General Disclaimer

One or more of the Following Statements may affect this Document

e This document has been reproduced from the best copy furnished by the
organizational source. It is being released in the interest of making available as
much information as possible.

e This document may contain data, which exceeds the sheet parameters. It was
furnished in this condition by the organizational source and is the best copy
available.

e This document may contain tone-on-tone or color graphs, charts and/or pictures,
which have been reproduced in black and white.

e This document is paginated as submitted by the original source.

e Portions of this document are not fully legible due to the historical nature of some
of the material. However, it is the best reproduction available from the original
submission.

Produced by the NASA Center for Aerospace Information (CASI)



(NASA-CR-138609) CN THE ERROR N74-27069
PHOBABILIZTY OF GENEFAL TREE AND TRELLIS

CODES WITH APPLICATIONS_TO SEQUENTIAL

DECODING (Notre Dame Univ.) 34 p HC Unclas
$u.75 CSCL 12R 63/19 41311

Department of

ELECTRICAL ENGINEERING

UNIVERSITY OF MOTRE DAME, NOTRE DAME, INDIANA




ON THE ERROR PROBABILITY OF
GENERAL TREE AND 1TRELLIS CODES WITH
APPLICATIONS TO SEQUENTIAL DECODING*

Rolf Johannesson

Dept. of Electrical Engineering
University of Notre Dame

Notre Dame, Indiana L6556

Technical Report No. EE-T316
December 1973

* This work was supported in part by the National Aeronautics and Space
Administration under NASA Grant NGL 15-004-026 at the University of Notre

Dame in liaison with the Communications and Navigation Division of the

Goddard Space Flight Center, and in part by the Laboratory for Telecommunication
Theory, The Lund Institute of Technology, Lund, Sweden.



Telecommunication Theory December 1973
The Lund Institute of Technolopy
220 07 LUND, Sweden

sl

On the Error Probability of General Tree and Trellis Codes with

13

Applications to Sequential Decoding.
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Rolf Johannesson
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ABSTRACT - An upper bound on the average error prabability for
- maximum-likelihood decoding of the ensemble of random binary tres
codes is derived and shown to bs independent of the length of the
tres.
An upper bound on the average srror probability for maximum-likelihood
decoding of the ensemble of random L-branch binary trellis codes of
"rate R = 1/n is derived which separates the sffects of the tail length
T and the men. 4 length M of the code, It is shown that the bound is
independent of the length L of the information sequence when
M>T + [hEVU(RJ]-1 log,Le This implication is investigated by compu-
ter simulations of sequential decoding utilizing the stack algorithm.
s . These simulations confirm the implication and further suggest the follo-
wing empirical formula for the true undetected decoding error probabili-
ty with sequential decoding:

- e Ple] ~ c2”" Rt |, provided M > T+ [nEVU(R)]'1 log,L

where ¢ is a constant independent of L, T and M. The exponent RT is
related to Viterbi”s upper and lower exponsnts for the ensemble of
tima-varying convolutional codes by the inequality:

1} Tha first draft of this paper was presented orally at the

IEEE Intarnational Symposium on Information Theory, Ashkelon,
_ Israsel, June 25-29, 1973. '
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I, INTRODUCTION

Massey [1] has recently defined the class of randam tree codes as a
genaralization of the type of counvolutional code used in sequential
decoding and has defined the class of random trellis codss as a
generalization of the type of convolutional code used in Viterbi
decoding. He has also proved random upper baunds on the average pro-
bability of error for maximum=likelihood decoding of thesa codes for
codes rates less than Rq» whera Ry is less than capacity C of.the
channal. :

In Section III of this paper, we extend Massey”s bound for tree codes '
to all rates less than capacity. In Section IV we do the sams for his
bound on trellis codes but we do this in the context of a more gene-
ral class of trellis codes for which a distinction can be made bet-
wean its "memory length" and its "tail length”, The bounds obtained
suggest that it is advantageous to use a memory length which is a
specified amount greater than the tail length, this amount depending
on the length of the trellis. In Section V, we report ‘'sequential de-
coding simulations which confirm this suggestion and which should be
useful guides in the design of future seguential decoding systems.
Thess simulations suggest gﬁ empirical formula for the true decoding
errar probability with seq?ential decoding which we give in Section VI,
o | |

To relate the more peneral codes used in this paper to the special
casas used in practice, wa note that convolutional codes constitute
the lass of linear tree codes. After L information bits have been
encoded in the convolutional code; the encoded sequence is terminated
after a "tail” of T information zerves has been encoded. A convolutio-
nal code is further characterized by its encoding memory length M-
which is the number of unit delays in the encoder., The usual practice
has been to take M=T but the merit of removing this restriction will
become obvious in the saquel.

K



2.

IT. PRELIMINARIES

In our discussion of trae and trellis codes, we shall restrict our
attantion to codes of rate R = 1/n both for simplieity of descrip-
tion and because these rates are those of the most practical inte-

rast.

A binary tree cods of rate R = 1/n, tree length L, and tail lenpth T
is formed by assigning n channel input symbols to each branch of a
rooted tree such that 2 branches stem from the root node, 2 branches
stem from each successive node at depth i from the root for i < L,
and a single branch stems from each node at depth i from the root
for L £ 1 < L+T, We show such a tres cods in Figurs 1 for T=3, n=2,
and a binary input.ctannel. To encode a binary information sequence
of length L with such a code, one begins at the root node and moves
through thws tree taking the upper branch or the lower branch accor-
ding as each successive information digit is 0 or 1, Since n(L+T)

" encoded digits result from this process, the true rate (in bits per
channel input symbol) of the code is L/[n(L+T)] and hence approxima-
tely equal to its supremum R = 1/n only when L > > T, For this reason,
ona ordinarily desires to choose L > » T, We shall call those nodes
where the tres divides "information nodes” to correspond with their
function in encoding the binary information sequence of length L.

In this papser we shall derive an upper bound on the average decoding
errar probability, assuming maximum-likelihood dscoding, for the
ensemble of R, L, T tree codes in which each channel input symbol in
the tree is chosen indspendently according to a specified probability
distribution. |

® +
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3.

III. UPPER BOUND FOR RANDOM TREE COOES.

For the bipary tree codes described in II, wa shall now derive an
upper bound on the average probability of decoding error, assuming
that a maximum-likelihood decoder is used,

Suppose that L information bits have been eﬁcoded and that the resul-
tant n(L+T) encoded symbols have been transmitted through a discrate
memoryless channel. Let E; (i = 1,2,...,L) be the event that the
probability of the received sequence given soms incorrsct path stem-
ming from the i~th last information node along the correct path is
equal to or greater than the probability of ths received sequence
given the correct path. Then, letting ¢ be the event that a decoding
error-is made by the maximum-likelihood decoder, we have

eGE,IUEzU...UEL : (1)

(where we are prevented from writing "=" rather than "c¢" only by
the fact that the maximum-likelihood decoder may correctly deccds
in case of ties for the best path). The average probability of

error over the ensemble of R, L, T trees codes is then bounded by

thes union bound

Ple] <P[E] +P[E] + +vo + P[E] o (2}

We now note that a total of 21-1 incorrect paths, each of length

T+i branches, stem from the i~th last information node on the
correct path. Since over the ensemble of codes all symbols on each
path ars mutually indepsndent, the symbols on the transmitted path
stermming from the i-th last node aré independent of ths symbols on
any incorrsct path stemming from the'same node, Thus, we may use
Gallager”s random coding upper bound on block codes of length n(T+i)
with (22711 codewords [2] to bound the i-th term on the righthand

side of (2) as
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where p is a parameter which can bo chosen later., The function EU{p]
is dafiped as

Ey(p) = max (-log, T [ I ox) p(ylx)1/1+p]1*p} _ (4)
Q(x) Y X

whera X and Y are the channel input and output spaces respectively,
ply|x) is the channel transition probability distribution, and Q(x)
is a probability distribubion on the inbut spacg. The maximizing
Q(x) in (4) is then also taken as the specific probability distribu-
tion defining the ansemble of R, L, T tree codes,

Insarting (3) in (2) yields

L
T i

< 2-nTEU[p) 2P E z-i[hEo(pl - ﬁ]
i=l

2 NEg(p) , o nTEg(p)
1 - 278

s 0<p < (5)

wherda

5 = Eglp) - pR > 0 | , (6)

Since EU(p] is a monotonically incrsasing function of p, we hava

¥

Theorem 4:

The averapgs probability of aerror for maximum-likelihood daccdfng
of the ensemble of binary R = 1/n, L, T tres codes satisfies -

Ple] < ez MTEyy(R) : . (7)
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where EVU(R) is Viterbi’s upper bound exponent [3], namely

Ry 0 <R <Rg

Eyy(R) = h . (8)
sup E5lp) RpsR<C
5 .

where the supremum is taken over p such that 0. <p <1 and
Eafp) > p R and wherse . .

“nE, . (R) '
c» -Z___Vl'—J_._.. . (g]

1-27"8

The "constant” ¢ depends on R but is independent of L and T, The
exponent RU is defined to be ED(1J. This exponent RU is numerically
equal to the "computational cutoff rats Rcomp [4] encountered in
sequential decoding. The rate € is the channsl capacity.

» The remarkable feature of the bound (7) is its independence of ths

length L of the tree! The bound (7) implies that only the tail
length T is important in determining the error probability for
tree codes. In Ssction V, we report simulations which verify this

conclusion.

%

Viterbi [S] has givan the same upper bound on tha first-event error

probability for tims-varying convolutional codss.

We also wish to re sk that for rates R < Ry, Massey [1] derived
an upper bound equal to (75w His argument used the two codeword
exponent Ry and this work stimulated the investigation reported in
this paper to extend the bound from RU to C and to conduct simula-

tions to verify its implications.

Massey [5] also recently presented the straiphtforward generalization
" of his formula to rates R = k/n < Ry, where k and n are integers and

sugnested the use in principle of convolutional codes with memory

.length greater than tail length to remove the dependencae of P[e] on

tres length L as has been carried out in the simulations .sported in

il
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Section V. Massey’s generalized argument can be extended to show
that (7) holds for all rates R = k/n provided that the constant "c”
in {7) is given by

2'nEVUcR)

c = (28130, (10)

1_2-n6

rather than by (9), We have omitted this refinement bacause the
gensralization while straightforward is somewhat awkward and
bacause R = 1/n is the case of greatest practical interest,



IV, UPPER BOUMDS FOR TRELLIS CODES,

In Section II, wo described an R » 1/n, L, T tree code as the
assignmant of n = 1/R channel input symbols to each branch of a
particular rooted tree, Recall that a sequence of L information
bits specifies prer{iely one path through this trees, We now define
anR, L, T, M trellis code to ba a tree code with the property that

(i) if the preceeding M information digits on the paths
leading into two nodes at the same depth in the tree
coincide then the sama further encoded sequenca resulis
whenever the sama further information sequence is app-
lied starting from either node and

(ii} all digits are the same on tha last M-T branches.

In other words, tha "memory"” or dependance on the past information
bits is limited to the M previous information bits but the useful
"tail” of the tree is only T rather than M branches in length. From

an encoding viewpoint then, nodes with same preceeding M information
bits can be "merged” in the tree so that the possible encoding

paths may be showr as forming @ "trellis-like structure". In Figure

2, we show an R = 1/2 binary trellis code with T=1 and M=2 for a
binary input channel. Forney [4] was the first to use the term
"trellis” in connection with a special class of such codes (viz. con-
volutional codes with M=T} while Massey [1] generalized the definition
to that given here mxcept again for the restriction that M=T. By allo-
wing T < M we ara able, as shown in the sequel, to demarcats rather
precisely the different affects of the "tail length” T and the "memory
length” M on decoding error probability.

Our artifices of requiring all of the digits on the last M-T branches
of each path in the trsellis to coincids renders these digits "uselsss”
and hence unneccessary to transmit over the discrets memoryless
channal being considered and hence to have a true "tail" of langth
only T branches, but this artifice also allows us to use with only
slight change the bounding techniques normally used for the "usual”
trellis codes with M=T, '

L3
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Supposa now that L information bits have been encoded in an

R, L, T, M trellis code and that first n{L+T) encoded digits on
the corresponding path (i.s. all except the “usseless” last n(M-T)
digits which are the sama on all paths in the trellis) and n(L+T)
corresponding dipgits have been received over the discrate memory-
less channsl.

Consider next any subpath of the correct path in the trellis. We
define an "adversary" for this subpath to be any path which has

the same first node and "remesrge” with this subpath at its last
nods, i.e. it has this same last node but no previous node in common

‘with this subpath (except of course the first nods). By our defini- .

tion of a trellis code, an adversary must have lenpgth at least M+1
branches since after diverging with the corract path at sops node
there must be some ‘A consecutive information bits that agree with
thoss on the corresct path for remergence to taks place.

A maximum-likelihood decoder for the trellis code will decode correctly
unless there is some subpath of the correct path such that the proba-
bility of the corresponding portion of the received sequence given
someg adversary of this subpath is as great or greater than its pro-
bability given the subpath. In case of ties for thae best subpath the
maximum-1ikelihood decoder may decode correctly. Hence we begin our
bounding of the decoding error probability by defining Fj M < j < LeM)
as the event that for some subpath of the correct path ending at the
j~th node from the root along the correct path the corresponding por-
tion of the received sequence is as probable or more probable given
some adversary of tha subpath than given tha subpath. Letting e be

the evgnt that the decoding is not correct, we then have

E C FN*’IUFN"’Z U..o-no UFM"‘L (11]

Using the union bound, we can then overbound the average error pro-
bability for the ensemble of trellis codes in which each digit in
the trellis is chosen 1ndapendent1y according to some prubablllty
distribution Q( ) over the channel input space as

' P[c] iP[.FM¢1] M P[FM+2] *oees * P[FM*L]. (12}
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and wa can ovarbound P[Fj] using the random coding bound for per-
tain ensembles of block codes as wa now consider in detail, For
. the nods at depth § from the root along the correct path, there is
only one adversary of a subpath of length M+1 branches which remer-
ges at this node, For & > 2, there are at most 2*"% adversaries of
a subpath of length M+t which remerges at this node as can ba saen
from the fact that the first information bit for the adversary must
disagree with that of the subpath while the last M information bits
must agree end the information bit just previous to these must
disagree with those of the subpath or remergence would have occurred
sooner. Hence M+2 of the M+*£ information bits of an adversary of

2‘“3)((0]2!'2] iB a

length M+2 are uniquely specified whan & > 2. Thus
general upper bound on the number of adversaries for a subpath of

length M+2 branches, & > 1.

In considering ncda? at depth j from the root, for M < j < LeT

all digits on the adversaries remerging at this nods are statistically
indepandent of those on the corresponding correct subpath so that
using Gollager’s upper bound on random block codes [2] we have

—_—— M ' ) ]~ .
P[Fj]. < }: (zmax(ﬂ,z 2)]0 2 n{M L]EU(p]
)

. <u(2-nE0(p) . 2-29 i 2-n6£) z-nMEG(p)
fu2

-nE~(p) -
<20 . 2 nMEo(pJ

M) gep e, Mg leT (13)

* But for L+T < j < L+M, the digits on the last (j-M+T) branches of
each adversary apgree with those on the correct path because of our
artifica of using the sama channel input letter for all digits on
the last M-T branches of ‘every path in the trellis, Thus the block
coding bound must be revised to account for the reduced useful
.codaword length and we olitain
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—— J-M (0,2-2) “nl{Lef=3+T+L)E. (0)
Plr < (], (@O AEhe bRl
'j 9,“1

~n{LeM-1)Eq(p) (p=nEq(p)

¥

< 2

-2p E 2™né2y 5=nTEg(p)
242

+ 2

¢ 2 LoM-SEglo) ponTEg(p)

Dep<t,LeT <JeloM (14)

whare in both (13) and (14)
§ = Eglp) =~ pR >0 (15)

and where ¢ is as given in (8), i.e. c is the sama constant as
in (7).

.

Finally, substituting {13) and (14) in (12) we have

+T .
Ple] < § c2 ™Egle) .
2-nfL¢M-j)E0[p] cz:nTEU(D)
juL+T+1 '

_ _~N{M-TIE.(p)
Eg(e) , 12 ik 0
1-2" NEg'P

s (LeT-M)c2 2 MEgle)

0<p<1, TeM (16)

Since Eotp) is a ‘monotonically inci*easing function of p, we have

+  Theorem 2:

The averape probability of error for maximum-likelihood decoding
of the enserbla of binary R = 1/n, L, T, M trellis codes satisfies

L
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S p— -niM= {R]
-nTE.. (R) [1-27NM-TIEy,
Ple] < 2™ [1_2_nE )

N (L+T-M)2'"‘”“T’EVU(R]] (17)

whare EVU(R] is given in (8) and T < M.

Upon obsgrving that, since T < M,

4agmn (=TI (R)

T TR < M-T (18)

wa can state ,

Corollary 1

The averape probability of error for maximum-likelihood decoding
of the ensemble of binary R = 1/n, L,T, M codes satisfies

Ple] < Le2"TE

wR) (19)
whare EVU(R) is given in (8). In the special case whan T=M, the

bound of Corollary 1 is identical to Viterbi’s well-known upper
bound for the snsembly of time-varying convolutiornal codes.

Next, we notice that the first term within the brackets in (17) is
independent of L whersas the second term can be mads arbitrarily
small for a given L by incressing M. Thus, by choosing that value
of M which, for a given L, makes these two terms equal we have

Corollary 2:

The average probability of error for.maximum-likelihood decoding of
the ensemble of binary R = 1/n, L, T, M codes satisfies

.

P[c] <o 2" TEWR) : (20)
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providad

M>T+ [nEVU(R)]-1 logzL C (21)
where '

S (22)

and EVU(R) is given in (8).

The bound (20) of Corollary 2 is independent of the length L of
the trellis and is very similar to the bound (7) of Theorem % for
tha ansemble of tree codes

We mwmark that Theorem 2 and its corollaries can be proved to
hold for the ensemble of tims-varying convolutional codes, but

not presantly for the ensemble of constant convolutional codes
which lack the independence needed in the proof. However, we con-
Jecture that Theorem 2 and its corollaries hold also for the en-
semble of constant convolutional codes which in fact are the type
of convolutional code that has always been used in practice. Since
there must always be at least one code whose P(e] is no more than

average, we can state an even weaker

Conjecture:

The probability of error for maximum~-likslihood decoding of a "good"”
binary R = 1/n, L, T, M constant convolutional code satisfies

. .

Ple] « o2 MEwR) (23)
provided '
M > T+ [hEVU(R)1"1 log,L ” (24)

whers ¢ is a constant independent of L, T and M and EVU(R] is
. given in (8). : .
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The conjecture is given strong support by the simulations discussed
in Section V which is not too surprising since all "Viterbi type”
error bounds for convolutional codes can presently be proved only
for random or time-varying codes but all simulations to date have
used "good” constant codes and the bounds have always been found

to be valid, i.e. the actual P[c] for the constant code considered
was smaller than :he upper bound on P[e] for the ensemble of time-

varying codes of that length.

Finally, we note that by taking M = L+T, the ensemble of R, i, T, M
trellis codes bBéOmES exactly the ensemble of R, L, T trees codes.

Wa have already noted that for M=T, the ensemble of R, L, T, M trellis
codes becomes the ensemble of trellis codes defined by Masssy [1].
Hence our Theorem 2 is a generalization from which upper bounds on
ET;T for both these ensembles follow as special cases.



) 14.

V., RESULTS OF SIMULATIONS.

In order to test the implications of the bounds for trsllis codes
derived in the pravious sesution and in particular to test our con-
Jjecture that these bounds apply to "pood" constant convolutional

codes, duecading simulations for the binary symmetric channs! (BSC)

were conducted.

Although the theory was developed for true maximum-likelihood de-
coding, it is well-known [?] that the exponent of errar probability
for sequential decodinp is the same as that for true maximum-likelihood
or "Viterbi" decoding. Since the latter is too time-consuming for
practical simulations except when M is very small, it was decided to
perform the simulatians using sequential decoding, The particular se-
quential decoding algorithm employed was the quantized or "stack
bucket" algorithm proposed by Jelinek (8] which is the practical
modification of the "stack algorithm” canceived independently by
Zigangirov [8] and Jelinek. The simulations were all performed for
the code rats R = 1/2, Tha "good"” convolutional codes chosén wers

the "complementary codes” found by Bahl and Jelinek [10]. Three
different BSC”s were simulated, namely those with "crossover probabi-
lity" p of 0.033, 0.045 and 0.057 which correspond to R = 0.8 Rye

R = RD and R = 1.1 Ry raspectively when R = 1/2, For each code used
on sach of these channels, a very largse number (up to 60,000) of
received "frames”, i.e., complete received sequancaes of length n(L+T),
wers decoded so that the decoding error probability could be accura-
tely inferred. The "metrics” used for ths sequential decoding on

each BSC are tabulated in Table I,

In Figures 3, 4 and 5, we give the simulalion results for the sequen-
tial decoding urdstected error probability P[e] as a function of the
tail length T of the convolutional code, (Bscause of the extreme
variability of the computation in sequential decoding when M is large,
there wers occasions where the decoding had to be stopped because tha
computation exceeded the alloted maximum. The observed probability

of this "overflow"” is tabulated in Table II and had negligible effect
on the curves of Figures 3, 4 and 5.) Thase curves show that the
actual P[e] decreases exponaential with T with an exponent very close

. to that of tho bound (20) for ths ranga T < M - {nEVU(R)]"1 log2L+2
. I )



18,
while further increases in T beyond this point have virtually no
affast on Ple], This is in surprising agreement with tho effoct

of M and T on P{c] in the bound of (17). It is rather remarkable’
that the range of T for which the bound becomss indepandent of L,
vize T < M- [nEVU(R)] -1 log,L is so close to the range whars the
truo P[e] becomes independent of L. Hence the relation (21) can

be taken as a slightly conservative design rule for choosing M so
*that P[e] is reduced to as little as possible for the tail length

T that can be allocated to an, enceoded framae.
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VI. AN EMPIRICAL FORMULA FOR Ple] WITH SEQUENTIAL DECODINSG.

The curves of Figures 3, 4 and 5 for P[e] versus T obtained from
our sequential decoding simulations are well approximated by two
straight lines giving the exponential decreass of P{ec] with T up

to the point where P[c] becomes independent of T. The following
empirical formula then provides a close match to the undetected
grror probability for sequential decoding of the "good” convolutio-
nal codes used in these simulations:

= TR . "'1 v
Ple] ~ c2™"'"T , provided M > T + [ng,(R)] " log,L (25)

where the observed values of ¢ and RT for each of the decoding simu-
lations perfarmed are given in Tables III, IV and V., The near con-
stancy of thess parameters for wide variations in M and L when M > 6
sugzest that these paramsters can be well estimated in advance and
used for design of sequential decoding systems. The case M=4 is a
case where the memory length is so small that the exponential app-
roximation is not very well fulfilled. In fact, the apparent slight
variation of ¢ and RT for large valuas of L is probably related more
to the inaccuracies of the statistical valuss because of the small
but increasingly non-negligible overflow probability PU (as given

in Table II) rather than to an actual variation of ¢ and RT'

The average valuas of Ry evaluated over M > 8 and over all L {four
values exceeding 0,96 are omitted) are given togethar with Viterbi“s
upper and lower exponents EVU(R) and EVL(R] far R = 1/2 in Table VI,
The exponents EVU(R) and EVL(R) are shown in Fipure 6 where straight-
line approximations are used when RO <R <C, !
From Table VI ws concluda that

EqyR) <Ry <, (R, R <Ry (26)
Ry = Ey(R) = E, (R}, Ry<R<C (27)

Thus, Ry is in agreement with both the exponent EVU(R] of the
upper bound (20) and the exponent EVL(R] of Viterbi“s lower bound
on the error probability in decoding a time-varying convolutional
.cods [3]. :
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VII. REMARK.

Finally, we should remark that, if we wanted solely to minimize
the undstec .d error probability with sequential decoding for a
given memory length and was not concerned with holding the tail
size to a minimum to maximize the true rate of the trellis code
then the optimal vaiﬁe of tha tail length is, of course, the memory
length, i.e. T=M, Probably this fact bas caused investigators to
ignore the distinction betwsen the "tail” and the "memory” so that
the memory length came to be honoured for work actually done by

the tail. ) o
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TABLE I
~ Channel Matric

transition Ry R/R, Code symbol Received symbol
probability _ 0 1

_ 0 1 ~10
p = 0.033 0.56 | 0,89 1 10 )

) 0 1 -9
p = 0.045 0,50 | 1.00 1 -3 1

_ ‘ : 0 1 -9
p = 0.057 0,45 | 1.11] p - g 3
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TABLE II

Tha pmbab111ty of computatmnal ovarFlow Po f‘or the s .:acuuant:ial

\ decoding simulations., (1000 dticoded LFr'al-r\ae,). | ;
; [

] :w 1 ' '

L 8 16 32 64 86 128 4160| 192 224 256 288 320

4 ,aoo { .ooo0 | ,O00| .0OC{ .00 .OO1| .OO1{ ,001) .OO1{ .001) .Q0Z| .CO2

6 .0001 ,0001 .000| .000) .001| .002{ .C0O2 .G0O04) ,O08) .OO9| .009; ,0OS

033 8 ,ooo | ,000 | .O0O{ .OOO| .OO1| .CO1| .002| ,OO4) ,005f ,006| .007 .068

12 .0co | .ooo | ,o00{ .OoO| .0O1} .cO1| .0O%} .DO4) ,006) .003| .008) .0CS

16 .000! ,o00| .000| o004 .002¢ .DOS| .0OS{ .008{ .010| .013| ,014] .O016

4 .0oo | ,000 | ,000{ ,001| .003| .QO04| .005) .009) 013} .016) .019| .026

B ,000{ 000} .000{ .GO2| .002| .008) .012| ,022¢ 030! .036| .038) .048

.045 8 .0001{ .000 | .000| .002} .00s{ .013| .06 .034( .G44} ,052| .057) .0/1

12 .000{ ,0001 ,000[ .00z .OOS| .012( .020f ,031) .042| .050) .058| .073

16 ,000| 0001 ,000{ .OOZ .0OG| .012| .018| .034| ,043| ,051] .058| .073

4 ,oon{ ,000| .000| .o08f .015( .021| .031} .0%2| .087| .086[ .106( .127

6 ,000| 000 .000f .o09 .020[ .048} ,O70{ ,106( .133] .153; .176| .218

.057 8 ,0oo} .o00] .000[ .007¢ ,030f .051| .071) .130} .161| .188( .216] .248

12 ,000} ,000] .000] ,007; .026| .057 .078| .123] .152| .180( .215] .255

16 ,000] .000| .000| .o0B8) .030| .055) .084| .132{ 160 .190} .225) .277




' TABLE III I |
Results of simulations at p n 0,033 (R - 0, gRU)
(1000 decoded framos). ! '

o
i

22l

M L B 16 32 B4 96 128 160§ 192 224 | 256 | 288 320
c ,075| .113] .113{ .100| .116] .131| 134 ,134 .117 144 1 137 | 153
! RT 69 { .62 | .G4 ;51 43 { .52 | .36 | .33 | .32 {.38 |.20 .31
c .073} .111| .108| .076} ,092) .,099 ,095| ,102| .064 | ,079 | ,095 | .106
° RT 97 | .75 {1,418} .52 | .58 | .51 | .64 | .57 | .55 | .57 .56 | .54
c ,073| .112]| .110( 0941 .093 | .494 | .®6 | 104} .070 | .0O78 | .,082 | .097
? RT 87 | ,70 | .99 | .62 { ,59.{ .71 | .62 |} .58 },54 |.51 ;.53 }.52
c ,061] .102| .106| ,083| ,098 | .402} .095| .00 .058 § .09C | .088 | ,09M
" RT .65 | .60 | 1.29} ,61 | ,58 } .65 | .63 | .,55 | .65 | .68 | .66 | .04
c .0731 .108¢ .106{ .0841) .,096| .103 | .087 ¢ 078 .073 | .083 { .082 } 090
° Ry 75 | .85 | .98 | BB [ .70 | .72 | .58 | .50 ) .66 .77 |.B3 [ .64




. 23,

+

TALE IV

: ; !
‘Rasults of simulation at p = 0.045 (R = Rj) | E l
(1000 decoded franas), - i g ﬂ l ! H

; .. | i

1
' {

8 16 32 64 96 1268 ) 160] 182 224 256{ 288) 320

.127| .4180) 172§ .199] .208) .234) ,252) 276 266 ,296] 305} .344

.52 | .50 | .45 | .36 | .32 | W27 | .20 A6 | 13 | W16 | 13 W14

101{ 159 ,198( ,154 | .159( .172| 167 168 1M .1?8 170 +178

.57 | .50 | .50 | ,50 | .46 | .48 | ,5C | .41 | .41 | .46 | .33 | .39

1061 .156 | .175| 168 .153 | .154 | .170| 154 127§ 132 146} .138

.60 | .54 | .47 | .48 | .47 | .45 | .45 | .48 | ,50 | .58 | ,43 | .49

0081 157 163 158 | .154 ] 164 | ,150f 154 104 .141| .145] 140

53 ) .51 | .58 | .A9 | .47 | .53 | A8 | .46 | .51 51 AG | W48

.103| .1511 .153| .149| .1431 .152 ,162| 140} 111 .138( .145| 146

A8 | .48 | .47 | .54 | .50 | .5% | .50 | .48 | .49 | .61 | .50 | .52
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TABLE V :
Rasults of simulations at p = 0,057 (R = 1.1RU) ‘
(1000 decoded framas).
M a 16 32 64 95 128 160 192 224 2561 288 | 320
A72 ,227| .246] ,265( 3081 .367| 387 | .ACG| ,406 | .424 1 ,430 | .458
4
148 041 036 '27 020 015 l15 l11 110 010 007 -UB
L1831 200} 226 225 L2161 259 .242 | ,246] 214 | ,237 | .244 | .231
. B v
«51 237 42 .39 .31 36 v32 1..28 » 24 29 :23 | /25
«1331 2071 .232| 244 .237 | 260 .242) ,219 | 189 ,177 | .193 | .167
8
A2 | W40 .38 .39 «35 | .37 « 37 .36 | .35 | .36 w30 .38
138 196} 2231 244 ,229| 2501 .233) ,20G6 | 168 ) .177 | «179 | .172
12
A5 .38 .43 A2 + 36 41 37 .36 41 37 .36 A2
L4210 204 229 225 -725)] .281 ] .222) 194 L1521 188 .183 | ,162
16
(49 | .42 . 40 45 | .33 | .48 | .41 | .37 39 | .45 | .39 W42
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TABLE VI ,,
Channel —
transition Ry EVU(R] E\JL[R)
probability
p = 0.033 0.63 0.56 0.66 ,
p = 0,045 0.50 0.50 0.50
p = 0.057 0.39 0.38 0.36




| 26,

b
[ ]
3

01 10 10

. branches ) = T branchas

Fign 1.
An example of a binary tres code with rata 1/2 and tail length 3
for a binary input channel. :
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O;’
— 7
1 i {
identical
branch
symbols
01
N T
B e
L - K
- Domaejun P

L, K and T in terms of branchas. ’

Fig. 2. .
An exampla of a binary trellis code with rate 1/2, memory length
. 2 and tail length 1 for a binary input channel. m
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\
. . . decoded
1075 4 | - \ ” frames)
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Fig. 3, -
The decoding error probability obtained from sequential decoding

simulations versus the tail length of the convolutional coda.
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+ M =6 (30 000 decoded frames) !
i
1072 |
= 8 (30 000 decoded frames)
boe e n
\ = -} T -
M = 10 (60 000 decoded frames) |
107 b— pm———>
10-4 4 Sams slope as theoreticallyN .
expacted for Ry = 0.50 M= 12 A(BD 000 :f;:giga

\ M = 16 (B0 000

-5 \ decoded
10~ 1 \ framos ) ‘
\ '
+ + ) ) t 13 Lo —fae— T ;
.0 z 4 6 8 .10 12 14 16 :

Figl 4. R .
The decoding error probability obtained from seguential decoding simula-

tions versus the tail Ibngth of théuconvolutignal codse, (L = 128, p = 0.04

§

Ty, 7o s
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P [5] # 30 .
T
M= 6 (30 000 decoded framas)
-0 S et < S —0
1074 |
M« 8 (30 000 decoded frames)
= & ~= & -]
M= 10 (60 000 decoded frames)
- > D
1073
i Samz slope as theorstically
10-4.. " expected for RT = 0,50
M= 12 |60 QOO0 decoded
‘ O —0 Frameas
N Mai6 (B0 000
AN decoded
1071 - : : \ frames )
4 { } : + § % - T
0 2 4 5 8 10 12 14 16

Fig- 5. . '
; The decoding error probability obtained from sequential deceding simula-

tions versus the tail length of the convglutional coda.
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KEY:

| . p ¢ Eyl0) Ey (0)

0.033 0.84 0.56 0.74

¢.045 0.80 0.50 0.63
I 0,057 076 0,45 0.55
I

- R

0

Fig. B

Viterbi”s exponents EVU(R) and EVL(Rl‘for several binary symmetric
channels

(p = 0,033, p = 0,045, p = 0.057), ,

a
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