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The objective of this investigation was to obtain a de
tailed description of the flow field within a vortex sink
 
rate sensor and to observe the influence of viscous effects
 
on its performance.
 

The sensor basically consists of a vortex chamber and a
 
sink tube. The vortex chamber consists of two circular co
axial disks held apart, at their periphery, by a porous
 
coupling. One circular disk has an opening to permit the
 
mounting of the sink tube, in such a manner that the vortex
 
chamber as well as the sink tube have a common axis of
 
rotation.
 

Air was supplied radially to the sensor through its
 
porous coupling as the sensor was rotated at various speeds.
 
Particular emphasis was directed toward an understanding of
 
the flow field in the sink tube region. Thus velocity measure
ments at various stations along the length of the sink tube
 
as well as along a given radius at any designated station
 
were taken.
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A computer program was developed, for obtaining the
 
numerical solution of the Navier-Stokes equations, assuming
 
laminar flow, having generally prescribed inlet conditions
 
and axisymmetric boundary conditions. Computational results
 
for various viscous flows and assorted boundary conditions
 
have been obtained.
 

For a specific mass flow rate and the geometry of the
 
vortex chamber, it was found that the flow in the vortex
 
chamber was only affected, locally (i.e., only near the
 
sink region), by the size of the sink tube diameter. How
ever, within the sink tube, all three velocity components
 
were found to be higher for the smaller sink tube diameters.
 
As the speed of rotation of the sensor was increased, the
 
tangential velocities within the vortex chamber, as well as
 
in the sink tube increased almost in proportion to the speed
 
of rotation.
 

The only noticeable effect on the flow pattern, due to
 
the variation of the vortex chamber spacing, was found to be
 
at the entrance section of the sink tube. For a given mass
 
flow, the radial and tangential velocities in the vortex
 
chamber increased with an increase in the chamber diameter.
 
The same effect was also observed in the entrance region of
 
the sink tube.
 

A change in the flow rate had an appreciable effect
 
within the sensor and particularly near the sink tube en
trance. As the flow rate was increased, both the tangential
 
velocity and tangential vorticity increased rapidly. At the
 
higher flow rates, vortices were produced at the corner of
 
the entrance section of the sink tube and thus the flow
 
became unstable.
 

The theoretical predictions were found to be in reason
able agreement with the experimental results.
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I. INTRODUCTION
 

An interest in vortex flows has existed for many decades.
 

The beauty and vigor of the whirling and swirling motions in
 

water and are has fascinated man from his earliest days. Vor

tices may have been what inspired the Mediterranean artists and
 

craftsmen, well over 3000 years ago to create their spiral orna

mentations. Today, man describes vortex motions as the sinews
 

and muscles of fluid motion and the scientists through research
 

efforts attempt to harness the energy contained therein. Re

searchers are attempting to utilize vortex flows in many energy
 

conversion schemes such as in aeroplanes and other lifting bodies.
 

As the state of the art of vortex flow develops many new appli

cations are brought into focus. In recent years, vortex flows
 

within confined chambers have become of considerable interest.
 

This interest arose as a direct consequence of attempting to
 

learn more about the flow phenomena relevant to the gaseous
 

*
 core of a nuclear rocket [281 , electric power generation using
 

magnetohydrodynamic effects (123, and pure fluidic devices such
 

as the vortex amplifier and the fluidic gyroscope [15J.
 

A search of the literature readily reveals that there have
 

been many contributions made to the study of vortex flows
 

through investigations pertaining to meteorology, the Ranque-


Hilsh tube, the cyclone separator, wing theory, compressors,
 

fluidics and others. To discuss here the voluminous literature
 

on vortex flows serves no purpose, thus a condensation of the
 

*The numbers in brackets indicate references.
 

a. 



2 

important contri'tiutions is presented.
 

Vogelpohl 161] was the first investigator to attempt an
 

analysis of a confined vortex. He obtained an analytic
 

solution for the tangential velocity under the restrictive
 

assumptions that the radial velocity was completely indepen

dent of the axial coordinates and that the axial velocity
 

was zero. These assumptions precluded the increase of the
 

radial mass flow within the boundary layers due to the action
 

of the pressure defect. Thus, his solution was not an
 

accurate representation of the vortex flow between two flat
 

plates.
 

In the case of coaxial disks flow, by assuming the
 

axial velocity to be radius independent, KArmAn f251 obtained
 

a set of ordinary differential equations that described the
 

steady state viscous flow above an infinitely large rotating
 

disk. A numerical solution to these equations was presented
 

By Cochran 19]. Bbdewadt [4] solved the problem of a uni

formly rotating fluid over an infinite stationary wall.
 

Batchelor [3] generalized the KArmAn's method to include
 

the case of two rotating disks and discussed, semi-quanti

tatively, the nature of the steady flow between the two disks.
 

Additional comments on this problem have been presented by
 

Stewartson [57]. He also studied the boundary layer on a
 

semi-infinite cylinder which was either rotating about its
 

axis in a fluid otherwise at rest or was stationary with a
 

rotating fluid inside it [59]. He also investigated the shear
 

layer at the boundary of a finite circular cylinder for a
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fluid rotating uniformly about its axis in the same reference.
 

Matsch and Rice 136, 37, and 38] studied the inward
 

flow between rotatTng disks, which corresponded to the multiple

disk turbine. Their analyses and results were for the
 

potential flow between the disks as well as for creeping flow
 

Uetween the disks accounting for the centrifugal effects.
 

These analyses consTdered both partial and full admission of
 

the fluid at the outer periphery. The asymptotic flow was
 

shown to depend only on the fluid flow rate and the radial
 

Reynolds number (NRe-u), while independent of the tangential
 

velocity.
 

By employing the numerical method developed by Hall [20],
 

Stewartson and Hall [58] obtained a solution for a viscous
 

incompressible flow within the inner core of a nuclear reactor.
 

Theoretical investigations of unstable flows of the
 

second kind were reported by Ludwieg t33J and Jones 124J.
 

Axisymmetric and spiral disturbances were considered. Lud

wieg presented stability criteria for the core flow of
 

Hall j19] and predicted instability for small disturbances
 

if the pitch angle of the helical streamlines became too
 

steep and thus the Rossby number too small.
 

Rosenzweig, Lewellen and Ross [52] also analyzed the
 

two plate problem. They limited their analysis to the case
 

where the tangential velocity was much greater than the
 

radial velocity and the separation distance between the plates
 

was greater than the radius of the plates.
 

Viscous effects in vortex motions driven by an inward
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radial convection of an angular momentum were examined in
 

more detail by Lewellen 130]. Exact and some nearly exact
 

solutions of the Navier-Stokes equations, applicable to this
 

case, were also oUtained. These solutions were found by a
 

general expansion of the equations of motion for a large
 

swirl (t.e. for a small Rossby number) and by linearizing
 

the equations for perturbations about known flows for a weak
 

swirl (i.e., a large Rossby numb-er). He discussed the axial
 

vAriattons of flow. The results for large Rossby numbers
 

indicated that as the circulation decayed with increasing
 

axial distance, the axial velocity in an annulus about the
 

axis actually increased faster than on the axis itself. This
 

caused a reduced axial pressure gradient along the axis. The
 

results for small Rossby numbers indicated that the axial
 

pressure gradient could be reversed to produce a reverse
 

flow. It was found that in the flows dominated by rotation,
 

the fluid motion was forced to be two dimensional except for
 

a thin shear region where all necessary adjustments imposed
 

by the boundary conditions were satisfied by the flow.
 

Granger f18J studied the steady three dimensional
 

vortex flow for a specified vorticity distribution along the
 

axis of rotation within a vortex chamber whose disks were
 

an appreciable distance apart.
 

Kidd and Farris f29] eatajtned r~tker 4nteresting results
 

from a flow produced by the interaction of a potential vortex
 

with a stationary surface. In the analysis they transformed
 

the full Navier-Stokes equations by a similarity technique
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and then numerically integrated resulting ordinary differ

ential equations. Very close to the surface, the radial
 

velocity was found to le directed towards the axis and there

fore the flow was able to redistribute itself. Such problems
 

were of interest in the study of tornadoes and hurricanes.
 

ecently, they have become of interest especially in the
 

design of nuclear reactors.
 

Donaldson and Sullivan [131 made an extensive study of 

the class of solutions u = u(r), v = v(r), w = zw(r) for 

laminar incompressible flow conditions. The solutions by 

Burgers 15] and Rott 1531, in which u = -ar, v = v(r) and 

w = 2az, (a = constant), were included in this class. 

Donaldson and Sullivan began their work as a consequence of 

an interest on "canned" vortex flows, where fluid imparted
 

with a swirl entered a cylindrical container through its
 

side and discharged axially.
 

Yih 165] obtained a closed form solution of the Euler's
 

equations for an axisymmetric flow of a swirling and non

swirling flow discharging into a point sink. He, however,
 

made no provision for boundary layer development.
 

Ostrach and Loper f41] analyzed the vortex motion between
 

two closely spaced disks. The vortex was assumed to be
 

driven by the tangential injection of the fluid at the pe

riphery of the configuration and was discharged at its center.
 

The momentum integral solution of this problem showed the
 

strong dependence of the boundary layer thickness as well as
 

the radial velocity on the imposed radial mass flow. The
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results indicated that the boundary layer blockage effects
 

could be reduced by increasing the imposed radial mass flow.
 

It should be noted that they considered the case where the
 

relatve tangential velocity at the periphery of the con

figuration had a finite magnitude. Thus the results are
 

not applicable to the vortex rate sensor, where indeed the
 

relative tangential velocity at the periphery of the con

figuration is zero.
 

Fiebig 115] studied the response of the radial flow to
 

harmonic oscillations of the sensor. The approach used was
 

to approximate the transport flow by a family of "parabolic"
 

profiles which satisfied the equation of continuity but not
 

the momentum equation.
 

Eglr, Kizilos and Reilly [141 analyzed the radial flow
 

boundary layer on a circular flat disk. In their investi

gation, the drain-was approximated by a line sink and the
 

radial potential flow was assumed to be unaffected by the
 

boundary layers.
 

Sarpkaya [541 studied the radial flow between two co

axial disks. He computed the boundary layer development
 

by two methods. Similarity solutions of the equations were
 

obtained by employing an integral momentum technique through
 

utilization of an approximation suggested by Thwaits [601.
 

The result showed that the boundary layer thickness decreased
 

linearly to zero from the periphery to tfre center of the disks.
 

A theoretical and experimental investigation of the gain
 

and the frequency response in a vortex sink rate sensor was
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conducted by Ostdiek 1401. He reported that the dynamic
 

characteristics of the viscous flow within a rate sensor
 

operating in the fully developed range were signifTcantly
 

more favorable than those for the inviscid fluid within the
 

sensor.
 

Richards 148] applied the numerical techniques of the
 

implicit alternating directfon CADI) method, as well as of
 

the explicit iteration method to study the characteristi,cs of
 

the flow in a vortex rate sensor in which fluid discharged
 

into a point sink. He compared his numerical results with 

the experimental results obtained by Hellbaum j22] and found 

that the agreement was good for values of r > 0.2 ro .
 

Roache and Muller [513 developed a numerical procedure
 

for finding solutions to both incompressible and compressible
 

laminar separated flows, using time dependent finite
 

difference equations. They used the conservation forms of the
 

governing equations and used the upwind difference technique
 

for the advection (inertial) terms in both the compressible
 

and incompressible flows.
 

Macagno and Hung [343 studied the annular laminar 

captive eddy in a conduit expansion. The numerical procedure 

used was restricted to an expansion ratio of 2:1 and was 

limited to radial Reynolds numbers (NRe-u) up to 200. A 

correlation of experimental results with their numerical 

results was also included.
 

Pao 142, 43J considered two cases of the rotary disk

cylinder combinations and numerically computed the flow
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pattern of a viscous incompressible fluid confined within
 

the cylindrical chamber. He found that for a-tangential
 

Reynolds number Ne Cwr/v) in excess of 8, nonlinearities
 

appeared in the flow. He also observed that as the tangential
 

Reynolds number CNRe.01 was increased beyond 400, convergence
 

by the numerical iteration technique for steady state con

ditions became extremely slow.
 

Pearson 1442 described a method for obtaining an exact
 

numerical solution for the flow between two infinite rotating
 

disks. He also described a computational method for solving
 

the time-dependent two-dimensional viscous flow problems 145].
 

In addition to the numerical and analytical investigations
 

of vortex flows, a number of experimental investigations are
 

repprted in the literature. Experimental studies of confined
 

vortex flows can be broadly classified into two subcategories.
 

The first is concerned mainly with high swirl flows. Because
 

of its practical importance, such as in the case of hydraulic
 

cyclones, magnetohydrodynamic vortex power generators Cnuclear
 

reaction chambers), dust cleaners, etc., high swirl flows
 

received a great deal of attention.
 

One of the earlier experiments, was a visual experiment
 

by Savino and Keshock [55]. It was conducted in an attempt
 

to suspend fine particles of various sizes in a vortex of
 

air inside a right circular cylinder, which had a length-to

diameter ratio of approximately one. This study revealed
 

the presence of some axial motion, as particles appeared to
 

always cluster at the corner of the cylindrical surface and
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the exit end wall. This observation suggested that an
 

appreciable radial in-flow existed at the end-wall boundary
 

layer. They concluded that the amount of swirl (ratio of
 

tangential to radial velocities) imparted to the fluid, as
 

ft was injected into the chamber, alone determined that
 

fraction of the total mass flow which was forced inwardly
 

within the end wall boundary layers. When the swirl was
 

low Cless than 0.5), the radial inflow had sufficient inward
 

momentum to penetrate the centrifugal field. The inflow
 

existed at all axial and radial positions away from the walls.
 

When the swirl was high (greater than 101, the radial inflow
 

was diverted axially and if the flow was confined within two
 

walls, all the fluid left the chamber by way of the boundary
 

regions adjacent to the end walls. This latter conclusion
 

was consi'stent wit the result of Lewellen 130j.
 

Kelsall 1262 made measurements of the radial, tangential
 

and axial velocity components inside a hydrocyclone separator.
 

His experiments revealed the existence of large secondary
 

motions with most of the mass movement occurring close to the
 

walls where the centrifugal force was least.
 

Williamson and McCune 1642, and Donaldson 113 conducted
 

experiments in short cylinders (0.130 < (L/D) < 0.281). In
 

both references, the radial distribution of the tangential
 

velocity was calculated through axial traverses of the total
 

pressure.
 

Ragsdale 1462 took pitot tube measurements within a
 

yortex chamber (L/D = 0.5y at two radial stations and several
 



axial stations. He concluded that the notion Vas essentially
 

tangential with very little variation of magnitude in the
 

axial direction.
 

Kendall [27] experimented with a vortex that was generated
 

by 4 rotating porous cylinder which imparted a swirl to the
 

fluid supplied to it through the porous wall. A flattened
 

pitot tube was used to traverse the boundary layers. In the
 

measurements of both total pressure and local fluid direction,
 

the radial velocity was assumed zero at dfstances far removed
 

from the wall.
 

The second subcategory of experimental studies of con

fined vortex flows is mainly concerned with the low swirl
 

flows. One such flow is the flow in a vortex rate sensor as
 

reported in references [10, 22, 40].
 

Hellbaum £22] conducted experimental work in a vortex
 

rate sensor and obtained characteristic flow angles for
 

different tangential Reynolds numbers, radial Reynolds numbers
 

and plate-spacings. By the smoke trace technique, he studied
 

the effects of the geometrical parameters on the characteristics
 

of flow angle in the vortex chamber of the sensor. He selected
 

r = 0.2 ro as the smallest radius for which the flow angle a
 

was not appreciably affected by the sink proximity. By
 

determining a 0.2 (flow angle a at 0.2 ro), he plotted graphs
 

of tan a 0.2 versus tangential Reynolds number (h2o/v), with
 

Cro/h) and radial Reynolds number (Qo/hv) as dimensionless
 

parameters. Hellbaum showed an increase in tan a0.2 for
 

a decrease in flow rate.
 



The paper by DeSantts and gakowsky [10, Ii] reported 

the experimental velocity profiles and foundary layer 

characteristics in a steady state weak vortex flow produced 

by the combination of an axisymmetric sink flow and a vortex 

flow between two coaxial circular plates of very small aspect 

ratio Ch/r o < 0.03). 

In the experimental studies of Sarpkaya 154], using air
 

as the fluid, it was observed that the output of the pickoff
 

signal was linear for small values of 'w' and that linearity
 

increased with increasing flow rates. He further observed
 

that rotations in counterclockwise as well as clockwise
 

directr'ons about the axis of symmetry gave identical
 

differential pressure signals.
 

Rakowsky and Schmidlin [47], with water as the working
 

fluid, studied the flow in the vortex chamber by photographing
 

the dye traces of the streamlines and then reducing the re

sulting data. Angular momentum efficiency Cratio of angular
 

momentum at any r to that at r = ro) of the midplane of the
 

vortex chamber was plotted as a function of radius. These
 

results were then compared with the results predicted by a
 

momentum integral method with an assumed parabolic momentum
 

profile and the unknown matching parameter was determined.
 

In addition to the effect that the coupler diameter had
 

on the pickoffs, Burke and Roffman [7] studied the performance
 

of two different pickoffs Cone axially slotted and one ctr

cumferentially slotted). They observed that for couplers
 

of smaller diameters the pressure output decreased.
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With an angular rate sensor, Burke [6) observed the
 

effect of the coupler height and pickoff on the sensitivity
 

(defined as signal output unit rate of rotation). He re

ported that for a given rate of rotation, the sensitivity
 

(which now is a measure of differential pressure) decreased
 

rapidly as the angle between the axis of spin and the axis
 

of symmetry increased. The maximum sensitivity occurred when
 

the two axes coincided. The sensitivity was also found to
 

increase with increased spacing between the couplers. He
 

also discussed the time dependent phenomena such as the noise
 

frequency in the output of the pickoff, the transport time
 

and the threshold (ratio of Ap of signal to Ap of noise).
 

These phenomena are of importance in the practical use of
 

sensors when the response time is of importance.
 

Arimilli 12], Gala [17) and Lu 132 each undertook an
 

experimental investigation of a vortex sink rate. sensor.
 

Their studies, however, were confined only to the sink tube.
 

The apparatus they used had vortex chamber diameters of 5
 

and 10 inches, while the sink tube diameters ranged from 1/4
 

to 1 inch. The objective of their studies was to observe
 

experimentally the effect of the flow rate, change of
 

rotation, and change of configuration on the tangential
 

velocity within the sink tube.
 

Several investigators have undertaken studies, experi

mentally as well as theoretically, within the vortex chamber
 

only. Rakowsky and Schmidlin 147J have considered the entire
 

vortex sink rate sensor as their system. However, they assumed
 

the fluid to be inviscid and therefore were able to use the
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Euler equations and easily find the numerical solutions. None
 

of the previous investigators, however, have considered a
 

viscous fluid. No direct measurements of the velocities in
 

the sink tube have been made before. Thus in the present
 

investigation a viscous fluid is assumed and the velocities
 

within the sink tube are directly measured. In addition to
 

this experimental investigation, a complete numerical analysis
 

of the flow pattern in the entire sensor is undertaken.
 

The vortex sink rate sensor presently under consideration,
 

consists basically of an ideal sink flow between two coaxial
 

plates having a single outlet. The entrance flow to the
 

device is radial and the sensor design permits an angular
 

rotation about its geometric axis. This arrangement results
 

in the creation of a vortex flow within the sensor.
 

The sensor is essentially a fluidic device which, in
 

addition to being inexpensive to manufacture, has all the
 

desired characteristics for use as a guidance control instru

ment. Its simplicity, high reliability and long life are
 

assets not to be overlooked. The present exploration of space
 

has also created the need for a guidance control instrument.
 

that would essentially be unaffected by severe environmental
 

conditions such as high temperature, shock, vibration and
 

nuclear radiation. The sensor can indeed serve this need'as
 

a fluidic gyroscope. The fluid vortex amplifier also shows
 

promise for future application to liquid propellant rocket
 

engine control systems. The advances in the art of fluidics
 

within the past few years, and the successful application of
 

fluid amplifiers has made the sensing and amplification of a
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signal possible by merely varying the rotation of the sensor.
 

As the sink tube is considered the most likely location
 

for any signal detection element, the study of the flow
 

pattern within the sink tube is given particular attention
 

here. A signal detection element senses changes as a con

sequence of fluctuations at its location. The signal could
 

be a relatively weak one and therefore could need to be
 

amplified for transmission to the controlling device. Thus
 

it is important to strategically locate the signal detection
 

element at the location where maximum amplification occurs.
 

This present investigation was therefore undertaken
 

with the primary objectives being to investigate the steady
 

state flow conditions, and to develop an understanding of
 

the flow pattern within the sensor.
 

Chapter II describes the formulation of the governing
 

equations. Chapter III presents the numerical analysis used
 

for solution of the flow field. Chapter IV and V are devoted
 

to the numerical results. The experimental investigation
 

and results are discussed in Chapter VI. Experimental results
 

are compared with numerical results in Chapter VII and the
 

conclusions are given in Chapter VIII.
 



JI. 	 BASIC FORMULATION
 

2.1 	 Governing Equations
 

The vortex sink rate sensor considered for this invest

lgation is shown tn Figs. (2.1) and (2.2). The sensor,
 

bastcally, consists of a vortex chamber and a sink tube.
 

The vortex chamber consists of two circular co-axial disks
 

held apart, at their periphery, by a porous coupling. One
 

circular disk has an opening to permit the mounting of the
 

sink tube in such a manner that the vortex chamber as well
 

as the sink tube have a common axTs of rotation. Air flow
 

was supplied radially to the vortex chamber through the
 

porous coupling. The objective behind this investigation
 

was to determine the flow pattern within the vortex sink
 

rate sensor.
 

The axisymmetric flow through the sensor suggested the
 

selection of the cylindrical coordinate system, as shown in
 

Fig. (2.3), to establish the governing equations for the flow.
 

The radial, tangential and axial coordinates are respectively
 

represented by r, e and z while u, v and w denote the
 

respective velocity components. In the analysis that follows,
 

the top plate of the vortex chamber is considered to be
 

located at z = 0 and the axis of symmetry is located at r = 0.
 

The Navier-Stokes equations for a viscous incompressible
 

fluid wtth constant properties may be expressed in cylindrical
 

coordinates as
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Figure 2.2 Sectional View of the Vortex Sink Rate Sensor
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Figure 2.q Coordinate System for Axially-Symmetric Flows
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pUD u + v au v2 DU1 Fr 

L'iT u5F r '- - + wtz r r 

+ 	 PF- + U u - u 2 av a2 u (2-1)
ir2 TT78 2 2 -

r1 
r 

t_.v + Iv + v- F
+ + uv = 1 ap 

v gr - 2- 2+a7+ awDu 	 2 v 


+r2v +Lv v + 1 2 u v 
r2 r rr2 az2J C2-2) 

P + w v v + w 
t 	 + Uar + wa= --D 


+I[2w Iw + I 2w + 2w (2,3) 
IDr2 r 7ay 

and the continuity equation is given by 

Du + + _ Dv + 2w = 0 (2-4) 
r r r 2z 

Essentially, two methods are employed in obtaining 

numerical solutions of the governing equations. In the first 

method, a steady state approach is used to find the solution 

of the flow field for low Reynolds numbers. At higher 

Reynolds numbers the steady state equations become unstable 

and are not applicable. Thus, a transient approach is 

adapted in obtaining the solutions for flow at higher Reynolds 

numbers. 
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2.1.1 	 Steady State Approach
 

Steady flow conditTons are assumed throughout the
 

sensor, and since the air velocities are small,
 

the flow 1s assumed to be incompressible. The temperature
 

of tle air entering the sensor is considered constant and is
 

taken to Be the same as the environmental temperature.
 

Throughout the sensor, laminar flow is assumed and the in

fluence of body forces is neglected. Axial symmetry is also
 

assumed and therefore the a7C ) term is set equal to zero.
 

Under these assumptions, Equattons (2-1), (2-2), (2-3)
 

and 	(2-4) reduce to
 

Du Du 	 1 p 2
[auu 	+ au + au_ (2-5)+F+ 	1 


v Yvrv _-7 T '57-7	 (2-6)v + a 
7azz 7rJ

+2v + v 


uT-+ w w + P+V+ 2 ; 	 27f 

r az
 

Du + 	1L + W_=0 (2-8) 
r r 5z
 

Equations (2-5), (2-6) and (2-7) are then, respectively
 

the radial, tangential and axial momentum equations for the
 

flow in the sensor. The continuity equation, Equation (2-8),
 

is eliminated by introduction of the stream function, t,
 

such 	that
 

U I1 	 C2-9a)
r B 

and
 

a. 'a5 	 (2-9b) 
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Thus the velocity components u and w can be expressed 

in terms of p. 

The tangenttal vorticity is defined by 

- au aw (2-10) 

A combination of Equations (2-9) and (2-10) results in
 

2- 2,
 

-r77"r rT2 (2-11)
 
r r D4
 

Since vorticity and circulation are related, it seems
 

desirable to express Equation (2-6) in terms of circulation.
 

Equation (2-6) is first multiplied by r and then rearranged
 

to give
 

r F Fa ( v +ua a v) 22 
2urcrv) + wT -Crv) = vfriTr-+ + a (2-12) 

Upon cross differentiation of Equations (2-5) and (2-7),
 

followed by taking their difference, the pressure term is
 

eliminated and the result is expressed as
 

rnu 2vr av f 2 1 an 7 a2 (2-13)u + w-z u-- 2vr Z + r- r7F aJ 

By employung the definition of circulation, T = var,
 

Equations C2-12) and-(2-13) are transformed to give
 

,[a(+ I (2-14) 

u Drar r 
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Equations C2-1-1), (2-141 and C2-15) now constitute the
 

governtng equations for flow through the sensor under steady
 

state conditions.
 

2.1.2 Transient Approach
 

In a manner similar to that described aboye, the trAn

stent form of the governing equations are found to be
 

A a 1 D2~= (2-16)
-2
T --7 - - r7- 1 
Dr r at
 

Dr az 
, + w (2-17)u.I +2T 2 


- ++ r -r-- a+ 2+r--1 9 

Y-W5'Z r r - TZ 7 Frr 

- 2 
C2- 1 )

-az 


These equations, with appropriate initial and boundary
 

conditions, are used to find solutions in the transient
 

approach.
 

r } 


2.2 Initial and Boundary Conditions
 

Initial conditions are necessary for Equations (2-17)
 

and (2-18). Upon considering the inertia of the fluid, the
 

simple and physically realistic assumption for the initial
 

condition is found to be that of a solid body rotation of the
 

fluid. Thus the radial and axial velocities are assumed to
 

be zero, and initial fluid shear stress is therefore neglected.
 

Consequently, at t = 0
 

2
rCr,21 = wr , (2-19a) 
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flr,z) 0 C2-19b) 

The boundary conditions yalid for both the transient
 

and steady state equations are the same, and are shown in
 

Fig. (2.4).
 

Since the flow is symmetric with respect to the z-axis,
 

it ts only necessary to specify Boundary conditions for half
 

of the sensor. With the origin chosen as the center of the
 

top plate of the vortex chamber the boundary conditions can
 

be written as
 

Cii Sink tube and vortex chamber axis, r = 0, 0 < z Z 

CL,z) i P(Oz) = (Oz) = uCO,z) = v(O,z) = 0, C2.20a) 

wO,z) .
r r=0. C2-20b) 

(i Top plate of vortex chamber, z = 0, 0 < r < ro 

jCr,o) = uCr,O) = w(r,O) = , C2-21a) 

v(r,O) = cr , (2-21b) 

f(r,O) = wr2 , (2-21c) 

fi = jr-I a2 71 Z = 
( r ,0) 

az z = 0 (2-21d) 

Ciii) Entrance to vortex chamber, r = ro, 6 < z < h 

i(roz) = Qo z (2-22a) 

u(ro,Z = uO = o (2-22b) 

v(roz) = ow ,0 (2-22c)
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F&-,zY_ wro 2 12-22di 

wCro,z) iCro,3z 0 . (2-22e) 

ClvI Bottom plate of vortex cKAmb-er, z h, ri < r < ro 

Cr,l) = Qo , C2-23aY 

27 

uCr,h) = w(r,h) = 0 , (2-23b) 

v(r,h) = or , (2-23c) 

2
rCr,h) = r , (2-23d) 

fiCr,h) = 1 ;2 (2-23e) 
r 2 

z z hi
 

Cvi Sink tube wall, r = ri, h < z <
 

iCriz) = Qo ,2-24a) 

uCr,,z) = wCri,z = 0 , C2-24b) 

v(ri ,z) = ri (2-24c) 

if(riz) = or12 (2-24d) 

n(ri z) = I 22-24e)
 

rBrr = r,
 

(vi) Sink tube exit, z = A, 0 < r r, 

zV(r,z,) = acr p = 0 (2-25a)'5- Tz- , '57(,) 

z(r,z) = tr.g =u (2-25b) 

The Justification of the above boundary conditions is 

gtven in Appendix A. 
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2.3 Nondimensional Form of the Governing Equations
 

The system of governing equations are made dimensionless
 

by introducing the following nondimensional quantities.
 

Independent Variables,
 

i = t.(2-26)= r0 Z= -r0,' - 0o, RI o rot 

Dependent Variables,
 

uU --- P 3
 
U 

V V r= -

W w , T=/ , C2-27)wr° 


W - QO
N ro02 NR° Q03
 

NRe-a 27rwro
 
mr
o
 

NRe-u Q0
 

Upon introducing Equations (2-26) and (2-27) into
 

Equations (2-11), (2-14) and (2-15), the nondimensional form
 

of the steady state equations are found to be
 

D 1 D2 0 (2-28)82 +27 z
 
DR R 2 2-8 
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- r - 1 + a2r (2-29);r ar 


Urtg+ V% Une 2 a 2 z J+ a 

U,7 _T Re-O 7 -5 

+ aT (2-30) 

z* 
SImlarly Equations (2-16), (2-17) and (2-18) are trans

formed to give the dimensionless form of the transient
 

equations as
 

. a2v a 1 a+p1aa = (2-31)
 

ar +ar 1 ja2r 1 ar a2 (2-32)
9+ _57 _5-- 1_7 - -F + J 

al all a U 2 3r 1
 
7 + UaT + 7 - -
 R a7 Re-c 

+ I a R an (2-33)
 

The dimensionless initial conditions for the transient 

equations are 

for T = 0 

R2rCR,z) = (2-34a) 

nLR,Z) = 0 (2-34b) 

The dtmensionless boundary condttions are shown in 

Ftg. C2.5) and are written as 



1*
10 0 

* - 0 U  0 * V - Ii* 4 0 * r - h-xi 

= NRo x Z , U •NRo/H V I 

II
 
W "0,r=1 * 0s
 

,p, 0 o U 0 V 0 (R i Z 
 H) R 1 Z H) 

."N .U 0 * V =R W * 0W aR a -O 


r D n - R2
0 r - 1a 20 

NRo , U = 0 , V - Ri W4- 0 

2r R
1 InD .(R-R1 , Z L) R R 
*. a 0 - 0 

T TZ 

U - 0 0,w = 0 
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Figure 2.5 DImensionless Boundary Conditions
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L 

UCO, = CoIzi r(O,Z) nCOzl = p(oz) = O, C2-35a) 

i) Sink tube and vortex chamber axis, R = 0, 0 < Z 

R R 	= 0 C2-35b) 

Ct,- Top plate of vortex cflmb-er, Z = a, 0 < R < I 

UCR,01 = W(g,o) FCR,O = 0 , C2-36a)_ 

NCR,O) = R , C2-36b) 

rCRO) = R2, C2-36c0 

nICR,O) = -1 ap 
"z z 	 = 0 (2-36d) 

vortex chamber, R 1, 0 < Z < H
 

U(I,Z) = Qo _ NRo (2-37a) 
_ 2 
2rr0 tub 

W(IZ) = n(I,Z) = 0 , (2-37b) 

V(Iz) = r(az) aI , (2-37c) 

(iii) 	Entrance to 1 


Q0 .z = .RO0Z
 

*(I,Z) 	 IT N° iT.2-37d)
 

2rr0 	w
 

(iv) Bottom plate of vortex chamber, Z = H, Ri < R < 1 

U(R,H) = WR,H} 0, (2-38a) 

R,Hj 	 = NRe , C2-38b) 

= P(-Y-R- (2-38c) 
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LR,H) = R C2-38d) 

aZ2 Z (2-38e)
 

CYI Stnk tu~e wall, R = R H <H, Z < L 

1CRiZ) = W(RZ) = 0, C2-39a) 

*CRfZY = NRo , C2-39b) 

VCRi,,Z) = RI S C2-39c) 

PCRiZ) = R2 T C2-39d) 

n ,RiZ)= I 

R_7= C2-39e)
 

(vi) Sink tube exit, Z = L, 0 < R < R 

B (R,L) = aZ(R.L) ) 2-40a) 

9V DW C2-40b) 

ay (R,L) = D-(R,L) = ULR,L) = 0 

These initial and boundary conditions are utilized in the 

numerical analysis of this investigation. 

The systems of nondimensional governing equations, along 

with appropriate initial and boundary conditions, are then 

solved to obtain the stream function, circulation and the tan

gential yorticity in the vortex sink rate sensor. 



III. 	 FORMULATIONS FOR
 
NUMERICAL ANALYSIS
 

As -mentioned tn the introduction, it is necessary to
 

approximate the governing equattons by a finite difference
 

scheme, so that calculattons remain stable for all Reynolds
 

numbers. A similar approach for viscous flows has been used
 

b) other investigators 18, 16, 45], and is discussed in the
 

tntroductton. In references 148, 49] the finite difference
 

technique was used to solve the non-linear equations for the
 

flow wtthtn a vortex chamber. Both the implicit alternattve
 

dtrectton CADI<4 method and explictt finite difference methods
 

were used in reference [48]. The agreement in results was
 

found 	to be within one percent for the stream function and
 

one and half percent for the radial velocity variation. The
 

computer running time for the explicit method, howevers was
 

noted to be two orders of magnitude less than that for the
 

ADI method. Consequently, for this study, the explicit
 

method was selected to determine the flow pattern in the
 

vortex sensor.
 

For stability purposes the central difference method is
 

most suitable 134, 42, 45], and therefore it was used in the
 

numerical analysis for this problem. The central differences
 

are obtained by using a Taylor series expansion for each term
 

in the differential equation.
 

As mentioned in Section C2.11, steady state and transient
 

procedures were adopted for computational purposes. In the
 

steady state approach, when the viscous equattons are expressed
 

3-1
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in a finite difference form) an iterative numerical scheme
 

is employed to obtAln an approximate solution. In this
 

approach the procedure b-egins wtth an assumption of some
 

approximate flov pattern for a very low Reynolds number. The
 

numerical iteration technique ts then used and continued,
 

until tire ftnite difference equattons are satisfied. This
 

ultimately leads to an acceptable flow pattern, for that
 

Reynolds number. This flow pattern then becomes the tnput
 

data at a sltghtly higher Reynolds number, and the procedure
 

ts continued, until convergence is reached.
 

At the higher Reynolds numbers,these equations become un

%.table and thus a transient approach, rather than the steady
 

state approach, is used. In this approach a technique of
 

expressing the differential equations in a succession of
 

discrete steps is employed. As an initial input for
 

calculations at the higher Reynolds numbers, a known flow
 

pattern from the steady state approach is used. The iteration
 

is then continued until the results approach steady state
 

conditions. For subsequent higher Reynolds numbers the last
 

results are used as the input data and the procedure is con

tinued.
 

3.1 Steady State Problem
 

By employing the central space difference technique,
 

Equations (2-28), C2-29) and (2-30) can be written in the
 

finite difference form as
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+ ,jl±g 
 )

= 	1 Lri+ 

+ 

-a 
 C22a r[. b +.l j 	 S C3-1) 

*K .+r + 
I ,J T +,j i4 5 j ij+1 hj

NRe-O 
 2a 

16RNe

- - C+, i,j) i,j+1 rf,j 

(3-2) 

nj= (ni+ij + j+ij+ 1 + i 

NRe.6 t ,,j+a 	 2a )
-l 


16 	 N-e ji 

-	 Ti-. 1 ) - ( l+1,j - *i-1,) (Tij+l - Ii j-) 

'J (r, +1
4a r (r r ,j-ii /11 

+a2 aNRe-e
 

+ 	 R + aNR--- Ci,j-. " 'i,j+I) (3-3)
4R 8RJ-

This procedure is employed to calculate the temporary
 

values of i*, r* and rL*. In the above equations i and j de

note the space point in R and Z direction respectively. For
 

a 	gi'ven value of I and j, the space coordinates are represented
 

y fl Cit-hIa and Z = (j-l)a, where a is the size of the grid
 

spacing. The explanation of these difference equations is
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given in Appendix B.
 

In the above equatTons, the non-superscripted dependent
 

v~rtables are assumed to have the superscript (n) whereas
 

the astertsk ts used to denote a temporary value such as
 

respresenting the new iterate ACn+1} at that point. This
ti
 

new Iterate ts obtained from the temporary values and the 

precedtng (old) iterate A.n. by the relaxation procedure as 

given by 

(n+1) Cn)
 
A W A + ayA.* C3-4)-i T..i J 1.', 

where 0 < w2 < 1. 

3.2 Transient Problem"
 

In the procedure used to solve the initial boundary
 

value problem, governed by Equations C2-31), (2-32) and (2-33),
 

the derivatives are approximated by finite differences In a
 

manner similar to that used in the steady state problem.
 

In this case, however, the central time difference as well as
 

the central space difference techniques are used and result
 

in the following equations.
 

k+1 k k k k
 
Sf + + ++ +i 

k~ k k 
a C22a nikj+ k+, k-. C3-5) 

8R
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k+. =[r k-I + AT C~i k I x 

2c R
 

k k k k
 
Cr ,p i'j-11 - (rilj+l - *l'j-l) x
 

,3 r _, 3 )+ 4 R_ ri+ , o r 
C 1+ 

k k k-i k 
+ r + rjjj -2r ) - 2a Cr 

1Re-e 

f.1+AI 4'I- r k a o a+gL.. e . 
i-a 2 , (3-6)
 

k+i k-I k__ k,3k
k1 =fn . + AT 2 § 4+,j - i-lk (nk 

2Ra
 

k k k k k 

- i,jl) - (-i,j+ " i,ij- ) (nl+l,j i-l,j 

k k k k 
+ 2a . (- - 2a ) + 4a r. x 
r-,3 3 7NRe-O ",j 1 

k k k k
 
Cri1 j+f Tr- + 2a Cni 
 .gRe-e 

k k k k 
+i4R (Ti +T i j + 

NF tj J ii i- je-
Re-e 

-2n~j1}}Re-e (37 
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In the above equattons, the subscripts i and j designate
 

the space point in the R and Z directions respectively, where

as the superscript k denotes the time point. For given
 

values of t. j, k, the space and time coordinates are re

presented by R = i-1)a, Z = Ci-I)a and T = KAT, where a is
 

tle size of the grid spacings and AT is the size of the time
 

step.
 

The method for obtafning these equations are similar
 

to tlat adapted by Fromm 1161, Pao [42], and Macagno and
 

Hung 134]. The explanation of these equations is given in
 

Appendix B. 

This procedure mandated considering numerical stability 

tn tite selection of the time step size. The most stringent 

restrtction on the time step size, for the cases considered, 

Us suggested in reference 121], and is given by 

AT < 2 + + a i 

2 2 + T) 2 
NReO (AZ) NRe-@ (AR) 

a - 1 	 (3-8) 

In this equ~tr"oniU and & Are tKe Ayer~ge-yelocttles for
 

the grid point under consideration. For the sake of con

venience, AT, in most of the calculation, is taken to be
 

CAR/4U) in the present formulation.
 

3.3 	Finite Difference Forms of the Boundary Conditions
 

The only boundary conditions that have to be expressed
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in the finite difference form are those that involve a
 

derivative. They, in turn, are the expressions for the tan

gential vorticities on the solid surfaces as well as for the
 

axial velocity along the geometrical axis.
 

The tangential vorticities are calculated by use of the
 

Taylor series expansion. By using B as a point on the plate
 

or wall and A at one mesh distance away, the Taylor series
 

expansion is expressed as
 

2
'A = 'B + a4* + a a2 i + O(a3 ) , (3-9) 
B2 

B 

for vortex chamber plates. Upon neglecting the terms of order
 

a3 or higher order and by using the plate boundary conditions,
 

W= O, U = 0, 0 , : ,
 
37
 

the series expansion is reduced to
 

D2 2 (p (3-10)
 

aZ B a A B
 

The expressions below for vorticities are found at J = I
 

or Z = 0, and at J = m or Z = H, by using Equation (3-10) in
 

Equations (2-36d) and (2-38e).
 

," = (i for 0 < R < 1 (3-11) 

Ra 

nIIm = 2 (' ) for Ri < R < 1. (3-12)
7 mm-i 

-

i ,mi 
Ra 

A similar procedure is used for the sink tube wall boundary 

conditions and from Equation (2-35e) the vorticity is obtained 
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at i = nn or R :R and is given by 

nn~11 nj =2 - 4nnn--1,j-j " 4.m I for K Z L. C3-13)_~ 

The tangential vorttctties can also be obtained by em

ploytng the MAC -method 162) where a phantom boundary point is
 

used. The MAC method produces the same results as given above.
 

An alternate method for computing vorticities is the one
 

suggested by Hung [23] which has the advantage of requiring
 

only information at an adjacent point. Consistent with the
 

above notations, the expressions for vorticities are found
 

to be
 

)
nB: ( A " nA 

Ra 

Thus, the vorticity, at J = I or 

i, I -z3 (Pi,2 - i,2 for 0 < R < I, (3-14)
="Z - -- --

Ra 

and at J = m or Z = H, as 

7im = 2 ('i,m-1 Vi~m) for Ri < R < 1.-i,m-1 

Ra (3-15) 

Similarly along the sink tube wall, one finds at i = nn or 

R=R i• 
Cnn-4,j Vnn,j1nn," .3 - -nn-,j H < Z < L. 

Ri a C3-16) 

Tie boundary condjtfon for the tangential vortictty at the
 

corner junction of the stnk tube and the vortex chamber is
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determined by use of a -method suggested by Roache [50J. He 

calculated the boundaryi conditrons for the tangential vorticity 

at the corner By using Both the upstream and downstream 

neighb-oring points for given values of stream function and 

Yorticity. Thus the boundary conditton can be represented by 

at 1' nn, = m or R = R., Z = H 

nn,m I7 (nn- im + 1PnnU-I 2tnnm) (3-17) 

2Ria 

or 

37 +nn-Iil -nnm ,m +nnm-l 2tnnom 
2Ria 

+SCTInn( ,m )" (3-18) 

The axial velocity boundary condition along the geometrical 

axis is giver-by 

at R =0 

W(OZ) = im (I DIP) 

R+ O RWRR O 

R = 0 for 0 Z < L. 

By use of the forward difference technique, this can be
 

wrttten as ,
 

at i P I or R = 0,
 

1 j 1-7 (" 1 ,j - -162 j V3 j C3-19) 
6a
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or
 

W,j C-4,j + 243,j +1ip2,j - 124,aj), (3-20) 

5a 
where 0 < Z < L. 

In the stnk tube at the downstream section, the dependent 

variables are assumed to lie constant and parallel to the tube 

Axls. Ttus at the si'nk tube extt, the boundary conditions 

can We determined through use of a parabolic extrapolation. 

The relattonship for boundary conditions employed here was
 

developed by Hung 123]. Consequently, for this case Cwhtere
 

0-5 8, tl1 the boundary condtti.ons can be written as
 

At j = mm or Z = L, 

4 t,mm = ti,mm-4 -2'i mm-3 + 2*,mm1 (3-21)
 

2
1i,mm = ri,mm-4 " imm-3 + 2Fi,mm- ' (3-22) 

imm i . -21i mm-3 + 2n.i,mm-1 C3-23) 

Wimm = Wi,mm_4 -2Wi,mm.3 + 2Wi'mm1 (3-24) 

3.4 Iteration Technique
 

In the iteration procedure for this region, sweeps of
 

the interior mesh points are made, in turn, for each of the
 

dependent variables, i, 3 and i. This procedure is continued
 

unttl
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(n+1) (ii1
 
Aij A, 9L (3-25)
 
max (n+1 

where s is the required tolerance.
 

To accomplish the sweeps as mentioned above, it becomes
 

essential to adapt the following sequence of steps, which
 

are also illustrated fn Fig. (3.1). 

-1) Assign the Ini'ttal values for 'p, r and ii As 

P = 0, r R29 n = 0. 

2) Assign the boundary conditions for tp. 

3) Solve the stream function Equation (3-1) by the 

relaxation method.
 

4) Solve the circulation Equation (3-2) by the
 

relaxation method.
 

5) Calculate the boundary conditions for n,
 

6) Solve the tangential vorticity Equation (3-3) by
 

the relaxation method.
 

7) Repeat procedure commencing with Step 3 through
 

Step 6 until required tolerance is reached.
 

The sequence of numerical procedures described above is
 

basically the same as that proposed by Pao 1421, with the
 

exception of the use of the relaxation technique. This
 

technique is sufficiently discussed In Section (3.1).
 

Having obtained the solutions to the difference equations
 

for p, F and n, the velocity components are calculated from
 

the relations
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Figure 3.1 Simplified Computer Flow Diagram
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U	 "3-26a) 

(3-26b) 

4nd
 

=r 	 (3-26c) 

These are then expressed in the difference form As
 

Utj= 1 (i 1 , 	 (3-27) 

1
Wi ==i- Ij N l+1,j 	 C3-28)-

and
 
= rP(3-29) 

=
where R (1-1)a.
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Through use of the numerical technique of Chapter III,
 

numerical results are obtained. These results are discussed
 

in Chapter IV and V.
 



IV. RESULTS OF THE NUMERICAL ANALYSIS
 

4.1 Stream Function
 

The symmetry of the sensor permits one to assign a value
 

of zero to the streamline corresponding to its geometrical
 

axis. On the top plate of the vortex chamber, the stream
 

function is arbitrarily assigned the value of zero. Since
 

NRo is the value of the stream function along Z = H and
 

R = Ri , it is taken to be the value on the bottom plate of the
 

vortex chamber. At the entrance to the vortex chamber (i.e.,
 

at R 1), the flow is assumed to be uniform and therefore the
 

stream function is directly proportional to Z, and along the
 

sink tube wall it is assigned the value NRo. On the downstream
 

section of the stnk tube, the streamlines are assumed to te
 

parallel to the geometrical axis. With this information as
 

input data, Equation (3-1) is solved numerically by following
 

the procedure described in Section (3.4). The pattern of the
 

streamlines in the sensor is shown in Fig. (4.1) and (4.2)
 

for two different sets of values of the radial and tangential
 

Reynolds numbers.
 

The variation of the stream function within the vortex
 

chamber, in moving from the periphery to its center, is shown
 

in Figs. (4.3) and (4.4). From Fig. (4.3), it is evident
 

that the streamlines in the region 0 < Z < H eontyct jn A
 

manner similar to a vena contracta. This contraction is a
 

different consequence of the boundary layer at the entrance to
 

the region. The plots in Fig. (4.3) further reveal that the
 

streamlines in the region 0.3 < R < 0.9 are approximately
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parallel to the plates. This indicates that in this region,
 

the variation in the boundary layer thickness is negligible.
 

The existence of the sink at the center of the bottom plate
 

produces considerable streamline movement toward the sink for
 

R values less than 0.2. In Fig. (4.4) the same results for
 

stream function are plotted as a function of axial length with
 

R being the parameter.
 

The effect of the rotational speeds on the flow pattern
 

within the vortex chamber was investigated under various flow
 

conditions. As the tangential Reynolds number, NRe O , was in

creased from I to 512, the numerical results revealed no
 

appreciable effect on the flow pattern. The results further
 

indicated that for R < 0.2 the streamlines moved toward the
 

top plate, as the tangential Reynolds number was increased.
 

However, this movement was so small, that it was very difficult
 

to illustrate this effect on any figure. This slight effect
 

could be due-to the increase in centrifugal force resulting
 

from the increase in rotation.
 

As the tangential Reynolds number is increased and reaches
 

a value in excess of 2000, the streamline pattern within the
 

vortex chamber changes from that observed at lower Reynolds
 

numbers. This pattern is shown in Fig. (4.5). In the region
 

0.14 < R < 0.9, the streamlines, above Z = 0.4H and below
 

Z = 0.6H, move toward the plates. The boundary layer thickness
 

at these Reynolds numbers is much thinner than at lower
 

Reynolds numbers. This pattern indicates that the flow is no
 

longer laminar but becomes turbulent. For values of Z > 0.6H,
 

in the vicinity of the sink (i.e., at the geometrical axis) ,
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the flow appears outward rather than inward.
 

The flow pattern within the sensor is indeed affected as
 

the rate of flow is increased. The numerical results as
 

shown in Figs. (4.6) and (4.2) indicate that the boundary
 

layer thickness decreases as the flow increases. As a con

sequence of this condition the streamlines appear to move to

ward the plates as well as closer to the sink tube wall.
 

As shown in Figs. (4.7) and (4.8), the discharge from
 

the vortex chamber into the sink tube results in smooth con

tinuous streamlines of appreciable curvature. For a short
 

distance into the sink tube the streamlines remain close to
 

the geometric axis. This is due to the conservation of the
 

radial momentum. However, farther into the sink tube, the
 

streamlines are somewhat removed from the geometric axis.
 

This shift is not appreciable. This effect is probably a
 

result of stability conditions becoming evident in the flow.
 

The streamlines ultimately become parallel to the geometric
 

axis. In the immediate vicinity of the geometric axis, a core
 

region (i.e., a region with no streamlines) is observed. The
 

core region is a consequence of the centrifugal forces tending
 

to move fluid away from the geometric axis.
 

4.2 Tangential Velocity
 

The dimensionless tangential velocity is defined as the
 

ratio of actual tangential velocity to the tangential velocity
 

at the entrance (i.e., at R = 1). Thus the dimensionless*
 

tangential velocity at the entrance to the vortex chamber is
 

assigned the value one. On the top and bottom plates, where
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solid body rotation exists, the velocity is assumed to have
 

a linear relation with the radius R, i.e., V - R. Along the
 

sink tube wall this velocity is assumed to be a constant.
 

With this as input data, the tangential velocity, at any
 

location in the sensor is obtained from Equation (3-20) by
 

following the procedure discussed in Section (3.4).
 

The variation in the tangential velocity in the vortex
 

chamber is shown in Figs. (4.9) and (4.10). It is noted that
 

for low radial Reynolds numbers, (NRe-u) and for values of
 

R > 0.2, there is no appreciable change in the tangential
 

velocity. The velocity in the interior region however is
 

seen to be consistently higher than at the plates. As shown
 

in Fig. (4.10), the velocity profile, parallel to the Z-axis,
 

is found to be parabolic. It should also be noted that the
 

velocity reaches a maximum in the plane midway between the
 

plates. In general, the parabolic velocity profile is seen to
 

increase in size as the radius R decreases and is found to
 

reach a maximum value near R approximately equal to 0.1. This
 

is due to the conservation of an angular momentum combined with
 

the fluid viscosity effect near the plates. Along the geo

metrical axis (i.e., at R = 0), the tangential velocity is zero
 

for all values of Z.
 

The effect of the tangential Reynolds numbers on the tan

gential velocity is shown in Figs. (4.11), (4.12) and (4.13).
 

As NRe- is increased from the value I to 16, the tangential
 

velocity in the vicinity of the sink tube entrance increases
 

in almost a linear manner, as noted in Fig. (4.11). This in

dicates that the velocity V is approximately constant. This is
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particularly true for low NRe:e as the flow behavior is linear. 

Also it is noted that the characteristic curve of R = 0.08 has 

very high tangential velocity near the sink region. But as 

the flow progresses into the sink tube, due to the sink tube 

wall, the velocity reduces rapidly and in the downstream 

section of the sink tube velocity profile is proportional to 

the radius. Thus such profile is obtained, (crossing two 

times of profiles of R = 0.06 and R = 0.04). 

At a NRee8 = 16, the velocity reaches its pe k value. 

As NRe.O is further increased to a value of 512, Fig. (4.12), 

the velocity decreases continuously. For the range of NReQ 

values from 16 to 512, the maximum decrease in tangential 

velocity is only 3 percent. However, as NRe-e is further 

increased beyond the value of 512 this rate of decrement of 

maximum value increases. The decrease continues, and as 

NRee reaches a value of 2048, the decrease in the velocity is 

approximately 25 percent of that at NReG = 16. This pattern 

reflects the fact that the flow at the higher NRe-a' is be

having much like that of a solid body rotation.
 

As shown in Fig. (4.14), the presence of the sink has an
 

appreciable effect on the tangential velocity profile in the
 

vortex chamber and becomes apparent for R < 0.2. Thus, ip the
 

presence of the sink, the rate of tangential velocity increase,
 

appears greater in the vicinity of the sink than at other
 

regions. This results in a velocity profile distortion and
 

bending towards the sink entrance.
 

The magnitude of tangential velocities in the sink region,
 

on the discharge side of the vortex chamber, is higher than
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those near the other plate. The presence of the sink opening
 

produces a greater momentum on the sink tube side and accounts
 

for the above result.
 

The effect of the radial Reynolds numbers, NRe-us on the
 

tangential velocity within the vortex chamber is illustrated
 

in Figs. (4.15) and (4.16). In the vortex chamber, as the
 

flow is increased (i.e., for higher value of NRe-u), a rapid
 

increase in tangential velocity is observed for R < 0.2. At
 

low NRe-u and for R > 0.2, however, the increase of this 

velocity is not appreciable. In this case, the tangential 

velocity is observed to be only slightly higher than the 

values at the wall (i.e., the flow is approximately that of
 

the solid body rotation). As shown in Fig. (4.17) at higher
 

value of NReu, the circulation (or angular momentum) is con

served at the midplane of the vortex chamber. Everywhere,
 

in the region, the tangential velocity is higher than its
 

inlet value-for R > 0.1. Also due to the higher radial and
 

tangential Reynolds numbers, the instability in the flow is
 

observed in the sink region, therefore a wavy profile of the
 

tangential velocity is obtained.
 

As shown in Fig. (4.16), in the vicinity of the sink tube
 

entrance, the tangential velocity shows a rapid increase as
 

NRe.u values are increased. Approximately a one hundred per

cent increase in tangential velocity is noted in the immediate
 

vicinity of the sink tube, as NRe-u is increased from 8 to 16
 

whereas approximately a fifty percent increase is observed for
 

values of R < 0.1. This is so because as the NRe-u increases
 

the mass flow rate also increases and thus the momentum of mass
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increases at a greater rate than the mass increment.
 

As shown in Figs. (4.18) and (4.10), the tangential
 

velocity is considerably higher in the immediate vicinity of
 

the sink tube entrance than anywhere else in the tube. For
 

Z > 0.2, the velocity decreases rapidly with an increase in
 

Z. At very low NRee and NRe-u values, the tangential
 

velocity becomes the equivalent of a solid body rotation. This
 

occurs at a distance into the sink tube of approximately three
 

times the height of the vortex chamber. This condition con

tinues for all subsequent downstream sections. The equivalence
 

of solid body, rotation is principally due to the fact that
 

the viscous effect of the fluid predominates and therefore the
 

fluid rotates at the same angular velocity as the tube. As
 

NRe-e and NRe-u are increased, the distance into the sink tube
 

at which solid body rotation first becomes evident is also
 

increased.
 

4.3 Axial Velocity
 

The axial velocity is calculated after determining the
 

stream function values. Equation (3-28) is used to obtain the
 

axial velocity at any location within the sensor. The axial
 

velocity along geometric axis however is calculated by using
 

Equation (3-20).
 

Figure (4.19) shows the variation of the axial velocity 

within the vortex chamber. As the entrance flow to the vortex 

chamber is uniform and purely radial, the axial velocity is 

assumed to be zero at that location. It however rises rapidly 

into the chamber for a short distance (from R = I to R = 0.9 ) 
7
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and then almost becomes zero at R = 0.94. For values of
 

R > 0.94, the axial velocity is positive in the upper portion
 

of the vortex chamber, while it is negative in the lower
 

portion. This result is a direct consequence of the boundary
 

layer growth, which occurs at the entrance section and then
 

stabilizes in the region 0.2 < R < 0.94. The axial velocity,
 

for R < 0.2, increases rather rapidly, and becomes everywhere
 

positive, as R decreases. This phenomena takes place as a
 

result of the presence of the sink located on the bottom plate.
 

Thus, in the vicinity of the sink, the flow tends toward the
 

sink entrance and the axial velocity becomes positive every

where. The axial velocity is observed to have a maximum value
 

near the geometrical axis of the vortex chamber. This is a
 

result of both the axial velocities on the plate and the sink
 

tube wall being zero. The axial velocity near the wall is
 

small because of the boundary layer growth, and it is a
 

maximum near the geometrical axis.
 

Figures (4.20) and (4.21) reveal the variation of the
 

axial velocity in moving from the top plate of the vortex
 

chamber to the exit of the sink tube. It is noted that the
 

axial velocity is positive everywhere within the sink tube,
 

with the maximum value occurring along the geometrical axis.
 

As shown in Fig. (4.20), the axial velocity in the vicinity
 

of the geometric axis, from the sink tube entrance to a
 

distance approximately 3H into the sink tube, continuously
 

increases to a maximum, then decreases slightly, and subsequently
 

becomes constant at the downstream section. A reverse flow
 

pattern to the above is observed within the sink tube for
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R > 0.06. This variation in pattern is possibly due to the
 

radial momentum having a higher magnitude at a sink entrance
 

and then decreasing to zero for the short distance (3H).
 

Within this short distance the radial momentum is converted
 

to axial momentum, and as seen the axial velocity rises for
 

R < 0.04. However, beyond this (3H) length, due to stability
 

of flow the value of axial velocity changes and becomes a
 

constant along the axial length. At R = 0.08, however, the
 

axial velocity rises continuously until a peak value is
 

reached and this is accounted for, by the gain of axial
 

momentum over radial momentum. At R = 0.08 and beyond (where
 

the peak velocity occurs), the viscosity effect reduces the
 

velocity at a greater rate near the wall, and ultimately pro

duces a constant velocity in the downstream section.
 

In Fig. (4.21) the axial velocity results are plotted
 

as a function of radius with Z as a parameter. Here, the
 

axial velocity profile is not fully parabolic as encountered
 

in the Poiseville flow. This is due to the sensor rotation
 

which moves the fluid toward the wall and away from the geo

metrical axis.
 

As NRe-u was increased, the axial velocity, within the
 

sink tube, along the geometrical axis, increased at a faster
 

rate than elsewhere. This was substantiated by the predomi

nate effect that NRe-u has over NRe-e' at the higher values.
 

Thus at the higher flow rates the flow was attempting to be

come similar to the Poiseville flow.
 

The effect of the tangential Reynolds number on the axial
 

velocity, within the sink tube, was negligibly small. There
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fore it was difficult to show this effect in graphs. This 

effect, however, is mentioned here merely for discussion 

purposes. As NRe_ was increased to a value of 16, the axial 

velocity at a giv&n station along the geometrical axis, in

creased continuously and reached a peak value at NRe. = 16. 

However, as NRe-e was further increased to a value of 512,
 

the axial velocity decreased continuously. This pattern was
 

interpreted as being due to the predominate centrifugal
 

effect at the higher NReO values.
 

4.4 Radial Velocity
 

The radial velocity is considered negative when it is
 

directed towards the geometrical axis and considered positive
 

in the reverse direction. The radial velocity is assumed
 

constant at the entrance to the vortex chamber and zero on
 

all remaining boundaries. After obtaining the stream function
 

values, Equation (3-27) is solved numerically to obtain the
 

radial velocity at any location in the vortex sink rate sensor.
 

The variation of radial velocity within the vortex
 

chamber is illustrated in Figs. (4.22) and (4.23). As a con

sequence of the radial momentum conservation, the radial
 

velocity continuously increases as R decreases to the value
 

R = 0.1. At that location it reaches a peak value and then
 

decreases to zero at the geometrical axis. This is due to
 

symmetry about the geometrical axis. The figures also show
 

that there is a slight decrement of radial velocity at the
 

entrance region of the vortex chamber near the plates which
 

is attributable to the growth of the boundary layer near the
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plates. It is also observed that the radial velocity is
 

approximately inversely proportional to the radius for R > 0.1.
 

The radial velocity, overall, within the vortex chamber is
 

negative everywhere.
 

The radial velocity profile is found to be of parabolic
 

shape, symmetrical about Z = 0.5H. This profile remains as
 

such up to a value R > 0.3. As R is further decreased, the
 

presence of the sink, distorts this profile. The sink tube
 

tends to suck the fluid and thus the radial velocity, on the
 

sink side, rises faster than near the top plate. The distorted
 

parabolic profile therefore turns toward the sink entrance.
 

The results of the radial velocity in the sink tube are
 

illustrated in Figs. (4.24) and (4.25). The radial velocity
 

is highest at the entrance region. This is due to the con

servation of radial momentum in the vortex chamber. As the
 

flow progresses into the sink tube, the radial momentum
 

rapidly converts to axial momentum and thus the radial velocity
 

rpaidly decreases. At a distance of approximately 5H into
 

the sink tube, the radial velocity changes direction, (the
 

negative radial velocity becomes positive). The establishing
 

of stability of flow causes this to occur. The radial velocity
 

subsequently approaches a value of zero at the tube exit
 

section. As observed, the positive magnitude of velocity is
 

negligible for low radial Reynolds numbers. However, as will
 

be shown in Chapter VII, this velocity is significant at the
 

higher radial Reynolds numbers. The change from a negative
 

to a positive value is a result, of the higher rates of flow,
 

within the vortex chamber, at the higher NRe-u values and thus
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the fluid experiences a greater force moving it away from the
 

geometrical axis.
 

As noted in Fig. (4.25), throughout the sink tube region,
 

the radial velocity profile at any given axial station is
 

somewhat of a parabolic shape. The profile begins to develop
 

at the tube entrance, continues its development into the sink
 

tube and ultimately becomes a fully developed parabolic pro

file about R = 0.5 R, at Z > 4H. The development of the
 

parabolic profile is in part due to the fact that the viscosity
 

reduces the radial velocity both near the wall and near the
 

core, with the velocities there ultimately becoming zero. The
 

conversion of the radial momentum to axial momentum also
 

contributes to the development of the profile.
 

4.5 Tangential Vorticity
 

The tangential vorticity is defined as the difference

between the gradient of the radial velocity along the axial
 

length and the gradient of the axial velocity along the radius.
 

As a result of uniform radial flow into the vortex
 

chamber, the vorticity is considered zero at the entrance to
 

the flow field region, (except of the corners). As discussed
 

in Appendix A [Equation (A-12)),the vorticity along the geo

metrical axis is zero. The tangential vorticity on the vortex
 

chamber plates and on the sink tube wall is calculated through
 

use of the stream function results and Equations (3-14), C3-15)
 

and (3-16). This information is used as the boundary conditions
 

for Equation (3-6) which is then solved numerically, by


Jfollowing the procedure described in Section (3.1).
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Figures (4-26) and (4-27) show the variation of vorticity
 

within the vortex chamber, in moving from the periphery to
 

its center. As a result of the large velocity gradients, a
 

maximum absolute value of vorticity occurs in the boundary
 

layer regions within the vortex chamber as well as at the
 

entrance corner of the sink tube. Thus the vorticity on
 

both plates is higher than the vorticity in the flow field.
 

The vorticity r on the top plate is found to have a negative
 

value while a positive value is observed on the bottom plate.
 

A zero value of vorticity occurs, for R > 0.3 in the midplane
 

of the vortex chamber plates. The vorticity pattern discussed
 

above is a consequence of the axial velocity gradient along
 

R being negligible in the entire vortex chamber except for
 

R < 0.2, and also due to the radial velocity gradient along
 

Z'being negative near the top plate, zero at the midplane of
 

the chamber plates and positive near the bottom plate.
 

As discussed earlier, the vorticity at R = 1 is zero and
 

it is due to the uniform radial flow at this section. There
 

is, however, some vorticity at the plate edges for this
 

location and it is attributable to the boundary layer effect.
 

The vorticity on the plates decreases approximately 20 percent
 

from R = 1 to R = 0.9, at which location it reaches a minimum
 

value. It then continuously increases to a maximum value'as
 

R decreases to R = 0.1. This occurs because near the plates,
 

the radial velocity also follows the same trend as discusved
 

before in Section (4.4) and the vorticity is indeed an axial
 

gradient of radial velocity, and there the radial gradient of
 

axial velocity is negligible.
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As shown in Fig. (4.27), the vorticity in the flow field
 

continuously increases from the value zero, which occurs at
 

the entrance section up to R = 0.1 Throughout the range
 

0.3 < R < 1, it is observed to be approximately a linear 

function of Z, except within the boundary layer region. The
 

above pattern is attributable to the fact that within the
 

flow field, the radial velocity profile along Z is approxi

mately parabolic.
 

The effect of the sharp corner at the entrance to the
 

sink becomes evident at values of R < 0.3. This is particu

larly noticeable as the velocity on the bottom plate increases
 

at a faster rate than on the top plate. At the corner, the
 

vorticity reaches a maximum and is approximately 10 to 25
 

times greater than the maximum vorticity on the plate. In
 

explaining this pattern it should be noted that the velocity
 

gradients near the bottom plate are higher than those near
 

the top plate. In addition, it is seen that the magnitude of
 

the radial velocity, in the vicinity of the corner, is greatest
 

and also that the magnitude of the axial velocity is significant.
 

It is also observed that the axial gradient of the radial
 

velocity is positive and of appreciable value while the radial
 

gradient of axial velocity is negative. Thus, a high value
 

of vorticity occurs at the corner due to the difference of
 

both of these gradients.
 

Figure (4.27) also reveals that, within the vortex
 

chamber, the radial velocity gradient is significant in the 

flow field at R = 0.1. The vorticity then appears to decrease 

as R increases, ultimately reaching a value of zero at the 
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geometrical axis.
 

Figures (4.28) and (4.29) illustrate how the tangential
 

vorticity varies within the sink tube. It is apparent that
 

the vorticity within the sink tube flow field is greater than
 

that existing within the chamber flow field. The radial
 

gradient of the axial velocity within the sink tube is ostensibly
 

much greater than the axial gradient of the radial velocity
 

within the vortex chamber. This appears to be so as the
 

average axial velocity within the sink tube is much higher
 

than the inlet radial velocity, and also since both the radial
 

velocity gradient in the axial direction within the sink tube
 

as well as the axial velocity gradient along the radius in the
 

vortex chamber are negligible. As a result of this the
 

vorticity in the sink tube appears to be higher.than that with

in the vortex chamber. Since the axial velocity gradient is,
 

in general, negative the vorticity is overall positive every

where within the sink tube.
 

As discussed in Section (4.3) for R = 0.08, the axial
 

velocity decreases in the entrance section of the sink tube.
 

After determining its radial gradient it becomes evident that
 

along the sink tube wall and in its immediate vicinity, the
 

vorticity continuously decreases. This decrease occurs from
 

the sink tube entrance Z = H to approximately'a distance Z = 3H
 

into the tube. From this point on the vorticity becomes
 

virtually constant. For R < 0.04, no appreciably variation in
 

vorticity is noticeable. However, within a sink tube entrance
 

length, the vorticity decreases to a lower value and thfen increases
 

to an equilibrium value. The vorticity for a given R withln
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the downstream region, remains constant along Z.
 

The vorticity, in the downstream section of the sink tube,
 

is observed to be approximately directly proportional to the
 

radius for low radial and tangential Reynolds numbers. This
 

is particularly true at low Reynolds numbers where the effect
 

of rotation on axial velocity is negligible and the axial
 

velocity profile is approximately parabolic as for poiseuille
 

flow. Thus the radial gradient is a straight line. At the
 

higher Reynolds numbers, however, due to the effect of higher
 

rotational speeds nonlinearities become evident.
 

The effect that NRe_ has on vorticity along the bottom
 

plate and along the sink tube wall is illustrated in Figs.
 

(4.30) and (4.31). As the flow is maintained constant and the 

rotation is increased, the vorticity, ii(n = ) decreases in an 
W 

inversely proportional manner with respect to NRe-O* Since the 

rate of decrease in vorticity is greater than the rate of decrease
 

in NReG)' the flow changes to a spiral form with a small helical
 

angle in the sink tube. Thus the rate of production of the
 

vortices reduces near the corner. This indicates that the
 

flow becomes more stable at the higher NReO values.
 

The effect that NRe'u has on vorticity along bottom plate
 

and along the sink tube wall is shown in Figs. (4.32) and C4.33).
 

As NRe-u increases, the rate of increase in vorticity is
 

greater in the region R < 0.2 elsewhere in the vortex chamber.
 

At the corner of the sink tube the vorticity increases by a
 

factor of 2-1/4 as NRe-u increases from 8 to 16. Within the
 

sink tube, the vorticity also increases as NRe-u increases.
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Thus at high flow rates, more vortices are created near the
 

solid boundaries as well as near the corner.
 

Figures (4.34) and (4.35) illustrate the constant
 

tangential vorticity lines for two different sets of values of
 

radial and tangential Reynolds numbers. It is evident that
 

the highest vorticity occurs at the sink tube corner. As
 

discussed before this is the location at which instability in
 

the flow begins. It is also observed from Fig. (4.35) that
 

vortices are produced in the flow at the higher radial Reynolds
 

numbers. The vorticity lines are found to be parallel to
 

geometrical axis in the downstream section of the sink tube.
 

A zero vorticity line exists in the midplane of the vortex
 

chamber plates for R > 0.3. The curvature of the zero
 

vorticity line, near the sink corner increases as the flow rate
 

increases.
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V. 	EFFECT ON FLOW PATTERN WITHIN SENSOR
 

DUE TO CONFIGURATION CHANGES
 

5.1 Effects Due To Variation of Vortex Chamber Radius to
 

To determine the effect, if any, that the variation in
 

vortex chamber radius had on the flow pattern within the
 

sensor, a numerical computation was undertaken for assigned
 

values of vortex chamber radii of 5, 10, 15 and 20 inches
 

respectively. For each radius the vortex chamber height (h)
 

as well as the sink tube radius (ri) were held constant at
 

I inch. In each case the flow rate and rotation were also
 

assumed to be constant. The following conclusions were
 

drawn from the numerical results.
 

1) 	The streamlines in both the vortex chamber and the
 

sink tube moved closer to the wall surfaces as, the
 

chamber radius was decreased.
 

2) 	As shown in Fig. (5.1), the tangential velocity, V,
 

in the vortex chamber (at the same radial location,
 

R) decreases as the vortex chamber radius increases.
 

However, in the immediate vicinity of the sink
 

region and also within the sink tube there is no
 

noticeable effect on the velocity, V.
 

3) 	There was only a negligible effect on the tangential
 

vorticity throughout the vortex chamber and the
 

sink tube.
 

4) 	There was a negligible effect on the radial and axial
 

velocities throughout the vortex chamber and the sink
 

tube.
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5.2 Effect Due to the Variation of the Sink Tube Radius ri
 

To determine the effect of the variation in the sink
 

tube radius on the flow pattern within the sensor, a numerical
 

computation was undertaken for assigned values of sink tube
 

radii of 1/2, 5/8, 3/4, 7/8, 1 and 1-1/8 inches respectively.
 

For each sink tube radius both the vortex chamber height and
 

vortex chamber radius were held constant at 3/4 and 10 inches
 

respectively. For constant flow rate and rotation the
 

numerical results revealed the following conclusions.
 

1) As shown in Fig. (5.2), the tangential velocity in 

the vortex chamber near the sink tube region in

creases as the sink tube radius is decreased. An 

increase in the peak value of the tangential 

velocity is also noticed at the sink tube entrance. 

2) The distance into the sink tube required to obtain 

constant axial velocity in the downstream section 

decreased as the sink tube radius was increased. 

3) The radial velocity within the vortex chamber near 

the sink tube region (i.e., for R < 0.1) increased 

as the sink tube radius was decreased. 

4) The tangential vorticity, near the sink region in 

the vortex chamber (at the junction of the vortex 

chamber and sink tube) and within the sink tube, 

increased as the sink tube radius was decreased. 

5) The slope of the zero vorticity line, at the 

entrance section of the sink tube, decreased as the 

sink tube radius was decreased. This resulted in 
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the intersection of the zero vorticity line with the
 

sensor's geometrical axis which is moved closer to
 

the center plane of the vortex chamber.
 

5.3 Effect Due to the Variation of Vortex Chamber Spacing h
 

To determine the effect of the variation in vortex
 

chamber spacing on the flow pattern within the sensor, a
 

numerical computation was undertaken for assigned values of
 

vortex chamber spacing of 1, 1.2, 1.4, 1.8 and 2 inches re

spectively. For each spacing the vortex chamber radius as
 

well as the sink tube radius were held constant at 10 inches
 

and I tnch respectively. for constant flow rate and rotation,
 

the numerical results revealed the following conclusions.
 

1) The tangential velocity decreases at the sink tube
 

entrance, as the spacing increases [Fig. (5.3)].
 

The distance into the sink tube, where the flow
 

becomes equivalent to a solid body rotation, also
 

increases slightly. As the vortex chamber spacing
 

decreases, a peak tangential velocity is observed
 

midway between the geometrical axis and wall of the
 

sink tube. As the spacing h was increased, the peak
 

value of tangential velocity decreased and moved
 

smoothly either toward the geometrical axis or sink
 

tube wall. The same result was obtained experi

mentally by Lu [32]. For the higher values of
 

spacing h, since the velocity profile was not
 

affected by the boundary layer, the peak value of
 

velocity moved closer to either the geometrical axis
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or the sink tube wall. From its peak value, the
 

tangential velocity decreased rapidly but smoothly
 

to both the geometrical axis and sink tube wall.
 

2) 	The uniform entrance radial velocity to the vortex
 

chamber decreased as the spacing was increased.
 

The radial velocity at the entrance section of the
 

sink tube also decreased for increased spacing
 

heights.
 

3) 	The streamlines, at the sink tube entrance, appeared
 

to move closer to the geometric axis as the spacing
 

height was increased. That is to say that the bulk
 

of the flow was closer to the geometrical axis.
 

4) The distance into the sink tube where the axial
 

velocity became a constant, increased as the spacing
 

height was increased.
 

5) The tangential vorticity along the solid surfaces
 

of the vortex chamber as well as at the sink tube
 

entrance, decreased as the spacing h was increased.
 

There was, however, no appreciable effect on the
 

tangential vorticity along the sink tube wall.
 

6) The entrance length into the sink tube increased as
 

the spacing height was increased. (The entrance
 

length is defined as the depth into the sink tube
 

where radial velocity changesdirection from inward
 

to outward).
 



VI. EXPERIMENTAL INVESTIGATION
 

6.1 Description of Apparatus
 

The apparatus which was constructed and assembled con

sists of a vortex chamber, three sink tubes, a high pressure
 

as well as a low pressure regulator, an air filter, an air
 

dehydrator, a flow meter, a manifold, a probe assembly, a
 

posttiye drive assembly and the necessary gages, valves and
 

piping. The vortex sink rate sensor, in which a sink tube
 

Is ssembled to the vortex chamber, was so designed as to
 

permit a number of possible combinations of physical dimensions.
 

A constant temperature Hot Wire Anemometer was used in
 

obtatning the velocity distributions.
 

A schematic of the vortex sink rate sensor is shown in
 

Fig. L6.1). The vortex chamber is made of two circular
 

plexiglass disks held apart by a porous coupling securely
 

mounted at the periphery of the circular disks. One circular
 

disk has a threaded opening at its center to permit the
 

- attachment of a sink tube. The second circular disk is 

attached, by means of a flanged coupling, to a drive shaft
 

that is supported on two bearings. The drive shaft, through
 

a speed reduction gear box and sprocket wheel and chain drive,
 

is connected to a variable low speed motor to assure con

centricity with the axis of symmetry of the circular disks.
 

Both plexiglass disks have grooves on their surfaces for pro

per setting of the porous coupler. To provide rigidity and
 

uniformity of spacing between the disks eight spacers,
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symmetrically posittoned around the circumference, are used.
 

The vortex sensor is mounted within a manifold assembly
 

tn such a manner that tts axis of rotation is horizontal.
 

The sensor rotates freely within the manifold assembly. As
 

A result of a sealed ring pressfitted to the assembly the
 

possibility of air leakage from the sensor is negligible.
 

The manifold assembly is rigidly fastened to a steel frame
 

platform to which the variable speed motor and speed reducer
 

are also mounted. The design permits a vortex sensor speed
 

range from 0 to 35 revolutions per minute.
 

Three interchangeable plexiglass sink tubes of 1, 1-4/4
 

and 1-1/2 inches inside diameters were used to vary the sink
 

tube sizes. Two sets of such sink tubes, one of twelve and
 

the other of twenty-four inches length were employed. The
 

sink tubes were designed to enable pitot tube pressure measure

ments as well as hot wire velocity measurements at varioUs
 

stations along the length of the sink tube as well as along
 

anr-giyen radius.
 

The porous coupler, used in the vortex chamber, was
 

similar to the one used and discussed by Burke [6J. The
 

coupler was made from stacked 0.0625 inch thick steel rings with
 

an inside diameter of 20 inches. Triangular grooves of 0.0227
 

inches in width (approximately) and 0.03 inches in depth were
 

cut radially towards the center of each of the rings. The
 

grooves were cut, side by side, such that on the inside cir

cumference of the ring, they were continuous, that was, with

out any flat tops between grooves. In all approximately 2700
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such grooves were cut around the periphery of each ring.
 

The rings were stacked with the grooved side of one ring
 

against the smooth side of the next ring. The stacked rings
 

were held under compression in the assembly of the sensor
 

forming triangular nozzles of 0.375 inches in length. The
 

aggregate jet area was about twenty-five percent of the in

side area of the coupler. The coupler was practically uni

form throughout its circumference. The rings, therefore,
 

could be stacked to any desired height from a minimum of I
 

Inch to a maximum of 1-1/2 inches. This arrangement provided
 

the means by which different coupler heights could be achieved.
 

The static pressure probe, as shown in Fig. (6.2), was
 

fabricated from two stainless steel tubes of 0.06 and 0.03
 

Inches outside diameter both having a thickness of 0.01 inches.
 

The larger diameter tube was tapered to a conical shape at
 

its closed end. In its periphery at distance of 0.1625 and
 

0.1937 inches from the closed end, are eighteen equispaced
 

0.005 inch drilled holes arranged in a manner resembling a
 

pizometer tube. The smaller diameter tube at its closed end
 

was chamfered and a 0.01 inch hole was drilled through the
 

tube at 3/4 of an inch from its closed end. The tubes were
 

assembled in such a manner, the smaller tube inside the
 

larger tube was then soldered to the inner tube. Static
 

pressure measurements are obtained by connecting one open end
 

of the pressure transducer, to the static pressure probe,
 

while the other is open to the atmosphere. The circuit dia

gram for the pressure transducer is shown in Fig. (6.3)
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The schematic of the probe holder stand is shown in
 

Fig. (6.4). The probe support mechanism has been so designed
 

with a rack and pinion arrangement, to allow for a longitu

dinal movement of the static pressure probe and probe holder
 

along the sink tube length. The probe support mechanism has
 

also been so designed to provide means by which the static
 

pressure probe and probe holder can be moved in a vertical
 

direction normal to and intersecting with the sink tube axis.
 

For all movements it is possible to maintain the static
 

pressure probe and hot wire probe holder axis parallel to the
 

sink tube axis, at all times.
 

The velocity distribution throughout the sink tube is
 

obtained by use of a constant temperature hot wire probe as
 

shown in Fig. (6.5). The hot wire probe used in conunction
 

with the anemometer is supported by a pin-joint on its own
 

support as shown in Fig. (6.6). The hot wire probe can easily
 

be positioned anywhere within the sink tube. The probe is
 

also capable of being rotated spherically, so as to position
 

the probe, to be perpendicular to the resultant velocity.
 

A disc worm wheel and worm screw arrangement provides the
 

mechanism by which an azimuth angle of rotation can be obtained.
 

A string and roller arrangement provides the means by which
 

a longitudinal angle can be obtained. Thus the hot wire probe
 

can easily be positioned to measure the resultant velocity.
 

From the measurement of the resultant velocity, and the longi

tudinal and azimuth angles, the axial, radial and tangential
 

velocity components can be calculated.
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A block diagram of the DISA, constant temperature hot
 

wire anemometer (No: 55AO1) used in this investigation is
 

shown in Fig. (6.7). The anemometer, in essence consists of
 

a fine electrically heated wire which is convectively cooled
 

when placed in an air stream. The resistance of the wire,
 

which increases linearly with temperature, is uniquely related
 

to the mean speed of the air stream and the current. The 

equation for calculating the velocity with this anemometer is 

V1 A + B V (6-1)
 

where V is the bridge voltage, N is the mean flow velocity,
 

a is the probe operating resistance, and A and B are con

stants which depend only on the physical properties of the
 

wire and fluid.
 

This relationship which governs the equilibrium behavior
 

of the wire is in reality a heat balance. The left hand
 

side of the equation is proportional to the heat input of the
 

wire, while the first-term on the right hand side is proportional
 

to the forced convection cooling. With the constant temperature
 

hot wire anemometer, a feedback amplifer system is employed
 

to keep the probe resistance and hence also the probe tempera

ture constant. Fundamentally, the measured quantity is the
 

power required to keep the temperature constant.
 

The hot wire probes that were referred to earlier and used
 

in this investigation are the DISA type No: 55F21 and are
 

shown in Fig. (6.4). The wire itself is a platinum-plated
 

tungsten, 5pm in diameter, and is stretched across two needle
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supports. The probe resistance is 4.OQ. The average flow 

velocity is indicated by a multirange D.C. bridge voltmeter 

which has an accuracy of + one percent. This accuracy was 

improved by use of zero shift D.C. voltages of 1, 2, 5 and 10 

volts. This also permitted the meter operation in the lowest 

full scale range. A square wave generator is incorporated 

into the instrument to allow checking actual dynamic responses 

under operating conditions.
 

A DISA type No: 55DI0 linearizer is connected to the
 

anemometer to determine the linear relationship between the
 

velocity and the bridge voltage.
 

The air flow system is shown in Fig. C6.8). Filtered
 

and metered low pressure air is supplied to the vortex sensor
 

through six symmetrically spaced inlets which are on a mani

fold attached to the vortex chamber. Compressed air is first
 

passed through a dehydrator and then reduced to approximately
 

5 psig. pressure as it passes through a high pressure regu

lator. The air is then filtered and its flow regulated as
 

it passes through a low pressure regulator. The air flow
 

rate is measured by means of a flowmeter and finally the air
 

is supplied radially to the vortex chamber of the sensor.
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Figure 6.8 Air Flow Circuit and Components 
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6.2 Test Procedures
 

As mentioned under the description of apparatus, the
 

vortex sink rate sensor was designed to allow a number
 

of possible combinations of its physical dimensions. The
 

vortex chamber has a radius of 10 inches. Its design, how

ever is such that through use of spacers the distance
 

between disks can be changed. This arrangement makes possible
 

A number of slenderness ratios(ri/h) for experimental pur

poses. Three interchangable sink tubes of 1, 1-1/4 and
 

1-1/2 inches in diameter make possible a number of different
 

chamber to sink tube radii ratios. A variable speed motor
 

further provided the means of obtaining a sensor speed of
 

rotation range from 0 to 35 revolution per minute.
 

For each test run velocity profiles as well as static
 

pressure distributions were obtained at a number of different
 

axial locations within the sink tube. The axial locations,
 

along the sink tube, selected for recording measurements were
 

Z equal to 0.0, 0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0,
 

2.5, 3.0, 3.5, 4.0, 5.0, 6.0, 9.0, 12.0, 15.0, 28.0, and 21.0
 

inches respectively. At each axial location the radius was
 

traversed, with measurements in general taken at r values of
 

0.0, 0.1r i , 0.2ri, 0.3r i , 0.4r i , 0.5r i inches respectively
 

where riwas the inside radius of the sink tube. Three sink
 

tubes were used with respective inside radii of 0.5, 0.625
 

and 0.75 inches.
 

prior to conducting any of the experiments, all instru

ments were calibrated according to the standard procedure.
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However, it is considered desirable to include here a brief
 

discussion of the calibration and technique of using the hot
 

wtre probe. The hot wire probe was calibrated with the use
 

a special pitot tune shown in Fig. (6.9) in conjunction with
 

a transducer. The pitot tube and the hot wire probe both
 

were positioned at the immediate exit of the sink tube in
 

such a manner as to have symmetry with respect to the sink
 

tube axis. The longitudinal angle of the hot wire probe was
 

set at zero. Then as the air flow rate, for zero rotation,
 

was varied both the pitot tube and the hot wire probe
 

readings were recorded through use of the exponential and gain
 

adjustments on the linearizer, the linear relation between
 

the anemometer voltage and air velocity was obtained. This 

therefore resulted in a hot wire probe calibration curve 

srtewn -in jFtg. C6.-101, 

The calibration curve,relating to the probe longitudinal
 

angle and the protractor angle,is given in Fig. (6.11).
 

A calibration curve was also plotted to correct for
 

any lag existing within the roller-string mechanism. One
 

straight line curve was for the clockwise rotation of the
 

roller (pointer and protractor) and the second curve was for
 

the counterclockwise rotation of the roller. The protractor
 

was graduated in degrees and as a reading was recorded, then 

with the appropriate calibration curve for roller rotation, 

the probe longitudinal angles e and 4 were obtained. These 

longitudinal angles e and %ere then used to calculate the
 

velocity components u, v and w.
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The technique of how the hot wire probe was used to
 

measure the resultant air velocity also merits a brief
 

discussion. A more elaborate explanation is given in
 

Appendicies C and D. The hot wire probe was introduced Into
 

the air stream withfn the sink tube in such a manner that
 

the wire itself was in a horizontal position. Simultaneously
 

the probe support was secured in a position to only permit
 

the hot wire probe movement in a longitudinal direction in
 

the horizontal plane. The hot wire was then rotated such that
 

a point on the wire would sweep out a spherical curve. The
 

hot wire probe, tkus positioned, only sensed a velocity
 

due to the axial and radial components. The effect of tan

gential velocity component on the probe, for the probe so
 

positioned, was negligible. Rotation of the probe in an
 

longitudinal direction then accounted for the tangential
 

velocity component. As the hot wire probe was rotated in the
 

longitudinal direction a naximum reading on the anemometer
 

was ultimately observed. This reading is the resultant air
 

velocity at that particular location. The hot wire probe
 

holder mechanism was designed to enable the measurement
 

of the longitudinal angle (e).
 

In a manner similar to the above the hot wire probe was
 

introduced into the air stream, within the sink tube, such
 

that the wire itself was in a vertical position. Simultan

eously the probe support was secured in position to only per

mit the hot wire movement in a longitudinal direction within
 

the vertical plane. The hot wire probe- thus positioned)
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only sensed a velocity due to the axial and tangential
 

components. The effect of the radial yeloci'ty component on
 

the probe, for the probe so positioned, was negligible.
 

Rotation of the probe in a longitudinal direction then
 

accounted for the radi'al component. As the hot wire probe
 

was rotated in the longitudinal direction, a maximum reading
 

was ultimately observed. This reading is the resultant air
 

velocity at that particular location. The hot wire probe
 

holder mechanism had been so designed that the longitudinal
 

angle @ was also measurable. In all measurements using the
 

hot wire probe, the probe holder axis was, at all times,
 

parallel to the sink tube axis. This technique made certain
 

thiat tKe air velocity was perpendicular to the hot wire and
 

also that the air velocity measured was the resultant velocity.
 

Haying, at a particular location, measured the resultant
 

velocity and the angles 4 and e the radial, axial and tan

gential velocity components could then be calculated as in

dicated in Appendix C.
 

The experimental investigation began with the case of
 

constant air flow of 3.93 cubic feet per minute, sensor
 

rotations of 0, 5, 10 and 20 revolutions per minute
 

respectively, and maintaining throughout a unity slenderness
 

ratio. In the sink tu~e; the experimental data-were taken
 

at'6 teKOI prescribed axial stations, depending en the length
 

of eaclstnk tube.
 

At each station along the sink tube from 5 to 7 static
 

pressure readings were taken as the radius was traversed.
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The static pressures were measured by a static pressure probe
 

used in conjunction with a transducer. The static pressure
 

probe was first located at the innermost station in a manner
 

such that the static pressure probe and probe holder axis
 

coincided with the sink tube axis. Once the static pressure
 

at this location was recorded, the probe was then successively
 

positioned and the pressures were recorded at the other pre

scribed sink tube stations along the sink tube axis. Thus
 

at each sink tube station 5 to 7 static pressure readings
 

were recorded as the probe was traversed along the radius.
 

In addition to measuring the static pressure at each sink
 

tube station the resultant velocity as well as the longitudinal
 

angles and e were also measured. The manner in which these
 

readings were taken is similar to that discussed previously.
 

In view of the fact that the radial velocity u, within
 

the sink tube (except at its entrance section) is everywhere
 

approximately-zero, a simplified technique was also used to
 

measure the axial and tangential velocities. This measure

ment technique was also used to check the results of pre

vious experimentators and has been found to be most
 

satisfactory.
 

A previous technique used for the velocity measurements
 

was found to be far too time consuming and on occasions
 

difficulties were encountered due to the fluctuations in the
 

meter readings, The time required particularly to measure
 

the longitudinal angles e and ¢, was considerable and there

fore a simplified but accurate method was desirable.
 

Therefore, another technique which was reliable as well as
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accurate was employed and is,briefly described here. A con

stant temperature hot wire anemometer was used for the velocity
 

measurements. The same apparatus used for making the velocity
 

measurements is described under the description of apparatus.
 

In making the velocity measurements at any location two hot
 

wire readings were taken. The first reading was taken with the
 

hot wire maintained in a horizontal position, while the hot
 

wire probe axis was maintained parallel to the sink tube axis
 

as well as in the central vertical plane of the sink tube. It
 

was then possible by this arrangement to have the hot wire, at
 

a given station, traverse along the radius. With the hot wire
 

located at a given radius, by means of the rack and pinion
 

device the hot wire could then be moved along the axial length
 

of the sink tube. Thus with the hot wire maintained in the
 

horizontal position, as described, one reading VH was recorded
 

for each position.
 

The second reading, at a given position, was taken
 

with the hot wire maintained in a vertical position, while
 

the hot wire probe axis was maintained parallel to the sink
 

tube. The hot wire was changed to its vertical position
 

by means of a rotary disk that was turned 900 degrees. As
 

discussed above a second reading VV was then recorded for
 

each position.
 

The VH and VV values were then used to calculate the
 

tangential and axial velocity components. This was accomplished
 

in the following manner:
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The equations obtained from Fig. (6.12) are
 

V 

Tan = 2 , and 6-2) 
U 

Tan a2 = (6-3) 

where q, is the angle made by resultant velocity with the
 

plane perpendicular to the hot wire, when the hot wire was
 

hortzontal and a2 is the angle made by resultant velocity
 

with the plane perpendicular to the hot wire, when the hot
 

wire was vertical.
 

Since the radial velocity u is considered negligible,
 

the above two equations reduce to
 

Tan a, = and (6-4)
 
wan
 

= =
Tan a2 0 or a2 0 (6-5)
 

Now By i'nyoking tie h-ot wire t-Weo"-&1 , -te-relAtion between 

the resultant velocity V*, V and VV can be written as 

VH
V*= 

2
(cos2a, + K0 2 sin2c 1 )1/


= C6-6)
 

(cos 2a2 + K0
2 sin 2a2 )/2
 

where Ko is a constant and equal to 0.2 for low velocity flow. 

In view of the fact that a2 is zero, V* then becomes IV and 

cVH) 2 (6-7) 

cos2' 01-1s~+ K002 s•n 2' 
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2 Q 2With Tan c* v one can write 

Cv. 2 = (VH)2
 

+Ko2 Tan2l
 

+ Tan 2t1 1 + Tan 2a (6-8)
 

Thus,
 

(V*)2 :(VH) 2 
-KK0"2 v2 

w2 
+ + + w (6-9) 

2
2 
 w
w


or
 

(V*)= VH)2 (v2 
2 
+ w 2 ) (6-10) 
vw2 + Ko

2 


Since v2 + w2 = (v*)2 , then the.above equation reduces to 

2
VH2 w2 + K0 v (6-11)
 

and
 

2
VV2 V. w2 + v2 (6-12)
 

The above equations were are solved for the velocity com

ponents and there is obtained
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,2 VH2
 
v= v -.v 

v 
2 C6-13)

I-K L o 

nd
 

K 2 VV2
-
VH 


Thus the tangential velocity v, and the axial velocity w
 

are calculated from the measured values of V and V ,

M V 
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6.3 Experimental Results
 

An experimental investigation was undertaken to determine
 

the flow pattern existing in a steady state weak vortex.
 

The vortex sink rate sensor is shown in Fig. (6.1). The
 

measurements were only taken within the sink tube and air was
 

the only working fluid used. A constant temperature hot wire
 

anemometer was used for the velocity measurements while a
 

pressure transducer was used in conjunction with a pitot tube
 

for the pressure measurements. The radial Reynolds numbers
 

were approximately maintained at values of 524.5, 629 and 767
 

for a flow rate of 3.93 cubic feet per minute while the 

characteristic vortex chamber spacing height h was fixed at 

1-1/2", 1-1/4" and I" respectively. The tangential Reynolds 

numbers were successively maintained at valued of 0.0, 2272.5,
 

4545 and 9090 based on the vortex chamber radius of 10 inches
 

and the respective speeds of 0, 5, 10 and 20 rpm.
 

The fact that the radial velocity within the sink tube
 

was approximately zero everywhere, with the exception of the
 

sink tube entrance section, revealed that the flow was helical.
 

The flow helical angle within the sink tube decreased as the
 

rate of rotation increased. This was supported by the fact
 

that the tangential velocity was found to be approximately
 

proportional to the rate of rotation.
 

No appreciable variation of the axial velocity within the
 

sink tube was observed. The axial velocity in the vicinity of
 

the sink tube geometric axis, however, was found to be slightly
 

lower than neighboring points. Throughout the remaining
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portion of the sink tube (with the exception of the region near
 

the sink tube wall) and for a given radius, the axial velocity
 

was approximately constant. In the immediate vicinity of the
 

sink tube wall the axial velocity decreased rapidly.
 

The external effect on static pressure measurements became
 

observable at a distance 9 inches into the sink tube for the
 

short tube whereas the same observation was noted at a distance
 

of 21 inches for the longer tube. When a comparison was made
 

for the two tubes at a given r value, a step increase in static
 

pressure was observed in going from the longer tube to the
 

shorter tube.
 

The result of static pressure measurements within the
 

sink tube are shown in Figs. (6.13) and (6.14). They reveal
 

that a minimum value below atmospheric occurs in the immediate
 

vicinity of the sink tube geometrical axis. Slightly higher
 

values of static pressure are observed along the geometrical
 

axis. The variation of static pressure along axial length,
 

with R as a parameter, is shown in Fig. (6.15) for a flow rate
 

of 3.93 cubic feet per minute and a speed of 20 revolutions
 

per minute.
 

Along a given axial location and beyond the radius
 

mentioned above, the static pressure increases continuously
 

as the static pressure probe is moved toward the sink tube wall.
 

At a given radius and along the axial length the static pressure
 

increases continuously from the sink tube entrance and ultimately
 

becomes atmospheric near the sink tube exit. An exception to
 

the above is noted in the vicinity of the sink tube wall. Every
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where along the sink tube wal'l the static pressure values are
 

above atmospheric. As the static pressure probe is moved
 

toward the sink tube exit the static pressure values decrease
 

continuously and ultimately become atmospheric at the exit
 

section. This characteristic of static pressure is obtained
 

as a result of a vortex imposed on the fluid due to the
 

rotation of the sensor.
 



VII. CORRELATION OF RESULTS
 

Air is supplied to the vortex chamber through a porous
 

coupling by means of six circumferentially placed equispaced
 

tubes. Therefore, analytically it is difficult to conclude
 

whether the flow in the vortex chamber is axisymmetric or not.
 

This remains to be proven. The symmetry assumed in this
 

case, however, merely refers to the symmetries with respect
 

to the sink tube axis. This assumption is particularly
 

valid for the sink tube, is not also for the vortex chamber.
 

Numerical and experimental results, for the radial
 

velocity variation in the sink tube, are illustrated in
 

Fig. (7.1). The radial velocity measurements for the en

trance length of four inches into the sink tube are not only
 

accurately and easily measurable but they also seem to
 

correlate well with the numerical results. However, farther
 

into the sink tube the radial velocity values are negligible
 

and are difficult to measure.
 

As shown in Fig. (7.2), for the case of zero rotation
 

of the sensor, the axial velocity profile at the downstream
 

section of the sink tube is not parabolic in shape. For r
 

values less than 0.6 ri, the axial velocity appears approxi

mately constant. This indicates that either the flow is not
 

fully developed or that it has indeed become purely turbulent.
 

As the speed of rotation is increased, the fluctuations,
 

evident at the lower speeds, virtually disappeared. Thus at
 

the higher speeds the experimental results should be considered
 

more reliable than at the lower speeds. At a speed of
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rotation of 20 revolutions per minute, for example, the
 

correlation of the experimental results with the numerical
 

results proves to be most satisfactory. It is also observed
 

that the experimental axial velocity values correlate very
 

well with the numerical results for the larger r values.
 

Closer to the sink tube geometrical axis, however, the axial
 

velocity values do not correlate that well with the numerical
 

results. This is attributed to the existence of a core region.
 

Experimental and numerical results for the tangential 

velocities, in the sink tube, are illustrated in Fig. (7.3) 

and (7.4). These results reveal that the tangential velocity 

is consistently higher near the sink tube entrance and it 

decreases continuously as the flow progresses into the sink 

tube. Throughout the sink tube, and within the region 

between the sink tube wall and the sink tube geometric axis 

(i.e., 0 < r < rl ), the tangential velocity is observed to 

be positive everywhere and its magnitude is found to be 

greater there than at the wall. Within the sink tube, the 

tangential velocity profile, which may be characterized by 

a parabolic profile, has two peaks) one at r = 0.2ri and the 

other at approximately r = 0.75r i . For the location Z = 0.2,-

a depression in the velocity profile is noticed, in Fig. (7.4), 

around midway between the axis and the wall. The data 

collected further reveals that the maximum tangential com

ponent of velocity over the entire range of r/ri approximately 

occurs between 0.25 and 0.55. 

As discussed previously nonlinearity effects are taken
 

into account in the theoretical analysis and the nonlinear
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equations are solved by numerical techniques. The experimental
 

results as shown in Fig. (7.4) also reveal the presence of
 

nonlinear effects and these nonlinearities were similar to
 

those in the theoretical analysis.
 

In the process of comparing the experimental results
 

with those in the theoretical analysis, it is necessary to
 

recall that the axial length differed by the vortex chamber
 

spacing height h. This is because the axial length in the
 

theoretical analysis is measured from the outer plate of the
 

vortex chamber, whereas for the experimental investigation
 

it is measured from the sink tube entrance. A similar
 

characteristic is noted from the experimental results reported
 

by Lu t321.
 

As shown in Appendix E, an error analysis has been under

taken for both the numerical and experimental aspects of the
 

investigation. The curves of Figs. (7.1), (7.2) and (7.3)
 

show the comparison of experimental and numerical results of
 

velocity components. The numerical results are seen to be in
 

good agreement with the experimental results.
 

The scatter of data in the experimental results in
 

slightly greater than the limits of error estimated in Appendix E.
 



VIII. CONCLUSIONS AND RECOMMENDATIONS
 

The objective of this study was to investigate the flow
 

phenomenon numerically as well as experimentally within a
 

vortex sink rate sensor. The conclusions deduced from both
 

the theoretical and experimental results are as follows.
 

The theoretical and experimental results are in good
 

agreement particularly for the 20 revolutions per minute
 

rotational speed of the sensor, flow rate of 3.93 cubic feet
 

per minute and for a sink tube diameter of 1-1/2 inches.
 

The results reveal that the tangential velocity near
 

the sink tube entrance is higher for the higher flow rates.
 

An unstable situation is noted within the numerical
 

as well as experimental results for the rotational speeds of
 

5 and 10 revolutions per minute, with a flow rate of 3.93
 

cubic feet per minute. However, stability is indeed observed
 

at 20 revolutions per minute speed for the sensor.
 

At the higher radial Reynolds numbers, the angular and
 

radial momentum within the vortex chamber are approximately
 

conserved.
 

Due to the exclusion of the entrance energy losses
 

occurring in the sink tube and also partly due to interference
 

introduced by the presence of the probes within the sink tube,
 

the experimental values of the tangential velocity are slightly
 

lower than the theoretical values.
 

As NRee6 is increased, the tangential vorticity n de

creases, thus it appears that an increase in speed of rotation 

brings about a more stable flow. 
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As a consequence of these observations for a vortex
 

sink rate sensor to have maximum signal amplifications, it
 

is suggested that the sensor be operated at the high flow
 

rate condition.
 

As a direct consequence of this investigation, a number
 

of recommendations are suggested here for future studies.
 

In general, these recommendations suggest a correlation of
 

existing data, conducting additional tests and/or analyses
 

as well as summarizing the information in a form suitable for
 

design purposes.
 

Specific recommendations for future investigations are
 

as follows:
 

1) study of the viscous core area. 

2) study the noise generation. 

3) investigate the non-conventional boundary 

conditTons for the sensor. 

4) 	theoretical and experimental flow phenomena
 

studies within a sensor with symmetric sink tube,
 

and consideration of proper location for pick off
 

points.
 

5) 	study the temperature, density and viscosity
 

variation.
 

6) 	investigate the unresolved problem of rapid
 

fluctuations and wondering of the stagnation
 

point within the core region of the sink tube.
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BOUNDARY CONDITIONS
 

The boundary conditions for the systems shown in Fig.
 

(24) are as follows:
 

On the top and bottom plates of the vortex chamber and
 

along the sink tube wall, the no slip condition must be
 

satisfied (i.e. the fluid must move with these surfaces).
 

Thus, for the sensor rotating with an angular velocity, m,
 

this requirement mandates that
 

a) 	at z = 0 u(r,O) = 0
 

v(r,O) = rw 0 < r < ro (A-I)
 

2w
NvO) = r

b) at z = h 	 u(v,h) = 0 

v(r,h) = rw 	 r, <r< ro (A-2)
 

f(v,h) = r2 . 

c) at r = ri w(ri,z) = 0 

v(r,,z) = ricn h < z < k (A-3) 

I ri.z) = ri2W 

d) at r = ro v(ro,z) = row 0 < z < h (A-4) 

r(ro,z) = r.2w 

where h is the vortex chamber height and ri is the 

sink tube radius. 

In view of the fact that both plates of the vortex
 

chamber as well as the sink tube wall are non porous, they
 

are considered as stream surfaces. The bottom plate of the
 

vortex chamber and the sink tube wall are considered the same
 

stream surface. Thus the boundary conditions for these sur

faces are
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e) at z = 0 w(r,O) = 0, 0 < r < ro (A-5) 

'Cr,O) C,, 

f) at z = h w(r,h)0, r < r< ro (A-6) 

4(r,h) = C2, 

g) at r = r, u(ri,z) Q0 h < z < Y (A-7) 

(ri,z) C2 ,4
 

where C1 and C2 	are constants.
 

At the periphery of the vortex chamber (r = ro), the
 

fluid enters in a uniformly radial manner (relative to sensor).
 

Hence the boundary condition is
 

h) at r = ro 	 w(roz) = 0 

u(ro,Z) = U0 = Qo 0 < z < h (A-8) 

0
 

The axis of symmetry for the sensor is considered a
 

streamline which is the same streamline as for the top plate
 

of the vortex chamber. This is so because, along the axis
 

of symmetry, both the radial and tangential velocity components
 

vanish. Thus at r = 0,
 

(,z)= C1,
 

u(Oz) = 0, 0 < z < k (A-9)
 

v(Oz) = 0,
 

i(0,z) = 0.
 

Along the axis of symmetry, a minor difficulty is en

countered with respect to the definition of the radial velocity
 

which is expressed in the terms of the stream function. For
 

instant, at r = 0, the velocity w(O,z) is expressed as
 

w(O'z) = %ImrO " 
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By Applying the L'Hospital rule, this can be written as 

at r = 0 w(Oz) = 2 0 < z < Z , (A-10)
-7
 

r = 

0
 

and since the limit does exist, it indicates that
 

at r = 0 = 0 (A-11)
 
r=r = 0
 

Also, on the axis of symmetry, the boundary condition 

for the tangential vorticity component is written as 

at r = 0 fi(O,z) = kim r aw 1 0 < z < 9. (A-12)
F
reO J
 

since the radial velocity at the location is zero. Thus at
 

r x 0, the axial gradient of radial velocity is zero. If aw
 

is not zero at r = 0, then the velocity profile would
 

have a cusp at the axis of symmetry resulting in a discontinuity
 

in the value of the derivative as one crossed the axis of
 

symmetry. This would result in a shear stress, which is pro

portional to the first derivative of the velocity, being dis

continuous. This condition can not occur in a physical
 

system. Thus, an additional necessary requirement is that
 

at r = 0 aw (A-13)
 

This, therefore, results in the tangential vorticity being
 

zero 	on the axis of symmetry, i.e.
 

at r = 0 n(Oz) = 0 0 < z < P, (A-14)
 

At the periphery of the vortex chamber, the entering
 

fluid is assumed uniform as well as purely radial, hence
 

at r = r0 " =w (A-15)
-- : -- :
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Thus, the tangential vorticity is considered zero at r = ro b
 

i.e.
 

at r = ro = 0 (A-16)
0roz) 0 < z < h 


The difference between the value of the stream function
 

on the top plate of the vortex chamber (or the sensor geo

metrical axis) and the stream function value on the bottom
 

plate of vortex chamber Cor the sink tube wall) is proportional
 

to the flow discharge rate Qo. This is shown to be so in
 

the following manner. The continuity equation requires that at
 

r= r0 h
 

Qo = 2rro f udz (A-17) 
0
 

By using the definition of u, this is written as
 
h
 

-Qo = 2iro 1 dz (A-18) 

0
 

This equation is then used to show that at r0, is a function 

of z only. Since at r = ro, u = u0 = constant, then ii= 
WVf 

constant. Thus, at r = ro , p is a linear function of 

z and the integral is an exact differential. Thus, Qo can 

be expressed as 

-go = 2 [7r-vo) (A-a19) 

where ;(0) is a constant and is assigned the stream function 

value for the top plate, i.e., i(0) = C1 = 0. Consequently, 

the stream function for the bottom plate, iph), is given by 

the relation
 

(h) = - Qo=(A-20)
 
-W const. = C
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The tangential vorticity values on the top and bottom
 

plates of the vortex chamber as well as on the sink tube wall
 

are calculated from the stream function by use of the Taylor
 

Series. The general value of tangential vorticity i, as
 

expressed in terms of the stream function , ts
 

au aw =- 92 _ I DL + a2j (A-21) 

-ra- r rr72 ar ;Z 

Specifically then along top and bottom plates of the 

vortex chamber, one can state that, at z = 0 and z = h 

u(r,O) = u(r,h) = 0 A
 
(A-22)
 

w(r,O) = w(r,h) =0 J 
and with 

awr,o) = h) = 0 ,A-23) 

the tangential vorticity is reduced to
 

aau I a2- (A-24)
 

Dz
 

at z = 0 r(r,O) = 2a 2 0 < r < ro (A-25)
 
r
Fz7z 
z = 0 

at z = h n(r,h) = 1 	a24 ri < r < ro (A-26)
 
rDz71 
= h 

Along the sink tube wall at r = r1 with
 

u(ri,z) w(ri,z) = 0 	 (A-27)

andwr	 1 )=0
 

au. 	 A-28)

0az r= 	 h<z<k 

the tangential vorticity is reduced to
 

fi(r 1,z) :1 a2 h < z 	< k (A-29)
 
r r 2 =r 



158
 

In the downstream section of the sink tube the charac

teristics of stream function, circulation and tangential
 

vorticity are assumed such that the slope of streamline,
 

circulation line and tangentfal vorticity lines are zero
 

along the z-direction. In addition to the above, the radial
 

yelocity is also assumed to be zero at the downstream
 

section of the sink tube. Thus, the boundary conditions at
 

downstream section of the sink tube are given by
 

at z = Z - 0v 

9: 0 ,7- = 0 0 r < r (A-30)
 
" 'I 
 u = 0O
 

T=O0
TZ 
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DETAILS OF THE
 
NUMERICAL FORMULATION
 

In view of the axial symmetry of the sensor, only the 

flow in the region D = {(R,Z)}, as shown in Fig. (2.2) has 

to be considered. Within a region D, a network of uniformly 

spaced grid lines is constructed. At each interior mesh 

point (the intersection of two grid lines), the derivatives 

that appear in Eqs. (2-28) through Eqs. (2-30) are approxi

mated by the central difference technique. 

For example, if A be any dependent variable and R and Z 

be independent variables in the i and j direction respectively 

then DA ,A , b2A , 'and a2A' can be written as2- 82 

A A.A2=B1 Ai-l,i O(AR)2 BIAi+l, J + 

2AR
 

3 Ai, 11+ - A. + o(AZ)2 (B-2) 

2AZ
 

22= A. 2A + (B-2)
 

2 
 i@R + 0(6R 2 ) (B3
 
(AR) O
 

(_R • ++CA 2) (B3

2A Ai, -+2A , -1 2B-4)
1A + 


3Z2 (AZ) 2 (AZ)
 

where AR represents the grid size along R (or fl direction
 

and AZ along Z (or j) direction. Furthermore, higher orders
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than the second order of grid size are neglected, and U and
 

W can be eliminated from the governing equations, by employ

tng the definttion of the stream function as
 

U	 = = t -" I 

24,AZ 	 (B-5) 

=
- i-ii i 1-jJCR-6)
 

2Ci-1) CAR) 2 

The following formulation illustrates how the various
 

equations are approximated by the central difference technique.
 

I. 	Stream Function Equation.
 

The equation for the stream function is written as
 

AP2 - - + 	a 2B-7) 1P = Rij. 
aR2 	 az
 

By employing 	the central difference technique and by choosing
 

equal grid size along R and Z (i.e., AR = AZ = a), the above 

equation is written as
 

- 24". ++ 	 

i+1,j , 4 i-1,j +1j i-,j 

2 2aRa 

+ 	 i,j+ - 2Vi o + 4 - CB-8) 

2 = i,j 

a 

In the above equation the subscripts 1 and j correspond to the
 

R and Z coordinates respectively, since R is the instantaneous
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radius, thus R = (i-1a. Equation (B-8) is then solved for 

, which results in1,3 
T},, Jj -~ ~ ~ ijl 

I + tp+ 

- a C2R 2ani . + (B-9) 

89 @i+l,j- il) 

where R Li-1)a.
 

2. Steady. State Equations
 

2.1 Circulation Equation
 

The circulation equation is written as 

)I I a21r _1 ar + 32p (B-IO)UIr + war 

DR2
U9-T + =NRe-e R Z
 

By expressing the velocities in terms of the stream
 

function, the above equation is written as
 

1 DV I a*p ;r = 1 D r- 1 r + ai (B-11) 
RD 7 g 

-

R WZ NRe DR - aZ2j 

In the difference form, this is expressed as
 

-I[ i j+1 - 'ij- r i+l1i - i-l,j 

2a 2a
 

-i3i i-j-r 


2a 


1, ,j+1 x
 

2a J 

rl 1,j - 2ri' +r i--i,j I i+lJ -r l,J 
2 -IT 

a 

I 
2a 

(B-12)
+ r 2r1 + ri 

2
a
 I
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Equatlon (B-12) is then solved for FI , which results in 

r [ + ' ijI + Il J+l+ F1 J

+
NRe-1j 	 2a ri+1,j
 

-16R J'~ 

]jl(B-13)t,-+ tPI fr1 ,j+I -r~ 1
-i 

2.2 Tangential Vorticity Equation
 

The 	equation for the tangential vorticity is written as 

uan + W2T Un 2r Dr 1
R3- + W 	 - Re-e 

3T -	 (B-14)
R2 	 Z2
DR 


Upon eliminating U and W by use of the stream function V, this
 

is expressed as
 

ID* Dn 1 3 Ut r * + 2T aTB-5 
1 T, + I D_ n~ +~a2 r 

2
2.
 

The above equation is now written in the difference form as 

L2 a {l+~ 2a 

.1. 1P - i~- ,+~ i 1 

2a 2a R2 X 

i 2,j} 2i-I'.. - 2,ji 

2a R3 2a 
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Tii _ 1 + n I 3' + 1i' + + n j l__Ti+ 

Equation CB-16) is then solved for hji~ j which results in
NF~eG
 

_~-2a )x
i',I (i,+ 2 1'j i

i •na i[+- + +~ ri,j+1+ ii-}1 

4R 2 2 (B-7) 
E ation r c i en.l f w r i 

2
16R
 
3.1~~~~. CicltonEuto
 

+ R + -- DB-17) 
4R-( 

-

en)tarCase3.Tr ns 


d. ircnlestiely.io
 

In the circulation equation,
 

U and W are eliminated by the stream function @ and one obtains
 

http:ircnlestiely.io


165
 

apr +rat -1ax 
-T -T " R -T - NReG 

2 I ar + (B-19)2r 2r 
_aR " T -;T @Z22 


The difference equation is then rewritten by use of the
 

central time and central space technique. Consequently,
 

Eq. (B-19) becomes
 

r'I 1 - r (1 (2AT) + {1,j+k - I x 

rik ~ r (4Ra 2 ) 

Skk 1 ,J+1i :,-a 

k k r k rk k4R2 

Sri~, + ri~ ~+ r + r 
Ni+1,j i-1,j 1,3+1 1,3-1
Re-e [ 

4P a - - r j 2aR)1, 3 l,j I-Ili / 

(B-20)
 

k 
In the first term of right hand side, 4r is written as
 

k k+1 k-I
 
-. .4r.l,3 2r li ++ 2r+2 1,3 (B-21) 

k+1
 
and then the equation is solved for Fi to give
,J
' 
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k+ r k-2 + AT '-pk k 
F ,J 1, - ( i+l,j jl-,j 

2a 2 R 

Cri+	k - r k ) -(p k -') k 

i ,j+ ,-1 i,j+1 1 J-I 

(rk - k ) 2a (r - ki+lj 1-1,J i+l,j i-,j 
4R ( k k k + rk k+r+r + r .) 

i+1,J i-,j I,j+l i-1 1,) 

NRejV 1+ 4 LT I NRe-O a 	 (B-22) 

where R = (i-1)a. 

3.2 	 Tangential Vorticity
 

The equation for the tangential vorticity is written as
 

+ 1.1 a+ -nI D Dn _ D _ 2r ar 
DT DW-T-Y -

-

2Z 3 T 

In + Ife0 RW n TIR2 + D21 R2 Z2 	 (B-24)
 

Through the use of the central time and central space technique,
 

the above equation is written in the difference form and
 

there results
 

Ik,+1n ni , (2AT) + 'iJ+1 - I ,- X 

V ,-	 (4Ra) kI)i+, - i I!j / )j+
 



167 

I ja ) i,j+1 i'-
R3-F 1 ri , -~ F 0	 = 1 

+Ti 
Re-e 

4rl /

T1+ Tj + n1 + n[k+aI3 -1,3 1 ,j+1 1,5-1 ,/aj 

+ 1 	 (2aR) n R2 (8-25)
i,j 1-1 	 I ,J I 

In the first term of right hand side 4r k is rewritten as
 

k k+l k-a
 
4=j 2n + 21j. (B-26)
 

k+1
 
and then 	the equation is solved for n1 to obtain
 

k+1 (k-1 	 k k 
)T hi j + A2 (i+l,j " 1-I,j x 

2a2R
 

k 	 k (k k x
-

(n.+, Ti l 	 1i,j+1 i~
(ni~j+ n ±,j + 	 x2an 3
1+1,j 	 ,J1, 1,bi l 1
1 J+1 


k 	 k k
 
/ k k k
 

2 a/NR )/R + 4ari (Fi 3j 1 Fk ) 
j + 1 F,3-1)/Re0, 


-* 2a (jk k_ 	 4Rrn k 

*1k +nk + jk 2nk-l/

i-,j + 1,3+1 + ,j - 2il)NRe

a2) I(B-2)
1 + 4AT (i_ * 
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Equations (B-5), (B-9) and (B-13) constitute the govern

ing difference equations for the steady state case and
 

Eqs. (B-5), (B-20) and (B-27) for the transient case.
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VELOCITY COMPONENT
 
CALCULATION PROCEDURE
 

As discussed under the test procedure,(Section (6.2))
 

the resultant velocity V* as well as the longitudinal angles
 

e and are measured at a particular location in the sink
 

tube by a constant temperature hot wire anemometer. The angle
 

e is the longitudinal angle made by the probe with the sink
 

tube axis in a hori'zontal plane, whereas 4 is the longitudinal
 

angle made by the probe with the sink tube axis in a vertical
 

plane.
 

The measured values of V*, e and 4 are used to calculate
 

the radial (u), axial (w) and tangential (v) velocity com

ponents. The resultant velocity is defined as
 

2 + V2 W2
= + (c-) 

Since e is measured in a tangential direction then
 

v = w tan e . (C-2) 

Similarly since 4 is measured in a radial direction then 

u = w tan 4 . (C-3) 

Thus the square of the resultant velocity becomes 

V 2 2= w [I + tan 2 e + tan 2 4]
 

or V*
 

w I + tan 2 e + tan 2 @ (C-4)
 

The axial velocity component w is calculated first by
 

use of Eq. (C-4), and then the tangential and radial velocity
 

components are calculated by use of Eqs. (C-2) and (C-3)
 

respectively.
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PROBE MECHANISM FOR RESULTANT
 
VELOCITY MEASUREMENT
 

The probe holder and mechanism used, for measurement of
 

the resultant velocity within the sink tube is shown in
 

Fig. C6.6). This Appendix is devoted to a discussion as
 

to Wow the probe is positioned to measure the resultant
 

yelocity.
 

The distance between the center of the probe wire and
 

tke probe rotating axis (probe longTtudinal rotating axis)
 

is denoted by r1 . The instantaneous vertical movement
 

(radius) of the probe support axis from the sink tube axis is
 

denoted by S1 when probe wire is horizontal, and S2 when the
 

probe wire is vertical. Thus the instantaneous radius made
 

by the probe wire in its movement, for the case when the
 

probe wire is horizontal, is given by
 

r = Sl2 + (r, sin e)2 CD-i)
 

Similarly the instantaneous radius made by the probe wire in
 

its movement, for the case when the probe wire is vertIcal,
 

is given by
 

r = S2 + rI sin . (D-2) 

As the probe wire is positioned at a particular location
 

for measurement of the resultant velocity both radii, as
 

given by Eqs.CD-1) and (D-2), have to be equal. This results
 

in
 

r ($1)2 + _r# sin 6)2 S2 + r1 sin . CD-3) 
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within the sink tube the radial velocity u is negligible and
 

the measured value of 4 is rather small, therefore, the value
 

of ri sin q is also very small. However, the tangential
 

velocity v is of appreciable value, so the measured value of
 

e, and thus r, sin 0 Is of an appreciable magnitude. Hence
 

from Eq. (D-3), it is concluded that S2 is greater than S
 

and that the difference between r and S2 is negligible.
 

In the process of measurement of the resultant velocity,
 

the probe and probe support are first positioned at a
 

particular z location. The probe support is then moved
 

vertically making a radius S, with respect to the sink tube
 

axis. By use of the toller-string arrangement the horizontally
 

mounted probe wire is then rotated about its axis to obtain
 

the location at which the anemometer voltmeter reading is
 

maximum. This procedure determines the distance r1 , between
 

the center of the probe wire and the probe rotating axis.
 

At that particular location, the longitudinal angle 0 is then
 

measured. Thus with the values of S1, r1 and e, the
 

instantaneous radius r is calculated through use of Eq. CD-i).
 

The maximum anemometer voltmeter reading is the resultant
 

velocity at that location.
 

In a similar manner and with the vertically mounted hot
 

wire probe, S2 is adjusted equal to r, and then the probe
 

wire is rotated to obtain the longitudinal angle 0. The re

sultant velocity is then checked and corrected for S2 , since
 

u << v in the sink tube, and 0 << 0. Also, since is small,
 

and r > S2$ then r-S2 is very small. Thus r can be approxi

mated by S2.
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In a similar manner to the method used jn calculating
 

the radial dTstance, the correction for z is accounted for
 

and results in the expression
 

z = z1 1 cos e = z2 -r1 cos LD-4)-r ( 


where z is the instantaneous location of probe wire. In this
 

equation, zI and z are the axial distances of the longitudi

nal rotation of the probe axii measured from the sink tube
 

entrance, when hot wire is in a horizontal and a vertical
 

position respectively.
 



APPENDIX E
 

a75
 



176
 

ERROR ANALYSIS
 

The possible sources of error throughout this study may
 

be due to either experimental or numerical errors. The
 

experimental error may be subdivided into the static pressure
 

measurement error and the velocity measurement error resulting
 

from use of both velocity calculation methods.
 

Experimental Error Analysis
 

In an experiment requiring measurements of several
 

quantities, each of which has an error associated with it,
 

the total error that propagates into the final result may be
 

estimated by the expression [661
 

2 i2
 e 	 : '3F2 e (E-i) 
E n=1 ".nf n 

where F is a function of n independent variables having errors
 

en. For repeated measurements of the variables, it is assumed
 

that errors are normally distributed about the true value.
 

The possibilities of errors in velocity measurements may
 

be attributed to several factors; (i) exact positioning of
 

probe holder in sink tube for either a radial or axial position,
 

Li) longitudinal rotation of the probe in either a horizontal
 

or vertical direction through use of the roller-string arrange

ment, (iii) calibration of hot wire anemometer (specifically
 

the linearizer for gain and exponent adjustment), and (iv)
 

human error in reading the scales.
 

The-error in positioning the probe holder is fixed and
 

is considered as for the radial 	 ezi for the
er, er1 location and e 
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axial location.
 

The error due to the longitudinal rotation of the probe
 

in a horizontal plane is obtained as follows. The quantity
 

r is defined in Equation (D-1), and by applying Equation (E-i),
 

the expression for error becomes
 

e2 =a 2 e2 + r2 2 (E-2)
r s +s e. 
2 22
 

The partial derivatives in this equation are obtained from
 

Equation (D-1) and are found to be
 

ar_ (E-3)
 
as Vs 2
I 2 + r1 sin2e
 

2 sin a cos e 
ar (E-4)
 
*W*0 / 2 7-2


sin 0
S + r1 

By substituting Equation (E-3) and (E-4) into Equation (E-2), 

the expression for error is obtained as 

2 4 sin 2 e cos 20 e 2 s1 es2+r
 
2 1 a
 
er 2 2 2 

si + r sin a 
(E-5)
 

In a similar manner the error equation for location of
 

axial length, due to the longitudinal rotation of the probe
 

in a horizontal plane, is determined by using Equation (D-4)
 

ez2= ez 2 + r12 sin 2 e02 (E-6)
 

The error equation due to the longitudinal rotation of
 

the probe in a vertical plane is obtained in a similar manner.
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As the radial velocity in the sink tube is negligible, the
 

longitudinal rotation of the probe in the vertical plane is
 

also negligible. Thus, no additional discussion is necessary
 

in arriving at the error equations given below
 

2
er =es 2 + r1 2 cos2 e 2 (E-7)
 
2 2 

and
 

2
ez22 ez2+2 r21 sin 2 e (E-8)
 

The calibration errors are fixed and are denoted by ec
 

and ec. The quantity e denotes the error for probe
 

longitudinal rotation calibration and e denotes the error
c 2 

of calibration of the hot wire anemometer combined with
 

linearizer.
 

The error in velocity measurement is obtained by de

riving an error equation for each component of velocity. The
 

error equations are obtained through use of Equation (E-1)
 

and the fundamental definition of the velocity components,
 

(C-2), (C-3) and (C-4), and are found to be
 

4
2 e2 + V*tan2e sec e.ee 2 + tan 2 sec4.e2)i 
ew = 2 2 2 

(I + tan 0 + tan *) 

2 2 
(I + tan e + tan *) (E-9) 

2 2 2 2 4 2 
eu = tan ew + w sec e (E-10)
 

2' 2 2 2 2 4 2e v = tan eo e + w sec e e CE-it) 
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To estimate the relative magnitudes of errors associated
 

with the uncertainties in the measurements, numerical values
 

from a typical test condition are substituted in the above
 

equations.
 

The following values are taken from a typical test run
 

from which the velocity components are determined
 

Radial location of pin bearing
 

from the sink tube axis sI = 0.5 inch,
 

Length of rotating arm of probe
 

(hot wire) r1 = 0.546 inch,
 

Axial location of pin bearing
 

from sink tube entrance zI = 6 inches,
 

Horizontal longitudinal angle 0 = 38.7 degrees,
 

Vertical longitudinal angle 4 = 0.0 degree,
 

Resultant velocity V* = 6.95 ft/sec.,
 

Speed of sensor N = 20 rpm,,
 

and Radius of vortex chamber ro = 10 inches.
 

By using V*, e and 4, the axial, tangential and radial velocity
 

components are calculated and found to be 5.45, 4.36 and 0.0
 

feet-per sec. respectively.
 

The following errors or uncertainties are assumed, taking
 

into account instrumentation accuracy errors due to lack of
 

resolution, human errors in reading instruments and general
 

velocity losses, etc.
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Errors in Error Magnitude 
Name of Error Percentage Symbols of Errors 

Resultant velocity i% e 0.0695 ft/sec 
horizontal v 

Longitudinal angle + 1% e6 0.387 degrees 

vertical 

Longitudinal angle + 1% e@ 0.0 degrees
 

Calibration of + 1% ec
 
longitudinal angle 1
 

Calibration of + 0.5% e 0.03475 ft/sec
 
anemometer c2
 

Radial distance + 1% e 0.005 inch
 

Axial location + 0.2% ez1 0.012 inch
 

The error in measuring the radius r in the horizontal plane
 

position is calculated by using Equation (E-5). By using the
 

values given in the Table above, the error is found to be
 

er2 = 0.006438 inch. (E-12)
 

The error in measuring the radius r in the vertical plane
 

position is calculated by using Equation (E-7). By using the
 

values given in the Table above, the error er2 is calculated
 

and found to be
 

er = 0.005 inch. (E-13)
 

Comparing (E-12) and (E-13), the larger value is chosen for 

the total error calculation. The magnitude of error in measur

ing the radial distance sI (given in Table) is e = 0.005 inch. 

Thus the total error in measuring the radius is given by
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2 21o.5
 
+ er2 )

er =(es1 


.5
 
= (0.005 2 + 0.0064382 )

0 

= 0.008152 inch. (E-14)
 

The magnitude of error in measuring the axial length z1 , 

is (from Table)e = 0.012 inch. This error in axial length 

is calculated from Equation (E-6) and is found to be very 

small (i.e., ezi = 0.00003), and therefore is neglected. 

Similarly the error ez2 obtained from Equation (E-8) is also
 

neglected.
 

The error in axial velocity is calculated as follows.
 

The error in measuring the axial velocity is a result of
 

human error, error due to positioning of the probe in either
 

the axial or radial location and the error arising from
 

calibration of the anemometer.
 

The value of the human error in reading of the meter is 

used in Equation (E-9) to determine its portion of the error 

occurring in the measuring of the axial velocity. This value 

is found to be ew,h = 0.1459 feet per second. 

The value of the error resulting from positioning the
 

probe in either the radial or axial location is obtained
 

through use of numerical data. The magnitude of error for
 

positioning the probe in the radial location is taken from
 

Equation (E-14). This value is er = 0.008152 inches. The
 

portion of the error occurring in measuring the axial velocity
 

due to this positioning error is then calculated and found to
 

be ew,r = 0.0043 feet per second. In a similar manner the
 

calculated error in axial velocity due to positioning of the
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probe in the axial location is found to be ew,z = 0.0036 

feet per second. 

The portion of the error in measuring the axial velocity 

that is due to the calibration of the hot wire anemometer must 

also be accounted for. This value is found to be ec2 = 0.03475 

feet per second. 

The total error in measuring the axial velocity is then 

determined by use of the equation 

2 2 2 2 i/2w= Lew, h I ewr+ e W + ec 2 (E-15) 
=e ew w wrC
 

and is found to be 0.15 feet per second. The percent error
 

therefore is 2.75.
 

In a procedure similar to the above, the error in
 

measuring the tangential velocity is also obtained. The estimate
 

of the human error ev,h found from Equation (E-11) is 0.1316
 

feet per second. The magnitude of the error for probe
 

positioning in the radial direction is er = 0.008152 inch which
 

results in a value of e r = 0.0124 feet per second. Then
 

from the value of ez = 0.012 inches the value of ev z becomes
 

0.014 feet per second. These component values then result in
 

a total error of 0.1374 feet per second and a percentage error
 

or 3.15.
 

In a manner similar to the above, the error in measuring
 

the radial velocity is shown to be zero since the radial
 

velocity is zero for this location.
 

The same procedure is adopted for obtaining the error
 

analysis in the second method of velocity measurement.
 

In this method the radial velocity is assumed to be zero.
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The tangential and axial velocities are given by Equations
 

(6-13) and (6-14) respectively. By using the same technique
 

as before, these equations are transformed to the error
 

equations.
 

2 2 2 2 

2 eV VeVH (E-16) 
v V2 2 

(1a-Ko) (Vv2 - VH 

and 
2 2 4 2 2 

2 eV +K oH V evV (E-17) 
w 2 2 2 2 

(I - Ko ) (VH - Ko V ) 

After combining all errors as discussed previously the
 

resultant total error in tangential and axial velocities are
 

found to be respectively 0.1455 and 0.157 feet per second,
 

while on a percentage basis these values are 3.34 and 2.88
 

respectively.
 

In addition to accounting for the errors in measuring
 

the component velocities it is also necessary to account for
 

the error in measuring the static pressure.
 

The static pressure is measured by a specially designed
 

static pressure probe. The probe consists of two concentric
 

tubes. Very small holes were drilled through the outer tube
 

so as to eliminate the dynamic pressure head. The static
 

pressure then is directly measured by means of the inner tube
 

which is connected to a pressure transducer. Since the
 

transducer directly measures the pressure, the possibilities
 

of error are minimal. Nevertheless, a discussion pertaining
 

to any error, thus resulting, follows.
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An error could result from not properly positioning the
 

static pressure probe in either the radial or axial directions.
 

The probe is located at a given radial position through means
 

of a precision mechanism having a measuring scale whose
 

smallest graduation is 0.001 inches. Thus any error arising
 

is indeed negligible. Similarly the rack and pinion mechanism
 

used to position the probe at a given axial location has a
 

measuring scale with its smallest graduation being 0.05 inches.
 

Again, any error occurring would indeed be minimal. The error
 

arising due to the boundary layer growth effects are minimized
 

due to the tapered tip of the probe. Another possible error
 

could result from the flow being at an angle to the sink tube
 

geometric axis and thus to the probe. This effect experi

mentally is observed to be negligible up to angles of forty
 

degrees. Beyond this angle a deviation of 3 to 4 percent is
 

noted in the readings. As observed from the experimental
 

data the axial velocity is higher than the tangential velocity.
 

Also it is noted that the radial velocities are negligible.
 

Therefore, the flow angle encountered throughout the experiment
 

never exceeded 35 degrees and hence the error is negligible.
 

Any error resulting from use of the transducer is also
 

minimal as it is calibrated and checked by means of a standard
 

resistance.
 

The probable human error arising from ye~djng of the trans

ducer s'cale Is estimated to -be less'-tfan one-percent. The smallest
 

di'vision on the transducer scale has a 0.0005 mm of mercury
 

head and this is sufficiently small for the pressure range
 

encountered within the sink tube.
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Error Analysis Pertinent to the Numerical Results
 

The steady state and transient governing equations con

sist of first and second order derivatives in R and Z. When
 

these differential equations are written in the difference
 

form a truncation error results. The evaluation of this
 

error is determined for any dependent variable as here
 

described.
 

Let A be any dependent variable, x be any independent
 

variable and a be assigned the grid size, then A can be
 

expressed as function of x and a, A = A(x,a). By use of the
 

Taylor series expansion A(x+a) and A(x-a) become respectively
 

A(x+a) = A(x) + aA'(x) + a2 A" (x) + a3 A'"(x)7-T.
 
+
4iv
 
4aA (x) + (E-18)
 

3
A(x-a) = A(x) aA'(x) + a2 A" (x) + a A'"(x)
"TT 

a4
+ Aiv(x) + (E-19) 

The subtraction of these equations gives the first order
 

derivative of A with respect to x, and is shown in Equation
 

(E-20). The addition of these equations, however, gives the
 

second order derivative of A with respect of x, and is shown
 

in Equation (E-21)
 

DA _ A(x+a) - A(x-a) + 0(a2) (E-20) 

2a
ax 


and
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2 ( -1
aA - A(x+a) -2A(x) + A(x-a) + 0 (a2)
 

ax a
 

It becomes evident that the central difference technique
 
2
 

contains the truncation error of order a for both the first
 

and second order derivatives. In this analysis a is chosen
 

to be < 0.02 and, therefore, the truncation error is of order
 

(0.02)2 or 0.0004.
 


