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PREFACE 

This publication is part of an oxygen safety review in progress by 
the NASA Aerospace Safety Research and Data Institute (ASRDI). 
The objectives of the review include: 

1. Recommendations to improve NASA oxygen handling 
practices by comparing NASA and contractor oxygen 
systems including the design, inspection, operation, 
maintenance and emergency procedures. 

2. Assessment of the vulnerability to failure of oxygen 
equipment from a variety of sources so that hazards 
may be defined and remedial measures formulated. 

3. Contributions to safe oxygen handling techniques 
through research. 

4. Formulation of criteria and standards on all aspects 
of oxygen handling, storage, and disposal. 

This special publication summarizes the current state of the art 
in temperature measurement in the general region between the 
triple point and critical point of oxygen (approximately 50- 150 K). 
The three basic instrument types, resistance, thermocouples and 
filled thermometers are described. Calibration methods are 
discussed as well as tables and analytical data representations. 
The survey includes details of thermometer mounting and use as 
well as information on associated instrumentation. The relation-
ship of the IPTS-68 temperature scale to previously used scales 
is also covered. Throughout the survey problem areas are 
identified and recommendations for further work are listed. 

Frank E. Belles, Director 
Aerospace Safety Research and Data Institute 
National Aeronautics and Space Administration 
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FOREWORD 

The specific goal of this review is to present up to date information on 
temperature measurement between the triple and critical point of oxygen. 
Temperature transducers which can be used in this range are treated over 
their entire range of usefulness. Three broad types of thermometer are 
considered -- resistance thermometers, thermocouples, and filled systems. 
In particular, platinum, indium, copper, germanium, carbon, and thermistor 
resistance thermometers are considered; thermocouple standard types E, K, 
T, and J plus various combinations utilizing Au-Co and Au-Fe alloys are 
considered; vapor pressure systems utilizing He, H 2, Ne, N2, and 02 as fill 
substances are discussed. Methods of low temperature thermometry are 
presented along with methods of calibration and analytical representation. 
Reference data are given in terms of Cragoe Z functions for indium and 
copper resistance thermometers and resistance ratios for carbon. Reference 
tables are-included for each thermocouple type along with the power series 
coefficients necessary to generate the tabular data. Tabular vapor pressure 
data and analytical functions for each fill gas are also included. The relation-
ship of the IPTS-68 temperature scale to previously used scales is discussed. 

I would like to thank many of my colleagues for valuable discussions 
during the preparation of this volume. In particular, I appreciate the cooper-
ation of Dr. R. L. Powell for the use of information now being published in 
NBS Monograph 125 and T. R. Strobridge for discussions of vapor pressure 
thermometry. I am indebted to ASRDI Project Manager Paul Ordin of the 
NASA-Lewis Research Center for his support and many helpful suggestions 
during the course of this work.

Larry L. Sparks 
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INTRODUCTION 

The use of cryogenic liquids as refrigerants and propellants has increased 

tremendously in the last ten to fifteen years. With the massive space program initiated 

in the 1960's as a significant impetus, cryogenics has reached into the fields of medicine, 

industry, agriculture, food processing, and others. These new uses of cryogenic liquids 

together with continuing space, military, and scientific research create a demand for 

compiled sources of information in such areas as temperature, pressure, and flow 

measurement. 

The specific goal of this report is to present state of the art information on 

temperature measurement between the triple point and critical point of liquid oxygen. 

However, since this temperature range would be unnecessarily restrictive for most of 

the thermometers to be discussed, the criterion selected here is that all transducers 

which may reasonably be employed in the liquid oxygen (L0 2 ) temperature range will 

be considered. The temperature range for each transducer will be the appropriate full 

range for the particular thermometer. 

The discussion of vapor pressure thermometry constitutes an exception to the 

"use in the L0 2 range" rule in that He, H 2, Ne, N 2 , and 02 will be considered as fill 

substances. 

The discussion of each thermometer or type of thermometer will include, as 

nearly as possible, the following information: 

1) useful temperature range, 

2) general and particular methods of construction and the advantages of each 

type, 

3) specifications (accuracy, reproducibility, response time, etc.), 

4) associated instrumentation, 

5) calibrations and procedures, and 

6) analytical representations. 

An extremely important part of any compilation such as this is the reference 

section. An author index has been included to supplement the reference section. In 

addition, a subject index identifying the major areas of discussion and associated pages, 

tables, figures, and references is included. 

Certain previous review papers [1, 2, 3,4] are so generally useful in the field of 

low temperature thermometry that many of the thoughts presented here must ultimately 

be credited to them. No further attempt will be made to cite these works except in the 

case of specific information.



TEMPERATURE AND TEMPERATURE SCALES 

The concept of temperature is most properly based on the cyclic operation of a 

reversible heat engine. Temperature, then, is established by the laws of thermodynamics 

and is independent of the properties of the working medium. Thermodynamic arguments 

can be made which show that temperature is something which is proportional to the heat 

absorbed or evolved along the isotherms of a reversible Carnot cycle [ 5]. Unfortunately, 
this most basic approach is of little use in actually establishing an, absolute temperature 
scale, because we have not been able to approach the reversible engine requirement. 

Other fundamental instruments (thermometers which in theory are independent of the 

working medium) such as optical pyrometers, velocity of sound thermometers, and 

constant volume gas thermometers have been utilized to approximate the thermodynamic 

scale. Of particular importance in this discussion are the acoustical and constant 

volume gas thermometers. The approximation involved in both of these systems is that 

of real gas properties becoming ideal gas properties as the density approaches zero. 

Using thermodynamics and kinetic theory [6, 7], temperature, as determined on the 

ideal gas scale, can be shown to be proportional to temperature on the absolute thermo-

dynamic scale. Historically, constant volume gas thermometry has provided a practical 

link between empirical thermometers (thermometers whose characteristics depend on 

real materials) and the thermodynamic temperature scale. In a practical sense, how-

ever, use of the fundamental thermometers is limited to special situations. In general, 

only the national laboratories and a few universities have the capability of using these 

instruments at a state of the art level. Their primary use has been to transfer the best 

estimate of the thermodynamic scale to a few precision empirical thermometers. These 

transfer standards are, in turn, used to calibrate the many working thermometers by 
the comparison method. 

As instrumentation and techniques improve, temperature scales become better 

approximations of the ideal thermodynamic scale.- The history of the international 

attemnptto establish a common temperature scale that represents the thermodynamic 

scale as nearly as possible has been thoroughly discussed [8]. A brief overview of the 

situation leading to the present International Practical Temperature Scale (IPTS-68) is 
presented here. 

In 1927, the General Conference on Weights and Measures adopted the first 
internationally accepted temperature scale for temperatures above -190°C [9]. Minor 
revisions to the scale, including making the normal boiling point (n. b.p.) of liquid 

oxygen the lower limit, were made in 1948. There was a text revision in 1960 [10]; 
the revision added the word PRACTICAL to the official name for the first time. The 
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scale was thus represented by IPTS-48 rather than ITS-48. No internationally accepted 

scale ecisted for temperatures below the n.b.p. of oxygen. Several laboratories de-

veloped.' and maintained their own standards for the temperatures not covered by IPTS-48. 

In 1968, 'the General Conference adopted IPTS-68 Eli], the latest revision of the 

practical temperature scale. Of major importance in this revision was the extension 

of the scale to 13.81 K. Changes in several of the fixed points for IPTS-68 are compared 

to those of previous scales in table 1. 

As mentioned previously, before IPTS-68 was available, several laboratories 

established their own scales for temperatures below 90 K. One of the most widely used 

in the United States was established by Hoge and Brlckwedde [12] of the National Bureau 

of Standards. They compared platinum resistance thermometers to a helium gas ther-

mometer in the range from 10 to 90 K. They used 90. 19 K as the best value for the 

n.b.p. of oxygen; this scale was designated NBS-39. In 1955 the scale was changed by 

assuming a value of 90.18 K for the n.b.p. of oxygen. The resulting NBS scale was 

used by NBS as the standard in this range until 1968. In 1961, Barber [13] established 

a similar scale at the National Physical Laboratory in England. As was the case with 

the NBS-39 scale, the fundamental thermometer was a constant volume gas thermometer 

and the transfer standards were platinum resistance thermometers. The range of this 

scale, NPL-61, is from 10 to 90 K, and the n.b.p. of oxygen was taken to be 90.18 K. 

In 1953 Moessen, et al., [14] of Pennsylvania State University established the 10-90 K 

scale known as PSU-54. Constant volume helium gas thermometry was again used to 

calibrate platinum resistance thermometer transfer standards. The n.b.p. of oxygen 

for this scale was 90.154K. The final widely used 10-90 K scale was established by 

Borovik-Romanov, et al., [15] in 1954. This scale, PRMI-54, was used as the Russian 

national scale with the n.b.p. of oxygen as 90.19 K. In 1965 Orlova, et al., [16] re-

determined the n.b.p. of oxygen to be 90.165 K. Table 2 [17] compares these 10-90 K 

temperature scales to IPTS-68. The tabular values given in this table may be used to 

base hlpreIPTS_68 data" on IPTS-68 for temperatures below 90 K. Above 90 K tempera-

tures based in IPTS-48-inay be converted to IPTS-68 by using the differences given in 

table 3 [11]. Both tables 2 and 3 give the deviations in the form T68 - Tx = T. Tx 

represents any one of the 10-90 K scales in table 2 and IPTS-48 in table 3. For a table 

with a finer grid of temperatures than given in table 3, the reader is referred to 

Douglas [18]. He has used three analytical expressions to represent T 68 - T48 and 

d(T 68 - T48)

d T68

3



between 90 K and 10, 000 K. The values arrived at using his expressions for T 68 - T48 

agree exactly with those given in table 3. The analytical expression given by Douglas 

for temperatures between 90.188 and 273.15 K is 

68	 48 A

1[1 +A2 t68  +A3t8 +A.4 (100  - t68 ) t8- Wt  3
	

1 

1 + A5t68 +A 6 ( 5 -. t68)t68 

where W is the reference function WCCT 68 (T 68 ) given in [11], and t68 represents 

temperatures in degrees Celsius on IPTS-.68. The coefficients for this equation are: 

A 1 = 250.97 

A2 = 3. 9845170 x 

A3 = -5.855019 x 10 

A4 = 4.35717 x 10- 12 

A 5 = -2.9389 x 

A6 = 4. 3741 x 10	 . 

A temperature scale between 2 and 20 K, based on velocity of sound measure-

ments was established in 1965 and 1966 by Cataland and Plumb [19, 2:0]. This scale is 

officially known as NBS P 2-20 (1965). In the temperature range where they overlap 

(13.81 K up to 20 K), NBS P 2-20 (1965) and IPTS-68 differ as shown in table 4. The 

scale recommended by the International Committee for Weights and Measures (CIPM) 

4 for temperatures between 1 and 5.2 K is known as the 1958 He scale of temperatures 

[21]. 

SELECTION OF THERMOMETER 

The problem of choosing the proper thermometer for a given situation is often 

a series of compromises-. Inmostengineeriffg sitüatfóni trnperature measurement 

is not the primary reason for the test, and the design criteria are based on other 

requirements. The basic questions which should be considered, however, apply to all 

systems in which temperature measurements are to be made-., -' Costly mistakes can 

often beavoided if questions such as these are considered before the choice of the 

transducer is made. 

1) What is the temperature range of interest? This seems to be straight-

forward enough. However, what is the probability of occasionally having 

to extend the temperature range? Is double instrumentation justified to cover 

the entire range or will a single type of transducer suffice with some loss of 

sensitivity and/or accuracy in certain ranges? 
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2) How accurate must the results be? Realize that, in general, greater 

accuracy requires more sophisticated transducers, instruments, and 

calibrations. Is accuracy and/or precision the real requirement? 

3) What instrumentation is available or can be acquired? Selection of 

the optimum instruments to complement the situation and transducer depend 
on accuracy, physical size and ruggedness, time response, and time required 

to make a reading. Cost and delivery time may have to be considered. 

4) Is the physical size of the thermometer important either from a space 

or heat capacity point of view? The time response of a transducer is 

proportional to its heat capacity (among other things). 

5) Will hostile environments be encountered before or during operati'n? 

In the cryogenic temperature range sensor-environment compatibility is not 

as critical as it is at higher temperatures; however, even though chemical 
reactions are much slower at low temperatures, oxygen does promote 

increased reactivity. The system designer should also consider situations 

where high temperatures may be encountered even briefly. System bake 

out, soldering, welding, etc., can damage low temperature thermometers 

and calibrations. 

6) How rugged must the thermometers be considering g-forces, vibration, 

thermal shock, handling, etc.? 

7) How is thermal contact to the specimen to be accomplished? 

8) What calibrations are necessary in order to achieve the desired accuracy 

with particular types of thermometers? Are analytical representations 

available which are consistent with the desired method of analysis? 

9) How important is it that the thermometers be interchangeable at some 

later date? 

There may very well be other considerations for particular situations. The questions 

(and more importantly the answers) are interrelated which ultimately leads to the 

compromises mentioned earlier. Frequently there will be one overriding consideration 

which will allow only a particular type of thermometer. 

As each type of thermometer is discussed below, specific information for each 

of these areas of concern will be presented when available. The summary section will 

contain comparisons between different types of thermometers and general conclusions 

about the principal advantages and disadvantages of each type of thermometer. 
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THERMOMETER TYPES TO BE CONSIDERED 

The general types of temperature transducers to be considered here are 

resistance, thermoelectric, and filled systems. A recent compilation of the 

commercial availability, of thermometers is given in [22]. 

Thermometers depending on resistance changing as a function of temperature 

may be divided into two groups - - metallic and nonmetallic. Active thermometer 

elements of platinum, indium, and copper are the most commonly used metallic 

thermometers while carbon and germanium are the most commonly used non-metallic 

resistance thermometers. Thermistors, resistors made of sintered metal oxides, 

will be included in the nonmetal group. Several other metals and nonmetals have 

received much more limited use and will be discussed only briefly. 

Thermoelectric thermometers will be considered in detail from both materials 

and methods points of view. Complete calibration tables and analytic functions will be 

given for the standard types' Chromel vs. constantan (Type E), Chromel vs. Alumel 

(Type K), iron vs. constantan (Type J), and copper vs. constantan (Type T). A dis-

cussion of the nominal compositions, the standardized letter designations, and the 

registered trade names is given In Appendix A. Tables and functions will also be given 

for the non-standard £.2j-iron alloy combinations. Tables only will be given for 

gold- cobalt alloy combinations. 

The third main type of thermometer, filled systems, Includes vapor pressure 

and constant volume gas thermometers. The principles of each type will be presented, 

along with temperature versus vapor pressure data. Precision constant volume gas 

thermometry is beyond the scope of this paper; references are given which include 

techniques and design considerations for this fundamental type thermometer. Practical 

gas thermometry, precision constant volume gas thermometry with relatively simple 

equipment and techniques, can be used and i •s discussed. As would be expected, the 

accuracy is at least an order of magnitude less than that of the precision type. 

1 The letter designations for thermocouples are explained in Appendix A. The names 

Chromel and Alumel are registered trade names of the Hoskins Manufacturing Co., 

and are used here as an aid to the reader. Any material manufactured in compliance 

with an established standard is equally suitable. 
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A fourth catch-all category could be included to better represent all possible 

methods of cryogenic temperature measurement. It would, however, be an injustice 

to the many ingeneous methods of temperature measurement to present a cursory 

discussion of their principles and characteristics. Instead, some of the "other types" 
will be mentioned with the hope that the included references will allow the interested 

reader to find the necessary details for each particular type. Characteristics of some 
of these thermometers will be used for purposes of comparison in the summary section. 

1) Pyroelectric thermometers [23, 24, 25, 261 are capable of detecting extremely 

small temperature changes in the 4 to 300 K temperature range. 

2) Gallium arsenide junction diode thermometers [27, 28, 29, 30, 311 have a 

useable sensitivity between 1 and 300 K. Silicon junction diode thermometers 

have also been used [32]. 

3) Nuclear quadrupole resonance thermometers [33, 34] are capable of 

precisions of ± 1 mK between 50 and 297 K and are only slightly less precise 

between 12 and 50 K. 

4) Inductance thermometers [35] generate a temperature dependent frequency 

which can be transmitted over long distances. 

5) Ceramic thermometers [36, 371 are relatively new but are already available 

commercially. Operating range for these thermometers is 1.7 K to 300 K, 

and they have no magnetic field dependence. 

TECHNIQUES OF LOW TEMPERATURE THERMOMETRY 

One of the problems in temperature measurement in general, and cryogenic 

temperature measurement in particular, is establishing thermal contact between the 

thermometer and the specimen. Ideally, thermal contact will establish the thermometer 

at the temperature that the specimen would be at if the thermometer didn't exist. In 
reality of course, energy is transferred both from the specimen to the thermometer 

and vice versa. The practical solution to the problem is to make the thermal contact 

between the specimenand the thermometer as good as possible and then calculate the 

effect of energy flow into the specimen-thermometer system. 

Consider the energy flow through the wires to the thermometer and, therefore, 

to the specimen. Thermal anchoring (tempering) of the wires to a heat sink whose 
temperature is near that of the specimen will allow the energy to dissipate before it 

can affect the measured temperature. The additional problem of electrical isolation 

through the thermal contact is generally present. Three recent papers discuss thermal 
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anchoring to solids [38, 39,40], and a fourth paper [41] concerns thermal anchoring in 

liquids. Hust [38] develops a rather general approach for determining the required 

tempering length for wires or rods in a vacuum. The required length is a function of 

wire material and size, insulation, temperatures to be encountered, and how closely 

the temperature of the wire must match that of the heat sink. Table 5, condensed from 

Hust's paper, presents required tempering lengths for various sizes of copper and 

constaritan wire. The conditions applied to the situation shown in figure 1 and used to 

arrive at table 5 were as follows: (1) T 3 - T = 0.001 K, (2) t de = wire diameter, and 

(3) thermal conductivity of the adhesive is X(4K) = 0.01 W/rn.K, X(20 K) = 0.02 W/m.K, 

and X(78 K) = 0.05 W/rn.K. Copper and constantan were chosen for the example because 

they represent the extremes of the wires likely to be used in cryogenic thermometry. 

Heat transfer calculations require knowledge of the thermal conductivity of wires, 

electrical insulators, greases, and adhesives. Values for common wires are shown in 

figure 2. The values of thermal conductivity shown in figure 2 were obtained as follows: 

Au - 0.03 at % Fe, [42]; Au - 0.07 at % Fe estimated from [42], composition change, 

and Nordheim's rule; TP (copper) and TN (constantan) [43]; JP (iron) [44]; Au - 2.1 at % 

Co [45] data extrapolated to 300 K; KP and KN data estimated from data on other nickel 

alloys [46]. 

Thermal conductivities of greases which are frequently used as contact agents 

in low temperature thermometry are given for various temperature ranges by Denner [47], 

and Kreitman, et al., [48, 49, 50]. Deriner's paper also has the thermal conductivities 

of several adhesives, electrical insulators, and solders; Ashworth, et al., [51] gives 

the thermal conductivity of nylon. McTaggert, et al., [52] has determined the thermal 

conductivity of G. E. 7031 varnish2 . A tabulation of the thermal conductivities of 

Apiezon N3 and G. E. 7031 from papers by Ashworth and McTaggert is given in table 6. 

A second mode of transferring energy into a thermometer- specimen system is 

via joule heating in the wire leads and thermometer itself. In the case of resistance 

thermometers, the power generated is 1 2R. This power must be dissipated through 

the thermometer leads and into the specimen. In gas filled resistance thermometers 

The use of specific tradenames is necessary in order to properly apply the results 

presented in the referenced papers. Their use in no way implies any approval, en-

dorsement, or recommendation by the National Bureau of Standards. G.E. 7031 is 

General Electric Companies' identification for a thermosetting adhesive varnish, and 

Apiezon N grease is the tradename of the Metropolitan- Vickers Electrical Company, Ltd. 
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a temperature gradient is established between the active element and the protective case. 
The gradient depends upon the particular construction of the thermometer and will be 

discussed in more detail in the section on resistance thermometry. Let it suffice here 

to say that the specific heat of most materials decreases with temperature, e.g., 

C (300 K)/C (20 K) = 18 for platinum, 50 for copper, and 77 for nickel. Joule heating 
can become important especially at very low temperatures. The Peltier heating or 

cooling associated with the flow of current between dissimilar metals is generally 

negligibly small; it will be discussed in the section on thermoelectric thermometry. 

The signals encountered are often quite small due to relatively low sensitivities 

associated with low temperature thermometry. In the measurement of such voltages, 

one must be careful to avoid the effects of improper shielding or grounding. If more 
than one ground is present, loop currents are set up introducing spurious voltages in 
the signal path. Most modern low level dc amplifiers have excellent 60 Hz ac rejection; 

however, ac pickup may cause a low frequency beat with a chopper amplifier or may 

be sufficient to saturate the amplifier, resulting in a steady shift in its output. The 

following procedures for low level dc circuits are recommended: 

1) Operate either at floating potential or with one ground preferably at the 

input of the amplifier. 

2) Use extension cables that have a high rejection of electromagnetic, as 

well as static, noise. Twisted leads decrease the flux pickup area, and 
commercially available weave patterns [53] cause cancellation of pickup 

noise. The leads should be encased in a shield grounded at only one 

point. The normal copper shielding does not adequately shield low fre-

quency noise, e.g., 60 Hz. Cables that have ferromagnetic material for 

shielding are preferable. Cables and wire junctions can also be placed 

in iron conduits or boxes to provide additional electromagnetic shielding. 

A treatment of problems associated with instrumentation shielding and grounding is 

given by Morrison [54]. 

One of the principles of thermocouple thermometry is the law of intermediate 

materials. This law states, basically, that there will be no thermally generated 

voltage when dissimilar metals are joined unless the joint exists in a temperature 

gradient. Applying this to wiring in general, wherever a junction is made of 

dissimilar metals, it must be made isothermal, or it will contribute a spurious 

voltage to the thermometer signal. Solder junctions fall into this category since the 

wire-solder-wire combination forms a dissimilar metals situation even when the two 
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wires are the same. When copper to copper junctions are made, a special solder 

(- 70% cadmium + 30% tin) which nearly matches copper thermoelectrically is re .-

commended. It has been reported that such junctions tend to break down when cycled 

to low temperatures; however, the author has not observed any such breakdown using 

the low thermal solder. One can also make junctions by spot welding, either with an 

electrical discharge welder or with a small torch. In some apparatus, junctions are 

made by simply twisting the leads together. All of these methods of forming junctions 

have unique applications and can be used successfully if done with care. 

Electrical feed-throughs must frequently be used to bring wires from one 

environment to another. Large temperature gradients may exist in the area of the 

feed-through; this increases the possibility of spurious voltages. There are two basic 

types of feed-throughs: continuous wire and junction type. Figure 3(a) shows the 

essential design of two commercially available units. Specifications of materials, sizes, 

wire capacity, and pressure rating vary considerably, allowing most design criteria to 

be satisfied. Figure 3(b) shows one of the many "potting" methods which may be used 

for "in-house" feed-throughs. The cup and reservoir approach is'particularly simple 

and effective as an ambient temperature seal. If black sealing wax is used in the re-

servoir, the seal is easy to remake with a new set of wires. Use of the continuous type 

eliminates the necessity of a junction or at least allows the junction to be made at 

ambient temperature where large gradients don't exist. Along the same line, any 

disconnect plugs should be isothermal, and the number kept to a minimum. The 

important principle to remember when designing a temperature measuring system 

is to make as few junctions as possible and where they must be made make them as 

isothermal as possible. 

If switches are used in low level circuits, they need to be of the appropriate 

quality to prevent degradation of the signal-to-noise ratio. For manual operation, 

low- resistance rotary switches have proven completely satisfactory -if' -enclosed in' metal 

cabinets. For automatic switching operations, enclosed gold or silver plated switches 

have usually been satisfactory; they typically have about 1 microvolt transient noise and 

therefore introduce excessive noise if switched faster than about once'per second. For 

either manual or automatic usage, switches should be thermally isolated since large 

thermal voltages may be generated at the junctions of the wires and the switch components. 

MATERIAL COMPATIBILITY IN OXYGEN 

A primary' concern in the design and use of oxygen containing systems is the 

compatibility of construction materials. Although a considerable amount of research 

has and is now being done in this area, there are no infallible criteria to follow on such 
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crucial aspects as ignition sources and ignition temperatures of specific materials. 
Ignition sources may be any energy source which is capable of raising the temperature 

of a critical volume of combustible material to its ignition temperature. Included In this 
category are electrical discharge, shock from a falling object or vibration, adiabatic 

pressurization, and hot metals such as molten electrical wires. When coupled with the 

fact that virtually all metals, (with the possible exceptions of gold and platinum), plastics, 

organic compounds, and polymers are combustible in the presence of pure oxygen, the 
magnitude of the materials compatibility problem can be appreciated. 

The most obvious sources of energy which appear due to temperature transducers 
are electrical discharge and hot wires. With the exception of the junction diode ther-
mometers, all of the thermometers used at low temperatures are low voltage devices; 
the energy envolved is not, under ordinary circumstances, enough to promote ignition 

in metals. Care must be-taken, however, that the currents involved are not sufficient 
to cause excessive heatlngin the small wires often used in cryogenic thermometry. 
The real danger results from the use of electrical insulations, thermal contact agents, 
adhesives, and residual impurities in the form of grease, dirt, etc. 

No attempt will be made here to give the degree of compatibility of the many 
materials found in the various thermometers being considered. Rather, the reader 

is referred to papers by Clark, et al., [55] and Hust, et al., [56]. These papers con-
tain compatibility information on materials and extensive lists of references. 

RESISTANCE THERMOMETERS 

The fact that the electrical resistivity of certain materials varies as a function 

of temperature is the basis for one of the major approaches to determining temperature. 

Within this major group are two sub-groups--metals and nonmetals. 	 - 

Metals are characterized by a positive dR/dT while nonmetals are similarly 

characterized by a negative dR/dT. Both types of thermometers have been widely used 

for measuring cryogenic temperatures, and both types have typical strong and weak 
points. Metals exhibit decreasing sensitivity below certain temperatures which ordi-
narily limits their useto the range where T 2' 10 K. The sensitivity of nonmetals, on 
the other hand, increases at lower temperatures giving them the advantage when 
T 20K. 

One of two general methods is usually used to determine the electrical resistance - 

of a temperature transducer. A schematic illustrating the standard four lead potentlo-

metric method is shown in figure 4(a). Two voltage readings are necessary in order 

to determine the thermometer resistance, Rx. The voltage across the standard 
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resistor, Rs in series with the thermometer allows the thermometer current to be 

calculated. Resistance of the thermometer is then given by 

R - 
_ VxRs 

X 

In order to cancel possible spurious voltages in the potential leads, the direction of 

current flow must be reversed and a similar pair of voltage readings taken. The re-

sistance of the thermometer is then given by 

R(current forward) +R ( currentreversed) - - 
R=	 2 

This procedure involves four voltage measurements and consequently is best applied to 

systems with nearly constant temperatures. Figure 4(b) illustrates another method 

which involves measuring the voltage drop across a known resistor, R. and across 

the unknown, Rx. The ratio of these numbers allows R  to be computed, i.e., 

Rx =Rs_.2L . 

This method allows the accurate determinations of R  from precise but not necessarily 

accurate determinations of V and V, e. g., the working current in a potentiometer 

would not need to be standardized. The second general method is to determine the 

thermometer resistance directly using one of several possible bridge circuits. Four 

of the more common circuits are shown in figure 5. The bridge shown in figure 5(a) 

is often used with two lead thermometers and has no lead or contact resistance compen-

sation since both leads are in the same arm of the bridge as the unknown resistance. 

The resistance determined will include the resistance of the leads L 1 and L2, i.e.., 

R_=RX ±RL1 +RLZ	 --- ---- --	 --

Figure 5(b) utilizes three thermometer leads which compensates for the lead resistance 

to the extent that RL1 = RL3. These resistances appear in different arms of the bridge 

so that

R=R  x + R L3 - RL1 Rx. 

Figure 5(c) represents the basic design of the much used Mueller bridge. This configura-

tion requires two readings, but does eliminate the effect of the leads. The temperature 
of the leads must remain the same for both readings. The required pair of readings 

would be:
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R1 Rx + RL1 - RL4 

and

R2 = R  +R L4  - RL1 

Averaging R 1 and R 2 results in the cancellation of the lead resistance. A fourth bridge, 

figure 5(d), is known as the Kelvin double bridge. In principle, this circuit allows 

complete lead compensation and is frequently used to measure four terminal resistances 

of less than 1 ohm. If 

R4 = R L4 + r4, R3 = RL3 + r 3 , R2 RLZ + r 2 , and R1 = RL1 + r1, 

then

R	 Rr	 R	 R 
R	 R	 +	 Zc	 (3 

- SR	 R1 +R 2  + rc V R - R2 

If the value of r and the difference ratio 
c

(R3	 R1 

- R2 

are made small enough, the second term can be neglected and 

Rx=Rsi 

Further details on the circuits outlined above [57, 58] and descriptions of special circuits 

developed for particular applications abound in the literature. The review paper by 

Daneman, et al., [59] contain, extensive references to such developments. 

Metals 

The resistivity of a metal, as given by Matthiessen's rule, is made up of two 

terms so that

Total = p.(T) + p 0 

P op the residual resistivity, is constant and is due to electron scattering by impurities 

and lattice defects. p.(T), the intrinsic resistivity, is an increasing function of tempera-

ture and is due to electron scattering by lattice vibrations. Lattice vibrations and 

therefore temperature sensitivity persist to lower temperatures in metals which have 

lower Debye temperatures. The Debye characteristic temperature is defined as: 
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- hvMAX 
D	 k 

where h is Planck's constant, k is Boltzmann's constant, and VMAX is the maximum 
lattice frequency allowable in a particular lattice (v MAXmay be thought of as correspond-

ing to the wavelength just greater than the atomic spacing). The Bloch-Grüneieen rela-
tionship for the temperature dependent resistivity Is 

5 T 

for low temperatures. In general, heavy loosely packed materials have long minimum 
wavelengths which means that v 	 and 8 are low and R. Is high. For example,MAX

 e,5(lead) 88 K, 8 D (Indium) = 110 K, GD(platinwfl) 225 K, and eD(copper) = 310 K [60]. 
Other properties being equal, the metal with the lowest 6 would make the best ther-

mometer element for lower temperatures. 

Matthiessen's rule is not exact. It has been shown [61] that there is a third term 

in the expression of p Total which is temperature dependent. This deviation also depends 
on crystal imperfections. Accurate interpolation of thermometer resistances must take 

this deviation into account as will be discussed later in the section on calibration of 
resistance thermometers. 

Although platinum is by far the most common metal used in low temperature 

thermometry, others such as indium and copper have been used to some extent. Im-

portant properties of a metal being considered for use in low temperature resistance 

thermometers are chemical inertness, ductility, availability in highly purified state, 

and as mentioned above, thermal sensitivity to low temperatures (eD as low as possible). 

Nonmetals	 _---.	 - 

Basically, semiconductors differ from metals in that there is an energy gap 
between the valence band and the conduction band. For a complete discussion of the 

conduction properties of a semiconductor see Kittel [62]. A very cursory treatment 
of the subject is more appropriate here.	 - 

The energy levels existing in a pure semiconductor are as shown in figure 6(a). 

At absolute zero, the valence band is completely full, the conduction band is completely 

empty, and the crystal behaves as an insulator. The resistivity is given by 

p = A exp E/2kT. 
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As the temperature increases to a certain level, sufficient thermal energy is added to 

allow some electrons to jump to the conduction band. Both the electron in the conduction 

band and the hole in the valence band contribute to the overall conduction. This tempera-

ture dependent conductivity is known as intrinsic conductivity. Addition of impurities 

such as arsenic or boron to the crystal creates energy levels as shown in figure 6(b). 

Resistivity remains a function of temperature, but the energy gaps ED and EA are seen 
to be much smaller than E  and therefore require less thermal energy to affect the 
conduction properties. Donor impurities give up electrons to the conduction band while 

acceptor impurities take electrons from the valence band. When donor impurities are 

dominant over acceptor impurities, the conduction is primarily by electrons in the 

conduction band; the resulting semiconductor is referred to as n-type. When acceptor 

impurities are dominant, conduction is primarily due to 'holes" in the valence band; 

this type of semiconductor is known as p-type. The complex conduction processes 
involved in semiconductors makes general analytical representation of R versus T 

difficult. This is one of the drawbacks to the use of doped germanium crystals in 
thermometry, and will be discussed in more detail later. 

Thermistors are semiconducting resistors made up of sintered metallic oxides. 

The temperature dependent behavior of thermistors is similar to that of the semiconduc-

tors discussed above. Manufacturing processes allow the tailoring of thermistors to 
be useful over a wide range of temperatures. 

For our purposes, carbon will be considered a semiconductor since its general 

thermometric characteristics fall in this category,, e.g., dR/dT<0. Carbon resistors 

have for some time been one of the most used cryogenic thermometers for temperatures 

below 20 K. They are cheap, rugged, and have a high sensitivity to temperature change 

at low temperatures. Carbon is used in the form of common radio type resistors, 

colloidal suspensions painted on various substrates, and more recently, vacuum de-
posited thin films. The analytical representation of carbon thermometers is relatively 

simple, belying the complicated conduction process. Variations of 

log R=A+B/T 

are generally used to represent resistance - temperature relationships. 

Platinum 

Platinum resistance thermometers (PRT's) are probably the most accurate and 

reproducible empirical thermometers available over a wide range of temperatures. This 

is attested to by the fact that IPTS-68 uses a PRT to define the scale between the fixed 

points from 13.81 K to 630.74° C. With special effort the useable range for PRT's can 
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be extended down to 2 K with an accuracy of about 10 mK. A discrimination of less than 

5 mK from 2 to 4 K and 2 mK from 4 to 10 K is possible [63, 64, 65, 661. It must be 

stressed that these numbers represent the state of the art in instrumentation, in ther-

mometers, and in techniques at these temperatures. In addition, special calibration 

and analytical representations are also required. At the other end of the temperature 

range, precision PRT's have been developed for use as high as 1100°C [67, 68, 69]. Long 

term stability due to impurity contamination and breakdown of electrical insulating 

properties of support material are major problem areas. 

Measurements in the range from 20 K to 450° C are made routinely with a high 

degree of accuracy and with a number of different commercially available thermometers. 

The sensitivity of a typical precision PRT is shown in figure 7. 

Annealing of the thermometer is basic to achieving a reproducible unit. In Order 

to achieve electrical stability, the thermometer must be annealed at a temperature which 

is at least as high as that at which the thermometer will be used. Corruccini [70] found 

that annealing procedures differ depending upon the amount of cold work and purity of the 

platinum. The ITS-48 recommends an annealing temperature of 450° C for standard 

resistance thermometers [71]. In any case, slow cooling is required since rapid cooling 

from a high temperature traps lattice defects and changes the electrical properties. 

PRT's are available in many configurations and can be commercially fabricated 

for special applications at additional cost. The following discussion is going to divide 

PRT's into two classes -- laboratory and industrial; the division may be rather arbitrary. 

The separation will be based primarily on how the active element is supported and on 

its purity. The industrial class will also include platinum film resistors. 

In 1932, Meyers [72] designed a PRT, figure 8(a), which consisted of a coiled 

helix of fine platinum wire on a mica cross support. Another Meyers design [73] 

features a single coil of platinumona rnicasupportas seen in figure 8(b). Barber 
has designed two capsule type PRT's [74, 75], one of which is shown in figure 8(c) and 

makes use of a freely suspended helix of platinum in a glass support tube. Although 

different in detail, all of these thermometers make use of a protective sheath, some 

kind of coiling of the sensitive element in order to. get the length to area ratio up, a 

suspension scheme intended to retain the strain free properties of annealed platinum, 

and a filling gas [74, 761 to increase the thermal conductivity to the sensitive element. 

IPTS-68 defines the reference thermometer as a strain free PRT with 

We R(373.15)/R(273.15) not less than 1.39250. Another relationship frequently used 

to compare the degree of purity and strain of PRT's is



R i 00o - Rooc 
a-	

100 Rooc 

An IPTS-68 requirement is that a 0.003925. Laboratory thermometers with the 

essential designs discussed above and which meet the a requirements are available 

commercially. Both long stem and capsule types of sheaths are available. The nature 

of the strain free suspension makes these thermometers susceptible to strain from 

moderate g-forces or vibrations [77]. The resistance of a strain free capsule ther-

mometer is reproducible to better than the equivalent of 1 rnK. The time response of 

this type of thermometer varys from 2 to 7 seconds depending on the thermometer fill 
gas and the conditions of the measurement. Ordinarily PRT's such as this are used in 

static or slowly changing environments. 

- The size of these precision thermometers is relatively large, e.g., 5.7 mm 

diameter, 6 cm long, and weight about 5 gm. A much smaller precision PRT, 

4 mm diameter, - 1. 3 cm long, - 1. 1 gm, has been developed and is available com-
mercially. It was found that after several thermal shocks from ambient to liquid helium 

temperature, the resistance at the triple point of water became stable to within about 
o.00040[78]. This is the temperature equivalent of 1 mK for these R	 1000 resistors. 

Calibration of these smaller thermometers indicated an a> 0.003925 which is 

the requirement for a standard thermometer. Below 90 K, however, RT/R273 drops 
more rapidly than for the larger PRT's [79]. This means that the similarity require-
ment is not met and the Cragoe Z function interpolation cannot be applied using the 

calibration of a capsule type thermometer (Cragoe Z functions will be discussed later 
in the section on calibration of PRT's). 

Industrial PRTts are available for a wide range of applications. These ther-

mometers are, in general, less precise than the laboratory resistors just discussed. 
The ruggedness of these units is achieved by more rigid support of the sensitive 

elements. Differential thermal contraction between the supporting material and the 

platinum element strain the platinum and, therefore, change the electrical properties. 

Available design features vary to such an extent that only general features can be 

discussed here. Several excellent company bulletins are available which discuss these 
in great detail. 

There are two basic designs -- immersion probes and surface temperature 

sensors. The immersion probes feature a high purity platinum wire encapsulated in 

ceramic, figure 9(a), or securely attached to a support frame. R values are usually 
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in the 100 to 10000 range. The recommended temperature range is from— 10 K up to 

250°C and higher in cases where the supporting material is such that the platinum will 

not suffer contamination. Features such as repeatability after thermal shocks, time 

response in different environments, interchangeability, and mechanical shock tolerance 
differ between companies and specific designs. For the most part, the specifications 

below represent typical values which might be used in preliminary designs. Exact 

specifications must necessarily come from the manufacturer. The repeatability of 

the typical immersion sensor is usually certified to be about ± 0.1°C at the ice point 

after several thermal cyclings to cryogenic temperatures. For most thermometers 

this repeatability figure is conservative. The time response is particularly difficult 

to assess in a general way because it depends critically upon the design and on the 

method of testing. Flowing water, oil, or cryogenic liquids are often used as the test 

medium. The time response of the capsule type PRT was previously given as 2 to 7 

seconds, which meant that in this time the sensor had reached the equilibrium tempera-

ture of the system (ignoring 1 2R heating). In the case of the industrial PRT, dynamic 

systems are frequently encountered. Convention has been to define the time response 

of a thermometer to be the time it takes the sensor to reach 63. 2% of the tempera-

ture of a step function temperature change. With this definition 
of 

the time constant, 
a typical range of values for this type of resistor is 0. 1 to 3 seconds. Interchangeability 

is measured in terms of errors involved when more than one thermometer is used with 

a single R versus T relationship. This becomes a major concern in operations where 
control resistors must be replaceable without system interruption, and where data re-
duction and calibration expense must be minimized. Interchangeability is ordinarily 

specified at a given temperature, i.e., the resistance of the thermometers will not vary 

more than a specified amount at a certain temperature. Immersion type sensors may 
generally be specified to have the same ice point resistance to within an equivalent of 

about ± 1.5°C; surface sensors show slightly worse interchangeability, ± 4 to 5° at 0°C. 

Some manufacturers provide different grades of interchangeability for particular models. 

Even after specifying a particular resistance value at a given temperature, the slope of 

R versus T, which depends on purity and strain, may vary from one thermometer to 

another. This slope variation is reflected in the specifications shown in company 

manuals where it is seen that AT = (T - T ) increases both above and below the Rx	 ref 
matching point. A ruggedness specification by NASA [80] for a particular requirement 

is given as (1) 50 g's or 0.5 inch double amplitude (smaller of the two) from 20 to 

2000 Hz for 15 minutes, (2) impact shock of 100 g's for 10 millisecond triangular wave, 

and (3) velocity loading > 100 ft/second of liquid hydrogen. Manufacturer's specifications 

are generally along the same lines; the values, of course, vary with the particular type 
of construction.
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The second type of industrial sensor Is broadly known as a surface temperature 

sensor. The general design Is as shown in figure 9(b). The principal advantages of 
these thermometers are that they are small, typically 0 • 25 cm x 1. 3 cm x 1 .3 cm with 

perhaps a factor of 2 variation in any dimension. Their geometry is such that they 

make good thermal contact with surfaces of various shapes. Sensors are available 

for clamping around small tubing, fitting Into milled slots, clamping under bolt heads, 
soldering, welding, and cementing. Custom design capability Is high in this general 

type of resistor. 

Both the immersion and the surface sensors are available in versions which 

have built In bridge circuits. These bridge circuits allow adjustments to be made on 

individual- sensors to increase the Interchangeability. Two, three, and four lead con-

figurations are available In both the surface and immersion sensors. 

Calibration of Platinum Resistance Thermometers 

The interpolating instrument for IPTS-48 and IPTS-68 is the platinum resistance 
thermometer for temperatures below 630.74° C. IPTS-48 used the Callendar equation [811, 

Rt	 0 =R (1+At+Bt2), 

as the interpolating equation above 0°C and the Callendar-Van Dusen modification [82] 

Rt = R [1 + At + Bt  + C (t - 100) t3] 

for interpolation between 0°C and 90 K. Below 90 K there was no adequate analytical 

representation; thermometers were calibrated at 16 points by comparison to standard 

platinum resistance thermometers at the National Bureau of Standards. Adoption of 

IPTS-68 has eliminated the need for the Callendar-Van Dusen equation above 90 K and 
has provided analytical relationships which allow thermometers to be calibrated on the 

IPTS-68 between 13.81 K and 90.188 K. Practically, however, it remains very difficult 

for a laboratory to calibrate a platinum resistance thermometer since seven fixed 

points between 13.81 K and 273.15 K are required. It remains imperative that there 

exist methods of calibration which may reasonably be carried out. 

One such procedure has been developed which makes use of an existing precision 

calibration and Matthiessen's rule. Cragoe [83] proposed the following universal function 
which would represent all resistors of the same type 

Z(T)= R2Rl 
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Development of this function requires that Matthiessen's rule be obeyed for the tem-

perature range in question, i.e., R  = R.(T) + R 0 . The procedure-used would be to 

establish the Z(T) for the standard thermometer, keeping in rnind that only the calibra-

tion for such a thermometer is necessary, not the thermometer itself. Calibration of 

the unknown thermometer at two fixed points, i.e., R 1 at T 1 and R 2 at T2, allows 

one to write

Z(T) R TRx,Tl 
=._ x	 R T2 - R Ti = ZsTD(T). 

x, 

A form which is convenient for constructing a table of R versus T for the unknown x-
thermometer X is

	

RxCT = R Tl +	 A T - RA, T1 

where
R	 -R x, T2	 x, Ti 

ax = RA, T2 - RA, Tl 

The subscript A denotes the thermometer for which the calibration is available, and the 

superscript C indicates a value calculated using Crago&s assumption that Matthiessen's 

rule is exact. 

Corruccini [84] has done calculations on several precision capsule type platinum 

thermometers with full NBS calibrations in order to check the errors involved in using 

this approach on this type of thermometer. His results for this type of interpolation 

are indicated by a "C u in table 7. As the temperature range, (T 2 - T 1 ), becomes 

smaller, deviations from Mafthiessen's rule decrease and the accuracy of the interpo-

lation via Z functions gets better. Anindication_of this trend is:seen in the two intervals 

where interpolation was done with Crago&s functions. 

Sinclair, et al., [80, 851 has applied the Cragoe Z appióá'ch tofplatinum resist-

ance thermometers which were not of the precision capsule type. The thermometers were 

the compact high resistance units which are available commercially. Room temperature 

resistance ranged from 200 to 5000 ohms at room temperature as compared to 25. 5 ohms 
for the precision units tested by Corruccini. For the two ranges,- T 1 = 20.2 K to T2 
77.4 K, and T 1 77.4 K to T 2 = 273.15 K, the deviations from the standard thermometer 
were not more than 40 mK. Deviations as high as 150 rnK were -found when this approach 

was applied in the range T 1 4.2 K to T 2 = 20.2 K. 
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Deviations from Matthiessen's rule have a characteristic shape. Corruccini 
[84, 86] has taken advantage of this fact to establish a more accurate method of 

interpolation of platinum resistance thermometers. This method requires three fixed 

point calibrations of the unknown thermometer and calibration tables for two similar 
platinum thermometers. In comparing this method with the Cragoe Z method, it is 

seen that one extra calibration table and one extra fixed point calibration are needed. 

We have previously written 

RC = R x, Ti + OL 

XA T - RA, Ti 

If we now include the correction term for the deviation from Matthiessen's rule and 
denote the value so calculated as R M we can write x,T 

M	 C	 C R	 =R	 - (R	 -R x,T	 x,T	 x B,T	 B,T 
where

RC 
Ox	

X, T3	 x, T3 
RC R B, T3 - B T3 

Corruccini's results for this type of interpolation are shown in table 7 and are indicated 

by an M. The R M values for T> 90 K and determined with T = 90 K, T = 200 K x,T	 1	 2 
and T 3 = 273.15 K are within 0.6 mK of-the values given by the Callendar- Van Dusen 
equation which requires four calibration points. 

Indium 

As mentioned previously, the desirable characteristics of a resistance ther-

mometer element include availability in high purity, ductility, chemical inertness, and 
for low temperature (T < 20 K) a low Debye characteristic temperature. 

- Indium appears to fit the requirements rather well, e. g., R 4 2/R273 10 
( io for platinum), is extremely soft and malleable, and OD(In) 100 K. This 

allows the lattice vibrations in the high purity material to dominate the total resist-

ance down to the superconducting transition temperature (-3.4 K). White, et al., [87, 881 
have constructed and tested a total of 4 indium resistance thermometers. Their first 
two thermometers, R4/R295	 had R(295 K) 2t 0.3 ohm which limited the accuracy 
of their- measurements. A table of Cragoe Z functions was constructed for the two 

thermometers between 3. 5 K and 300 K. The Z functions [87] are given in table 8. 
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White, et al., later constructed and tested two additional indium thermometers with 

R295 K 
40; these measurements resulted in more accurate results, but didn't affect 

the Z functions computed from the first set of tests. One of the two final thermometers 

tested was wound on an indium rod while the other was mounted on a mica cross much 

as in the precision PRT construction. The effect of indium's anisotropic expansion was 

seen when the resistance of the "indium rod thermometer" changed with thermal cycling. 

White, et al., found that their data, shown in figure 10, were fit reasonably 

well by RT/R273 = A + BT + CT 2 for temperatures above 100 K; for temperatures 

between 100 K and 40 K, RT/R273 = A + BT; and for temperatures below 10 K, 

R  = A + BT5. 

Orlova, et al., [89], Yates, et al., [90],. and Kos, et al., [91] constructed and 

tested several indium thermometers with higher absolute resistances. Construction 

details for the thermometers are included in the respective papers. The purity of the 
-4 indium wire used by Orlova was given as R 4/R 273 = 2 to 4 x 10 , the wire used by. 

Yates contained less than 6 ppm impurity, and the 0.254 mm diameter wire ,used by, 

Kos was 99.9997o pure. In representing his results, Orlova found the . R A -+ BT5as 

suggested by White, et al., to give temperature uncertainties of 0. 2 K at liquid helium 

temperatures. Applying the Z functions given by White, he found that at 3.5 K"the 

error for his thermometer was 40 rnK and as the temperature was increased the error 

decreased to 20 to 30 mK. Kos also found White's Z function insufficient for accurate 

thermometry. It is suggested by Orlova that the best approach might be to determine 

a W = R4/R273 as has been done for platinum and then devise a method of adapting this 

W to an individual thermometer by calibrating at a few fixed points. 

Swenson [92] found a discontinuity in the R versus T of indium at 210 K. This 

discontinuity was not observed by either White or Orlova. A possible explanation could 

be that Swenson's specimen R4/R273 10 was more impure than the others. 

It would appear that with sufficient development, indium could be , a resistance 

thermometer with good sensitivity between 300 K and 3.4 K. Work In the, area of 

analytical representation Is a major thermometric deficiency at this time; there appears 

to be no basic reason that this couldn't, be resolved to approach.the PRT level of 
uncertainty. 

Copper 

Copper is frequently used as the active element in thermometers of "In-house" 

construction. It offers such advantages as being cheap, having a nearly linear resist-

ance temperature relationship, being ductile, and being available In most laboratories. 
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The main disadvantages are that copper oxidizes at relatively low temperatures, and 
compared to platinum, is not very stable or reproducible. Dauphinee, et al., [93] 

examined eleven copper resistance thermometers, made from commercial, enameled 

copeiwire, between the temperatures of 20 and 320 K. They established the tempera-

ture-resistànce relationship given in table 9. White [60] has used this data to arrive 

at the Z functions

R-R2 

R273 - R42 

given in table 10. If the wire used has a ratio of 

R273	
1-00, 

the Z functions presented here will probably result in an accuracy of about ± 0. 1 K. 

Dauphinee found that by calibrating a single thermometer at the n. b.p. of hydrogen 

and at the ice point he could adjust the R/R values given in the table to represent his 
test thermometer to within ± 25 mK throughout the range. 

Carbon 

Carbon resistors in the form of standard radio type resistors, colloidal 

suspensions and, more recently, evaporated films have been widely used as tempera-

ture sensing devices and as liquid level sensors [94]. All exhibit the general 

characteristic negative temperature coefficient of resistance. •Tie bulk of the use of 

carbon resistance thermometers is for temperatures at and below 20 K. Their use --
at higher temperatures is limited because of decreasing sensitivity, reported stability 

problems, and competition with metallic resistors. By far the most used form of the 

carbon thermometer is the standard radio type. An R versus T plot for a 270Q, 0.1 

watt resistor is shown in figure 11. They are available from several commercial 

sources in a wide selection of absolute values and wattage ratings. In general, the 

0. 1 to 1 watt resistors with room temperature resistances of 10 to 5000 are most used. 

The advantages of these resistors are that they are physically small, rugged, cheap, 

and are the least sensitive of the resistance thermometers to magnetic fields. 

The reproducibility of carbon resistors upon thermal cycling has traditionally 

been questioned. Since carbons exhibit graphite like behavior in varying degrees, 

it is possible that any lack of reproducibility could be due to the anisotropic electrical 

conductivity and thermal expansion observed in graphite [95]. Several investigations 

nf commercial resistors of various types indicate that carbon resistors are reproducible 
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to about 0. 1 0/6 or ± 4 mK at4 K when cycled between room temperature and liquid helium 

temperature [96]. Plumb, et al., [97, 981 found the reproducibility to be at least this 

good, but that there was long term drift when exposed to liquid helium temperatures for 

extended periods of time. This drift amounted to an increase in resistance equivalent 

to about 4 mK. Johnson, et al., [99] also observed this drift and concluded that the 

lack of reproducibility was due to the active resistive element itself, (intrinsic) and 

not a thermal strain effect which would eventually saturate. Further, the nonreproduci-

bility is probably due to the drift characteristic of the thermometer and not the thermal 

shock effect. In order to obtain reproducibilities on the order discussed above, care 

must be taken not to change the resistors characteristics by heating with a soldering 

gun, baking, etc. [100]. Effects of heating carbon resistors is discussed in detail in 

[99].

Clement, et al., [96] found that over the temperature range of 2 - 20 K, they 

could fit resistors with a wide variety of nominal room temperature resistances with 

the empirical relationship

log R+	 =A+log   

Temperatures calculated from this equation agreed to within ± 0.5 K for all resistors 

tested. Schulte [101] used this equation to arrive at the resistance ratios shown in 

table 11 (R 295 = 265.22c1). For the resistors tested, he found the following variations 

in the calculated and experimental ratios: ± 6.8% at 4.2 K, ± 2.2% at 20.3 K and ± 0.25% 

at 77.4 K. These variations correspond to temperature uncertainties of ±110 mK, 

± 500 mK, and ± 500 mK, respectively. The coefficients used by Schulte were A = 4.478, 

B = 3.091, and K = 5.004. It is well known that the R - T characteristics of different 

brands of resistors vary. Application of the data in this table should be applied only 

to the brand, wattage, and nominal resistance value used by Schulte. Even then, the 

resistor to be used should be calibrated at 4.2 K and room temperature and the ratio 

of these resistances should agree to within 6.8% of the table ratio. - Other appraches to 

representing the temperature resistance characteristics are found in [102, 103, 104]. 

Germanium 

Semiconducting materials germanium and silicon exhibit useful R versus T 

characteristics at low temperatures.. The primary range for these thermometers is 

for T < 20 K; they can, however, be used up to 100 K.with decreased sensitivity. The 

R versus T characteristics of several germanium commercial units are shown in 

figure 12. The bulk of the development work has been done on the germanium resist-

ance thermometers. Commercial units are available in both 2 and 4 lead configurations 

as shown in figure 13(a).
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These thermometers are small (typical size is approximately 1 .3 cm long and 

0.3 cm in diameter) and have small mass with a resulting time constant on the order of 

0.1 second. As seen in figure 13, the leads which actually contact the germanium 

crystal are very small. This results in the instruments being relatively easy to burn 

out if the measuring current is too high. Most models use 1 j.i A for T< 2 K, 10 i. A 
for Z< T :g 15K, 100 A for 15 K < T :g 40K, and 1 mA for 40 K < T< 100K. 

These thermometers are generally used in a potentiometric circuit such as the 
one shown in figure 13(b). In order to eliminate spurious emf's, the average of a 

forward-reverse set of measurements is recommended for very accurate work. 

The reproducibility of doped single crystal germanium thermometers (GRT's) 

has been established on units from various sources by various labs [105, 106, 1071. The 

reproducibility of the thermometers at 4 K is as good as the current ability to check 
them, i.e., typically a few tenths of a millidegree. 

The conduction processes and effect of various controlled impurities are discussed 
by Blakemore [108]. It is noted here that by changing the type and amount of impurity, 

the thermometer can be made to have an optimum range of usefulness. Commei'cial 
units are available for use in several different ranges. 

The major disadvantage associated with the use of germanium thermometers is 
the lack of a simple analytical representation. Each thermometer must be calibrated 

by comparison at many points in the range of interest if the inherent reproducibility 
of the thermometer is to be utilized. 

A polynomial of the form

m 
log R =	 A. (log	 T)1 

j=0	 3 •	 10 

has been proposed [109]. In this paper Blakemore finds that application of this polyno-

mial over the entire range from 1 - 100 K results in oscillations amounting to 0.3% of 

the absolute temperature. If the range is divided, T < 20 K and T> 20 K, these 

oscillations are reduced to a few parts in 10 of temperature. Other schemes of 

representation have been developed and are important because they present the user 

with easier functions to deal with even though the ultimate accuracy may suffer 
[110, ill, 112].	 .	 .	 . 
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Thermistors 

Thermistors (thermally sensitive resistors) are essentially resistors made up 

of metal oxides. Frequently used materials are nickel, manganese, and cobalt oxides. 

The temperature-resistance relationship for this type of resistor has a negative slope 

much like the carbon or germanium resistors. The fact that these resistors are be-

corning increasingly popular in measurement and control circuits is attested to by the 

number of companies selling them [22]. The reasons for the increasing use are in 

part: (1) they are small which tends to make the time response significantly less than 

1 second, (2) they are typically high resistance units which reduces the overall effect 

of lead resistances, and (3) their temperature-resistance characteristics are dependent 
on materials and procedures which allow thermometers to be developed which are 

particularly sensitive in limited ranges of temperature. 

There are, of course, disadvantages also. Items (2) and (3) above may be 

considered as disadvantages as well as advantages: any one thermistor is not usable' 

over a wide range of temperatures due to its resistance becoming exceedingly high. 

The analytical representation of the resistance versus temperature characteristics 
are represented by

P = A exp B 

for short ranges of temperature [113]. Reproducibilities are also experimentally 
determined by Sachse [113] and were found to be about ± 30 mK after cycling between 

room temperature and liquid oxygen. After 1000 cycings, the error was on the order 
of tenths ,of degrees. Sachse discusses the commercially available types of resistors 

and Drorns [114] presents a detailed study of bridge circuits to be used with this type 
of resistor. 

THERMOCOUPLES	 --	 -----

In 1823, Seebeck found that when two dissimilar wires were joined at both ends 

and subjected to a temperature gradient between the two junctions, a current would 

flow. This phenomenon now bears his name - Seebeck effect. A bit later Peltier found 
that when electrical current flows across a junction of dissimilar metals heat was 

either liberated or absorbed. The Peltier heat is given by it = TS [115] where T is the 

absolute temperature and S is the absolute thermopower. Except in the case where one 

of the thermocouple materials is superconducting, S is actually the net thermopower of 
the materials making up the junction, i.e., S = S 12 = 1 - s2 Kelvin (Sir William 
Thomson) analyzed the Seebeck circuit treating it as a reversible heat engine, with 
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the Peltier voltage as the driving force. He discovered that an additional reversible 

effect was needed because the observed thermal voltage is not proportional to the tem-

perature difference. The second reversible phenomenon was found to exist in a 

homogeneous conductor when an electrical and thermal gradient were simultaneously 

applied. Heat is liberated or absorbed at different points depending upon the material 

and the relationship between heat flow and electrical current flow. This effect is 

different than the Peltier effect in that it occurs in a continuous, homogeneous con-
ductor. The Thomson heat, L, is given as T	 [115] where Sand T have the same 

dT 
meanings as in the Peltier coefficient. If the Thomson coefficient is known, one may 

compute the absolute thermopower of a material using

T 

	

S(T) = S(T) - S(0) 
1 	

dT. 

Borelius, et al., [116, 117] determined t from calorimetric methods for lead. More 

recent discussions concerning the accuracy of these measurements are given in [118, 1191. 

Sign conventions have been adopted in order to determine the direction of current 

flow, Peltier heating (or cooling), and Thomson heating (or cooling). The most important 
of these phenomena from a thermometry point of view is the direction of current flow. 

The convention is that if current flows from material A to material B at the cooler of 

the two junctions, then material A is thermoelectrically positive with respect to material 
B as shown in figure 14(a). 

For the materials used in thermometry, the Peltier heating effect is small as 
shown in the following 'example: Peltier coefficient ir = TS is in joules per coulomb. 
We must have current flow in order to generate the Peltier heat so assume that a volt-

meter of reasonably low resistance is used to measure the Seebeck voltage. The total 

circuit resistance will be assumed to be 1500L The warm junction will be taken as 0°C 
(273.15 K) and the cold junction will be taken at 76.15 K(-197°C). Further, assume 

that the thermocouple being used is made up of copper and constantan. The emf 
5555 ^Iv generated will be 5555 pV which results In a circuit current of I	 = 37.03 pA. 

coulombs (C) = 1(A) x time (a) 

1C	
2.7x104s.

37 pA 

If we concern ourselves with the' cooler of the junctions, 
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ii = 76.15 K 	 16.14-- = lZZ9.l C 

or 1 coulomb liberates 1229.1 iJ 

or 0.000294 cal 

and the power will be

0.000294 cal	 -8 cal 1.lxlO 4	 s 2.7x10 s 

The effect of the Thomson heat is much smaller and can only be detected when large 
currents are used; consequently, it will not be considered further. 

A gradient approach [120] to thermocouple circuit analysis will b introduced at 

this point. This method of analyzing thermocouple circuits is extremely useful when 

analyzing thermocouple systems. A simple E (thermal voltage) versus T plot is made. 

Frequently the relative relationships between thermopowers of materials can be used, 

e.g., EP (a nickel-chromium alloy - see Appendix A for more detailed material 

explanation) has a very positive slope, copper has a slightly positive slope, and EN 

(a copper-nickel alloy) has a negative slope. Assuming that the slope of each material 

is a straight line (this isn't at all necessary), the thermoelectric circuit shown in 
figure 15(a) could be represented graphically as in figure 15(b). 

There are three basic empirical laws which govern the use of thermocouples 

as thermometers [121]. They may be stated as follows: (1) law of the homogeneous 

circuit. No current will rflow in a thermoelectric circuit such as figure 14(a) if 

material A and B are identical regardless of the magnitude of the temperature gradient 

or its distribution along the wires. The first law, as seen graphically, is given in 

figure 16(a). (2) Law of intermediate materials. This law states that a third material, 

introduced into the thermoelectric circuit as shown in figure 14(b), will have no - 

thermoelectric effect if it exists entirely in an isothermal region. This law niajbe 
shown graphically as shown in figure 16(b). (3) Law of intermediate temperatures. 

This law states that if a thermocouple pair generates a voltage E 1 , when its junctions 
areat T 1 and T2 , and a voltage E 2 when its junctions are at T 2 and T 3 , then it will 
generate the voltage E 12 = E 1 + E2 when its junctions are at T 1 and T3. 

A full understanding of these three basic empirical laws will allow successful 	 - 
temperature measurement wit thermocouples. For instance, application of the second 

law assures us that a feed-through or disconnect (being an intermediate material) will 
produce no thermoelectric effect if it is isothermal. 

28



The types of thermocouples used in low temperature thermometry are the 

standardized types Chromel versus constantan (type E), Chromel versus Alurnel 
(type K), copper versus constantan (type T), and combinations utilizing dilute noble 

metal alloys as the negative thermoelernents. The base metal thermocouples, types 

E, K, and T, do not have specified chemical compositions. Rather, any pair of 

thermocouple materials that satisfy the limits set forth in table 12 [122] may be used. 

Limits of error for temperatures below 0°C have not been established for types E and K. 

As noted in Appendix A, KP = EP and EN = TN. Further discussions of the standardized 

materials are given in [123, 1241. The nominal make-up of these wires is given in 

Appendix A. 

The increasing use of liquid hydrogen and liquid helium in the scientific and 

aerospace communities has created a demand for specialized thermometry below, 
say, 25 K. Ordinary thermocouple combinations are only marginally acceptable due 

to their low sensitivity in this range. Dilute alloys of noble metals and transition metals, 

however, do form thermoelements with relatively high temperature sensitivity below 

25 K; Au-2. 1 at % (atomic percent) Co is perhaps the best known of this type. Un-

fortunately, the gold-cobalt alloy forms a supersaturated solid solution; cobalt tends 

to migrate to the grain boundaries even at room temperature [125]. This migration 

changes the thermoelectric properties and reduces the worth of this material as a 

thermoelement. Another family of alloys of this type are alloys of iron in gold. These 

alloys are metallurgically stable and exhibit extremely useful thermoelectric properties 
at very low temperatures. A differential thermocouple made with Au-0.02, 0.03, or 

0.07 at % Fe as the negative element and copper, normal)' silver (g-0. 37 at % Au), 

or KP as thepositive element provides a usable sensitivity even below 4 K. 

Type E 

The. history.of type E is not well documented; the first published calibration 

that we are aware of was by Shenker, et al., [126]. Their tables were calculated from 

data on KP and TN versus reference platinum from earlier NBS Research papers. 

This type of thermocouple has the highest Seebeck coefficient (S) of the three standardized 

types both above and below 0°C. In addition to this, both elements of this thermocouple 

have low thermal conductivity, reasonable homogeneity, and they resist corrosion in 

moist atmospheres. A word of warning concerning the unfortunate ambiguity over the 

material referred to as constantan. Iron versus constantan (JP versus JN) is an often 

used combination. The negative element, JN, is not the same material as EN (or TN) 

and cannot generally be used interchangeably. 
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Type E thermocouples are recommended by the ASTM [1271 for use in the tem-

perature range from -250°C to 871°C in oxidizing or inert atmospheres. The negative 

thermoelement is subject to deterioration above about 871°C, but the thermocouple 

may be used up to'lOOO°C for short periods. The following restrictions should be placed 
on the use of type E: 

They should not be used in sulphurous, reducing, or alternately reducing and 

oxidizing atmospheres unless suitably protected with protecting tubes.. They 

should not be used in vacuum (at high temperatures) for extended times be-

cause the chromium in the positive thermoelernent vaporizes out of solution 

and alters the calibration. They should also not be used in atmospheres that 

promote "green-rot" corrosion (those with low, but not negligible, oxygen 
content). 

Neither therrnoelement of type E thermocouples is very sensitive to minor changes 

in composition or impurity level because both are already heavily alloyed. Similarly 

they are also not extremely sensitive to minor differences in heat treatment, (provided 

that the treatment does not violate any of the restrictions mentioned above). For 

most general applications they may be used with the heat treatment routinely given by 

the wire manufacturers. However, when the highest accuracy is sought, additional 

preparatory heat treatments may be required in order to enhance their performance. 

Details on this and other phases of the use and behavior of type EP (or KP) thermo-
elements are given by Potts, et al., [128]. 

Type K 

The first industry-wide reference tables for type K thermocouples were developed 

by Roeser [129]. He based his experimental work on a large number of specimens above 

0°C; however, there was only one manufacturer of the KP and KN materials at the time. 
His work below 0°C is based on only two type K thermocouples. Shenker, et al., [126] 

revised the early tables to base them on the then current temperature scale and 
electrical units. 

The sensitivity of the type K thermocouples is only about one half that of the 

type E combination at 20K (4.1 MV/K compared to 8.5 MV/K). The negative element is 

also a bit more inhomogeneous than that of the EN element. Both materials have low 

thermal conductivity and are corrosion resistant in moist atmospheres. 

Type K thermocouples are recommended by the ASTM [127] for continuous use 
at temperatures within the range -250° C to 1260°C in oxidizing or inert atmospheres. 

Both the KP and the KN thermoelements are subject to oxidation when used in air above 
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about 850° C, but evenso, type K thermocouples may be used at temperatures up to about 

1350°C for short periods with only small changes in calibration. When oxidation occurs, 

it normally leads to a gradual increase in the thermoelectric voltage with time. The 

magnitude of the change in the thermoelectric voltage will depend upon such factors as the 

temperatures, time at temperature, diameter of thermoelement and conditions of use. 
The thermoelectric instability of type K thermocouples in air at elevated temperatures has 

been carefully studied [128, 130, 131], and these works should be consulted for details. 

The following -restrictions should be placed on the use of type K: 

They should not be used in sulphurous, reducing, or alternately reducing 
and oxidizing atmospheres unless suitably protected with protecting tubes. 

They should not be used in vacuum (at high temperatures) for extended times 
because the chromium in the positive thermoelement vaporizes out-of solution 

and alters the calibration. They should also not be used in atmospheres that 

promote"green-rot" corrosion (those with low, but not negligible,- oxygen 

content). 

Neither thermoelement of type K thermocouple is very sensitive to minor changes 

in composition or impurity level because both are already heavily alloyed. Similarly 

they are also not extremely sensitive to minor differences in heat treatment (provided 

that treatment does not violate any of the restrictions mentioned above). For most 
general applications they may be used with the heat treatment routinely given by the - 

wire manufacturer. However, when extreme accuracy is sought, the thermoelements 
may require additional preparatory heat treatments in order to achieve the desired 

results. Details on this and other phases of the use and behavior of type K thermo-

couples are given in [128, 132, 133]. 

Type  

Thi s thermocouple type is one of the older and more popular combinations, and 

is the only one of the standardized types for which limits of error below 0°C have been 

established. A word of warning concerning the unfortunate ambiguity over the material 

referred to as constantan. Iron versus constantan (JP versus JN) is an often used 

combination. The negative element, JN, is not the same material as TN (or EN) and 

cannot generally be used interchangeably. 

- Reference tables for type T were first prepared by Roeser, et al., [134]. 

Later these tables were modified to represent the combination better below 0°C [135] 

and to base the work on the then current temperature scale [126]. 
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Type- T thermocouples are recommended by the ASTM [127] for use in the tern.; 

peraturernge from -184°C to 371°C in vacuum or in oxidizing, reducing or inert 

atmospheres. Later research [136, 1371 indicates that they can be used down to about 

20 K. There are, however, several reasons for not using type T at very low tempera-

tures. (1) The sensitivity of type T at 20 K is lower than that of type E (4.6 iv/K 

compared to 8.5 .iV/K). (2) The thermoelectric properties of the TP element become 

quite dependent upon trace impurities of iron at temperatures below about 76 K. (3) 

The thermal conductivity of the TP element is much higher than that of the alloys in-

volved in the type E and K combinations as is seen in figure 2. 

Gold-iron Alloy Thermocouples 

The fact that trace amounts of transition elements in noble metal solvents 	 -
causes anomalous thermoelectric properties has been known for some time. Borelius, 

et al., [138, 139] determined the thermoelectric sensitivity of many dilute alloys of 

copper, silver, gold, and platinum in 1932. The electrical resistivity and thermo-

power of these alloys are of interest because of the unusual electron scattering which 

must be present to cause the peculiar behavior. Much of the work done on dilute alloys 
has, therefore, been to understand the bulk transport properties involved. Develop-

ment of the gold-iron alloys for use in low temperature thermocouple thermometry 

didn't reallybegin until after 1960 when Berman, et al., [140] tested Au-0.02 at % Fe for 
possible use in their thermal conductivity apparatus. 

Several necessary thermoelectric properties have been determined for the 

gold-iron alloys, e. g., reproducibility after repeated thermal cycling [141], behavior 

in a magnetic field [42], and the effect of heat treatment [142, 143]. The number of 
investigations concerning these properties is small and the conclusions could, there-
fore, be representative of particular materials rather than a general material. The 

consensus is, however, that sufficient information is available to establishthe 

gold-iron alloys as-the-most promising therrnoeiernent available for use at very low 
temperatures. 

There have been four extended range calibrations of g.2- iron alloys published 
in the literature [142, 143, 144, 145]. The types of wire commercially available in this 

country are the 0.02 and 0.07 at % alloys of iron in gold. The calibration effort of 

NBS- Boulder has been on these two alloys while 0.03 at % iron in gold is frequently 
used in England. The annealing procedure for the	 -iron alloys is rather critical 
as illustrated in the comparison of sensitivity data by Sparks [1441 and Rosenbaum [1421 

in figures 17 and 18. The anneal used by Sparks was 350° C in air for 20. minutes. If - 

the anneal temperature exceeds about 350° C in air, the iron will begin to oxidize resulting 
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in a much reduced thermopower [1461. Higher anneal temperatures are possible in 

vacuum; however, since the anneal is for purposes of stress relief, the 350°C tempera-

ture should be adequate. It is reported [140] that the repeatability of a single piece 

of gold-iron wire is around 0.2%. The variability between wires from different manu-

facturers and different melts is indicated in figure 19 which shows the experimentally 

determined differences among 7 specimens of Au-0.07 at % Fe wire. Reference [144] 

should be consulted for the details concerning this figure. 

Other Materials 

As mentioned previously, Au-2.1 at % Co was used extensively as a low tempera-

ture thermoelement before its instability [125] became known. Above 18 K. a KP versus 

gold-cobalt thermocouple has better sensitivity than any of the gm-iron combinations. 

For this reason this alloy is still used in situations where accuracy is of secondary 

importance, when frequent calibrations can be made, or when it is used as a controlling 

element. For example, if one wishes the temperature of two bodies to be identical 

(zero output from a differential thermocouple), the absolute calibration doesn't make 

any difference; only the sensitivity is important. Calibration tables will be given later 

for gm-cobalt alloy combinations with the understanding of their limitations. 

Another standardized type which is seldom used at low temperatures is type J. 

Type J is iron (JP) versus constantan (JN). As mentioned in the discussion of types 

T and E, this 'constantan' t is not the same as the constantan referred to as TN (or EN). 

Type J thermocouples are recommended by ASTM [127] for use in the range 0° to 760° C 

in vacuum, oxidizing, reducing, or inert atmospheres. They are not recommended for 

sub-zero usage. The fitting functions to be given later for this type are based on the 

work of Corruccini, et al., [147], revised to IPTS-68 temperature scale. 

Thermocouple Reference Data 

Tabular data for thermocouple types E, K, and T for the temperature range 0 to 

280 K are from [136]. These data are found in tables 13, 14, and 15, respectively. 

Data for KP versus Au-0.07 at % Fe (table 16), KP versus Au-0.02 at % Fe (table 17), 

Cu (TP) versus Au-0.07 at % Fe (table 18), Cu versus Au-0.02 at % Fe (table 19), 

normal silver (-0.37 at To Au) versus Au-0.07 at % Fe (table 20), and normal silver 

versus Au-0.02 at % Fe (table 21) are from [144]. All of these tables are based on 

experimental data from the recently completed thermocouple thermometry program at 

NBS Boulder. The experimental range for the data is 5:9 T :9 280 K. Any extension of 

the power series representation for T > 280 K is an extrapolation and all of the uncertain-

ties inherent in such extensions of experimental data must apply. Extension of the data 

to T < 5' K is more acceptable since the constraint E = 0.tV when T = 0 K was used in the 

original fit.
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Figure 20 is a graphical comparison of the Seebeck voltages for types E, K, T, 

andKP versus Au-0.07 at % Fe. The Seebeck coefficients for these combinations are 

given in figure 21. The Seebeck coefficients for copper (TP) and normal silver versus 

both Au-0.07 at % Fe and Au-0.02 at % Fe are given in figures 22 and 23 respectively. 

In order to facilitate computerized reduction of data, the power series coefficients 

used to generate the calibration tables are given in table 22. The Seebeck voltage in 

microvolts as a function of the temperature in degrees K, 0 K reference temperature, is 

represented by

N 
E=	 B.T' 

i=l 

where N represents the number of coefficients for the particular combination. As an 

example of the application of a series like the one above, consider a thermocouple pair 

whose temperature-voltage output is represented by a four term (N4) power series in 

the temperature range TL !-. T !!g TH. The thermal voltage expansion as a function of 
temperature would be given by  

E =	 BT' B 
1 T + B 2 T 2 +.B'3 T 3 +B 4T4 

This relationship would represent the thermocouple for TL :g T !g TH. It is necessary' 
to use all of the coefficients given for each thermocouple, e.g., table 22 indicates 

that 14 coefficients must be used to represent type T. 

Data in degrees Celsius, 0°C reference temperature, may be generated using 

the power series coefficients given in tables 23 through 26. The coefficients used below 

0°C represent the same data as the coefficients given in table 22. Above 0°C the 

coefficients represent data from [148]. Coefficients for type 3 thermocouples as they 

appear in [148] are given in table 26. Note thatfortemperatures above 0°C, the type K 

representation is by a power series plus a three term exponential. 

Tables 27 through 29 [149] contain reference data for thermocouple combinations 

KP versus Au-2. 1 at % Co, Cu (TP) versus Au-2. 1 at % Co, and normal silver versus. 

Au-2. 1 at % Co, respectively. These tables have not been based on IPTS-68; due to 

the metallurgical instability of these alloys no experimental work was done on these 
combinations in the recent NBS calibration program described in [136]. The tempera-

ture scales used in these tables were IPTS-48 above 90 K and NBS-55 below 90 K. 

Corrections given in tables 2 and 3 may be used to base these data on IPTS-68 if desired.' 
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Thermocouple Selection Guidelines 

Accurate cryogenic thermocouple thermometry is possible only.if care is taken in: 

(a) material (thermocouple) selection, 

(b) thermocouple calibration, and 

(c) general experimental design and measurement technique. 

The selection of the proper thermocouple for use in a particular situation is 

based upon many coiisiderations. Probably the most important at high temperatures 

is compatibility of the environment with the thermocouple material and its insulation. 

At low temperatures this is also important, but it is generally not a problem. This 

criterion, satisfied in essentially the same way as at high temperatures, is treated in 

detail in the literature [124, 127]. Insulations commonly available are enamel, 

polyethylene, polyte tr afluor o ethylene, polymide, and spun glass. Combinations of 

glass and one of the others are also frequently available. Probably the most durable, 

but also most difficult to remove, is polyimide. Wires can also be obtained without 

insulation for use in special situations. 

Another important consideration in the selection of the best thermocouple 
combination for a given task is the physical and chemical inhomogeneity of the wire. 

No thermal voltage is developed when a loop of homogeneous wire is subjected to a 

temperature gradient (first law of thermoelectricity). Similarly, no voltage is generated 

when two identical wires are joined and the pair of wires is placed in a temperature 
gradient. The problem in practical thermometry is, however, that the ideal characteris-

tics 'homogeneous" and "identical" are not sufficiently well approximated for real 

thermocouple materials. Actually, a loop of wire placed in a large temperature gradient 
will usually, produce a thermoelectric voltage, sometimes as large as ten microvolts 

for poor materials [150, 151, 152]. If wire from one spool is connected to wire from a 

different spool of the same nominal composition, their junction placed in a cryogenic 

fluid, and the free ends held at room temperature, then a significant voltage may 

result: we have observed readings as large as hundreds of microvolts for poorly 

controlled alloys.. These variable spurious voltages caused by inhomogeneities, physical 

imperfections, and 'Chemical impurities are one source of imprecision and inaccuracy in 

thermocouple systems. 

Thermocouple Testing 

Experimental methods described below allow selection of materials that are 

most homogeneous and therefore have the smallest amount of spurious voltages. The 

tests also provide data necessary for making realistic error analyses. 
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For descriptive convenience we have divided inhornogeneities into four categories 
based on-their distance of separation: 

(1) Short-range inhomogeneities occur in a single wire and are separated 

by less than five meters, often being within a few centimeters of each other. 

(2) Medium-range inhomogeneities occur in wires that are from a single 
spool but are more than five meters apart. 

(3) Long-range inhomogeneities are found in wires that are from the same 
general stock but are from different spools. 

(4) Inter-lot variations in chemical composition, thermal treatment, and 
handling occur in materials produced by different manufacturers, or even 

in wire produced by the same manufacturer at different times. 

The latter categories of inhomogeneities lead to much larger spurious voltages 

in cryogenic systems. Well-prepared thermocouple wire can have short-range in-

homogenity effects as low as 0. 1 microvolt; poorly controlled alloys often have inter-lot 
variations as large as 100 microvolts. 	 - 

Three types of probes, shown in figure 24, can be used to investigate the various 

effects of the four categories of inhomogeneities. The first probe configuration, shown 

in figure 24(a), consists of a single wire about 4 or 5 meters long, part of which is - 

attached to a plastic tube. It need not have a large number of coils, even straight 

lengths of wire are often satisfactory. Such a probe is used to test for short-range 

inhomogeneities. The second probe configuration, shown in figure 24(b), consists of 

two wires, each 2 or 3 meters long, that are coiled on. a plastic tube and joined at the 

bottom. This probe is used to test for the last three categories of inhomogeneities. 

The essential difference between the two types of probes (besides the junction) i_s in 

their manner of thermal tempering: the second type has tightly wound coils of wire 

near the junction in order to prevent a thermal gradient across the junction, which often 
contains dissimilar materials. - 	 ---- -- -	 --	 .	 - 

For both types of probes the ends of the wires are connected to a potentiometer 

or high-resistance voltmeter; the probes are then dipped into dewars containing cryo-

genic fluids, usually liquid helium or nitrogen. The first type of probe is dipped in two 

different manners, one way for static tests, another way for dynamic tests. 

For static short-range inhomogeneity tests the probes are immersed to a given 

depth in the cryogenic fluid and the temperature gradient is allowed to come to equilibrium 

before readings are taken. In order to obtain more representative values, readings are 

usually taken at several different liquid levels for each test. 
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For dynamic short-range inhomogeneity tests the probes are lowered into the 
fluid at a constant speed. Erratic output voltages are usually observed in these tests 

because large temperature gradients are developed over different, relatively short 

lengths of wire as the depth of immersion is changed. The magnitude of the output 

depends on the type of thermocouple wire, the specific specimen, and to some extent, 

the rate of immersion. Since comparable results are desired, a constant immersion 

rate should be used. We have arbitrarily selected 0.5 meter per minute for our tests. 

The dynamic, short-range tests are sensitive because large temperature 

gradients are established over short sections of wire which may contain significant 

chemical and physical defects. The thermal gradients in the static short-range tests 

are smaller because of thermal diffusion. This results in spurious voltages which are 

correspondingly smaller. The static tests are therefore less sensitive indicators of 

inhomogeneities but more indicative of spurious voltages to be expected in practice. 

Short-range inhomogeneity tests give a good preliminary estimate of the imprecision 

that can be expected for temperature measurements in an actual cryogenic system. 

Results from dynamic tests are most applicable to systems with rapidly fluctuating 

temperatures or liquid levels; results from static tests are most appropriate for 
stable cryogenic systems like the typical laboratory cryostat. Wire that exhibits un-

usually high spurious thermal voltages can be detected and rejected before costly 

installation. 

For tests on medium-or long-range inhomogeneities, or inter-lot variations, 

the probe configuration shown in figure 24(b) is used. The only differences are in the 

methods for selection of wires that will be assembled in the test rig. The selection 

criteria are simply those implied in the basic definitions of the three categories of 

inhomogeneities. The manner of joining the wires is not critical as long as good 

electrical contact is obtained and the materials are not mechanically or thermally 

strained more than a few centimeters away from the junction. The assembled probes 

are dipped into a cryogenic fluid in the same manner as in static short-range inhomo-

geneity tests. 

Medium-and long-range inhomogeneity tests are useful for determining the 

variations that may occur in a selected lot of thermocouple wire. The medium-range 

inhomogeneity tests are especially useful for systems that include thermocouples made 

from consecutive lengths of wire. The deviations in voltage usually become progressively 

larger as the original positions of the wires become more widely separated. It is good 

practice to thermoelectrically compare the front and back ends of a spool, or lot of 
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material, to determine if variations of the material are within acceptable limits. If 

the material is sufficiently homogeneous, then a single calibration will suffice for all 

thermocouples made from that spool. If the material varies beyond acceptable limits, 
then additional calibrations become necessary for each separate part of the spool or 

lot. In the limits of relatively inhomogeneous material or extremely accurate mea-

surement systems, separate calibrations should be made for each length of wire. 

Tests for inter-lot variations are necessary if wires from different melts or 

from different manufacturers are going to be used. Inter-lot variations can be very 

large: hundreds of microvolts have been observed for nominally "identical" material 
received from different manufacturers. Even material received from the same 

manufacturer at different times can have large variations, up to about 40 microvolts. 

Because of these variations, it is best to have all thermocouples in a system made - 

from one lot, preferably one spool, of material. To insure this, enough wire should 

be ordered at the beginning of construction of a thermocouple system to allow repair 
or replacement of all initial thermocouples. 

We have determined the spurious voltages caused by the first three categories 

of inhomogeneities for several of the thermocouple materials used at low temperatures. 

Results obtained with both types of probes on five different materials are summarized 

in table 30. Short-range inhomogeneity results were obtained by using probe type 1; the 

other results, by using the type 2 probe with a junction in the wires. The numbers 

quoted are the average of the maximum values which were found for several spools 
from the same manufacturer. 

The calibration procedure necessary to make use of a particular thermocouple 
depends on the application. If temperature differences are needed only to about 10%, 

one can probably accomplish this by using general calibration tables. These are tables 
which refer to a general type of thermocouple, not to a particular wire or spool of 

wire. To obtain.a more exact calibration, one -must measurethe émfs of this thermo-

couple at selected temperatures. The emf difference between a particular thermocouple 

and the standard table is often small and nearly linear in temperature, so that only a 
few points, sometimes only two, are necessary. 	 - 

The calibration of a thermocouple is done with a type 3 probe shown in figure 24 (c). 

This probe would normally be used to obtain the thermoelectric emfs between a series of 

pairs of fixed points. These enfs would then be used in conjunction with a standard - - 

reference table to form a new and more accurate table for that specific thermocouple. 

Such a calibration may be accurate to a few millidegrees if the wire has been thoroughly 
homogenized and is free of physical defects. Before calibrating wire for highly accurate 
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or precise applications, one should perform the tests discussed in the previous section 

to determine the effect of the inhomogeneities in the wire. If one needs 0.01 K pre-

cision, or better, it will be necessary to do extremely careful in-place calibration 

against a calibrated thermometer such as a platinum or germanium resistance ther-

mometer. 

In conjunction with the establishment of standard reference tables for low tem-

perature thermocouples, a standard reference material (g-28 at % Au) has been 

developed [1531. This material is recommended for use at low temperatures, along 

with platinum, to standardize thermocouple materials which match these standard 

reference tables more uniformly than was possible in the past. 

FILLED SYSTEMS 

Vapor Pressure Thermometers 

Vapor pressure thermometry makes use of the non-linear relationship between 

the vapor pressure and the temperature of the saturated liquid and saturated vapor 

phases of a pure gas. Advantages of this type of thermometry are that it is sensitive, 
can have good time response, is not affected by magnetic fields, and needs no calibra-

tion. The primary disadvantage is that it can be used only between the triple point 

and critical point of the fill liquid. The ranges of use and approximate sensitivities 

are shown in table 31. It is seen from this table that there are gaps in the measurable 

ranges from 5.2 K up to 13.8 K and another from 44.4 K up to 54.35 K. 

There are many different analytical representations of the vapor pressure-tem-

perature relationship for each of the gases used in vapor pressure thermometry. A 

critical and comparative analysis of these equations is beyond the scope of this paper. 

To further complicate the situation, some of the useful data are based on temperature 

scales other than IPTS-68. Helium vapor pressure is a special case lying outside the 

range of IPTS-68. After due consideration, the best tact for presenting the data needed 

in vapor pressure thermometry seems to be as follows: (1) the tabular vapor pressure-

temperature data will be presented as it is in the referenced papers, (2) the temperature 

scale(s) used in the tables will be noted, and, (3) the analytical representations will 

be given as in the referenced papers. 

The saturation properties and thermodynamic properties of He  are given by 

McCarty [154]. The vapor pressure versus temperature relationship is shown in 

table 32. The lambda point is at 2.177 K, the critical point at 5.201 K, and the n.b.p. 

at 4. 224 K. Analytical representation of these data is given by 
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n P := 

	

A.T1) 

Pressure is in microns, temperature in kelvins. The coefficients for this series are 
given in table 33. The temperatures used in this representation are T 58 + 0.001 + 

0.002 x T58 , where T 58 indicates temperatures on the 1958 helium vapor pressure-
temperature scale {21]. 

Saturation and thermodynamic properties for equilibrium hydrogen (0. 21% 

ortho, 99.79%para) are given by Roder, et al., [155]. The vapor pressure versus 
temperature relationship is shown in table 34. The triple point is at 13.803 K, the 

n.b.p. at 20.268 K, and the critical point at 32.976 K. The temperatures used in this 
table are based on the NBS-55 scale; these temperatures may be based on IPTS-68 

by using the data in table 2. The analytical representation for this table is given in 

three ranges by the following equations [156]: For temperatures between 13.803 K and 

21 K 

between 20.268 K and 29K 

and between 29K and 32. 976

A 
log P = A 1 +	 + A 3 T55, 

A5 
log  

a	 4 T 
=A 

^	
+A +A7T55, 

P = P + A8 (T55 - 29) + A9(T 55 - 29) + A10(T55 - 2 a	 9) 

Pressure is in atmospheres, temperature in kelvins. The coefficients for all three 

equations are given in the HYDROGEN column of table 33. In order to use these 
functions on IPTS-68, T55 T68 -

 AT must be used (the AT are found in table 2). 

The saturation properties of neon as determined by Grilly and by McCarty, 
et al., [157, 158] are shown in table 35. The triple point is at 24.54 K, the n.b.p. at 

27.09 K, and the critical point at 44.40 K. The temperatures used in this table are 

based on the NBS-55 scale; these temperatures may be based on IPTS-68 by using the 

data in table 2. The analytical representation for this table is given by 

A 
log P = A1 +--- 

55
+ A T + AT 3 55	 4 5 
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Pressure is given in mm Hg, temperature in kelvins. The coefficients for this equation 

are given in table 33. In order to use this function on the IPTS-68 scale, T 55 = T68 - 

from table 2 must be used. The thermodynamic properties of neon are found in McCarty, 

et al., [159] 

Saturation and thermodynamic properties of nitrogen are given by Jacobsen [160]. 

The vapor pressure versus temperature relationship is shown in table 36. The triple 

point is at 63. 148 K, the n.b.p. at 77.347 K, and the critical point at 126.2 K. The 

analytical representation of these data is given by 

A 
n =	 +A +A T + A (T - T) 1	 +A 5 T 3 +A 6T4 2	 3	 4c 

+ A 7 T 5 + A 
8 T 6 + A9n(T). 

Pressure is in atmospheres, temperatures in kelvins. The coefficients used are given 

in table 33. These data are based on IPTS-68. 

Saturation and thermodynamic properties of oxygen are given by Roder, et al., 

[161]. The vapor pressure versus temperature relationship is shown in table 37. 

The triple point is at 54.351 K, the n. h.p. at 90.18 K, and the critical point at 154.576 K. 

The analytical representation of these data is given by 

n P = A 1 + A 2 T + A 3 T 2 + A 
4 

T 3 + A 5 T4 + A 6 
T 5 

+ A7 T 6 +A 8 T7 

Pressure is in atmospheres, temperature in kelvins. The coefficients for this equation 

are given in table 33. These data are based on NBS-55 for temperatures below 91 K 

and IPTS-48 for temperatures above 91 K. As discussed in the hydrogen vapor pressure 

paragraph, T55 or 48 = T 68 - T must be used in order to base the results on IPTS-68. 

In reviewing the open literature, the author finds little information on the 

nuts and bolts' design of vapor pressure systems - the reason being, perhaps, that 

it is straightforward enough to allow design and use from basic principles. There are, 

however, pitfalls which might best be shown in the development of a basic approach 

to design. 

The most simple vapor pressure- temperature determination is made by mea-

suring the pressure over a liquid surface where the liquid may or may not be confined. 
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This situation is shown in figure 25(a). The temperature measured in this way may 

he significantly different than the temperature in the bulk liquid [80, 162, 1631. Also, 

the purity of the fluid in a situation such as this may be questionable. The vapor pressure 

measured will represent the total pressure which is in turn made up of the partial pres-

sures of all gases present, i.e., P	 P	 + P total	 fill fluid	 residual gases 

Vapor pressure systems built specifically for temperature measurement are 

represented schematically in figure 25(b). The accuracyof a system-such äs this is 

limited by the pressure measurement accuracy, pressure temperature relationship for 

the fill substance, and the purity of the fill substance. In most applications, the purity 

and pressure measurement are the real limiting factors. The vapor bulb system should 

be carefully cleaned, and then evacuated and heated to remove residual gases. 

The vapor pressure of liquid helium is only negligibly affected by impurities. 

Only residual helium affects the vapor pressure of hydrogen. However, the ortho-para 

concentration is important in hydrogen [164]. The vapor pressure of the nitrogen and 

oxygen are significantly altered by impurities; the primary impurities are oxygen in 

nitrogen and vice versa. Chemical preparation or high purity cylinder gas is re-

commended when either are used as fill gases. 

The temperature indicated by a vapor pressure measurement will be affected by 

the coldest spot in the system. The bulb must be the coldest part of the system; other-

wise, vacuum insulation or electrical heating must be used on the connecting line. If 

this is not done, or precautions taken to insure a homogeneous temperature distribution 

in the bath, a temperature which is different than the bulb temperature will be encountered 

at the liquid surface. 

It is very easy to get erroneous readings from "over-fill and 'fade-out". 

"Over-fill" is the condition where sufficient gas has condensed to completely fill the 

vapor bulb. The temperature indicated insuch a situation will-be the -temperature of 

the liquid vapor interface. The level of the interface in the connecting tube will be 

determined by the heat flow into the system. "Fade-out" is the condition occurring 

when the liquid phase no longer exists at the temperature and pressure of the system. 

In such a case, the vapor pressure system becomes a gas thermometer. This 

situation is illustrated for temperatures greater than T  in figure 26. This condition 

is particularly treacherous because there is no obvious transition, and the pressure 

read out will not appear vastly different. Proper design for particular ranges of use can 

eliminate concern over these problems.
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A general approach to system design might be as follows [1651 where the volumes 

are defined in figure 25(b): 

(1), Determine the temperature range to be used. 

TBH highest bulb temperature 

TBL lowest bulb temperature 

(2) Using either the specific volumes or densities (1/specific volume), 

establishing the constant mass relationship 

MBH = XBHVBPL BH + (1 -X BH )  VBPV, BH + P Gl, A VA 

•	 where X is the fraction of the bulb filled with liquid at the highest bulb 

temperature (BH), (1 - X) is the fraction of the bulb filled with saturated 

	

•	 vapor at TBH, P G1, A is the density of the gas at system pressure and 

ambient temperature (TA), and VA VA + V. A similar equation 

for TBL may be written 

MBL =. XBLVBpL BL +. (l XBL) V B P V, BL + P G2,A VA. 

Since the mass of the system is constant, MBL = MBH and 

VA	 XBLPL, BL - XBHpL BH + (1 - XBL) V, BL - (1 - XBH) V, BH 

V 	 PG1,AG2,A 

(3) Select either volume A or B. Often the capillary and gage volume are 

relatively fixed. Since the ratio of VA/VB is known from the preceding 

equation, both volumes are now known. Substitution of VA and V  into 

either of the mass relationships will determine the mass of the gas in 

the system. 

(4) The relationship mass = density is used to find the density of the volume 
gas in the system. 

(5) Tables of the thermodynamic properties of gases contain data relating 

p, T, and P. At a given fill temperature and computed density, the 

required fill pressure may be determined. 

Thermodynamic properties of gases have been referenced earlier, but for 

convenience they will be cited again: He 4,[154J; H 24155]; Ne, [158]; N 2,[160]; and 

01[161]. One of the thermodynamic parameters needed in the mass equations is the 

density of the gas at a given pressure and at the temperature of the warm volume which 
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is generally about 295 K. p(P, T), where T = 295 K, is given for some of the gases 

and not for others. The ideal gas law may be used for determining this value. 

PV = nRT 

or

n	 P 
V - RT 

As an example of the calculation which may be needed consider P = 1 atm = 1013200 

dyn/cm2 , T = 295K, R = 8.3144 x 10 dyn cm K' mol* Then, 

n

	

	 -5 mol = 4.1309 x 10 -i-
cm 

For He,

nSmol	 4g	 4 4.1309 x 10	 x	 = 1.65236 x 10 V	 -	 3 imol	 3 cm	 cm 

Using linear interpolation in the 1 atm. isobar table from [154], p = 1.65273 x g/crn3. 
This magnitude of error is of little consequence since the value is only used in determin-

ing the fill pressure. 

The pressure measuring equipment used in vapor pressure thermometry may 

be a pressure-electrical transducer, dial type pressure gage, or manometry. Pre-

cision pressure measurements with mercury manometers are discussed in [166].,, 

The response time of a vapor pressure system depends on the rate that the 

system can transfer energy to and from the bath, and on the specific heat of the bulb. 

A small bulb with light, highly conductive walls would require a minimum of energy 

from the bath in order to alter the vapor pressure. A high ratio of outside surface 

area to bulb volume promotes good heat transfer characteristics. A well designed 

system in a movingJi quid envir.onment can have-a-response 'time ('63.'2 1/6of tempefature 
step function) of less than 0. 1 second.  

Gas Thermometers 

Precision gas thermometry falls in the category of fundamental thermometers 

rather than empirical thermometers. It is much too demanding for common use. 

Indeed, only a handful of the national laboratories and universities are able to do 

precision gas thermometry. ' Although by no means complete, the following references 

will supply the interested reader with basic information and many excellent references 

for constant volume helium gas thermometry [167, 168, 169, 170, 171, 172] and [173, 1741 
for hydrogen gas thermometry.
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Gas thermometry of a less precise nature is frequently used in practical tem-

perature measurements. Figure 25(b), used in the discussion on vapor pressure 

thermometers, may be used also in gas thermometry. In this case, a fill gas must 

be used which will not condense at the lowest temperature to be encountered. Boyles' 

law states that for a constant mass of gas, PV = RT or PV/T = R, the universal gas 

constant. If a system such as that shown in figure 25(b) is filled to a pressure of 

P  at T and VA VA + V then 

	

P 
f 
V	

A	 P 
f 

V 
B	 P 

T V B P 
T 

V 
A 

	

Tf	
+ T

f =	 T	 + T  

(It is assumed that the fill temperature is the same as the operating temperature of the 

auxilary volume, i.e., Tf
	 room 
= T	 ). This equation may be arranged 

P(V +V )=	 VT +V 

	

P T
	 f A B	 T	 B f A 

If the volumes are known, the temperature results directly from the measurement of 

pressure. If the volumes are not known, they may be determined by measuring the 

pressure at two calibration temperatures. Varying the ratio of VA to VB allows the 

sensitivity of the thermometer to be changed. Good low temperature sensitivity may 

be obtained by making VA/VB large. A high ratio means that only at very cold tem-

peratures will an appreciable amount of gas be in the bulb; this condition also causes 

the thermometer to be sensitive to ambient temperature fluctuations. If vA/VB is 

made very small, sensitivity of the system becomes approximately constant throughout 

the temperature range. White [60] and Coxon [175] discuss corrections and precautions 

which must be applied to practical gas thermometer systems in order to achieve 

maximum accuracy. Inaccuracies of a few parts in a thousand are possible with 

reasonable care. Factors affecting the accuracy such as shrinkage of the cold volume, 

capillary tube effects, and ambient temperature are discussed by Holten [176]. This 

paper also deals with the dynamic response of gas thermometers and methods of 

reducing response time. Time responses of less than 0.5 seconds have been achieved 

under specific conditions. 

SUMMARY AND RECOMMENDATIONS 

Measurement of cryogenic temperatures can be accomplished with several types 

of transducers as has been discussed above. Figure 27 summarizes the principal 

instruments which can be used between 4 and 300 K. Note that all but neon, hydrogen, 
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and helium-4 vapor pressure instruments can be used in at least part of the tempera-

ture range between the triple point and the critical point of oxygen. The information 

presented in this figure is intended as a general guide, except in the cases of thevapor 

pressure instruments where it indicates the total range for each filisubstance. Carbon 

and germanium resistance thermometers can be used above 100 K, platinum resistance 

thermometers can be used below 10 K, and thermocouple types T and R can be used 

below 20 K; however, extension of the ranges beyond the bounds indicated in the figure 

puts the transducer at a rather severe disadvantage. Figure 28 shows the comparative 

sensitivities of the resistance thermometers and the gallium arsenide junction ther-

mometer (100.iA forward current). 

For temperatures above about 20 K, the metallic resistance thermometers are 

more sensitive than the nonmetallic resistance thermometers.. Temperatures above 

20 K can be measured routinely with industrial type PRTtS with an accuracyof better 

than 100 mK and time responses somewhat better than 1 second. Accuracy at the 

rnillidegree level requires precision capsule type PRT's and careful. calibration. 

Carbon thermometers are generally used for low temperature measurements 

(T < 80 K) when accuracies of ± 0.1 K or ± 17o of temperature are needed. Millidegree 

accuracy is attainable using germanium resistance thermometers at temperatures 

below 20 K. The primary drawback to germanium thermometers is that no simple 

analytical representation is available which represents the resistance versus tempera-

ture characteristics even for a given class of doped germanium crystals. A many point 

comparison calibration is required if all the inherent stability of the resistor is to be 

utilized.

Thermocouple types E, K, T, and KP versus Au-O.02, 0.07 at % Fe can be 

used very well in the L0 2 range. If a gold-iron alloy is to be used above about 

20 K, the positive therrnoelement should be type K-P. Use oftheKP material allows 

the g old -iron alloys to be used from below the n.b.p. of helium up to room temperature. 

These couples have an extremely linear sensitivity above 20 K. Type E Is recommended 

for general use when temperatures are not below 20 K. 

Vapor pressure and gas thermometry offer sensitive methods of temperature 

measurement with the advantage that no calibration is necessary. Further advantages 

are that these transducers are not sensitive to magnetic fields or electric fields. In 

the case of vapor pressure thermometers, the time response may be made comparable 

to that of the resistance thermometers.
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Throughout this paper, problem areas for specific thermometer types have 

been mentioned. In many cases additional research could eliminate some of the 
existing difficulties. 

(1) General area of resistance thermometers: The anisotropic behavior of - 

indium should be studied with the purpose of constructing reproducible thermometers. 
If sufficient similarity between thermometers could be achieved, Cragoe Z functions 

might allow precise R(T) from only a few calibration points. Other approaches to 
analytical representation should also be examined. Resistance thermometer con-

struction in general could benefit from the development of better support materials 

and suspension techniques. The work being done on high temperature platinum re-

sistance thermometers is representative of needed research in this area. 

Carbon resistors have received a good deal of attention in their role as 

low temperature thermometers. However, the resistors used are designed for use in 

radio or similar circuits. Additional research on active element support and lead 

attachment would be beneficial. Thin film thermometers are perhaps most in need of 

further work. Standardized methods of deposition, materials, substrates, etc., are 
all needed. The desirable characteristics of fast time response, small size, 

ruggedness, and high sensitivity should warrant the needed basic development of these 
thermometers. Up to this time, the work on thin film thermometers has been highly 

empirical. Basic studies are needed to understand the transport properties of thin 
films for use as thermometers. 

(2) General area of thermoelectric thermometry: Additional research is 

needed to develop materials for use in special applications such as very low temperatures, 
magnetic fields, nuclear environment, etc. The noble metal-transition metal alloys 

in particular need further examination. One goal of these investigations would be to 

determine whether or not the Au-0.02, 0.03, or 0.07 at % Fe alloys currently being 

used are optimized. -Both concentration and different elements should be studied. 

The National Bureau of Standards in Washington, D.C., provides a calibration 
service for thermocouples, PRT's and GRT's. Details of the service are available 

from the Temperature Section, PHYS-B228, National Bureau of Standards, Washington, 
D.C., 20234.
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Table 4.	 Temperature differences in degrees kelvin, AT = T68 - TA, where 
T6 8 represents temperatures on the IPTS-68 temperature scale and 
TA represents temperatures on the NBS P 2- 20(65) (acoustical) 
temperature scale. The range where these scales overlap is from 
14Kto19K.	 V 

V	

V 	 T(mK) 
IPTS - 68 (K)	 IPTS- 68 minus NBS P 2-20 (1965) 

14
V	

-0.3 

15 +6.2 

16 V	 +6.1 

17 +5.1 

18 +4.3	 V 	

V 	 - 

19
V 	

+4•3
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Table 5..	 Lengths of copper and c.onstantan wire which must be thermally 
anchored- to a heat sink at temperature T 5 in order to bring the 
temperature of the wire to within 1 mK of T 5 . Three sets of 
conditions for the sink temperature and initial wire temperature (T1) 
are given.

Matérial T 
-.	 S

T
1

Tempering length () for various wire gages 

40 AWG 35 AWG 30 AWG 24 AWG 

Copper 4 20 0. 09m 0. 18m 0. 35m 0. 82m 

20 78 0.15 0.25 0.45 0. 95 

78 273 0.06 0.11 0.22 0.44 

Constantan 4 20 0. 0 0. 01 0. 01 0.03 

20 78 0.01 0. 02 0.04 0. 07 

78 273 0. 01 0. 02 0.04 0. 08
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Table 7.	 Results of platinum resistance thermometer tests. Data denoted 
C result from two calibration points and one precision calibration 
of a similar thermometer. Data denoted M result from 3 calibration 
points and two precision calibrations from similar thermometers. 

Temperature Average 
Interval Maximum 

Method T1 (K) T2 (K) T3 (K) Examined (K) Errors (rnK) 

C 20 90 20 to	 90 5 

C 30 90 30 to	 90 3 

M 20 90 273.15 20 to	 90 3 
90 to 273. 15 2 

M 20 90 50 20 to	 90 2 

M 30 90 273.15 20 to	 30 7 
30 to	 90 1.3 
90to273.15 2 

M 20 90 30 20 to	 30 1.2 
30 to	 90' 1.2 

M 20 50 30 20 to	 30 . 0.8 
30 to	 50 0.3 

M 30 90 50 20 to	 30 5 
30 to	 50 0.2 
50 to	 90 0.2 

M 14 20 90 14 to	 20 3 

M 10 20 90 10 to	 20 9 

M 90 200 273.15 90 to 273. 15 0.6 (one only)
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Table 8. Cragoe Z functions versus temperature (K) for indium. 

T(K) Z T(K) Z 

3.5	 . -0.000035 30 0.0488 

4.0	 . -0.000012 .	 35 0.0651 

4.5 +0.000016 40 0.0813 

5.0 0.000062 45 0.0980 

6.0 0.000214 50 0.1157 

7	 . 0.000468 60 0.1505 

8 0.000860 70 0.1855 

9 0.00145. 80 0.2200 

10 0.00220 90 ;0.2555 

11 0.00314 100 :0.2908 

12 0.00425 120 0.3620 

13 0.00562 140 0.437 

14 0.00715 160 0.514 

15. 0.00888 180 0.593 

16 0.01076 200 0.675 

18 0.0150 220 0.760 

20 -.	 0.0198	 .. 240 -	 1	 0.846 

22 0.0250 260 0.937 

24 0.0305 280 1.032 

25 0.033	 . 300 1.128 

(273.15) (1.000)
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Table 9. Resistance ratio R T/ R 273. 16 versus temperature (K) for 
commercial copper wire. 

Temperature RT/R27316 Temperature	 RTJRZ7316 

4.2 0.011180 68 0.10137 

19 0.011753 72 0.11626 

20 0.011918 76 0.13239 

21 0.012116 80 0.14854 

22 0.012352 85 0.16975 

23 0.012621 90 0.19145 

24 0.012919 95 0.21348 

25 0.013268 100 0.23582 

26 0.013675 11,0 0.28105 

27 0.014128 120 0.32649 

28 0.014642 130 0.37192 

29 0.015201 140 0.41723 

30 0.015827 150 0.46233 

31 0.01651 160 0.50705 

32 0.01727 170 0.55169 

33 0.01812 180 0.59603 

34 0.01903 190 0.64002, 

35 0.02004 200 0.68387 

36 0.02113 210 0.72750 

38 0.02355 220 0.77098 

40 0.02621 230	 ' 0.81429 

42 0.02927 240 0.85750 

44 0.03274 250 0.90051 

46 0.03671 260 0.94358. 

48	 ' 0.04089 270 0.98650 

50 0.04547 273.16 1.00000 

52 0.05039 280 1.02930 

54 0.05563 290 1.07218 

56 0.06130 300 1.11504 

58 0.06732 310 1.15785 

60 0.07359 320 1.20061 

64 0.08686
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Table 10. Cragoe Z functions versus temperature (K) for copper with 
R	 /R	 100. 273' 4 

Temperature	 Z
	

Temperature 
(K)
	

(K) 

295 1.09467 

273.15 1.00000 

260 0.94295 

240 0.85589 

220 0.76839 

200 0.68030 

180 0.59146 

170 0.54662 

160 0.50148 

150 0.45626 

140 0.41064 

130 0.36482 

120 0.31888 

110 0.27292 

100 0.22718 

90	 - -	 0.18231 

85 0.16036 

80 0.13891 

75 0.11850 

70 0.09874

65	 0.08021 

60	 0.06311 

55
	

0.64787 

50	 0 03468 

48
	

0'.0,3005 

46
	

0.02582 

44	 0.62180 

42	 o.d1829 

40
	

0.01520 

38	 0.01251 

36
	

0.01006 

34	 0.00793 9 

32	 0.006159 

30	 0.004700 

28
	

0.003501 

26
	

0.002523 

24	 0.001759 

22	 0.001185 

20	 0.000746 
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Table 11. Resistance ratio RT/R296 versus temperature for a commercial 
0.1 watt, 270 ohm carbon resistor. 

Temperature RT/R296 Temperature RT/R296 - 

4.00 37.65 26.0 2.527 

4.50 28.11 28.0 2.396 

5.00 , 22.10 30.0 2.285 

5.50 18.05 35.0 2.071 

-6.00 15.18 40.0 1.915 

6.50: 13.06 45.0 1.797 

7.00 11.45 50.0 1.703 

7.50 10.19 55.0 1.627 

8.00 9.185 60.0 1.565 

.8.50, 8.363 65.0 1.512 

9 1 00 7.683 70.0 1.467 

9.50 7.111 .,	 75.0 1.428 

10.0 6.625 80.0 1.393 

11.0	 - 5.845 100.0 1.290 

12.0 5.249 .	 120.0 1.220 

13.0	 . 4.780 . -	 140.0 1.170 -

14.0 4.401 160.0 1.131 

15.0 4.090 .	 180.0 1.100 

16.0 3.831 -	 200.0 1.076 

17.0 3.610 220.0 1.055 

18.0 3.421 240.0 1.038 

19.0 3.257 260.0 1.023 

20.0 3.114 280.0 1.010 

22.0 2.987 296.0 1.000 

24.0 2.683
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Table 13. Reference data for type E thermocouple-thermoelectric voltage, 
'E(T), thermoelectric sensitivity, S(T), and the derivative of the 
thermoelectric sensitivity, dS(T).

T E S dS/dT T E 
K ILV MV/K nV/K2 K 

0 0.00 -0.203 604.4 60 704.83 
1 0.09 0.384 571.8 61 726.61 
2 0.76 0.941 543.0 62 748.66 
3 1.97 1.472 517.7 63 770.99 
4 3.69 1.978 495.6 64 793.59 

5 5.92 2.464 476.2 65 816.47 
6 8.61 2.931 459.4 66 839.61 
7 11.77 3.383 444.7 67 863.02 
8 15.38 3.821 432.1 68 886.69 
9 19.41 4.248 421.1 69 910.63 

10 23.87 4.664 4110 70 934.82 
11 28.74 5.072 403.6 71 959.28 
12 34.01 5.472 3960 72 983.99 
13 39.68 5.865 390.8 73 1008.96 
14 45.74 6.254 385.8 74 1034.18 

15 52.18 6.637 381.5 75 1059.65 
16 59.01 7.017 377.8 76 108507 
17 66.22 7.393 374.6 77 1111.35 
18 73.80 7.766 3710 78 1137.56 
19 8105 8.137 369.5 79 1164.03 

20 90.07 8.505 367.4 80 1190.73 
21 9806 8.872 365.6 81 1217.68 
22 107.81 9.237 363.9 82 1244.87 
23 117.23 9.600 362.3 83 1272.30 
24 127.01 9.961 360.8 84 1299.97 

25 137.15 10.321 359.3 85 1327.88 
26 147.65 10.680 357.9 86 1356.02 
27 158.51 11.037 356.4 87 1384.40 
28 169.73 11093 354.9 88 1413.01 
29 18100 11047 353.4 89 144105 

30 193.22 12.099 351.8 90 1470.92 
31 205.50 12.450 350.1 91 1500.22 
32 218.12 12.800 348.4 92 1529.75 
33 231.09 13.147 346.5 93 1559.51 
34 244.41 13.493 344.6 94 1589.49 

35 258.08 13.836 342.7 95 1619.70 
36 272.09 14.178 340.6 96 1650.13 
37 286.43 14.517 338.4 97 168009 
38 301.12 14.855 336.2 98 1711.67 
39 316.14 15.190 333.9 99 174207 

40 331.50 15.523 331.5 100 1774.09 
41 347.19 15.853 329.1 101 1805.63 
42 363.20 16.181 326.6 102 1837.38 
43 379.55 16.506 324.1 103 1869.36 
44 396.21 16.829 321.5 104 1901.54 

45 413.20 17.149 318.9 105 1933.95 
46 430.51 17.467 316.3 106 1966.57 
47 448.14 17.782 313.6 107 1999.40 
48 466.07 18.094 311.0 108 2032.44 
49 484.32 18.404 308.3 109 2065.69 

50 502.88 "18.711 305.6 110 2099.16 
51 521.74 19015 303.0 111 2132.83 
52 540.91 19017 3000 112 2166.71 
53 560.38 19.616 2970 113 2200.80 
54 580.14 19.912 295.1 114 2235.09 

55 600.20 20.206 292.5 115 2269.59 
56 620.55 20.497 289.9 116 2304.29 
57 641.19 20.786 287.4 117 2339.20 
58 662.12 21.072 284.9 118 2374.31 
59 683.33 21055 282.5 119 2409.62 

60 704.83 21.637 280.0 120 2445.13

S dS/dT T E S 
MV/K nV/K2 K PV MV/K 

21.637 280.0 120 2445.13 35.611 
21.915 277.7 121 2480.84 35.811 
22.192 275.4 122 2516.75 36.009 
22.466 273.1 123 2552.86 36.207 
22.738 270.9 124 2589.17 36.403 

23.008 268.8 . 125 2625.67 36.599 
23.276 266.7 126 2662.36 36.794 
23.541 264.6 127 2699.25 36.988 
23.805 262.6 128 2736.34 37.181 
24.067 260.7 129 2773.62 37.374 

24.326 258.8 130 2811.09 37.565 
24.584 256.9 131 2848.75 37.756 
24.840 255.1 132 2886.60 37.946 
25.094 253.4 133 2924.64 38.136 
25.347 251.7 134 2962.87 38.324 

25.598 250.0 135 3001.29 38.512 
25.847 248.4 136 3039.89 38.699 
26.095 246.9 137 3078.69 38.885 
26.341 245.4 138 3117.66 39.070 
26.585 243.9 139 3156,83 39.255 

26.829 242.4 140 3196.17 39.439 
27.070 241.0 141 3235.70 39.623 
27.311 239.7 142 3275.42 39.805 
27.550 238.3 143 3315.31 39.987 
27.787 237.0 144 3355.39 40.169 

28.024 235.7 145 3395.65 40.349 
28.259 234.5 146 3436.09 40.529 
28.493 233.2 147 3476.71 40.708 
28.725 232.0 148 3517.51 40.887 
28.957 230.9 149 3558.48 41.065 

29.187 229.7 150 3599.64 41.242 
29.416 228.6 151 3640.97 41.419 
29.644 227.4 152 3682.47 41.595 
29.871 226.3 153 3724.16 41.771 
30.097 225.2 154 3766.02 41.946 

30.321 224.1 155 3808.05 42.120 
30.545 223.1 156 3850.26 42.293 
30.768 222.0 157 3892.64 42.466 
30.989 221.0 158 3935.19 42.639 
31.210 219.9 159 3977.91 42.811 

31.429 218.9 160 4020.81 42.982 
31.647 217.9 161 4063.88 43.153 
31.865 216.9 162 4107.11 . 43.323 
32.081 215.9 163 4150.52 43.492 
32.297 214.9 164 4194.10 43.661 

32.511 . 213.9 165 4237.84 43.829 
32.724 212.9 166 4281.76 43.997 
32.937 211.9 167 4325.84 44.164 
33.148 210.9 168 4370.08 44.330 
33.359 210.0 169 4414.50 44.496 

33.568 209.0 170 4459.07 44.661 
33.777 208.1 171 4503.82 44.826 
33.984 207.1 172 4548.73 44.990 
34.191 206.2 173 4593.80 45.153 
34.397 205.2 174 4639.03 45.316 

34.601 204.3 175 4684.43 45.478 
34.805 203.4 176 4729.99 45.640 
35.008 202.4 177 4775.71 45.800 
35.210 201.5 178 4821.59 45.961 
35.411 200.6 179 4867.63 46.120 

35.611 199.7 180 4913.83 46.279

dS/dT 
nV/ K2 

199.7 
198.8 
198.0 
197.1 
196.2 

195.4 
194.5 
193.7 
192.9 
192.0 

191.2 
190.4 
189.6 
188.9 
188.1 

187.3 
186.6 
185.9 
185.1 
184.4 

183.7 
183.0 
182.3 
181.6 
180.9 

180.3 
179.6 
179.0 
178.3 
177.7 

177.0 
176.4 
175.8 
175.2 
174.6 

173.9 
173.3 
172.7 
172.1 
171.5 

170.9 
170.3 
169.7 
169.1 
168.5 

167.9 
167.3 
166.7 
166.1 
165.5 

164.9 
164.3 
163.7 
163.1 
162.5 

161.8 
161.2 
160.6 
160.0 
159.4 

158.7 
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T	 E 
K 

	

240	 7954.95 

	

241	 8009.78 

	

242	 8064.74 

	

243	 8119.82 

	

244	 8175.02 

	

245	 8230.35 

	

246	 8285.81 

	

247	 8341.38 

	

248	 8397.09 

	

249	 8452.91 

	

250	 8508.85 

	

251	 8564.92 

	

252	 8621.11 

	

253	 8677.42 

	

254	 8733.85 

	

255	 8790.40 

	

256	 8847.07 

	

257	 8903.86 

	

258	 8960.78 

	

259	 9017.81 

	

260	 9074.95 

	

261	 9132.22 

	

262	 9189.61 

	

263	 9247.11 

	

264	 9304.73 

	

265	 9362.46 

	

266	 9420.31 

	

267	 9478.28 

	

268	 9536.36 

	

269	 9594.55 

	

270	 9652.85 

	

271	 9711.27 

	

272	 9769.79 

	

273	 9828.42 

	

274	 9887.15 

	

275	 9945998 

	

276	 10004.91 

	

277	 10063.94 

	

278	 10123.05 

	

279	 10182.25

S 
MV/K 

54.767 
54.893 
55.018 
55.143 
55.268 

55.392 
55.516 
55.639 
55.762 
55.884 

56.006 
56.128 
56.250 
56.371 
56.491 

56.611 
56.731 
56.851 
56.970 
57.089 

57.208 
57.326 
57.444 
57.561 
57.677 

57.793 
57.908 
58.023 
58. 136 
58.248 

58.359 
58.468 
58.575 
58.680 
58.783 

58.882 
589978 
59.069 
599156 
59.237

280	 1024102	 59.312	 71.4 

dS/dT 
nV/K2 

126.1 
125.7 
125.2 
124.8 
124.3 

123.9 
123.5 
123.1 
122.7 
122.3 

121.9 
121.5. 
121.2 
120.8 
120.5 

120.1 
119.8 
119.4 
119.1 
118.7 

118.3 
117.9 
117.4 
116.9. 
116.3 

115.6 
114.8. 
113.9 
112.8 
111.5 

110.0 
108.2 
106.2 
103.7 
100.9 

97,6 
93,8 
89,3 
84.2 
78.2 

Table 13. Reference data for type E thermocouple-thermoelectric voltage, 
E(T), thermoelectric sensitivity, S(T), and the derivative of the 
thermoelectric sensitivity, dS(T) (continued). 

T £ S dS/dT 
K PV MV/K nV/K2 

180 4913.83 46.279 158.7 
181 4960.19 46.438 158.1 
182 5006.70 46.596 157.5 
183 5053.38 46.753 156.9 
184 5100.21 46009 156.2 

185 5147.20 47.065 155.6 
186 5194.34 47.221 155.0 
187 5241.64 47.375 154.4 
188 5289.09 47.529 153.7 
189 533600 47.683 153.1 

190 5384.46 47.835 152.5 
191 5432.37 47.988 151.9 
192 5480.43 48.139 151.2 
193 5528.65 48.290 150.6 
194 5577.01 48.440 150.0 

195 5625.53 48.590 149.4 
196 5674.19 48.739 148.8 
197 5723.00 48.888 148.2 
198 5771.97 49.036 147.6 
199 5821.08 49.183 147.0 

200 587003 49030 146.4 
201 5919.74 49.476 145.9 
202 5969.28 49.622 145.3 
203 6018.98 49.767 144.7 
204 6068.82 49.911 144.1 

205 6118.80 50.055 143.6 
206 6168.93 50.198 143.0 
207 6219.20 50.341 142.5 
208 6269.61 50.483 141.9 
209 6320.16 50.625 141.4 

210 6370.86 50.766 140.9 
211 6421.69 50.907 140.3 
212 6472.67 51.047 139.8 
213 6523.79 51.186 139.3 
214 6575.04 51025 138.8 

215 6626.44 51.464 1380 
216 6677997 51.602 137.8 
217 6729.64 51.739 1370 
218 6781.45 51.876 136.8 
219 683309 52.013 136.3 

220 6885.47 52.149 135.8 
221 6937.69 52.284 135.3 
222 6990.04 52.419 134.8 
223 7042.53 52.554 1340 
224 7095915 52.688 133.8 

225 7147.90 52.821 1330 
226 7200.79 52055 132.8 
227 7253.81 53.087 1320 
228 7306.97 539219 13199 
229 7360,25 53.351 131.4 

230 7413.67 53.482 130.9 
231 7467.22 53.613 130.4 
232 7520.89 53.743 129.9 
233 757400 53.872 129.4 
234 7628.64 54.002 129.0 

235 7682970 54.130 128.5 
236 7736.90 54.259 128.0 
237 7791.22 54086 12795 
238 7845.67 54.514 127.1 
230 7900.25 54.641 126.6 

240 7954995 54067 12691
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Table 14. Reference data for type K thermocouple-thermoelectric voltage, 
• E(T), thermoelectric sensitivity, S(T), and the derivative of the 

thermoelectric sensitivity, dS( T). 

E S dS/dT T E S dS/dT T E S dS/dT 
11V MV/K nV/K2 K iV &V/K nV/K2 K V ILVI K nV/K2 

0.00 0.241 146.9 60 383.56 12.757 197.0 120 1473.20 23.144 153.9 
0.32 0.391 154.3 61 396.41 12.954 196.0 121 1496.42 23.297 153.4 
0.78 0.549 161.3 62 409.47 13.149 195.0 122 1519.80 23.451 152.8 
1.42 0.714 167.7 63 422.71 13.344 194.0 123 1543.32 23.603 152.2 
2.21 0.884 173.7 64 436.15 13.537 193.0 124 1567.00 23.755 151.6 

3.19 1.061 179.2 65 449.79 13.730 192.1 125 1590.83 23.906 151.1 
4.34 1.243 184.3 66 463.61 13.922 191.1 126 1614.81 24.057 150.5 
5.67 1.429 189.0 67 477.63 14.112 190.2 127 1638.95 24.207 149.9 
7.20 1.621 193.4 68 491.84 14002 189.2 128 1663.23 24057 1490 
8.92 1.816 197.3 69 506.23 14.491 1880 129 1687,66 24006 148.8 

10.83 2.015 200.9 70 520.82 14.678 187.4 130 1712.24 24.654 148.2 
12.95 2.218 204.2 71 535.59 14.865 186.5 131 1736.97 24.802 147.6 
15.27 2.424 207.2 72 550.55 15.051 185.6 132 1761.84 24.950 147.0 
17.80 2.632 209.9 73 565.69 15.237 184.8 133 1786.87 25.096 146.4 
20.53 2.843 212.3 74 581.02 15.421 183.9 134 1812.04 25.243 145.9 

23.48 3.057 214.5 75 596.53 15.604 183.1 135 1837,35 25088 1450 
26.65 3.272 216.4 76 612.23 15.787 182.2 136 1862.81 25.533 144.7 
30.03 3.489 218.1 77 628.11 15.969 181.4 137 1888.42 25.678 144.1 
33.63 3.708 219.5 78 644.17 16.150 180.6 138 1914917 25,821 143.5 
37.45 3.928 220.8 79 660.41 16.330 179.8 139 1940.06 25.965 142.9 

61.48 4.150 221.9. 80 676.83 16.510 179.1 140 1966.10 26.107 142.3 
45.75 4072 222.8 81 693.43 16.688 1780 141 1992.28 26.249 141.7 
50.23 4.595 223.5 82 710.20 16.866 177.5 142 2018.60 26.391 141.1 
5404 6.819 224.0 83 727.16 17.043 176.8 143 2045.06 26.532 140.6 
59.87 5.043 224.4 84 744.29 17.220 176.1 144 2071.66 26.672 140.0 

65.02 5.268 224.7 85 761.60 17096 1750 145 2098.40 26.811 139.4 
70.40 5.493 224.9 86 779.08 17.571 174.6 146 2125.28 26.950 138.8 
76.01 5.718 226.9 87 796.74 17045 173.9 147 2152.30 27.089 138.2 
81.84 5.942 224.8 88 814.57 17.918 173.2 148 2179.46 27.227 137.6 
87.89 6.167 224.6 89 832.58 18091 172.6 149 2206.75 27064 137.0 

94.17 6092 224.3 90 85005 18.264 1710 150 2234.19 27.501 136.4 
100.68 6.616 224.0 91 869.10 18.435 171.2 151 226106 27.637 135.7 
107.40 6.840 223.5 92 887.62 18.606 170.6 152 2289.46 27072 13501 
114.36 7.063 223.0 93 90601 18.776 1690 153 2317.30 27.907 134,5 
121.53 7,285 222.4 94 925.18 18.946 169.3 154 2345.27 28.041 133.9 

128.93 7008 221.7 95 944.21 190115 168.6 155 2373.38 28.175 1330 
136.54 7.729 22190 96 963.40 19.283 16890 156 2401.62 28008 1320 
144.38 7.950 220.3 97 98207 19.451 167.4 157 2430.00 28.440 132.1 
152.44 8.169 219.4 98 1002.31 19.618 166.8 158 245800 28.372 131.5 
16002 8088 218.6 99 1022.01 19.784 166.2 159 2487914 28.703 130.9 

169.22 8.607 217.7 100 1041.87 19050 1650 160 2515.91 28.834 130.3 
177.94 8,824 216.8 101 106101 209115 1640 161 254401 28064 1290 
186087 99040 215.8 102 1082.11 20.280 1640 162 257304 29.093 129.0 
196.02 9,256 214.9 103 1102947 20.444 1630 163 2603.00 29.222 126.4 
205938 9.470 21399 104 1122.99 20.608 163.2 164 2632.28 29.350 127.8 

21405 9.683 212 9 9 105 1143.68 20.770 162.6 165 2661.70 299478 127.2 
22404 9.896 2110 106 1164953 20.933 162.0 166 2691.24 29.604 126.6 
234975 10.107 210.8 107 1185.55 21.094 161.4 167 2720.90 29031 126.0 
244.96 109317 209,7 108 1206.72 21.255 16098 168 2750.70 29056 1250 
25508 10.526 208.7 109 1228.06 21.416 160.2 169 2780.62 299981 1240 

266,01 10.735 207.6 110 1249.55 21.576 15997 170 2810.66 30.106 124.1 
276.85 10.942 206.5 111 1271.21 21.735 159.1 171 2840.83 30.230 12995 
287.89 11.148 20595 112 1293.02 21094 15805 172 2871.12 30053 1220 
299.14 11053 204.6 113 1315.00 22.052 157.9 173 2901953 30.475 122.2 
310.60 11.556 2030 114 1337.13 22,210 157.4 174 2932.07 30.597 121.6 

322.26 119759 202.3 115 1359.42 22067 1360 175 2962.73 30018 121.0 
334.12 119961 201.2 116 1381.86 22.524 156.2 176 2993.51 30039 120.4 
346.18 12.162 200.1 117 1404.46 22.679 155,6 177 3024.41 30059 1190 
358.44 12061 199.1 118 1427.22 22.835 155.1 178 3055.42 31.079 119.1 
370.90 12.360 19801 119 1450.13 22.990 1540 179 3086956 31.197 118.5 

383.56 12037 197.0 120 1473.20 23.144 1530 180 3117.62 31.316 1170

I 
K

0 
1 
2 
3 
4 

5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

15 
16 
17 
18 
19 

20 
21 
22 
23 
24 

25 
26 
27 
28 
29 

30 
31 
32 
33 
34 

35 
36 
37 
38 
39 

40 
41 
42 
43 
44 

45 
46 
47 
48 
49 

So 
Si 
52 
53 
54 

55 
56 
57 
58 
59 

60
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Table 14. Reference data for type K thermocouple-theripoelectric voltage, 
E(T), thermoelectric sensitivity, S(T), and the derivative of the 
thermoelectric sensitivity, dS(T) (continued). 

T E S dS/dT I E S dS/dT 
K V MV/K nV/K2 K PV MV/K nV/K2 

180 3117.82 31.316 117.9 240 5185.83 37.228 79.0 
181 3149.19 31.433 117.2 241 5223.10 37.307 78.4 
182 3180.68 31.550 116.6 242 5260.44 37.385 77.7 
183 3212.29 31.666 116.0 243 5297.87 37.462 77.1 
184 3244.02 31.782 115.3 244 5335.37 37.539 76.4 
185 3275.86 31.897 114.7 245 5372.94 37.615 75.8 
186 3307.81 32.011 114.1 246 5410.60 37.691 75.1 
187 3339.88 32.125 113.4 247 5448.32 37.765 74.5. 188 3372.06 32.238 112.8 248 5486.13 37.840 73.8 
189 3404.36 32.351 112.2 249 5524.00 37.913 73.2 
190 3436.76 32.463 111.5 250 5561.95 37.986 72.5 
191 3469.28 32.574 110.9 251 5599.98 38.058 71.9 192 3501.91. 32.684 110.3 252 5638.07 38.130 71.2 
193 3534.65 32.794 109.6 253 5676.23 38.201 70.6 
194 3567.50 32.904 109.0 254 5714.47 38.271 69.9 
195 - 3600.46 33.012 108.3 255 5752.78 38.340 69.2. 196 3633.52 33.120 107.7 256 5791.15 38.409 68.5.. 
197 3666.70 33.228 107.1 257 5829.59 38.477 67.9, 
198 3699.98 33.334 106.4 258 5868.10 38.545 67.2 
199 3733.36 33.440 105.8 259 5906.68 38.612 66.5 
200 3766.86 33.546 105.1 260 5945.33 38.678 65.8 
201 3800.46 33.651 104.5 261 5984.04 38.743 65.1 
202 3834.16 33.755 103.8 262 6022.81 38.808 64.3 
203 3867.96 33.858 103.2 263 6061.65 38.872 63.6 204 3901.87 33.961 102.5 264 6100.56 38.935 62.8 
205 3935.89 34.063 101.9 265 6139.52 . 38.998 62.1 206. 3970.00 34.165 101.2 266 ,	 6178.55 39.059 61.3 207. 4004.22 34.266 100.6 267 6217.64 39.120 60.5 208 4038.53 34.366 99.9 268 6256.79 39.180 59.6 209 ,	 4072.95 34.466 99.3 269 6296.00 39.239 58.8 
210 4107.46 .	 34.565 98.6 270 .6335.27 39.298 570 
211. 4142.08 34.663 98.0 271	 . 6374.60 39.355 57.0 212 4176.79 34.761 97.3 272 6413.98 39.412 56.1	 'V 213 4211.60 34.857 96.7 273 6453.42 39.467 55.1 214 4246.50 34.954 96.0 274 6492.91 39.522 54.1 
215 4281.51 35.049 95.3 275 6532.46 39.575 53.0-216 4316.60 35.144 94.7 276 6572.06 39.628 51.9 217 4351.79 35.239 94.0	 , 277. 6611.72 39.679 50.8 
218 4387.08 35.333 93.4 278 6651.42 39.729 49.6 219 4422.46 35.426 92.7 279 6691.18 39.778 48.4. 
220 .4457.93 '	 35.518 92.1 280 6730.98	 2.39.826 47.1 
221 4493.49. 35.610 91.4 
222 4529.15 _35.701 90.7 ,---- --  
223 4564.90 35.791 90.1 
224 4600.73 35.881 89.4 

225  4636.66 35.970 88.8 
226 4672.67 36.059	 , 88.1 
227 4708.77. 36.146 87.5 
228 4744.96 36.233 86.8 
229 4781.24 36.320 86.2 

230	 . 4817.60 '	 36.406 85.5 
231. '	 4854.05 36.491 84.8  
232 4890.59 36.575. 84.2	 . 
233 - 4927.20 36.659 83.5 
234 4963.90 36.743 82.9 

235 5000.69 .	 36.825 82.2 
236 5037.55 36.907 81.6 
237 5074.50 36.988 80.9	 . 
238 5111.53

- 
37.069 80.3 

239 5148.64 37.149 79.6 

240 5185.83 37.228 79.0
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Table 15. Reference data for type T thermocouple-thermoelectric voltage, 
E(T), thermoelectric sensitivity, S(T), and the derivative of the 
thermoelectric sensitivity, dS(T). 

T E S dS/dT 7 E $ dS/dT I E $ dS/dT 
K V MV/K nV/K2 K &V MV/K nV/K2 K JLV MV/K nV/K2 

0 0.00 -0.400 526.6 60 461.11 13.826 154.6 120 154004 21.931 126.0 
1 -0.15 0.099 473.2 61 475.01 13.980 1520 121 1562.73 22.057 125.8 
2 0.18 0.549 428.0 62 489.07 14.132 151.3 122 1584.85 22.182 125.6 
3 0.94 0.958 390.1 63 503.28 14.283 149.8 123 1607.10 22008 125.4 
4 2.09 1.332 358.4 64 517.64 14.432 148.4 124 1629.47 22.433 125.3 

5 3.59 1.677 332.3 65 532.14 14.580 147.1 125 1651.96 22.558 125.1 
6 5.43 10998 310.9 66 54609 14.726 146.0 126 1674.58 22.683 125.0 
7 7.58 2.300 293.5 67 561.59 14.872 144.9 127 1697.33 22.808 124.8 
8 10.03 2.586 279.7 68 576.54 15016 143.9 128 1720.20 22.933 124.7 
9 12.75 2.860 268.8 69 591.62 15.159 142.9 129 1743.20 23.058 124.5 

10 1504 3.124 260.3 70 606.86 15.302 142.1 130 1766.31 23.182 124.4 
11 19.00 3081 254.0 71 622.23 15.444 1410 131 1789.56 23006 124.3 
12 22.50 3.633 249.3 72 637.74 15.584 140.6 132 1812.93 23.431 124.2 
13 26.26 3.880 246.0 73 653.40 15.725 1390 133 1836.42 23.555 124.0 
14 30.26 4.125 243.8 74 669.19 15.864 139.3 134 1860.04 23.679 1230 

15 34.51 4.368 242.5 75 685.13 16.003 138.8 135 1883.78 23003 123.8 
16 39.00 4.610 241.8 76 701.20 16.142 1380 136 1907.64 23.926 123.7 
17 43.73 4.852 2410 77 717.41 16.280 137.8 137 1931.63 24.050 123.5 
18 48.70 5.094 241.6 78 733.76 16.417 137.4 138 1955.74 24.173 123.4 
19 53.92 5035 241.8 79 750.24 16.555 137.0 139 1979.98 24.297 1230 

20 59.37 5.577 242.2 80 766.87 16.691 136.6 140 2004.33 24.420 123.2 
21 65.07 5.820 242.5 81 783.63 16.828 136.2 141 202802 24.543 123.0 
22 71.01 6.062 242.7 82 800.52 16.964 135.9 142 2053.42 24.666 1220 
23 77.20 6005 242.7 83 817.55 17.100 135.6 143 2078.15 24.789 1220 
24 83.62 6.548 242.6 84 834.72 17.235 135.3 144 2103.00 24.911 122.6 

25 90.29 6.790 242.2 85 852.02 17070 135.0 145 2127.97 25.034 122.4 
26 97.20 7032 241.6 86 869.46 17.505 134.7 146 2153.07 25.156 122.3 
27 104.36 7.273 240.8 87 887.03 17.640 134.5 147 2178.28 25.279 122.1 
28 111.75 7.513 239.7 88 904.74 17.774 134.2 148 2203.62 - 25.401 1210 
29 119.38 7.752 2380 89 922.58 17008 133.9 149 2229.08 25.522 121.8 

30 127.25 7.990 2360 90 940.56 18.042 133.7 150 2254.67 25.644 121.6 
31 135936 8.226 234.8 91 958.66 18.175 133.4 151 2280937 25.766 121.4 
32 143.70 8.459 232.7 92 976.91 18.309 133.1 152 2306.20 25.887 121.2 
33 152.28 8.691 230.4 93 995.28 18.442 132.9 153 2332.15 26.008 121.0 
34 161.08 8.920 227.9 94 1013.79 18.574 132.6 154 2358.21 26.129 1200 

35 170.12 9.147 225.2 95 1032.43 18007 132.3 155 2384.40 26.249 120.5 
36 179.38 9.371 222.4 96 1051.20 18.839 132.1 156 2410.71 26.370 1200 
37 188.86 9092 219.4 97 1070.11 18.971 131.8 157 2437.14 26.490 120.1 
38 198.56 9.809 216.4 98 1089.14 19.102 1310 158 2463.69 26.610 119.8 
39 208948 10024 213.2 99 1108.31 19.234 131.2 159 2490.36 26.730 119.6 

40 218.61 10.236 210.0 100 1127.61 19.365 131.0 160 2517.15 26.849 119.3 
41 228.95 10.444 206.7 101 1147.04 19.496 130.7 161 2544.06 26.968 11900 
42 239.49 10.649 203.4 102 1166.60 19.626 130.4 162 2571.09 27.087 11808 
43 250.24 10.851 200.1 103 1186929 19.757 130.1 163 2598.24 27.206 118.5 
44 261.19 11049 196.8 104 1206.12 19.886 1290 164 262500 27.324 118.2 

45 27204 11.245 193.5 105 1226.07 209016 129.6 165 2652.88 27.442 118.0 
46 283.68 11.437 190.3 106 1246.15 20.146 129.3 166 2680.39 27.560 117.7 
47 295.21 11.625 18791 107 126606 20.275 129.0 167 2708.00 27.678 117.4 
48 30603 110811 184.0 108 1286.70 20.404 128.7 168 2735974 27095 117.1 
49 318983 11.993 181.0 109 1307917 20032 12895 169 2763.59 27.912 11608 

50 330992 12.173 178.0 110 132706 20.661 128.2 170 2791.56 28.029 116.6 
51 343918 12.349 175.2 111 1348.49 20089 128.0 171 2819.65 28.145 116.3 
52 3'5.62 12.523 1720 112 1369.34 20016 1270 172 2847.85 28.261 116.0 
53 368.23 12.694 169.8 113 1390932 21044 127.5 173 2876.17 28,377 1150 
54 381.00 12.863 167.3 114 1411.43 21.171 127.2 174 2904961 28.493 11565 
55 393.95 13.029 1640 115 1432.66 21.298 127.0 175 2933.16 28.608 11592 
96 407.06 13.193 162.6 116 1454.02 21.425 1260 176 2961.82 289723 114.9 
57 42003 139354 160.4 117 1475951 21.552 126.6 177 2990960 28.838 114.7 
58 433977 13.514 158.4 118 1497.13 21,678 126.3 178 301900 28052 11494 
59 44706 13.671 156.4 119 151807 21.805 126.1 179 3048951 29.067 114.2 

60 461.11 13.826 194.6 120 154004 21,931 126.0 180 3077.63 29.181 113.9
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Table 15.	 Reference data for type T thermocouple-thermoelectric voltage, 
E(T), thermoelectric sensitivity, S(T), and the derivative of the 
thermoelectric sensitivity, dS(T) (continued). 

T E S dS/dT T E S dS/dT 
K PV MV/K nV/K2 K MV/K nV/K2 

180 3077.63 29.181 113.9 240 5025.40 35.591 99.3 
181 3106.87 29.294 1130 241 5061.04 35.690 99.2 
182 3136.22 29.408 113.4 242 5096.78 35.789 9901 
183 3165.68 29.521 113.2 243 5132.62 35.888 99.0 
184 3195.26 29.634 113.0 244 5168.56 35.987 980 

185 3224.95 29047 112.8 245 5204.60 36.086 98.8	 -: 
186 3254.76 29.860 112.5 246 5240.73 36.185 98.8	 - 
187 3284.67 29.972 1120 247 5276.97 36.284 90.7 
188 3314.70 30.085 112.1 248 5313.30 36.382 98.6 
189 3344.84 30.197 111.9 249 5349.73 36.481 9805 

190 3375.09 30.308 1110 250 5386.26. 36.579 98.4 
191 3405.46 30.420 111.5 251 5422.89 36.678 98.3 
192 3435.93 30.531 1110 252 5459.62 36.776 98.1. 
193 3466.52 30.643 111.1 253 5496.44 36.874 97.9 
194 3497.22 30.754 111.0 254 5533.37 36.972 97.6 

195 3528.03 30.865 110.8 255 5570.39 37.069 97.3-
196 3558.95 30.975 110.6 256 5607.50 37.166 9790' 
197 3589.98 31.086 110.4 257 5644.72 37.263 96.6 - 
198 3621.12 31.196 110.2 258 5682.03 37.359 96.1 
199 3652.37 31006 110.0. 259 5719.44 37.455 95.6 

200 3683.73 31.416 109.8 260 5756.94 37.551 9500	 -: 
201 3715.20 31.526 109.6 261 5794.54 37.645 94.3, 
202 3746.78 31.635 109.4 262 5832.23 37039 93.6: 
203 3778.47 31.744 109.2 263 5870.02 37.833 920 
204 3810.27 31.853 108 0 9 264 5907.90 37.925 92.1 

205 3842.18 31062 108.7 265 5945.87 38.017 91.3 
206 3874.0 32.071 108.5 266 5983.93 38.108 90.5 
207 390602 32.179 108.2 267 6022.08 38.198 8908	 : 
208 3938.55 32.287 108.0 268 6060.32 38.287 89.0 
209. 397000 32095 1070 269 6098.66 38076 88.4 

210 4003.34 32.503 107.4 270 6137.08 38.464 88.0 
211 4035.90 32.610 107.2 271 6175.58 38.552 87.7 
212 4068.56 32017 106.9 272 6214.18 38.640 87.8 
213 4101.34 32.824 106.6 273 6252.86 38028 88.2. 
214 4134.21 32.930 1060 274 6291.64 38016 8900 

215 4167.20 33.036 106.0 275 6330.50 38.906 90.5 
216 4200.29 33.142 105.7 276 6369.45 38.997 92.6	 - 
217 4233.48 33.248 105.4 277 6408.49 39.091 95.6 
218 4266.78 33.353 105.0 278 6447.63 39.189 990 
219 4300.19 33.458 104.7 279 6486.87 39.291 105.0 

220 4333.70 33.562 104.4 280 6526.22 .	 39099 111.8 
221 4367.31 33.667 104.0 . 
222 4401.03 33.770 103.7 . 
223 4434.65 33.874 103.4 .-.----. ..- ----.-.	 . 
224 4468.78 33.977 103.1 

225 4502.81 34.080 1020  
226 4536.94 34.183 102.4 
227 4571.17 34.285 102.1 . 
228 4605.51 34.387 101.8 . 
229 4639.94 34.488 101.5 

230 4674.4.8 34.590 101.2 . S 

231 4709.12 34.691 101.0 
232 4743.87 34.792 1000 S 

233 4778.71 34.892 100.5 S 

234 4813.65 34.993 100.2 

235 4848.69 35.093 100.0 . 
236 4883.84 35.193 99.9 S 

237 4919.08 35.293 99.7. 5 

238 4954.42 35.392 99.5 .	 •' 

239 4989.86 35.492 99.4 

240 5025.40 35.591 99.3 .
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Table 16. Reference data for the thermocouple combination KP versus 
Au-0.07 at % Fe thermoelectric voltage, E(T), thermoelectric 
sensitivity, S(T), and the derivative of the thermoelectric 
sensitivity, dS(T). 

E S dS/dT T E S dS/dT T E S dS/dT jiV MV/K nV/K2 K liv MV/K nV/K2 K JLV MV/K nV/K2 

0.00 0.000 0.0 60 962.74 17.139 43.4 120 2065.91 19.513 31.8 
7.85 8.673 1565.8 61 979.90 17.183 43.6 121 2085.44 19.545 31.5 

17.27 10.127 1346.7 62 997.11 17.226 43.7 122 2105.00 19.576 31.2 
28.04 11.375 1152.4 63 1014.36 17.270 43.7 123 2124.59 19.607 30.9 
39.96 12.439 980.4 64 1031.65 17.314 43.7 124 2144.21 19.638 30.6 

52.86 13.342 828.8 65 1048.99 17.358 43.7 125 2163.87 19.668 30.3 
66.59 14.103 695.4 66 1066.36 17.401 43.7 126 2183.55 19.698 30.0 
81.03 14.739 578.6 67 1083.79 17.445 43.6 127 2203.26 19.728 29.7 
96.04 15.265 476.7 68 1101.25 17.489 43.5. 128 2223.00 19.758 29.4 

111.52 15.697 388.1 69 1118.76 17.532 43•4 129 2242.78 19.787 29.2 

127.40 16.045 311.5 70 1136.32 17.575 43.3 130 2262.58 19.816 28.9 
143.59 16.323 245.6 71 1153.92 17.619 43.2 131 2282.41 19.845 28.7 
160.03 16.540 189.2 72 1171.56 17.662 43.1 132 2302.27 19.873 28.4 
176.65 16.704 141.4 73 1189.24 17.705 42.9 133 2322.16 19.902 28.2 
193.42 16.825 101.0 74 1206.96 17.748 42.8 134 2342.07 19.930 28.0 

210.29 16.909 67.3 75 1224.73 17.790 42.7 135 2362.02 19.958 27.7 
227.23 16.962 39.5 76 1242.55 17.833 42.6 136 2381.99 19.985 27.5 
244.21 16.989 16.8 77 1260.40 17.875 42.4 137 2401.99 20.013 27.3 
261.20 16.997 -1.4 78 1278.30 17.918 42.3 138 2422.01 20.040 27.1 
278.19 16.988 -15.7 79 1296.24 17.960 42.2 139 2442.07 20.067 26.9 

295.17 16.966 -26.6 80 1314.22 18.002 42.0 140 2462.15 20.094 26.7 
312.12 16.935 -34.6 81 1332.24 18.044 41.9 141 2482.25 20.120 26.5 
329.04 16.898 -40.1 82 1350.30 18.086 41.8 142 2502.39 20.147 26.3 
345.92 16.856 -43.5 83 1368.41 18.128 41.6 143 2522.55 20.173 26.1 
362.75 16.811 -45.1; 84 .	 1386.56 18.169 41.5 144 2542.73 20.199 26.0 

379.54 16.766 -45.3 85 1404.75 18.211 41.3 145 2562.94 20.225 25.8 
396.28 16.721 -44.2 86 1422.98- 18.252 41.2 146 2583.18 20.250 25.6 
412.98 16.678 -42.1 87 1441.25 18.293 41.0 147 2603.45 20.276 25.4 
429.64 16.637 -39.2 88 1459.57 18.334 40.9 148 2623.73 20.301 25.3 
446.26 16.600 -350 89 1477.92 18.375 40.7 149 2644.05 20.327 25.1 

462.84 16.566 -31.8 90 1496.32 18.415 40.5 150 2664.39 20.352 24.9 
479.39 16.536 -27.5 91 1514.75 18.456 40.3 151 2684.75 20.376 24.7 
495.92 16.511 -23.0 92 1533.23 18.496 402 152 2705.14 20.401 24.6 
512.42 16.490 -18.4 93 1551.74 18.536 40.0 153 2725.55 20.426 24.4 
528.90 16.474 -13.8 94 1570.30 18.576 39.7 154 2745.99 20.450 24.2 

545.37 16.463 -9.2 95 1588.89 18.615 39.5 155 2766.45 20.474 24.1 
561.83 16.456 -4.7 96 1607.53 18.655 39.3 156 2786.94 20.498 23.9 
578.28 16.453 -0.4 97 1626.20 18.694 39.1 157 2807.45 20.522 23.7 
594.73 16.455 3.8 98 1644.92 18.733 38.8 158 2827.98 20.545 23.5 
611.19 16.461 7.8 99 1663.67 18.772 38.5 159 2848.54 20.569 23.4 

627.66 16.471 11.6 100 1682.46 18.810 38.3 160 2869.12 20.592 23.2 
644.13 16.484 15.2 101	 - 1701.29 18.848 38.0 161 2889.72 20.615 23.0 
660.63 16.501 18.5 102 1720.16 18.886 37.7 162 2910.35 20.638 22.8 
677.14 16.521 22.5 103 1739.06 18.924 37.4 163 2931.00 20.661 22.6 
693.67 16.544 24.3 104 1758.00 18.961 37.1 164 2951.67 20.683 22.5 

710.22 16.569 26.9 105 1776.98 18.998 36.8 165 2972.37 20.706 22.3 
726.81 16.597 29.3 106 1796.00 19.035 36.5 166 2993.08 20.728 22.1 
743.42 16.628 31.4 107 1815.05 19.071 36.2 167 3013.82 20.750 21.9 
760.06 16.660 33.3 108 1834.14 19.107 35.8 168 -	 3034.58 20.772 21.7 
776.74 16.694 35.0 109 1853.27 19.143 35.5 169 3055.37 20.793 21.5 

793.45 16.730 36.5 110 1872.43 19.178 35.,2 170 3076.17 20.815 21.3 
810.20 16.767 37.8 111 1891.62 19.213 34.8 171 3096.99 20.836 21.1 
826.99 16.806 38.9 112 1910.85 19.248 34.5 172 3117.84 20.857 21.0 843.81 16.845 39.9 113 1930.12 19.282 36.2 173 3138.71 20.878 20.8 
860.68 16.885 40.7 114 1949.42 19.316 33.8 174 3159.60 20.899 20.6 

877.58 16.926 41.4 115 1968.75 19.350 33.5 175 3180.51 20.919 20.4 
894.53 16.968 42.0 116 1988.12 19.383 . 332 176 3201.44 20.939 20.2 
911.52 17.010 42.5 117 2007.52 19.416 32.8 177 3222.38 20.960 20.1 
928.55 17.053 42.9 118 2026.95 19.449 32.5 178 3243.35 20.980 19.9 
945.63 17.096 43.2 119 2046.41 19.481 32.2 179 3264.34 20.999 19.7 

962.74 17.139 43.4 120 2065.91 19.513 31.8 180 3285.35 21.019 19.6
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Table 16. Reference data for the thermocouple combination KP versus 
Au-0.07 at ¶o Fe - thermoelectric voltage, E(T), thermoelectric 
sensitivity, S(T), and the derivative of the thermoelectric 
sensitivity, dS(T) (continued). 

T E S dS/dT T E S dS/dT 

K JLV MV/K nV/K2 K V MV/K nV/K2 

180 3285.35 21.019 19.6 240 4576.81 21.930 9.5 
181 3306.38 21.038 19.4 241 4598.74 21.940 9.4 
182 3327.43 21.058 19.2 242 4620.69 21.949 9.3 
183 3348.50 21.077 19.1 243 4642.64 21.958 9.3 
184 3369.58 21.096 18.9 244 4664.61 21.968 9.2 

185 3390.69 21.115 18.8 245 4686.58 21.977 9.2 
186 3411.81 21.133 18.6 246 4708.56 21.986 9.3 
187 3432.96 21.152 18.5 247 4730.55 21.995 9.3 
188 3454.12 21.171 18.4 248 4752.55 22.005 9.4 
189 347500 21.189 18.3 249 4774.56 22.014 9.5 

190 3496.49 21.207 18.1 250 4796.58 22.024 9.6 
191 3517.71 21.225 18.0 251 4818.61 22.034 9.8 
192 3538.94 21.243 17.9 252 4840.64 22.043 10.0 
193 3560.20 21.261 17.8 253 4862.69 22.053 10.2 
194 3581.47 21.279 17.7 254 4884.75 22.064 10.3 

195 3602.75 21.296 17.6 255 4906.82 22.076 10.6 
196 3624.06 21.314 17.5 256 4928.90 22.085 10.8 
197 3645.38 21.331 17.4 257 4950.99 22.096 11.0 
198 3666.72 21.348 17.3 258 4973.09 22.107 11.1 
199 3688.08 21.366 17.2 259 4995.20 22.118 11.3 

200 3709.45 21.383 17.1 260 5017.33 22.129 11.5 
201 3730.84 21.400 17.0 261 5039.46 22.141 11.6 
202 3752.25 21.417 16.9 262 5061.61 22.152 11.6 
203 3773.68 21.434 16.8 263 5083.77 22.164 11.7 
204 3795.12 21.450 16.7 264 5105.94 22.176 11.6 

205 3816.58 21.467 16.5 265 5128.12 22.187 11.5 
206 3838.05 21.483 16.4 266 5150.31 22.199 11.3 
207 3859.54 21.500 16.3 267 5172.52 22.210 11.1 
208 3881.05 21.516 16.2 268 5194.73 22.221 10.7 
209 3902.58 21.532 16.0 269 5216.96 22.231 10.3 

210 3924.12 21.548 15.9 270 5239.19 22.241 9.7 
211 3945.67 21.564 15.8 271 5261.44 22.251 9.0 
212 3967.24 21.580 15.6 272 5283.70 22.259 8.2 
213 3988.83 21.595 15.4 273 5305.96 22.267 7.3 
214 4010.43 21.610 15.3 274 5328.23 22.274 6.3 

215 4032.05 21.626 15.1 275 5350.51 22.280 5.2 
216 4053.69 21.641 14.9 276 5372.79 22.284 4.0 
217 4075.33 21.655 14.7 277 5395.08 22.288 2.7 
218 4097.00 21.670 14.5 278, 5417.36 22.290 1.3 
219 4118.67 21.684 14.3 279 5439.65 22.290 -0.1 

220 4140.36 21.698 14.0 280 5461.94 22.289 -1.4 
221 4162.07 21.712 13.8 
222 4183.79 21.726 13.6 
223 4205.52 21.739 - 13.3 - 
224 4227.27 21.753 13.1 

225 4249.03 21.766 12.8 
226 4270.80 21.778 12.5 
227 4292958 21091 12.3 
228 4314.38 21.803 12.0 
229 4336919 21.813 11.8 

230 4358.01 21.826 11.5 
231 4379984 21,838 110 
232 4401968 21.849 11.0 
233 442304 21.860 10.8 
234 4445.40 21.870 1005 

239 4467.28 21.881 10.3 
236 4489.17 21.891 1001 
237 451106 21.901 909 
238 4532.97 21.911 9.8 
239 4554.88 21.921 9.6 

240 4576.81 21.930 909
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Table 17.	 Reference data for the thermocouple combination KP versus 
Au-0.02 at % Fe - thermoelectric voltage, E(T), thermoelectric 
sensitivity,	 S(T), and the derivative of the thermoelectric 
sensitivity,	 dS(T). 

T 
K

E 
ILV

S 
MV/K

dS/dT 
nV/K2

I 
K

E
V

S dS/dT I E S 
MV/K nV/K2 K /LV/K nV/K2 

0 0.00 0.000 0.0 60 808.49 13.053 55.5 120 1694.43 16.360 45.9 
1 8.28 9.226 1787.8 61 821.57 13.109 56.1 121 1710.81 16.406 45.6 
2 18.34 10.856 1479.4 62 834.71 13.166 56.6 122 1727.24 16.452 45.2 
3 29.89 12.198 1209.2 63 847.90 13.222 57.1 123 1743.72 16.497 44.9 
4 42.65 13.286 973.4 64 861.15 13.280 57.5 124 1760.24 16.541 44.6 

5 56.39 14.155 768.6 65 874.46 13.337 57.8 125 1776.80 15.586 44.2 
6 70.90 14.833 591.6 66 887.83 13.395 58.0 126 1793.41 16.630 43.9 
7 86.00 15.346 439.4 67 901.25 13.453 58.2 127 1810.06 16.674 43.6 
8 101.55 15.719 309.3 68 914.73 13.512 58.4 128 1826.75 16.717 43.4 
9 117.40 15.972 199.1 69 928.27 13.570 58.5 129 1843.49 16.760 43.1 

10 133.46 16.123 106.3 70 941.87 13.629 58.6 130 1860.27 16.803 42.8 
11 149.62 16.189 29.1 71 955.53 13.687 58.6 131 1877.10 16.846 42.6 
12 165.81 16.186 -34.4 72 969.25 13.746 58.7 132 1893.97 16.888 42.4 
13 181.97 16.125 -85.9 73 983.02 13.805 58.7 133 1910.88 16.931 42.1 
14 198.04 16.017 -126.9 74 996.86 13.863 58.8 134 1927.83 16.973 41.9 

15 213.99 15.874 -158.7 75 1010.75 13.922 58.8 135 1944.82 17.015 41.7 
16 229.78 15.703 -182.5 76 1024.70 13.981 58.8 136 1961.86 17.056 41.5 
17 245.39 15.511 -199.5 77 1038.71 14.040 58.7 137 1978.93 17.098 41.3 
18 260.80 15.306 -210.6 78 1052.78 14.098 58.7 138 1996.05 17.139 41.1 
19 276.00 15.091 -216.7 79 1066.91 14.157 58.7 139 2013.21 17.180 400 

20 290.98 14.874 -218.6 80 1081.09 14.216 58.6 140 2030.41 17.221 40.8 
21 305.75 14.656 -216.9 81 1095.34 14.274 58.6 141 2047.65 17.261 40.6 
22 320.29 14.441 -212.4 82 1109.64 14.333 58.5 142 2064.93 17.302 40.4 
23 334.63 14.231 -205.5 83 1124.00 14.391 58.4 143 2082.26 17.342 40.2 
24 348.76 14.030 -196.7 84 1138.42 14.450 58.3 144 2099.62 17.382 40.0 

25 362.69 13.839 -186.5 85 1152.90 14.508 58.2 145 2117.02 17.422 39.9 
26 376.44 13.658 -175.2 86 1167.44 14.566 58.1 146 2134.46 17.462 39.7 
27 390.01 13.488 -163.1 87 1182.04 14.624 57.9 147 2151.94 17.502 39.5 
28 403.42 13.332 -150.5 88 1196.69 14.682 57.8 148 2169.47 17.541 39.3 
29 416.68 13.188 -13.6 89 1211.40 14.740 57.6 149 2187.03 17.580 39.1 

30 429.80 13.057 -124.6 90 1226.17 14.797 57.4 150 2204.63 17.619 38.9 
31 442.80 12.938 -111.7 91 1240.99 14.854 57.2 151 2222.26 17.658 38.7 
32 455.68 12.833 -99.0 92 1255.38 14.911 56.9 152 2239.94 17.696 38.5 
33 468.47 12.740 -86.7 93 1270.d2 14.968 56.7 153 2257.66 17.735 38.2 
34 481.17 12.659 -74.8 94 1285.81 15.025 56.4 154 2275.41 17.773 38.0 

35 493.79 12.590 -63.4 95 1300.87 15.081 56.1 155 2293.20 17.811 37.8 
36 506.35 12.533 -52.5 96 1315.97 15.137 55.8 156 2311.03 17.848 37.5 
37 518.86 12.485 -42.2 97 1331.14 15.193 55.5 157 2328.90 17.886 37.3 
38 531.33 12.446 -32.5 98 1346.36 15.248 55.1 158 2346.80 17.923 37.0 
39 543.76 12.420 -23.4 99 1361.63 15.303 54.8 159 2364.75 17.960 36.7 

40 556.17 12.401 -15.0 100 1376.97 15.357 54.4 160 2382.72 17.996 36.5 
41 568.56 12.390 -7.1 101 1392.35 15.412 54.0 161 2400.74 18.033 36.2 
42 580.95 12.386 0.1 102 1407.79 15.465 53.6 162 2418.79 18.069 35.9 
43 593.34 12.390 6.7 103 1423.28 15.519 53.2 163 2436.88 18.105 35.6 
44 605.73 12.400 12.8 104 1438.83 15.572 52.8 164 2455.00 18.140- 35.3 

45 618.14 12.415 18.3 105 1454.42 15.624 52.3 165 2473.16 18.175 35.0 
46 630.56 12.436 23.4 106 1470.07 15.676 51.9 166 2491.35 18.210 34.7 
47 643.01 12.462 27.9 107 1485.78 15.728 51.5 167 2509.58 18.245 34.4 
48 655.49 12.492 31.9 108 1501.53 15.779 51.0 168 2527.84 18.279 34.1 
49 668.00 12.526 35.6 109 1517.34 15.830 50.6 169 2546.13 18.313 33.8 

50 680.54 12.563 38.8 110 1533.19 15.881 50.1 170 2564.46 18.346 33.5 
51 693.12 12.603 41.7 111 1549.10 15.930 49.7. 171 2582.83 18.380- 33.2 
52 705.75 12.646 44.2 112 1565.05 15.980 49.2	 - 172 2601.22 18.413- 32.9 
53 718.42 12.691 46.4 113 1581.06 16.029 48.8 173 2619.65 18.445 32.6 
54 731.13 12.739 48.3 114 1597.11 16.078 48.4 174 2638.11 18.478 32.3 

55 43.90 12.788 5o,o 115 1613.21 16.126 47.9 175 2656.61 18.510 32.0 
56 756.71 12.839 51.5 116 1629.36 16.173 47.5 176 2675.13 18.542 31.7 
57 769.57 12.891 52.7 117 1645.56 16.221 47.1 177 2693.69 18.573 31.4 
58 782.49 12.944 53.8 118 1661.80 16.268 46.7 178 2712.28 18.605 31.1 
59 795.46 12.998 56.7 119 1678.09 16.314 46.3 179 2730.90 18.636 30.8 

60 808.49 13.053 55.5 120 1694.43 16.360 45.9 180 2749.55 18.666 30.6
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Table 17. Reference data for the thermocouple combination KP versus 
Au-0.02 at % Fe - thermoelectric voltage, E(T), thermoelectric 
sensitivity, S(T), and the derivative of the thermoelectric 
sensitivity, dS(T) (continued). 

$	 dS/dT	 I	 E	 S	 dS/dT 
&V/K	 nV/K2	 K	 MV	 NV/K	 nV/K2 

18.666 30.6 240 3918.02 20.167 19.1 
18.697 30.3 241 3938.19 20.186 19.0 
18.727 30.1 242 3958.39 20.205 19.0 
18.757 29.9 243 3978.60 20.224 19.0 
18.787 29.6 244 3998.84 20.243 19.0 

18.816 29.4 245 4019.09 20.262 18.9 
18.845 29.2 246 4039.36 20.281 19.0 
18.875 29.0 247 4059.65 20.299 19.0 
18.903 28.8 248 4079.96 20.318 19.0 
18.932 28.6 249 4100.29 20.337 18.9 

18.961 28.5 250 4120.63 20.356 18.9 
18.989 28.3 251 4141.00 20.375 18.9 
19.017 28.2 252 4161.58 20.394 18.8 
19.046 28.0 253 4181.79 20.413 18.7 
19.073 27.9 254 4202.21 20.431 18.5 

19.101 27.7 255 4222.65 20.450 18.3 
19.129 27.6 256 4243.11 20.468 18.1 
19.156 27.5 257 4263.59 20.486 17.7 
19.184 27.4 258 4284.08 20.503 17.4 
19.211 27.2 259 4304.59 20.521 16.9 

19.238 27.1 260 4325.12 20.537 16.4 
19.265 27.n 261 4345.67 20.553 15.9 
19.292 26.9 262 4366.23 20.569 15.2 
19.319 26.7 263 4386.80 20.584 14.6 
19.346 26.6 264 4407.40 20.598 13.9 

19.372 26.5 265 4428.00 20.612 13.2 
19.399 26.3 266 4448.62 20.625 12.6 
19.425 26.2 267 4469.25 20.637 12.0 
19.451 26.0 268 4489.89 20.649 11.5 
19.477 25.9 269 4510.55 20.660 11.2 

19.503 25.7 270 4531.21 20.671 11.1 
19.529 25.5 271 4551.89 20.682 11.4 
19.554 25.3 272 4572.58 20.694 12.0 
19.579 25.1 273 4593.28 20.706 13.2 
19.604 24.9 274 4613.99 20.721 15.1 

19.629 24.7 275 4634.72 20.737 17.8 
19.653 24.4 276 4655.47 20.757 21.5 
19.678 24.2 277 4676.23 20.780 26.5 
19.702 23.9 278 4697.03 20.810 33.0 
19.726 23.7 279 4717.86 20.847 41.2 

19.749 23.4 280 4738.72 20.893 51.5 
19.772 23.1 
19.795 22.9 
19.818 22.6 
19.841 22.3 -	 - 

19.863 22.0 
19.885 21.7 
19.906 21.5 
19.928 21.2 
19.949 20.9 

19.969 20.7 
19.990 20.4 
20.010 20.2 
20.030 20.0 
20.050 19.8 

20.070 19.6 
20.090 19.5 
20.109 19.4 
20.128 19.2 
20.148 19.2

T
	

E 
K
	

JLV 

180
	 2749.55 

181
	

2768.23 
182
	 2786.94 

183
	 2805.69 

184
	

2824.46 

185
	

2843.26 
186
	

2862.09 
187
	

2880.95 
188
	

2899.84 
189
	

2918.76 

190
	

2937.70 
191
	

2956.68 
192
	

2975.68 
193
	

2994.71 
194
	

3013.77 

195
	

3032.86 
196
	

3051.98 
197
	

3071.12 
198
	

3090.29 
199
	

3109.49 

200
	 3128.71 

201
	

3147.96 
202
	

3167.24 
203
	

3186.55 
204
	

3205.88 

205
	

3225.24 
206
	

3244.62 
207
	

3264.04 
208
	

3283.47 
209
	

3302.94 

210
	 3322.43 

211
	

3341.94 
212
	

3361.49 
213
	

3381.05 
214
	

3400.64 

215
	

3420.26 
216
	

3439.90 
217
	

3459.57 
218
	

3479.26 
219
	

3498.97 

220
	 3518.71 

221
	

3538.47 
222
	

3558.25 
223
	

3578.06 
224
	

3597.89 

225
	

3617.74 
226
	

3637.62 
227
	

3657.51 
228
	

3677.43 
229
	

3697.37 

230
	

3717.32 
231
	

3737.30 
232
	

3757.30 
233
	

3777.32 
234	 3797.37 

235
	

3817.43 
236
	

3837.51 
237
	

3857.60 
238
	

3877.72 
239
	

3897.86

240
	

3918.02	 20.167	 19.1
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Table 18. Reference data for the thermocouple combination copper versus 
Au-0.07 at % Fe - thermoelectric voltage, E(T), thermoelectric 
sensitivity, S(T), and the derivative of the thermoelectric 
sensitivity, dS(T). 

T	 E	 S	 dS/dT	 I	 E	 S	 dS/dT	 T	 E 
K	 PV	 pV/K	 nV/K2	 K	 JLV	 1iV/K	 nV/K2	 K

S	 dS/dT 
&V/K	 nV/K2 

0.00 0.000 0.0 60 719.52 9.331 -81.7 120 1162.03 5.835 -41.8 
7.78 8.531 1423.5 61 728.81 9.250 -80.9 121 1167.85 5.793 -41.4 

2 16.98 9.839 1197.0 62 738.02 9.169 -80.1 122 1173.62 5.752 -41.1 
3 27.38 10.934 997.5 63 747.15 9.089 -79.3 123 1179.35 5.711 -40.7 
4 38.79 11.842 822.3 64 756.20 9.010 -78.5 124 1185.04 5.671 -40.3 

5 51.01 12.586 669.0 65 765.17 8.932 -77.7 125 1190.69 5.630 -40.0 
6 63.91 13.187 535.4 66 774.07 8.855 -76.9 126 1196.30 5.591 -39.6 
7 77.35 13.663 419.3 67 782.88 8.778 -76.1 127 1201.87 5.551 -39.2 
8 91.20 14.030 318.9 68 791.62 8.703 -75.2 128 1207.41 5.512 -38.8 
9 105.38 14.305 232.5 69 800.29 8.628 -74.4 129 1212.90 5.474 -38.5 

10 119.78 14.500 158.5 70 808.88 8.554 -73.5 130 1218.35 5.435 -38.1 
11 134.35 14.626 95.5 71 817.40 8.481 -72.6 131 1223.77 5.397 -37.7 
12 149.02 14.694 42.3 72 825.84. 8.409 -71.7 132 1229.15 5.360 -37.3 
13 163.72 14.713 -2.4 73 834.22 8.338 -70.7 133 1234.49 5.323 -36.9 
14 178.43 14.692 -39.5 74 842.52 8.267 -69.8 134	 - 1239.79 5.286 -36.5 

15 193.10 14.636 -70.0 75 850.75 8.198 -68.9 135 1245.06 5.250 -36.1 
16 207.69 14.553 -94.8 76 858.92 8.130 -67.9 136 1250.29 5.214 -35.7 
17 222.20 14.448 -114.7 77 867.01 8.062 -67.0 137 1255.49 5.178 -35.3 
18 236.58 14.326 -130.2 78 875.04 7.996 -66.0 138 1260.65 5.143 -34.9 
19 250.84 14.189 -142.1 79 883.00 7.930 -65.1 139 1265.78 5.109 -34.6 

20 264.96 14.042 -150.8 80 890.90 7.866 -64.2 140 1270.87 5.074 -34.2 
21 278.92 13.888 -156.9 81 898.73 7.802 -63.3 141 1275.92 5.040 -33.8 
22 292.73 13.729 -160.8 82 906.51 7.739 -62.3 142 1280.95 5.007 -33.4 
23 306.38 13.567 -162.8 83 914.21 7.677 -61.4 143 1285.94 4.973 -33.1 
24 319.87 13.404 -163.2 84 921.86 7.616 -60.6 144 1290.89 4.940 -32.7 

25 333.19 13.241 -162.4 85 929.45 7.556 -59.7 145 1295.82 4.908 -32.4 
26 346.35 13.080 -160.7 86 936.97 7.497 -58.9 146 1300.71 4.876 -32.0 
27 359.35 12.920 -158.1 87 944.44 7.438 -58.0 147 1305.57 4.844 -31.7 
28 372.19 12.764 -155.0 88 951.85 7.381 -57.2 148 1310.40 4.812 -31.4 
29 384.88 12.610 -151.5 89 959.20 7.324 -56.5 149 1315.20 4.781 -31.1 

30 397.41 12.461 -147.6 90 966.50 7.268 -55.7 150 1319.96 4.750 -30.8 
31 409.80 12.315 -143.6 91 973.74 7.212 -55.0 151 1324.70 4.720 -30.5 
32 422.04 12.173 -139.5 92 98002 7.158 -54.3 152 1329.40 4.689 -30.2 
33 434.15 12.036 -135.4 93 988.05 7.104 -53.6 153 1334.07 4.659 -29.9 
34 446.12 11.903 -131.4 94 995.13 7.051 -52.9 154 1338.72 4.629 -29.7 

35 457.96 11.773 -127.4 95 1002.15 6.998 -52.3 155 1343.33 4.600 -29.4 
36 469.67 11.648 -123.6 96 1009.13 6.946 -51.7 156 1347.92 4.571 -29.2 
37 481.25 11.526 -120.0 97 1016.05 6.894 -51.1 157 1352.47 4.542 -28.9 
38 492.72 11.408 -116.6 98 1022.92 6.844 -50.6 158 1357.00 4.513 -28.7 
39 504.07 11.293 -113.4 99 1029.73 6.793 -50.0 159 1361.50 4.484 -28.5 

40 515.31 11.181 -110.3 100 1036.50 6.744 -49.5 160 1365.97 4.456 -28.3 
41 526.43 11.072 -107.6 101 1043.22 6.694 -49.0 161 1370.41 4.427 -28.1 
42 537.45 10.966 -105.0 102 1049.89 6.645 -48.6 162 1374.82 4.399 -27.9 
43 548.36 10.862 -102.6 103 1056.51 6.597 -48.1 163 1379.21 4.372 -27.8 
44 559.17 10.760 -100.4 104 1063.09 6.549 -47.7 164 1383.57 4.344 -27.6 

45 569.89 10.661 -98.4 105 1069.61 6.502 -47.3 165 1387.90 4.316 -27.4 
46 580.50 10.564 -96.6 106 1076.09 6.455 -46.8 166 1392.20 4.289 -27.2 
47 591.01 10.468 -94.9 107 1082.52 6.408 -46.5 167 1396.48 4.262 -27.1 
48 601.43 10.374 -93.4 108 1088.90 6.362 -46.1 168 1400.72 4.235 -26.9 
49 611.76 10.281 -92.0 109 1095.24 6.316 -45.7 169 1404.95 4.208 -26.8 

50 622.00 10.190 -90.8 110 1101.54 6.270 -45.3 170 1409.14 4.181 -26.6 
51 632.14 10.099 -89.6 111 1107.78 6.225 -45.0 171 1413.31 4.155 -26.5 
52 642.20 10.010 -88.5 112 1113.99 6.180 -44.6 172 1417.45 4.128 -26.3 
53 652.16 9.922 -87.5 113 1120.15 6.136 -44.2 173 1421.57 4.102 -26.2 
54 662.04 9.835 -86.6 114 1126.26 6.092 -43.9 174 1425.66 4.076 -26.0 

55 671.83 9.749 -85.7 115 1132.33 6.048 -43.5 175 1429.72 4.050 -25.8 
56 681.54 9.664 -84.8 116 1138.36 6.005 -43.2 176 1433.76 4.025 -25.7 
57 691.16 9.579 -84.0 117 1144.4 5.962 -42.9 177 1437.77 3.999 -25.5 
58 700.70 9.496 -83.2 118 1150.28 5.919 -42.5 178 1441.75 3.974 -25.3 
59 710.15 9.413 -82.5 119 1156.18 5.877 -42.2 179 1445.71 3.948 -25.1 

60 719.52 9.331 -81.7 120 1162.03 5.835 -41.8 180 1449.65 3.923 -24.9
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Table 18. Reference data for the thermocouple combination copper versus 
Au-0.07 at % Fe - thermoelectric voltage, E(T), thermoelectric 
sensitivity, S(T), and the derivative of the thermoelectric 
sensitivity, dS(T) (continued). 

T	 E	 S	 dS/dT	 T	 E	 $	 dS/dT 
K	 1iV	 ILWK	 nV/K2	 K	 V	 iV/K	 nV/K2 

180 1449.65 3.923 -24.9 240 1647.73 2.752 -17.3 
181 1453.56 3.898 -24.7 241 1650.47 2.735 -17.1 
182 1457.45 3.874 -24.5 242 1653.20 2.718 -16.9 
183 1461.31 3.849 -24.3 243 1655.90 2.701 -16.6 
184 1465.15 3.825 -24.1 244 1658.60 2.684 -16.3 

185 1468.96 3.801 -23.9 245 1661.27 2.668 -16.0 
186 1472.75 3.777 -23.6 246 1663.93 2.653 -15.6 
187 1476.51 3.754 -23.4 247 1666.58 2.637 -15.2 
188 1480.26 3.731 -23.2 248 1669.21 2.622 -14.8 
189 1483.98 3.708 -22.9 249 1671.82 2.607 -14.4 

190 . 1487.67 3.685 -22.7 250 1674.42 2.593 -14.0 
191 1491.35 3.662 -22.4 251 1677.01 2.579 -13.6 
192 1495.00 3.640 -22.1 252 1679.58 2.566 -13.1 
193 1498.63 3.618 -21.9 253 1682.14 2.553 -12.7 
194 1502.23 3.596 -21.6 254 1684.69 2.541 -12.3 

195 1505.82 3.57.5 -21.3 255 1687.22 2.528 -12.0 
196 1509.38 3.554 -21.1 256 1689.75 2.517 -11.6 
197 1512.93 3.533 -20.8 257 1692.26 2.505 -11.3 
198 1516.45 3.512 -20.5 258 1694.76 2.494 -11.0 
199 , 1519.95 3.492 -20.3 259 1697.25 2.483 -10.8 

200 1523.43 3.472 -20.0 260 1699.72 2.472 -10.7 
201 1526.89 3.452 -19.7 261 1702.19 2.462 -10.6 
202 1530.33 3.432 -19.5 262 1704.65 2.451 -10.5 
203 1533.76 3.413 -19.3 263 1707.09 2.441 -10.5 
204 1537.16 3.394 -19.0 264 1709.53 2.430 -10.6 

205 1540.54 3.375 -18.8 265 1711.95 2.419 -10.8 
206 1543.91 3.356 -18.6 266 1714.37 2.409 -10.9 
207 1547.26 3.337 -18.4 267 1716.77 2.398 -11.1 
208 1550.58 3.319 -18.3 268 1719.16 2.386 -11.3 
209 1553.89 3.301 -18.1 269 1721.54 2075 -11.5 

210 1557.19 3.283 -18.0 270 1723.91 2.363 -11.6 
211 1560.46 3.265 -17.8 271 1726.27 2.352 -11.6 
212 1563.72 3.247 -17.7 272 1728.62 2.340 -11.5 
213 1566.95 3.229 -17.6 273 1730.95 2.329 -11.1 
214 1570.17 3.212 -17.6 274 1733.27 2.318 -10.4. 

215 1573.38 3.194 -17.5 275 1735.59 2.308 -9.3 
216 1576.56 3.177 -17.5 276 1737.89 2.300 -7.6 
217 1579.73 3.159 -17.4 277 1740.19 2.293 -5.2 
218 1582.88 3.142 -17.4	 . 278 1742.48 2.290 -2.1 
219 1586.01 3.125 -17.4 279 1744.77 2.289 2.1 

220 1589.13 3.107 -17.5 280 1747.06 2.294 7.6. 
221 1592.23 3.090 -17.5 
222 1595.31 3.072 -17.5 
223 1598.37 3.055 -17.6 
224 1601.42 3.037 -17.6 

225 1604.45 3.019 -17.7  
226 1607.46 3.002 -17.7 
227 1610.45 2.984 -17.8 
228 1613.42 2.966 -17.9 
229 1616.38 2.948 -17.9 

230 1619.32 2.930 -18.0 
231 1622.24 2.912 -18.0 
232 1625.15 2.894 -18.0 
23 1628.03 2.876 -18.0 
234 1630.90 2.858 -18,0 

235 1633.75 2.840 -17.9 . . 
236 1636.58 2.822 -17.9 
237. 1639.39 2.805 -17.8 
238 1642.19 2.787 -17.7 
239 1644.97 2.769 -17.5  

240 1647.73 2.752 -17.3 .

114 



Table 19.	 Reference data for the thermocouple combination copper versus 
Au-0.02 at % Fe - thermoelectric voltage, E(T), thermoelectric 
sensitivity, S(T), and the derivative of the thermoelectric 
-sensitivity, dS(T). 

I E S dS/dT T E S dS/dT I E S dS/dI 
K JLV V/K nV/K2 K V MV/K nV/K2 K V MV/K nV/K2 

0 0.00 0.000 0.0 60 565.27 5.245 -69.6 120 790.55 2.682 -27.7 
8.20 9.084 1645.5 61 570.48 5.176 -68.4 121 793.22 2.655 -27.4 

2 18.06 10.568 1329.6 62 575.62 5.108 -67.1 122 795.86 2.628 -27.0 
3 29.24 11.757 1054.3 63 580.70 5.042 -66.0 123 798.48 2.601 -26.7 
4 41.48 12.689 815.3 64 585.70 4.976 -64.8 124 801.07 2.574 -26.4 

5 54.55 13.399 608.9 65 590.65 4.912 -63.7 125 803.63 2.548 -26.0 
6 68.22 13.916 431.5 66 595.53 4.849 -62.6 126 806.16 2.522 -25.7 
7 82.32 14.270 280.6 67 600.35 4.787 -61.5 127 808.67 2.497 -25.3 
8 96.71 14.484 151.5 68 605.10 4.726 -60.4 128 811.15 2.471 -24.9 
9 111.25 14.580 43.4 69 609.80 4.666 -59.3 129 813.61 2.447 -24.5 

10 125.84 14.577 -46.7 70 614.43 4.607 -58.2 130 816.05 2.422 -24.1 
11 140.38 14.492 -121.0 71 619.01 4.550 -57.1 131 818.46 2.398 -23.7 
12 154.80 14.340 -181.4 72 623.53 4.493 -56.0 132 820.85 2.375 -23.3 
13 169.04 14.133 -229.7 73 628.00 4.438 -54.9 133 823.21 2.352 -22.9 
14 183.05 13.884 -267.4 74 632.41 4.383 -53.9 134 825.55 2.329 -22.5 

15 196.80 13.601 -296.0 75 636.77 4.330 -52.8 135 827.87 2.307 -22.1 
16 210.25 13.294 -316.8 76 641.07 4.278 -51.7 136 830.16 2.285 -21.7 
17 223.38 12.970 -331.0 77 645.32 4.226 -50.7 137 832.44 2.263 -21.3 
18 236.18 12.634 -339.4 78 649.2 4.176 -49.6 138 834.69 2.242 -20.9 
19 248.55 12.293 -343.1 79 653.67 4.127 -48.6 139 836.92 2.222 -20.5 

20 260.77 11.950 -342.8 80 657.78 4.079 -47.6 140 839.13 2.201 -20.1 
21 272.55 11.608 -339.2 81 661.83 4.032 -46.6 141 841.32 2.181 -19.7 
22 283.99 11.272 -333.o 82 665.84 3.986 -45.6 142 843.50 2.162 -19.3 
23 295.09 10.943 -324.7 83 669.81 3.941 -44.6 143 845.65 2.143 -19.0 
24 305.88 10.623 -314.8 84 673.72 3.897 -43.7 144 847.78 2.124 -18.6 

25 316.34 10.314 -303.7 85 677.60 3.853 -42.8 145 849.90 2.105 -18.3 
26 326.51 10.016 -291.7 86 681.43 3.811 -42.0 146 851.99 2.087 -18.0 
27 336.38 9.731 -279.1 87 685.22 3.769 -41.1 147 854.07 2.069 -17.6 
28 345.97 9.458 -266.3 88 688.97 3.729 -40.3 148 856.13 2.052 -17.3 
29 355.30 9.198 -253.3 89 692.68 3.689 -39.6 149 858.17 2.035 -17.1 

30 364.37 8.951 -240.4 90 696.35 3.650 -38.9 150 860.20 2.018 -16.8 
31 373.21 8.717 -227.8 91 699.98 3.611 -38.2 151 862.21 2.001 -16.5 
32 381.81 8.495 -215.5 92 703.57 3.573 -37.5 152 864.20 1.985 -16.3 
33 390.20 8.286 -203.7 93 707.13 3.536 -36.9 153 866.18 1.969 -16.1 
34 398.39 8.088 -192.3 94 710.64 3.499 -36.3 154 868.14 1.953 -15.9 

35 406.38 7.901 -181.6 95 714.12 3.463 -35.7 155 870.08 1.937 -15.7 
36 414.19 7.725 -171.4 96 717.57 3.428 -35.2 156 872.01 1.921 -15.5 
37 421.83 7.558 -161.8 97 720.98 3.393 -34.7 157 873.93 1.906 -15.4 
38 429.31 7.401 -152.9 98 724.36 3.359 -34.3 158 675.82 1.890 -15.3 
39 436.64 7.252 -144.6 99 727.70 3.324 -33.8 159 877.71 1.875 -15.1 

40 443.82 7.111 -136.9 100 731.01 3.291 -33.4 160 879.57 1.860 -15.0 
41 450.86 6.978 -129.8 101 734.28 3.258 -33.0 161 881.43 1.845 -14.9 
42 457.78 6.851 -123.3 102 737.52 3.225 -32.7 162 883.26 1.830 -14.9 
43 464.57 6.731 -117.4 103 740.73 3.192 -32.4 163 885.09 1.815 -14.8 
44 471.24 6.616 -111.9 104 743.91 3.160 -32.0 164 886.90 1.801 -14.7 

45 477.80 6.507 -107.0 105 747.05 3.128 -31.7 165 888.69 1.786 -14.7 
46 484.25 6.402 -1020 106 750.16 3.097 -31.4 166 890.47 1.771 -14.6 
47 490.61 6.302 -98,4 107 753.24 3.065 -31.2 167 892.23 1.757 -14.6 
48 496.86 6.205 -94.8 108 756.29 39034 -30.9 168 893.98 1.742 -14.5 
49 503.02 6,112 -91.4 109 759.31 3.003 -30.6 169 895.71 1.728 -14.5 

So 509.09 6.022 -88,4 110 762.30 2.973 -30,4 170 897.44 1.713 -14.5 
51 51506 5.935 -85.7 111 765.26 2.943 -30.1 171 899.14 1.699 -14.4 
52 520.96 5.851 -83.2 112 768.19 2.913 -290 172 900083 1.684 -14.4 
53 526.77 5069 -81.0 113 77108 2.883 -29.6 173 902.1 1.670 -14.4 
54 532.49 5.689 -79.0 114 773.95 2.854 -29.4 174 904.17 1.655 -14.3 

55 538.14 5.611 -77.1 115 776979 2.824 -2991 175 905.82 1.641 -14.3 
56 543.72 5.534 -75.4 116 779.60 2.795 -28.8 176 907.45 1.627 -14.2 
57 549.21 5.460 -73.8 117 78208 2067 -28.6 177 909.07 1.613 -14.2 
58 554.64 5.387 -72.3 118 785.13 2.738 -28.3 178 910.68 1.599 -14.1 
59 959099 9015 -70.9 119 787.86 29710 -28.0 179 912.27 1.585 -14.0 

60 563.27 5.245 -69.6 120 790.59 29682 27.7 180 913.89 1.971 13.9
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S
ILVA 

1.571 
1.557 
1.543 
1.529 
1.516 

1.503 
1.489 
1.476 
1.464 
1.451 

1.439 
1.426 
1.414 
1.403 
1.391 

1.380 
1.369 
1.358 
1.347 
1.337 

1.327 
1.317 
1.308 
1.298 
1.289 

1.280 
1.271 
1.263 
1.254 
1.246 

1.238 
1.230 
1.222 
1.214 
1.206 

1.198 
1.190 
1.182 
1.174 
1.166 

1.158 
1.156 
1.142 
1.133 
1.125 

1.116 
1.108 
1.099 
1.091 
1.082 

1.073 
1.064 
1.056 
1.047 
1.038

I E	 .5 
K PV. MV/K 

240 988.94 0.988 
241 989.92 0.981 
242 990.90 0.973 
243 991.87 0.966 
244 992.83 0.960 

245 993.79 0.953 
246 994.74 0.947 
247 995.68 0.941 
248 996.62 0.936 
249 997.55 0.931 

250 998.48 0.926 
251 999.40 0.921 
252 1000.32 0.917 
253 1001.24 0.912 
254 1002.15 0.908 

255 1003.05 0.904 
256 1003.95 0.900 
257 1004.85 0.895 
258 1005.75 0.891 
259 1006.63 0.886 

260 1007.52 0.880 
261 1008.39 0.874 
262 1009.27 0.868 
263 1010.13 0.860 
264 1010.99 0.852 

265' '	 1011.83 0.844 
266 1012.67 0.834 
267 1013.50 0.824 
268 1014.32 0.814 
269 1015.13 0.803 

270 1015.93 0.793 
271 1016.72 0.783 
272 1017.50 0.775 
273 1018.27 '	 0.768 
274 1019.03 0.765 

275 1019.80 0.765 
276 1020.57 0.772 
277 1021.34 0.786 
278 1022.14 0.810 
279 1022.97 0.846

280	 1023.84	 0.898 

dS/dT 
nV/K2 

-13.9 
-13.8 
-13.7 
-13.5 
-13.4 

-13.3 
-13.1 
-12.9 
-12.7 
-12.5 

-12.3 
-12.1 
-11.9 
-11.6 
-11.4 

-11.2 
-10.9 
-10.7 
-10.4 
-10.2 

-9.9 
-9.7 
-9.5 
-9.3 
-9.1 

-8.9 
-8.7 
-8.5 
-8.4 
-8.3 

-8.2 
-8.1 
-8.0 
-8.0 
-7.9 

-7.9 
-7.9 
-7.9 
-8.0 
-8.0 

-8.1 
-8.1 
:-, 8. 2 
-8.3 
-8.4 

-8.5 
-8.6 
-8.6 
-8.7 
-8.7 

-8.8 
-8.8 
-8.8 
-8.8 
-8.7 

	

1.029	 -8.6 

	

1.021	 -8.5 

	

1.013	 -8.4 

	

1.004	 -8.2 

	

0.996	 -8.0 

Table 19. Reference data for the thermocouple combination copper versus 
-0.02 at % Fe - thermoelectric voltagé,E(T). thermoelectric 

sensitivity, S(T), and the derivative of the thermoelectric 
sensitivity, dS(T) (continued). 

E 

913.85 
915.41 
916.96 
918.50 
920.02 

921.53 
923.03 
924.51 
925.98 
927.44 

928.88 
930.31 
931.73 
933.14 
934.54 

935.92 
937.30 
938.66 
940.01 
941.36 

942.69 
944.01 
945.32 
946.63 
947.92 

949.20 
950.48 
951.75 
953.01 
954.26 

955.50 
956.73 
957.96 
959.17 
960.38 

961.59 
962.78 
963.96 
965.14 
966.31 

967.47 
968.63 
969.77 
970.91 
972.04 

973.16 
974.27 
975.38 
976.47 
977.56 

978.64 
979.70 
980.76 
981.82 
982.86 

983.89 
984.92 
985.93 
986.94 
987.94

dS/dT 
nV/K2 

-7.7 

-7.2 
-6.9 
-6.6 

-6.3 
-5.9 
-5.6 
-5.3 

5.o 

-4.7 
-4.5 
-4.3 
-4.2 
-4.2 

-4.2 
-4.3 
-4.5 
-4.8 
-5.2 

-5.7 
-6.3 
-6.9 
-7.6 
-8.3 

-90 
-9.7 

-10.2 
-10.5 
-10.6 

-10.2 
-9.3 
-7.7 
-5.2 
-1.6 

3.4 
10.0 
18.6, 
29.6 
43.4 

60.5 

I 
K 

180 
181 
182 
183 
184 

185 
186 
187 
188 
189 

190 
191 
192 
193 
194 

195 
196 
197 
198 
199 

200 
201 
202 
203 
204 

205 
206 
207 
208 
209 

210 
211 
212 
213 
214 

215 
216 
217 
218 
219 

220 
221 
222 
223 
224 

225 
226 
227 
228 
229 

230 
231 
232 
233 
234 

235 
236 
237 
238 
239

240
	

988.94
	

0.988	 -7.7
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Table 20. Reference data for the thermocouple combination normal silver 
versus Au-0.07 at % Fe - thermoelectric voltage, E(T), 
thermoelectric sensitivity, S(T),	 and the derivative of the 
thermoelectric sensitivity, dS(T). 

E 
PV

S 
MV/K

dS/dT 
nV/K2

T 
K

E S dS/dT I E S dS/dT uV &V/K nV/K2 K IAV jAWK nV/K2 

0.00 0.000 0.0 60 700.37 8.447 -81.3 120 1099.00 5.267 -37.0 7.74 8.478 1402.0 61 708.77 8.367 -79.7 121 1104.25 5.230 -36.8 16.88 9.774 1193.0 62 717.10 8.288 -78.2 122 1109.46 5.194 -36.5 27.22 10.872 1006.5 63 725.35 8.210 -76.7 123 1114.63 5.157 -36.2 38.57 11.794 840.7 64 733.52 8.134 -75.3 124 1119.77 5.121 -36.0 
50.76 12.560 693.6 65 741.62 8.060 -74.0 125 1124.88 5.085 -35.7 63.64 13.187 563.5 66 749.64 7.986 -72.7 126 1129.94 5.050 -35.5 77.09 13.692 448.8 67 757.59 7.914 -71.4 127 1134.98 5.014 -35.3 90.99 14.089 348.0 68 765.47 7.843 -70.2 128 1139.97 4.979 -35.0 105.24 14.392 259.7 69 773.28 7.774 -69.1 129 1144.93 4.944 -34.8 

119.75 14.612 182.8 70 781.u2 7.705 -67.9 130 1149.86 4.910 -34.5 134.44 14.761 116.0 71 788.69 7.638 -66.8 131 1154.75 4.875 -34.3 149.25 14.847 58.4 72 796.29 7.572 -65.8 132 1159.61 4.841 -34.0 164.11 14.880 8.9 73 803.83 7.506 -64.7 133 1164.44 4.807 -33.8 178.99 14.868 -33.3 74 811.31 7.442 -63.7 134 1169.23 4.774 -33.5 
193.84 14.816 -68.9 75 818.72 7.379 -62.7 135 1173.98 4.740 -33.3 208.61 14.732 -98.8 76 826.06 7.317 -61.7 136 1178.71 4.707 -33.0 223.29 14.620 -123.6 77 833.35 7.255 -60.8 137 1183.40 4.674 -32.8 237.85 14.486 -143.9 78 840.57 7.195 -59.8 138 1188.06 4.642 -32.5 252.26 14.333 -160.3 79 847.74 7.136 -58.9 139 1192.68 4.609 -32.3 
266.51 14.166 -173.1 80 854.85 7.077 -58.0 140 1197.28 4.577 -32.0 280.59 13.988 -183.0 81 861.90 7.020 -57.1 141 1201.84 4.545 -31.7 294.48 13.801 -190.2 82 868.89 6.963 -56.3 142 1206.37 4.514 -31.5 308.19 13.608 -195.2 83 875.82 6.907 -55.4 143 1210.86 4.482 -31.2 321.70 13.412 -198.2 84 882.70 6.852 -54.6 144 1215.33 4.451 -31.0 
335.01 13.213 -199.5 85 889.53 6.798 -53.8 145 1219.77 4.420 -30.7 348.12 13.013 -199.5 86 896.30 6.745 -53.0 146 1224.17 4.390 -30.5 361.03 12.814 -198.3 87 903.02 6.692 -52.2 147 1228.55 4.359 -30.3 373.75 12.617 -196.1 88 909.68 6.640 -51.5 148 1232.89 4.329 -30.0 386.27 12.422 -193.2 89 916.30 6.589 -50.7 149 1237.20 4.299 -29.8 
398.60 12.231 -189.6 90 922.86 6.539 -50.0 150 1241.49 4.270 -29.5 410.73 12.043 -185.5 91 929.37 6.489 -49.3 151 1245.74 4.240 -29.3 422.68 11.860 -181.0 92 935.84 6.440 -48.7 152 1249.97 4.211 -29.1 434.45 11.681 -176.3 93 942.25 6.392 -48.0 153 1254.17 4.182 -28.8 446.05 11.507 -171.4 94 948.62 6.344 -47.4 154 1258.33 4.153 -28.6 
457.47 11.338 -166.4 95 954.94 6.297 -46.8 155 1262.47 4.125 -28.4 468.72 11.174 -1610 96 961.22 6.250 -46.2 156 1266.58 4.097 -28.2 479.82 11.016 -156.3 97 967.44 6.205 -45.6 157 1270.67 4.068 -28.0 490.76 10.862 -151.3 98 973.63 6.159 -45.1 158 1274.72 4.041 -27.8 501.54 10.713 -146.4 99 979.76 6.114 -44.6 159 1278.75 4.013 -27.6 
512.19 10.569 -141.6 100 985.85 6.070 -44.1 160 1282.75 3.985 -27.4 522.68 10.430 -136.9 101 991.90 6.026 -43.6 161 1286.72 3.958 -27.2 533.05 10.295 -132.5 102 997.1 5.983 -43.1 162 1290.66 3.931 -27.0 543.28 10.165 -128.2 103 1003.a7 5.940 -42.6 163 1294.58 3.904 -26.8 553.38 10.039 -124.1 104 100909 5.898 -42.2 164 1298.47 3.877 -26.6 
563.36 9.917 -120.1 105 1015.66 5.856 -41.8 165 1302.34 3.851 -26.4 573.21 9.798 -116.4 106 1021.50 5.814 -41.4 166 1306.17 3.825 -26.3 582.95 9.684 -112.9 107 1027.29 5.773 -41.0 167 1309.98 3.798 -26.1 592.58 9.573 -109.5 108 1033.04 5.732 -40.6 168 1313.77 3.772 -25.9 602.10 9.465 -106.3 109 1038.76 5.692 -40.3 169 1317.53 3.747 -25.8 
611.51 9.360 -103.3 110 1044.43 5.651 -39.9 170 1321.26 3.721 -25.6 620.82 9.258 -100.5 111 1050.06 5.612 -39.6 171 1324.97 3.695 -25.5 630.03 9.159 -97.9 112 1055.65 5.572 -39.3 172 1328.65 3.670 -25.3 639.14 9.062 -95.3 113 1061.20 5.533 -39.0 173 1332.31 3.645 -25.1 648.15 8.968 -93.0 114 1066.72 5.494 -38.7 174 1335.94 3.620 25.0 
657.08 8.876 -90.7 115 1072.19 5.456 -38.4 175 1339.55 3.595 -24.8 665.91 8.787 -88.6 116 1077.63 5.418 -38.1 176 1343.13 3.570 -24.7 674.65 8.699 -86.7 117 1083.03 5.380 -37.8 177 1346.69 3.545 -24.5 683.31 8.613 -84.8 118 1088.39 5.342 -37.5 178 1350.22 3.521 -24.4 691.88 8.529 -83.0 119 1093.71 5.304 -37.3 179 1353.73 3.497 -24.2

I 
K

0 
1 
2 
3 
4 

5 
6 
7 
8 
9 

10 
11 
12 
13 
14 

15 
16 
17 
18 
19 

20 
21 
22 
23 
24 

25 
26 
27 
28 
29 

30 
31 
32 
33 
34 

35 
36 
37 
38 
39 

40 
41 
42 
43 
44 

45 
46 
47 
48 
49 

50 
51 
52 
53 
54 

55 
56 
57 
58 
59 

60	 700.37	 8.447	 -81.3	 120	 1099.00	 5.267	 -37.0	 180	 1357.22	 3.472	 -24.1 
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Table 20.	 Reference data for the thermocouple combination normal silver 
versus Au-0.07 at % Fe - thermoelectric voltage, 	 E(T), 
thermoelectric sensitivity, S(T), and the derivative of the 
thermoelectric sensitivity, dS(T) (continued). 

T 
K

E S dS/dT I E S dS/dT 
&V MV/K nV/KZ K &V iV/K nV/KZ 

180 1357.22 3.472 -24.1 240 1528.08 2.288 -18.2 
181 1360.68 3.448 -23.9 241 1530.36 2.270 _18.1V 
182 1364.11 3.425 -23.8 242 1532.62 2.252 18.0 
183 1367.53 3.401 -23.6 243 1534.86 2.234 -17.9 
184 1370.92 3077 -23.4 244 1537.09 2.216 17.7V 

185 1374.28 3.354 -23.3 245 1539.29 2.198 -17.6 
186 1377.62 3.331 -23.1 246 1541.48 2.181 -17.3 
187 1380.94 3.308 -22.9 247 1543.65 2.163 -17.1 
188 1384.24 3.285 -22.8	 . 248 1545.81 2.146 -16.8 
189 1387.51 3.262 -22.6 249 1547.95 2.130 -16.5 

190 139006 3.240 -22.4 250 1550.07 2.113 -16.1 
191 139309 3.217 -22.2 251. 1552.17 2.098 -15.7 
192 1397.20 3.195 -22.0 252 1554.26 2.082 -15.3 
193 1400.38 3.173 -21.9 253 1556.34 2.067 -14.8. 
194 1403.54 3.152 -21.7 254 1558.40 2.053 -14.3 

195 1406.69 3.130 -21.5' 255 1560.44 2.038 -13.8 
196 1409.80 39109 -21.3 256 1562.48 2.025 -13.2 
197 1412.90 3.087 -21.1 257 1564.49 2.012 -12.6 
198 1415.98 3.067 -20.9 258 1566.50 2.000 -12.1' 
199 1419.04 3.046 -20.7 259 1568.49 1.988 -11.5' 

200 1422.07 3.025 -20.5 260 1570.48 1.977 -10.9 
201 1425.09 3.005 -20.3 261 1572.45 1.966 10V.4 
202 1428.08 2.985 -20.1 262 1574.41 1056 -9.9'  
203 1431.06 2.965 -19.9 263 1576.36 1.946

_9•4V 

204 1434.01 2.945 -19.7 264 157800 1.937 -9.1 

205 1436.94 2.925 -19.6 265 1580.23 1.928 -848 
206 1439.86 2.906 -19.4 266 1582.16 1.920 -8.6 
207 144206 2.886 -19.2 267 1584.07 1.911 -8.6 
208 1445.63 2.867 -19.0 268 1585.98 1.902 -8.7 
209 1448.49 2.848 -18.9 269 1587.88 1.893 -9.1 

210 1451.33 2.829 -18.7 270 1589.77 1.884 -9.7 
211 1454.15 2.811 -18.6 271 1591.65 1.874 -100  
212 1456.95 2.792 -18.5 272 1593.51 1.863 -11.7	

V 

213 1459.73 2.774 -18.3 273 1595.37 1.851 -13.2  
214 1462.50 2.755 -18.2 274 1597.21 1.836 -15.1 

215 1465.24 2.737 -18.1 275 1599.04 1.820 -17.4 
216 1467.97 2,719 -18.0 276 1600.85 1.801 -20.2	 ' 'V 

217 1470.68 2.701 -18.0 277 1602.64	 ' 1.780 -23.6 
218 1473.38 2.683 -17.9 278 1604.41 1.754 -27.6' 
219 1476.05 2.665 -17.9 279 1606.15 1.724 -32.3 

220 1478.71 2.648 -17.8 280 1607.86 1.689 _37•7 
221' 1481.34 2.630 -17.8 V " 

222 1483.97 2.612 -17.8  
223 1486.57 2.594 -17.8  
224 1489.15 2.576 -17.8 '.	 ' •V 

225 V 1491.72 2.559 -17.8  
22 6 V 1494.27 2.541 -17.8 ' V 

227 1496.80 2.523 -17.8 
228 1499.32 2.505 -17.9 . . 
229 1501.81 2.487 -17.9 , V 	

V 

230 1504.29 2.469 -18.0  
231 1506.75 2,451 -18.0 V 

232 1509.19 2.433 -18.1 V ' 

233 1511.62 2.415 -18.1 
234 1514.03 2.397 -18.2  

235 1516.41 2.379 -18.2  
236 1518.78 2.361 -18.2 
237 1521.13 2.342 -18.2  
238 1523.47 2.324 -18.2 .-
239 1525.78 2.306 -18.2 , V

V 

240 1528.08 2.288 -18.2 V 
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Table 21. Reference data for the thermocouple combination normal silver 
versus Au-0.02 at % Fe - thermoelectric voltage, E(T), 
thermoelectric sensitivity, S(T), and the derivative of the 
thermoelectric sensitivity, dS(T). 

I E S dS/dT I E $ dS/dT I E $ dS/dT 
K V MV/K nV/K2 K PV MV/K nV/K2 K V MV/K nV/K2 

0 0.00 0.000 0.0 60 546.11 4.361 -69.2 120 727.52 2.115 -22.9 
1 8.17 9.032 1624.0 61 550.44 4.293 -67.2 121 729.62 2.092 -22.7 
2 17.96 10.503 1325.6 62 554.70 4.227 -65.2 122 731.70 2.069 -22.5 
3 29.08 11.695 1063.4 63 558.d9 4.163 -63.3 123 733.76 2.047 -22.3 
4 41.27 12.641 833.7 64 563.02 4.100 -61.6 124 735.80 2.025 -22.0 

5 54.29 13.372 633.5 65 567.09 4.039 -59.9 125 737.81 2.003 -21.8 
6 67.95 13.917 459.6 66 571.10 3.980 -58.4 126 739.80 1.981 -21.6 
7 82.07 14.299 309.5 67 575.05 3.923 -56.9 127 741.77 1.960 -21.3 
8 96.50 14.543 180.6 68 578.95 3.867 -55.4 128 743.72 1.939 -21.1 
9 111.11 14.667 70.7 69 582.79 3.812 -54.0 129 745.65 1.918 -20.8 

10 125.80 14.690 -22.4 70 586.57 3.758 -52.7 130 747.56 1.897 -20.6 
11 140.46 14.627 -100.5 71 590.30 3.706 -51.4 131 749.44 1.876 -20.3 
12 155.03 14.493 -165.3 72 593.98 3.656 -50.1 132 751.31 1.856 -20.1 
13 169.43 14.300 -218.4 73 597.61 3.606 -48.9 133 753.16 1.836 -19.8 
14 183.61 14.060 -261.2 74 601.20 3.558 -47.8 134 754.98 1.817 -19.5 

15 197.54 13.781 -294.9 75 604.73 3.511 -46.6 135 756.79 1.797 -19.3 
16 211.17 13.473 -320.8 76 608.22 3.465 -45.5 136 758.58 1.778 -19.0 
17 224.48 13.142 -339.9 77 611.66 3.420 -44.4 137 760.35 1.759 -18.7 
18 237.45 12.795 -353.1 78 615.06 3.376 -43.4 138 762.10 1.741 -18.5 
19 250.06 12.437 -361.2 79 618.41 3.333 -42.4 139 763.83 1.722 -18.2 

20 262.32 12.074 -365.1 80 621.72 3.291 -41.4 140 765.54 1.704 -17.9 
21 274.21 11.708 -365.3 81 624.99 3.250 -40.4 141 767.24 1.686 -17.7 
22 285.73 11.344 -362.5 82 628.22 3.210 -39.5 142 768.91 1.669 -17.4 
23 296.90 10.984 -357.1 83 631.41 3.171 -38.6 143 770.57 1.652 -17.2 
24 307.70 10.630 -349.8 84 634.57 3.133 -37.7 144 772.22 1.635 -16.9 

25 318.16 10.285 -340.8 85 637.68 3.095 -36.9 145 773.84 1.618 -16.7 
26 328.28 9.949 -330.5 86 640.76 3.059 -36.1 146 775.45 1.601 -16.4 
27 338.06 9.624 -319.3 87 643.80 3.023 -35.3 147 777.05 1.585 -16.2 
28 347.53 9011 -307.4 88 646.80 2.988 -34.6 148 778.62 1.569 -16.0 
29 356.69 9.010 -295.0 89 649.77 2.954 -33.9 149 780.18 1.553 -15.8 

30 365.55 8.721 -282.4 90 652.71 2.921 -33.2 150 781.73 1.537 -15.6 
31 374.14 8.445 -269.7 91 655.62 2.888 -32.5 151 783.26 1.522 -15.4 
32 382.45 8.182 -257.0 92 658.49 2.856 -31.9 152 784.77 1.507 -15.2 
33 390.50 7.931 -244.6 93 661.33 2.824 -31.3 153 786.27 1.491 -15.0 
34 398.31 7.692 -232.4 94 664.14 2.793 -30.7 154 787.75 1.476 -14.9 

35 405.89 7.466 -220.5 95 666.91 2.762 -30.2 155 789.22 1.462 -14.7 
36 413.25 7.251 -209.1 96 669.66 2.733 -29.7 156 790.68 1.447 -14.6 
37 420.40 7.048 -198.1 97 672.38 2.703 -29.2 157 792.12 1.433 -14.4 
38 427.35 6.855 -187.6 98 675.07 2.674 -28.8 158 793.54 1.418 -14.3 
39 434.11 6.672 -177.6 99 677.73 2.646 -28.3 159 794.95 1.404 -14.2 

40 440.70 6.499 -168.2 100 680.36 2.617 -27.9 160 796.35 1.390 -14.1 
41 447.11 6.336 -159.2 101 682.96 2.590 -27.6 161 797.73 1.376 -14.0 
42 453.37 6.181 -150.8 102 685.54 2.562 -27.2 162 799.10 1.362 -13.9 
43 459.48 6.034 -143.0 103 688.09 2.535 -26.9 163 800.46 1.348 -13.8 
44 465.44 5.895 -135.6 104 690.61 2.508 -26.6 164 801.80- 1.334 -13.8 

45 471.27 5.763 -128.7 105 693.10 2.482 -26.3 165 803.13 1.320 -13.7 
46 476.97 5.637 -122.3 106 695.57 2.456 -26.0 166 804.44 1.307 -13.7 
47 482.55 5.518 -116.4 107 698.02 2.430 -25.7 167 805.74 1.293 -13.6 
48 488.01 5.404 -110.9 108 700.43 2.404 -25.5 168 807.03 1.279 -13.6 
49 493.36 5.296 -105.7 109 702.82 2.379 -25.2 169 808.30 1.266 -13.5 

50 498.60 5.193 -101.0 110 705.19 2.354 -25.0 170 809.56 1.252 -13.5 
51 503.74 5.094 -96.6 111 707.53 2.329 -24.8 171 810.80 1.239 -13.4 
52 508.79 4.999 -92.6 112 709.85 2.305 -24.5 172 812.04 1.226 -13.4 
53 513.74 4.909 -88.8 113 712.14 2.280 -24.3 173 823.25 1.212 -13.4 
54 518.61 4.822 -85.4 114 714.41 2.256 -24.1 174 814.46 1.199 -13.3 

55 523.39 4.738 -82.2 115 716.65 2.232 -23.9 175 815.65 1.186 -13.3 
56 528.09 4.657 -79.2 116 718.87 2.208 -23.7 176 816.83 1.172 -13.2 
57 532.70 4.579 -76.4 117 721.07 2.184 -23.5 177 818.00 1.159 -13.2 
58 537.25 4.504 -73.9 118 723.24 2.161 -23.3 178 819.15 1.146 -13.2 
59 541.71 4.432 -71.5 119 725.39 2.138 -23.1 179 820.29 1.133 -13.1 

60 546.11 4.361 -69.2 120 727.52 2.115 -22.9 180 821.41 1.120 -13.0
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T E S dS/dT 
K AV ,iV/K nV/K2 

240 869.29 0.524 -8.6 
241 869.81 0.516 -8.5 
242 870.32 0.507 -8.4 
243 870.82 0.499 -8.2 
244 871.32 0.491 -8.0 

245 871.80 0.483 -7.9 
246 872.28 0.475 -7.7 
247 872.75 0.468 -7.5 
248 873.22 0.460 -7.3 
249 873.68 0.453 7.1 

250 874.12 0.446 -6.8 
251 874.57 0.439 -6.6 
252 875.00 0.433 -6.5 
253 875.43 0.426 -6.3 
254 875.86 0.420 6.1 

255 876.27 0.414 -6.0 
256 876.68 0.408 -5.9 
257 877.09 0.402 -5.9 
258 877.49 0.396 5.8 
259 877.88 0.391 -5.9 

260 878.27 0.385 -6.0 
261 878.65 0.379 -6.1 
262 879.03 0.372 6.3 
263 879.40 0.366 -6.5 
264 879.76 0.359 -6.8 

265 880.12 0.353 -7.1 
266 880.46 0.345 -7.4 
267 880.81 0.338 -7.7 
268 881.14 0.330 -7.9 
269 881.47 0.322 -8.1 

270 881.78 0.314 -8.2 
271 882.09 0.305 -8.2 
272 882.39 0.297 -7.9 
273 882.69 0.290 -7.3 
274 882.97 0.283 -6.3 

275 883.25 0.277 -4.8 
276 883.53 0.274 -2.7 
277 883.80 0.272 0.2 
278 884.08 0.274 4.0 
279 884.35 0.281 9.0 

280 884.64 0.293 15.3

dS/dI 
nV/K2 

-13.0 
-13.0 
-12.9 
-12.8 
-12.7 

-12.6 
-12.5 
-12.4 
-12.3 
-12.2 

-12.1 
-11.9 
-11.8 
-11.6 
-11.5 

-11.3 
-11.1 
-11.0 
-10.8 
-10.6 

-10.4 
-10.3 
-10.1 
-9.9 
-9.8 

-9.6 
-9.5 
-9.3 
-9.2 
-9.1 

-8.9 
-8.8 
-8.7 
-8.7 
-8.6 

-8.5 
-8.5 
-8.5 
-8.4 
-8.4 

-8.4 
-8.5 
-8.5 
-8.5 
-8.5 

-8.6 
-8.6 
-8.7 
-8.7 
-8.8 

-8.8 
-8.8 
-8.9 
-8.9 
-8.9 

-8.9 
-8.9 
-8.8 
-8.8 
-8.7 

Table ai. Reference data for the thermocouple combination normal silver 
versus Au-0.02 at To Fe - thermoelectric voltage, E(T), 
thermoelectric sensitivity, S(T), and the derivative of the 
thermoelectric sensitivity, dS( T) (continued). 

E 
AV 

821.41 
822.53 
823.63 
824.71 
825.79 

826.85 
827.90 
828.94 
829.96 
830.97 

831.97 
832.96 
833.94 
834.90 
835.85 

836.79 
837.72 
838.64 
839.55 
840.44 

841.33 
842.20 
843.07 
843.93 
844.77 

845.61 
846.43 
847.25 
848.05 
848.85 

849.64 
850.42 
851.19 
851.95 
852.71 

853.45 
854.19 
854.92 
855.64 
856.35 

857.05 
857.74 
858.43 
859.11 
859.78 

860.44 
861.09 
861.73 
862.36 
862.99 

863.61 
864.22 
864.81 
865.40 
865.99 

866.56 
867.12 
867.68 
868.22 
868.76

$ 
MV/K 

1.120 
1.107 
1.094 
1.081 
1.068 

1.055 
1.043 
1.030 
1.018 
1.006 

0.994 
0.982 
0.970 
0.958 
0.946 

0.935 
0.924 
0.913 
0.902 
0.891 

0.881 
0.870 
0.860 
0.850 
0.840 

0.831 
0.821 
0.812 
0.802 
0.793 

0.784 
0.775 
0.767 
0.758 
0.749 

0.741 
0.732 
0.724 
0.715 
0.707 

0.698 
0.690 
0.681 
0.673 
0.664 

0.656 
0.647 
0.639 
0.630 
0.621 

0.612 
0.604 
0.595 
0.586 
0.577 

0.568 
0.559 
0.550 
0.542 
0.533

I 
K 

180 
181 
182 
183 
184 

185 
186 
187 
188 
189 

190 
191 
192 
193 
194 

195 
196 
197 
198 
199 

200 
201 
202 
203 
204 

205 
206 
207 
208 
209 

210 
211 
212 
213 
214 

215 
216 
217 
218 
219 

220 
221 
222 
223 
224 

225 
226 
227 
228 
229 

230 
231 
232 
233 
234 

235 
236 
237 
238 
239

240
	 869.29	 0.524	 -8.6
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Table 22. Power series coefficients for representation of thermoelectric 
voltage in the range 0 K to 280 K wlth.a 0 K reference tempera-
ture. Thermocoupletypes E, K, T, and KP, copper, and 
normal silver versus Au-0.02, 0.07 at % Fe are included; E(T). 

Power Series 
Coefficients
	 T
	

E
	

K 

B(l)

B(2)

B(3) 

B (4)

B(5)

B(6)

B(7)

B(8)

B(9) 

B(i0) 

B(ii) 

B(l2)

B(13)

B(14)

-3.9974007864 x10 

2.6329515981 x io 

-9.6491216443 x 10 

3.8973308068 x 10

-9.8186150331 x l0_6 

1.6059280063 x10- 7 

-1.7932074012 x 10 

1.4080710479 x 10- 11 

-7.8671373053 x 10- 14 

3.1144995156 x 1016 

-8.5433550766 x 10 

1.5448411036 x l0_.21 

-1.6565456476 x 1024 

7.9795893156 x-10- 28

-2.0344697205 x 10_i 

3.0220985715 x101 

-5.7844373965 x'10- 3 

1.7879650162 x 
lO 

-3.6597667313x 106 

4.9073685405 x 10- 8 

-4.4751468891 x 100 

2.8331235582 x1012 

-1.2476596612x 10- 14 

3.7536769066 x io 

-7.3627479508 x102° 

8.4898427718 x 10 m 23 

-4.3671808488,x 10- 26

2.4061140104 x 10_i 

7.3438313272 x 10_2 

1.2873437647 x 10 

-2.2622572598 x 10 

2.1765238991 x 10 

-1.3304091711 x 10 

5.2493539029x 10 

-1.2997123230 x 10- 14 

1.8403309812 x 10- 17 

-1.1382797374 x 
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Table 22. Power series , coefficients for representation of thermoelectric 
voltage in the range 0 K to 280 K with a 0 K reference tempera-
ture. Thermocouple types E, K, T, and KP, copper, and 
normal silver versus Au-0.02, 0.07 at % Fe are included; 
E(T) (continued). 

Power Series 
Coefficients KPvs AU? Fe	 '	 KP vs Au  Fe	 Cu vs Au  Fe 

B0)

B(2)

B(3)

B(4)

B(5)

B(6)

B(7)

B(8)

B(9) 

B(l0) 

B(l1) 

B( 12)

B(13)

B(14)

6.9864426367 

9.0607276605 x 

-4;3469694773 x 10 

1.2468246660 x 10 

-2.3500537590 x 10's 

3.0837610415 x 

-2.9032251684 x 10 

• 1.9881512159 x 10 

-9.9174829612 x 107 14 

3.5645229362 x 10- 1.6 

-8.9864698504 x lo- 19 

1.5071673023 x 10- 21 

-1.5093916059 x 

6.8264293980 x 10-- 28

7.2668579396 

1. 0692 244345 

-6.2220191022 x 10- 2 

1.9487031660 x 10- 3, 

-3.8863862277 x 10 

5.3284892976 x 10 

-5.2094815173 x 10 

3.6920742674 x 10- 11 

-1.9020522841 x 10- 13 

7.0508285353 x 

-1.8317974022 x 10- 18 

3.1644035401 x 10- 21 

-3.2636069898 x 10- 24 

1.5201593461 x

6.9819441789 

8.4001378651 x 10_i 

-4.5417070202 x 10- 2 

1.3796048892 x 

-2.7648679333 x 10 

3.8534874955 x 10 

-3.8382718939 x 10 

2.7684122233 x 10- 11 

-1.4483161512 x 

5.4390389051 x 

-1.4282076268 x 10- 18 

2.4882871621	 10_21 

-2.5831198571 x 10- Z4 

1.2089129004 x 10- 27 
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Table 22. Power series coefficients for representation of thermoelectric 
voltage in the range 0 K to 280 K with a 0 K reference tempera-
ture. Thermocouple types E, K, T, and KP, copper, and 
normal silver versus Au-0.02, 0.07 at To Fe are included; 
E(T) (continued). 

Power Series 
Coefficients Cu vs Au 2 Fe	 n.Ag vs Au 7 Fe	 n.Ag vs Au 2 Fe 

B(l)

B(2)

B(3)

B(4)

B(5)

B(6)

B(7)

B(8)

B(9) 

B(l0) 

B(ii) 

B(12)

B(l3)  

B(l4)

7.2623594676 

1.0031654569 

-6.4167566583x 10 

2.0814833941 x 10 

-4.3012004132 x 10 

6.0982157678 x 10 

-6.1445282582 x 

4.4723352843 x 10- 11 

-2.3586201427 x 10- 13 

8.9253445111 x 10- 16 

-2.3613580435 x 10- 18 

4.1455233949 x 10- 21 

-4.3373352305 x 1024 

2.0464292991 x 10- 27

6.9616414011 

8.1796982011 x 10_i 

-4.1183301479 x 10_2 

1.1332864853 x 

-2.0564116972 x105 

2.6125849627 x 10 

-2.3898974345 x 

1.5931957622 x lO 

-7.7417132540 x io 

2.7100280116x io6 

-6.6485927163 

1.0835762248 x 10- 21 

-1.0525122333 x 1024 

4.6057748723 x o_28

7.2420566898 

9.8112149062 x 10- 1 

L 5.9933797876 x 10 

1.8351649913x 

-3.5927441812 x 10 

4.8573132442 

-4.6961538119 x l0 

3.2971188358 x 10- 11 

-1.6844753253 x 10- 13 

6.1963336555 x lo- 16 

-1.5980097000 x 10- 18 

2.7408124807 x 10- 21 

-2.8067276336 x 10- 24 

1.2980938998 x 10- 27 
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Table 27. Reference data for the thermoc .ouple combination KP versus 
Au-2.1 at % Co - thermoelectric voltage, EMF(T), thermo-
electric, voltage difference, DELEMF(T), and thermoelectric 
sensitivity, DE/DT(T).

TEMP EMF DELEMF CE/DT TEMP	 . EMF DELEMF DE/DT DEG K MIC V MIC V MIC V/DGK DEG K MIC	 V MIC V 'MIC V/DGK 

1 0.6 0.6 1.210 41 758.3 -'	 31.7 -:31.930 2 2.4 1.8 2.390 42 790.5 32.2	 ' 32.410 3 5.4 .	 3.0 .	 3.550 43 823.2'-"- 327 32.880 4 9.5 4.1 4.680	 - .	 .44 856,4; ..3.3.2 .,..33.340 5 14.7 5.2 -.	 5.780 .45
--

890.0 33.6 33.790 

6 21.0 6.3 6.860 46 924.0 34.0' 34.240 7 28.4. 7.4 7.910 47 958.4 34.4' 34.680 .8 36.8 8.4 .	 8.940 .48	 ' '	 993..2 34.8 35.110 9 46.2 9.4 9.940 49 1028.5 -	 35.3 . 35.530 10 56.6 10.4 .	 10.910 50 1064.2.	 35.7 .. '35.40 

11 68.0 11.4 11.860 51 1100.3 " 36.1 36.350 12 80.4 12.4 12.780 :5,2.1136.8. 36.5 '	 '36.750 13 93.7 13.3 13.670 53 . 1173.7- 36.9 37.150 14 107.9 14.2 14.540	 - 54 1211.0 . 37.3 37.540 15 123.0 15.1 15.390 .55	 .	 - 1248.7 37.7. "'37.930 

16 138.9 15.9 16.210. 56	 ' 1286.8 38.1 '38.310 17 155.6 16.7 . 17.010 :57 1325.3 ' 38.5 ' 38.680 18 - 173.1 17.5 17.790 58,----8 1364.2 3809 39.040 19 191.4 18.3 18.560 59 1403.5 39.3 39.400 20 210.4 19.0 19.320. .60 1443.1 39.6 39.750 

21 230.1 19.7 '20.060 61--- 1483.1 '	 40.0	 . 40.090 22 250.5 20.4 20.780' .	 '62 1523.4 '-40.3 ' 40.430 23 271.6 21.1 21.490' 63 1564.0 -
, 

40.6 40.760 24 293.4 21.8 22.180. 64	 , 1604.9 '40.9 '	 41.090 2 315.9 22.5 . 22.850 65	 . .	 1646.1 . 41.2 '	 41.410 

26	 . 339.1 23.2 23.510 66	 ' 1687.6 41.5 41.720' 27 '363.0	 - .23.9 24.150 '	 67', 1729.4 '41.8 ' 42.020 28 .387.6	 . 24.6 24.780 68 1771.5 .'42.1 42.320 29 412.8 25.2 25.390. 69 '1813.9 : 42.4 42.610 30 438.6 25.8 25.990 70 1856.6 .42.7 '	 42.890 

31 464.9 26.3 26.580 71	 : 1899.6 .	 63.0 . 43.170 32 491.8 26.9 27.160 72' 1942.9 43.3 43.440 33 519.3 27.5 .27.730 73 1986.5 43.6 43.710 34 . -547.3 28.0 28.290' 74	 ., 2030.4 -. 43.9 43.980 35 575.9 28.6 28.840 75- 2074.6 44.2 44.240 

36 605.0 29.1 29.380 76 2119.0 -	 44.4	 ' '	 44.500 37 -	 634.6 29.6 29.910 77' 2163.7 44.7 44.760 38 .664.7 30.1 30.430 78 2208.6	 '-44.9 45.020 39,
'

695.4	 ' 30.7 30.940 79 . 2253.8 45.2 45.270 4 ,0 726.6 31.2 31.440 80 2299.2. 45.4 45.520
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Table 27.	 Reference data for the thermocouple combination KP versus • 
Au-2. 1 at % Co - thermoelectric voltage, EMF(T), thermo-
electric voltage difference, DELEMF(T), and thermoelectric 
sensitivity, DE/DT(T) (continued). 

TEMP EMF DELEMF DE/OT TEMP EMF DELEMF DE/DT 
DEG K MIC V MIC V MIC V/DGK DEG K MIC V MIC V MIC V/DGK 

81 2344.9 45.7 45.770 121 4343.2 53.3 53.370 
82 2390.8 45.9 46.020 122 4396.6 53.4 53.510 
83 2436.9 46.1 46.270 123 4450.2 53.6 53.650 
84 2483.3 46.4 46.510 124 4503.9 53.7 53.780 
85 2529.9 46.6 46.750 125 4557.8 53.9 53.910 

86 2576.8 46.9 46.990 126 4611.8 54.6 54.040 
87 2623.9 47.1 47.230 127 4665.9 54.1 54.170 
88 2671.2 47.3 47.460 128 4720.2 54.3 54.300 
89 2718.8 47.6 47.690 129 4774.6 54.4 54.420 
90 2766.6 47.8 47.920 130 4829.1 54.5 54.540 

91 2814.6 48.0 48.140 131 4883.7 54.6 54.660 
92 2862.9 48.3 48.360 132 4938.4 54.1 54.780 
93 2911.4 48.5 48.580 133 4993.3 54.9 54.900 
94 2960.1 48.7 48.790 134 5048.3 55.0 55.020 
95 3009.0 48.9 48.990 135 5103.4 55.1 55.140 

96 3058.1 49.1 49.190 136 5158.6 55.2 55.260 
97 3107.4 49.3 49.390 137 5213.9 55.3 55.370 
98 3156.9 49.5 49.590 138 5269.3 55.4 55.480 
99 3206.6 49.7 49.180 139 5324.8 55.5 55.590  

100 3256.5 49.9 49.970 140 5380.4 55.6 55.700 

101 3306.5 50.0 50.160 141 5436.2 55.8 55.810 
102 3356.7 50.2 50.340 . 142 5492.1 55.9 55.920 
103 3407.1 50.4 500520 143 5548.1 56.0 56.020 
104 3457.7 50.6 50.700 144 5604.2 56.1 56.120 
105 3508.5 50.8 50.870 145 5660.4 56.2 56.220 

106 3559.5 51.0 51.040 .146 5716.7 56.3 56.320 
107 3610.6 51.1 51.210 147 5173.1 56.4 56.420 
108 3661.9. 51.3 51.380 14.8 .	 5829.6 56.5 56.520 
109 3713.4 51.5 51.550 149 586.2 56.6 56.620 
110 3765.0 51.6 51.710 150 5942.8 56.6 56.710 

111 3816.8 51.8 51.870 151 599.55k.1 56.800 
112 3868.8 52.0 52.030 152 6056.3	 1 56.8 .56.890 
113 3920.9 52.1 52.190 153 6113.2 56.9 56.980 
114 3973.2 52.3 52.350 154 6170.2 57.0 57.070 
115 4025.6 52.4 52.500 155 6227.3 57.1 57.160 

116 4078.2 52.6 52.650 156 6284.5 57.2 57.250 
117 4130.9 52.7 52.800 157 6341.8 57.3 57.340 
118 4183.8 52.9 52.950 158 6399.2 57.4 57.430 
119 4236.8 53.0 53.090 159 .. 6456.7


57.5 	 .. 57.510 

120 4289.9 53.1 53.230 160 6514.2 57.5 57.590
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Table 27. Reference data for the thermocouple corn 
-2. 1 at To Co - thermoelectric voltage, 

electric voltage difference, DELEMF(T), 
sensitivity, DE/DT(T) (continued). 

	

TEMP	 EMF	 DELEMF , 	 CE/CT	 TEMP 

	

DEG.K	 MIC V MIC V	 MIC V/DGK	 DEG K

bination KP versus 
EMF(T), thermo-
and thermoelectric 

EMF	 DELEMF	 DE/DT 
MIC V MIC V	 MIC.V/0GK 

161 6571.8 57.6 57.670 201 8935.4 ..	 60.3 60.330 
162 6629.5 57.7 57.750 202 8995.8 60.4 60.380 
163 6687.3 57.8 57.830 203 9056.2 60.4 60.430 
164 6745.2 57.9 57.910 204 9116e7-, 60.5 60.480. 
165 680391 57.9 57.990 205 9177.2 60.5 60.530 

166 686101 58.0 58.070 206 9237.7 60.5 60.580 
167 6919.2 58.1 58.150 207 9298.3 60.6 60.630 
168 6977.4 58.2 58.220 208 9358.9 60.6 60.680 
169 7035.7 58.3 58.290 209 9.14 11 9 e . 6 60. 7 1 60.730 
170 7094.0 58.3 58.360 210 9480.3

, 
60.7 . 60.780 

171 7152.4 58.4 58.430 211 9541.1 .	 60.8 600820 
172 7210.9 58.5 58.500 212 9601.9 60.8 . 60.860 
173 7269.4 58.5 58.570 2.13 9662.8 60.9 . '.60.900 
174 7328.0 58.6 58.640 214 60.950 
175 7386.7 58.7 58.710 215 9784.7 614 '.'60.990 

176 7445.4 58.7 58.780 216 9845.7. 61.0 61.030 
177 7504.2 58.8 58.850 217 9906.8, 6191 61.070 
178 7563.1 58.9 58.920 218 9967.9 .	 61.1 .	 61.110 
179 762290 58.9 58.990 219 10029.0 .	 61.1 '	 61.150 
180 7681.0 59.0 59.060 220 1009092 61.2 61.190 

181 7740.1 59.1	 . 59.130 221 10151.4 61.2 61.230 
182 7799.3 59.2 59.200 222 . 10212.7. 61.3 61.270 
183 7858.5 59.2 59.270 223 10274.0 61.3 61.310 
184 7917.8 59.3 59o340 224 10335.iA_- 61.4	 . 61.350 
185 7977.2 59.4	 . 59.410 225 10396.8 61.4 61.390 

186 8036.6 59.4 59.470 226 10458.2. 61.4 61.430 
187 8096.1 59.5 59.530 2?,7.10519.7, 61.5 .61.470 
188 8155.7 59.6 59.590 228 10581.2 61.5 61.510 
189 8215.3 59.6 59.650 . 229 10642.7 61.5 61.540 
190 8275.0 59.7 59.710 230 10704.3 61.6 61.570 

191 8334.7 59.7 59.770 231 40765.9 61.6 61.600 
192 8394.5 59.8 59.830 232 10827.5 61.6 61.630 
193 8454.4 59.9 59.890 233 .	 10889.1 61.6 61.670 
194 8514.3 59.9 59.950 234 10950.8, . 61.7 .,. 61.700 
195 8574.3 60.0 60.010 235 11012.5 61.7 61.730 

196 8634.3 60.0 60.070 236 11074.2 .	 61.7 61.760 
197 8694.4 60.1 60.130 237 11136.0 61.8 61.790 
198 8754.6 60.2 60.180 238 11197.8 61.8 61.820 
199 8814.8 60.2 60.230 239 11259.6 61.8 61.850 
200 8875.1 60.3 60.280 240 1132105 61.9 61.880
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Table 27. Reference data for the thermocouple combination KP versus 
Au-2. 1 at % Co - thermoelectric voltage, EMF(T), thermo-
electric voltage difference, DELEMF(T), and thermoelectric 
sensitivity, DE/DT(T) (continued). 

TEMP EME DELEMF CE/OT 
DEG K MIC V -MIC	 V MIC V/DGK 

241 11383.4 61.9 61.910 
242 11445.3 61.9 61.940 
243 11507.2 61.9 61.970 
244 11569.2 62.0 62.000 
245 11631.2 62.0 62.030 

246 11693.2 62.0 62.060 
247 11755.3 62.1 62.080 
248 11817.4 62.1 62.100 
249 11879.5 62.1 62.120 
250 11941.6 62.1 62.140 

251 12003.8 62.2 62.160 
252 12066.0 62.2 62.180 
253 12128.2 62.2 62.200 
254 12190.4 62.2 62.220 
255 12252.6 62.2 62.240 

256 12314.9 62.3 62.260 
257 12377.2 62.3 62.280 
258 12439.5 62.3 62.300 
259 12501.8 62.3 62.320 
260 12564.1 62.3 62.330 

261 12626.4 62.3 62.340 
262 12688.7 62.3 62.350 
263 12751.0 62.3 62.360 
264 12813.4 62.4 .62..370 - 
265 12875.8 62.4 62.380 

266 12938.2 62.4 62.390 
267 13000.6 62.4 62.400 
268 13063.0 62.4 62.410 
269 13125.4 62.4 62.420 
270 13187.8 62.4 62.430 

271 13250.2 62.4 62.440 
272 13312.6 62.4 62.450 
273 13375.0 62.4 62.450 
274 13437.4 62.4 .	 62.450 
275 13499.8 62.4 62.450 

276 13562.2 62.4 62.450 
277 13624.6 62.4 62.450 
278 13687.0 62.4 62.450 
279 13749.4 62.4 62.450 
280 13811.9 62.5 62.460

TEMP	 EMF	 DELEMF	 DE/DT 
DEG K . MIC V MIC V	 MIC V/OGK 

131 



Table 28.	 Reference data for the thermocouple combination copper versus 
Au-2. 1 at To Co - thermoelectric voltage, EMF(T), thermo-
electric voltage difference, DELEMF(T), and thermoelectric 
sensitivity, DE/DT(T). 

TEMP EMF DELFMF DE/OT TEMP EMF DELEMF OE/DT 

DEG K MIC V MIC V MIC V/DGK DEG K MIC V MIC V MIC V/DGI 

1 0.53 0.53 1.047 41 640.6 26.4 26.600 
2 209 1,56 2.070 42 667.4 26.8 26063 
3 4.66 2.57 3.069 .43_ ..	 694..6..27.2.. 27.317 
4 8.22 3.56 49044 44 72201 27.5 27.662 
5_,Jb14___4.32 _AA 94 45 749.9 27..8 27.99 

6 - 18920 5.46 5.920	 ....  
7 24.57 6,37 6.822 47 80696 2895 289646 
8 31.83 7.26 7.700..... 48 ..83S..4..28,.8_...28..958 
9 39.96 8,13 8.554 49 864.5 29.1 29.262 

10 48.93 8,97 9.383 50 893.9 29.4 29.5S 

11 58.72 9,79 10.188 
12 69930 10,58 109969 52 95396 30.0 30.127 
13 80.65 1105 .11.726.	 ... 59.83...9___30..3 31L..402..... 
14 92975 12.10 129458 54 1014.4 30.5 30.669 
15 10596 12.8 13.165 55 1045.2 30.8 30.929 

16 .	 .119..1..... 13.5 
17 13392 14.1 14.513 57 1107.5 3193 31.430 
18 .14a..0__i408___..15.16S .58 11.39.1-_31.6 3i..6_7_1 
19 16395 15,5 159803 59 11700 31,8 31.906 
20 17996 16.1 16.427 60 120209 32.0 32.134 

21 
22 
23 
24

-	 - 196 .416,8 
213.7 

.23.1.6 ......
25091 
269.2

17.3 

18.5 
19.1 

..179._.1.8...219.__.._6.3. 

17.038 61 
17.635 

18091 
19.349

1235L2,2	 32056. 
62	 126795	 3294	 32.573 

j300.2	 32.7	 32.184 
64	 133391	 3299	 32.989 
65	 1366.2	 33.1	 33.189 __._ 

26 288.8 .i.._ 9.8!3 _66 1399.5 33.3 33,384 
27 308.9 20.1 20.424 67 1433.0 33.5 33.574 
28 .	 329.6_...20.J_...__2.941.. 68 146.6..1_.31.7 3117$9__ 
29 350.8 21.2 21.446 69 150095 33,8 33038 

_72_?1....7 21.938 70 1534.5 34.0 34.112 

31 394.7 3492 34,280 
32 4170 22,6 22.884 72 1603.1 34.4 349442 
33 440.4 23..1- ------- - - 23.34.0_ 73 3495 
34 464.0 23.6 23.785 74 1672.3 34.7 34.753 

. .8.0..... .24..0 _....._Z4.218 75 1707.1_34.8 34.90.5 

36 512.4 24.4 24,640 76 1742ol 3590 35oO56 
37 537.3 24,9 25.052 77 1777.2 3591 35.205 
38 562.6 25,3... 25.454.._......___i&_181 .5 .3.5.3_3S..3.52 
39 588.2 25.6 25.846 79 184799 35.4 359497 

..1.4..L...26,Q 22$_....__8D_.1883.5 35.6 3,64j
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Table 28.	 Reference data for the thermocouple combination copper versus 
Au-2. 1 at % Co - thermoelectric voltage, EMF(T), thermo-
electric voltage difference, DELEMF(T), and thermoelectric 
sensitivity, DE/DT(T) (continued). 

TEMP EMF DELEMP DE/DT	 . TEMP EMF	 DELEMF	 DE/DT 
.DEG...__M1C. _M!L.VL&I.CJIIri1K bEG K MIC V	 MYC V	 MT	 yIrflt3I< 

1919.2 35.7 359785 121 3442.6	 . 39.8	 39.873 
82. .195590 35,8 35029 122 3482.5 390	 39041 
83 1991.0 36,0 36.071. .	 123. 3522.5. 40,0	 .4090.08 
84 202792	 .. 

• 2063.8
36.2 
36,3

36.211 
36,348

124 
128

356295 
1602.6

4090	 409073 
40.1 

86 2099.9 36.4 .	 •.., 
'87' 2136.4 36.5 36,615 127 3683,0 4092	 40.262 
88 2173.1.36.7 , .36.744	 -. --	 . 128.. 
89 2209.9 ' 36,8 369871 129 3763.7 40.4	 40.81 

_......9.0	 224A.R	 36,0	 I6,005 390441 4 004	 4fl,46p 

91 2283.9 37.1 .....' .37.117.............. 131..... 
.92 ..	 2321.1 37.2 37,236 132 388591 40.5	 409554 
93, 
94.

. 2358,4 

. 2395,8
37.31.. 
37,4

.37.353.............. 
. 37.468 134 396693	 40.6	 409664 

• 2433.3 37,8 37,581 135 4007.0 40,7	 4A,715 

96 2470.9' ' 37.6	 :	 .... 37.692 
97'	 : 250896	 370	 379801 
9.8.	 2546..5.	 ....37.9.o7	 _. 
99.'	 2584.5	 38,0	 38.011 

.10.tL._2622.6 	 38,1	 36113

137 

139 
140 

.1.3.8__4129...4.........40,Q 
4088,5	 4098	 40,821 

411...811.. 
4170.3	 40,9	 .	 40.920 
4211.2	 40,0	 4fl.060' 

101' 2660.,7..... 1..1	 42.2,2	 4190_Aj&LL. 
102 269899 38 9 2, 38.312 142 4293.2 41.0	 410064 
103..... 4334....3_4J.4 
1 ,04 2775.8 2775.8 , 38,5 38.504 144 437595 4192 ,	 41.155 

10 6 28.5.3.,.O...3.8..6 _38,.6.88	 146 ' 4451.9' 41..2_._.._.4-1,242_ 
107 2891,7	 38.7 . 38.778 147	 ' 4499.1 4192	 . 41.285 
166- ... 2.93O...6-_..38,9__38..8.66 l49 4540.4. 4 1.3 44-0-327-.-
109 
110	 '

296995	 .	 3899' 
3p08.S	 39,0

38,953 
39.03

149 
150

458198' 
4623.2'

41.4 
41.4

41068 

1lL. 30.47_...6..._ 39.1 39.121 151 4664.6 41.4 41.448. 
112 . 3086.8	 39.2 39.202 152 4706.1 41.5 41.487 
1.13.3 126. 0_39.2_3 9 ,282_1 S3__4747. 6_41, _41.525 
114 3165.3	 39.3 39,36j 1,54 478901 41.5	 . 419562 
jj'5 3204.7	 39,4 39.439 155 4830.7 41.6

.
41.590 

-----11 6 , ' 34?	 39,_ 39.515_1.56 4872.341.6 41.63 
117 328397	 39,5 39.589 157 491490	 41,7 41,670 

_158 4955.7_'_41.7_41.1.05. 
119' , 336390	 39.7 39.734 159 4997.4	 41.7.. 41.730 
120 3402.8	 39.8 39.804 160 5039.1	 41.7 41.772.
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Table 28.	 Reference data for the thermocouple combination copper versus 
Au-2. 1 at % Co - thermoelectric voltage, EMF(T), thermo-
electric voltage difference, DELEMF(T), and thermoelectric 
sensitivity, DE/DT(T) (continued). 

TEMP EMF OELEMF OE/DT TEMP EME DELEMP DE/DT 
DEG K MIC	 V.....M1.0 V... MIC V MIC V/DGK 

161 508099 41.8 41.805 201 6773.3 42.7 - 42.688 
162 512297 41.8 41.837 202 6816.0 42,7 42.701 
163 5164.6 41.9 41.868 203 6858.7 42.7 42.71.4 
164 520695 41.9 41.899 204 6901.4 4297 42.727 
165__52A&.4__._41.9 4L.92Q 205 8944.1 42,7 42,74fl 

166 529093 41.9 419959----------
167 5332.3 42.0 419988 207 702996 4298 42.764 
168 53740 42.0 42.016 2.08-----------70.72.4 ----- 4.2..8--.42.7.7-S. 
169 5416.3 42.0 42.044 209 7115.2 42.8 42.786 
1.10 5.4i8.4 42.1 42,072 210 71c8.o 42,8 42,797 

171 5500.5 42.1. 42.099.. 211......._.72.008_2.9_A28.08 
172 5542.6 42,1 429125 212 7243.6 42.8 42.818 
173 5584.7. 42.1. 42.1.51	 -------
174 

.175
562609 
5669.1

42.2 
42.2

42.176 
42,201

214 
215

7329.2 
7372.0

42.8 
42,8

42.838 
47.848 

176 571193. 42,2 42.225	 ------------ __,216___t414..9__.2.9_42.857... 
177 5753.5 42.2 42.249 217 7457.8 420 42.866 
178 .	 57.95..8. ...42,3	 ..... 42.2112-------
179 5838.1 42,3 42.295 219 754395 42 9 8 42.883 

..180 58804_423 42.317 220 7586.4 42.9 42.891 

181. 429339 
182 596590 42.3 42.360 222 767292 42.9 42.906 
183......600794 --------_42.4._. ------
184 604998 42.4 429402 224 775800 42.9 42.920 

_185__6092,2 _42.4 42.422_225 7801.0 43.0_42.927 

_78439_ 4299 429934. 
187 6177.1 42.5 42,460 227 7886.8 4299 42.940 
188 
189 6262.1 42.5 429497 229 7972.6 42.9 429952 
190_6304.6_42.2.51S_230 8015.6 43.0 42.958 

231 8058.6 43_42,963__ 
192 638996 42,5 429550 232 8101.6 43.0 62,968 

233__8144.6_43.0_ 4297.3 
194 647498 42.6 429583 234 818796 4390 42.978 
195_6517.4_...42.6 _42.599_235 8230.5 42.9 42.983 

236 8273.5 .42,987 
197 6602.6 42,6 42,630 237 8316.5 43 9 0 429991 
1.98..6645.2_.426_._42..45__2.38 83595_43..0 42.99.S 
199 6687.9 42.7 42.660 239 8402.5 43,0 42099 
200 6142.7 42.674_240 .8445.5 43.0 43_.Q02_...
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Table 28.	 Reference data for the thermocouple combination copper versus 
Au-2. 1 at % Co - thermoelectric voltage, EMF(T), thermo-
electric voltage difference, DELEMF(T), and thermoelectric 
sensitivity, DE/DT(T) (continued). 

TEMP EMF DELEMF DE/DT TEMP EMF DELEMF DE/DT 
DEG ... _MIC.V_Mi...L_MIC V/DGK _DEG K MIC V MIC V MIC_VjOGK 

241 8488.5 43.0 43.005 281 10209.3 43.0 42.995 
242 8531.5 43,0 43.008 282 1025293 43.0 42,99? 
243 8574.5 43.0 439011 283 10295.3. 43,0 42.989 
244 8617.5 43.0 439014 284 10338.3 43.0 429986 

._._245 8660.5 43.0 4.016 285 10381.3 43,0 42.982 - 

246 8703.6 .. 43 91 .43..018___. $6__10_424343.0_ 42.997R 
247 874696 43.0 43.020 287 1046792 42 9 9 42.974 
248 8789.6 43.0. .	 .43.022____288__1.0.5i0..243.0. 42..970L. 
249 883296 43.0 439024 289 1055392 43.0 429966 
250	 8815.6 43,0 43.026 290 lflS9A.1 42.9 42,962 

251 .	 8918.97 :43.1. 42..9.58. 
252 8961.7 43.0 439028 292 1068291 43.0 42.953 
253. 900497 ----- -- 43 .0 
254 
255

9047.8 
9090.8

43.1 
43,0

430030 
4,31

294 
295

10768.0 
10810.9

42.9 
42.9

42.945 
42,940 

256 9.13.3...B. 
257 91760 43.1 43.031 297 1089698 43.0 42.930 

- 258 2.1.9 .9 42,9 42 .925_. 
259 
260

926299 
9305.9

43.0 
43,0

439031 
43.031

299 
300

10982.6 
11025.5

42.9 
. 42.9

429920 
426915 

2.9349..0.__43..t 4303i_ 
262 939290 43.0 43,031 

_26 3_._9435 • .0_43.0 _43.03_. 
264 9478.1 43.1 43.029 
265 9521.1 43.0 43.028 

266 9564 o L_&.Q 439027 
267 9607.2 43,1 43,026

- 

..2.68_9.6.52___430._ 43..025 
269 969392 43.0 43.024 
270 9736.2 43.0 43.022 

271 9779.2 43.0 439020 
272 982293 4391 43,018 

_21.9.85.3 43,0 43.016 
274 9908.3 43.0 43.014 
275 9951.3 43.0 43.012 

276 9994 * 3 43,0 43.010  
277 10037.3 43.0 439007 
274003A3.0 ..304_ 
279 10123.3 43.0 43.001 
280 10166 9 3 43.0 42.998_..
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Table 29.	 Reference data for the thermocouple combination normal silver 
versus Au-2. 1 at % Co - thermoelectric voltage, EMF(T), 
thermoelectric voltage difference, DELEMF(T), and thermo-
electric sensitivity, DE/DT(T). 

TEMP EF DELEMF. DE/DT TEMP EMF 0ELEIF DE/OT: 
CEG K MIC	 V M I C	 V MIC ilDGK	 DEG K MIC	 V MIC V MIC V/DGK 

1 0.5 0.5 1.C50 41 632.9 25.7 25.900 
2 2.1 1.6 2.C70	 . 42 658.9 26.0 26.230 
3 4.7 2.6 3.C70 43 685.3 26.4 .26.560 
4 8.2 3.5 4.C40 44 712.0 26.7 26.880 
5 12.7 445 4.990 45 739.0. 27.0 27.200 

6 18.2 5.5 5.920 46 766.3 .	 27.3 27.51,0 
7 24.6 6.4 6.820 47 193.9 27.6 27.820 
8 31.8 7.2 7.700 48 821.8 .	 27.9

- 
28.120 

9 39.9 8.1 8.550 49 850.1 28.3 28.410 
10 48.9 9.0 9.380 50 878.7, 28.6	 . .28.7O0 

11 58.7 9.8 10.180 51 907.6 28.9 28.980 
12 69.3 10.6 10.960 52 936.7 29.1 29.250 
13 80. 11.3 11.10 53 966.1 29.4 29.520 
14 92.7 12.1 12.440 54 995.8 29.7 29.790 
15 105.5 12.8 13.140 55 1025.7 29.9 30.050 

16 119.0 13.5 13.820 56 1055.8 30.1 .30.300 
17	 . 133.1 14.1 14.480 57 1086.2 30.4 30.550 
18 147.9 14.8 15.120 58 1116.9 30.7 .	 30.790 
19 163.3 15.4 15.750 59 1147.8 30.9 31.020 
20 179.4 1601 16.370 60 1178.9 31.1 31.250 

21 196.1 16.7 16.970 61 1210.3 31.4 31.470 
22 213.4 17.3 17.550 62 1241.9 31.6 31.690 
23 231.2 17.8 18.110 63 1273.7 31.8 31.900 
24 249.6 18.4 18.660 64 1305.7 _32.0 32.110 
25 268.5 18.9 19.190 65 1337.9 32.2 32.310 

•	 26 287.9 19.4 19.700 66 1370.3 32.4 32.500 
27 307.9 20.0 20.190 67 1402.9 32.6 32.690 
28 328.4 20.5 2C.670 68 1435.7 32.8 32.870 

349.4 21.0 21.140 69 1468.7 _33.0 33.050 
30 370.8 21.4 21.600 70 1501.8 33.1 33.220 

--	 31 392.6 21.8 22.050 71 1535.1 33.3 33.390 
32 414.8 22.2 22.480 72 1568.6 33.5 33.550 
33 437.4 22.6 22.900 73 1602.2 33.6 733.710 
34 460.4 23.0 23.310 74 1636.0. 33.8 33.870 
35 483.8 23.4 23.710 75 1669.9 -3-3"1 -."3.9

.
34.030 

36 507.7 23.9 24.100 76 1704.0 34.134.180 
37 532.0 24.3 24.480 77 1138.2 34.2 34.330 
38 556.7 24.7 24.850 78 1772.6 34.. 34.480 
39 581.8 25.11 25.213 79 1807.2 34.6 .34.630 
40 607.2 25.4 ' 250560	 .... 80 1841.9 34.1.........•7•....
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Table 29. Reference data for the thermocouple combination normal silver 
versus Au-2. 1 at % Co - thermoelectric voltage, EMF(T), 
thermoelectric voltage difference, DELEMF(T), and thermo-
electric sensitivity, DE/DT(T) (continued). 

	

TEMP	 E!F	 CELEMF	 CE/DT	 TEMP	 EMF	 OELEMF	 DE/OT 

	

flEG K	 MIC V MIC V	 MIC V/DGK	 DEG K	 ICM It ' V 	 it: V/DGK 

81 1876.7 34.8 34.930 121 3370.8 39.2 39.200 
82 1911.7 35.0 35.C80 122 3410.0 39.2 39.270 
83 1946.9 35.2 35.230 123 3449.3 39.3 39.340 
84 1982.2 35.3 35.380 124 3488.7 39.4 39.410 
85 2C17.6 35.4 35.530 125 3528.2 39.5 39.480 

86 2C53.2 35.6 35.680 126 3567.7 39.539.550 
87 2089.0 35.8 35.620 127 3607.3 39.6 39.620 
88 2124.9 35.9 35.960 128 3646.9 39.6 39.690 
89 2160.9 36.0 36.100 129 3686.6 39.7 39.760 
90 2197.0 36.1 -3-6--.-2- -4-6.240 130 3726.4 39.8 39.830 

91 2233.3 36.3 36.380 131 3766.2 39.839.890 
92 2269.7 36.4 36.520 132 3806.139.9 39.940 
93 2306.3 36.6 36.660 133 3846.0 39.9 39.990 
94 2343.0 36.7 36.800 134 .3886.0 40.0 40.040 
952379.8 36.8 36.930 135 3926.0 40.0 40.090 

96 2416.7 36.9 37.050 136 3966.1 40.1 40.140 
97 2453.7 37.0 37.160 137 4006.3 40.2 40.190 
98 2490.8 37.1 37.260 138 4046.5 40.2 40.240 
99 2528.1 37.3 37.350 139 4086.8 40.3 40.290 

100 2565.5 37.4 37.440 140 4127.1 40.3 40.340 

101 . 2603.0 37.5 37.530 141 4167.5 40.4 40.390 
102 2640.6 37.6	 1 37.620 142 4207.9 40.4 40.440 
103 2678.2 37.6 37.710 143 4248.4 40.5 40.490 
104 2715.9 37.7 37.800 144 4288.9 40.5 40.540 
105 2753.7	 : 37.8 37.890 145 4329.5 40.6 40.580 

106 2791.6 37.9 37.c80 146 4370.1 40.6 40.620 
107 2829.6 38.0 38.C70 147 4410.7 40.6 40.660 
108 2867.7 38.1 38.160 148 4451.4 40.7 40.700 
109 2905.9 38.2 38.250 149 4492.1 40.7 40.740 
110 2944.2 38.3 38.340 150 4532.9 40.8 4C.780 

111 2982.6 38.4 38.430 151 4573.7 40.8 40.820 
112 3021.1 38.5 38.510 152 4614.5 40.8 40.860 
113 3059.6 38.5 38.590 153 4655.4 40.9 40.900 
114 3098.2 38.6 38.670 154 4696.3 40.9 40.940 

3873 153 473f 

116 3175.7 38.8 38.630 156 4778.3 41.0 41.C20 
117 3214.6 38.9 38.910 157 4819.3 41.0 41.060 
118 3253.5 38.9 38.990 158 4860.4 41.1 41.090 
119 3292.5 39.0 39.060 159 4901.5 41.1 41.120 
r20 T3331.6 T3 16 T2.6 6I.i 41.150
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Table 29.	 Reference data for the thermocouple combination normal silver 
versus Au-2. 1 at % Co - thermoelectric voltage, EMF(T), 
thermoelectric voltage difference, DELEMF(T), and thermo-
electric sensitivity, DE/DT(T) (continued). 

TEMP EMF DELEMI CE/DT TEMP EMF DELEMF DE/OT 
DEG K MICV MIC V MIC V/DGK DEG K MIC	 V MIC V MIC V/DGK 

161 4983.8 41.2 41.180 201 6650.8 42.1 42.060 
162 5C25.0 41.2 41.210 202 6692.9 42.1 42.070 
163 5066.2 41.2 41.240 203 6735.0 42.1 42.080 
164 5107.5 41.3 41.270 204 6777.1 42.1 42.090 
1655148.8 41.3 41.300 205 6819.2 42.1 42.100 

166 5190.1 41.3 41.330 206 6861.3 -	 42.142.110 
167 5231.5 41.4 41.360 207 6903.4 42.1 42.120 
168 5272.9 41.4 41.390 208 6945.5 42.1 42.130 

..169 5314.3 41.4 41.420 209 6987.6 42.1 42.140 
170 5355.7 41.4 41.450 210 7029.7 42.1 42.150 

171 5397.1 41.4 41.480 211 7071.9 42.2 42.160 
172 5438.6 41.5 41.510 212 7114.1 42.2 42.170 
173 5480.1 41.5 41.540 213 7156.3

-
42.2 42.180 

174 5521.6 41.5 41.560 214 7198.5 42.2 42.190 
175 5563.1 41.5 41.580 215 7240.7 42.2 42.200 

176 5604.7 41.6 41.600 216 7282.942.2 42.210 
177 5646.3 41.6 41.620 217 7325.1 42.2 42.220 
178 5687.9 41.6 41.40 218 7367.3 42.2 42.230 
179 5729.5 41.6 41.660 219 7409.5 42.2 42.240 
180 5771.2 41.7 41.680 220 7451.7 42.2 42.250 

181 5812.9 41.7 41.700 221 7493.9 42.2 42.260 
182 5854.6 41.7 41.720 222 7536.2 42.3 42.270 
183 5896.3 41.7 41.40 223 7578.5 42.3 42.280 
184 5938.0 41.7 41.760 224 7620.8 42.3 42.290 
t

.- ........
42 

186 6021.6 41.8 41.800 226 770504 42.3 42.310 
187 6063.4 41.8 41.820 227 7747.7 42.3 42.310 
188 6105.2 41.8 41.840 228 7790.0 423 42.310 
189 6147.1 41.9 41.860 229 7832.3 42..3 42.310 
190 6189.0 41.9 41.880 230 7874.6 42.3 42.310 

191 6230.9 41.9 .coo 231 7916.9 42.3 42.310 
192 6272.8 41.9 41.920 232 7959.2 42.3 42.310 
193 6314.7 41.9 41.940 233 8001.5 42.3 42.310 
194 6356.7 42.0 41.960 234 8043.8 42.3 42.310 
195 8086.1 462T0 

196 6440.7 42.0 42.000 236 8128.4 42.3 42.310 
197 6482.7 42.0 42.020 237 8170.7 42.3 42.310 
198 6524.7 42.0 42.C30 2368213.0 42.3 42.310 
199 6566.7 42.0 42.040 239 8255.3 42.3 42.310 
200 6608.7 .... 42.0 .42.050 ........... ^40 . .829i-.;--6
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Table 29.	 Reference data for the thermocouple combination normal silver 
versus Au-2. 1 at To Co	 thermoelectric voltage, EMF(T), 
thermoelectric voltage difference, DELEMF(T), and thermo-
electric sensitivity, DE/DT(T) (continued). 

TEMP E?F DELEMF DE/OT TEMP LMF DELEMF DE/DT 
CEG 1< tIC	 V MIC V MIC	 /DGK DEG K MIC	 V MIC	 V MIC V/DGK 

241 8339.9 42.3 42.310 281 10031.7 42.3 42.310 
242' 8382.2 42.3 42.310 282 10074.0 42.3 42.310 
243 8424.5 42.3 42.310 283 10116.3 42.3 42.310 
244 8466.8 42.3 42.310 284 1C158.5 42.2 42.300 
245 8509.1 42.3 42.310 285 10200.7 42.2 42.20 

246 8551.4 42.3 42.310 286 10242.9 42.2 42.280 
247 8593.7 42.3 42.310 287 10285.1 42.2 42.270 
248 8636.0 42.3 42.310 288 10327.3 42.2 42.260 
249 8678.3 42.3 42.310 289 10369.5 42.2 42.250 
250 8720.6 42.3 42.310 290 10411.7 42.2 42.240 

251 8762.9 42.3 42.310 291 10453.9 42.2 42.230 
252 8805.2 42.3 42.:10 292 10496.1 42.2 42.220 
253 8847.5 42.3 42.310 293 10538.3 42.2 42.210 
254 8889.8 42.3 42.310 294 10580.5 42.2. 42.200 
255 8932.1 42.3 424310 295 10622.7 42.2 42.1.90 

256 8974.4 42.3 42.310 296 10664.8 42.1 42.180 
257 9016.7 42.3 42.310 297 10706.9 42 .142.170 
258 9059.0 42.3 42.310 28 10749.0 42.1 	 '- -42 -2.160 
259 9101.3 42.3 42.310 299 . 10791.1 42.1 42.150 
260 9143.6 42.3 42.210 300 10833.2 42.1 42.140 

261 9185.9 42.3 420310 
262 9226.2 42.3 42.310 
263 9270.5 42.3 42.310 
264 9312.8 42.3 42.310  
265 9355.1 42.3 42.310 

266 9397.4 42.3 42.310 
267 9439.7 42.3 42.310 . 
268 9482.0 42.3 42.310 . 
269 9524.3 42.3 42.210  
270 9566.6 42.3 42.310 

271 9608.9 42.3 42.310 
272 9651.2 42.3 42.210 
273 9693.5 42.3 42.310 
274 9735.7 42.2 42.310  
275 9777.9 42.2 42.310 

276 9820.2 42.3 42.310 
277 9862.5 42.3 42.210 
278 9904.8 42.3 42.310 
279 9947.1 42.3 42.310 
280 9989.4 42.3 42.310
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Table 32. Vapor pressure (atm) versus temperature (K) for helium-4. 

Temperature Pressure Temperature Pressure 
(K) (atm) (K) (atm) 

2.177 0.04969 3.70 0.5849 

2.20 0.05256 3.75 0.6182 

2.25 0.05916 3.80 0.6528 

2.30 0.06629 3.85 0.6886 

2.35 0.07399 3.90 0.7257 

2.40 0.08228 3.95 0.7642 

2.45 0.09120 4.00 0.8040 

2.50 0.1008 4.05 0.8452 

2.55 0.1110 4.10 0.8878 

2.60 0.1219 4.15 0.9318 

2.65 0.1336 4.20 0.9772 

2.70 0.1460 4.224 1.000 

2.75 0.1591 4.25 1.024 

2.80 0.1730 4.30 1.073 

2.85 0.1878 4.35 1.123 

2.90 0.2033 4.40 1.174 

2.95 0.2198 4.45 1.227 

3.00 0.2371 4.50 1.282 

3.05 0.2553 4.55 1.339 

3.10 0.2744 4.60 1.397 

3.15 0.2945 4.65 1.457 

3.20 0.3156 4.70 1.519 

3.25 0.3376 4.75 1.582 

3.30 0.3607 4.80 1.648 

3.35 0.3848 4.85 1.715 

3.40 0.4100 4.90 1.784 

3.45 0.4363 4.95 1.856 
3.50 0.4637 5.00 1.929 

3.55 0.4923 5.05 2.004 

3.60 0.5220 5.10 2.082 

3.65 0.5528 5.201 2.245
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Table 34. Vapor pressure (atm) versus temperature (K) for equilibrium
hydrogen.	 - 

Temperature
(K) 

13.803 

14 

15 

16 

17 

18 

19 

20 

20.268 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

32.976

Pressure
(atm) 

0.069 5 

0.077 8 

0.133 

0.213 

0.325 

0.476 

0.673 

0.923 

1.000 

1.233 

1.613 

2.069 

2.611 

3.245 

3.982 

4.829 

5.794 

6.887 

8.118 

9.501 

11.051 

12.759 

144



Table 35. Vapor pressure (atm) versus temperature (K) for neon. 

Temperature	 Pressure 
(K)	 (atm) 

25 0.50366 

26 0.70902 

27 0.97255 

28 1.3037 

29 1.7124 

30 2.2088 

31 2.8031 

32 3.5061 

33 4.3286 

34 5.2818 

35 6.3773 

36 7.6271 

37 9.0439 

38 10.641 

39 12.432 

40 14.434 

41 16.661 

42 19.133 

43 21.867 

44 24.887 

44.4 26.19
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Table 36. Vapor pressure (atm) versus temperature (K) for nitrogen. 

Temperature Pressure Temperature Pressure 
(K) (atm) (K) (atm) 

63.148 

64 

66 

68 

70 

72 

74 

76 

77.347 

78 

80 

82 

84 

86 

88 

90 

92 

94

0.1237 

0.1443 

0.2037 

0.2813 

0.3807 

0.5059 

0.6610 

0.8506 

1.0000 

1.0793 

1.3520 

1.6739 

2.0503 

2.4865 

2.9882 

3.5607 

4.2099 

4.9415

98 6.6748 

100 7.6885 

102 8.8083 

104 10.041 

106 11.392 

108 12.870 

110 14.481 

112 16.233 

114 18.133 

116 20.190 

118 22.411 

120 24.806 

122 27.386 

124 30.174 

126 33.227 

126.200 33.555
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Table 37. Vapor pressure (atm) versus temperature (K) for oxygen. 

Temperature Pressure Temperature Pressure 
(K) (atm) (K) (atm) 

54.351 0.001 112 6.139 

56 0.002 114 6.995 

58 0.004 116 7.934 

60 0.007 118 8.961 

62 0.012 120 10.082 

64 0.018 122 11.300 

66 0.028 124 12.621 

68 0.042 126 14.049 

70 0.061 128 15.591 

72 0.087 130 17.249 

74 0.122 132 19.031 

76 0.167 134 20.942 

78 0.224 136 22.986 

80 0.297 138 25.170 

82 ,	 0.387 140 27.501 

84 0.497 142 29.986. 

86 0.631 144 32.631 

88 0.791 146 35.448 

90 0.981 148 38.446 

90.180 1.000 150 41.638 

92 1.205 152 45.041 

94 1.466 154 48.675 

96 1.768 154.576 49.767 

98 2.114 

100 2.509 

102 2.957 

104 3.462 

106 4.029 

108 4.661 

110 5.363
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Appendix A. Standard designations for thermocouples 

ANSI, ASTM, and ISA (American National Standards Institute, American Society - 

for Testing and Materials, and Instrument Society of America, respectively) have adopted 

the following letter designations for thermocouples described in this review: - 

THERMOCOUPLE COMBINATIONS: 

The positive thermoelectric material is conventionally 
written first. 

Paz

Nickel-chromium alloy versus copper-nickel alloy. 

Iron versus copper-nickel alloy. 

Nickel-chromium alloy versus nickel-aluminum alloy. 

Copper versus copper-nickel alloy. 

The negative wire in a combination. 

The positive wire in a combination. 

A copper-nickel alloy, often referred to as Adams' 
constantan; Advance', Cupron4 nominally 55 wt% Cu, 
45% Ni. 

A nickel-chromium alloy, often referred to as Chromel2; 
T-1 1 , ThermoKanthal KP3, Tophel4, nominally 90% 
Ni, 10% Cr. 

A copper-nickel alloy similar to but not generally 
interchangeable with EN and TN; SAMA specification. 

Iron: ThermoKanthal JP 3 ; nominally 99.5% Fe. 

A nickel-aluminum alloy, often referred to as Alumel2 ;-
T-2 1 , ThermoKanthal KN 3, Nial4 ; nominally 95% Ni, 
2%A1, 2%Mn, 1% Si. 

Copper, usually Electrolytic Tough Pitch. 

Type E 

Type J 

Type K 

Type T 

SINGLE- LEG WIRES: 

N 

P 

EN or TN 

EP or KP 

JN 

JP 

KN 

Registered Trademarks: 
1 Trademark -- Driver-Harris Co. 	 3 Trademark -- Kanthal Corp. 
2 Trademark -- Hoskins Manufacturing Co. 4 Trademark - - Wilbur B. Driver Co. 

The use of trade names does not constitute an endorsement of any manufacturer's products. 
All materials manufactured in compliance with the established thermoelectric voltage 
standards are equally acceptable.
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Appendix B. Variables, units, unit conversions and selected physical constants 

Primary Variables having Variables having To convert 
Variable the same units units reciprocal from To Multiply by 

as the primary to those of the 
variable primary variable 

Pressure Adiabatic atm psia 14. 695949 
compressibility bar psia 14. 503774 

Isothermal mm Hg psia 0.01933678 

ity compressibility
torr.

2 Pa or N/rn psia 14. 503774 x 10 

Volume Virial cm  /mol ft3 /lb 0.0005005957 
Coefficients cm3/g ft3/lb 0.016018462 

dm3 /kg ft3/lb 0.016018462 

Density rnol/cm3 lb/ft3 1997.62 
g/cm3 lb/ft3 62.42797 
kg/drn3 lb/ft3 62.42797 

Temperature Volume K 1.8 
expansivity °C °R 1.8 and add 491.67 

Enthalpy Internal energy J/mol BTU/lb 0.0134446 
Latent heat kJ/kg BTU/lb 0.430211 
Free energy 
Heat of transition 
Specific heat input  

Entropy Specific heat J/rnol-K BTU/ 0.0074692 
lb- *R 

kJ/kg-°C BTU/ 0.239006 
lb-°R 

Joule-Thomson 
Coefficient K/atm SR/psi 0.12248273 

Surface Tension dyn/cm lbf/ifl 5. 710147 x 10_6 

Thermal mW/cm-K BTU/ 0.0578176 
Conductivity ft- hr-° R 

kW/rn-C BTU/ 578.176 
ft-hr-°R 

Thermal 
Diffusivity cm2/s ft2/hr 3.87500775 

Velocity of 
Sound m/s ft/s 3.280839895 

Viscosity g/cm_s, lb/ft-s 0.067196897 
or poise 
N-s/m2 lb/ft-s 0.67196897

1 dyne 10 N 

Icepoint, T0 , 273. 15 K = 0°C = 491. 67°R 

The Gas Constant, R, 8. 31434 J/rnol-K = 8. 31434 x 106 N-cm3 /rn2 -mol-K = 
82.056Z atm-cm' /mol-K = 10. 7314 psi-ft3/mol-°R, 
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