finding solutions to Both incompressible and compressible
laminar separated flows, using time dependent finite
difference equations. They used the conservation forms of the
governing equations and used the upwind difference technique
for the advection (inertial) terms in Both the compressible
and incompressible flows.

Macagno and Hung [34] studied the annular Taminar
captive eddy in a conduit expansion. The numerical procedure
used was restricted to an expansion ratro of 2:1 and was

1imited to radial Reynolds numbers (N ) up to 200. A

Re-u
correlation of experimental results with their numerical
results was also included.

Pao [42, 43] considered two cases of the rotary disk-

cylinder combinations and numerically computed the flow



pattern of a viscous incompressible flujd confined within
the cylindrical chamber. He found that for a-tangential

Reynolds number N = ergfv) in excess of 8, nonlinearities

appeared in the f?iw? He also observed that as the tangentral
Reynolds number (Np,_ o) was increased beyond 400, convergence
by the numerical iteration technique for steady state con-
ditions became extremely slow.

Pearson [44] described a method for obtaining an exact
numerical solution for the flow between two infinite rotating
disks. He also described a computational method for solving
the time-dependent two-dimensional viscous flow problems [45].

In addition to the numerical and analytical investigations
of vortex flows, a number of experimental investigations are
reported in the 1iterature. Experimental studies of confined
vortex flows can be broadily classified into two subcategories.
The first is concerned mainly with high swirl flows. Because
of its practical importance, such as in the case of hydraulic
cyclones, magnetohydrodynamic vortex power generators (nuclear
reaction chambers), dust cleaners, etc., high swirl flows
received a great deal of attention. .

One of the earlier experiments, was a visual experiment
by Savino and Keshock [55]. It was conducted in an attempt
to suspend fine particles of various sizes in a vortex of
air inside a right circutar cylinder, which had a length-to-
diameter ratio of approximately one. This study revealed
the presence of some axfal motion, as particles appeared to

always cluster at the corner of the cylindrical surface and



the exit end wall., This observation suggested that an
appreciable radial in-flow existed at the end-wall boundary
layer. They concluded that the amount of swirl (ratio of
tangential to radial velocities)} imparted to the fluid, as
¥t was injected i1nto the chamber, alone determined that
fraction of the total mass flow which was forced inwardly
within the end wall boundary layers. When the swirl was

Tow (less than 0.5), the radial inflow had sufficient inward
momentum to penetrate the centrifugal field. The inflow
exfsted at all axial and radial positions away from the walls.
When the swirl was high (greater than 10}, the radial inflow
was diverted axially and if the flow was confined within two
walls, all the fluid left the chamber by way of the Boundary
regions adjacent to the end walls. This latter conclusion
was conststent with the result of Lewellen [30].

Kelsall [26] made measurements of the radial, tangential
and axjal velocity components inside a hydrocyclione separator.
His experiments revealed the existence of large secondary
motions with most of the mass movement occurring close to the
walls where the centrifugal force was least.

Williamson and McCune [64], and Donaldson [131 conducted
experiments 1n short cylinders (0.130 < (L/D) < 0.281). In
both references, the radial distribution of the tangential
velocity was calculated through axial traverses of the total
pressure.

Ragsdale [46] taook pitot tube measurements within a

yortex chamber (LAD = 0.5) at two radial stations and several
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axfial statijons. He concluded that the motjon was essentially
tangential with very Tittle variation of magnitude 1n the
axtal direction,

Kendall [27] experimented with a vortex that was generated
by a rotating porous cylinder which imparted a swirl to the
fluid suppiied to it through the porous wall. A flattened
pitot tube was used to traverse the boundary layers. In the
measurements of both total pressure and local fluid direction,
the radial velocity was assumed zero at distances far removed
from the wall.

The second subcategory of experimental studies of con-
fined vortex flows is mainly concerned with the Tow swirl
flows. One such flow 1s the flow in a vortex rate sensor as
reported 1n references [10, 22, 40].

Hellbaum [22] conducted experimental work 1n a vortex
rate sensor and obtained characteristic flow angles for
different tangential Reynolds numbers, radial Reynolds numbers
and plate-spacings. By the smoke trace technique, he studied
the effects of the geometrical parameters on the characteristics
of flow angle in the vortex chamber of the sensor. He selected
r =0.2 r, as the smallest radius for which the flow angle o
was not appreciably affected by the sink proximity. By
determining o O.é (flow angle o at 0.2 r ), he plotted graphs
of tan o 0.o versus tangential Reynolds number (hzm/v), with
(ro/h) and radial Reynolds number (Qy/hv) as dimensionless
parameters. Hellbaum showed an increase in tan o for

0.2
a decrease in flow rate.



11

The paper by DeSantts and Rakowsky [10, 11] reported
the experimental velocity profiles and boundary layer
charactertstics in a steady state weak vortex flow produced
by the combBination of an axisymmetric sink flow ahd a vortex
flow between two coaxijal circular plates of very small aspect
ratio (h/r, < 0.03).

In the experimental studies of Sarpkaya [54]1, using air
as the fluid, it was observed that the output of the pickeff
signal was linear for small values of 'w' and that Tinearity
increased with increasing flow rates. He further observed
that rotations in counterclockwise as well as clockwise
directrons about the axis of symmetry gave tdentical
differential pressure signals.

Rakowsky and Schmidlin [47], with water as the working
fluid, studied the flow in the vortex chamber by photographing
the dye traces of the streamlines and then reducing the re-
sulting data. Angular momentum efficiency (ratio of angular
momentum at any r to that at r = r,) of the midplane of the
vortex chamber was plotted as a function of radius. These
results were then compared with the results predicted by a
momentum integral method with an assumed paraboliic momentum
profile and the unknown matching parameter was determined.

In addition to the effect that the coupler diameter had
on the pickoffs, Burke and Roffman [7] studied the performance
of two different pickoffs (one axjally slotted and one cir-
cumferentially slotted). They observed that for couplers

of smalier diameters the pressure output decreased.
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With an angular rate senscr, Burke [6] observed the
effect of the coupler height and pickoff on the sensitivity
(defined as signal output unit rate of rotation). He re-
ported that for a given rate of rotation, the sensifivity
(which now is a measure of differential pressure) decreased
rapidly as the angle between the ax1s of spin and the axis
of symmetry increased. The maximum sensitivity occurred when
the two axes coincided. The sensitivity was also found to
increase with increased spacing between the couplers. He
also discussed the time dependent phenomena such as the noise
frequency in the output of the pickoff, the transport time
and the threshold (ratio of Ap of signal to Ap of noise).
These phenomena are of importance in the practical use of
sensors when the response time is of 1mportance,.

Arimil1i [2], Gala [17]) and Lu [32] each undertook an
experimental 1nvestigation of a vortex sink rate_sensor,
Their studies, however, were confined only to the sink tube.
The apparatus they used had vortex chamber diameters of 5
and 10 inches, while the sink tube diameters ranged from 1/4
to 1 inch. The objective of their studies was to observe
experimentally the effect of the flow rate, change of
rotation, and change of configuration on the tangential
velocity within the sink tube.

Several investigators have undertaken studies, experi-
mentally as well as theoretically, within the vortex chamber
only. Rakowsky and Schmidlin [47] have considered the entire
vortex sink rate sensor as their system. However, they assumed

the fluid to be inviscid and therefore were able to use the
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Euler equations and eastly find the numerical solutions. None
of the previous investigators, however, have considered a
viscous fluid. No direct measurements of the velocities in
the sink tube have been made before. Thus 1n the present
investigation a viscous fluid 1s assumed and the velocities
within the sink tube are directly measured. In addition to
this experimental investigation, a complete numerical analysis
of the flow pattern in the entire sensor is undertaken.

The vortex sink rate sensor presently under consideration,
consi1sts basically of an ideal sink flow between two coaxial
plates having a single outlet. The entrance flow to the
device is radial and the sensor design permits an angular
rotatijon about 1ts geometric axis. This arrangement results
in the creation of a vortex flow within the sensor.

The sensor 15 essentially a fluidic device which, in
addjtion to being inexpensive to manufacture, has all the
desired characteristics for use as a guidance control instru-
ment, Its simplicity, high reliability and long 11fe are
assets not to be overlooked. The present exploration of space
has also created the need for a guidance contrel instrument.
that would essentially be unaffected by severe environmental
conditions such as high temperature, shock, vibration and
nuclear radiation. The sensor can indeed serve this need ‘as
a fluidic gyroscope, The fluid vortex amplifier also shows
promise for future application to liquid propellant rocket
engine control systems. The advances in the art of fluidics
within the past few years, and the successful application of

fluid ampiifiers has made the sensing and amplification of a
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signal possible by merely varying the rotation of the sensor,

As the sink tube is considered the most 1ikely Tocation
for any signal detection element, the study of the fiow
pattern within the sink tube is given particular attention
here. A signal detection element senses changes as a con-
sequence of fluctuations at its location. The signal could
be a relatively weak one and therefore could need to be
amplified for transmission to the controlling device. Thus
it is fimportant to strategically locate the signal detection
element at the location where maximum amplification occurs.

This present investigation was therefore undertaken
with the primary objectives being to investigate the steady
state flow conditions, and to develop an understanding of
the flow pattern within the sensor,

Chapter II describes the formuTlation of the governing
equations. Chapter III presents the numerical analysis used
for solution of the flow field. Chapter IV and V are devoted
to the numerical results. The experimental 1nvestigation
and results are discussed 1n Chapter VI. Experimental results
are compared with numerical results in Chapter VII and the

conclusions are given in Chapter VIII,



TI. BASIC FORMULATION

2.1 Governing Equattions

The vortex sink rate sensor considered for this invest-
fgatdon is shown #n Figs. (2.1) and (2.2). The sensor,
bastcally, consists of a vortex chamber and a sink tube.

The vortex chamber consists of two circular co-axial disks
held apart, at their periphery, by a porous coupling. One
circular disk has an opening to permit the mounting of the
sink tube in such a manner that the vortex chamber as well
as the sink tube have a common axts of rotation. Ajr flow
was supplied radially to the vortex chamber through the
porous coupling. The obBjective Behind this investigation
was to determine the flow pattern within the vortex sink
rate sensor.

The axisymmetric flow through the sensor suggested the
selection of the cylindrical coordinate system, as shown in
Fig. (2.3), to establish the governing equations for the flow.
The radial, tangential and axial coordinates are respectively
represented by r, 6 and z while u, v and w denote the
respective velocity components. In the analysis that follows,
the top plate of the vortex chamber is considered to be
located at z = 0 and the axis of symmetry is located at r = 0.

The Navier-Stokes equations for g viscous incompressible
fluid with constant properties may be expressed in cylindrical

coordinates as

15
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£ 3z or
+ 3 32y 130 U l_.azu _ 29y N 22y » (2-1)
" r ar 2 1?2 5e2 2 30 872
v oV vV 3v uv ovd - F _ 1 9p
P[ﬂ*“ﬁ?*‘?'ﬁ’r?"’waz] ® " ¥ 36
+ 2%y + 3 %1 Ly, 3%y + 2 %E + 2%y R
T, rer T T T 2T 7 %8 T T,
oy rz T 36 r-2 322 CZ-Z)
oW ow v av owi_ F_ - op
P{ﬁ* 3}"%“56*5] ¥
ujdw 1 3w 1 Bzw + 32y . (2.3)
r 5¢r ' 2 T 7 7-
or r- e a3l
and the continuity equation 1s given by
u,u L 1av,ow, g (2-4)
r—r r 98 9z '

Essentially, two methods are employed in obtaining
numerical solutions of the governing equations. In the first
method, a steady state approach is used to find the solutjon
of the flow field for low Reynolds numbers. At higher
Reynoids numbers the steady state equations become unstable
and are not applicabie. Thus, a transient approach is
adapted in obtaining the solutions for flow at higher Reynolds

numbers.
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2.1.1 Steady State Approach
Steady flow conditrons are assumed throughout the
sensor, and since the air velocities are small,
the flow s assumed to Be incompressible, The temperature
of the air entering the sensor is considered constant and is
taken to be the same as the enviromnmental temperature.
Throughout the sensor, laminar flow 7s assumed and the in-
fluence of body forces is neglected. Axial symmetry is also
assumed and therefore the %FC- ) term is set equal to zero,
Under these assumpttions, Equattons (2-1)}, (2-2), (2-3)
and (2-4) reduce to

2 2 2
du du  ve _ 13 2°u , 1 au u ul (2-5)
"W*Wﬁ'r"'gs?*"[;z*FW';z*;z]'
By 3V , uy azv 1 3v 52y (2-6)
BrtWr ty TV =z tFIwyc ozt o
ar r 3z
u.?.‘f.".-;-wg.‘_”_.—. - .]L..B.E'!"\) azw'|'._.1'..aw-«|- azwi ’ (2-7)
or oZ p 9z Z r 3r 2
T 3z
H. B_V:'.= (2-8)
tyt3g =0 .

U
or
Equations (2-5), (2-6) and (2-7) are then, respectively
the radial, tangential and axial momentum equations for the
flow 1n the sensor. The continuity equation, Equation (2-8),
is eliminated by tntroduction of the stream function, ¥,

such that

U = .J.‘_ (A (2-—9&)
r 3z
and
I -1 (2-9p
LI 1 )
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Thus the velocity components u and w can be expressed
in terms of ¥.
The tangentfal vorticity is defined by
- 3u _ oW (2-10)
L A 1

A combination of Equations (2-9) and (2-10) results in

. ;_azﬁ 1 8,1 325
L PO 2 A 4 (2-11)
r r a2 /

-

Since vorticity and circulation are related, it seems
desirabie to express Equation (2-6)} 1n terms of circulation.
Equation {2-6) is first multiplied by r and then rearranged
to give

2
) 3 3 3
Ure(ry) + wgs(rv) = v{r;;(%% + %J + ;;z(rv)-_ (2-12)

Upon cross differentiation of Equations (2-5) and (2-7),

followed by taking their difference, the pressure term is

eliminated and the result is expressed as

uBﬁ + waﬁ _un . 2v 3V v 327 + 1 8n n + azﬁ (2-13)
e P A T

By employing the definition of circulation, T = v-r,

Equations (2-12) and (2-13) are transformed to give

- 2o 2
eh 3T _ t8°r _ 1 5sF , 3T (2-14)
ugr * Yoz “[‘“‘2’ r“F+"“2'] ;
ar 9z
- - -~ - - 2.. - - 2—
an on U 20087 _ 43 n ., 41 9n n, 9°nf (2-15)
ua_y"+w’§"f‘"%':3"é‘z"'\’{;2+F_F';2+;;Z].



22

Equations (2-11), (2-14) and (2-15) now constitute the
governing equations for flow through the sensor under steady

state conditions.

2.1.2 Transient Approach

I'n a manner similar to thHat described aboye, the tran-

stent form of the governing equations are found to be

1% 1 2%, 1% . (2-16)
F 7" Z 3 TFTZSN s
ar r oz
- - 2_ - 2.—
of , o , 8% _ ,|8°F 1T 3% (2-17)
ot or 8z 2 ror BT
ar 5z
- - - - - - 2= -
an an on un 2T 8T . 3d™n + 1 9n
EI R T 2 ;3'§E v'a 7 * v
r
i, 9%
2R~ B (2-18)
r 3z

These equations, with appropriate initial and boundary
conditions, are used to find solutions in the transient

approach.

2.2 Initial and Boundary Conditions

Initial conditions are necessary for Equations (2-17)
and (2-18). Upon considering the inertia of the fluid, the
simple and physically realistic assumption for the inijtjal
condition js found to be that of a solid body rotation of the
fluid. Thus the radial and axial velocities are assumed to
be zero, and initial fluid shear stress is therefore neglected.
Consequently, at t = 0

P(r,2] = wr?, (2-~19a)
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alr,z) = 0 . (2-19b)

The boundary conditions yalid for both the transient
anhd steady state equations are the same, and are shown in
Fig, (2.4).

Stnce the flow ts symmetric with respect te the z-axis,
#t ts only necessary to specify Boundary conditions for half
of the sensor. With the origin chosen as the center of the
top plate of the vortex chamber the boundary condittions can

be written as

(f1 Stnk tube and vortex chamber axis, r =0, 0 < z < &

§(0,z}) = F{0,z) = n{0,z) = u(0,z) = v(0,z) = O, (2.20a}
w(0,2) o . a_zg
o jp = Q ., (2-20b)
(i1) Top plate of vortex chamber, z = 0, 0 < r < r,
P(r,0) = ulr,0) = wl(r,0) =0 , (2-21a)
v(ir,0) = wr , (2-21b)
Flr,0) = wre, (2-21c)
A(r,0) = 1 3%
r 2
3z lz =0, (2-21d)
(191) Entrance to vortex chamber, r = Fos 0 <z<h
#lr.z) =% 2z (2-22a)
0 R

u(ro,z) =y . (2-22b)

= %o
°  Zwhr,

viry.z) = wr (2-22c)
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(2-22d)

(2-22e)

(2-23a)

(2-23b)
(2-23c)
(2-23d)
(2-23e)

(2-24a)

(2-24h)
(2-24¢)
(2-244d)

(2-24¢)

(2-25a)

(2-25b)

above boundary conditions 1s
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2.3 Nondimensional Form of the Governing Equations

The system of governing equations are made dimensionless

by introducing the following nondimensional quantities.

Independent VYariables,

Dependent Variables,

. = v
U_wros ¥ m‘r‘s’
0
V=V P=fl
wl"'o, 2’
wr
0
w:........‘i... -
wr s n = /e (2-27)
wr 2 NRo = QO
N 0
Re-g v, 2Twr,

N = =0
Re-u EY

Upon introducing Equations (2-26) and (2-27) 1into
Equations (2-11), (2-14) and (2-15), the nondimensional form

of the steady state equatjons are found to be

2 2
187y _1 3, 13%_g, (2-28)
R ar® 7 o o

FI|
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2 Z (2-29)
AT or _ 1 pfr 1 ar L 3Ly
o it b B b

n o, 52q {2-30)
g2 az%)

Stmilarly Equations (2-16), (2-17) and (2-18) are trans-
formed to give the dimensjonless form of the transient

equations as

2 2

1% _1 3y 137y (2-31)
- =N o,
Bor?  REOR TRz
5T , y2L 4 o _ 1 o%r _1ar, a°r] (2-32)
Ehd ‘1? W5z Neews [ar2 R 3% 572
L wdn _ Un _ 2r or _ 1 %
3T “ﬁ W57 - R R EXYA Noaoso
2 2
9n ,1l3n_n_, 3
R ) 2-33
[S?-‘ R RE (2-33)

The dimensionless initial conditions for the transient

equations are

for T = 0

r(R,Z) = RZ , (2-34a)
n(R,Z) = 0 . (2-34b)

The dimensjonless boundary conditions are shown in

fl

(2.5) and are written as
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(1} Sink tube and yortex chamber axis, R=0, 0 < Z 5L
u(0,z) = v(0,Z) = r{0,Z} = n{0,Z} = IDCOsZ) = 0, (2-35a)

W(0,Z) _ _af_z
R R =0 . (2-35b)

(31 Top plate of vortex chamber, Z = 0, 0 < R < 1

U(—RSOI = w(Raoj = W(.Rsoi = 0, C2'363~)_
¥(R,0) = R , (2-36b)
r(R,0) = RZ, (2-36¢)
n(R,0) = 1 azw

R —7
3Z 7z =0 . (2-36d)

(iii) Entrance to vortex chamber, R =1, 0 < Z < H

u(,z) = _ Nso (2-37a)
2 >
2nr, wh
W(1,Z}) = n{1,Z} = 0 , (2-37b)
v(1.z) = v(1,z) = 1 , (2-37c)
JZ-QO oZ_N aZ
¥v(1,Z2) = ——3— { = Ro § (2-37d)
2Try W
(1v) Bottom plate of vortex chamber, Z = H, R, < R <1
U(R,H) = W(R,H) = 0, (2-38a)
PRHY = Npoos (2-38b)

AR, HY = -R- . (2-38¢)
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r(R,H)
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n(RsH)

{(y)l Sink tube wall, R = RT’ H

UCR.I:Z} = W(R-i\sz) = 0,

p(RyoZ) = Moo s
VCR?,ZI = RT s
P(Ry.Z) = RE,
n(Ry,2) = %ﬁg

°R 18 = B,

(vi) Sink tube exit, Z =L, 0 <R < Ry

iR,y = ) = Wiy -

1
o

oV Y|
57 (R,L) = 57(R,L) = U(R,L} = 0 .
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(2-38d)

(2-38e)

(2-39a)
(2-39b)
(2-39c)

(2-39d)

(2-39e)

(2-40a)

(2-40b)

These jnitial and boundary conditions are utilized in the

numerical analysis of this investigation.

The systems of nondimensional governing equations, along

with appropriate initial and boundary conditions, are then

solved to obtain the stream function, circulatijon and the tan-

gential vorticity in the vortex sink rate sensor.



I11. FORMULATIONS FOR
NUMERECAL ANALYSIS

As mentioned in the introductjon, it is necessary to
approximate the governing equattons By a finite difference
scheme, so that calculations rematn stable for all Reynolds
numBers. A similar approach for viscous flows has been used
By otHer investigators [8, 16, 451, and s discussed in the
tntroductton. In references [48, 49] the finite difference
tecinfque was used to solve the non-linear equations for the
flow witAtn a vortex chamber. Both the jmplicit alternative
directdon (ADT) method and explicit finite difference methods
were used in reference [48]. The agreement in results was
found to be within one percent for the stream function and
one and half percent for the radial velocity variation. The
computer running time for the explicit method, however, was
noted to be two orders of magnitude less than that for the
ADI method.__EanequentIy, for this study, the explicit
method was selected to determine the flow pattern in the
vortex sensor.

For stability purposes the central difference method fis
most suitable [34, 42, 45], and therefore it was used 1n the
numerical analysi1s for this problem. The central differences
are obtained by using a Taylor series expansion for each term
in the differential equation.

As mentioned in Section (2.1), steady state and transient
procedures were adopted for computational purposes. In the

steady state approach, when the v{scous equatfons are expressed

31
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in a finite difference form, an jterative numerical scheme

ts employed to obtain an approximate solutien. 1In this
approach the procedure begins with an assumption of some
approximate flow pattern for a very low Reynolds number. The
numerical iteration techiinique is then used and continued,
until the finite difference equattions are satisfied. This
ultimately Teads to an acceptable flow pattern, for that
Reynolds number. This flow pattern then becomes the input
data at a slightly higher Reynolds number, and the procedure
s continued, until convergence is reached.

At the higher Reynolds numbers,these equations become un-
stable and thus a transient approach, rather than the steady
state approach, is used. In this approach a technique of
expressing the differential equations in a succession of
discrete steps is employed. As an initial input for
calcu]ations_gt the higher Reynolds numbers, a knhown flow
pattern from the steady state approach is used. The iteration
is then continued until the results approach steady state
conditions. For subsequent higher Reynolds numbers the last
results are used as the input data and the procedure js con~

tinued.

3.1 Steady State Problem

By employing the central space difference technique,
Equations (2-28), (2-29) and (2-30) can be written in the

finite difference form as
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This procedure 1s employed to calculate the temporary
values of v*, T* and n*. In the above equations i and j de-
note the space point in R and Z direction respectively. For
a gtven value of 1 and j, the space coordinates are represented
by R = (#-1)a and Z = (j-l1)a, where a is the size of the grid

spacing. The explanation of these difference equations is
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given in Appendix B.

In the abovye equattons, the non-superscripted dependent
vartables are assumed to have the superscript (n) whereas
the astertsk is used to denote a temporary vaiue such as

? 3 respresenting the new ftlerate Agnfll at that point. This
s sd

new iterate ts obtained from the temporary values and the
precedtng (o1d) fterate AgT} by the relaxation procedure as
given by

(n+1})

A o ; ACn]
= - W o
1,3 AT T,

*

+ AL .
NKATQJ *

(3-4)

where 0 < w, < 1.

3.2 Transient Problem”

In the procedure used to solve the initial boundary
value problem, governed by Equations (2-31), (2-32) and (2-33),
the derivatives are approximated by finite differences in a
manneyr similar to that used in the steady state probiem.
In this case, however, the central time difference as well as
the centiral space difference techniques are used and result

in the following equations,

k+1 k k k k

Yo T F M Tl T e e

nza K K
S T Vg T Vg

) 3 C3"5)
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In the above equatfons, the subscripts i and j designate
the space point in the R and Z directions respectively, where-
as the superscript k denotes the time point. For given
values of 1, J, k, tHe space and time coordinates are re-
presented by R = (i-1)a, Z = (i-1)a and T = KAT, where a is
the size of the grid spacings and AT is the size of the time
step,

The method for obtatning these equations are similar
to that adapted By Fromm [16], Pao [42], and Macagno and
Hung I34]. The explanation of these equations is given in,
Appendix B.

This procedure mandated considering numerical stability
tn the selection of the time step size. The most stringent

restriction on the time step size, for the cases considered,

{s suggested in reference [21], and 1s given by

2 1 + 1 1
AT < 7 *irFx T 3
Noaog (4Z) z Neoos (4R)
RN |
U LM (3-8)
AR AT .

In this equ&t?onghﬂ agnd &*are the sverage-yeloctties for
the grid point under consideration. For the sake of con-
ventence, AT, in most of the calculation, is taken to be

(#R/4U) in the present formulation.

3.3 Finite Difference Forms of the Boundary Conditions

The only boundary conditions that have to be expressed
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in the finite difference form are those that 1nvolve a
derivative. They, in turn, are the expressions for the tan-
gential vorticities on the solid surfaces as well as for the
axial velocity along the geometrical axis.

The tangential vorticities are calculated by use of the
Taylor series expansion, By using B as a point on the plate
or wall and A at one mesh distance away, the Taylor series

expansion is expressed as

bp = vp *ady |+ af 2fy |+ 02 (3-9)
37 z2 2
B 02 |,

for vortex chamber plates, Upon neglecting the terms of order

a3 or higher order and by using the plate boundary conditions,

W=0,U0=0, %% -0, %% -0,

the series expansion 1s reduced to

2
aw =2(1P""\b) .
a2t |y a2 A B

(3-10)

The expressions below for vorticities are found at J =1
or Z = 0, and at J = m or Z = H, by using Equation (3-10) n
Equations (2-36d) and (2-38e).

= 1 . - -
LU (w1’2 ¢1,1) for 0 < R <1 (3-~11)
Ra
= 2 - for R; < R < 1. 3-12
M TRy 0y " Y Tr R 2R (3-12)
Ra

A similar procedure is used for the sink tube wall boundary

conditions and from Equation (2-35e) the vorticity is obtained
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at 1 = nn or R = Ry and is given by

(3%

nm,j ~ ———7~Cwnn-l,3
Bia

n - Yyl forHsZ < L. (3-13)

The tangential vorticities can also be obtained by em-
ploytng the MAC method [62) where a phantom boundary point is
used. The MAC method produces the same results as given above.

An alternate method for computing vorticities is the one
suggested by Hung [23] which has the advantage of requiring
only information at an adjacent point. Consistent with the
above notations, the expressions for vorticities are found
to be

ng = ,ﬁ? {(Wp - vp) - E%
Ra

Thus, the vorticity, at d = 1 or

ni,l_:_i—g (v 2 - wi,l) - 04,2 for 0 <R <1, (3-14)

and at J = mor Z = H, as

nism = —3—2- (“‘b'f.m_l = lp_i’m) - ni,m-l’ for R.i < R < 1.
¥ (3-15)

Simitarly along the sink tube wall, one finds at i = nn or

= o s N R
Mhn,j _§_2 (¢nnm1,3 wnn’j) nnzl,J L H<Z<L,
dh (3-16)

The Boundary conditton for the tangential vorticity at the

corner Junction of the sink tubBe and the vortex chamber is
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determined by use of a method suggested by Roache [50]. He
calculated the boundary condittons for the tangential vorticity
at the corner By using bFoth the upstream and downstream

neighboring points for given values of stream function and

yorticity. Thus the bBoundary condition can be represented by

at * = nn, j =morR = RT’ Z =H
Tinem = ——l-g (¢nn-1,m * Yanm-1 —2¢nn,m) : (3-17)
2Ria
or
= 3 + -
Tn,m T —y Crn-1,m Yon,m-1 21‘Dnn,m)
2Ria
- % (pn-t,m * Panym-1? (3-18)

The axial velocity boundary condition along the geometrical
axis is given by
at R =0

W(0,Z)}

gim (L1 ay)
20 R 3K

- azw
7
oR R=0 for 0<1Z<L.

By use of the forward difference technique, this can be

written as,

at 1 =1 or R =20,

15 . o~ 16 . f -

C wl,J ¢2.J § ¢3’J) s (3-19)

Y571,
a
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or

M0 7y Dby g By g Y 2By (8020)
L.

ol

where 0 < 1=
In the stnk tube at the downstream section, the dependent
variables are assumed to be constant and parallel to the tube
3%1s. Thus at the sink tube exit, the boundary conditions
can be determined through use of a parabolic extrapolation.
The relattonship for boundary conditions employed here was
developed By Hung [231. Consequently, for this case {where
05 B 4 R+l the boundapy cond{tions can be written as

at j = mm or Z = L,

Vi,mm = ¥4, mm-4 -2y, i,mm=3 ¥ wa,mm-l ’ (3-21)
Pyomn = Timm-a "% om-3 ¥ 2T pme1 o (3-22)
oom T Viomhed "2 pm-3 t Zni'mm_l ’ (3-23)
Wimm = Yi,mm-4 “2¥q9,mm-3 * 2W5 mm-1 - (3-24)

3.4 Iteration Technique

In the jteration procedure for this region, sweeps of
the intertor mesh points are made, in turn, for each of the

dependent variables, v, T and n. This procedure is continued
unttl



a1

(n+1) ﬁ(nl
M M s, (3-25)

{n+1)
max n$’3

where ¢ ts the required tolerance.

To accomplish the sweeps as mentioned above, it becomes
essential to adapt the following sequence of steps, which
are also 1lustrated in Fig. (3.1).

1) Assign the inittal values for ¢, I and n as

=0, = RE n =0,

2} Assign the boundary conditions for .

3) Solve the stream function Equation (3-1) by the

relaxation method.

4) Solve the circulation Equation (3-2) by the

relaxation method.

5) Calculate the boundary conditions for n.

6) Solve the tangential vorticity Equation (3-3} by

the relaxation method.

7) Repeat procedure commencing with Step 3 through

Step 6 until required tolerance is reached,

The sequence of numerical procedures described above is
basically the same as that proposed by Pao [42], with the
exception of the use of the relaxation technique. This
technique is sufficiently discussed in Section (3.1).

Having obtained the solutions to the difference equations
for y, T and n, the velocity components are calculated from

the relations
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These are then expressed in the difference form as

LI T
and
J
Vi, 7

where R = (1-1)4.

Bi500 7 ¥y,5.)

(q,f'*'l,j - w.i_l’j) »
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(3-26a)

(3-26b)

(3-26¢)

(3-27)

(3-28)

(3-29)
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Through use of the numerical technique of Chapter III,
numerical results are obtained. These results are discussed

in Chapter IV and V.



IV. RESULTS OF THE NUMERICAL ANALYSIS

4.1 Stream Function

The symmetry of the sensor permits one to assigh a value
of zero to the streamline corresponding to its geometrical
axis. On the top plate of the vortex chamber, the stream
function is arbitrarily assigned the value of zero. Since
NRo 1s the value of the stream function along Z = H and
R = Rs, it 15 taken to be the value on the bottom plate of the
vortex chamber. At the entrance to the vortex chamber (i.e.,
at R = 1), the flow 1s assumed to be uniform and therefore the
stream function is directly proportional to Z, and along the
sink tube wall it is assigned the value Np,. On the downstream
section of the stnk tube, the streamtines are assumed to be
parallel to the geometrical axis. With this information as
input data, Equation (3-1) is solved numerically by following
the procedure described 1n Section {3.4). The pattern of the
streamlines in the sensor 1s shown in Fig. (4.1) and (4.2)
for two different sets of values of the radial and tangential
Reynolds numbers,

The variation of the stream function within the vortex
chamber, 1n moving from the periphery to its center, is shown
mm Figs. (4.3) and (4.4). From Fig. (4.3), it is evident
that the streamlines in the region 0 < Z < H eontract {n a
manner similar to a vena contracta. This contraction is a
different consequence of the boundary Tayer at the entrance to
the region. The plots 1n Fig. (4.3} further reveal that the

streamlines in the region 0.3 < R < 0.9 are approximately

45
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parallel to the plates. This indicates that in this region,
the variation in the boundary layer thickness is negiigible.
The existence of the sink at the center of the bottom plate
produces considerable streamline movement toward the sink for
R values less than 0.2, In Fig. (4.4) the same results for
stream function are plotted as a function of axial length with
R being the parameter.

The effect of the rotational speeds on the flow pattern
within the vortex chamber was 1nvestigated under various flow
conditions., As the tangential Reynolds number, Np,.g, was in-
creased from 1 to 512, the numerical results revealed no
appreciable effect on the flow pattern. The results further
indicated that for R < 0.2 the streamlines moved toward the
top plate, as the tangential Reynolds number was increased.
However, this movement was so small, that it was very difficult
to illustrate this effect on any figure. This slight effect
could be due—to the increase in centrifugal force resulting
from the 1ncrease in rotation,

As the tangential Reynolds number 1s increased and reaches
a value in excess of 2000, the streamiine pattern within the
vortex chamber changes from that observed at Tower Reynolds
numbers. This pattern is shown in Fig. (4.5). 1In the region
0.14 < R < 0.9, the streamlines, above Z = 0.4H and below
Z = 0,6H, move toward the plates. The boundary layer thickness
at these Reynolds numbers 1s much thinner than at lower
Reynolds numbers. This pattern indicates that the flow 1s no
Tonger laminar but becomes turbulent. For values of Z > 0.69,

in the vicinity of the sink {i.e., at the geometrical axis), .
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the flow appears outward rather than inward.

The flow pattern within the sensor 1s indeed affected as
the rate of flow is increased. The numerical results as
shown in Figs. (4.6) and (4.2) indicate that the boundary
layer thickness decreases as the flow increases. As a con-
sequence of this condition the streamlines appear to move to-
ward the plates as well as closer to the sink tube wall.

As shown in Figs. (4.7) and (4.8), the discharge from
the vortex chamber into the sink tube results in smooth con-
tinuous streamlines of appreciable curvature. For a short
distance 1nto the sink tube the streamlines remain close to
the geometric axis., This is due to the conservation of the
radial momentum. However, farther into the sink tube, the
streamlines are somewhat removed from the geometric axis.
This shift is not appreciable. This effect is probably a
result of stability conditions becoming evidant in the flow.
The streamlines ultimately become paraliel to the geometric
aXxis. In the immediate vicinity of the geometric axis, a core
region {i.e., a region with no streamlines) 1s observed. The
core region 1s a consequence of the centrifugal forces tending

to move fluid away from the geometric axis.

4.2 Tangential Velocity

The dimensionless tangential velocity is defined as the
ratio of actual tangential velocity to the tangential velocity
at the entrance (i.e., at R = 1). Thus the dimensionless’
tangential velocity at the entrance to the vortex chamber 15'

assigned the value one, On the top and bottom plates, where
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solid body rotation exists, the velocity 1s assumed to have
a Tinear relation with the radius R, i.e., V « R, Along the
sink tube wall this velocity is assumed to be a constant.
With this as input data, the tangential velocity, at any
location in the sensor is obtained from Equatijon (3-20) by
following the procedure discussed 1n Section (3.4). ;

The variation 1n the tangential velocity in the vortex
chamber is shown 1n Figs. (4.9) and (4,10). 1t is noted that
for low radial Reynolds numbers, (NRe-u) and for values of
R > 0.2, there is no appreciable change in the tangential
velocity. The velocity in the jnterior region however 1s
seen to be consistently higher than at the plates. As shown
in Fig. (4.10), the velocity profile, parallel to the Z-axis,
15 found to be parabolic. It should also be noted that the
velocity reaches a maximum in the plane midway between the
ptates. 1In general, the parabolic velocity profile 1s seen to
increase 1n size as the radius R decreases and is found to
reach a maximum value near R approximately equal to 0.1. This
is due to the conservation of an angular momentum combined with
the fluid viscosity effect near the plates. Along the gepo-
metrical axis (i.e., at R = 0), the tangential velocity is zero
for all values of Z.

The effect of the tangential Reynolds numbers on the tan-
gential velocity is shown 1n Figs. (4.11), (4.12) and (4.13).

As NRe— is increased from the value 1 to 16, the tangential

8
velocity 1n the vicinity of the sink tube entrance increases
in almost a Tinear manner, as noted 1n Fig. (4.11). This in-

dicates that the velocity V is approximately constant. Thys is
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particularly true for low NReie’ as the flow behavior is linear.
ATso 1t is noted that the characteristic curve of R = 0.08 has
very high tangential velocity near the sink region., But as

the flow progresses into the sink tube, due to the sink tube
wall, the velocity reduces rapidly and in the downstream

section of the sink tube velocity profile is proportiona1lto

the radius., Thus such profile 15 obtained, (crossing tw&

times of profiles of R = 0.06 and R = 0.04).

At a Np,_o = 16, the velocity reaches 1ts peak value.

As NRe-e is further 1ncreased to a value of 512, Fig. (4.12),
the velocity decreases continuously. For the range of NRe-e
values from 16 to 512, the maximum decrease in tangential
velocity is only 3 percent. However, as Npa.g s further
increased beyond the value of 512 this rate of decrement of
maximum value 1ncreases. The decrease continues, and as

NRe-e reaches a value of 2048, the decrease in the velocity is
approximately 25 percent of that at Np, g = 16. This pattern
reflects the fact that the flow at the higher NRe-e’ is be-~
having much Tike that of a solid body rotation.

As shown 1n Fig. (4.14), the presence of the sink has an
appreciable effect on the tangential velocity profile 1n %he
vortex chamber and becomes apparent for R < 0.2, Thus, in the
presence of the sink, the rate of tangential velocity increase-
appears greater in the vicinity of the sink than at other
regions., This results jn a velocity profile distortion and
bending towards the sink entrance.

The magnitude of tangential velocities i1n the sink region,

on the discharge side of the vortex chamber, is higher than



X CHAMBE
0.5 | VORTEX CHAMBER
R = 0.3
0.3 L
:}D .Al‘lllllll"
5 0.2
s
-~
. 0.3
-
- 0.
E 0.0§ |
S >
o 8.2
=
- |
=
-y
=
5
E 0'1 [~ 0002
-
0.0 I 1 1 1
0.0 0.02 ¢.04 0.06 0.08 0.1

AXIAL LENGTH, Z = z/r,

Figure 4.14 Variation of Tangential Velocity, V, wlth Axiat Length, &
at Different & {for NRe u=32 and NRe_e=32)



64

those near the other plate. The presence of the sink opening
produces a greater momentum on the sink tube side and accounts
for the above result.

The effect of the radial Reynolds numbers, Npe.y» ON the
tangential velocity within the vortex chamber is iiltustrated
in Figs. (4.15) and (4.16). 1In the vortex chamber, as the
flow is 1ncreased (i.e., for higher value of NRe—u)' a rapid
Increase n tangential velocity 15 observed for R < 0.2, At
Tow Np._, and for R > 0.2, however, the increase of this
velocity is not appreciable. In this case, the tangential
velocity 1s observed to be only slightly higher than the
values at the wall (i.e., the flow is approximately that of
the sol1d body rotation). As shown in Fig. (4.17) at higher
value of Np,_,» the circulation (or angular momentum) is con-
served at the midplane of the vortex chamber. Everywhere,
in the region, the tangential velccity 1s higher than its
inlet value for R > 0,1, Also due to the higher radial and
tangential Reynolds numbers, the instability in the flow is
observed in the sink region, therefore a wavy profile of the
tangential velocity is obtained.

As shown in Fig. (4.16), in the vicinity of the sink tube
entrance, the tangential velocity shows a rapid increase as
NRe.y values are increased. Approximately a one hundred per-
cent 1ncrease in tangential velocity 1s noted in the immediate
vicinity of the sink tube, as Npg.y is increased from 8 to 16
whereas approximately a fifty percent increase is observed for
values of R < 0.1. This is so because as the Npeoy Tncreases

the mass flow rate also increases and thus the momentum of mass
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increases at a greater rate than the mass 1ncrement,

As shown in F1gs. (4.18) and (4.10), the tangential
velocity 1s considerably higher 1n the immediate vicinity of
the sink tube entrance than anywhere else in the tube. For
Z > 0.2, the velocity decreases rapidly with an increase in

Z, At very low NRe—e and N values, the tangential

Re-u
veloci1ty becomes the equivalent of a solid body rotation. This
occurs at a distance into the sink tube of approximately three
times the height of the vortex chamber. This condition con-
tinues for all subsequent downstream sections. The equivalence
of solid body, rotation 1s principally due to the fact that

the viscous effect of the fluid predominates and therefore the
fluid rotates at the same angular velocity as the tube. As
Npe-g and Np,_, are increased, the distance into the sink tube

at which so0l1d body rotation first becomes evident 1s also

increased.

4.3 Axial Velocity

The axial velocity is calculated after determining the
stream function values. Equation (3-28) is used to obtain the
axial velocity at any location within the sensor. The axial
velocity along geometric axis however is calculated by using
Equation (3-20).

Figure (4.19) shows the variation of the axial velocity
wilthin the vortex chamber. As the entrance flow to the vortex
chamber is uniform and purely radial, the axial velocity is
assumed to be zero at that location. It however rises rapidly

into the chamber for a short distance {from R = 1 to R = 0,95)
7
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and then aimost becomes zero at R = 0.94. For values of

R > 0.94, the axial velocity is positive in the upper portion
of the vortex chamber, while it 1s negative in the lower
portion. This result 15 a direct consequence of the boundary
layer growth, which occurs at the entrance section and then
stabil1zes 1n the region 0.2 < R < 0.94. The axial velocity,
for R < 0.2, increases rather rapidiy, and becomes everywhere
positive, as R decreases. This phenomena takes place as a
result of the presence of the sink located on the bottom plate.
Thus, in the vicinity of the sink, the flow tends toward the
sink entrance and the axial velocity becomes positive every-
where, The axial velocity is observed to have a maximum value
near the geometrical axis of the vortex chamber. This is a
result of both the axial velocities on the plate and the sink
tube wall being zero. The axial veloci1ty near the wall is
small because of the boundary layer growth, and it is a
maximum near the geometrical axis.

Figures (£.20) and (4.21) reveal the variation of the
axial velocity in moving from the top plate of the vortex
chamber to the exi1t of the sink tube. It is noted that the
axtal velocity 1s positive everywhere within the sink tube,
with the maximum value occurring along the geometrical axis.
As shown in Fig. (4.20), the axial velocity in the vicinity
of the geometric axis, from the sink tube entrance to a
distance approximately 3H into the sink tube, continuously
tncreases to a maximum, then decreases sliightly, and subsequently
becomes constant at the downstream section. A reverse flow

pattern to the above 1s observed within the sink tube for
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R > 0.06., This variation in pattern is possibly due to the
radial momentum having a higher magnitude at a sink entrance
and then decreasing to zero for the short distance (3H).
Within this short distance the radial momentum 1s converted
to axial momentum, and as seen the axial velocity rises for

R < 0.04. However, beyond this (3H) length, due to stability
of flow the value of axial velocity changes and becomes a
constant along the axial length. At R = 0.08, however, the
axial velocity rises continuously until a peak value is
reached and this is accounted for, by the gain of axial
momentum over radial momentum. At R = 0.08 and beyond (w@ere
the peak velocity occurs), the viscosity effect reduces the
velocity at a greater rate near the wall, and ultimately pro-
duces a constant velocity in the downstream section.

In Fig. (4.21) the axial velocity results are plotted
as a function of radius with Z as a parameter. Here, the
ax1al velocity profile is not fully parabolic as encountered
in the Poiseville flow., This is due to the sensor rotation
which moves the fluid toward the wall and away from the geo-
metrical axis. '

As Np._, was increased, the axial velocity, within the
sink tube, along the geometrical axi1s, increased at a faster
rate than elsewhere. This was substantiated by the predomi-
nate effect that N

has over NRe— ., at the higher values.

Re-u 8
Thus at the higher flow rates the flow was attempting to be-
come similar to the Poiseville flow.

The effect of the tangential Reynolds number on the axial

velocity, within the sink tube, was negligibly small. There-
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fore it was difficult to show this effect in graphs. This
effect, however, is mentioned here merely for discussion

purposes. As NRe was 1ncreased to a value of 16, the axial

-8
velocity at a givén station along the geometrical axis, in-
creased continuously and reached a peak value at NReue = 16,
However, as Np__, was further increased to a value of 512,
the ax1al velocity decreased continuously. This pattern was
interpreted as being due to the predominate centrifugal

effect at the higher NRe-e values.

4,4 Radial Velocity

The radial velocity 1s considered negative when 1t 1s
directed towards the geometrical axis and considered positive
in the reverse direction. The radial velocity 1s assumed
constant at the entrance to the vortex chamber and zero on
all remaining boundaries. After obtaining the stream function
values, Equation (3-27) is solved numerically to obtain the
radial velocity at any location in the vortex sink rate sensor.

The variation of radial velocity within the vortex
chamber is illustrated 1n Figs. (4.22) and (4.23). As a con-
sequence of the radial momentum conservation, the radial
velocity continuously 1ncreases as R decreases to the value
R = 0,1, At that location it reaches a peak value and then
decreases to zero at the geometrical axis. This is due to
symmetry about the geometrical axis. The figures also show
that there 1s a slight decrement of radial velocity at the
entrance region of the vortex chamber near the plates which

is attributable to the growth of the boundary Tayer near the
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plates. It is also observed that the radial velocity is
approxijmately inversely proportional to the radius for R > 0.1.
The radial velocity, overall, within the vortex chamber 1s
negative everywhere.

The radial velocity profile 1s found to be of parabolic
shape, symmetrical about Z = 0.5H. This profile remains as
such up to a value R > 0.3. As R 1s further decreased, the
presence of the sink, distorts this profile. The sink tube
tends to suck the fluid and thus the radial velocity, on the
sink side, rises faster than near the top plate. The distorted
parabolic profile therefore turns toward the sink entrance.

The results of the radial velocity in the sink tube are
11lustrated wn Figs. (4.24) and (4.25). The radial velocity
is highest at the entrance region. This is due to the con-
servation of radial momentum in the vortex chamber. As the
flow progresses into the sink tube, the radtal momentum
rapidly converts to axi1al momentum and thus the radial velocity
rpaidly decreases., At a distance of approximately 5H into
the sink tube, the radial velocity changes direction, {the
negative radial velocity becomes positive). The establishing
of stab11ity of flow causes this to occur. The radial velocity
subsequently approaches a value of zero at the tube exit
section. As observed, the positive magnitude of velocity is
negligib]é for Tow radial Reynolds numbers. However, as will
be shown 1n Chapter VII, this velocity 1s significant at the
higher radial Reynolds numbers. The change from a negative
to a positive value 1s a result, of the higher rates of flow,

within the vortex chamber, at the higher Npooy values and thus
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the fluid experiences a greater force moving it away from the
geometrical axis. i

As noted 1n Fig. (4.25), throughout the sink tube region,
the radial velocity profile at any given axial station is
somewhat of a parabolic shape. The profile begins to develop
at the tube entrance, continues its development 1nto the sink
tube and ultimately becomes a fully developed paraboiic pro-
file about R = 0.5 Ry at Z > 44, The development of the
parabolic profile 1s in part due to the fact that the viscosity
reduces the radial velocity both near the wall and near the
core, with the velocities there ultimately becoming zero. The

conversion of the radial momentum to axi1al momentum also

contributes to the development of the profile.

4.5 Tangential Vorticity

The tangential vorticity is defined as the difference
between the gradient of the radial velocity along the axial
length and the gradient of the axial velocity along the radius.

As a result of uniform radial flow 1nto the vortex
chamber, the vorticity is considered zero at the entrance to
the flow field region, (except of the corners). As discussed
in Appendix A [Equation (A-12)]1, the vorticity along the geo-
metrical axis 1s zero. The tangential vorticity on the vortex
chamber plates and on the sink tube wall 1s calculated through
use of the stream function results and Equations (3-14), (3-15)
and (3~16), This information is used as the boundary conditions
for Equation (3-6) which is then solved numerically, by

following the procedure described in Section (3.1).
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Figures (4-26) and (4-27) show the variation of vorticity
within the vortex chamber, i1n moving from the periphery to
its center., As a result of the large velocity gradients, a
maximum absolute value of vorticity occurs in the boundary
layer regions within the vortex chamber as well as at the
entrance corner of the sink tube. Thus the vorticity on
both plates is higher than the vorticity in the flow field.
The vorticity n on the top plate 1s found to have a negative
value while a positive value is observed on the bottom plate.
A zero value of vorticity occurs, for R > 0.3 in the midplane
of the vortex chamber plates. The vorticity pattern discussed
above is a consequence of the axial velocity gradient along
R being negligible 1n the entire vortex chamber except for
R < 0.2, and also due to the radial velocity gradient along
2 being negative near the top plate, zero at the midpiane of
the chamber plates and positive near the bottom plate.

As discussed earlier, the vorticity at R = 1 15 zero and
it is due to the uniform radial flow at this section. There
is, however, some vorticity at the plate edges for this
Tocation and it js atiributable to the boundary layer effect.
The vorticity on the plates decreases approximately 20 percent
from R = 1 to R = 0.9, at which location 1t reaches a minimum
value, It then continuously increases to a maximum value 'as
R decreases to R = 0,1. This occurs because near the pTapes.
the radjal velocity also follows the same trend as discussed
before in Section {4.4) and the vorticity is indeed an axial
gradient of radial velocity, and there the radial gradient ofl

axial velocity 1s negligible.
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As shown in Fig. (4.27), the vorticity in the flow field
continuously 1ncreases from the value zero, which occurs at
the entrance section up to R = 0,1 Throughout the range
0.3 < R <1, it is observed to be approximately a linear
function of Z, except within the boundary layer region, The
above pattern is attributable to the fact that within the
flow fi1eld, the radial velocity profile along Z 1s approxi-
mately parabolic.

The effect of the sharp corner at the entrance to the
sink becomes evident at values of R < 0.3. This 15 particu-
Tarly noticeable as the velocity on the bottom pilate increases
at a faster rate than on the top plate. At the corner, the
vorticity reaches a maximum and 1s approximately 10 to 25
times greater than the maximum vorticity on the plate. 1In
explaining this pattern it should be noted that the velocity
gradients near the bottom plate are higher than those near
the top plate. In addition, it is seen that the magnitude of
the radial velocity, in the vicinity of the corner, is greatest
and also that the magnitude of the axial velocity is significant.
It is also observed that the axial gradient of the radial
velocity is positive and of appreciable value while the radial
gradient of axjal velocity 1s negative. Thus, a high value
of vorticity occurs at the corner due to the difference of
both of these gradients.

Figure (4.27) also reveals that, within the vortex
chamber, the radial velocity gradient is significant in the
flow field at R = 0.1, The vorticity then appears to decrease

as R increases, ultimately reaching a value of zero at the
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geometrical axis.

Figures (4.28) and (4.29) illustrate how the tangential
vorticity varies within the sink tube. It 15 apparent that
the vorticity within the sink tube flow field is greater than
that existing within the chamber flow field. The radial
gradient of the axial velocity within the sink tube is ostensibly
much greater than the axial gradient of the radia'l velocity
within the vortex chamber. This appears to be so as the
average axial velocity within the sink tube is much higher
than the inlet radial velocity, and also since both the radial
velocity gradient in the ax1al direction within the sink tube
as well as the axial velocity gradient along the radius in the
vortex chamber are negligibie. As a result of this the
vorticity in the sink tube appears to be higher.than that with~
1n the vortex chamber. Since the axial velocity gradient is,
in general, negative the vorticity 1s overall positive every-
where within the sink tube.

As discussed 1n Section (4.3) for R = 0.08, the ax1ial
velocity decreases in the entrance section of the sink tube.
After determining 1ts radial gradient 1t becomes evident that
along the sink tube wall and in 1ts immediate vicinity, the
vorticity continuousiy decreases. This decrease occurs fram
the sink tube entrance Z = H to approximately‘a distance Z = 3H
into the tube. From this point on the vorticity becomes
virtually constant. For R < 0,04, no appreciably variation in
vorticity 1s noticeable. However, within a sink tube entrance
length, the vorticity decreases to a lower value and then increases

to an equilibrium value. The vorticity for a given R within
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the downstream region, remains constant along Z.

The vorticity, in the downstream section of the sink tube,
is observed to be approximately directly proportional to the
radius for low radial and tangential Reynolds numbers. This
is particularly true at Tow Reynolds numbers where the effect
of rotatijon on axial velocity is negligible and the axial
velocity profile is approximately parabolic as for poiseuille
flow. Thus the radial gradient is a straight 1ine. At the
higher Reynolds numbers, however, due to the effect of higher
rotational speeds nonlinearities become evident.

The effect that NRe-e has on vorticity along the bottom
plate and along the sink tube wall 1s i1lustrated 1n Figs.
(4.30) and (4.31)., As the flow 1s maintained constant and the

rotation is increased, the vorticity, n(n = n) decreases 1n an

ul
W

inversely proportional manner with respect to N Since the

Re-8°
rate of decrease 1n vorticity is greater than the rate of decrease
in NRe—e‘ the flow changes to a spiral form with a small helical

angle 1in the sink tube. Thus the rate of production of the
vortices reduces near the corner., This 1ndicates that the
flow becomes more stable ?t the higher Np, _o values.

The effect that NReju has on vorticity along bottom plate
and along the sink tube wall is shown 1n Figs. (4.32) and (4.33).
As NRe-u increases, the rate of increase 1n vorticity 1s
greater in the region R < 0.2 elsewhere in the vortex chamber.
At the corner of the sink tube the vorticity 1ncreases by a
factor of 2-1/4 as NRe-u increases from 8 to 16. Within the

sink tube, the vorticity also increases as N 1ncreases.,

Re-u
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Thus at high flow rates, more vortices are created near the
soltd boundaries as well as near the corner.

Figures (4.34) and (4.35) illustrate the constant
tangential vorticity lines for two different sets of values of
radial and tangential Reynolds numbers. It is evident that
the highest vorticity occurs at the sink tube corner. As
discussed before this 1s the location at which instability in
the flow begins, It is also observed from Fig. (4.35) that
vortices are produced 1n the flow at the higher radial Reynolds
numbers. The vorticity lines are found to be parallel to
geometrical axis in the downstream section of the sink tube.

A zero vorticity 1ine exists in the midplane of the vortex
chamber plates for R > 0.3. The curvature of the zero
vorticity line, near the sink corner increases as the flow rate

increases.
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V. EFFECT ON FLOW PATTERN WITHIN SENSOR
DUE TO CONFIGURATION CHANGES

5.1 Effects Due To Variation of Vortex Chamber Radius, o

To determine the effect, if any, that the variation in
vortex chamber radius had on the flow pattern within the
sensor, & numerical computation was undertaken for assigned
values of vortex chamber radii of 5, 10, 15 and 20 inches
respectively. For each radius the vortex chamber height (h)
as well as the sink tube radius (ry) were held constant at
1 inch., 1In each case the flow rate and rotation were also
assumed to be constant. The following conclusions were
drawn from the numerical results,

1) The streamlines in both the vortex chamber and the
sink tube moved closer to the wall surfaces as, the
chamber radius was decreased.

2) As shown in Fig. (5.1}, the tangential velocity, V,
in the vortex chamber (at the same radial location,
R) decreases as the vortex chamber radius increases.
However, 1n the immediate vicinity of the sink
region and also within the sink tube there is no
noticeable effect on the velocity, V.

3) There was only a negligible effect on the tangential
vorticity throughout the vortex chamber and the
sink tube.

4) There was a negligible effect on the radial and axial
velocities throughout the vortex chamber and the sink

tube,
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5.2 Effect Due to the Varijation of the Sink Tube Radius 'i

To determine the effect of the variation in the sink
tube radijus on the flow pattern within the sensor, a numerical
computation was undertaken for assigned values of sink tube
radit of 1/2, 5/8, 3/4, 7/8, 1 and 1-1/8 inches respectively.
For each sink tube radius both the vortex chamber height and
vortex chamber radius were held constant at 3/4 and 10 inches
respectively. For constant flow rate and rotation the
numerical resultits revealed the following conclusions.

1) As shown in Fig. (5.2), the tangential velocity in
the vortex chamber near the sink tube region 1n-
creases as the sink tube radius 1s decreased. An
increase in the peak value of the tangential
velocity is also noticed at the sink tube entrance.

2) The distance into the sink tube required to obtain
constant axial velocity 1n the downstream section
decreased as the sink tube radius was 1ncreased.

3) The radial velocity within the vortex chamber near
the sink tube region (i.e., for R < 0.1) 1increased
as the sink tube radius was decreased.

4) The tangential vorticity, near the sink region in
the vortex chamber {(at the junction of the vortex
chamber and sink tube) and within the sink tube,
increased as the sink tube radius was decreased.

5) The siope of the zero vorticity line, at the
entrance section of the sink tube, decreased as the

sink tube radius was decreased, This resulted in
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the intersection of the zero vorticity line with the
sensor's geometrical axis which 1s moved closer to

the center plane of the vortex chamber.

5.3 Effect Due to the Varijation of Vortex Chamber Spacing h

To determine the effect of the variation 1n vortex
chamber spacing on the fiow pattern within the sensor, a
numerical computation was undertaken for assigned values of
vortex chamber spacing of 1, 1.2, 1.4, 1.8 and 2 inches re-
spectively. For each spacing the vortex chamber radius as
well as the sink tube radius were held constant at 10 inches
and 1 tnch respectively. +For constant flow rate and rotation,
the numerical results revealed the following conclusions,

1) The tangential velocity decreases at the sink tube

entrance, as the spacing increases [Fig. (5.3)1.
The distance into the sink tube, where the flow
becomes equivalent to a solid body rotation, also
increases sltightly. As the vortex chamber spacing
decreases, a peak tangential velocity is observed
midway between the geometrical axis and wall of the
sink tube. As the spacing h was increased, the peak
value of tangential velocity decreased and moved
smoothly either toward the geometrical axis or sink
tube wall., The same result was obtained experi-
mentally by Lu [32]. For the higher values of
spacing h, since the velocity profile was not
affected by the boundary layer, the peak value of

velocity moved closer to either the geometrical axis
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5)
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or the sink tube wall. From 1ts peak value, the
tangential velocity decreased rapidly but smoothly
to both the geometrical axis and sink tube wall.
The uniform entrance radial velocity to the vortex
chamber decreased as the spacing was increased.
The radial velocity at the entrance section of the
sink tube also decreased for increased spacing
heights.

The streamlines, at the sink tube entrance, appeared
to move closer to the geometric axis as the spacing
height was increased. That is to say that the bulk
of the flow was closer to the geometrical ax1s.

The distance into the sink tube where the axial
velocity became a constant, increased as the spacing
height was increased.

The tangential vorticity along the solid surfaces
of the vortex chamber as well as at the sink tube
entrance, decreased as the spacing h was increased.
There was, however, no appreciable effect on the
tangential vorticity along the sink tube wall.

The entrance length into the sink tube increased as
the spacing height was increased. {The entrance
length is defined as the depth into the sink tube
where radial velocity changes direction from 1nward

to outward).



VI. EXPERIMENTAL INVESTIGATION

6.1 Description of Apparatus

The apparatus which was constructed and assembled con-
sists of a vortex chamber, three sink tubes, a high pressure
as well as a low pressure regulator, an ajr filter, an air
dehydrator, a flow meter, a manifold, a probe assembly, a
posttive drive assembly and the necessary gages, valves and
piping. The vortex sink rate sensor, in which a sink tube
158 assembled to the vortex chamber, was so designed as to
permit a number of possible combinations of physical dimensions.
A constant temperature Hot Wire Anemometer was used 1n
obtatning the velocity distributions.

A schematic of the vortex sink rate sensor is shown 1n
Flg. (6.1). The vortex chamber 15 made of two circular
plexiglass disks held apart by a porous coupling securely
mounted at the periphery of the circular disks. One circular
disk has a threaded opening at its center to permit the
attachment of a sink tube. The second circular disk is
attached, by means of a flanged coupting, to a drive shaft
that is supported on two bearings. The drive shaft, through
a speed reduction gear box and sprocket wheel and chain drive,
is connected to a variable low speed motor to assure con-
centricity with the axis of symmetry of the circular disks.
Both plexiglass disks have grooves on their surfaces for pro-
per setting of the porous coupler. To provide rigidity and

uniformity of spacing between the disks eight spacers,
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symmetrically positioned around the circumference, are used.

The vortex sensor js mounted within a manifold assembly
th such a manner that $ts axis of rotation is horizontal.
The sensor rotates freely within the manifold assembly. As
38 result of a sealed ring pressfitted to the assembly the
possibility of air leakage from the sensor 1s negligible.
The manifold assembly is rigidly fastened to a steel frame
platform to which the variable speed motor and speed reducer
are also mounted. The design permits a vortex sensor speed
range from 0 to 35 revolutions per minute.

Three interchanggable plexiglass sink tubes of 1, 1-1/4
and 1-1/2 inches inside diameters were used to vary the sink
tube sizes., Two sets of such sink tubes, one of twelve and
the other of twenty-four inches length were employed. The
sink tubes were designed to enable pitot tube pressure measure-
ments as well as hot wire velocity measurements at various
stations along the length of the sink tube as well as along
any-given radijus,

The porous coupler, used 1n the vortex chamber, was
similar to the one used and discussed by Burke [6]. The
coupler was made from stacked 0.0625 inch thick steel rings with
an inside diameter of 20 inches. Triangular grooves of 0.,0227
1nches in width (approximately) and 0.03 inches 1in depth were
cut radially towards the center of each of the rings. The
grooves were cut, side by side, such that on the inside cir-
cumference of the ring, they were continuous, that was, with-

out any flat tops between grooves. In all approximately 2700
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such grooves were cut around the periphery of each ring.
The rings were stacked with the grooved side of one ring
against the smooth side of the next ring. The stacked rings
were held under compression in the assembly of the sensor
forming triangular nozzles of 0.375 inches in length. The
aggregate jet area was about twenty-five percent of the in-
side area of the coupler. The coupler was practically unj-
form throughout its circumference., The rings, therefore,
couid be stacked to any desired height from a minimum of 1
inch to a maximum of 1-1/2 inches. This arrangement provided
the means by which different coupler heights could be achieved.
The static pressure probe, as shown in Fig. (6.2), was
fabricated from two stainless steel tubes of 0.06 and 0.03
inches outside diameter both having a thickness of 0.01 inches.
The larger diameter tube was tapered to a conical shape at
its closed end. In its periphery at distance of 00,1625 and
0.1937 dinches from the closed end, are eighteen equispaced
0.005 1nch drilted holes arranged in a manner resembling a
pizometer tube. The smaller diameter tube at 1ts closed end
was chamfered and a 0.01 inch hole was drilled through the
tube at 3/4 of an inch from its closed end. The tubes were
assembled in such a manner, the smaller tube inside the
larger tube was then soldered to the inner tube. Static
pressure measurements are obtained by connecting one open end
of the pressure transducer, to the static pressure probe,
while the other is open to the atmosphere. The circuit dia-

gram for the pressure transducer 1s shown 1n Fig. (6.3)
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The schematic of the probe holder stand js shown in
Fig. (6.4). The probe support mechanism has been so designed
with a rack and pinton arrangement, to allow for a Tongitu-
dinal movement of the static pressure probe and probe holder
along the sink tube length. The probe support mechanism has
also been so designed to provide means by which the static
pressure probe and probe holder can be moved in a vertical
direction normal to and intersecting with the sink tube axis.
For all movements 1t is possible to maintain the static
pressure probe and hot wire probe holder axis parallel to the
sink tube axis, at all times.

The velocity distribution throughout the sink tube is
obtained by use of a constant temperature hot wire probe as
shown in Fig. (6.5). The hot wire probe used 1n conjunction
with the anemometer is supported by a pin-joint on 1ts own
support as shown in Fig. (6.6). The hot wire probe can easily
be positioned anywhere within the sink tube. The probe is
also capable of being rotated spherically, so as to position
the probe, to be perpendicular to the resultant velocity.

A disc worm wheel and worm screw arrangement provides the
mechanism by which an azimuth angle of rotation can be obtained.
A string and roiler arrangement provides the means by which

a longitudinal angle can be obtained. Thus the hot wire probe
can easily be positioned to measure the resultant velocity.

From the measurement of the resultant velocity, and the longi-
tudinal and azimuth angles, the axial, radial and tangential

velocity components can be calculated.
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A block diagram of the DISA constant temperature hot
wire anemometer (No: 55A01) used in this 1nvestigation is
shown 1n Fig. (6.7)., The anemometer, in essence consists of
a fine electrically heated wire which is convectively cooled
when placed in an air stream. The resistance of the wire,
which increases 1inearly with temperature, is uniquely related
to the mean speed of the a1r stream and the current. The

equation for calculating the velocity with this anemometer 1s

V- o=a+8 W (6-1)

where V| is the bridge voltage, W is the mean flow velocity,
£ 4is the probe operating resistance, and A and B are con-
stants which depend only on the physical properties of the
wire and fluid,

This relationship which governs the equilibrium behavior
of the wire is in reality a heat balance. The left hand
side of the equation is proportional to the heat input of the
wire, while the first-term on the right hand side is proportional
to the forced convection cooling. With the constant temperature
hot wire anemometer, a feedback amplifer system 15 emplioyed
to keep the probe resistance and hence also the probe tempera-
ture constant. Fundamentally, the measured quantity 15 the
power required to keep the temperature constant.

The hot wire probes that were referred to earlier and used
in this investigation are the DISA type No: 55F21 and are
shown in Fig. (6.4). The wire itself 1s a platinum-plated

tungsten, 5um 1n diameter, and is stretched across two needle
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supports. The probe resistance is 4.0Q. The average flow
velocity is indicated by a multirange D.C. bridge voltmeter
which has an accuracy of + one percent. This accuracy was
improved by use of zero shift D.C. voltages of 1, 2, 5 and 10
volts., This also permitted the meter operation in the lowest
full scale range. A square wave generator 15 incorporated
1nto the instrument to allow checking actual dynamic responses
under operating conditions.

A DISA type No: 55D10 linearizer is connected to the
anemometer to determine the Tinear relationship between the
velocity and the bridge voltage. X

The air flow system is shown in Fig. (6.8). Filtered
and metered low pressure air 1s supplied to the vortex sensor
through six symmetrically spaced i1nlets which are on a mani-
fold attached to the vortex chamber. Compressed air is first
passed through a dehydrator and then reduced to approximately
5 psig. pressure as it passes through a high pressure regu-
lator. The air 1s then filtered and its flow requlated as
it passes through a low pressure regulator. The air flow
rate is measured by means of a flowmeter and finally the air

is supplied radrally to the vortex chamber of the sensor.
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6.2 Test Procedures

As mentioned under the description of apparatus, the
yortex sink rate sensor was designed to allow a number
of possible combinations of its physical dimensions. The
vortex chamber has a radius of 10 jinches. 1Its design, how-
ever 1s such that through use of spacers the distance
between disks can be changed. This arrangement makes possible
g number of slenderness ratios(ri/h) for experimental pur-
poses. Three interchangable sink tubes of 1, 1-1/4 and
1-1/2 1nches in diameter make possible a number of different
chamber to sink tube radi1i ratios. A variable speed motor
further provided the means of obtaining a sensor speed of
rotation range from 0 to 35 revelution per minute.

For each test run velocity profiles as well as static
pressure distributions were obtained at a number of different
axial locations within the sink tube. The axial locations,
along the sink tube, selected for recording measurements were
Z equal to 0.0, 0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0,
2.5, 3.0, 3.5, 4,0, 5.0, 6.0, 9.0, 12.0, 15.0, 18.0, and 21.0
inches respectively., At each axial tocation the radius was
traversed, with measurements in general taken at r vaiues of
0.0, 0.1r,, 0.2r;, 0.3r;, 0.4r;, 0.5y inches respectively
where rjwas the inside radius of the sink tube. Three sink
tubes were used with respective 1nside radii of 0.5, 0.625
and 0.75 1inches.

Pricr to conducting any of the experiments, all 1nstru-

ments were calibrated according to the standard procedure.
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However, it 1s considered desirable to include here a brief
discussion of the calibration and technique of using the hot
wire probe. The hot wire probe was calibrated with the use
a special pitot tube shown in Fig. (6.9) in conjunction with
a transducer. The pitot tube and the hot wire probe both
were positioned at the immediate exit of the sink tube in
such a manner as to have symmetry with respect to the sink
tube ax1s. The Tlongitudinal angle of the hot wire probe was
set at zero. Then as the air flow rate, for zero rotation,
was varied both the pitot tube and the hot wire probe
readings were recorded through use of the exponential and gain
adjustments on the linearizer, the Tinear relation between
the anemometer voltage and alr velocity was obtained. This
therefore resulted in a hot wire probe calibration curve
sfiewn -tn Fig. (610},

The calibration curve,relating to the probe longitudinal
angle and the protractor angle,is given in Fig. (6.11).

A calibration curve was also plotted to correct for
any lag existing within the roliler-string mechanism. One
strajght Tine curve was for the clockwise rotation of the
roller (pointer and protractor) and the second curve was for
the counterclockwise rotation of the roller. The protractor
was graduated in degrees and as a reading was recorded, then
with the appropriate calibration curve for roller rotation,
the probe longitudinal angles 6 and ¢ were obtained. These
Tongitudinal angles & and ¢ were then used to calculate the

velocity components u, v and w.
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The technique of how the hot wire probe was used to
measure the resultant air velocity also merits a brief
discussion. A more e1a5b;ate explanation is given in
Appendicies ¢ and D. The hot wire probe was introduced into
the air stream within the sink tube in such a manner that
the wire itself was in a horizontal position. Simultaneously
the probe support was secured in a position to only permit
the hot wire probe movement in a Tongitudinal direction 1n
the horizontal plane. The hot wire was then rotated such that
a point on the wire would sweep out a spherical curve. The
hot wire probe, thus pos{tioned, only sensed a velocity
due to the axial and radjal components. The effect of tan-
gential velocity component on the probe, for the probe so
positioned, was negligible. Rotation of the probe in an
fongitudinal direction then accounted for the tangential
velocity component. As the hot wire probe was rotated in the
longitudinal direction & maximum reading on the anemometer
was ultimately observed, This reading is the resultant air
velocity at that particular location. The hot wire probe
holder mechanism was designhed to enable the megsurement
of the longitudinal angle (8).

In a manner similar to the above the hot wire probe was
introduced into the air stream, within the sink tube, such
that the wire jtself was in a vertical position. Simultan-
eously the probe support was secured in position to only per-
mit the hot wire movement in a longitudinal direction within

the vertical plane. The hot wire probe thus pesitioned,
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only sensed a velocity due to the axial and tangential
components. The effect of the radtal velocity component on
the probe, for the proBbe so posttioned, was negiigible.
Rotation of the probe in a Tongjtudinal direction then
accounted for the radial component. As the Kot wire probe
was rotated in the iongitudinai direction, a maximum reading
was ultimately observed. This reading 1s the resultant air
velocity at that particular location. The hot wire probe
holder mechanism had been so designed that the Tongitudinal
angle ¢ was also measurable. In all measurements using the
hot wire probe, the probe holder axis was, at all times,
parallel to the sink tube axis. This technique made certain
that the air velocity was perpendicular to the hot wire and
also that the air velocity measured was the resultant velocity.
Haying, at a particular Tocation, measured the resultant
velocity and the angles ¢ and & the radial, axial and tan-
gential velocity components could then be calculated as in-
dicated in Appendix C.

The experimental investigation began with the case of
constant air flow of 3.93 cubic feet per minute, sensor
rotations of 0, 5, 10 and 20 revolutions per minute
respectively, and maintaining throughout a unity slenderness
ratio. Tn the sink tubBe; the experimental data-were taken
at'6 te 10 prescribed axtal stations, depending en the length
of eachi®stnk tube.’

At each station along the sink tube from 5 to 7 static

pressure readings were taken as the radius was traversed.
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The static pressures were measured by a static pressure probe
used in conjunction with a transducer, The static pressure
probe was first located at the innermost station 1n a manner
such that the static pressure probe and probe holder axis
coincided with the sink tube axis. Once the static pressure
at this location was recorded, the probe was then successively
positioned and the pressures were recorded at the other pre-
scribed sink tube stations along the sink tube axis. Thus

at each sink tube station 5 to 7 static pressure readings

were recorded as the probe was traversed along the radius.

In addition to measuring the static pressure at each sink
tube station the resultant velocity as well as the longitudinal
angles ¢ and ® were also measured. The manner 11n which these
readings were taken is similar to that discussed previously.

In view of the fact that the radial velocity u, within
the sink tube (except at its entrance section) 1s everywhere
approximately zero, a simplified technique was also used to
measure the axial and tangential velocities. This measure-
ment technique was also used to check the results of pre-
vious experimentators and has been found to be most
satisfactory.

A previous technique used for the velocity measurements
was found to be far too time consuming and on occasions
difficulties were encountered due to the fluctuations in the
meter readings. The time required particularly to measure
the Tongitudinal angles 6 and ¢, was considerable and there-
fore a simplified but accurate method was desirable.

Therefore, another technique which was reliable as well as
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accurate was employed and is, briefly described here. A con-
stant temperature hot wire anemometer was used for the velocity
measurements. The same apparatus used for making the velocity
measurements is described under the description of apparatus.
In making the velocity measurements at any Tocation two hot
wire readings were taken. The first reading was taken with the
hot wire maintained in a horizontal position, while the hot
wire probe axis was maintained parallel to the sink tube axis
as well as 1n the central vertical plane of the sink tube. It
was then possible by this arrangement to have the hot wire, at
a given station, traverse along the radius. With the hot wire
located at a given radius, by means of the rack and pinion
device the hot wire could then be moved along the axial length
of the sink tube. Thus with the hot wire maintained in the
horizontal position, as described, one reading VH was recorded
for each position.

The second reading, at a given position, was taken
with the hot wire maintained 1n a vertical position, while
the hot wire probe axis was maintained parallel to the sink
tube. The hot wire was changed to 1ts vertical position
by means of a rotary disk that was turned 90° degrees. As
discussed above a second reading VV was then recorded for
each position,

The V., and Vy values were then used to calculate the
tangential and axial velocity components. This was accomplished

in the following manner:
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The equations obtained from Fig. (6.12) are

i

Tan a, z . and (6-2)

i

Tan &2 = (6-3)

where %y is the angle made by resultant velocity with the
plane perpendicular to the hot wire, when the hot wire was
hortzontal and G is the angle made by resultant velocity
with the plane perpendicular to the hot wire, when the hot
wire was vertical,

Stnce the radial, velocity u is considered negligible,
the above two equations reduce to

Tan oy =

=Y, .nd (6-4)
W
0

1l

Tan to or a, = a . (6-5)

Now By itnvoking the Hot wire theory 1627, .the relgtion hetween

the resultant velocity V*, V, and VV can be written as

H
v '
(coszul + KD2 51n2a1)1/2

Yy
(c052a2 + Koz S1n2m2)1/2

(6-6)

where Ko 1s a constant and equal to 0.2 for low velocity flow.

In view of the fact that a, is zero, V* then becomes V, and

(Yn)2

; (6-7)
cosqu + K02 sinzal

(y*)2 =
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. 2 )
With Tan®q, _ v2 s+ one can write
177

W
2
(y4)? - (Vi)
1 + Ko2 tanlay
1+ Tanzal 14 Tanzal (6-8)
Thus,
(ve)? )2
17 Koz !E
)
+ " (6-9)
1+ v2 10+ Y
Wz W2
or
(v*)Z = (VH)z CVZ + Wz) (6-10)

Since v% + w2 (v*)z, then the .above equation reduces to

2

s
n

2.
H W KO v (6-11)

and

2 V*2 = wz + v2 (6-12)

b
1

The above equations were are solvad for the velocity com-

ponents and there 15 obtained
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2 2
] vty
V= 1. 5 66-13)
0
and
/"2 _ 2.2
ot Ko Y,
weE 2 (6-14)
1-K
0

Thus the tangential velocity v, and the axial velocity w

are calculated from the measured values of VH and VV.
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6.3 Experimental Results

An experimental investigation was undertaken to determine
the flow pattern existing in a steady state weak vortex,

The vortex sink rate sensor is shown 1n Fig. (6.1). The
measurements were only taken within the sink tube and air was
the only working fluid used. A constant temperature hot wire
anemometer was used for the velocity measurements while a
pressure transducer was used in conjunction with a pitot tube
for the pressure measurements. The radial Reynolds numbers
were approximately maintained at values of 524.5, 628 and 767
for a flow rate of 3.93 cubic feet per minute while the
characteristic vortex chamber spacing height h was fixed at
1-1/2", 1-1/4" and 1" respectively. The tangential Reynolds
numbers were successively maintained at valued of 0.0, 2272.5,
4545 and 9090 based on the vortex chamber radius of 10 inches
and the respective speeds of 0, 5, 10 and 20 rpm.

The fact that the radial velocity within the sink tube
was approximately zero everywhere, with the exception of the
sink tube entrance section, revealed that the flow was helical,
The flow helical angle within the sink tube decreased as the
rate of rotation increased. This was supported by the fact
that the tangential velocity was found to be approximately
proportiona] to the rate of rotation.

No appreciable variation of the axial velocity within the
sink tube was observed. The axial velocity in the vicinity of
the sink tube geometric axis, however, was found to be slightly

Tower than neighboring points. Throughout the remaining
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portion of the sink tube (with the exception of the region near
the sink tube wall) and for a given radius, the axial velocity
was approximately constant., In the immediate vicinity of the
sink tube wall the axial velocity decreased rapidly.

The external effect on static pressure measurements became
observable at a distance 9 inches into the sink tube for the
short tube whereas the same observation was noted at a distance
of 21 inches for the longer tube. When a comparison was made
for the two tubes at a given r value, a step increase 1n static
pressure was observed in going from the longer tube to the
shorter tube.

The result of static pressure measurements within the
sink tube are shown in Figs. (6.13) and (6.14). They reveal
that a minimum value below atmospheric occurs 1n the immediate
vicinity of the sink tube geometrical axis. Stightly higher
values of static pressure are observed along the geometrical
axis. The vartation of static pressure along axial length,
with R as a parameter, 1s shown in Fig. (6.15) for a flow rate
of 3.93 cubic feet per minute and a speed of 20 revolutions
per minute.

Along & given axial location and beyond the radius
mentijoned above, the static pressure increases continuously
as the static pressure probe is moved toward the sink tube wall.
At a given radius and alaong the axial length the static pressure
increases continuously from the sink tube entrance and ultimately

becomes atmospheric near the sink tube exit. An exception to

the above is noted 1n the vicinity of the sink tube wall. Every~
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where along the sink tube wall the static pressure values are
above atmospheric. As the static pressure probe is moved
toward the sink tube exit the static pressure values decrease
continuously and ultimately become atmospheric at the exit
section. This characteristic of static pressure is obtained
as a result of a vortex i1mposed on the fluid due to the

rotation of the sensor.



VII. CORRELATION OF RESULTS

Air 1s supplied to the vortex chamber through a porous
coupling by means of six circumferentially placed equispaced
tubes. Therefore, analytically 1t 1s difficult to conclude
whether the flow 1n the vortex chamber 1s axisymmetric or not.
This remains to be proven. The symmetry assumed 1n this
case, however, merely refers to the symmetries with respect
to the sink tube axis, This assumption 1s particularly
valid for the sink tube, is not also for the vortex chamber,

Numerical and experimental results, for the radial
velocity variation i1n the sink tube, are 11lustrated in
Fig. (7.1). The radial velocity measurements for the en-
trance length of four inches 1nto the sink tube are not only
accurately and easily measurable but they also seem to
correlate well with the numerical results. However, farther
into the sink tube the radial velocity values are negligible
and are difficult to measure.

As shown 1n Fig. (7.2), for the case of zero rotation
of the sensor, the ax1al velocity profile at the downstream
section of the sink tube is not parabolic in shape. For r
values less than 0.6 ry, the axi1al velocity appears approxi-
mately constant. This indicates that either the flow 1s not
fully developed or that 1t has 1ndeed become purely turbulent.
As the speed of rotation is increased, the fluctuations,
evident at the lower speeds, virtually disappeared. Thus &t
the higher speeds the experimental results should be considered

more relrable than at the lower speeds. At a speed of
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rotation of 20 revolutions per minute, for example, the

correlation of the experimental results with the numerical

results proves to be most satisfactory. It is also observed

that the experimental axial velocity values correlate very

well with the numerical results for the larger r values,

Closer to the sink tube geometrical axis, however, the axial

velocity values do not correlate that well with the numerical

results. This is attributed to the existence of a core region.
Experimental and numerical results for the tangential

velocities, 1n the sink tube, are jllustrated 1n Fig. (7.3)

and (7.4). These results reveal that the tangential velocity

is consistently higher near the sink tube entrance and 1t

decreases continuously as the flow progresses i1nto the sjnk

tube. Throughout the sink tube, and within the region

between the sink tube wall and the sink tube geometric axis

{(1.¢., 0 < r < r1), the tangential velocity 1s observed to

be positive everywhere and its magnitude is found to be

greater there than at the wall. Within the sink tube, the

tangential velocity profile, which may be characterized by

a parabolic profile, has two peaks, one at r = O.Zri and the

other at approximately r = 0.75ri. For the location Z = 0.2,

a depression 1n the velocity profile 15 noticed, 1n Fig. (7.4),

around midway between the axis and the wall. The data

collected further reveals that the maximum tangential com-

ponent of velocity over the entire range of r/ri approximately

occurs between 0.25 and 0.55, B
As discussed previously nonlinearity effects are taken

into account in the theoretical analysis and the nonlinear
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equations are solved by numerical techniques. The experimental
results as shown in Fig. (7.4) also reveal the presence of
nonlihear effects and these nonlinearities were similar to
those 1n the theoretical analysis.

In the process of comparing the experimental results
with those 1n the theoretical analysis, 1t is necessary to
recall that the axial length differed by the vortex chamber
spacing height h. This is because the axial Tength in the
theoretical analysis 1s measured from the outer plate of the
vortex chamber, whereas for the experimental investigation
it 15 measured from the sink tube entrance. A similar
characteristic is noted from the experimental results reported
by Lu [32].

As shown 1n Appendix E, an error analysis has been under-
taken for both the numerical and experimental aspects of the
investigation. The curves of Figs. {7.1), (7.2) and (7.3)
show the comparison of experimental and numerical results of
velocity components. The numerical results are seen to be 1n
good agreement with the experimental results.

The scatter of data 1n the experimental results in

slightly greater than the limits of error estimated in Appendix E.



VIII. CONCLUSIONS AND RECOMMENDATIONS

The objgective of this study was to investigate the flow
phenomenon numerically as well as experimentally within a
vortex sink rate sensor. The conclusions deduced from both
the theoretical and experimental results are as follows.

The theoretical and experimental results are in good
agreement particularly for the 20 revolutions per minute
rotational speed of the sensor, flow rate of 3.93 cubic feet
per minute and for a sink tube diameter of 1-1/2 inches.

The results reveal that the tangential velocity near
the sink tube entrance is higher for the higher flow rates.

An unstable situation is noted within the numerical
as well as experimental results for the rotational speeds of
5 and 10 revolutions per minute, with a flow rate of 3.93
cubic feet per minute. However, stability 1s i1ndeed observed
at 20 revolutions per minute speed for the sensor.

At the higher radial Reynolds numbers, the angular and
radial momentum within the vortex chamber are approximately
conserved,

Due to the exclusion of the entrance energy losses
occurring in the sink tube and also partly due to interference
1ntroduced by the presence of the probes within the sink tube,
the experimental values of the tangential velocity are slightly
Tower than the theoretical values.

As Np,_o 15 increased, the tangential vorticity n de-
creases, thus it appears that an 1ncrease in speed of rotation

brings about a more stable flow.
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As a consequence of these observations for a vortex
sink rate sensor to have maximum signal amplifications, it
is suggested that the sensor be operated at the high flow
rate condition.

As a direct consequence of this 1nvestigation, a number
of recommendations are suggested here for future studies.
In general, these recommendations suggest a correlation of
existing data, conducting additional tests and/or analyses
as well as summarizing the information 1n a form suitable for
design purposes.

Specific recommendations for future investigations are
as follows:

1) study of the viscous core area.

2) study the noise generation.

3) 1nvestigate the non-conventional boundary

conditrons for the sensor.

4) theoretical and experimental flow phenomena
studies within a sensor with symmetric sink tube,
and consideration of proper location for pick off
points.

5) study the temperature, density and viscosity
vartation.

6) investigate the unresolved problem of rapid
fluctuations and wondering of the stagnation

point within the core region of the sink tube.
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BOUNDARY CONDITIONS

The boundary conditions for the systems shown in Fig.
{24) are as follows:

On the top and bottom plates of the vortex chamber and
along the sink tube wall, the no slip condition must be
satisfied (1.e. the fluid must move with these surfaces).
Thus, for the sensor rotating with an anguiar velocity, w,

this requirement mandates that

a) at z =0 u{r,0) = 0
vir,0) = ra )S 0<rs<r, (A-1)
F{v,0) = r2y

b) at z = h u(v,h) = 0
vir,h) = ro \% rpLr <, (A-2)
T{v.h) = r2y

¢) atr=vr; wirgz) =20
viry,sz) = ro h<z<2 (A-3)

. Flr;.z) = r;cn

d} atr=ry virg,z) = reo 0<z<h (A-4)

F{rgy.z) = roang

where h 1s the vortex chamber height and r; is the
sink tube radius.

In view of the fact that both plates of the vortex
chamber as well as the sink tube wall are non porous, they
are considered as stream surfaces. The bottom plate of the
vortex chamber and the sink tube wall are considered the same
stream surface. Thus the boundary conditions for these sur-

faces are
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e) at z=20 w(r,0) = 0, 0<rsr, (A-5)
B(r,0) = clsk

f) at z = h w(r,h) = 0, ryEr <, (A-6)
J{r.h} = cz,\%

g} atr =r, u{rs.,z) = 0, y h <z <2 (A-7)
Plry,z) = Cz,%

where C, and C, are constants.

At the periphery of the vortex chamber (r = ro), the
fluid enters in a uniformly radial manner (relative to sensor),
Hence the boundary condition is

h) atr=r, wirg,z) =20

u, = Yo 0<z<h (A-8)
0 2wr_h

0

U(rosz)

The ax1s of symmetry for the sensor is considered a
streamline which is the same streamline as for the top plate
of the vortex chamber. This is so because, along the axis
of symmetry, both the radial and tangential velocity components

vanish. Thus at r = @,

¥(0,2) = €y,

u(0,z) = 0, 0 <z< 24 (A-9)
v(0,z) = 0,

T(0,z) = 0.

Along the axis of symmetry, a minor difficulty 1s en-
countered with respect to the definjtion of the radial velocity
which 1s expressed in the terms of the stream function. For

instant, at r = 0, the velocity w(0,z) 15 expressed as

w(0,2) = gim| _ 1 3y
r-+0 r or
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By applying the L'Hospital rule, this can be written as

at r = 0 wi0,2) = _ 3%} 0<z<3y , (A-10)
| T
r
r =0
and since the limi1t does exist, it indicates that
at r = 0 3 =0 (A-11)
r
r =0

Also, on the axi1s of symmetry, the boundary condition
for the tangential vorticity component 1s written as

at r =20 70,2} = 2im [ . v ] 0<z<& (A-12)

r-0 or

since the radial velocity at the location is zero. Thus at
r = 0, the axial gradient of rad1a1 velocity is zero. If'aw
is not zero at r = 0, then the velocity profiie would r
have a cusp at the axis of symmetry resulting in a discontinuity
in the value of the derivative as one crossed the axis of
symmetry. This would result in a shear stress, which is pro-
portional to the first derivative of the velocity, being dis-
continuous. This condition can not occur in a physical

system. Thus, an additional necessary requirement is that

at r = 0 o . (A-13)
'5?;' .

This, therefore, results 1n the tangential vorticity being
zero on the axis of symmetry, 1.e.
at r = 0 n(0.z) = 0 0<z<48. (A-14)
At the periphery of the vortex chamber, the entering
fluid is assumed uniform as well as purely radial, hence

at r = r du _ oW _ (A-15}
0 3’2’ 0, -—Y\-—O
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Thus, the tangential vorticity is considered zero at r = rg,
i.e.
at r = r, ﬁ(ro,z) = 0 0 <z <h. (A-16)
The difference between the value of the stream function
on the top plate of the vortex chamber (or the sensor geo-
metrical axis) and the stream function value on the bottom
plate of vortex chamber (or the sink tube wall) 1s proportional
to the flow discharge rate Q,. This is shown to be so 1n

the following manner. The continuity eqguation requires that at

r =r
0 h

-Q, = 2mr, | udz ) (A-17)
0

By using the definition of u, this 15 written as

h _
-Q, = 2mr, gl_ 9 4y | (A-18)

ro Bz

o

This equation is then used to show that at Yo U is a function

of z only. Since at r = v., u = u,. = constant, then 5y =
0 1] 57 y

constant. Thus, at r = Yo ¥ is a linear function of

z and the 1ntegral is an exact differential. Thus, Q  can

be expressed as
-Qy = 27 [m(h) - @(0)} , (A-19)
where 9{(0) is a constant and 1s assigned the stream function
value for the top plate, i.e., ¥(0) = C, = 0. Consequently,
the stream function for the bottom plate, $(h), is given by
the relation
% (h)

= const. = C (A-20)

H
I
51
o
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The tangential vorticity values on the top and bottom

plates of the vortex chamber as well as on the sink tube wall
are calculated from the stream function by use of the Taylor
Sertes. The general value of tangential vorticity f, as
expressed in terms of the stream function §, {is
Fo=Bu _dw 1 3%p _ 139, 229 (A-21)
3z or r BrZ rZ ar 322
Specifically then along top and bottom plates of the
vortex chamber, one can state that, at z = 0 and z = h
u{r,0) = u(r,h) = 0
(A-22)
w(r,0) = w(r,h) =0
and with
oW ow A-23
3 (r,0) = or (,Y',h) =0, ( )
the tangential vorticity n 15 reduced to
ﬁ = _3_[_]_ = .']-‘. 32@ * (A'24)
9z r 2
97 1
foe.,
at z = 0 Alr,0) =185 | 0<r<r, (A-25)
v .2 -
9z 1z = 0
at z = h n{rsh) = 1 32§ r{ <rsr, (A-26)
r 2 -
3z
z=nh
Along the sink tube wall at r = r with
u(ri,z) = w(ri,z) = 0 (A=-27)
and :
Bu (A-28)
£ dpy =0 h<z<2
the tangential vorticity is reduced to
ﬁ(ri,z) =1 325 h<z<2 (A-29)

T gp2

Y’=Y‘-i
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In the downstream section of the sink tube the charac-

teristics of stream function, circulation and tangential

vorticity are assumed such that the slope of streamline,

ctrculation Tine and tangential vorticity lTrtnes are zero

along the z-direction. In addition to the above, the radjal

velocity is also assumed to be zero at the downstream

section of the sink tube.

downstream section of the
at z = & QY
=% =

3T

N

Thus, the boundary conditions at

sink tube

are given by

5
n
]

]
1]
o

o

[ A

-

iA

s
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DETAILS OF THE
NUMERICAL FORMULATION

In view of the axial symmetry of the sensor, only the
flow in the region D = {(R,Z)}, as shown 1n Fig. (2.2) has
to be considered. Within a region D, a network of uniformly
spaced grid lines is constructed. At each interior mesh
point (the intersection of two grid Tines), the derivatives
that appear in Egs. (2-28) through Eqs. (2-30) are approxi-
mated by the central difference technique.

For example, if A be any dependent variable and R and Z

be independent variables in the i and j direction respectively

then A , %%., 920, and 324 7% an'be written as
ELS 8Rz 572
_ . -1
‘%‘%‘ = A.H'ls\] Ai-l,\] + OLAR)Z " (B )
2 AR
B2 Ay ge 7 Ao+ 0(02)2 (B-2)
2AZ
L I RN (B-3)
3R2 - > : 2+ 0(AR?)
(AR)
32y A 20 Lt A
A ] ; _—
272 s J 1sJ jad-1 + O(AZ)Z \ (B-4)
(az)2

where AR represents the grid size along R (or ) direction

and AZ along Z {or j) direction. Furthermore, higher orders
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than the second order of grid size are neglected, and U and
W can be eliminated from the governing equattons, by employ-

tng the definftion of the stream function as

U3 = %%‘z”* e Vi0e1 " ¥y 5a
1"] ’ B"5
2(§-1) ARAZ (5-5)
/O S PP j |
1, 5 - ﬁ'ﬁg i.3 = Vi1, " Yaen,g (B-6)

20i-1) (aR)% .

The following formulation 11Tustrates how the various
equations are approximated by the central difference technique.
1. Stream Function Equation.

The equation for the stream function 1s written as

2 2
2% _ 13y, 3%y _
—, TR Y =3 = Rn
3R 57

(B-7)

By employing the central difference technique and by choosing
equal grid size along R and Z (i.e., AR = AZ = a), the above

equation 1s written as

Yie,s T P, T Vi Vel T YLl
a2 2aR
P, . - 2 + B-8
lp-!"]'l"l !p'i,j I‘P_l’j-l _ R (- )
2 B I

a
In the above equation the subscripts 1 and j correspond to the

R and Z coordinates respectively, since R 1s the 1nstantaneous



radius, thus R = (i-1)a.

P » which results 1n

v =1
b3 1 Wi
- a 2. .
gg (2R7any,;
where R = (i-1)a.
2. Steady State Equations
2.1 Circulation Equation

162

Equation (B-8) 1s then solved for

sd

+ U

¥,

i+1,3 °

The circulation equation js written as

of _ 1

BZF

5T
Usg + W37 = I

e-9

|

5R2

+ +
SIEPS! wi,j-l)
(B-9)
wi'lsJ)
1T 4 3°r (B-10)
R §R azz *

By expressing the velocities in terms of the stream

function, the above equation 1s written as

19y T _ 13y dr = 1 32T 1 sT 3%r | (B-11)
ROZBR TR L W | TR 7|
In the difference form, this is expressed &s
- T -
_J:-[ wi’j"'l wi,j-l] i+13j 1"'1"]
R 22 2a
¥ .- Yy, r, ... =T, . 1
1 1+ISJ 1'133 1sJ+1 133'1 - N X
"7 = "Re-~d
2a 2a
T - 27, + . -
11, 111,.1 r1—193 1 P1+1,j T1-1,j
2 R
a Z2a
. s 2T . -
+ F1:J+1 i,j * r153“1 (B 12)
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Equation (B~12) 1s then solyed for roe which results 1n

s d

r + I + T

T
1’j+1+ ‘i,J"’l}

- Npe-s L{w -~y ; 2a B{T . = T B
3 +‘1 3 - 1'{"13 1"'1,
e Tsd 1,3-1 Moo J J

- {Pie, - “’1-1,3}{1’1,3@ - I‘m-_lB] o (B-13)

2.2 Tangential Yorticity Equation

15d =%[TT'+~1,J i-1,1

The equation for the tangential vorticity 1s written as

o’n , Lon _n, 2% |

Upon eliminating U and W by use of the stream function y, this

is expressed as

9L 7 pz 3L R EXA
. 2
-1 [32”+lig-1_+__ﬂ (8-15)
Re-6 BR2 R 9 R2 572

The above equation s now written in the difference form as

1 - -
ﬁ{wisj'l'l w'isj'l }{n'ﬁ'lh} ni-l,j
2a 2a
R—,{ 1+193 ) 1 1,3 nT:J'”- ) nisj“‘ll _
2a )

{ Yia01 T ¥i,a-1) FTaui o TiLaer T TiLian
7a B 3 2a

R
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- 2 -
L }/a +{ni+1,:j “1-1,3}/('23“1
B B
22 . (B-16)

Equation (B-16) 1s then solved for n which results 1n

n, , =41 X . o4 M T n,o,
Tsd [z“{n1+l,3 * 1-1,3 LS U B 1,3-1}

- Npe-o {_(wi,j+1 " Vi1 %3—-) X

Re-6

16R
(Ma1,5 " Me1,3) - e,y " ¥og,y) X

s .- 4a T T - T )
(n1,J+1 ni.j-l) T T3 1,3 ( Tsdt+l 1,j-1 ]

R
2
1 a3l paNpa s (¥ o0 =¥ s4q)
Y - 1,J-1 TaJ'*'l -
8R

where R = {i-1)a, with subscripts i and j are along R and Z
direction respectively.
3. Transient Case
3.1 Circulation Equation
In the circulation equation,
5T , yir : 2

PRRTE:) N | 9T _l3r . 37T
5T 7 SR T Y7 T W TR2 R3R " ,2|, (B-18)

U and W are eliminated by the stream function ¢ and one obtains


http:ircnlestiely.io
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oF , 1 29 T _ 1 9y or _ 1 <

3T F RS TR I IZ T Frasg

2°r _ 1ar ., 8°r (B-19)
3R R 3R YA

The difference equation is then rewritten by use of the
central time and central space technique. Consequently,

Eq. {B-19) becomes

k+1 k-1 // ) K k X
[§ - T ZAT) + -
1,3 .3 ( {wT;J'l'l lp],j-l \%
k k // 5
Fi+1,3 - P?-l,j {4Ra“)
k k k k (4Ra?
- - T -T Ra
{w'l'f'-l,j wi-i,j}{ 1,J+1 193-1% )

k k k k
1 T T F r
"N EL i+1,3 T Ti-1.§ * 1,341 * i,3-1

Re-6
k / 9 k k

- 4r 2 -] T , = T

(B-20)
k
In the first term of right hand side, 4r1 5 15 written as
k k+1 k-1
4r1’J = 21‘1,’J #2050 (B-21)
k+1

and then the equation is solved for I‘_i to give
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k+1 k-1 k k

={ T + AT -
2a?R
k k k k
(r, . -rT ) -y, - ¥ ) x
i,3+1 1,3-1 i,3+1 1,3-1
k k k
(I - T ) - 2a (T - r )//
1+1,3 1-1,3 i+1,3 i-1,3 Re-9
+ 4R (rk . i + K 2rk Ly
1+1,7 1-1,7 1,§+1 i,3-1 1.4

‘//NRE“BE]//{l + 4AT //,{ NRE_? . az}] . (B-22)

where R = (i-1)a.
3.2 Tangential Vorticity

The equation for the tangential vorticity 1s written as

on 1 3p an _ 1 3y 3n _ n_ 8y _ 2r 3T
3T " R 37 3R R 9R 37 R2 EYA R3 EYA
2
_ 1 ®n , 1an _n_ 4 3%
NRe-B SR R 3R R2 572 (B-24)

Through the use of the central time and central space technique,

the above equation is written in the difference form and

there results

{ k+1 k-lE/( (K k
.-, 2AT) + -
AEP R B ) L¢13J+l 1’1’1,,]—13 X

k k / )
{”1+1,J R (4Ra")

k C :
_{‘Pm,a AR 1,3)5171 el isj_lg/(ama )
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k k k k k // 2
+ + + -4
{n1+133 N n n n_’J a

1-1,3 1,J+1 1,4-1 i

k k k 2
4‘%TL .= (2aR) - n //El . (B-25)
T+l 1-1,1 143

In the first term of right hand side 4n§ ; 1s rewritten as

k k+1 k-1

dn, . = 2n + 2n, (B-26)
TsJ Tsd T,
k+1
and then the equation 1s solved for n, ] to obtain
kt+1 k-1 k k
= B AT -
T].is\] n'isJ _T % (lp1+15\] lp-["lsJ) X
2a R
k k
k k
(n'i:J+l n1 nj'l} (lpi a\]+1 lp'is;]"l) x
k k + 2 k k
( n'l'*‘].,.j n?-l,.j) an'ia.] ( 1’-’1 sJ+1 ¢19\]‘1
k k k /2
- + . N - T R
2a/NRe_e)//R 4ar1,J (P1’J+1 1,3-1)

k K k
P22 (gt g, 5) MRece TR (Myag

k k k k-1
+ + + -
Tio1,y " Maar T Mg zni,J)//NRe-e % ]

[ 3 2 -
/l'l + 4AT (NRe_a a”) ] . (B-27)

-~
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Equations (B-5), (B-9) and (B-13) constitute the govern-
ing difference equations for the steady state case and

Eqs. (B-5), (B-20) and (B-27) for the transient case.
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VELOCITY COMPONENT
CALCULATION PROCEDURE
As discussed under the test procedure, {(Section (6.2))
the resultant velocity V* as well as the Tongitudinal angles
€ and ¢ are measured at a particular Tocation 1n the sink
tube by a constant temperature hot wire anemometer. The angle
§ 1s the longitudinal angle made by the probe with the sink
tube axis in a horizontal plane, whereas ¢ is the longitudinal
angle made by the probe with the sink tube axis in a vertical
plane.
The measured values of V*, 6 and ¢ are used to calculate
the radial (u), axial (w) and tangential (v} velocity com-

ponents. The resultant velocity 1s defined as

Since 6 1s measured in a tangential direction then

v = w tan o . (C~2)
Simitarly since ¢ is measured in a radial direction then

u = w tan ¢ . {C-3)
Thus the square of the resultant velocity becomes

v%2 = w2 [1 + tan? o + tan? ¢]

or V*

W o= (C-4)

Y1 & tan® 0 + tan? ¢

The axial velecity component w js calculated first by
use of Eq. {C-4), and then the tangential and radial velocity
components are calculated by use of Egs. (C-2) and (C-3)

respectively.



APPENDIX D

171



172

PROBE MECHANISM FOR RESULTANT
VELQCITY MEASUREMENT

The probe holder and mechanism used, for measurement of
the resultant velocity within the sink tube 1s shown in
Fig. (6.6). This Appendix is devoted to a discussion as
to liow the probe is positioned to measure the resultant
velocity.

The distance between the center of the probe wire and
the probe rotating axis (probe longrtudinal rotating axis)
Ts denoted by ry. The instantaneous vertical movement
(radius) of the probe support axis from the sink tube axis 1s
denoted by $; when probe wire is hortzontal, and S, when the
probe wire is vertical. Thus the instantaneous radius made
by the probe wire in its movement, for the case when the

probe wire is horizontal, is given by

r = Jslz + (ry sin 6)2 . (p-1)

SimiTarly the instantaneous radius made by the probe wire 1n
its movement, for the case when the probe wire is vertical,
1s given by
r=S,+rysing . (D-2)
As the probe wire is positioned at a particular location
for measurement of the resultant velocity both radii, as
given by Eqs.(D-1) and (D-2), have to be equal., This results

in

r o= ¥ = + i . D-
(502 + (ry sine)2 =52 rpstns . (03]
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within the sink tube the radjal velocity u 1s negligible and
the measured value of ¢ is rather smalil, therefore, the value
of rq sin ¢ is also very small. However, the tangential
velocity v is of appreciable value, so the measured value of
8, and thus ry sin 8 is of an appreciable magnitude. Hence
from Eqg. {D-3), 1t is concluded that S, is greater than S,
and that the difference between r and 32 is negligible,

In the process of measurement of the resultant velocity,
the probe and probe support are first positioned at a
particular z location. The probe support 1s then moved
vertically making a radius Sq with respect to the sink tube
axis. By use of the roller-string arrangement the horizontally
mounted probe wire is then rotated about 1ts axis to obtain
the Tocation at which the anemometer voltmeter reading 1s
maximum, This procedure determines the distance rys between
the center of the probe wire and the probe rotating axis.
At that particular location, the Tongitudinal angle & js then
measured. Thus with the values of Sl’ r and o, the
1nstantaneous radius r is calculated through use of Eq. (D=-1).
The maximum anemometer voltmeter reading 1s the resultant
velocity at that Tocation.

In a similar manner and with the vertically mounted hot

wire probe, §_ is adjusted equal to r, and then the probe

2
wire is rotated to obtain the Tongitudinal angle ¢. The re-
sultant velocity is then checked and corrected for Sps since
u << v in the sink tube, and ¢ << 6. Also, since ¢ 15 small,
and r » 32, then r-S, is very small. Thus r can be approxi-

mated by 52.
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In a similar manner to the method used in calculating
the radial dystance, the correction for z is accounted for
and results in the expression

Z =23 -ry C€OS 0 = Z, -r, coOS $ (D-4)
where z is the instantaneous location of probe wire. In this
equation, Zq and z, are the axial distances of the Tongitudi-
nal rotation of the probe axii measured from the sink tube
entrance, when hot wire 1s in a horizontal and a vertical

position respectively.
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ERROR ANALYSIS

The possible sources of error throughout this study may
be due to either experimental or numerical errors. The
experimental error may be subdivided into the static pressure
measurement error and the velocity measurement error resulting

from use of both velocity calculation methods.
Experimental Error Analysis

In an experiment requiring measurements of several
quantities, each of which has an error associated with it,
the total error that propagates into the final result may be

estimated by the expression [66]

3F)2 e (E-1)

E =] ( n
where F is a function of n independent variables having errors
€p. For repeated measurements of the varigbles, it 1s assumed
that errors are normally distributed about the true value.

The possibilities of errors in velocity measurements may
be attributed to several factors; (i) exact positioning of
probe holder in sink tube for either a radial or axial position,
(i1) longitudinal rotation of the probe 1n either a horizontal
or vertical direction through use of the roller~-string arrange-
ment, (111) calibration of hot wire anemometer {specifically
the 1inearizer for gain and exponent adjustment), and (iv)
human error in reading the scales.

The.error in positioning the probe holder 15 fixed and

for the

is consitdered as erl, for the radial leoeation and ez1
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ax1al location.
The error due to the longitudinal rotation of the probe
in a horizontal plane 15 obtained as follows. The quantity
r is defined in Equation (D-1), and by applying Equation (E-1),

the expression for error becomes

L]

P
(a3
-

B+ 9r\T e . (E-2)
9 '5—5—1-') S1 (-373-) 8

The partial derivatives 1n this equation are obtained from
Equation (D-1) and are found to be

s
o 1 (E-3)

35, «slz - ”12 cine

r12 sin © cos ©
3 _ (E-4)
FL:) e 2
SI + rl s1n 3]

26 ¥ ¢ 2

By substituting Equation (E-3) and (E-4) 1into Equation (E-~2),
the expression for error is obtained as

2
4+ P 4 s1n2 8 cosze ee

erz 2 2 2
Sy * v sin oo (E-5)
1
In a similar manner the error equation for location of
axial length, due to the longitudinal rotation of the probe

in a horizontal plane, 1s determined by using Equation (D-4)

- 2 2 2
e,” = ez1 tr " sin% e (E-6)

The error equation due to the longitudinal rotation of

the probe 1n a vertical plane is obtained 1n a similar manner.
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As the radial velocity in the sink tube is negligible, the
longitudinal rotation of the probe in the vertical plane 1s
also negligible. Thus, no additional discussion is necessary

in arriving at the error equations given below

er2 = es2 + r12 cosz¢ e¢2 (E-7)
2 2
and
2 2 2
e. =¢  +r sin2¢ e¢2 . (E-8)

The calibration errors are fixed and are denoted by €
1
and ecz. The quantity e, denotes the error for probe

1

Tongitudinal rotation calibration and e, denotes the error
2

of calibration of the hot wire anemometer combined with
linearizer,

The error in velocity measurement 1s obtained by de-
riving an error equation for each component of velocity. The
error equations are obtained through use of Equation (E-1)
and the fundamental definition of the velocity components,

(c-2), (C-3) and (c-4), and are found to be

2 _ 2 4 v tan?o secto 29?4 tano se04¢°e¢21//{
e = e 7

W y* 2 2
(1 + tan & + tan o)

2 2

(1 + tan & + tan ¢) (E-9)
2 2 2 2 4 2
e = tan ¢ e + W sec ¢ e (E-10)
u o
5 2 2 2 4 2
e, = tane e +w sec e (E-11)
B e
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To estimate the relative maghitudes of errors assoctated
with the uncertainties in the measurements, numerical values
from a typical test condition are substituted 1n the above
equations.

The following values are taken from a typical test run
from which the velocity components are determined

Radial Tocation of pin bearing

from the sink tube axis $q = 0.5 inch,

Length of rotating arm of probe

(hot wire) ry = 0.546 inch,
Ax1al Tocation of pin bearing
from sink tube entrance zq = 6 inches,
Horizontal longitudinal angle 6 = 38.7 degrees,
Vertical longitudinal angle ¢ = 0.0 degree,
Resultant velocity V*¥ = 6,95 ft/sec.,
Speed of sensor N = 20 rpm,,

and Radius of vortex chamber ro = 10 inches.

By using V*, 6 and ¢, the axi1al, tangential and radial velocity
components are calculated and found to be 5.45, 4.36 and 0.0
feet-per sec, respectively,.

The following errors or uncertainties are assumed, taking
into account instrumentation accuracy errors due teo lack of
resolution, human errors in reading instruments and general

velocity losses, etc.
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EYrors 1n Error Magnitude
Name of Error Percentage Symbols of Errors
Resultant velocity + 1% e * 0.0695 ft/isec
horizontal v
Longitudinal angle + 1% ey 0.387 degrees
vertical
Longitudinal angle + 1% e, 0.0 degrees
Calibration of + 1% e, -
Tongitudinal angle 1
Calibration of + 0.5% e 0.03475 ft/sec
anemometer €2
Radial distance + 1% e 0.005 1nch
1
Axial Tocation + 0.2% ey 0.012 inch
1

The error in measuring the radius r in the horizontal plane
position 1s calculated by using Equation (E-5). By using the

values given 1n the Table above, the error is found to be
er2 = 0,006438 1inch. (E-12)

The error in measuring the radius r 1n the vertical plane
position 1s calculated by using Equation (E-7). By using the
values given 1n the Table above, the error e\.2 15 calculated
and found to be

e. = 0.005 inch. (E-13)

2

Comparing (E-12) and (E-13), the larger value 1s chosen for
the total error calculation. The magnitude of error in measur-
1hg the radial distance Sq {given 1n Table) 1s e = 0,005 inch.

S
1
Thus the total error in measuring the radius is given by
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2 2)0.5
+ @
s

er (e

1
2 2 0.5

(0.005° + 0.006438")

0.008152 1nch. (E-14)

H

The magnitude of error in measuring the axial length Zqs
is (from Table) ezl = 0.012 inch. This error in ax1tal Tength
is calculated from Equation {(E-6) and is found to be very
small (i.e., e21 = 0.00003), and therefore 1s neglected,

Similarly the error e, obtained from Equation (E-8) 15 also

%2
negiected.

The error in axial velocity is calculated as follows.

The error in measuring the axial velocity is a result of
human error, error due to positioning of the probe 1n etther
the axtal or radial Tocation and the error arising from
calibration of the anemometer.

The value of the human error 1n reading of the meter 1s
used 1n Equation (E-9) to determine 1ts portion of the error
occurring 1n the measuring of the axial velocity. This value
is found to be €w,h = 0.1459 feet per second,

The value of the error resulting from positioning the
probe 1n ei1ther the radial or axial location 1s obtained
through use of numerical data. The magnitude of error for
positioning the probe in the radial location 1s taken from
Equation (E-14). This value is e, = 0.008152 inches. The
portion of the error occurring 1n measuring the axjal velocity
due to this positioning error is then calculated and found to
be Bu,r
calculated error in axial velocity due to positioning of the

= 0.0043 feet per second. 1In a similar manner the
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probe in the axial location 1s found to be €.z - 0.0036
feet per second.

The portion of the error in measuring the axi1al velocity
that 1s due to the calibration of the hot wire anemometer must
also be accounted for. This value 1s found to be eC2 = 0.03475
feet per second.

The total error in measuring the axial velocity is then

determined by use of the equation
(E-15)

and is found to be 0.15 feet per second. The percent error
therefore is 2.75.

In a procedure similar to the above, the error 1n
measuring the tangential velocity is also obtained. The estimate
of the human error ey h found from Equation (E-11) is 0.1316
feet per second. The magnitude of the error for probe
positioning in the radial direction 1s e, = 0.008152 inch which

Ti

results 1n a value of & p = 0.0124 feet per second. Then
H]

from the value of e, = 0.012 inches the value of e 2 becomes
0.014 feet per second. These component values then result 1n
a total error of 0.1374 feet per second and a percentage error
or 3.15b.

In a manner similar to the above, the error 1n measuring
the radial velocity 1s shown to be zero since the radial
velocity is zero for this location.

The same procedure 1s adopted for obtaining the error

analysis in the second method of velocity measurement.

In this method the radial velocity is assumed to be zero.
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The tangential and axial velocities are given by Equations
(6-13) and (6-14) respectively. By using the same technique
as before, these equations are transformed to the error
equations,

2 2 2 2
o Yy ey *Vyoey

e“ = 1) H (E-16)
2 5 2
(1 = KO ) (VV = VH )
and
2 2 4 2 2
V., e + K Y e
w 2 2 2 2
(- Kg ) (v = Ky V)

After combining all errors as discussed previously the
resultant total error in tangential and axial velocities are
found to be respectively 0.1455 and 0.157 feet per second,
while on a percentage basis these values are 3.34 and 2.88
respectively.

In addition to accounting for the errors in measuring
the component velocities it is also necessary to account for
the error in measuring the static pressure.

The static pressure 15 measured by a specially designed
static pressure probe. The probe consists of two concentric
tubes, Very small holes were drilled through the outer tube
so as to eliminate the dynamic pressure head. The static
pressure then is directly measured by means of the inner tube
which is connected to a pressure transducer. Since the
transducer directly measures the pressure, the possibilities
of error are minimal. Nevertheless, a discussion pertaining

to any error, thus resulting, follows.
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An error could result from not properly positioning the
static pressure probe in either the radial or axial directions.
The probe 1s Tocated at a given radial position through means
of a precision mechanism having a measuring scale whose
smallest graduation 1s 0.001 inches. Thus any error arising
is indeed negligible. Similarly the rack and pinion mechanism
used to position the probe at a given axial Tocation has a
measuring scale with its smallest graduation being 0.05 i1nches.
Again, any error occurring would i1ndeed be minimal. The error
arising due to the boundary layer growth effects are minimized
due to the tapered tip of the probe. Another possible error
could result from the flow being at an angle to the sink tube
geometric axis and thus to the probe. This effect experi-
mentally is observed to be negligible up to angles of forty
degrees. Beyond this angle a deviation of 3 to 4 percent 1s
noted in the readings. As observed from the experimental
data the axial velocity is higher than the tangential velocity.
Also 1t is noted that the radial velocities are negligible.
Therefore, the flow angle encountered throughout the experiment
never exceeded 35 degrees and hence the error is negligible.

Any error resulting from use of the transducer 1s also
minimal as it is calibrated and checked by means of a standard
resistance.

The probable human error arising from regding of the trans-
ducer scale 1s estimated to be less-than one'percent. THe smallest
diyision on the transducer scale has a 0.0005 mm of mercury
head and this is sufficiently small for the pressure range

encountered within the sink tube.



185

Error Analysis Pertinent to the Numerical Results

The steady state and transient governing equations con-
sist of first and second order derivatives in R and Z. When
these differential equations are written in the difference
form a truncation error results. The evaluation of this
error 15 determined for any dependent variable as here
described.

Let A be any dependent variable, x be any independent
variable and a be assigned the grid size, then A can be
expressed as function of x and a, A = A{x,a). By use of the

Taylor series expansion A{x+a) and A(x-a) become respectively

3

Alx+a) = A(x) + ad'(x) + a2 A" (x) + a° A'"(x)
2T 3T
+ %_?_Aw(x) ., (E-18)
Alx-a) = A(x) - aA'(x) + gf_ AY {x) + _g}’r AT (x)
+ %i AV ) £ L, (E~19)

The subtraction of these equations gives the first order
derivative of A with respect to x, and is shownh in Equation
(E-20). The addition of these equations, however, gives the
second order derivative of A with respect of X, and 1s shown

1n Equation (E-21)

_g_fl(,_ - A(x+a)2; A(x-a) + 0(&2) (E'-ZO)

and
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2
) % . Alxta) - gA(x) + A{x-a) . 0 (az) (E-21)

X a
It becomes evident that the central difference technique
contains the truncation error of order a2 for both the fairst
and second order derivatives. In this analysis a 1s chosen

to be < 0.02 and, therefore, the truncation error 1s of order

(0.02)% or 0.0004.



